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COMPLETELY CONTRACTIVE PROJECTIONS
ON OPERATOR ALGEBRAS

DAVID P. BLECHER AND MATTHEW NEAL

The main goal of this paper is to find operator algebra variants of certain deep
results of Størmer, Friedman and Russo, Choi and Effros, Effros and Størmer,
Robertson and Youngson, Youngson, and others, concerning projections on
C∗-algebras and their ranges. In particular, we investigate the “bicontractive
projection problem” and related questions in the category of operator alge-
bras. To do this, we will add the ingredient of “real positivity” from recent
papers of the first author with Read.

1. Introduction

In previous papers (listed in the bibliography) both authors separately studied
projections (that is, idempotent linear maps) and conditional expectations on unital
operator algebras (that is, closed algebras of operators on a Hilbert space that contain
the identity operator) and other classes of Banach spaces. Results were proved such
as Corollary 4.2.9 in [Blecher and Le Merdy 2004]: A completely contractive pro-
jection P on such an algebra A which is unital (that is, P(1)= 1) and whose range is
a subalgebra is a conditional expectation (that is, P(P(a)bP(c))= P(a)P(b)P(c)
for a, b, c ∈ A). This is an analogue of the matching theorem due to Tomiyama for
C∗-algebras.

The main goal of our paper is to find variants, valid for operator algebras which
are unital or which have an approximate identity, of certain deeper results in the
C∗-algebra case found in [Størmer 1982; Friedman and Russo 1984; 1985; Effros
and Størmer 1979; Robertson and Youngson 1982], and elsewhere, concerning
projections and their ranges. In particular we wish to investigate the “bicontractive
projection problem” and related problems (such as the “symmetric projection
problem” and the “contractive projection problem”) in the category of operator
algebras. To do this, we will add the ingredient of real positivity from recent papers
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of Blecher and Read [2011; 2013; 2014]; see also [Blecher and Neal 2012a; 2012b;
Bearden et al. 2014; Blecher and Ozawa 2015; Blecher 2015]. A key idea in those
papers is that real positivity is often the right replacement in general algebras for
positivity in C∗-algebras. This will be our guiding principle here too.

We now discuss the structure of our paper. In Section 2 we discuss completely
contractive projections on operator algebras. A well-known and lovely result of
Choi and Effros [1977, Theorem 3.1] (or rather, its proof) shows that the range
of a completely positive projection P : B → B on a C∗-algebra B, is again a
C∗-algebra with product P(xy). A quite deep theorem of Friedman and Russo
[1985], or a simpler variant of it by Youngson [1983], shows that something
similar is true if P is simply contractive, or if B is replaced by a ternary ring of
operators. The analogous result for unital completely contractive projections on
unital operator algebras is true too, and is implicit in the proof of the result quoted in
the first paragraph. However, there seems to be no analogous result for (nonunital)
completely contractive projections on nonunital operator algebras without adding
extra hypotheses on P. The “guiding principle” in the previous paragraph suggests
to add the condition that P is also “real completely positive” (we define this below).
Then the question does make good sense, and we are able to prove the desired result.
Thus the range of a real completely positive completely contractive projection
P : A→ A on an operator algebra with approximate identity is again an operator
algebra with product P(xy). We also have a converse and several complements to
this result in Section 2, as well as some other facts about completely contractive
projections, such as how one is often able to reduce the problem to algebras which
have an identity. We also show that for algebras with no kind of approximate
identity, there is a biggest “nice part” on which completely contractive projections
(and the other classes of projections discussed below) work well.

In Sections 3, 4, and 5, we turn from the “contractive projection problem” to
the “bicontractive projection problem” and related questions. A projection P is
bicontractive if both P and I − P are contractive. By the bicontractive projection
problem for a Banach space X , one usually means the characterization of all
bicontractive projections P : X→ X , or the characterization of the ranges of the
bicontractive projections (or both). On a unital C∗-algebra B it is known, by work
of some of the authors mentioned above, that the unital bicontractive projections
are precisely 1

2(I + θ), for a period-2 ∗-automorphism θ : B→ B. The possibly
nonunital bicontractive projections P on B are of a similar form, and indeed if P is
also positive then q = P(1) is a central projection in the multiplier algebra M(B)
with respect to which P decomposes into a direct sum of 0 and a projection of the
above form 1

2(I + θ), for a period-2 ∗-automorphism θ of q B. (See Theorem 3.2
for the idea of the proof of this.) Conversely, note that a map P of the latter form
is automatically completely bicontractive (that is, is bicontractive at each matrix
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level), indeed is completely symmetric (that is, I − 2P is completely contractive),
and the range of P is a C∗-subalgebra, and P is a conditional expectation.

One may ask: what from the last paragraph is true for general operator algebras?
Again the guiding principle referred to earlier leads us to use in place of the positivity
in that result, the real positivity in the sense of [Blecher and Read 2013; 2014]. The
next thing to note is that now “completely bicontractive” is no longer the same as
“completely symmetric” for projections. The “completely symmetric” case works
beautifully, and the solution to our “symmetric projection problem” is presented in
Theorem 3.7. This result is one somewhat satisfactory generalization (we shall see
others later) to operator algebras of the C∗-algebraic theorem in the last paragraph.
For the more general class of completely bicontractive projections, as seems to
be often the case in generalizing C∗-algebraic theory to more general algebras, a
first look is disappointing. Indeed most of the last paragraph no longer works in
general. One does not always get an associated completely isometric automorphism
θ with P = 1

2(I + θ), and q = P(1) need not be a central projection. Indeed
we have solved here and elsewhere (see, e.g., [Blecher and Labuschagne 2003;
Blecher 2004; Blecher and Magajna 2005a, p. 92–93; 2005b]) many of the obvious
questions about contractive projections, completely contractive projections, and
conditional expectations, on operator algebras. Unfortunately many of the answers
are counterexamples. However, as also seems to be often the case, a closer look at
examples reveals an interesting question. Namely, given a real completely positive
projection P : A→ A which is completely bicontractive, when is the range of P
an (approximately unital) subalgebra of A, so that P is a conditional expectation?
For operator algebras we consider this to be the correct version of the bicontractive
projection problem. In Sections 3 and 4 we elucidate this question. We remark that
in [Blecher et al. ≥ 2016] we study the “Jordan algebra” variants of many of the
results in Sections 2 and 3 of the present paper.

In Section 4 we discuss the completely bicontractive projection problem, construct
some interesting examples, and give some reasonable conditions under which P(A)
is a subalgebra and P is a conditional expectation. In particular we solve in full
generality our version of the bicontractive projection problem for uniform algebras
(that is, closed subalgebras of C(K )), and indeed for any algebra satisfying a
condition related to semisimplicity. Theorem 4.9 is one of the main results of the
paper, giving a very general condition for P(A) being a subalgebra in terms of
certain support projections. In fact, at the time of writing, for all we know the
condition in Theorem 4.9 is necessary and sufficient; at least we have no examples to
the contrary. In Section 5 we discuss another condition that completely bicontractive
projections may satisfy, and examine some consequences of this. In Section 6 we
discuss Jordan homomorphisms on operator algebras, and among other things, solve
two natural “completely isometric problems”, for Jordan subalgebras of operator
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algebras and for operator algebras, related to the noncommutative Banach–Stone
theorem.

We now turn to precise definitions and notation. Any unexplained terms below
can probably be found in [Blecher and Le Merdy 2004; Paulsen 2002; Blecher and
Read 2011; 2013] or any of the other books on operator spaces. All vector spaces are
over the complex field C. The letters K , H denote Hilbert spaces. If X is an operator
space we often write X+ for the elements in X which are positive (i.e., at least 0)
in the usual C∗-algebraic sense. We write Ball(X) for the set {x ∈ X : ‖x‖ ≤ 1}.
By an operator algebra we mean a not necessarily selfadjoint closed subalgebra
of B(H), the bounded operators on a Hilbert space H. We write C∗(A) for the
C∗-algebra generated by A, that is, the smallest C∗-subalgebra containing A. A
unital operator space is a subspace X of B(H) or a unital C∗-algebra containing the
identity (operator). We often write this identity as 1X . A map T : X→ Y is unital
if T (1X )= 1Y . We say that an algebra is approximately unital if it has a contractive
approximate identity (cai). For us a projection in an operator algebra A is always an
orthogonal projection lying in A, whereas a projection on A is a linear idempotent
map P : A→ A. If A is a nonunital operator algebra represented (completely)
isometrically on a Hilbert space H then one may identify the unitization A1 with
A+CIH. The second dual A∗∗ is also an operator algebra with its (unique) Arens
product; this is also the product inherited from the von Neumann algebra B∗∗ if A
is a subalgebra of a C∗-algebra B. Note that A has a cai if and only if A∗∗ has an
identity 1A∗∗ of norm-1, and then A1 is sometimes identified with A+C1A∗∗ . The
multiplier algebra M(A) of such A may be taken to be the idealizer of A in A∗∗,
that is, {η ∈ A∗∗ : ηA+ Aη ⊂ A}.

If A is an approximately unital operator algebra or unital operator space then
I (A) denotes the injective envelope, an injective unital C∗-algebra containing A.
It contains A as a subalgebra if A is approximately unital [Blecher and Le Merdy
2004, Corollary 4.2.8]. For us the most important properties of I (A) are: first, that
it is injective in the category of operator spaces, so that any completely contractive
map from a subspace of an operator space Y into I (A) extends to a complete
contraction from Y to I (A). Second, I (A) is rigid, so that the identity map on
I (A) is the only complete contraction I (A)→ I (A) extending the identity map
on A. The C∗-envelope C∗e (A) is the C∗-subalgebra of I (A) generated by A. If A
is unital it has the property that given any unital complete isometry T : A→ B(K ),
there exists a unique ∗-homomorphism π : C∗(A)→ C∗e (A) with π ◦ T equal to
the inclusion map of A in C∗e (A).

We recall that a contractive completely positive map on a C∗-algebra is completely
contractive. A unital linear map between operator systems is positive and ∗-linear
if it is contractive; and it is completely positive if and only if it is completely
contractive. See, e.g., [Blecher and Le Merdy 2004, Section 1.3] for these.
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A hereditary subalgebra, or HSA, in an operator algebra A is an approximately
unital subalgebra with DAD ⊂ D. See [Blecher et al. 2008] for their basic theory.
The support projection of an HSA in A is the identity of its bidual, viewed within A∗∗.

We write rA={x ∈ A : x+x∗≥ 0}, and call these the real positive elements. This
space may be defined purely internally without using the “star”, as the accretive
elements, which have several purely metric definitions; see, e.g., [Blecher 2015,
Lemma 2.4]. Also rA is the closure of the positive real multiples of FA = {a ∈ A :
‖1− a‖ ≤ 1} [Blecher and Read 2013]. Read’s theorem states that any operator
algebra with cai has a real positive cai; see [Blecher 2013] for a proof of this. Since
Mn(A)∗∗ ∼= Mn(A∗∗) [Blecher and Le Merdy 2004, Theorem 1.4.11], we have that
rMn(A∗∗) is the weak-∗ closure of rMn(A), and rMn(A) = Mn(A)∩ rMn(A∗∗) for each n.

A linear map T : A→ B between operator algebras or unital operator spaces is
real positive if T (rA)⊂ rB . It is real completely positive, or RCP for short, if Tn is
real positive on Mn(A) for all n ∈ N. One may also define these maps in terms of
the set FA above, as in [Blecher and Read 2013], but the definitions are shown to
be equivalent in [Bearden et al. 2014, Section 2]. From the latter reference: a linear
map T : A→ B(H) on an approximately unital operator algebra or unital operator
space A is RCP if and only if T has a completely positive (in the usual sense)
extension T̃ : C∗(A)→ B(H). Here C∗(A) is a C∗-algebra generated by A. We
call this the generalized Arveson extension theorem. Thus real complete positivity
on A is equivalent to P extending to a completely positive map on a containing
C∗-algebra. A unital completely contractive map on a unital operator space is RCP,
since it extends to a completely contractive map on a containing unital C∗-algebra,
and such maps are completely positive, as we said above.

A ternary ring of operators, or TRO, is a subspace Z of B(K , H) such that
Z Z∗Z ⊂ Z . A WTRO is a weak-∗ closed TRO. The second dual of a TRO is a
WTRO; see [Blecher and Le Merdy 2004, Chapter 8] for this and the next several
facts. We write L(Z) for the linking C∗-algebra of a TRO; this has “four corners”:
Z Z∗, Z , Z∗, and Z∗Z . Here Z Z∗ is the closure of the linear span of products
zw∗ with z, w ∈ Z , and similarly for Z∗Z . One gets a similar von Neumann
algebra for WTROs. A ternary morphism on a TRO Z is a linear map T such that
T (xy∗z) = T (x)T (y)∗T (z) for all x, y, z ∈ Z . A tripotent is an element u ∈ Z
such that uu∗u = u. We order tripotents by u ≤ v if and only if uv∗u = u. This
turns out to be equivalent to u = vu∗u, or to u = uu∗v, and implies that u∗u ≤ v∗v
and uu∗ ≤ vv∗ [Battaglia 1991]. If x ∈ Ball(Z), define u(x) to be the weak-∗ limit
of the sequence (x(x∗x)n) in Z∗∗. This is the largest tripotent in B∗∗ satisfying
vv∗x = v [Edwards and Rüttimann 1996]. If x ≥ 0 or if u(x) is a projection, then
u(x) is also the weak-∗ limit of powers xn as n→∞; see, e.g., [Blecher and Neal
2012b; Blecher 2013].

We will say that an idempotent linear P : X → X is a symmetric projection if
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‖I − 2P‖ ≤ 1, and completely symmetric one if‖I − 2P‖cb ≤ 1. This is related
to the notion of u-ideal [Godefroy et al. 1993], but we will not need anything
from that theory. Such are automatically bicontractive or completely bicontractive,
respectively. We say that P is completely hermitian if P is hermitian in CB(X).
Note that since exp(i t P)= I − P + ei t P it follows that P is completely hermitian
if and only if ‖I − P + ei t P‖cb ≤ 1 for all real t . This is essentially the notion
of being (completely) bicircular. Clearly if P is completely hermitian then it is
completely symmetric. We will not discuss (completely) hermitian projections
much in this paper; these seem much less interesting.

