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A SIMPLE SOLUTION TO THE WORD PROBLEM FOR
VIRTUAL BRAID GROUPS

PAOLO BELLINGERI, BRUNO A. CISNEROS DE LA CRUZ AND LUIS PARIS

We show a simple and easily implementable solution to the word problem
for virtual braid groups.

1. Introduction

Virtual braid groups were introduced by L. Kauffman [1999] in his seminal paper
on virtual knots and links. They can be defined in several ways, such as in terms of
Gauss diagrams [Bar-Natan and Dancso 2015; Cisneros de la Cruz 2015], in terms
of braids in thickened surfaces [Cisneros de la Cruz 2015], and in terms of virtual
braid diagrams. The latter will be our starting point of view.

A virtual braid diagram on n strands is an n-tuple β = (b1, . . . , bn) of smooth
paths in the plane R2 satisfying the following conditions:

(a) bi (0)= (i, 0) for all i ∈ {1, . . . , n}.

(b) There is a permutation g ∈Sn such that bi (1)= (g(i), 1) for all i ∈ {1, . . . , n}.

(c) (p2 ◦ bi )(t) = t for all i ∈ {1, . . . , n} and all t ∈ [0, 1], where p2 : R
2
→ R

denotes the projection on the second coordinate.

(d) The bi intersect transversely in a finite number of double points, called the
crossings of the diagram.

Each crossing is endowed with one of the following attributes: positive, negative,
virtual. In the figures they are generally indicated as in Figure 1. Let VBDn be the
set of virtual braid diagrams on n strands, and let ∼ be the equivalence relation
on VBDn generated by ambient isotopy and the virtual Reidemeister moves depicted
in Figure 2. The concatenation of diagrams induces a group structure on VBDn/∼.
The latter is called the virtual braid group on n strands, and is denoted by VBn .
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Figure 1. Positive, negative and virtual crossings in a virtual braid diagram.

It was observed in [Kamada 2007; Vershinin 2001] that VBn has a presentation
with generators σ1, . . . , σn−1, τ1, . . . , τn−1 and relations

τ 2
i = 1 for 1≤ i ≤ n− 1,

σiσ j = σ jσi , σiτ j = τ jσi , τiτ j = τ jτi for |i − j | ≥ 2,

σiσ jσi = σ jσiσ j , σiτ jτi = τ jτiσ j , τiτ jτi = τ jτiτ j for |i − j | = 1.

A solution to the word problem for virtual braid groups was shown in [Godelle and
Paris 2012]. However, this solution is quite theoretical and its understanding requires
some heavy technical knowledge on Artin groups. Therefore, it is incomprehensible
and useless for most of the potential users, including low-dimensional topologists.
Moreover, its implementation would be difficult. Our aim here is to show a new
solution, which is simpler and easily implementable, and whose understanding
does not require any special technical knowledge. This new solution is in the spirit
of the one shown in [Godelle and Paris 2012], in the sense that one of the main
ingredients in its proof is the study of parabolic subgroups in Artin groups.

Figure 2. Virtual Reidemeister moves.
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We have not calculated the complexity of this algorithm, as this is probably at
least exponential because of the inductive step 3 (see Section 2). Nevertheless,
it is quite efficient for a limited number of strands (see the example at the end
of Section 2), and, above all, it should be useful to study theoretical questions
on VBn such as the faithfulness of representations of this group in automorphism
groups of free groups and/or in linear groups. Note that the faithfulness of such a
representation will immediately provide another, probably faster, solution to the
word problem for VBn .

The Burau representation easily extends to VBn [Vershinin 2001], but the question
whether VBn is linear or not is still open. A representation of VBn in Aut(Fn+1)

was independently constructed in [Bardakov 2005] and [Manturov 2003], but such
a representation has recently been proven to be not faithful for n ≥ 4 [Chterental
2015, Proposition 5.3] (see the example at the end of Step 1). So, we do not know
yet any representation on which we can test our algorithm.

Chterental [2015] shows a faithful action of VBn on a set of objects that he calls
“virtual curve diagrams”. We have some hope to use this action to describe another
explicit solution to the word problem for VBn . But, for now, we do not know any
formal definition of this action, nor how it could be encoded in an algorithm.

2. The algorithm

Our solution to the word problem for VBn is divided into four steps. In Step 1 we
define a subgroup KBn of VBn and a generating set S for KBn , and we show an
algorithm (called Algorithm A) which decides whether an element of VBn belongs
to KBn and, if yes, determines a word over S±1 which represents this element.
For X ⊂ S, we denote by KBn(X ) the subgroup of KBn generated by X . The other
three steps provide a solution to the word problem for KBn(X ) which depends
recursively on the cardinality of X . Step 2 is the beginning of the induction. More
precisely, the algorithm proposed in Step 2 (called Algorithm B) is a solution to
the word problem for KBn(X ) when X is a full subset of S (the notion of “full
subset” will be also defined in Step 2; for now, the reader just need to know that
singletons are full subsets). In Step 3 we suppose given a solution to the word
problem for KBn(X ), and, for a given subset Y ⊂ X , we show an algorithm which
solves the membership problem for KBn(Y) in KBn(X ) (called Algorithm C). In
Step 4 we show an algorithm which solves the word problem for KBn(X ) when
X is not a full subset, under the assumption that the group KBn(Y) has a solvable
word problem for any proper subset Y of X (called Algorithm D).

