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A PLANAR SOBOLEV EXTENSION THEOREM FOR
PIECEWISE LINEAR HOMEOMORPHISMS

EMANUELA RADICI

We prove that a planar piecewise affine homeomorphism ϕ defined on the
boundary of the square can be extended to a piecewise affine homeomor-
phism h of the whole square, in such a way that ‖h‖W1, p is bounded from
above by ‖ϕ‖W1, p for every p ≥ 1.

1. Introduction

Let Q be the unit square in R2 and ϕ be a piecewise affine homeomorphism with
finitely many affine components that maps ∂Q to a closed curve in R2. We call
a piecewise affine map with finitely many affine components a finitely piecewise
affine map. In this work, we provide a general recipe for extending ϕ to a function
h of the whole square which maintains the finitely piecewise affine structure and
whose Sobolev W1,p-norm is controlled from above by ‖ϕ‖W1,p . That such an
extension exists is well known, and its construction is not difficult, but showing the
existence of an extension with good control on its norm is a substantial problem. In
fact, we will establish a bound

‖Dh‖L p(Q) ≤ K‖Dϕ‖L p(∂Q)

for a suitable geometric constant K which depends only on p. It is appropriate
to explain briefly the context of our work and its utility. The problem of finding
approximations of a planar homeomorphism f :�→ R2 has a long history in the
literature and recently it was realized to be relevant to the study of the regularity
of minimizers for standard energies in the area of nonlinear elasticity. Many
important results are already available on this topic. See, for instance, [Mora-Corral
2009; Bellido and Mora-Corral 2011; Iwaniec et al. 2011; Daneri and Pratelli
2015; Hencl and Pratelli 2015] for an overview of what is known. Let us recall
the approach introduced in the last two of these references, where the authors
create the approximation step by step, starting from an explicit subdivision of the
domain � that depends on the Lebesgue points of D f . Although their settings and
the regularity of their approximations are very different, in both papers the strategy
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is to split the domain into a countable disjoint union of simple polygons (in general
triangles or squares) by introducing a locally finite one-dimensional grid, which
consists of the union of the boundaries of such polygons. A first piecewise linear
approximation of f is defined on the one-dimensional grid and, only in a second
step, the approximation is extended in the interior of each simple polygon, being
careful to get the regularity claimed. In this work we focus on the second step of
this strategy, namely we already assume the existence of a piecewise linear function
fε defined on a locally finite grid of squares, let us call it 1, and we give all the
ingredients needed for extending fε to a piecewise affine function of the whole
domain � with suitably small W1,p-norm. In fact, the extension of fε into a single
square Q involves only the values on the boundary ∂Q of Q, and it is useful to have
an estimate like

‖ fε‖W1,p(Q) < K‖ fε‖W1,p(∂Q),

for a suitable constant K . Let us already say that our proof does not depend on the
precise value of p, thus it holds true for every p ∈ [1,∞). An analogous result
was already proved in the cases p =∞ in [Daneri and Pratelli 2015] and p = 1 in
[Hencl and Pratelli 2015], while in this work we generalize to any p> 1 a technique
introduced in [Hencl and Pratelli 2015]. Furthermore, an extension of this result
seems to be true also in the Orlicz–Sobolev spaces (see [Campbell 2015]). For us, Q
will be the rotated square centered in the origin and with corners in (±1, 0), (0,±1).
Our result is the following.

Theorem 1.1. Let ϕ : ∂Q→ R2 be a one-to-one piecewise affine function. Then
there exists a finitely piecewise affine homeomorphism h : Q→ R2 that satisfies
h ≡ ϕ on ∂Q and, for any p ≥ 1, there is a constant K depending only on p such
that the estimate

(1-1)
∫
Q
|Dh(x)|p dx ≤ K

∫
∂Q
|Dϕ(t)|p dH1(t)

holds.

The plan of the paper is very simple: in the following section we make a short
remark about the notation, the second section is devoted to the proof of Theorem 1.1
and in the last remark we explain the case of a generic square in the plane.