2. Completely contractive projections on
approximately unital operator algebras

Looking at examples it becomes clear that projections on operator algebras with no
kind of approximate identity can be very badly behaved. Hence we will say little in
our paper about such algebras. However, it is worth mentioning that we can pick
out a “good part” of such a projection. This is the content of our first result.

Proposition 2.1. Let P : A→ A be a real completely positive completely contrac-
tive map (resp. projection) on an operator algebra A (possibly with no kind of
approximate identity). There exists a largest approximately unital subalgebra D
of A, and it is an HSA (hereditary subalgebra) of A. Moreover, P(D)⊂ D, and the
restriction P ′ of P to D is a real completely positive completely contractive map
(resp. projection) on D. In addition, P ′ is completely bicontractive (resp. completely
symmetric) if P has the same property.

Proof. By [Blecher and Read 2014, Corollary 2.2], D = rA − rA is the largest
approximately unital subalgebra of A. This algebra is written as AH there, and was
first introduced in [Blecher and Read 2013, Section 4]. Clearly P(D) ⊂ D. The
rest is obvious. �

Remark. The last result is also true with the word “completely” removed through-
out, with the same proof.

Remark. Letting p be the support projection of the HSA D above, if P extends
to a completely positive complete contraction on a containing C∗-algebra (as in
our generalized Arveson extension theorem mentioned in the introduction; see also
[Bearden et al. 2014, Theorem 2.6]), then one can show that P∗∗(pa)= pP(a) and
P∗∗(ap)= P(a)p for a ∈ A. It follows that P may be pictured as a 2× 2 matrix
with its “good part” above in the (1,1) corner. However, in general it seems one can
say little about the other corners; they can be quite messy. This is why we focus on
algebras with approximate identities in our paper.
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Proposition 2.2. A real completely positive completely contractive map (resp. pro-
jection) on an approximately unital operator algebra A extends to a unital real
completely positive completely contractive map (resp. projection) on the unitiza-
tion A1. (If A is unital then we define A1

= A⊕∞ C here.)

Proof. Suppose that P : A→ A ⊂ B(H) is the map. By [Bearden et al. 2014,
Theorem 2.6], P extends uniquely to a completely positive completely contractive
map C∗(A)→ B(H). By [Choi and Effros 1976, Lemma 3.9] it extends further to a
unital completely positive map C∗(A)+CIH → B(H). The restriction of the latter
map to A+CIH may be viewed as a unital (real completely positive) completely
contractive map on the unitization A1

→ A1, and it is evidently a projection if P
was a projection. �

The previous result gives a way to reduce to the unital case. However, this method
does not seem to be helpful later in our paper when dealing with bicontractive or
symmetric projections, and we will need a different reduction to the unital case.

Lemma 2.3. Let P : A→ A be a real positive, contractive map on a unital operator
algebra. Then 0≤ P(1)≤ 1.

Proof. The restriction of P to 1(A)= A∩ A∗ is real positive. Hence it is positive
by the proof of [Bearden et al. 2014, Theorem 2.4]. So 0≤ P(1)≤ 1. �

Lemma 2.4. Suppose that E is a completely contractive completely positive pro-
jection on an operator system X. Then the range of E , with its usual matrix norms,
is an operator system with matrix cones En(Mn(X)+)= Mn(X)+ ∩Ran(En), and
unit E(1).

Proof. We will use the Choi–Effros characterization of operator systems [1977].
Because Ran(En) is a ∗-subspace of Mn(X), with the inherited cone from Mn(X)+,
it is a partially ordered, matrix ordered, Archimedean ∗-vector space with proper
cones. If x = x∗ there exists a positive scalar t with −t1 ≤ x ≤ t1, so that
−t E(1)≤ x ≤ t E(1). So E(1) is an order unit. If x ∈ Ran(E) with ‖x‖X ≤ 1 then[

1 x
x∗ 1

]
≥ 0

in M2(X). Applying E2, we deduce that[
E(1) x
x∗ E(1)

]
≥ 0,

so that the norm of x is ≤ 1 in the new order unit norm; see [Choi and Effros 1977,
p. 179]. Conversely, if the last norm is ≤ 1, or equivalently if the last centered
equation holds, then it is a simple exercise in operator theory that ‖x‖X ≤ 1, since
‖E(1)‖ ≤ 1 and E(1)≥ 0. Thus the order unit norm coincides with the old norm.
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The computation is similar at each matrix level. By the Choi–Effros characterization
of operator systems, (Ran(E), E(1)) is an operator system with the given matrix
cones, and the order-unit matrix norms are the usual norms. �

The following generalization of the Choi–Effros result referred to in the intro-
duction solves the completely contractive projection problem in the category of
approximately unital operator algebras and real completely positive projections.
We remark that the case when also P(1A)= 1A is implicit in the proof of [Blecher
and Le Merdy 2004, Corollary 4.2.9].

Theorem 2.5. Let A be an approximately unital operator algebra, and P : A→ A
a completely contractive projection which is also real completely positive. Then the
range B = P(A) is an approximately unital operator algebra with product P(xy).
We have

P(P(a)b)= P(P(a)P(b))= P(a P(b)), a, b ∈ A.

In particular P(P(1)n)) = P(1) for all n ∈ N, if A is unital. With respect to the
“multiplication” P(xy), we conclude that A is a bimodule over B, and P, when
viewed as a map A → B, is a B-bimodule map (with B equipped with its new
product). If A is unital then P(1) is the identity for the latter product. Moreover
(not assuming A is unital), P extends to a completely positive completely contractive
projection on the injective envelope I (A).

Proof. We give two proofs, since they both use techniques the reader will need to
be familiar with in the rest of our paper.

Set B = P(A). Extend P to a unital completely contractive projection P1 on
A1 by Proposition 2.2. We may then use the proof of [Blecher and Le Merdy
2004, Corollary 4.2.9], which proceeds by extending P to a unital (completely
positive and) completely contractive projection E on I (A1). It follows from the
Choi–Effros result mentioned early in our introduction, that Ran(E) is a unital
C∗-algebra with product E(xy), and B with product P(xy) is a unital subalgebra
of this C∗-algebra. We also have by the same Choi–Effros result (or its proof)
that E(E(a)b)= E(E(a)E(b))= E(aE(b)) for all a, b ∈ A, giving the centered
equation in the theorem statement. This gives the first several assertions of our
theorem. Note that

P(P(et)P(a))= P(et P(a))→ P(P(a))= P(a), a ∈ A,

if (et) is a cai for A, and similarly on the right, so that (P(et)) is a cai for P(A)
in its new product. That A is actually a B-bimodule follows from the centered
equation in the theorem statement; for example, because

P(P(P(a)P(b))c)= P(P(P(a)P(b))P(c))= P(P(a)P(b)P(c))

= P(P(a)P(P(b)P(c)))= P(P(a)P(P(b)c)).
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The centered equation in the theorem statement is just saying that P is a B-bimodule
map for the given products. The final assertion about extending to I (A) is easy
from the above in the case that A is unital; the other case we will do below.

For the second proof, first suppose that A is unital. Let B = P(A), and set
X = A+ A∗, Y = B+B∗, and v= P(1). By [Bearden et al. 2014, Theorem 2.6], P
extends uniquely to a completely positive completely contractive map P ′ on X . Since
X = A+ A∗ this map is uniquely determined; it must be a1+a∗2 7→ P(a1)+ P(a2)

∗,
a projection on X with range Y. By Lemma 2.4 (Y, v) is an operator system
with positive cone P(X+). Let j : Y → X be the inclusion map. Then extend
P ′ to a completely positive complete contraction P̃ : I (A) → I (B) [loc. cit.].
Extend j to a completely positive complete contraction ̃ : I (B) → I (A) by
Arveson’s extension theorem [1969]. Then P̃ ◦ ̃ equals the identity map on
I (B) by rigidity of the injective envelope, since P ◦ j = IB . Thus E = ̃ ◦ P̃
is a completely positive completely contractive projection on I (A) extending P.
We deduce just as in the last paragraph that Ran(E) is a unital C∗-algebra with
product E(xy), B with product P(xy) is a unital subalgebra of this C∗-algebra,
and P(P(a)b)= P(P(a)P(b))= P(a P(b)).

Finally, if A is nonunital but approximately unital, then P∗∗ is a completely
contractive projection on A∗∗, which is also real positive by the proof of the main
theorem in [Bearden et al. 2014, Section 2]. By the unital case, P∗∗(xy) is an
operator algebra product on P∗∗(A∗∗), with unit v = P∗∗(1). Hence by restriction
P(xy) is an operator algebra product on P(A), and the centered equation in the
theorem statement holds on A, as does the assertions about bimodules. Note that
P∗∗(A∗∗)= (P(A))⊥⊥, so that P∗∗(A∗∗)∼= P(A)∗∗. So P(A)∗∗ is unital, and hence
P(A) is approximately unital (or this may be seen directly using the centered
equation in the theorem statement). Also, since v = P∗∗(1) acts as an identity on
P(A) in the new product, we can identify P(A)+Cv, as a unital operator space, with
the unitization of P(A) with its new operator algebra product. Then the restriction r
of P∗∗ to A + C1A∗∗ can be viewed as a real completely positive completely
contractive projection on the unitization A1. By the last paragraph, r extends
to a completely positive completely contractive projection on I (A1). However,
I (A1)= I (A) by, e.g., [Blecher and Le Merdy 2004, Corollary 4.2.8]. �

Remark. Thus the category of approximately unital operator algebras and real
completely positive projections forms a projectively stable category in the sense of
Friedman and Russo; see [Neal and Russo 2011, p. 295–296] and, e.g., [Friedman
and Russo 1985]. Namely, if B is the category of Banach spaces with morphisms
being the contractive projections, a subcategory S of B is projectively stable if S is
closed under images of morphisms. That is, for an object E and morphism ϕ : E→ E
in S, the image ϕ(E) is again an object in S (although not necessarily a subobject
with respect to the full structure of objects in S). For example, the subcategory of
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unital C∗-algebras and completely positive unital projections is projectively stable,
by the theorem of Choi and Effros used earlier. Other projectively stable categories
are listed in the last references; e.g., the subcategory of TROs and completely
contractive projections is projectively stable by Youngson’s theorem [1983]. In the
cited pages of [Neal and Russo 2011] the concept of a projectively rigid category is
discussed. The associated question for us would be if the preduals of dual operator
algebras are projectively (completely) rigid in their sense. However, the answer
to this is in the negative, since the category of Banach or operator spaces is not
projectively (completely) rigid, and then one can play the U(X) trick (described
above Proposition 3.3 below) to answer the operator algebra question.

Remark. If A is unital and C is the C∗-subalgebra of I (A) generated by P(A),
then the map P̃ in the proof restricts to a ∗-homomorphism from C onto C∗e (B), the
latter viewed as a subalgebra of I (B) (or as a C∗-subalgebra of the space Ran(E)
in the proof, with its “Choi–Effros product”). See, e.g., [Blecher and Le Merdy
2004, Theorem 1.3.14(3)].

Lemma 2.6. Let A be a unital operator algebra, and let P : A→ A be a con-
tractive projection, such that Ran(P) contains an orthogonal projection q with
P(A)= qP(A)q. Then q = P(1A).

Proof. We have ‖q±(1−q)‖≤1 so that ‖q±P(1−q)‖≤1. Since P(A)=qP(A)q ,
and q is an extreme point of the unit ball of qAq (the identity is an extreme point
of the unit ball of any unital Banach algebra), P(1− q)= 0. Thus P(1)= q . �

The following reduction to the case of unital maps works under a certain condition
which will be seen to be automatic in the setting found in the next sections of the
paper.

Proposition 2.7. Let A be an approximately unital operator algebra, and P : A→ A
a completely contractive projection. Then Ran(P∗∗) contains an orthogonal projec-
tion q such that P(A)= qP(A)q if and only if P∗∗(1) is a projection. In this case,
q = P∗∗(1) and Ran(P) is an approximately unital operator algebra with product
P(xy), and its bidual has identity q. Also, P is real completely positive, all the
conclusions of Theorem 2.5 hold, q is an open projection for A∗∗ in the sense of
[Blecher et al. 2008], and

P(a)= qP(a)q = P∗∗(qaq), a ∈ A

(and we can replace P∗∗ by P here if A is unital). Hence, P(A) = qP(A)q =
P∗∗(qAq), and P splits as the sum of the zero map on q⊥A+ Aq⊥+ q⊥Aq⊥, and
a real completely positive completely contractive projection P ′ on qAq with range
equal to P(A). This projection P ′ on qAq is unital if A is unital.
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Proof. Let Q = P∗∗, a completely contractive projection on A∗∗. We can re-
place Q by P below if A is unital. If P(A) = qP(A)q for a projection q then
Q(A∗∗) = qQ(A∗∗)q by standard weak-∗ approximation arguments, so by the
lemma, Q(1) = q. Conversely, suppose that Q(1) = q is a projection. Then
Q(q⊥) = 0. Note that Ran(Q) is a unital operator space (in q A∗∗q). So Q, and
hence also P, is real completely positive by [Bearden et al. 2014, Lemma 2.2], since
it extends by, e.g., [Blecher and Le Merdy 2004, Lemma 1.3.6] to a completely
positive unital map from X + X∗ onto Y + Y ∗, where X = A∗∗ and Y = Q(A∗∗).
By extending Q further to a completely positive completely contractive map on a
containing C∗-algebra, and using the Kadison–Schwarz inequality,

Q(aq⊥)∗Q(aq⊥)≤ Q(q⊥a∗a q⊥)≤ Q(q⊥)= 0, a ∈ Ball(A∗∗).