Step 1. Recall that Sn denotes the group of permutations of {1, . . . , n}. We denote
by θ : VBn→Sn the epimorphism which sends σi to 1 and τi to (i, i + 1) for all
1≤ i ≤ n− 1, and by KBn the kernel of θ . Note that θ has a section ι :Sn→VBn
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i j i j

Figure 3. Generators for KBn: δi, j (left) and δ j,i (right)

which sends (i, i + 1) to τi for all 1≤ i ≤ n− 1, and therefore VBn is a semidirect
product VBn = KBn oSn . The following proposition is proved in Rabenda’s
master’s thesis, which, unfortunately, is not available anywhere. However, its proof
can also be found in [Bardakov and Bellingeri 2009].

Proposition 2.1. For 1≤ i < j ≤ n we set

δi, j = τiτi+1 · · · τ j−2σ j−1τ j−2 · · · τi+1τi ,

δ j,i = τiτi+1 · · · τ j−2τ j−1σ j−1τ j−1τ j−2 · · · τi+1τi .

Then KBn has a presentation with generating set

S = {δi, j | 1≤ i 6= j ≤ n}
and relations

δi, jδk,l = δk,lδi, j for i, j, k, l distinct,

δi, jδ j,kδi, j = δ j,kδi, jδ j,k for i, j, k distinct.

The virtual braids δi, j and δ j,i are depicted in Figure 3.
The following is an important tool in the forthcoming Algorithm A.

Lemma 2.2 [Bardakov and Bellingeri 2009]. Let u be a word over {τ1, . . . , τn−1},
let ū be the element of VBn represented by u, and let i, j ∈ {1, . . . , n}, i 6= j . Then
ūδi, j ū−1

= δi ′, j ′ , where i ′ = θ(ū)(i) and j ′ = θ(ū)( j).

Note that τ−1
i = τi , since τ 2

i = 1, for all i ∈ {1, . . . , n− 1}. Hence, the letters
τ−1

1 , . . . , τ−1
n−1 are not needed in the above lemma and below.

We give an algorithm which, given a word u over {σ±1
1 , . . . , σ±1

n−1, τ1, . . . , τn−1},
decides whether the element ū of VBn represented by u belongs to KBn . If yes, it
also determines a word u′ over S±1

= {δ±i, j | 1 ≤ i 6= j ≤ n} which represents ū.
The fact that this algorithm is correct follows from Lemma 2.2.
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Algorithm A. Let u be a word over {σ±1
1 , . . . , σ±1

n−1, τ1, . . . , τn−1}. We write u in
the form

u = v0σ
ε1
i1
v1 · · · vl−1σ

εl
il
vl,

where v0, v1, . . . , vl are words over {τ1, . . . , τn−1}, and ε1, . . . , εl ∈ {±1}. On
the other hand, for a word v = τ j1 · · · τ jk over {τ1, . . . , τn−1}, we set θ(v) =
( j1, j1+1) · · · ( jk, jk+1)∈Sn . Note that θ(ū)= θ(v0) θ(v1) · · · θ(vl). If θ(ū) 6= 1,
then ū 6∈ KBn . If θ(ū)= 1, then ū ∈ KBn , and ū is represented by

u′ = δε1
a1,b1

δ
ε2
a2,b2
· · · δ

εl
al ,bl

,

where
ak = θ(v0 · · · vk−1)(ik) and bk = θ(v0 · · · vk−1)(ik + 1)

for all k ∈ {1, . . . , l}.

Example. Chterental [2015] proved that the Bardakov–Manturov representation
of VBn in Aut(Fn+1) (see for instance [Bardakov 2005] for the definition) is not
faithful, showing that the element ω = (τ3σ2τ1σ

−1
2 )3 is nontrivial in VB4 while the

corresponding automorphism of F5 is trivial. In [Chterental 2015] the nontriviality
of ω is shown by means of an action on some curve diagrams, but this fact can easily
be checked with Algorithm A. Indeed, θ(ω) = ((3, 4)(1, 2))3 = (3, 4)(1, 2) 6= 1,
hence ω 6= 1.

Step 2. Let S be a finite set. A Coxeter matrix over S is a square matrix M =
(ms,t)s,t∈S , indexed by the elements of S, such that ms,s = 1 for all s ∈ S, and
ms,t = mt,s ∈ {2, 3, 4, . . . } ∪ {∞} for all s, t ∈ S, s 6= t . We represent this Coxeter
matrix with a labeled graph 0=0M , called a Coxeter diagram. The set of vertices of
0 is S. Two vertices s, t ∈ S are connected by an edge labeled by ms,t if ms,t 6= ∞.