Notation. Let us briefly introduce the notation we use throughout the paper. We
call Q= {(x, y) ∈ R2

: |x | + |y|< 1} the rotated square centered in the origin and
Q the image through h of Q. With the capital letters A, B we always refer to
points lying on the boundary of Q, while P and R denote points in the interior
of Q. The points in ∂Q and in the interior of Q will be denoted similarly in bold
style: A, B, P , R. When we use the same letter in normal and bold style, for
example A and A, this always means that A is the image of A through the mapping
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that we are considering in that moment. By AB and ABC we mean, respectively,
the segment between A and B and the triangle of corners A, B and C (the same
also for AB, ABC). The modulus of the horizontal and vertical derivatives of a
function f = ( f1, f2) : R

2
→ R2 is denoted as

|D1 f | =

√(
∂ f1

∂x

)2

+

(
∂ f2

∂x

)2

, |D2 f | =

√(
∂ f1

∂y

)2

+

(
∂ f2

∂y

)2

,

and with the symbol H1 we indicate the standard 1-dimensional Hausdorff measure.
Finally, the letter K will always indicate a purely geometric constant that depends
only on p. Since it is the existence, not the size, of K that matters, we do not
calculate the explicit value of K but we show at each step that it remains finite and
it stays independent from all the parameters but p.

2. Proof of Theorem 1.1

We generalize to every 1 ≤ p <∞ a strategy introduced in [Hencl and Pratelli
2015] for p = 1. To keep this work self contained, we present also the parts of the
proof stated in [Hencl and Pratelli 2015] that do not depend on the exponent p.

Proof of Theorem 1.1. Since the proof of Theorem 1.1 is long, we split it into
several steps for sake of clarity.

Step I. Choice of corners. It is useful to know that |Dϕ|p does not critically
accumulate around the two opposite corners of ∂Q, which we denote as V1≡ (0,−1)
and V2≡ (0, 1). More precisely, the estimate we would like to have is the following:

(2-1)
∫

B(Vi ,r)∩∂Q
|Dϕ|p dH1

≤ K̃ r
∫
∂Q
|Dϕ|p dH1 for all r ∈ (0,

√
2), i ∈ {1, 2}.

This is not true for a generic ϕ, but in this step we show that there always exists
a pair of opposite points P1, P2 on ∂Q that satisfies (2-1) in place of V1, V2 with
K̃ = 6. Notice that it is always possible to apply a bi-Lipschitz transformation of
∂Q to itself which moves such P1, P2 to V1, V2 respectively. Since the bi-Lipschitz
constant does not depend on the particular values of P1 and P2, then estimate (2-1)
follows straightforwardly for a suitable constant K̃ . Thanks to this observation, the
step is concluded once we prove the existence of such P1, P2. Two generic opposite
points are a good choice unless at least one of them is in the set

A=
{

A ∈ ∂Q :
∫

B(A,r)∩∂Q
|Dϕ|p dH1 > 6r

∫
∂Q
|Dϕ|p dH1 for some r ∈ (0,

√
2)
}
.

Thus, the existence of a good pair P1, P2 is established if H1(A) is not too big.
By a Vitali covering argument, it is always possible to cover A with a countable
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Figure 1. (a) A grid on Q and (b) a path γ i in Q.

union of balls B(Ai , 3ri ) such that Ai ∈A and the sets B(Ai , ri )∩∂Q are pairwise
disjoint. In particular, one has

H1(A)≤
∑

i

6ri ≤
∑

i

∫
B(A,ri )∩∂Q|Dϕ|

p dH1∫
∂Q|Dϕ|

p dH1 ≤ 1 ,

thus implying the existence of a pair of opposite points, P1 and P2 in ∂Q \ A,
satisfying (2-1).