Thus Q(a)= Q(aq) for all a ∈ A∗∗, and similarly Q(a)= Q(qa). Also Q(q)2 =
Q(q), and so P(A)= Q(qAq)= qP(A)q by Choi’s multiplicative domain trick.
(The latter is usually stated for unital maps, but the general case may be reduced to
this using [Choi and Effros 1976, Lemma 3.9].)

The rest follows from Theorem 2.5 and its proof, with the exception of q being an
open projection for A∗∗. To see this, if (et) is a cai for P(A)with its new product then
using some of the facts here and in Theorem 2.5, we have et = P(etq)= P(et)q→q
in the weak-∗ topology. �

Remark. Note that even a completely contractive completely positive projection
on a unital C∗-algebra need not have P(1) a projection. To see this, choose a norm-1
element x 6= 1 in A+ and a state ϕ with ϕ(x)= 1, and consider P = ϕ( · )x .

Remark. Unfortunately the projection q here need not be central, even if P is
completely bicontractive. See the next example.

Example 2.8. Consider the canonical projection of the upper triangular matrices A
onto CE11. This is a real completely positive completely bicontractive projection
(which is also completely bicontractive, completely hermitian, etc.), but it does
not extend to a positive bicontractive projection on its C∗-envelope (or injective
envelope) M2. In this case note that A+ A∗ = C∗(A) = C∗e (A) = I (A). On the
positive side, the range of this projection is a subalgebra of A.

Corollary 2.9. Let A be an approximately unital operator algebra with an approxi-
mately unital subalgebra B which is the range of a completely contractive projection
P on A. Then P is real completely positive, and all the conclusions of Theorem 2.5
hold. Hence P is a conditional expectation: P(a)b = P(ab) and bP(a)= P(ba)
for all b ∈ B = P(A) and a ∈ A. It follows that (P(et)) is a cai for B for any
cai (et) of A.

Proof. Consider P∗∗, a completely contractive projection on A∗∗ with range B∗∗.
Of course B∗∗ has an identity of norm-1 as we said in the introduction. By
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Proposition 2.7, P∗∗ is real completely positive, and hence so is its restriction P.
The remaining assertions follow, e.g., from Proposition 2.7, except for the last
assertion, which is an easy consequence of the second to last assertion. �

The last result, which may be seen as a converse to Theorem 2.5, generalizes the
fact from [Blecher and Le Merdy 2004] mentioned at the start of the introduction.
We showed in [Blecher 2004] that this is all false with the word “completely”
removed; however, see [Lau and Loy 2008] for some later variants valid for certain
Banach algebras.

We will need the following results later. If P : M→ M is a unital completely
contractive projection on a von Neumann algebra, there exists a support projection e,
the perp of the supremum of all projections in Ker(P), as in [Effros and Størmer
1979, p. 129]. We have e ∈ P(M)′, and P(x)= P(ex)= P(xe) for all x ∈ M , and
if x ∈ M+ then P(x) = 0 if and only if xe = 0 if and only if ex = 0; see, e.g.,
around Lemma 1.2 in that reference. Following the idea in the proof of part (3) of
that lemma, we have:

Proposition 2.10. Let P : M→ M a weak-∗ continuous unital completely contrac-
tive projection on a von Neumann algebra M. Let e be the support projection of P
on M discussed above. Let N be the von Neumann algebra generated by P(M).
Then P(x)e = eP(x)e = exe = xe for all x ∈ N.

Proof. For n = 0, 1, . . . , let An be the span of products of 2n elements from P(M).
Then An is a unital ∗-subspace of M . Suppose that eP(x)e = exe for all x ∈ An .
Then for such x , set z = e(P(x∗x)− x∗ex)e. Following the steps in the proof
of [Effros and Størmer 1979, Lemma 1.2(3)] with minor modifications, we have
P(z)= 0 and z ≥ 0, so that by the facts above the present proposition we obtain
z=eze=0 and eP(x∗x)e=ex∗xe. By the polarization identity, eP(y∗x)e=ey∗xe
for x, y ∈ An . So eP(x)e = exe for all x ∈ An+1, and hence for all x ∈ N . �

Corollary 2.11. Let P : A→ A be a unital completely contractive projection on an
operator algebra. If P(A) generates A as an operator algebra, then (I − P)(A)=
Ker(P) is an ideal in A. In any case, if D is the closed algebra generated by P(A)
then (I − P)(D) is an ideal in D.

Proof. We may assume that P(A) generates A. As above we extend P to a unital
completely contractive projection P̃ on a C∗-algebra B, which may be taken to
be I (A). The second adjoint of this is a weak-∗ continuous unital completely
contractive projection on a von Neumann algebra M , and we continue to write this
projection as P̃. Let P̃ also denote the restriction of the latter projection to the
von Neumann algebra N generated by P(A) inside M . If x ∈ (I − P)(A), then
P̃(x) = 0, and so by Proposition 2.10 we have ex = xe = 0. Thus x ∈ e⊥Me⊥

(and is also in e⊥Ne⊥). So for y ∈ A we have P(xy)= P(exy)= 0, and similarly
yx ∈ (I − P)(A), so the latter is an ideal. �
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For later use we record that if P : A→ A is a unital completely contractive
projection on an operator algebra, then in the language of the last proof,

D ∩ e⊥Me⊥ = D ∩ e⊥Ne⊥ = Ker(P|D)= (I − P)(D).

Indeed since we said above Proposition 2.10 that P(x)= P(exe) for any x ∈ M ,
we have D ∩ e⊥Me⊥ ⊂ Ker(P|D). Moreover, if d ∈ D with P(d) = 0 then the
argument in the last proof shows that d ∈ D ∩ e⊥Ne⊥ ⊂ D ∩ e⊥Me⊥. So

D ∩ e⊥Me⊥ = D ∩ e⊥Ne⊥ = Ker(P|D).

3. The symmetric projection problem and
the bicontractive projection problem

It turns out that the variant of the bicontractive projection problem for symmetric
projections works out perfectly. This is the question of characterizing (completely)
symmetric projections in the categories we are interested in, and their ranges. Notice
that if P : X→ X is a projection on a normed space and if we let θ = 2P − I , so
that P = 1

2(I +θ), then Ran(P) is exactly the set of fixed points of θ , and θ ◦θ = I .
Note too that θ is contractive if P is symmetric. From the latter facts we deduce
that θ is a bijective isometry whose inverse is itself. Also θ(1)= 1 if X is a unital
algebra and P(1)= 1. Applying the same argument at each matrix level we see:

Lemma 3.1. A projection P : X→ X on an operator space is completely symmetric
(resp. symmetric) if and only if θ=2P− I is a complete isometry (resp. an isometry),
and in this case θ is also a surjection. If X is also an algebra (resp. Jordan algebra)
and if θ is a homomorphism (resp. Jordan homomorphism), then the range of P is
a subalgebra (resp. Jordan subalgebra).

Proof. For the last part, Ran(P) is exactly the fixed points of θ . �

Thus the (completely) symmetric projection problem is in some sense a spe-
cial case of the (complete) isometry problem: namely characterizing the linear
(complete) isometries between the objects in our category. That is, the key to
solving the (completely) symmetric projection problem is proving a Banach–Stone-
type theorem in our category. The original Banach–Stone theorem characterizes
unital isometries between C(K ) spaces, and in particular shows that such are
∗-isomorphisms. Putting this together with the last assertion of the last lemma, we
see that one of the hoped-for conclusions of the (completely) symmetric projection
problem, and by extension the (completely) bicontractive projection problem, is
that the range of the projection is a subalgebra. We will also show in the completely
symmetric case that if A is unital or approximately unital then so is P(A).
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Let us examine what this all looks like in a C∗-algebra, where as predicted in
the last paragraph, much hinges on the known Banach–Stone-type theorem for
C∗-algebras, due mainly to Kadison. The following is essentially well known (see,
e.g., [Friedman and Russo 1984; Størmer 1982]), but we do not know of a reference
which has all of these assertions, or is in the formulation we give.

Theorem 3.2. If P : A→ A is a projection on a C∗-algebra A, then P is bicontrac-
tive if and only if P is symmetric. Then P is bicontractive and completely positive
if and only if there exists a central projection q ∈ M(A), such that P = 0 on q⊥A,
and there exists a period-2 ∗-automorphism θ of qA so that P = 1

2(I + θ) on qA.

Proof. Clearly symmetric projections are bicontractive. Conversely, if P is bicon-
tractive, then by [Friedman and Russo 1984, Theorem 2], θ = 2P − IA is a linear
surjective isometric selfmap of A preserving the Jordan triple product and satisfying
θ ◦ θ = IA and P = 1

2(IA+ θ). So P is symmetric. If also P is positive then P, and
hence also θ , is ∗-linear. Let Q be the extension of P to the second dual.

Suppose that θ : A→ B is a linear isometric surjection between C∗-algebras. By
a result of Kadison [1951], u = θ∗∗(1) is unitary in B∗∗. Suppose now further that
θ is ∗-linear. Then u is selfadjoint, and uθ∗∗( · ) is a unital isometry, so selfadjoint.
Thus uθ(a)= θ(a∗)∗u = θ(a)u, for a ∈ A, so u is central. If a ∈ Asa then

uθ(a2)= (uθ(a))2 = θ(a)2 ∈ B,

since uθ( · ) is a Jordan morphism. Thus uB = uθ(A)⊂ B. So u ∈ M(B).
Returning to our situation, let q = Q(1). This is a central projection in M(A),

since u = 2q − 1. Since Q(q⊥)= 0, if a ∈ Ball(A)+ then

P(q⊥a)= P(q⊥aq⊥)≤ Q(q⊥)= 0,

and so P = 0 on q⊥A. Also, since θ(q)= q and θ preserves Jordan triple products,
it follows that P(qa) = 1

2(qa + θ(qa)) = qP(a). Thus, P(qA) = qP(A), and
the restriction of P to qA is a unital bicontractive positive projection on a unital
C∗-algebra. Also θ(qa) = q θ(a) for a ∈ A, as we had above, so θ(qA) = qA.
Hence θ ′ = θ |qA is a unital isometric isomorphism of qA. �

Remark. The example P(x) = 1
2(x + xT ) on M2 shows the necessity of the

completely positive hypothesis in the part it pertains to. Note in this example P is
positive and contractive, and I − P is completely contractive.

We will generalize the bulk of the last result and its proof in Theorem 3.7.
We next show that unlike in the C∗-algebra case, for projections on operator

algebras (completely) bicontractive is not the same as (completely) symmetric.
Also, these both also differ from the notion of (completely) hermitian. We recall
that any operator space X ⊂ B(H) may be unitized to become an operator algebra
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as follows. We define

U(X)=
{[
λ1 IH x

0 λ2 IH

]
: x ∈ X, λ1, λ2 ∈ C

}
⊂ B(H ⊕ H).

By definition, U(X) may be regarded as a subspace of the Paulsen system; see
[Blecher and Le Merdy 2004, 1.3.14 and 2.2.10] or [Paulsen 2002]. It follows
from Paulsen’s lemma [op. cit., Lemma 8.1] or [Blecher and Le Merdy 2004,
Lemma 1.3.15] that if v : X→ X is a linear contraction (resp. complete contraction),
then the mapping θv on U(X) defined by

θv

([
λ1 x
0 λ2

])
=

[
λ1 v(x)
0 λ2

]
, x ∈ X, λ1, λ2 ∈ C,

is a contractive (resp. completely contractive) homomorphism.

Proposition 3.3. Suppose that X is an operator space, and that P : X → X
is a linear idempotent map. Then P is completely contractive (resp. completely
bicontractive, completely symmetric, completely hermitian) if and only if the induced
map P̃ : U(X)→U(X) is a real completely positive and completely contractive (resp.
completely bicontractive, completely symmetric, completely hermitian) projection.
In particular these hold (and with the word “completely” removed everywhere if
one wishes), if P : X → X is a linear idempotent map on a Banach space, when
we give X its minimal or maximal operator space structure; see, e.g., [Blecher and
Le Merdy 2004; Paulsen 2002].

Proof. If P is completely contractive then by Paulsen’s lemma referred to above, the
unique ∗-linear unital extension of P̃ to U(X)+U(X)∗ is completely contractive and
completely positive. Thus by [Bearden et al. 2014, Section 2], P̃ is real completely
positive. Clearly P̃ is a projection. Conversely, if P̃ is completely contractive then
so is P. We note that I − P̃ annihilates the diagonal, and acts as I − P in the
(1, 2) entry. Thus I − P is completely contractive if and only if I − P̃ is completely
contractive. Also note that 2P̃− I does nothing to the diagonal, and acts as 2P− I
in the (2,1) entry; that is, 2P̃− I = (2P− I ) .̃ By Paulsen’s lemma again, as above,
2P̃ − I is completely contractive if and only if 2P − I is completely contractive.
Finally, I − P̃ + ei t P̃ multiplies each of the two diagonal entries by ei t, and acts
as I − P + ei t P in the (1, 2) entry. Multiplying by e−i t, we see again by Paulsen’s
lemma that this is completely contractive if and only if P is completely hermitian.

For the last assertion, if P is contractive (resp. bicontractive, symmetric, hermit-
ian), then it is completely contractive (resp. bicontractive, symmetric, hermitian)
on X with its minimal or maximal operator space structure by, e.g., [Blecher and
Le Merdy 2004, 1.10 and 1.12]. We may then apply the case in the previous
paragraph to obtain the result. Conversely, if P̃ is contractive (resp. bicontractive,
etc.), then so is P since P is the (1, 2) corner of P̃. The rest is clear. �
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The previous result provides examples of real completely positive unital com-
pletely bicontractive (resp. completely contractive, completely symmetric) projec-
tions which are not completely symmetric (resp. completely bicontractive, com-
pletely hermitian). As we said, this is in contrast to the C∗-algebra case where
(complete) bicontractivity is equivalent to being (completely) symmetric [Størmer
1982; Friedman and Russo 1984].