If a, b are two letters and m is an integer ≥ 2, we set 〈a, b〉m = (ab)m/2 if m is
even, and 〈a, b〉m = (ab)(m−1)/2a if m is odd. In other words, 〈a, b〉m denotes the
word aba · · · of length m. The Artin group of 0 is the group A = A(0) defined by
the presentation

A =
〈
S | 〈s, t〉ms,t = 〈t, s〉ms,t for all s, t ∈ S, s 6= t and ms,t 6= ∞

〉
.

The Coxeter group of 0, denoted by W =W (0), is the quotient of A by the relations
s2
= 1, s ∈ S.

Example. Let V0n be the Coxeter diagram defined as follows. The set of vertices
of V0n is S. If i , j , k, l ∈ {1, . . . , n} are distinct, then δi, j and δk,l are connected
by an edge labeled by 2. If i , j , k ∈ {1, . . . , n} are distinct, then δi, j and δ j,k are
connected by an edge labeled by 3. There is no other edge in V0n . Then, by
Proposition 2.1, KBn is isomorphic to A(V0n).
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Let 0 be a Coxeter diagram. For X ⊂ S, we denote by 0X the subdiagram of 0
spanned by X , by AX the subgroup of A = A(0) generated by X , and by WX the
subgroup of W =W (0) generated by X . By [van der Lek 1983], AX is the Artin
group of 0X , and, by [Bourbaki 1968], WX is the Coxeter group of 0X .

For X ⊂ S, we denote by KBn(X ) the subgroup of KBn generated by X . By the
above, KBn(X ) has a presentation with generating set X and relations

• st = ts if s and t are connected in V0n by an edge labeled by 2,

• sts = tst if s and t are connected in V0n by an edge labeled by 3.

Definition. We say that a subset X of S is full if any two distinct elements s, t of
X are connected by an edge of V0n . (Recall that the aim of Step 2 is to give a
solution to the word problem for KBn(X ) when X is full.)

We denote by Fn = F(x1, . . . , xn) the free group of rank n freely generated by
x1, . . . , xn . For i , j ∈ {1, . . . , n}, i 6= j , we define ϕi, j ∈ Aut(Fn) by

ϕi, j (xi )= xi x j x−1
i , ϕi, j (x j )= xi and ϕi, j (xk)= xk for k 6∈ {i, j}.

It is easily seen from the presentation in Proposition 2.1 that the map S→Aut(Fn),
δi, j 7→ ϕi, j , induces a representation ϕ : KBn→ Aut(Fn). For X ⊂ S, we denote
by ϕX :KBn(X )→Aut(Fn) the restriction of ϕ to KBn(X ). The following will be
proved in Section 3;

Proposition 2.3. If X is a full subset of S, then ϕX :KBn(X )→Aut(Fn) is faithful.

Notation. From now on, if u is a word over S±1, then ū will denote the element
of KBn represented by u.

Algorithm B. Let X be a full subset of S and let u= sε1
1 · · · s

εl
l be a word over X±1.

We have ϕX (ū)= ϕX (s1)
ε1 · · ·ϕX (sl)

εl . If ϕ(ū)= Id, then ū = 1. Otherwise, ū 6= 1.

Step 3. Let G be a group, and let H be a subgroup of G. A solution to the
membership problem for H in G is an algorithm which, given g ∈ G, decides
whether g belongs to H or not. In the present step we will assume that KBn(X )
has a solution to the word problem, and, from this solution, we will give a solution
to the membership problem for KBn(Y) in KBn(X ) for Y ⊂ X . Furthermore, if
the tested element belongs to KBn(Y), then this algorithm will determine a word
over Y±1 which represents this element.

Let u be a word over S. (Remark: here the alphabet is S, and not S±1.)

• Suppose that u is written in the form u1ssu2, where u1, u2 are words over S
and s is an element of S. Then we say that u′ = u1u2 is obtained from u by
an M-operation of type I.
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• Suppose that u is written in the form u1stu2, where u1, u2 are words over S
and s, t are two elements of S connected by an edge labeled by 2. Then we
say that u′ = u1tsu2 is obtained from u by an M-operation of type II(2).

• Suppose that u is written in the form u1stsu2, where u1, u2 are words over S
and s, t are two elements of S connected by an edge labeled by 3. Then we
say that u′ = u1tstu2 is obtained from u by an M-operation of type II(3).

Let Y be a subset of S.
• Suppose that u is written in the form tu′, where u′ is a word over S and t is

an element of Y . Then we say that u′ is obtained from u by an M-operation
of type IIIY .

We say that u is M-reduced (resp. MY -reduced) if its length cannot be short-
ened by M-operations of type I, II(2), II(3) (resp. of type I, II(2), II(3), IIIY ). An
M-reduction (resp. MY -reduction) of u is an M-reduced word (resp. MY -reduced
word) obtained from u by M-operations (resp. MY -operations). We can easily
enumerate all the words obtained from u by M-operations (resp. MY -operations),
hence we can effectively determine an M-reduction and/or an MY -reduction of u.