Step II. Construction of one-dimensional grids in Q and in Q. Let us denote with Q
the bounded component of R2

\ϕ(∂Q), which is a polygon because ϕ is piecewise
affine. Notice that the problem of finding a piecewise affine homeomorphism h
which maps Q into Q makes sense. Since we want h ≡ ϕ on ∂Q, our approach is
the following: we start extending the function ϕ on a suitable one-dimensional grid
on Q, we then “complete” this grid to obtain a triangulation of Q and, at the end,
we define h inside each triangle of the triangulation as the affine function extending
the values on the boundary. In this step, we introduce the one-dimensional grid
in Q and we construct a related grid in Q, which will be the image through h of
the grid on Q. For the construction, we make use of several horizontal segments
AiBi whose endpoints are in ∂Q. We call Ai

= (Ai
1, Ai

2) the endpoint that has
negative first component and we choose the indexes i so that Ai

2 increases with
respect to i from −1 to 1 (see Figure 1(a)). It is convenient to include also V1, V2

in the grid, therefore we denote them consistently as A0
≡ B0

≡ V1 ≡ (0,−1) and
Ak
≡ Bk

≡ V2 ≡ (0, 1). We consider many horizontal segments AiBi such that for
every i the restriction of ϕ to AiAi+1 or BiBi+1 is linear. Notice that this property
is still valid even if we take more horizontal segments AiBi , therefore, we are
allowed to add points Ai and Bi during the construction (of course, being careful
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in adding only finitely many). Once the grid on Q is fixed, we define a second one,
this time on Q, that is the union of the geodesics γ i inside Q connecting ϕ(Ai )

and ϕ(Bi ). Since Q is a polygon, γ i is piecewise affine and, moreover, the junction
between any two consecutive affine pieces of γ i lies in ∂Q (see Figure 1(b)). In
order to simplify the notation, we write the points of Q in bold style: Ai

≡ ϕ(Ai )

and Bi
≡ ϕ(Bi ). Up to adding points between A0 and A1 (we do the same also

for Ak−1 and Ak), we can always assume that γ 1 (resp. γ k−1) is either a segment
A1 B1 (resp. Ak−1 Bk−1), or it is the union of the two segments A1 A0 and A0 B1

(resp. Ak−1 Ak and Ak Bk−1) lying entirely in ∂Q. It is well known in the literature
that the shortest path that connects two generic points inside a simply connected set
is unique. In particular, this result ensures that the paths γ i are unique and implies
that the grid on Q is well defined.

Step III. Relevant properties of the paths γ i . In this step we present some properties
of the paths γ i . The first property is a consequence of the uniqueness: whenever two
paths γ i+1 and γ i intersect each other they coincide from the first to the last point
of intersection. In particular, γ i+1 and γ i cannot cross each other, thus allowing us
to distinguish three different parts on each path

γ i
= γ i

1 ∪ γ
i
2 ∪ γ

i
3 , γ i+1

= γ i+1
1 ∪ γ i+1

2 ∪ γ i+1
3 .

In detail, if A and B are the first and last points, respectively, of the common
part between γ i and γ i+1, we call γ i

1 the path from Ai to A (analogous for γ i+1
1 ),

γ i
2 the path from A to B (γ i

2 ≡ γ
i+1
2 ) and γ i

3 the last part of the path from B
to Bi (analogous for γ i+1

3 ). When γ i and γ i+1 have no intersection, we directly
set γ i

≡ γ i
1 and γ i+1

≡ γ i+1
1 , while γ i

2 , γ i
3 , γ i+1

2 , γ i+1
3 are empty paths. Let us

observe that such subdivision of γ i is related to the curve γ i+1 and there is no
reason why it should match with the one related to γ i−1. The last property of paths
γ i that we recall is fundamental for showing estimate (1-1) (for a formal proof see
Step 5 of Theorem 2.1 in [Hencl and Pratelli 2015]). Let P be the last point of the
curve γ i+1

1 ; no matter whether P coincides with A or Bi+1, the polygon having
boundary γ i+1

1 ∪ Ai+1 P is always convex (see Figure 2).

Step IV. Triangular grid on Q and estimate on “vertical sides”. In this step we
are going to select finitely many points on the paths γ i in order to get a triangular
grid on Q. For all i = 1, . . . , k− 2, we call Di the closure of the polygon having
boundary Ai Ai+1

∪ γ i
∪ γ i+1

∪ Bi Bi+1 (which lies inside the closure of Q), then
we argue separately for each single Di . For every “strip” Di we select some points
on γ i , γ i+1 depending on the relation between γ i

1 , γ
i
2 , γ

i
3 and γ i+1

1 , γ i+1
2 , γ i+1

3 . We
argue separately for the cases γ i

∩ γ i+1
6=∅ and γ i

∩ γ i+1
=∅. Both situations

are depicted in Figure 3.
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γ
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Figure 2. Convexity of the polygon delimited by γ i+1
1 ∪ Ai+1 P .