Example 3.4. A more specific example of a real completely positive unital com-
pletely bicontractive projection on an operator algebra which is not symmetric
arises by the last construction, from the following explicit completely bicontractive
projection which is not completely symmetric. Let Y be R2, the latter viewed as a
real Banach space whose unit ball is the unit ball of `∞2 in the first quadrant and
the unit ball of `1

2 in the second quadrant. Let X be the standard complexification
of Y. Take P : X→ X to be the usual complexification of the projection onto the
first coordinate on Y. We thank Asvald and Vegard Lima for this example, which
is a bicontractive projection on a Banach space which is not symmetric. Giving
X its minimal or maximal operator space structure makes X an operator space,
and makes P (by, e.g., [Blecher and Le Merdy 2004, 1.10 or 1.12]) a completely
bicontractive projection which is not symmetric. Hence, by Proposition 3.3, we get
a real completely positive unital completely bicontractive projection on an operator
algebra which is not symmetric.

Example 2.8 shows that one cannot extend completely symmetric real completely
positive projections to a positive bicontractive projection on a containing C∗-algebra.
Things are much better if P is a unital map:

Lemma 3.5. Let A be a unital operator algebra, and let P : A→ A be a completely
symmetric unital projection. Then P is real completely positive, and the range of
P is a subalgebra of A. Moreover, P extends to a completely symmetric unital
projection on C∗e (A) (or on I (A)).

Proof. Any completely contractive unital map on A is real completely positive as we
said in the introduction. Let θ = 2P− I , so that P = 1

2(I +θ). By Lemma 3.1, θ is
a unital complete isometry. So in fact θ is a homomorphism, by the Banach–Stone
theorem for operator algebras [Blecher and Le Merdy 2004]. This implies, as we said
in Lemma 3.1, that Ran(P) is a subalgebra of A. We can extend θ uniquely to a unital
∗-isomorphism π :C∗e (A)→C∗e (A), with π◦π= I , and it follows that P̃= 1

2(I+π)
is a completely symmetric extension of P. It is also completely positive.

Similarly, since one may extend π further to a unital ∗-automorphism of I (A),
there is a completely symmetric unital projection on I (A) extending P. �

Lemma 3.6. Let A be a unital operator algebra, and let P : A→ A be a completely
contractive real positive projection which is bicontractive. Then P(1) = q is a
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projection (not necessarily central), and all the conclusions of Theorem 2.5 and
Proposition 2.7 hold. Also, there exists a unital completely bicontractive (real
completely positive) projection P ′ : qAq→ qAq such that P is the zero map on
q⊥A+ Aq⊥ and P = P ′ on qAq. We have Ran(P)= Ran(P ′).

Proof. Suppose that q = P(1). Then q ≥ 0 by Lemma 2.3, so that the closed
algebra B generated by q and 1 is a C∗-algebra. Note that P(qn)=q by Theorem 2.5,
so that P(B)⊂ B. Let Q = P|B ; this is a bicontractive projection on B, and it is
positive by the proof of Lemma 2.3. By [Friedman and Russo 1984, Theorem 2] and
its proof, q = P(1) is a partial isometry in B, hence a projection. Therefore, all the
conclusions of Proposition 2.7 and Theorem 2.5 hold. So P(a)=qP(a)q= P(qaq)
for a ∈ A, and P(A)= qP(A)q = P(qAq), so P splits as the sum of the zero map
on q⊥A+ Aq⊥ and a unital projection E on qAq. �

Remark. We give a direct proof (which also can be tweaked to work only assuming
that P is a bicontractive real positive projection on A [Blecher et al. ≥ 2016]) that
P(1) is a projection in the case of the lemma above: Let P(1)= q. As we saw in
Theorem 2.5, P(qn)= q . Thus P(u(q))= q , (we defined u( · ) in the introduction).
Suppose that c is a positive scalar with c(q − u(q)) of norm 1. Then

(I−P)
(
c(q−u(q))−u(q)

)
=c(q−u(q))−u(q)−(c(q−q)−q)= (1+c)(q−u(q)),

which has norm greater than 1. By the contractivity of I−P we have a contradiction,
unless q = u(q). So q = P(1) is a projection.

The following is the solution to the symmetric projection problem in the category
of approximately unital operator algebras.

Theorem 3.7. Let A be an approximately unital operator algebra, and let P : A→ A
be a completely symmetric real completely positive projection. Then the range of P
is an approximately unital subalgebra of A. Moreover, P∗∗(1)= q is a projection
in the multiplier algebra M(A) (so is both open and closed).

Set D = qAq, a hereditary subalgebra of A containing P(A). There exists
a period-2 surjective completely isometric homomorphism θ : A→ A such that
θ(q)= q , so that θ restricts to a period-2 surjective completely isometric homomor-
phism D→ D. Also, P is the zero map on q⊥A+ Aq⊥+ q⊥Aq⊥, and

P = 1
2(I + θ) on D.

In fact,
P(a)= 1

2(a+ θ(a)(2q − 1)), a ∈ A.

The range of P is exactly the set of fixed points of θ |D in D.
Conversely, any map of the form in the last equation, for a period-2 surjective

completely isometric homomorphism θ : A→ A and a projection q ∈ M(A) with
θ∗∗(q)= q, is a completely symmetric real completely positive projection.
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Proof. Applying Lemma 3.6 to P∗∗, we see that P∗∗(1)= q is a projection, and all
the conclusions of Proposition 2.7 and Theorem 2.5 are true for us. We will silently
be using facts from these results below. In particular q is an open projection, so
it supports an approximately unital subalgebra D of A with D⊥⊥ = qA∗∗q; see
[Blecher et al. 2008]. Then θ = 2P − I is a linear completely isometric surjection
on A by Lemma 3.1. So by the Banach–Stone theorem for operator algebras
[Blecher and Le Merdy 2004, Theorem 4.5.13], there exists a completely isometric
surjective homomorphism π : A→ A and a unitary u with u, u−1

∈ M(A) with
θ = π( · )u. We have

θ∗∗(1)= 2P∗∗(1)− 1= 2q − 1= π∗∗(1)u = u,

so that u is a selfadjoint unitary (a symmetry), and q ∈ M(A). So qAq = D ⊂ A.
Since P(A) = qP(A)q, the range of P is contained in D, and the range of P is
exactly the set of fixed points of θ , which all lie in D. This implies that Ran(P) is
a subalgebra of A. It is approximately unital and P is real completely positive by
Corollary 2.9.

We have θ∗∗(q) = q and π∗∗(q) = θ∗∗(q)u = qu = q. Then 2P(a) − a =
π(a)(2q − 1) and P(a)= 1

2(a+π(a)(2q − 1)). Indeed

π(a)= (2P(a)− a)u = (2P(a)− a)(2q − 1)= 2P(a)− 2aq + a, a ∈ A.

From this, or otherwise, one sees that π equals θ on D, and

π(D)= (2P − I )(D)⊂ D.

However, D = θ2(D) ⊂ θ(D) = π(D), so π(D) = D. This completes the main
part of the theorem.

For the converse, note that P(a) = 1
2(a+π(a)(2q − 1)) is clearly completely

symmetric on A, and

P(P(a))= P
( 1

2(a+π(a)(2q − 1))
)

=
1
4

(
a+ 2π(a)(2q − 1)+π(π(a)(2q − 1)

)
(2q − 1)= P(a),

since π is period 2, π∗∗(q)= q , and 2q − 1 is a symmetry. We have

P∗∗(1)= 1
2

(
1+π∗∗(1)(2q − 1)

)
= q,

so that P is real completely positive by Proposition 2.7. �

It follows easily from the last theorem that a completely symmetric real com-
pletely positive projection P on A extends to a completely symmetric projec-
tion P̃ on the C∗-envelope of A. Moreover, P̃(x) = 1

2(a + π̃(a)(2q − 1)), for a
∗-automorphism π̃ . However, this extension will not in general be positive.
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In the work [Blecher et al. ≥ 2016] in progress, we prove the Jordan algebra
variant of the last result.

4. The bicontractive projection problem

The following could be compared with Corollary 2.11.

Lemma 4.1. Let A be a unital operator algebra, and P : A→ A a unital projection
with I−P completely contractive. Let C = (I−P)(A)=Ker(P). Then C2

⊂ P(A).
We also have:

(1) C is a subalgebra of A if and only if C2
= (0).

(2) If P is completely bicontractive (or more generally, if P(a P(b))= P(P(a)P(b))
for a, b ∈ A) then P(A)C +CP(A)⊂ C , and C3

⊂ C.

(3) If the conditions in (1) hold, and if P is completely contractive (or more
generally, if P(a P(b)) = P(P(a)P(b)) for a, b ∈ A) then C is actually an
ideal in A.

(4) If P(A)C+CP(A)⊂ C (see (2)), then θ = 2P− IA is a homomorphism if and
only if P(A) is a subalgebra of A, and then the range of P is the set of fixed
points of this automorphism θ .

Proof. Of course A = C + B, where B = P(A). By Youngson’s result [1983]
applied to an extension Q of I − P to a completely contractive projection on
I (A) (which exists by an easier variant of the proof in Theorem 2.5), we have
(I − P)(wz) = Q(w(I − P)(1)∗z) = 0 for z, w ∈ C . So P(wz) = wz ∈ B, and
this is zero if the kernel is a subalgebra. In any case, C2

⊂ B. Assuming that P is
completely contractive (or that P(a P(b))= P(P(a)P(b)) for a, b ∈ A, which is
a weaker condition by, e.g., the fact in the first paragraph of our paper), if z ∈ B
and w ∈ C , then P(wz) = P(P(w)z) = 0, so wz ∈ C . So CB ⊂ C and similarly
BC ⊂ C . Thus C3

⊂ BC ⊂ C . This proves (2). If also C is a subalgebra, then it is
an ideal, proving (3).

For (4), we may decompose A=C⊕ B, where 1A ∈ B = P(A), and we have the
relations C2

⊂ B,C B+ BC ⊂ C . Using the latter it is a simple computation that
the period-2 map θ : x + y 7→ x − y for x ∈ B, y ∈ C is a homomorphism (indeed
an automorphism) on A if and only if P(A) is a subalgebra of A; clearly P(A) is
the set of fixed points of θ . �

Remark. Replacing P by I−P we see that if P : A→ A is a completely contractive
projection with P(1)= 0, then P(A) is a subalgebra if and only if P(A)2 = (0).

Remark. The kernel of a bicontractive projection need not be a subalgebra. For
example, consider P( f )(x)= 1

2( f (x)+ f (−x)) for f ∈ C([−1, 1]).
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The following clarifies the unital version of the bicontractive projection problem
in relation to the existence of an associated period-2 automorphism.

Corollary 4.2. If P : A→ A is a unital idempotent on a unital operator algebra,
let θ : A→ A be the associated linear period-2 automorphism x + y 7→ x − y
for x ∈ Ran(P), y ∈ Ker(P). Then P is completely bicontractive if and only if
‖I ± θ‖cb ≤ 2. If these hold then the range of P is a subalgebra if and only if θ
is also a homomorphism, and then the range of P is the set of fixed points of this
automorphism θ . Also, P is completely symmetric if and only if θ is completely
contractive.

Proof. The first and last assertions are obvious, and the second assertion follows
from Lemma 4.1(4). �

For us, the bicontractive projection problem is whether the range of a completely
bicontractive real completely positive projection on an approximately unital operator
algebra A is an approximately unital subalgebra of A. This is not obvious, although
there are easy counterexamples if one drops some of the hypotheses. For example,
consider the projection P on the upper triangular 2× 2 matrices given by[

a b
0 c

]
7→

[1
2(a− c) 0

0 1
2(c− a)

]
.

This is completely contractive and extends to a completely contractive projection
on the containing C∗-algebra, and can be shown to be bicontractive with P(1)= 0,
and its range is not a subalgebra.

We now show that the bicontractive projection problem can be reduced to the
case that A is unital and P(1) = 1, by a sequence of three reductions. First, if
P : A→ A is a completely bicontractive real completely positive projection on an
approximately unital operator algebra A, then P∗∗ is a completely bicontractive real
completely positive projection on a unital operator algebra. Thus, henceforth in this
section and in the next, we assume that A is unital. Second, Lemma 3.6 allows us
to reduce further to the case that P(1)= 1: it asserted that P(1)= q is a projection
(not necessarily central), all the conclusions of Theorem 2.5 and Proposition 2.7
hold, and there exists a unital completely bicontractive (real completely positive)
projection P ′ : qAq→ qAq such that P is the zero map on q⊥A+ Aq⊥, P = P ′

on qAq, and Ran(P)= Ran(P ′).
Then the third of our reductions of the completely bicontractive projection

problem puts the problem in a standard position. Of course, P(A) is a subalgebra if
and only if Q(D) is a subalgebra, where D is the closed subalgebra of A generated
by P(A), and Q = P|D , which is a completely bicontractive unital projection on D.
That is, we may as well replace A by the closed subalgebra generated by P(A).
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Thus by these three steps above, we have reduced the completely bicontractive
projection problem on approximately unital operator algebras to the standard posi-
tion of a unital projection on a unital operator algebra, whose range generates A.
In this situation we obtain the following structural result.

Corollary 4.3. Let P be a completely bicontractive unital projection on a unital
operator algebra A. Let D be the algebra generated by P(A). Then (I − P)(D)=
Ker(P|D) is an ideal in D and the product of any two elements in this ideal is zero.

Proof. We saw at the end of Section 2 that (I − P)(D)=Ker(P|D) is an ideal in D,
and in the notation there it equals D ∩ e⊥Me⊥. Since D ∩ e⊥Me⊥ is a subalgebra
of D the result follows from Lemma 4.1. �

Remark. Note that (I − P)(D)⊂ e⊥A, but P(D) is not a subset of eA.