Let Y be a subset of S. From a word u = sε1
1 · · · s

εl
l over S±1, we construct a

word πY(u) over Y±1 as follows:
• For i ∈ {0, 1, . . . , l} we set u+i = s1 · · · si (as ever, u+0 is the identity).

• For i ∈ {0, 1, . . . , l} we calculate an MY -reduction v+i of u+i .

• For a word v = t1 · · · tk over S, we let op(v)= tk · · · t1. Let i ∈ {1, . . . , l}. If
εi = 1, we set w+i = v

+

i−1 ·si ·op(v+i−1). If εi =−1, we set w+i = v
+

i ·si ·op(v+i ).

• For all i ∈ {1, . . . , l} we calculate an M-reduction ri of w+i .

• If ri is of length 1 and ri ∈ Y , we set Ti = r εi
i . Otherwise we set Ti = 1.

• We set πY(u)= T1T2 · · · Tl .

The proof of the following is given in Section 4.

Proposition 2.4. Let Y be a subset of S. Let u, v be two words over S±1. If ū = v̄,
then πY(u)= πY(v). Moreover, we have ū ∈ KBn(Y) if and only if ū = πY(u).

Algorithm C. Take two subsets X and Y of S such that Y ⊂ X , and assume given
a solution to the word problem for KBn(X ). Let u be a word over X±1. We
calculate v= πY(u). If uv−1 6= 1, then ū 6∈KBn(Y). If uv−1= 1, then ū ∈KBn(Y)
and v is a word over Y±1 which represents the same element as u.

We can use Algorithm C to show that the representation ϕ : KBn→ Aut(Fn) of
Step 2 is not faithful. Indeed, let α= δ1,3δ3,2δ3,1 and β= δ2,3δ1,3δ3,2. A direct calcu-
lation shows that ϕ(α)= ϕ(β). Now, set X = S and Y = {δ1,3, δ3,2, δ3,1}. We have
πY(δ1,3δ3,2δ3,1)= δ1,3δ3,2δ3,1, hence α ∈KBn(Y), and we have πY(δ2,3δ1,3δ3,2)= 1
and β 6= 1, hence β 6∈ KBn(Y). Thus α 6= β.



278 PAOLO BELLINGERI, BRUNO A. CISNEROS DE LA CRUZ AND LUIS PARIS

Step 4. Now, we assume that X is a nonfull subset of S, and that we have a
solution to the word problem for KBn(Y) for any proper subset Y of X (induction
hypothesis). We can and do choose two proper subsets X1,X2 ⊂ X satisfying the
following properties:

(a) X = X1 ∪X2.

(b) Let X0 = X1 ∩X2. There is no edge in V0n connecting an element of X1 \X0

to an element of X2 \X0.

It is easily seen from the presentations of the KBn(Xi ) given in Step 2 that we have
the amalgamated product

KBn(X )= KBn(X1) ∗KBn(X0) KBn(X2).

Our last algorithm is based on the following result. This is well known and can
be found for instance in [Serre 1977, Chapitre 5.2].

Proposition 2.5. Let A1∗B A2 be an amalgamated product of groups. Let g1, . . . , gl

be a sequence of elements of A1 t A2 different from 1 and satisfying the following
condition:

if gi ∈ A1 (resp. gi ∈ A2) then gi+1 ∈ A2 \ B (resp. gi+1 ∈ A1 \ B) for all
i ∈ {1, . . . , l − 1}.

Then g1g2 · · · gl is different from 1 in A1 ∗B A2.

Algorithm D. Let u be a word over X±1. We write u in the form u1u2 · · · ul , where

• ui is either a word over X±1
1 or a word over X±1

2 ,

• if ui is a word over X±1
1 (resp. over X±1

2 ), then ui+1 is a word over X±1
2 (resp.

over X±1
1 ).

We decide whether ū is trivial by induction on l. Suppose that l = 1 and u =
u1 ∈ KBn(X j ) ( j ∈ {1, 2}). Then we apply the solution to the word problem for
KBn(X j ) to decide whether ū is trivial or not. Suppose that l ≥ 2. For all i we set
vi = πX0(ui ). If uiv−1

i 6= 1 for all i , then ū 6= 1. Suppose there exists an integer
i ∈ {1, . . . , l} such that uiv−1

i = 1. Let u′i = v1u2 if i = 1, u′i = ul−1vl if i = l, and
u′i = ui−1vi ui+1 if 2≤ i ≤ l− 1. Set v = u1 · · · ui−2u′i ui+2 · · · ul . Then ū = v̄ and,
by induction, we can decide whether v represents 1 or not.

Example. In order to illustrate our solution to the word problem for KBn , we turn
now to give a more detailed and efficient version of the algorithm for the group KB4.
We start with the following observation:

Remark. For X ⊂S, we denote by V0n(X ) the full subgraph of V0n spanned by X .
Let X , Y be two subsets of S. Note that an injective morphism of Coxeter graphs
V0n(Y) ↪→V0n(X ) induces an injective homomorphism KBn(Y) ↪→KBn(X ). So,
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Figure 4. Coxeter graph V04.

if we had a solution to the word problem for KBn(X ), then such a morphism would
determine a solution to the word problem for KBn(Y).