Let us start from the nonempty case (Figure 3(a)). For any endpoint of a linear
piece of γ i+1

1 or γ i
1 we consider the corresponding point on the other path so that

the segment connecting the two points is parallel to Ai Ai+1. We denote with Pj the
points taken on γ i+1

1 and with R j the corresponding point on γ i
1 . Notice that the

convexity result introduced in Step III ensures that the segment Pj R j is always well
defined and, moreover, it satisfies H1(Pj R j )≤H1(Ai Ai+1), thus, in particular,

(2-2) H1(Pj R j )≤max{H1(Ai Ai+1),H1(Bi Bi+1)} .

With a symmetric strategy we select other points Pj and R j on γ i+1
3 and γ i

3 ,
respectively, by taking this time Pj R j parallel to Bi Bi+1. Let us recall that (2-2)
still holds true in this case, since now H1(Pj R j ) ≤ H1(Bi Bi+1). Finally, in the

Q Q

Ai+1

P j

R j

Ai

γ i
γ i+1

R j P j

Bi

Bi+1

Ai

Ai+1

P j

R j
γi

S
T T̃

γ i+1
P j Bi

R j Bi+1

(a) (b)

Figure 3. Selection of points on γ i and γ i+1.
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common part γ i
2 ≡ γ

i+1
2 , we take all the endpoints of the linear pieces of the path

and by construction Pj ≡ R j . Of course, (2-2) is trivially true because in this case
H1(Pj R j )= 0. If γ i

∩γ i+1
=∅, the strategy is a little bit different (see Figure 3(b)).

In the specific case in which Ai Ai+1 and Bi Bi+1 are parallel to each other, we
can argue exactly as in the previous case: therefore all the points Pj selected on
γ i+1 can be either endpoints of linear pieces of γ i+1 or the corresponding point of
R j , where R j is an endpoint for γ i . Moreover, by construction, Pj R j is always
parallel to both Ai Ai+1 and Bi Bi+1 and (2-2) is still satisfied thanks to Step III. For
generic Ai Ai+1 and Bi Bi+1 we argue as follows. By symmetry, it is not restrictive
to assume that Ai Ai+1 is vertical and the two lines with directions Ai Ai+1 and
Bi Bi+1 intersect in a point that is closer to Ai+1 and Bi+1 than Ai and Bi (as shown
in Figure 3(b)). Let S, T , T̃ be three points such that S is on γ i+1 and T , T̃ are
on γ i and ST is the shortest segment inside Di which is parallel to Ai Ai+1 (notice
that S can even happen to be Ai+1 or Bi+1) while T̃ is the intersection between γ i

and the half line starting from S with direction Bi Bi+1. On one side, with the usual
strategy, we select points Pj , R j , with Pj between Ai+1 and S and R j between
Ai and T , so that Pj R j is parallel to Ai Ai+1. On the other side, we take Pj , R j

with Pj between S and Bi+1, R j between T̃ and Bi , and Pj R j parallel to Bi Bi+1.
Finally, to any endpoint R j of a linear piece of γ i that happens to be between T
and T̃ , we associate Pj ≡ S. Notice that, by construction, estimate (2-2) is satisfied.
We can then introduce the triangular grid on Di as the union of the boundaries of the
triangles Pj Pj+1 R j and Pj+1 R j R j+1 that are not degenerate. Moreover, recalling
Step II, the polygons delimited by γ 1

∪A1 A0
∪A0 B1 and γ k−1

∪Ak−1 Ak
∪Ak Bk−1

are either triangles themselves or the union of two segments lying in ∂Q, thus we
actually defined a triangular grid on the whole Q and this concludes Step IV.