The above shows that we can also solve the bicontractive projection problem in
the affirmative for real completely positive completely bicontractive projections P
on a unital operator algebra A such that the closed algebra generated by A is
semiprime (that is, it has no nontrivial square-zero ideals):

Corollary 4.4. Let P : A→ A be a real completely positive completely bicontractive
projection on a unital operator algebra. If A is an operator algebra containing no
nonzero nilpotents, then P(A) is a subalgebra of A. Also if the closed algebra D
generated by P(A) is semiprime, then P(A) is a subalgebra of A.

Proof. By the second reduction above, we may assume that P is unital. By
Corollary 4.3, (I − P)(D) is an ideal in D with square zero, and so is (0) in these
cases. So P(A)= P(D)= D, a subalgebra. �

For the subcategory of uniform algebras (that is, closed subalgebras of C(K ), for
compact K ) which are unital or approximately unital, the bicontractive projection
problem coincides with the symmetric projection problem, and again there is a
complete solution:

Theorem 4.5. Let P : A → A be a real positive bicontractive projection on a
uniform algebra A, and suppose that A is unital or approximately unital. Then P
is (completely) symmetric, and so we have all the conclusions of Theorem 3.7. In
particular, P(A) is a subalgebra of A, and P is a conditional expectation.

Proof. Here bicontractive projections are the same as completely bicontractive
projections [Blecher and Le Merdy 2004, 1.10]. By the obvious variant of the usual
proof that positive maps into a C(K ) space are completely positive, we have that
real positive maps into a uniform algebra are real completely positive. By the first
two reductions described above we can assume that A and P are unital. We also
know that B= P(A) is a subalgebra by Corollary 4.4, since, e.g., nonzero nilpotents
cannot exist in a function algebra. Thus by Corollary 4.2 the map θ(x+ y)= x− y
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described there is an algebra automorphism of A, hence a (completely) isometric
isomorphism (since norm equals spectral radius). So P = 1

2(I + θ) is (completely)
symmetric, and Theorem 3.7 applies. �

Remark. The idea in the last proof that θ is automatically isometric, since it is
an algebraic automorphism of a uniform algebra, and that this implies that P is
symmetric, was found together with Joel Feinstein after submission.

By, e.g., Corollary 4.2, to find a counterexample to the conjecture that all (com-
pletely real positive) completely bicontractive unital projections have range which
is a subalgebra, we need a unital operator algebra D = C ⊕ E where

C 6= (0), C2
= 0, CE + EC ⊂ C, 1D ∈ E, and E generates D,

so in particular E2 is not a subset of E , and with the projection maps onto C and E
completely contractive. This is easy in a Banach algebra; one may equip `1

3, with the
standard basis identified with symbols 1, a, b satisfying relations like b2

= 0, a2
= b,

etc. (setting C = {b}, E = Span{1, a}). To find an operator algebra example, we
make a general construction.

Example 4.6. Let V be a closed subspace of B(H)⊕ B(H), viewed as elements
of B(H (2)) supported on the (1,1) and (2, 2) entries. Write v1 and v2 for the two
“parts” of an element v ∈ V. Let C be the closed span of {v1w2 : v,w ∈ V }, and we
will assume that C 6= (0). Let B be the set of elements of B(H (3)) of the formλI v1 c

0 λI v2

0 0 λI

, λ ∈ C, v ∈ V, c ∈ C.

Then the copy of C is an ideal in B with square zero, and it is generated by the
copy of V in B. If E is the sum of this copy of V and CIH (3) , then all the conditions
in the last paragraph needed for a counterexample hold, with the exception of the
projection onto E being completely contractive. We remark that one may also
describe B more abstractly as a set B = C1+ V +C in B(K ), where V and C are
closed subspaces of B(K ) with the properties that

(0) 6= C = V 2, V 3
= C2

= (0),

plus one more condition ensuring that p1V (1 − p) = (0), where p1 is the left
support projection of C and p is the left support projection of C + V.
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To fix the exception noted in the last paragraph, we consider the subalgebra
A = A(V ) of B(H (7)) consisting of all elements of form

λI v1 c 0 0 0 0
0 λI v2 0 0 0 0
0 0 λI 0 0 0 0
0 0 0 λI 0 2v1 0
0 0 0 0 λI 0 2v2

0 0 0 0 0 λI 0
0 0 0 0 0 0 λI


, λ ∈ C, v ∈ V, c ∈ C.

We will abusively write the square-zero ideal in A consisting of the copy of C again
as C , and again let E be the sum of CIH (7) and the isomorphic copy of V in A(V ),
so that A = C ⊕ E . Here

C 6= (0), C2
= 0, CE + EC ⊂ C, 1D ∈ E, and E generates A,

as desired. The canonical projection map from A onto C is obviously completely
contractive.

A particularly simple case is when H is one-dimensional, so that A ⊂ M7, and
where V = CI2. This algebra is obviously essentially just (i.e., is completely
isometrically isomorphic to) the subalgebra of M5 of matrices

λ ν c 0 0
0 λ ν 0 0
0 0 λ 0 0
0 0 0 λ 2ν
0 0 0 0 λ

, λ, ν, c ∈ C,

with the projection being replacing the (1, 3) entry by 0. Thus 5× 5 matrices of
scalars will suffice to give an interesting example. However, we will need the more
general construction later to produce a more specialized counterexample.

Consider the algebra U(V ) constructed from V as described in the paragraph
above Proposition 3.3. We define U0(V ) to be the subalgebra of U(V ) consisting
of elements of U(V ) with the two diagonal entries identical. It is a subalgebra
of B(H (4)).

Lemma 4.7. In the situation of Example 4.6, the map j :U0(V )→B(H (3)) given by

[
λI v

0 λI

]
7→

λI 1
2v1 0

0 λI 1
2v2

0 0 λI


is completely contractive and unital.
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Proof. To prove that it is completely contractive simply notice that j may be viewed
as the composition of the canonical map U(V )→ U(W ), where W is the copy of V
in the algebra B above, and the map M2(B)→ B given by pre- and postmultiplying
by
[ 1
√

2
IH (3)

1
√

2
IH (3)

]
and its transpose. �

Corollary 4.8. If A = A(V ) is the unital operator algebra above in B(H (7)) then
the canonical projection P : A→ A which replaces the (1, 3) entry by 0, whose
kernel is a nontrivial square-zero ideal C generated by P(A), is a (real completely
positive) completely bicontractive and unital projection, but its range is not a
subalgebra, and it need not even be a Jordan subalgebra. A particularly simple case
is the algebra (completely isometrically isomorphic to the algebra of ) of 5×5 scalar
matrices described above Lemma 4.7.

Proof. In the 5× 5 matrix example it is easily checked that P(A) is not closed
under squares, hence is not a Jordan subalgebra. It remains to prove that P is
completely contractive. However, P is the composition of the canonical map
B(H (3)

⊕ H (4))→ B(H (4)) restricted to A, and the map x 7→ j (x)⊕ x on U0(V ),
where j is as in Lemma 4.7. �

The following is another rather general condition under which the completely
bicontractive projection problem is soluble. Indeed as we said in the introduction,
all examples known to us of real completely positive completely bicontractive
projections on unital operator algebras, whose range is a subalgebra, do satisfy the
criterion in Theorem 4.9.

Theorem 4.9. Let A be a unital operator algebra in a von Neumann algebra M
(which could be taken to be B(H), or I (A)∗∗ as above) and let P : A→ A be a
unital completely bicontractive projection. Let D be the closed algebra generated
by P(A), and let C = (I − P)(D).

Suppose further that CP(A)∗ ⊂ MC
w∗

, the weak-∗ closed left ideal in M gener-
ated by C. (This is equivalent to saying that the left support projection of P(A)C∗

is dominated by the right support projection of C.) Alternatively, assume that
P(A)∗C is contained in the weak-∗ closed right ideal in M generated by C (or
equivalently that the right support projection of C∗P(A) is dominated by the left
support projection of C). Then P(A) is a subalgebra of A.

Proof. We assume the left ideal condition; the other case is similar and left to the
reader (or can be seen by looking at the opposite algebra Aop). By replacing A
by D we may assume that P(A) generates A. Suppose that M is a von Neumann
algebra on a Hilbert space H. We set p1 =

∨
z∈C r(z)r(z)∗ to be the left support

projection of C and p2 =
∨

z∈C r(z)∗r(z) to be the right support projection of C .
Note that zp1 = 0 for z ∈ C , which implies that p2 p1 = 0. Let p = p1 + p2, a
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projection. Our hypothesis is equivalent to saying that

CP(A)∗ = CP(A)∗ p2.

We may write

M = (1− p)M(1− p)+ (1− p)Mp+ pM(1− p)+ pMp.

Thus M may be pictured as the direct sum of a von Neumann algebra with four
corners (thus having a 2×2 matrix form). Let y∈ P(A). Then yC⊂C⊂ pM , so that
(1− p)yp1=0. On the other hand, by hypothesis, p2 y∗(1− p)= p2 y∗ p2(1− p)=0.
Thus (1− p)yp2 = 0 and so (1− p)yp = 0. Therefore,

y = (1− p)y(1− p)+ py(1− p)+ pyp = y(1− p)+ pyp.

Furthermore p2 yC ⊂ p2C = p2 p1C = (0), and so p2 yp1 = 0. And by hypothesis,
p1 yp2 = p1(p2 y∗)∗ = p1(p2 y∗p2)

∗
= 0. So

p1 P(A)p2 = (0).
Thus

y = y(1− p)+ p1 yp1+ p2 yp2.

If also x ∈ P(A) then x = x(1− p)+ p1xp1+ p2xp2, and so

xy = x(1− p)y(1− p)+ p1xp1 yp1+ p2xp2 yp2,

and so again p1xyp2 = 0. Since C = (I − P)(A) we see that

(I − P)(xy)= p1(I − P)(xy)p2 = p1xyp2− p1 P(xy)p2 = 0,

so that xy = P(xy) ∈ P(A). So P(A) is a subalgebra. �

Remark. If CP(A)∗ ⊂ [BC] where B = C∗e (A) then the first hypothesis in the
previous result holds.

Remark. If A is the counterexample algebra of 5× 5 scalar matrices described
above Lemma 4.7, it is very illustrative to compute the various associated objects of
interest in our paper. We leave the details to the reader as an exercise. Here C∗(A)=
C∗e (A)= I (A)=M3⊕M2⊂M5. If P is the projection in that example, namely the
map that replaces the (1, 3) entry with 0, then C∗(P(A))= I (P(A))= 0⊕M2⊂M5.
A completely contractive completely positive projection P̃ on C∗(A)= I (A) that
extends P is the map

x ⊕
[

a b
c d

]
7→


1
2(a+ d) 1

2 b 0 0 0
1
2 c 1

2(a+ d) 1
2 b 0 0

0 1
2 c 1

2(a+ d) 0 0
0 0 0 a b
0 0 0 c d

, x ∈ M3.
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To see that this is completely contractive is a tiny modification of the proof of
Lemma 4.7. A completely contractive projection extending I − P is the projec-
tion onto the (1, 3) coordinate. The support projection of P̃ defined just before
Proposition 2.10 is e = 0⊕ I2, which has complement r = I3⊕ 0. The projections
p1, p2, p from the proof of Theorem 4.9 are p1 = E11, p2 = E33, p = E11+ E33,
and 1− p= E22+ E44+ E55. Also, r − p= E22. Note that CP(A)∗ p2 6=CP(A)∗,
of course. Indeed this example is an excellent illustration of what is going on in the
proof of Theorem 4.9. Note that if we change the definition of A by replacing either
the (2, 3) entry or the (3, 2) entry then the hypotheses of Theorem 4.9 are satisfied.

Examining why the general example described in Example 4.6 does not satisfy
the hypotheses of Theorem 4.9 is illustrative: it is not hard to see that if it did then
v1w2z∗2 = 0 for all v,w, z ∈ V. However, if 0 6=

∑n
k=1 v

k
1w

k
2 ∈ C then we obtain

the contradiction

0 6=
( n∑

k=1

vk
1w

k
2

)( n∑
k=1

vk
1w

k
2

)∗
= 0.

It would be interesting to investigate other conditions that might imply that P(A)
is a subalgebra, particularly when in the standard position (namely P : A→ A
is a unital completely bicontractive projection whose range generates A as an
operator algebra). Some which might be worth investigating are if the algebra C in
Theorem 4.9 is a maximal ideal in A, or if C contains the radical of A. Note that
any one of these conditions rules out our counterexamples above.

5. Another condition

We now look at another condition on a completely contractive projection P which
is automatic for bicontractive projections in the C∗-algebra case, namely that the in-
duced projection on Re(A) is bicontractive. We will not assume that the induced pro-
jection on Re(A) has completely contractive complementary projection I−P. We are
not able to solve the problem yet, but have made some progress towards the solution.

Lemma 5.1. Let A be a unital operator algebra, and let P : A→ A be a unital
completely contractive projection such that the induced projection on Re(A) is
bicontractive. We also write P for an extension to a unital completely contractive
weak-∗ continuous projection on the von Neumann algebra B∗∗, where B is a
C∗-algebra containing A as a unital subalgebra (see the argument in the proof
of Corollary 2.11). Let e be the support projection of P on B as in [Effros and
Størmer 1979, p. 129]. If x ∈ A∩ e⊥Be⊥ and x = a+ ib with a = a∗, b = b∗, then
‖a+‖ = ‖a−‖ = ‖b+‖ = ‖b−‖.

Proof. Suppose that ‖a‖ ≤ 1. By the Kadison–Schwarz inequality,

P(a)∗P(a)≤ P(a∗a)= P(e⊥a∗ae⊥)≤ P(e⊥)= 0.
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So P(a) = 0, and similarly P(b) = 0. Suppose that ‖a+‖ > ‖a−‖. Then by the
spectral theorem for a, there exists ε > 0 with

‖a− ε1‖ = ‖a+− a−− ε1‖< ‖a+− a−‖ = ‖a‖.