The Coxeter graph V04 is depicted in Figure 4. Our convention in this figure is
that a full edge is labeled by 3 and a dotted edge is labeled by 2. Note that there are
two edges that go through “infinity”, one connecting δ2,1 to δ4,3, and one connecting
δ1,4 to δ3,2.

Consider the following subsets of S:

X (1)
={δ1,2,δ2,3,δ3,4,δ4,1,δ3,1}, X (1)

1 ={δ1,2,δ2,3,δ3,4,δ4,1}, X (1)
2 ={δ1,2,δ2,3,δ3,1}.

X (2)
= X (1)

∪ {δ4,2}, X (2)
1 = X (1), X (2)

2 = {δ4,2, δ3,4, δ2,3, δ3,1}.

X (3)
= X (2)

∪ {δ1,3}, X (3)
1 = X (2), X (3)

2 = {δ1,3, δ4,1, δ3,4, δ4,2}.

X (4)
= X (3)

∪ {δ2,4}, X (4)
1 = X (3), X (4)

2 = {δ2,4, δ1,3, δ4,1, δ1,2, δ3,1}.

X (5)
= X (4)

∪ {δ1,4}, X (5)
1 = X (4), X (5)

2 = {δ1,4, δ4,2, δ2,3, δ3,1}.

X (6)
= X (5)

∪ {δ2,1}, X (6)
1 = X (5), X (6)

2 = {δ2,1, δ1,3, δ3,4, δ4,2, δ1,4}.

X (7)
= X (6)

∪ {δ3,2}, X (7)
1 = X (6), X (7)

2 = {δ3,2, δ2,4, δ4,1, δ1,3, δ2,1, δ1,4}.

X (8)
= X (7)

∪ {δ4,3} = S, X (8)
1 = X (7), X (8)

2 = {δ4,3, δ3,2, δ2,4, δ1,2, δ3,1, δ1,4, δ2,1}.

Let k ∈ {1, . . . , 8}. Note that X (k)
=X (k)

1 ∪X
(k)
2 . The Coxeter graph V04(X (k)) is

depicted in Figure 5. In this figure the elements of X (k)
1 are represented by punctures,

while the elements of X (k)
2 are represented by small circles.

We solve the word problem for KB4(X (k)) successively for k = 1, 2, . . . , 8,
thanks to the following observations. Since X (8)

= S, this will provide a solution
to the word problem for KB4.

(1) Let k ∈ {1, . . . , 8}. Set X (k)
0 = X (k)

1 ∩ X (k)
2 . Observe that there is no edge

in V04 connecting an element of X (k)
1 \ X

(k)
0 to an element of X (k)

2 \ X
(k)
0 .
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Figure 5. Coxeter graphs V04(X (k)) for k = 1, . . . , 8 from left to right.

Hence, we can solve, using Algorithm D, the word problem for KB4(X (k))

from solutions to the word problem for KB4(X (k)
1 ) and for KB4(X (k)

2 ).

(2) The subsets X (1)
1 and X (1)

2 are full, hence we can solve the word problem for
KB4(X (1)

1 ) and for KB4(X (1)
2 ) with Algorithm B.

(3) Let k ≥ 2. On the one hand, we have X (k)
1 = X (k−1). On the other hand, it is

easily seen that there is an injective morphism V04(X (k)
2 ) ↪→ V04(X (k−1)).

Hence, by the remark given at the beginning of the subsection, we can solve
the word problem for KB4(X (k)

1 ) and for KB4(X (k)
2 ) from a solution to the

word problem for KB4(X (k−1)).

3. Proof of Proposition 2.3

Recall that Fn = F(x1, . . . , xn) denotes the free group of rank n freely generated
by x1, . . . , xn , and that we have a representation ϕ : KBn→ Aut(Fn) which sends
δi, j to ϕi, j , where

ϕi, j (xi )= xi x j x−1
i , ϕi, j (x j )= xi and ϕi, j (xk)= xk for k 6∈ {i, j}.

For X ⊂ S, we denote by ϕX :KBn(X )→Aut(Fn) the restriction of ϕ to KBn(X ).
In this section we prove that ϕX is faithful if X is a full subset of S.
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Consider the groups

Bn =

〈
σ1, . . . , σn−1

∣∣∣ σiσ jσi = σ jσiσ j if |i − j | = 1
σiσ j = σ jσi if |i − j | ≥ 2

〉
,

B̃n =

〈
σ1, . . . , σn

∣∣∣ σiσ jσi = σ jσiσ j if i ≡ j ± 1 mod n
σiσ j = σ jσi if i 6= j and i 6≡ j ± 1 mod n

〉
, n ≥ 3.