Step V. Triangular grid on Q and definition of h̃. We recall that our aim is to define
a piecewise affine homeomorphism h mapping Q to Q that matches with ϕ on ∂Q
and satisfies estimate (1-1). In this step, we construct a function h̃ :Q→Q which
is piecewise affine and coincides with ϕ on the boundary of Q and in Steps VI,
VII we will prove that estimate (1-1) is satisfied by h̃. Let us already remark that
in general h̃ will not be a one-to-one function, therefore we will have to suitably
modify it later to obtain the homeomorphism h. We split the construction into three
steps: first, we define the function h̃ only on ∂Q and on the segments AiBi , we
then make use of the triangular grid of Q defined in Step IV to find a triangular
grid on Q and, finally, we use these triangular grids to extend h̃ on the whole Q.
We start by taking h̃ ≡ ϕ on ∂Q such that it maps all the horizontal segments
AiBi to the respective path γ i parametrized at constant speed. Notice that, in this
way, h̃ is continuous and piecewise linear. Recalling the notation introduced in
the previous step, we focus then on the polygon Di : we associate to any Pj on
γ i+1 the point Pj on Ai+1 Bi+1 such that Pj = h̃(Pj ), and to any R j on γ i the
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point R j on AiBi such that R j = h̃(R j ). For the sake of clarity we denote the
endpoints Ai Ai+1 Bi+1 Bi consistently with the notation, namely we call P0≡ Ai+1,
PN ≡ Bi+1, R0 ≡ Ai and RN ≡ Bi for a suitable N . We can now define h̃ on the
strip Di := Ai Ai+1

∪ Ai+1 Bi+1
∪ Bi Bi+1

∪ AiBi as the function which is affine
on each of the triangles Pj Pj+1 R j or Pj+1 R j R j+1 (notice that clearly h̃ can be
degenerate on some triangles). In more detail, we define h̃ on Pj Pj+1 R j as the
affine function which maps Pj Pj+1 R j onto Pj Pj+1 R j extending the values on the
boundary (the very same definition is used for triangles of the form Pj+1 R j R j+1).
It still remains to define h̃ on the top and bottom triangles of Q. Let us consider
the bottom triangle A0 A1 B1 (the definition is symmetric for Ak Ak−1 Bk−1); then
we know from Step II that γ 1 can be either a segment A1 B1 or the union of two
segments A0 A1, A0 B1 laying on ∂Q. In the first case we again define h̃ as the
affine function that extends the values on the boundary. In the other case we will
subdivide A0 A1 B1 into two triangles A0 A1 P and A0 P B1, where P is the point
on A1 B1 such that h̃(P)= A0, then we define h̃ to be constantly equal to A0 on
the segment P A0 and the degenerate affine function extending the values on the
boundary on A0 A1 P and A0 P B1. By construction, the function h̃ is piecewise
affine, coincides with ϕ on ∂Q and it is also continuous.

Step VI. Estimate for
∫

A0 A1 B1 |Dh̃|p. As mentioned above, this step and the fol-
lowing one are devoted to showing that the function h̃ satisfies the estimate (1-1).
Here, in particular, we focus on the bottom triangle T := A0 A1 B1 (the very same
argument holds also for the top triangle Ak Ak−1 Bk−1), and we prove that

(2-3)
∫
T
|Dh̃|p ≤ K1

∫
∂Q
|Dϕ|p dH1 ,

where K1 denotes a purely geometric constant. Recall that, by definition, h̃(T )
is either the nondegenerate triangle A0 A1 B1 or the union of the two segments
A1 A0

∪ A0 B1. In the nondegenerate case, Dh̃ is constant on T , therefore we
denote its constant value with Dbh̃= (Db

1 h̃, Db
2 h̃). Moreover, by construction,

h̃(A0 A1)= A0 A1 and h̃(A0 B1)= A0 B1, thus we can write the following relations:

√
2

2 |D
b
1 h̃+ Db

2 h̃| =
H1(A0 B1)

H1(A0 B1)
,

√
2

2 |−Db
1 h̃+ Db

2 h̃| =
H1(A0 A1)

H1(A0 A1)
,

which, in turn, imply that

(2-4) |Dbh̃|p ≤
2pH1(A0 A1)p

+ 2pH1(A0 B1)p

H1(A0 A1)p ,

where we used the fact that H1(A0 A1)=H1(A0 B1). On the other hand, we have
that |Dϕ| is constant on each of the segments A0 A1, A0 B1 and this gives us an
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estimate on H1(A0 A1)p and H1(A0 B1)p, namely

H1(A0 A1)p
=H1(A0 A1)p−1

∫
A0 A1
|Dϕ|p dH1 ,

H1(A0 B1)p
=H1(A0 A1)p−1

∫
A0 B1
|Dϕ|p dH1 .