Thus ‖a− ε1‖< ‖(I − P)(a− ε1)‖, a contradiction. So ‖a+‖ ≤ ‖a−‖. A similar
argument shows that ‖a−‖ ≤ ‖a+‖; therefore, ‖a+‖ = ‖a−‖. Similarly (or by
replacing x by i x), ‖b+‖ = ‖b−‖.

Let y = Re(2x − x2). The last paragraph shows that ‖y‖ = ‖y+‖ = ‖y−‖. Now
assume that ‖a‖ = 1≥ ‖b‖. So ‖a±‖ = 1. Let ψ be a state with ψ(a−)= 1. Then
ψ(a+)= 0 or else ψ(|a|)=ψ(a+)+ψ(a−) > 1, which is impossible. By standard
arguments these imply that ψ(a2

−
)= 1 and ψ(a2

+
)= 0. Since

y = 2a+− 2a−− (a2
+
+ a2
−
)+ (b2

+
+ b2
−
),

we have
ψ(y)=−3+ψ(b2

+
+ b2
−
).

It is well known that for a selfadjoint operator T = T+−T− = R− S with R, S ≥ 0,
we have ‖T+‖ ≤ ‖R‖. Thus

‖y‖ = ‖y+‖ ≤ ‖2a+− a2
+
+ (b2

+
+ b2
−
)‖ ≤ 2.

Sinceψ(y)=−3+ψ(b2
+
+b2
−
)we must haveψ(b2

+
+b2
−
)=1, so that ‖b2

‖=1=‖b‖.
Replacing x by i x , we see that ‖a‖ = ‖b‖. �

Lemma 5.2. Let A be a unital operator algebra, and let P : A→ A be a unital
completely contractive projection such that the induced projection on Re(A) is
bicontractive. We also write P for an extension to a unital completely contractive
weak-∗ continuous projection on the von Neumann algebra B∗∗, where B is a
C∗-algebra containing A as a unital subalgebra (as in the last result). Let e
be the support projection of P on B as in [Effros and Størmer 1979, p. 129]. If
x ∈ A∩e⊥Be⊥ and x = a+ib with a= a∗, b= b∗, and ‖a‖= 1, then u(a)2= u(b)2.

Proof. Since b = b∗, we know that u(b) is a selfadjoint tripotent and u(b)2 is
a projection. It is well known that u(x)∗u(x) = u(x∗x) (to see this, note that
x(x∗x)n → xu(x∗x), so that xu(x∗x) = u(x) from which the relation is easy).
Hence u(b)2= u(b2)= u(b2

+
+b2
−
). As we saw in the last proof, if ψ is a state with

ψ(a−) = 1 then ψ(b2
+
+ b2
−
) = 1. Now ψ(a−) = 1 if and only if ψ(u(a−)) = 1,

and ψ(b2
+
+ b2
−
) = 1 if and only if ψ(u(b)2) = 1; see [Edwards and Rüttimann

1996, Lemma 3.3(i)]. So {u(a−)}′ ∩ S(B) ⊂ {u(b)2}′ ∩ S(B), where S(B) is the
state space and the “prime” is as in [op. cit.]. From this, as is well known (and
simple to prove), we have that u(a−) ≤ u(b)2. Similarly, u(a+) ≤ u(b)2, so that
u(a−)+ u(a+)= u(a)2 ≤ u(b)2. Similarly, u(b)2 ≤ u(a)2, so u(a)2 = u(b)2. �
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Lemma 5.3. Let A be a unital operator algebra, and let P : A→ A be a unital
completely contractive projection such that the induced projection on Re(A) is
bicontractive. We also write P for an extension to a unital completely contractive
weak-∗ continuous projection on the von Neumann algebra B∗∗, where B is a
C∗-algebra containing A as a unital subalgebra (as in the last results). Let e be the
support projection of P on B as in [Effros and Størmer 1979, p. 129]. Suppose that
x ∈ A∩ e⊥Be⊥ has norm-1. Then u(x)2 = 0 and x = u(x)+ y for some y ∈ B∗∗

with u(x)y = u(x)y∗ = yu(x)= y∗u(x)= 0. Finally, ‖Re x‖ = 1
2 .

Proof. Suppose that x ∈ A ∩ e⊥Be⊥, and choose an angle θ so that ‖Re(eiθ x)‖
is maximized. By Lemma 5.1 this equals ‖Im(eiθ x)‖. Write z = eiθ x = a + ib
with a = a∗, b = b∗. Scale z so that ‖a‖ = 1 (so ‖b‖ = 1 by Lemma 5.1). Write
a = u(a) + a⊥ and b = u(b) + b⊥. Note that u(a)a⊥ = u(a)(a − u(a)) = 0,
since u(a)a = u(a)3a = u(a)2. Similarly a⊥u(a)= 0, and b⊥u(b)= u(b)b⊥ = 0.
Since u(b)2 = u(a)2 by Lemma 5.2, we have u(a)b⊥ = u(a)u(b)2b⊥ = 0, and
similarly b⊥u(a) = a⊥u(b) = u(b)a⊥ = 0. Hence a⊥ and b⊥ are contractions by
the orthogonality of u(a) and a⊥, and of u(b) and b⊥. Consider

1+ i
√

2
(a+ ib)=

a− b
√

2
+ i

a+ b
√

2
.

By the maximality property of θ we have ‖(a−b)/
√

2‖= ‖(a+b)/
√

2‖ ≤ 1. Now

u(a)− u(b)
√

2
= u(a)2

a− b
√

2
and

u(a)+ u(b)
√

2
= u(a)2

a+ b
√

2
,

so these are contractions. Squaring each of these we see that

u(a)2− 1
2

(
u(a)u(b)+ u(b)u(a)

)
and u(a)2+ 1

2

(
u(a)u(b)+ u(b)u(a)

)
are contractions. Since u(a)2 is a projection, hence an extreme point, we deduce
that u(a)u(b) + u(b)u(a) = 0, or u(a)u(b) = −u(b)u(a). Using this, if w1 =
1
2(u(a)+ iu(b)) then a simple computation shows that w1w

∗

1w1 = w1, so that w1

is a partial isometry. Let w = z/2. Clearly ‖w‖ ≤ 1, but now we see that

1= ‖w1‖ = ‖u(a)2w‖ ≤ ‖w‖.

So ‖w‖ = 1 and ‖z‖ = ‖x‖ = 2. This proves the last assertion of the theorem, since
‖Re(x)‖= ‖Im(x)‖≤ 1 by the maximality property of θ , but they clearly cannot be
strict contractions since ‖x‖= 2. So henceforth we may assume that θ = 0 and z= x .

Let w2 =
1
2(a⊥ + ib⊥), so that w = w1 +w2, and w1w2 = w2w1 = w1w

∗

2 =

w∗2w1=0. Note that u(w)=w1+u(w2) 6=0, and u(e−iθw)= e−iθu(w), so ‖x‖=2.
Also ww∗ = w1w

∗

1 +w2w
∗

2 . Suppose ψ is a state with ψ(w2w
∗

2)= 1. Then since
‖ww∗‖ ≤ 1 we must have ψ(w1w

∗

1)= 0, which forces ψ(u(a)2)= ψ(u(b)2)= 0.
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Thus ψ /∈ {u(a2)}′ = {a2
}
′ [Edwards and Rüttimann 1996, Lemma 3.3(i)], so

ψ(a2
⊥
) 6= 1 since a2

= u(a2)+ a2
⊥

. On the other hand,

1= ψ
(

a2
⊥

4
+

b2
⊥

4
+ i
(

b⊥a⊥
4
−

a⊥b⊥
4

))
.

We deduce the contradiction thatψ(a2
⊥
)=1. This contradiction shows that 1−w2w

∗

2
is strictly positive so that u(w2w

∗

2)= 0. Hence u(ww∗)= u(w1w
∗

1)= w1w
∗

1 , and
so u(w)= limn→∞(ww

∗)nw = w1w
∗

1w = w1.
Finally, suppose that x ∈ A ∩ e⊥Be⊥ has norm-1 (so that x may be taken to

be our previous w). Then u(x)2 = w2
1 = 0. That x = u(x)+ y, where u(x) is

orthogonal to y and y∗, follows because w = u(w)+w2 and

u(w)w2 = u(w)w∗2 = w2u(w)= w∗2u(w)= 0,

the latter because u(w) is a linear combination of the selfadjoint u(a), u(b), which
are each orthogonal to a⊥ and b⊥. �

Corollary 5.4. If the conditions of the previous lemmas hold and A∩e⊥Be⊥ = (0),
then P(A) is a subalgebra of A.

Proof. For x, y ∈ P(A) we have exye = eP(xy)e by Proposition 2.10. Thus
xy− P(xy) ∈ e⊥B∗∗e⊥∩ A= (0), showing that P(A) is closed under products. �

Corollary 5.5. If the conditions of the previous lemmas hold and B is commutative,
then A∩ e⊥Be⊥ = (0) and P(A) is a subalgebra of A.

Proof. By the proof of Lemma 5.3, if x ∈ A ∩ e⊥Be⊥ and eiθ x = a + ib with
a = a∗, b = b∗, and ‖a‖ = 1, we obtained u(a)u(b) = −u(b)u(a) = 0 and
u(a) = u(a)u(b)2 = 0. This is impossible since ‖a‖ = 1, so A ∩ e⊥Be⊥ = (0).
Then apply Corollary 5.4. �

As in Section 4, to show P(A) is a subalgebra of A, we may replace A by D,
the closed algebra generated by P(A). After this is done, in the previous lemmas
A∩ e⊥Be⊥ becomes (I − P)(D).

Theorem 5.6. Let P be a unital completely contractive projection on A such that
I − P is contractive on Re(A). Suppose that A is a subalgebra of MN for some
N ∈ N and let D be the closed algebra generated by P(A). Then every element of
(I − P)(D) is nilpotent. Furthermore, if D is semisimple then the range of P is a
subalgebra of A.

Proof. Note that (I − P)(D) is an ideal of D by Corollary 2.11. Suppose that
x ∈ (I − P)(D) has norm-1 and is not nilpotent. Set y1 = x . By Lemma 5.3,
x = u(x)+ x′ where u(x)2= 0 and x′⊥ u(x). Furthermore x2

= (x′)2 lies in D and
x2
⊥ u(x). Similarly, since x2

6= 0 we set y2 = x2/‖x2
‖. Then y2 = u(y2)+ (y2)′

where u(y2) and (y2)′ are perpendicular to each other, and u(y2) is perpendicular
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to u(x). (This is because u(y2) is a limit of products beginning and ending with x2,
and, e.g., x2u(x)= (x′)2u(x)= 0.) Continuing in this way, we obtain an infinite
sequence of norm-1 elements yk such that u(yn)⊥ u(yk) for k ≤ n. It is well known
that u(y) 6= 0 if ‖y‖ = 1. This contradicts finite-dimensionality. So x is nilpotent.
Since (I − P)(D) is an ideal of D consisting of nilpotents, it follows that it lies in
the Jacobson radical of D. Thus if D is semisimple then (I − P)(D)= (0), so that
P(A)= D as before. �

For the following we no longer assume A is finite-dimensional but retain the
other assumptions of the above theorem.

Lemma 5.7. Let P be a unital completely contractive projection on A such that
I − P is contractive on Re(A), and let D be the closed algebra generated by P(A).
If x ∈ (I − P)(D) and ‖x‖ = 1, then ‖x2n

‖ ≤ 2/22n
. Also, x is quasiregular (that

is, quasi-invertible).

Proof. Let x=a+ib as in previous lemmas. By Lemmas 5.1 and 5.2, ‖a‖=‖b‖= 1
2 .

Hence ‖Re(x2)‖ = ‖a2
− b2
‖ ≤

1
4 . Again from Lemma 5.1, ‖x2

‖ ≤
1
2 . The first

result now follows by considering normalizations of further powers of 2, and using
mathematical induction. It is easily seen that

∞∑
k=1

‖xk
‖ ≤ 1+

∞∑
m=1

2m
∥∥x2m∥∥≤ 1+

∞∑
m=1

2m 2
22m <∞.

It follows that
∑
∞

k=1 xk converges, so that 1− x is invertible. �

Remark. It is still open whether the ideal (I − P)(D) above consists entirely of
quasiregular elements. If this is the case, then the above Theorem 5.6 holds for
arbitrary unital operator algebras. Note too that the assertion about quasiregulars in
Lemma 5.7 does follow from Lemma 5.1. That result shows that the ideal (I−P)(D)
in D has no nonzero real positive elements (for, in the language of that result, if
a− = 0 then a+ = b+ = b− = 0). The ideas in the proof of [Blecher and Read 2013,
Corollary 6.9] then also show that if x ∈ Ball((I − P)(D)) then x is quasiregular.

6. Jordan morphisms and Jordan subalgebras of operator algebras

We recall that a Jordan homomorphism T : A → B is a linear map satisfying
T (ab+ ba) = T (a)T (b)+ T (b)T (a) for a, b ∈ A, or equivalently, that T (a2) =

T (a)2 for all a ∈ A (the equivalence follows by applying T to (a + b)2). By a
Jordan operator algebra we shall simply mean a norm-closed Jordan subalgebra A
of an operator algebra, namely a norm-closed subspace closed under the Jordan
product 1

2(ab+ ba), or equivalently with a2
∈ A for all a ∈ A (that is, A is closed

under squares).
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It is natural to ask if the completely bicontractive algebra problem studied in
Section 4 becomes simpler if the range of the projection P : A→ A is also a Jordan
subalgebra (that is, P(a)2 ∈ P(A)) for all a ∈ A. We next dispose of this question:

Example 6.1. Let y = E21⊕ E12 ∈ M4, and let

x =


0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0

.
Then xy =−yx , so that if F is the span of x and y then F is closed under squares.
However, F is not an algebra since xy /∈ F. Let V = {z⊕ z ∈ M8 : z ∈ F}, and form
the algebra A = A(V ) described in Example 4.6. By Corollary 4.8 the canonical
projection P : A→ A which replaces the (1, 3) entry of a matrix in A(V ) by 0,
is a (real completely positive) completely bicontractive and unital projection, but
its range is not a subalgebra. However, its range is a Jordan subalgebra; P(A) is
closed under squares since z2

= 0 for z ∈ F. Thus, the completely bicontractive
algebra problem does not become simpler if the range of the projection P : A→ A
is also a Jordan subalgebra.