The group Bn is the classical braid group, and B̃n is the affine braid group.
We define representations ψn : Bn → Aut(Fn) and ψ̃n : B̃n → Aut(Fn) in the

same way as ϕ, as follows:

ψn(σi )(xi )= xi xi+1x−1
i , ψn(σi )(xi+1)= xi , ψn(σi )(xk)= xk if k 6∈ {i, i+1},

ψ̃n(σi )= ψn(σi ) for i < n,

ψ̃n(σn)(xn)= xnx1x−1
n , ψ̃n(σn)(x1)= xn, ψ̃n(σn)(xk)= xk if k 6∈ {1, n},

The key of the proof of Proposition 2.3 is the following:

Theorem 3.1 [Artin 1947; Bellingeri and Bodin 2016]. The representations ψn :

Bn→ Aut(Fn) and ψ̃n : B̃n→ Aut(Fn) are faithful.

The support of a generator δi, j is defined to be supp(δi, j )= {i, j}. The support
of a subset X of S is supp(X )=

⋃
s∈X supp(s). We say that two subsets X1 and X2

of S are perpendicular1 if supp(X1) ∩ supp(X2) = ∅. Note that this condition
implies that X1 ∩ X2 = ∅. More generally, we say that a family X1, . . . ,Xl of
subsets of S is perpendicular if supp(Xi ) ∩ supp(X j ) = ∅ for all i 6= j . In that
case we write X1 ∪ · · · ∪ Xl = X1 � · · · � Xl . We say that a subset X of S is
indecomposable if it is not the union of two perpendicular nonempty subsets. The
next observations will be of importance in what follows.

Remarks. Let X1 and X2 be two perpendicular subsets of S, and let X = X1 �X2.

(1) X is a full subset if and only if X1 and X2 are both full subsets.

(2) KBn(X )= KBn(X1)×KBn(X2).

Indeed, if δi, j ∈ X1 and δk,l ∈ X2, then i , j , k, l are distinct, and therefore δi, j and
δk,l are connected by an edge labeled by 2, and δi, jδk,l = δk,lδi, j .

Lemma 3.2. Let X1 and X2 be two perpendicular subsets of S, and let X =X1�X2.
Then ϕX : KBn(X )→ Aut(Fn) is faithful if and only if ϕX1 : KBn(X1)→ Aut(Fn)

and ϕX2 : KBn(X2)→ Aut(Fn) are both faithful.

1This terminology is derived from the theory of Coxeter groups.
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Proof. For X ⊂ {x1, . . . , xn}, we denote by F(X) the subgroup of Fn generated
by X . There is a natural embedding ιX : Aut(F(X)) ↪→ Aut(Fn) defined by

ιX (α)(xi )=

{
α(xi ) if xi ∈ X,
xi otherwise.

Moreover, if X1 and X2 are disjoint subsets of {x1, . . . , xn}, then the homomorphism

(ιX1 × ιX2) : Aut(F(X1))×Aut(F(X2))→ Aut(Fn),

(α1, α2) 7→ ιX1(α1) ιX2(α2),

is well-defined and injective. From now on, we will assume Aut(F(X)) to be
embedded in Aut(Fn) via ιX for all X ⊂ {x1, . . . , xn}.

By an abuse of notation, for X ⊂ S we will also denote by supp(X ) the set
{xi | i ∈ supp(X )}. Set X1 = supp(X1) and X2 = supp(X2). We have Im(ϕXi ) ⊂

Aut(F(X i )) for i = 1, 2, X1∩X2=∅, and KBn(X )=KBn(X1)×KBn(X2). Hence,
Lemma 3.2 follows from the following claim, whose proof is left to the reader:

Let f1 :G1→H1 and f2 :G2→H2 be two group homomorphisms. Let ( f1× f2) :

(G1 ×G2)→ (H1 × H2) be the homomorphism defined by ( f1 × f2)(u1, u2) =

( f1(u1), f2(u2)). Then ( f1 × f2) is injective if and only if f1 and f2 are both
injective. �

For 2≤ m ≤ n we set

Zm = {δ1,2, . . . , δm−1,m}, Z̃m = {δ1,2, . . . , δm−1,m, δm,1}.

Note that the map {σ1, . . . , σm−1} → Zm , σi 7→ δi,i+1, induces an isomorphism
fm : Bm → KBn(Zm). This follows from the presentation of KBn(Zm) given in
Step 2 of Section 2. Similarly, for m ≥ 3 the map {σ1, . . . , σm}→ Z̃m , σi 7→ δi,i+1

for 1≤ i ≤ m− 1, σm 7→ δm,1, induces an isomorphism f̃m : B̃m→ KBn(Z̃m).
Recall that the symmetric group Sn acts on S by gδi, j = δg(i),g( j), and that

this action induces an action of Sn on KBn . On the other hand, there is a natural
embedding Sn ↪→ Aut(Fn), where g ∈Sn sends xi to xg(i) for all i ∈ {1, . . . , n},
and this embedding induces by conjugation an action of Sn on Aut(Fn). It is easily
seen that the homomorphism ϕ :KBn→Aut(Fn) is equivariant under these actions
of Sn .

Lemma 3.3. If X is a full and indecomposable nonempty subset of S, then there
exist g ∈Sn and m ∈ {2, . . . , n} such that either X = gZm , or X = gZ̃m and m ≥ 3.