By inserting both of these equations into (2-4) and using (2-1) with r =H1(A0 A1),
one gets

|Dbh̃|p ≤
2p

H1(A0 A1)

∫
B(A0,H1(A0 A1))∩∂Q

|Dϕ|p dH1
≤ 2p K̃

∫
∂Q
|Dϕ|p dH1 .

Summarizing, in the nondegenerate case, we can finally deduce (2-3) from∫
T
|Dh̃|p = H1(A0 A1)2

2
|Dh̃|p

≤
H1(A0 A1)2

2
2p K̃

∫
∂Q
|Dϕ|pdH1

≤ 2p K̃
∫
∂Q
|Dϕ|pdH1.

Now, let h̃ be a degenerate affine function on each of the two parts A1P A0 and
A0 P B1, where P satisfies h̃(P)= A0, as in Step V. Let us call |Dl h̃| and |Dr h̃| the
constant values of |Dh̃| on the two parts. In this case the following relations hold:

|Dr
1h̃| = |Dl

1h̃| =
H1(A0 A1)+H1(A0 B1)

H1(A1 B1)
=

H1(A0 A1)+H1(A0 B1)
√

2H1(A1 A0)
,

√
2

2 |D
l
2h̃− Dl

1h̃| =
H1(A0 A1)

H1(A0 A1)
,

√
2

2 |D
r
1h̃+ Dr

2h̃| =
H1(A0 B1)

H1(A0 B1)
.

Therefore

|Dr
2h̃| ≤

3H1(A0 B1)+H1(A0 A1)
√

2H1(A1 A0)
,

and in particular

(2-5) |Dr h̃|p ≤
1

(
√

2H1(A1 A0))p

(
4pH1(A0 A1)p

+ 8pH1(A0 B1)p)
≤ 2

8p

√
2

p
1

H1(A1 A0)

∫
B(A0,H1(A1 A0))∩∂Q

|Dϕ|p dH1

≤ 2
8p

√
2

p K̃
∫
∂Q
|Dϕ|p dH1 ,
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where the last inequality is a consequence of Step I. An estimate for |Dl h̃|p analo-
gous to (2-5) holds by a symmetric argument, then, as a consequence, one has∫

A0 A1 B1
|Dh̃|p =

∫
A0 P A1
|Dl h̃|p +

∫
A0 P B1
|Dr h̃|p

≤
H1(A1 A0)2

2
(|Dr h̃|p + |Dl h̃|p)≤ 2

5
2 p+1 K̃

∫
∂Q
|Dϕ|p dH1 .

Therefore (2-3) holds true for the degenerate case and also in general as soon as
K1 ≥ 2

5
2 p+1 K̃ .

Step VII. Estimate for
∫
Q− |Dh̃|p. In this step, we show that h̃ satisfies (1-1) also

in Q−, which is the square Q without the top and the bottom triangles. Namely, we
prove that ∫

Q−
|Dh̃|p ≤ K2

∫
∂Q
|Dϕ|p dH1 .

To do so, we need at first a similar estimate on a generic triangle T of the triangula-
tion of Q which is inside Q−. To this end, let i be the index so that T is included
in the polygon Di := Ai Bi ∪ Ai+1 Bi+1 ∪ Ai Ai+1 ∪ Bi Bi+1. We aim to show

(2-6)
∫
T
|Dh̃|p≤K ′|T |

∫
∂Q
|Dϕ|p dH1

+K ′′
|T |

|Ai+1
2 − Ai

2|

∫
Ai Ai+1∪Bi Bi+1

|Dϕ|p dH1.

