Vol. 283, No. 2, 2016

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 335: 1
Vol. 334: 1  2
Vol. 334: 1
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The fundamental theorem of tropical differential algebraic geometry

Fuensanta Aroca, Cristhian Garay and Zeinab Toghani

Vol. 283 (2016), No. 2, 257–270
Abstract

Let I be an ideal of the ring of Laurent polynomials K[x1±1,,xn±1] with coefficients in a real-valued field (K,v). The fundamental theorem of tropical algebraic geometry states the equality trop(V (I)) = V (trop(I)) between the tropicalization trop(V (I)) of the closed subscheme V (I) (K)n and the tropical variety V (trop(I)) associated to the tropicalization of the ideal trop(I).

In this work we prove an analogous result for a differential ideal G of the ring of differential polynomials K[[t]]{x1,,xn}, where K is an uncountable algebraically closed field of characteristic zero. We define the tropicalization trop(Sol(G)) of the set of solutions Sol(G) K[[t]]n of G, and the set of solutions Sol(trop(G)) P(0)n associated to the tropicalization of the ideal trop(G). These two sets are linked by a tropicalization morphism trop : Sol(G) Sol(trop(G)).

We show the equality trop(Sol(G)) = Sol(trop(G)), answering a question recently raised by D. Grigoriev.

Keywords
differential algebra, tropical geometry, arc spaces, power series solutions of ODEs
Mathematical Subject Classification 2010
Primary: 13N99, 13P15, 14T99
Milestones
Received: 12 January 2016
Revised: 9 March 2016
Accepted: 23 March 2016
Published: 22 June 2016
Authors
Fuensanta Aroca
Instituto de Matemáticas, Unidad Cuernavaca
Universidad Nacional Autónoma de México
Av. Universidad s/n. Col. Lomas de Chamilpa
62210 Cuernavaca
Mexico
Cristhian Garay
Institut de Mathématiques de Jussieu
Institut de Mathématiques de Jussieu–Paris Rive Gauche
4 place Jussieu, Case 247
75252 Paris Cedex 5
France
Zeinab Toghani
Instituto de Matemáticas, Unidad Cuernavaca
Universidad Nacional Autónoma de México
Av. Universidad s/n. Col. Lomas de Chamilpa
62210 Cuernavaca
Mexico