Proof. An oriented graph ϒ is the data of two sets, V (ϒ), called the set of vertices,
and E(ϒ), called the set of arrows, together with two maps sou, tar : E(ϒ)→V (ϒ).
We associate an oriented graph ϒX to any subset X of S as follows. The set of
vertices is V (ϒX )= supp(X ), the set of arrows is E(ϒX )= X , and, for δi, j ∈ X ,
we set sou(δi, j )= i and tar(δi, j )= j . Assume that X is a full and indecomposable
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Figure 6. Oriented segment and oriented cycle.

nonempty subset of S. Since X is indecomposable, ϒX must be connected. Since
X is full, if s, t ∈ X are two different arrows of ϒX with a common vertex, then
there exist i , j , k ∈ {1, . . . , n} distinct such that either s = δ j,i and t = δi,k , or
s = δi, j and t = δk,i . This implies that ϒX is either an oriented segment, or an
oriented cycle with at least 3 vertices (see Figure 6). If ϒX is an oriented segment,
then there exist g ∈Sn and m ∈ {2, . . . , n} such that X = gZm . If ϒX is an oriented
cycle, then there exist g ∈Sn and m ∈ {3, . . . , n}, such that X = gZ̃m . �

Proof of Proposition 2.3. Let X be a full nonempty subset of S. Write X =
X1� · · ·�Xl , where X j is an indecomposable nonempty subset. As observed above,
each X j is also a full subset. Moreover, by Lemma 3.2, in order to show that ϕX
is faithful, it suffices to show that ϕX j is faithful for all j ∈ {1, . . . , l}. So, we can
assume that X is a full and indecomposable nonempty subset of S. By Lemma 3.3,
there exist g ∈ Sn and m ∈ {2, . . . , n} such that either X = gZm , or X = gZ̃m

and m ≥ 3. Since ϕ is equivariant under the actions of Sn , upon conjugating
by g−1 we can assume that either X = Zm or X = Z̃m . Set Zm = {x1, . . . , xm} =

supp(Zm) = supp(Z̃m), and identify Fm with F(Zm). Then ϕZm = ψm ◦ f −1
m and

ϕZ̃m
= ψ̃m ◦ f̃ −1

m , hence ϕX is faithful by Theorem 3.1. �

4. Proof of Proposition 2.4

The proof of Proposition 2.4 is based on some general results on Coxeter groups
and Artin groups. Recall that the definitions of Coxeter diagram, Artin group and
Coxeter group are given at the beginning of Step 2 in Section 2. Recall also that,
if Y is a subset of the set S of vertices of 0, then 0Y denotes the full subdiagram
spanned by Y , AY denotes the subgroup of A = A(0) generated by Y, and WY

denotes the subgroup of W =W (0) generated by Y.
Let 0 be a Coxeter diagram, let S be its set of vertices, let A be the Artin group

of 0, and let W be its Coxeter group. Since we have s2
= 1 in W for all s ∈ S, every

element g in W can be represented by a word over S. Such a word is called an
expression of g. The minimal length of an expression of g is called the length of g
and is denoted by lg(g). An expression of g of length lg(g) is a reduced expression
of g. Let Y be a subset of S, and let g ∈W . We say that g is Y -minimal if it is of
minimal length among the elements of the coset WY g. The first ingredient in our
proof of Proposition 2.4 is the following:
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Proposition 4.1 [Bourbaki 1968, Chapitre IV, Exercice 3]. Let Y ⊂ S and let g ∈W .
There exists a unique Y -minimal element lying in the coset WY g. Moreover, the
following conditions are equivalent:

(a) g is Y -minimal.

(b) lg(sg) > lg(g) for all s ∈ Y .

(c) lg(hg)= lg(h)+ lg(g) for all h ∈WY .

Remark. For g ∈ W and s ∈ S, we always have either lg(sg) = lg(g) + 1, or
lg(sg) = lg(g)− 1. This is a standard fact on Coxeter groups that can be found
for instance in [Bourbaki 1968]. So, the inequality lg(sg) > lg(g) means lg(sg)=
lg(g)+ 1 and the inequality lg(sg)≤ lg(g) means lg(sg)= lg(g)− 1.

Let u be a word over S.

• Suppose that u is written in the form u1ssu2, where u1, u2 are words over S
and s is an element of S. Then we say that u′ = u1u2 is obtained from u by an
M-operation of type I.

• Suppose that u is written in the form u= u1〈s, t〉ms,t u2, where u1, u2 are words
over S and s, t are two elements of S connected by an edge labeled by ms,t .
Then we say that u′ = u1〈t, s〉ms,t u2 is obtained from u by an M-operation of
type II.

We say that a word u is M-reduced if its length cannot be shortened by M-operations
of types I or II. The second ingredient in our proof is the following.

Theorem 4.2 [Tits 1969]. Let g ∈W .

(1) An expression w of g is a reduced expression if and only if w is M-reduced.

(2) Any two reduced expressions w and w′ of g are connected by a finite sequence
of M-operations of type II.