Let T be of the form Pj Pj+1 R j (of course for the other triangles Pj+1 R j R j+1 the
very same argument can be applied) and, by symmetry, let us also assume that Di

lays below the x-axis. To simplify the notation, we denote r the distance between
A0 and the horizontal segment Ai+1 Bi+1, and σ the distance between Ai+1 Bi+1

and AiBi (which is equal to |Ai+1
2 − Ai

2| and to the height of Di ). Since h̃ is affine
on T , we also denote by |DT h̃| the constant value of |Dh̃| on T . Arguing similarly
to Step VI, we would like to estimate both the components |DT

1 h̃| and |DT
2 h̃|. It

follows by construction that

|DT
1 h̃|p =

H1(γ i+1)p

(2r)p .

Since γ i+1 is defined to be the shortest path in Q connecting Ai+1 to Bi+1, then
in particular it is shorter than the image through ϕ of the curve connecting Ai+1 to
Bi+1 on ∂Q passing through A0. Therefore, it satisfies the inequality

H1(γ i+1)≤

∫
B(A0,r

√
2)∩∂Q
|Dϕ| dH1 .

By Hölder’s inequality and (2-1) we obtain

H1(γ i+1)p
≤ (2r

√
2)p/p′

∫
B(A0,r

√
2)∩∂Q
|Dϕ|p dH1 ,
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and

(2-7) |DT
1 h̃|p ≤

√
2

p/p′

2
1
r

∫
B(A0,r

√
2)∩∂Q
|Dϕ|p dH1

≤

√
2

p/p′

2
K̃
∫
∂Q
|Dϕ|p dH1 ,

where p′ is such that 1
p +

1
p′ = 1. Estimating DT

2 h̃ is less straightforward. Let us
call

d :=H1(Ai+1 Pj ), d ′ :=H1(Ai Q j ) , ` :=max{H1(Ai Ai+1),H1(Bi Bi+1)} .

Then we can write

(2-8) |(d ′+ σ − d)DT
1 h̃+ σDT

2 h̃| =H1(Pj Q j )≤ ` ,

and some geometrical considerations lead to an estimate of the term |d−d ′||DT
1 h̃|.

Indeed, the path γ i+1 is shorter than Ai Ai+1
∪ γ i
|Ai Q j ∪ Q j Pj ∪ γ

i+1
|P j Bi+1 ,

providing that

H1(γ i+1)≤ 2`+H1(γ i )
d ′

H1(AiBi )
+H1(γ i+1)

(
1−

d
H1(Ai+1 Bi+1)

)
,

which gives in particular

d
H1(γ i+1)

H1(Ai+1 Bi+1)
− d ′

H1(γ i )

H1(AiBi )
≤ 2` .

Since the symmetric argument involving γ i gives the opposite inequality (this time
we use that γ i is shorter than Ai Ai+1

∪ γ i+1
|Ai+1 P j ∪ Pj Q j ∪ γ

i
|Q j Bi ), we get∣∣∣∣d H1(γ i+1)

H1(Ai+1 Bi+1)
− d ′

H1(γ i )

H1(AiBi )

∣∣∣∣≤ 2` .

Moreover, recalling that γ i+1 is parametrized at constant speed, it follows directly
that

|d − d ′||DT
1 h̃| ≤ 2`+ d ′

∣∣∣∣ H1(γ i+1)

H(Ai+1 Bi+1)
−

H1(γ i )

H(AiBi )

∣∣∣∣
≤ 2`+

∣∣∣∣ H(Ai Bi )

H(Ai+1 Bi+1)
H1(γ i+1)−H1(γ i )

∣∣∣∣
≤ 2`+

∣∣H1(γ i+1)−H1(γ i )
∣∣+ 2σ

H1(γ i+1)

H(Ai+1 Bi+1)
≤ 4`+ 2σ |DT

1 h̃|.

Inserting, then, the above estimate into (2-8), we get

|DT
2 h̃| ≤ 5

σ
`+ 3|DT

1 h̃| ,
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which in turn implies

(2-9) |DT
2 h̃|p ≤

(
10l
σ

)p

+ 6p
|DT

1 h̃|p .