The following variant of the Banach–Stone theorem for C∗-algebras will be
evident to “JB-experts”.

Lemma 6.2. Let A be a unital C∗-algebra, and T : A→ B(H) a unital complete
isometry such that T (A) is closed under taking squares (thus, T (A) is a Jordan
algebra). Then T (A) is a C∗-subalgebra of B(H), and T is a ∗-homomorphism.

Proof. Since such T is necessarily ∗-linear as we said in the introduction, T (A)
is a JB*-algebra, hence a selfadjoint JB*-triple; see, e.g., [Cabrera García and
Rodríguez Palacios 2014]. By the theory of JB*-triples T is a Jordan homomorphism.
(Two other proofs of this: look at the selfadjoint part and use the fact that isometries
in that category are Jordan homomorphisms [Isidro and Rodríguez-Palacios 1995];
or it can be deduced using the C∗-envelope as in the next proof). In particular for
each x ∈ Asa we have T (x2)= T (x)2, so by Choi’s multiplicative domain result (see,
e.g., [Blecher and Le Merdy 2004, Proposition 1.3.11]) we have T (xy)= T (x)T (y)
for all y ∈ A. So T is a homomorphism and T (A) is a C∗-subalgebra. �

It is natural to ask if the analogous result is true for operator algebras. That
is, if B is a closed unital Jordan subalgebra of an operator algebra A, and if B is
unitally and linearly completely isometric to another unital operator algebra, then
is B actually a subalgebra of A? If the algebra is also commutative this is true and
follows from the next result.



320 DAVID P. BLECHER AND MATTHEW NEAL

Lemma 6.3. Let A be a unital operator algebra, and let T : A→ B be a unital
complete isometry onto a unital Jordan operator algebra. Then T is a Jordan
homomorphism, and T (an)= T (a)n for every n ∈ N and a ∈ A.

Proof. Note that T (a)3 is the Jordan product of T (a) and T (a)2, so T (A) is
closed under cubes. Similarly it is closed under every power. By the property of
the C∗-envelope mentioned in the introduction, there exists a ∗-homomorphism
π : C∗(T (A))→ C∗e (A) with π ◦ T = IA. So an

= π(T (a)n) = π(T (an)). Since
π |T (A) is one-to-one, the results follow. �

Remark. In the proof of the last result one could have instead used [Arazy and
Solel 1990, Corollary 2.8].

We now answer the question above Lemma 6.3 in the negative:

Example 6.4. Let P : A→ A be a completely contractive projection on an operator
algebra A on H whose kernel is an ideal I ; see, e.g., Corollary 2.11 or Lemma 4.1.
Then it is known that B = A/I is an operator algebra [Blecher and Le Merdy
2004, Proposition 2.3.4], and the induced map P̃ : B → P(A) is a completely
isometric isomorphism, and P̃ will be unital if A and P are unital. If these hold,
and in addition P(A) is a Jordan subalgebra of A which is not a subalgebra, then
T = P̃ : B→ A ⊂ B(H) is a unital complete isometry such that T (B) is closed
under taking squares (thus, T (B) is a unital Jordan subalgebra), but T (B) is not a
subalgebra, and T is not an algebra homomorphism. In particular, we can take A
to be the algebra in Example 6.1.

We finish our paper with another Banach–Stone-type theorem for operator alge-
bras:

Proposition 6.5. Suppose that T : A → B is a completely isometric surjection
between approximately unital operator algebras. Then T is real (completely)
positive if and only if T is an algebra homomorphism.

Proof. If T is an algebra homomorphism then by Meyer’s theorem [Blecher and
Le Merdy 2004, Theorem 2.1.13], T extends to a unital completely isometric
surjection between the unitizations, which then extends by Wittstock’s extension
theorem to a unital completely contractive, hence completely positive, map on a
generated C∗-algebra. So T is real completely positive.

Conversely, suppose that T is real positive. We may assume that A and B are
unital, since T ∗∗ is a real positive completely isometric surjection between unital
operator algebras. By the Banach–Stone theorem for operator algebras [op. cit.,
Theorem 4.5.13], there exists a completely isometric surjective homomorphism
π : A→ B and a unitary u with u, u−1

∈ B with T = π( · )u. The restriction of T
to C1 is real positive, hence positive; see [Bearden et al. 2014, Section 2]. Thus
u ≥ 0, and so u = (u2)1/2 = 1. Hence T is an algebra homomorphism. �
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Remark. One may also prove a limited version of this result for algebras with no
kind of approximate identity by using the ideas in the proof of Proposition 2.1.

There is also a Jordan variant of the last result, a simple adaption of the main
theorem in [Arazy and Solel 1990]. Here we just state the unital case; see [Blecher
et al. ≥ 2016] for more on this topic.

Proposition 6.6. Suppose that T : A→ B is an isometric surjection between unital
Jordan operator algebras. Then T is real positive if and only if T is a Jordan
algebra homomorphism.

Proof. If T is a Jordan algebra homomorphism and u = T (1A) and T (v)= 1B then
2u = u1B + 1Bu = 2T (1A · v) = 2T (v) = 2 · 1B . So u = 1B . However, a unital
contractive map is real positive [Bearden et al. 2014, Section 2].

The converse follows by the same proof as for Proposition 6.5, but using the
form of the Banach–Stone theorem for operator algebras in [Arazy and Solel 1990,
Corollary 2.10]. By that result T (1) is a unitary u with u, u−1

∈ B. Moreover
T ( · )u−1 is an isometric surjection onto B, so by the same result it is a Jordan
homomorphism π . We have T = π( · )u, and we finish as before. �

Acknowledgments

Some of this material was presented at an AMS special session in January 2015
(Operator Algebras and Their Applications: A Tribute to Richard V. Kadison), as
briefly surveyed in the article [Blecher 2015], which will appear in the proceedings
of that meeting. Corollary 4.2 and part of Theorem 4.5 were first stated in that article,
and later added to the present paper. We thank Joel Feinstein for a conversation
during which we together arrived at an insight needed in these results. We are also
indebted to the referee for suggesting that we consider the Jordan algebra version
of the topics of this paper; this insight led to the work [Blecher et al. ≥ 2016] in
progress.

References

[Akemann 1970] C. A. Akemann, “Left ideal structure of C∗-algebras”, J. Functional Analysis 6
(1970), 305–317. MR 0275177 Zbl 0199.45901

[Arazy and Solel 1990] J. Arazy and B. Solel, “Isometries of nonselfadjoint operator algebras”, J.
Funct. Anal. 90:2 (1990), 284–305. MR 1052336 Zbl 0713.46043

[Arveson 1969] W. B. Arveson, “Subalgebras of C∗-algebras”, Acta Math. 123 (1969), 141–224.
MR 0253059 Zbl 0194.15701

[Barton and Timoney 1986] T. Barton and R. M. Timoney, “Weak∗-continuity of Jordan triple
products and its applications”, Math. Scand. 59:2 (1986), 177–191. MR 884654

[Battaglia 1991] M. Battaglia, “Order theoretic type decomposition of JBW∗-triples”, Quart. J. Math.
Oxford Ser. (2) 42:166 (1991), 129–147. MR 1107278 Zbl 0736.46052

http://dx.doi.org/10.1016/0022-1236(70)90063-7
http://msp.org/idx/mr/0275177
http://msp.org/idx/zbl/0199.45901
http://dx.doi.org/10.1016/0022-1236(90)90085-Y
http://msp.org/idx/mr/1052336
http://msp.org/idx/zbl/0713.46043
http://dx.doi.org/10.1007/BF02392388
http://msp.org/idx/mr/0253059
http://msp.org/idx/zbl/0194.15701
http://msp.org/idx/mr/884654
http://dx.doi.org/10.1093/qmath/42.1.129
http://msp.org/idx/mr/1107278
http://msp.org/idx/zbl/0736.46052


322 DAVID P. BLECHER AND MATTHEW NEAL

[Bearden et al. 2014] C. A. Bearden, D. P. Blecher, and S. Sharma, “On positivity and roots in operator
algebras”, Integral Equations Oper. Theory 79:4 (2014), 555–566. MR 3231244 Zbl 1311.46051

[Blecher 2004] D. P. Blecher, “Are operator algebras Banach algebras?”, pp. 53–58 in Banach
algebras and their applications, edited by A. T.-M. Lau and V. Runde, Contemporary Mathematics
363, American Mathematical Society, Providence, RI, 2004. MR 2097949 Zbl 1078.46040

[Blecher 2013] D. P. Blecher, “Noncommutative peak interpolation revisited”, Bull. Lond. Math. Soc.
45:5 (2013), 1100–1106. MR 3105002 Zbl 1284.46053

[Blecher 2015] D. P. Blecher, “Generalization of C∗-algebra methods via real positivity for operator
and Banach algebras”, preprint, 2015. To appear in Operator algebras and their applications: A
tribute to Richard V. Kadison, edited by R. S. Doran and E. Park, Contemporary Mathematics 671,
American Mathematical Society. arXiv 1508.03059

[Blecher and Labuschagne 2003] D. P. Blecher and L. E. Labuschagne, “Logmodularity and isome-
tries of operator algebras”, Trans. Amer. Math. Soc. 355:4 (2003), 1621–1646. MR 1946408
Zbl 1026.46046

[Blecher and Le Merdy 2004] D. P. Blecher and C. Le Merdy, Operator algebras and their modules:
an operator space approach, London Mathematical Society Monographs. New Series 30, Oxford
University Press, 2004. MR 2111973 Zbl 1061.47002

[Blecher and Magajna 2005a] D. P. Blecher and B. Magajna, “Duality and operator algebras: auto-
matic weak∗ continuity and applications”, J. Funct. Anal. 224:2 (2005), 386–407. MR 2146046

[Blecher and Magajna 2005b] D. P. Blecher and B. Magajna, “Duality and operator algebras, II:
Operator algebras as Banach algebras”, J. Funct. Anal. 226:2 (2005), 485–493. MR 2160105
Zbl 1083.46033

[Blecher and Neal 2012a] D. P. Blecher and M. Neal, “Open projections in operator algebras, I:
Comparison theory”, Studia Math. 208:2 (2012), 117–150. MR 2910983 Zbl 1259.46045

[Blecher and Neal 2012b] D. P. Blecher and M. Neal, “Open projections in operator algebras, II:
Compact projections”, Studia Math. 209:3 (2012), 203–224. MR 2944468 Zbl 1259.46046

[Blecher and Ozawa 2015] D. P. Blecher and N. Ozawa, “Real positivity and approximate identities
in Banach algebras”, Pacific J. Math. 277:1 (2015), 1–59. MR 3393680 Zbl 06479248

[Blecher and Read 2011] D. P. Blecher and C. J. Read, “Operator algebras with contractive approxi-
mate identities”, J. Funct. Anal. 261:1 (2011), 188–217. MR 2785898 Zbl 1235.47087

[Blecher and Read 2013] D. P. Blecher and C. J. Read, “Operator algebras with contractive approxi-
mate identities, II”, J. Funct. Anal. 264:4 (2013), 1049–1067. MR 3004957 Zbl 1270.47067

[Blecher and Read 2014] D. P. Blecher and C. J. Read, “Order theory and interpolation in operator
algebras”, Studia Math. 225:1 (2014), 61–95. MR 3299396 Zbl 06390240

[Blecher et al. 2008] D. P. Blecher, D. M. Hay, and M. Neal, “Hereditary subalgebras of operator
algebras”, J. Oper. Theory 59:2 (2008), 333–357. MR 2411049 Zbl 1164.46018

[Blecher et al. ≥ 2016] D. P. Blecher, M. Neal, and Z. Wang, “Jordan operator algebras and their
contractive projections”, in preparation (tentative title).