Let Y be a subset of S. The third ingredient is a set retraction ρY : A→ AY to
the inclusion map ιY : AY → A, constructed in [Godelle and Paris 2012; Charney
and Paris 2014]. This is defined as follows. Let α be an element of A.

• Choose a word α̂ = s1
ε1 · · · sl

εl over S±1 which represents α.

• Let i ∈ {0, 1, . . . , l}. Set gi = s1s2 · · · si ∈W , and write gi in the form gi = hi ki ,
where hi ∈WY and ki is Y -minimal.

• Let i ∈ {1, . . . , l}. If εi = 1, set zi = ki−1si k−1
i−1. If εi =−1, set zi = ki si k−1

i .

• Let i ∈ {1, . . . , l}. We set Ti = zεi
i if zi ∈ Y . Otherwise we set Ti = 1.

• Set ρ̂Y (α)= T1T2 · · · Tl .
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Proposition 4.3 [Godelle and Paris 2012; Charney and Paris 2014]. Let α ∈ A. The
element ρY (α) ∈ AY represented by the word ρ̂Y (α) defined above does not depend
on the choice of the representative α̂ of α. Furthermore, the map ρY : A→ AY is a
set retraction to the inclusion map ιY : AY ↪→ A.

We turn now to apply these three ingredients to our group KBn and prove
Proposition 2.4. Let KWn denote the quotient of KBn by the relations δ2

i, j = 1,
1≤ i 6= j ≤ n. Note that KWn is the Coxeter group of the Coxeter diagram V0n .
For Y ⊂ X , we denote by KWn(Y) the subgroup of KWn generated by Y .

Lemma 4.4. Let g ∈ KWn .

(1) An expression w of g is a reduced expression if and only if w is M-reduced.

(2) Any two reduced expressions w and w′ of g are connected by a finite sequence
of M-operations of types II(2) and II(3).

(3) Let Y be a subset of S, and let w be a reduced expression of g. Then g is
Y-minimal (in the sense given above) if and only if w is MY -reduced.

Proof. Parts (1) and (2) are Theorem 4.2 applied to KWn . So, we only need to
prove (3).

Suppose that g is not Y-minimal. By Proposition 4.1, there exists s ∈ Y such
that lg(sg) ≤ lg(g), that is, lg(sg) = lg(g)− 1. Let w′ be a reduced expression
of sg. The word sw′ is an expression of g and lg(sw′) = lg(w) = lg(g), hence
sw′ is a reduced expression of g. By Theorem 4.2, w and sw′ are connected by a
finite sequence of M-operations of types II(2) and II(3). On the other hand, w′ is
obtained from sw′ by an M-operation of type IIIY . So, w′ is obtained from w by
M-operations of types I, II(2), II(3) and IIIY , and we have lg(w′) < lg(w), hence
w is not MY -reduced.

Suppose that w is not MY -reduced. Let w′ be an MY -reduction of w, and let g′

be the element of KWn represented by w′. Since w′ is an MY -reduction of w, the
element g′ lies in the coset KWn(Y) g. Moreover, lg(g′)= lg(w′) < lg(w)= lg(g),
hence g is not Y-minimal. �

Proof of Proposition 2.4. Let Y be a subset of S. Consider the retraction ρY :
KBn→ KBn(Y) constructed in Proposition 4.3. We shall prove that, if u is a word
over S±1, then πY(u)= ρY(ū). This will prove Proposition 2.4. Indeed, if ū = v̄,
then πY(u)= ρY(ū)= ρY(v̄)= πY(v). Moreover, since ρY : KBn→ KBn(Y) is a
retraction to the inclusion map KBn(Y) ↪→ KBn , we have ρY(ū)= ū if and only if
ū ∈ KBn(Y), hence πY(u)= ū if and only if ū ∈ KBn(Y).

Let u = sε1
1 · · · s

εl
l be a word over S±1. Let α be the element of KBn represented

by u.

• For i ∈ {0, 1, . . . , l}, we set u+i = s1 · · · si , and we denote by gi the element of
KWn represented by u+i .
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• Let i ∈ {0, 1, . . . , l}. We write gi = hi ki , where hi ∈ KWn(Y), and ki is
Y-minimal. Let v+i be an MY -reduction of u+i . Then, by Lemma 4.4, v+i is a
reduced expression of ki .

• Let i ∈ {1, . . . , l}. If εi = 1, we set zi = ki−1si k−1
i−1 and w+i = v

+

i−1 ·si ·op(v+i−1).
If εi =−1, we set zi = ki si k−1

i and w+i = v
+

i · si · op(v+i ). Note that w+i is an
expression of zi .

• Let i ∈ {1, . . . , l}. Let ri be an M-reduction of w+i . By Lemma 4.4, ri is a
reduced expression of zi . Note that we have zi ∈Y if and only if ri is of length
1 and ri ∈ Y .

• Let i ∈ {1, . . . , l}. If ri is of length 1 and ri ∈ Y , we set Ti = r εi
i . Otherwise

we set Ti = 1.

• By construction, we have ρ̂Y(α)= πY(u)= T1T2 · · · Tl . �
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