Let us notice that we can easily bound `p from above since ϕ is linear on AiAi+1

and BiBi+1. Indeed, let ` be for instance equal to H1(Ai Ai+1); then

(2-10) `p
= (σ
√

2)p−1
∫

Ai Ai+1
|Dϕ|p dH1

≤ (σ
√

2)p−1
∫

Ai Ai+1∪Bi Bi+1
|Dϕ|p dH1 ,

where we used that H1(Ai Ai+1) = σ
√

2. Thus, by inserting (2-10) and (2-7)
into (2-9) one gets

|DT
2 h̃|p ≤ 6p

√
2

p/p′

2
K̃
∫
∂Q
|Dϕ|p dH1

+
(10
√

2)p

2
1
σ

∫
Ai Ai+1∪Bi Bi+1

|Dϕ|p dH1 ,

which, together with (2-7), gives (2-6) with K ′=6p 1
2

√
2

p/p′
K̃ and K ′′= 1

2(10
√

2)p.
Moreover, by summing up among all the triangles T in Di and observing that
|Di | ≤ 2σ by construction, we have∫

Di

|Dh̃|p ≤ K ′|Di |

∫
∂Q
|Dϕ|p dH1

+ K ′′
|Di |

σ

∫
Ai Ai+1∪Bi Bi+1

|Dϕ|p dH1

≤ K ′|Di |

∫
∂Q
|Dϕ|p dH1

+ 2K ′′
∫

Ai Ai+1∪Bi Bi+1
|Dϕ|p dH1 .

Finally, on the whole Q− one gets

(2-11)
∫
Q−
|Dh̃|p ≤ K ′|Q−|

∫
∂Q
|Dϕ|p dH1

+ 2K ′′
∫
∂Q−∩∂Q

|Dϕ|p dH1

≤ K2

∫
∂Q
|Dϕ|p dH1 ,

for a suitable K2 ≥ 2 max{K ′, K ′′}.

Step VIII. Definition of h and conclusion. We can now observe that, whenever h̃
is a homeomorphism, Theorem 1.1 follows directly. Indeed, h̃ coincides with ϕ
on ∂Q, it is finitely piecewise affine and, moreover, the estimates (2-3) and (2-11)
provide that (1-1) is satisfied by h̃ and K ≥ max{K1, K2}. Unfortunately, in our
construction the function h̃ happens to be one-to-one only when all the paths γ i

lie in the interior of Q without intersecting each other. Of course in general this is
not the case, but it is always possible to slightly modify the paths γ i in order to
get the one-to-one property. A possible configuration can be seen Figure 4. More
precisely, it is always possible to separate a curve γ i+1 from either ∂Q and γ i so
that the minimal distance between them is much smaller than the lengths of all the
linear pieces of the paths γ and ∂Q. Let us notice that the minimal distance is
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γ i+1

γ i

γ i+1
new

γ i
new

Q Q

Figure 4. Modification of γ i and γ i+1.

strictly positive because there is only a finite number of paths and each of them
is finitely piecewise linear. We finally define the function h in the very same way
as we defined h̃ in Step V, but this time using the separated paths. Therefore,
the function h is a homeomorphism, it is still finitely piecewise affine, it satisfies
the boundary condition on ∂Q and, furthermore, estimate (1-1) is still valid up to
increasing the geometric constant K by a quantity which is as small as we wish.
This implies the validity of Theorem 1.1 and concludes the proof. �

Remark 2.1. Let Q⊂R2 be a generic square of length side r , p≥1 and ϕ :∂Q→R2

piecewise linear. Then there exists a piecewise affine function h : Q→ R2 that
coincides with ϕ on the boundary ∂Q and a geometric constant K depending only
on p such that

(2-12)
∫
Q
|Dh|p ≤ Kr

∫
∂Q
|Dϕ|p dH1 .

Indeed, there always exists an affine function ρ mapping the unit square Q1 onto Q.
Let us call, with a slight abuse of notation, ρ and its restriction to the boundary
∂Q1 with the same name. Then, by applying Theorem 1.1 to the function ϕ ◦ρ and
recalling that |Dρ| = r , it is possible to find a constant K and a piecewise affine
function h̃ :Q1→ R2 satisfying∫

Q1

|Dh̃(x)|p dx ≤ K
∫
∂Q1

r p
|Dϕ(ρ(t))|p dH1(t) .

Finally, by defining h := h̃ ◦ ρ−1 and changing the variables, one gets

r p−2
∫
Q
|Dh|p ≤ r p−1K

∫
∂Q
|Dϕ|p dH1

and (2-12) follows.
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