[Cabrera García and Rodríguez Palacios 2014] M. Cabrera García and Á. Rodríguez Palacios,
Non-associative normed algebras, 1: The Vidav–Palmer and Gelfand–Naimark theorems, Encyclo-
pedia of Mathematics and its Applications 154, Cambridge University Press, 2014. MR 3242640
Zbl 1322.46003

[Choi and Effros 1976] M.-D. Choi and E. G. Effros, “The completely positive lifting problem for
C∗-algebras”, Ann. of Math. (2) 104:3 (1976), 585–609. MR 0417795 Zbl 0361.46067

http://dx.doi.org/10.1007/s00020-014-2136-y
http://dx.doi.org/10.1007/s00020-014-2136-y
http://msp.org/idx/mr/3231244
http://msp.org/idx/zbl/1311.46051
http://dx.doi.org/10.1090/conm/363/06640
http://msp.org/idx/mr/2097949
http://msp.org/idx/zbl/1078.46040
http://dx.doi.org/10.1112/blms/bdt040
http://msp.org/idx/mr/3105002
http://msp.org/idx/zbl/1284.46053
http://msp.org/idx/arx/1508.03059
http://dx.doi.org/10.1090/S0002-9947-02-03195-1
http://dx.doi.org/10.1090/S0002-9947-02-03195-1
http://msp.org/idx/mr/1946408
http://msp.org/idx/zbl/1026.46046
http://dx.doi.org/10.1093/acprof:oso/9780198526599.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198526599.001.0001
http://msp.org/idx/mr/2111973
http://msp.org/idx/zbl/1061.47002
http://dx.doi.org/10.1016/j.jfa.2004.10.013
http://dx.doi.org/10.1016/j.jfa.2004.10.013
http://msp.org/idx/mr/2146046
http://dx.doi.org/10.1016/j.jfa.2004.10.017
http://dx.doi.org/10.1016/j.jfa.2004.10.017
http://msp.org/idx/mr/2160105
http://msp.org/idx/zbl/1083.46033
http://dx.doi.org/10.4064/sm208-2-2
http://dx.doi.org/10.4064/sm208-2-2
http://msp.org/idx/mr/2910983
http://msp.org/idx/zbl/1259.46045
http://dx.doi.org/10.4064/sm209-3-1
http://dx.doi.org/10.4064/sm209-3-1
http://msp.org/idx/mr/2944468
http://msp.org/idx/zbl/1259.46046
http://dx.doi.org/10.2140/pjm.2015.277.1
http://dx.doi.org/10.2140/pjm.2015.277.1
http://msp.org/idx/mr/3393680
http://msp.org/idx/zbl/06479248
http://dx.doi.org/10.1016/j.jfa.2011.02.019
http://dx.doi.org/10.1016/j.jfa.2011.02.019
http://msp.org/idx/mr/2785898
http://msp.org/idx/zbl/1235.47087
http://dx.doi.org/10.1016/j.jfa.2012.11.013
http://dx.doi.org/10.1016/j.jfa.2012.11.013
http://msp.org/idx/mr/3004957
http://msp.org/idx/zbl/1270.47067
http://dx.doi.org/10.4064/sm225-1-4
http://dx.doi.org/10.4064/sm225-1-4
http://msp.org/idx/mr/3299396
http://msp.org/idx/zbl/06390240
http://www.mathjournals.org/jot/2008-059-002/2008-059-002-006.html
http://www.mathjournals.org/jot/2008-059-002/2008-059-002-006.html
http://msp.org/idx/mr/2411049
http://msp.org/idx/zbl/1164.46018
http://dx.doi.org/10.1017/CBO9781107337763
http://msp.org/idx/mr/3242640
http://msp.org/idx/zbl/1322.46003
http://dx.doi.org/10.2307/1970968
http://dx.doi.org/10.2307/1970968
http://msp.org/idx/mr/0417795
http://msp.org/idx/zbl/0361.46067


COMPLETELY CONTRACTIVE PROJECTIONS ON OPERATOR ALGEBRAS 323

[Choi and Effros 1977] M.-D. Choi and E. G. Effros, “Injectivity and operator spaces”, J. Funct. Anal.
24:2 (1977), 156–209. MR 0430809 Zbl 0341.46049

[Chu et al. 2004] C.-H. Chu, M. Neal, and B. Russo, “Normal contractive projections preserve type”,
J. Operator Theory 51:2 (2004), 281–301. MR 2074182 Zbl 1113.46066

[Edwards and Rüttimann 1996] C. M. Edwards and G. T. Rüttimann, “Compact tripotents in bi-
dual JB∗-triples”, Math. Proc. Cambridge Philos. Soc. 120:1 (1996), 155–173. MR 1373355
Zbl 0853.46070

[Effros 1963] E. G. Effros, “Order ideals in a C∗-algebra and its dual”, Duke Math. J. 30 (1963),
391–411. MR 0151864 Zbl 0117.09703

[Effros and Størmer 1979] E. G. Effros and E. Størmer, “Positive projections and Jordan structure in
operator algebras”, Math. Scand. 45:1 (1979), 127–138. MR 567438 Zbl 0455.46059

[Friedman and Russo 1982] Y. Friedman and B. Russo, “Contractive projections on C0(K )”, Trans.
Amer. Math. Soc. 273:1 (1982), 57–73. MR 664029 Zbl 0534.46037

[Friedman and Russo 1984] Y. Friedman and B. Russo, “Conditional expectation without order”,
Pacific J. Math. 115:2 (1984), 351–360. MR 765191 Zbl 0563.46039

[Friedman and Russo 1985] Y. Friedman and B. Russo, “Solution of the contractive projection
problem”, J. Funct. Anal. 60:1 (1985), 56–79. MR 780104 Zbl 0558.46035

[Godefroy et al. 1993] G. Godefroy, N. J. Kalton, and P. D. Saphar, “Unconditional ideals in Banach
spaces”, Studia Math. 104:1 (1993), 13–59. MR 1208038 Zbl 0814.46012

[Hamana 1999] M. Hamana, “Triple envelopes and Šilov boundaries of operator spaces”, Math. J.
Toyama Univ. 22 (1999), 77–93. MR 1744498 Zbl 0948.46045

[Harris 1981] L. A. Harris, “A generalization of C∗-algebras”, Proc. London Math. Soc. (3) 42:2
(1981), 331–361. MR 607306 Zbl 0476.46054

[Isidro and Rodríguez-Palacios 1995] J. M. Isidro and Á. Rodríguez-Palacios, “Isometries of JB-
algebras”, Manuscripta Math. 86:3 (1995), 337–348. MR 1323796 Zbl 0834.17048

[Kadison 1951] R. V. Kadison, “Isometries of operator algebras”, Ann. of Math. (2) 54 (1951),
325–338. MR 0043392 Zbl 0045.06201

[Kadison 1952] R. V. Kadison, “A generalized Schwarz inequality and algebraic invariants for
operator algebras”, Ann. of Math. (2) 56 (1952), 494–503. MR 0051442 Zbl 0047.35703

[Lau and Loy 2008] A. T.-M. Lau and R. J. Loy, “Contractive projections on Banach algebras”, J.
Funct. Anal. 254:10 (2008), 2513–2533. MR 2406685 Zbl 1149.46040

[Neal 2000] M. Neal, “Inner ideals and facial structure of the quasi-state space of a JB-algebra”, J.
Funct. Anal. 173:2 (2000), 284–307. MR 1760616 Zbl 0959.46039

[Neal and Russo 2000] M. Neal and B. Russo, “Contractive projections and operator spaces”, C. R.
Acad. Sci. Paris Sér. I Math. 331:11 (2000), 873–878. MR 1806425 Zbl 0973.47052

[Neal and Russo 2003a] M. Neal and B. Russo, “Contractive projections and operator spaces”, Trans.
Amer. Math. Soc. 355:6 (2003), 2223–2262. MR 1973989 Zbl 1088.46030

[Neal and Russo 2003b] M. Neal and B. Russo, “Operator space characterizations of C∗-algebras
and ternary rings”, Pacific J. Math. 209:2 (2003), 339–364. MR 1978376 Zbl 1064.46060

[Neal and Russo 2006] M. Neal and B. Russo, “Representation of contractively complemented
Hilbertian operator spaces on the Fock space”, Proc. Amer. Math. Soc. 134:2 (2006), 475–485.
MR 2176016 Zbl 1089.46034

[Neal and Russo 2011] M. Neal and B. Russo, “Existence of contractive projections on preduals of
JBW∗-triples”, Israel J. Math. 182 (2011), 293–331. MR 2783974 Zbl 1232.46063

http://dx.doi.org/10.1016/0022-1236(77)90052-0
http://msp.org/idx/mr/0430809
http://msp.org/idx/zbl/0341.46049
http://www.arxiv.org/abs/math/0201188
http://msp.org/idx/mr/2074182
http://msp.org/idx/zbl/1113.46066
http://dx.doi.org/10.1017/S0305004100074740
http://dx.doi.org/10.1017/S0305004100074740
http://msp.org/idx/mr/1373355
http://msp.org/idx/zbl/0853.46070
http://dx.doi.org/10.1215/S0012-7094-63-03042-4
http://msp.org/idx/mr/0151864
http://msp.org/idx/zbl/0117.09703
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002355795
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002355795
http://msp.org/idx/mr/567438
http://msp.org/idx/zbl/0455.46059
http://dx.doi.org/10.2307/1999192
http://msp.org/idx/mr/664029
http://msp.org/idx/zbl/0534.46037
http://dx.doi.org/10.2140/pjm.1984.115.351
http://msp.org/idx/mr/765191
http://msp.org/idx/zbl/0563.46039
http://dx.doi.org/10.1016/0022-1236(85)90058-8
http://dx.doi.org/10.1016/0022-1236(85)90058-8
http://msp.org/idx/mr/780104
http://msp.org/idx/zbl/0558.46035
http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-smv104i1p13bwm
http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-smv104i1p13bwm
http://msp.org/idx/mr/1208038
http://msp.org/idx/zbl/0814.46012
http://msp.org/idx/mr/1744498
http://msp.org/idx/zbl/0948.46045
http://dx.doi.org/10.1112/plms/s3-42.2.331
http://msp.org/idx/mr/607306
http://msp.org/idx/zbl/0476.46054
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002236524
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002236524
http://msp.org/idx/mr/1323796
http://msp.org/idx/zbl/0834.17048
http://dx.doi.org/10.2307/1969534
http://msp.org/idx/mr/0043392
http://msp.org/idx/zbl/0045.06201
http://dx.doi.org/10.2307/1969657
http://dx.doi.org/10.2307/1969657
http://msp.org/idx/mr/0051442
http://msp.org/idx/zbl/0047.35703
http://dx.doi.org/10.1016/j.jfa.2008.02.008
http://msp.org/idx/mr/2406685
http://msp.org/idx/zbl/1149.46040
http://dx.doi.org/10.1006/jfan.2000.3577
http://msp.org/idx/mr/1760616
http://msp.org/idx/zbl/0959.46039
http://dx.doi.org/10.1016/S0764-4442(00)01722-5
http://msp.org/idx/mr/1806425
http://msp.org/idx/zbl/0973.47052
http://dx.doi.org/10.1090/S0002-9947-03-03233-1
http://msp.org/idx/mr/1973989
http://msp.org/idx/zbl/1088.46030
http://dx.doi.org/10.2140/pjm.2003.209.339
http://dx.doi.org/10.2140/pjm.2003.209.339
http://msp.org/idx/mr/1978376
http://msp.org/idx/zbl/1064.46060
http://dx.doi.org/10.1090/S0002-9939-05-08130-X
http://dx.doi.org/10.1090/S0002-9939-05-08130-X
http://msp.org/idx/mr/2176016
http://msp.org/idx/zbl/1089.46034
http://dx.doi.org/10.1007/s11856-011-0032-6
http://dx.doi.org/10.1007/s11856-011-0032-6
http://msp.org/idx/mr/2783974
http://msp.org/idx/zbl/1232.46063


324 DAVID P. BLECHER AND MATTHEW NEAL

[Neal et al. 2006] M. Neal, É. Ricard, and B. Russo, “Classification of contractively complemented
Hilbertian operator spaces”, J. Funct. Anal. 237:2 (2006), 589–616. MR 2230351 Zbl 1106.46043

[Paulsen 2002] V. I. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies
in Advanced Mathematics 78, Cambridge University Press, 2002. MR 1976867 Zbl 1029.47003

[Pedersen 1979] G. K. Pedersen, C∗-algebras and their automorphism groups, London Mathematical
Society Monographs 14, Academic Press, London, 1979. MR 548006 Zbl 0416.46043

[Robertson and Youngson 1982] A. G. Robertson and M. A. Youngson, “Positive projections with
contractive complements on Jordan algebras”, J. London Math. Soc. (2) 25:2 (1982), 365–374.
MR 653394 Zbl 0481.46032

[Russo 1994] B. Russo, “Structure of JB∗-triples”, pp. 209–280 in Jordan algebras (Oberwol-
fach, 1992), edited by W. Kaup and K. McCrimmon, de Gruyter, Berlin, 1994. MR 1293321
Zbl 0805.46072

[Størmer 1982] E. Størmer, “Positive projections with contractive complements on C∗-algebras”, J.
London Math. Soc. (2) 26:1 (1982), 132–142. MR 667251 Zbl 0501.46048

[Youngson 1983] M. A. Youngson, “Completely contractive projections on C∗-algebras”, Quart. J.
Math. Oxford Ser. (2) 34:136 (1983), 507–511. MR 723287 Zbl 0542.46029

Received August 6, 2015. Revised January 11, 2016.

DAVID P. BLECHER

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF HOUSTON

HOUSTON, TX 77204-3008
UNITED STATES

dblecher@math.uh.edu

MATTHEW NEAL

DEPARTMENT OF MATHEMATICS

DENISON UNIVERSITY

GRANVILLE, OH 43023
UNITED STATES

nealm@denison.edu

http://dx.doi.org/10.1016/j.jfa.2006.01.008
http://dx.doi.org/10.1016/j.jfa.2006.01.008
http://msp.org/idx/mr/2230351
http://msp.org/idx/zbl/1106.46043
http://dx.doi.org/10.1017/CBO9780511546631
http://msp.org/idx/mr/1976867
http://msp.org/idx/zbl/1029.47003
http://msp.org/idx/mr/548006
http://msp.org/idx/zbl/0416.46043
http://dx.doi.org/10.1112/jlms/s2-25.2.365
http://dx.doi.org/10.1112/jlms/s2-25.2.365
http://msp.org/idx/mr/653394
http://msp.org/idx/zbl/0481.46032
http://msp.org/idx/mr/1293321
http://msp.org/idx/zbl/0805.46072
http://dx.doi.org/10.1112/jlms/s2-26.1.132
http://msp.org/idx/mr/667251
http://msp.org/idx/zbl/0501.46048
http://dx.doi.org/10.1093/qmath/34.4.507
http://msp.org/idx/mr/723287
http://msp.org/idx/zbl/0542.46029
mailto:dblecher@math.uh.edu
mailto:nealm@denison.edu


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Igor Pak
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pak.pjm@gmail.com

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2016 is US $440/year for the electronic version, and $600/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:pak.pjm@gmail.com
mailto:yang@math.princeton.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 283 No. 2 August 2016

257The fundamental theorem of tropical differential algebraic geometry
FUENSANTA AROCA, CRISTHIAN GARAY and ZEINAB TOGHANI

271A simple solution to the word problem for virtual braid groups
PAOLO BELLINGERI, BRUNO A. CISNEROS DE LA CRUZ and LUIS

PARIS

289Completely contractive projections on operator algebras
DAVID P. BLECHER and MATTHEW NEAL

325Invariants of some compactified Picard modular surfaces and applications
AMIR DŽAMBIĆ
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