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Geometric structures on NQ-manifolds, i.e., nonnegatively graded mani-
folds with a homological vector field, encode nongraded geometric data on
Lie algebroids and their higher analogues. A particularly relevant class
of structures consists of vector bundle valued differential forms. Symplec-
tic forms, contact structures and, more generally, distributions are in this
class. We describe vector bundle valued differential forms on nonnegatively
graded manifolds in terms of nongraded geometric data. Moreover, we use
this description to present, in a unified way, novel proofs of known results,
and new results about degree-one NQ-manifolds equipped with certain geo-
metric structures, namely symplectic structures, contact structures, invo-
lutive distributions (already present in literature), locally conformal sym-
plectic structures, and generic vector bundle valued higher order forms, in
particular presymplectic and multisymplectic structures (not yet present in
literature).
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1. Introduction

Graded geometry encodes (nongraded) geometric structures in an efficient way.
For instance, a vector bundle is the same as a degree-one nonnegatively graded
manifold. In this respect NQ-manifolds, i.e., nonnegatively graded manifolds
equipped with a homological vector field, are of a special interest. Namely, they
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encode Lie algebroids in degree one, and higher versions of Lie algebroids (including
homotopy Lie algebroids) in higher degrees [Voronov 2010] (see also [Bruce 2011;
Kjeseth 2001b; Sati et al. 2012; Sheng and Zhu 2011; Bonavolontà and Poncin
2013; Vitagliano 2015b], and [Kjeseth 2001a; Vitagliano 2014] for applications
of homotopy Lie algebroids). Accordingly, geometric data on Lie algebroids, or
higher versions of them, that are compatible with the algebroid structure, can be
encoded by suitable geometric structures on an NQ-manifold that are preserved by
the homological vector field. This is a general rule with various examples scattered
in the literature. For instance, degree-one symplectic NQ-manifolds are equivalent
to Poisson manifolds (which can be understood as Lie algebroids of a special kind)
[Roytenberg 2002]. Similarly, degree-one contact NQ-manifolds [Grabowski 2013;
Mehta 2013] are equivalent to Jacobi manifolds, and degree-one NQ-manifolds
equipped with a compatible involutive distribution are equivalent to Lie algebroids
equipped with an IM foliation (see [Jotz and Ortiz 2011] for a definition) [Zambon
and Zhu 2012]. More examples can be presented in degree two. For instance, degree-
two symplectic NQ-manifolds are equivalent to Courant algebroids [Roytenberg
2002], and degree-two contact NQ-manifolds encode a contact version of Courant
algebroids: Grabowski’s contact-Courant algebroids [Grabowski 2013].

In all examples above the geometric structure on the NQ-manifold is, or can be
understood as, a differential form with values in a vector bundle. This motivates
the study of vector bundle valued differential forms (vector valued forms, in the
following) on graded manifolds, and, in particular, NQ-manifolds. In this paper,
we describe vector valued forms on nonnegatively graded manifolds in terms of
nongraded geometric data (Theorem 10). Later we apply this description to the
study of degree-one NQ-manifolds equipped with a compatible vector valued
form. In this way, we get a unified formalism for the description of degree-one
contact NQ-manifolds, symplectic NQ-manifolds, and NQ-manifolds equipped
with a compatible involutive distribution. In particular, we manage to present
alternative proofs of results (in degree one) of Roytenberg [2002], Grabowski
[2013], Mehta [2013], and Zambon and Zhu [2012]. We also discuss three new
examples. Namely, we show that degree-one presymplectic NQ-manifolds (with
an additional nondegeneracy condition) are basically equivalent to Dirac manifolds
(Corollary 31). We also show that degree-one locally conformal symplectic NQ-
manifolds are equivalent to locally conformal Poisson manifolds (Theorem 35),
and, more generally, degree-one NQ-manifolds equipped with a compatible, higher
degree, vector valued form are equivalent to Lie algebroids equipped with Spencer
operators (Theorem 36). The latter have been recently introduced in [Crainic et al.
2015] (see also [Salazar 2013]) as infinitesimal counterparts of multiplicative vector
valued forms on Lie groupoids. In particular, degree-one multisymplectic NQ-
manifolds are equivalent to Lie algebroids equipped with an IM multisymplectic
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structure [Bursztyn et al. 2015] (Theorem 39). We stress that we do only consider
differential forms with values in vector bundles generated in one single degree
(which, up to a shift, are actually generated in degree zero). This hypothesis
simplifies the discussion a lot. We hope to discuss the general case, as well as
higher-degree cases, elsewhere.

The paper is divided into three main sections and two appendixes. In Section 2,
after a short review of vector valued Cartan calculus on graded manifolds, we
present our description of vector valued forms on N-manifolds in terms of nongraded
geometric data (Theorem 10). As already remarked, this description allows one
to present in a unified way various results scattered in the literature about the
correspondence between geometric structures on degree-one NQ-manifolds and
(nongraded) geometric structures on Lie algebroids. In Section 3, we discuss 1-
forms on degree-one NQ-manifolds. Surjective 1-forms are the same as distributions
and we discuss in some detail the contact and involutive cases. The results of this
section (Theorem 23 and Theorem 25) are already present in literature, but they are
presented here in a new and unified way that allows a straightforward generalization
to (possibly degenerate) differential forms of higher order. In Section 4, we discuss
2-forms (on degree-one NQ-manifolds). In particular, we present a novel proof of
the remark of Roytenberg [2002] that degree-one symplectic NQ-manifolds are
equivalent to Poisson manifolds (Theorem 27). We also generalize Roytenberg result
in two different directions, namely to presymplectic forms on one side (Theorem 30
and Corollary 31) and to locally conformal symplectic structures on the other
side (Theorem 35). In Section 5 we discuss the general case of a differential
form of arbitrarily high order. In particular, we relate compatible vector valued
forms on NQ-manifold and the Spencer operators of Crainic–Salazar–Struchiner
[Crainic et al. 2015; Salazar 2013] (Theorem 36). Finally, we discuss degree-one
multisymplectic NQ-manifolds (Theorem 39). The paper is complemented by two
appendixes. In Appendix A, we revisit briefly the concept of locally conformal
symplectic manifolds [Vaisman 1985], and give a slightly more intrinsic definition
of them. We also briefly review the relation between locally conformal symplectic
manifolds and locally conformal Poisson manifolds [Vaisman 2007]. In Appendix
B, we review the definition of Lie algebroids and their representations. As already
remarked they play a key role in the paper.

1.1. Notation and conventions. Let V =
⊕

i Vi be a graded vector space. We
denote by |v| the degree of a homogeneous element, i.e., |v| = i whenever v ∈ Vi ,
unless otherwise stated.

Let M be a (graded) manifold, and E→M a (graded) vector bundle on it. We
denote by M the support of M. In the case when M is nonnegatively graded, M
is also the degree-zero shadow of M. Moreover, we denote by C∞i (M), (resp.
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Xi (M), 0i (E)) the vector space of degree-i smooth functions on M (resp. vector
fields on M, sections of E). We also denote by X−(M) the graded vector space of
negatively graded vector fields on M. Sometimes, if there is no risk of confusion,
we denote by E the (graded) C∞(M)-module of sections of E . Similarly, we often
identify (graded) vector bundle morphisms and (graded) homomorphisms between
modules of sections.

We adopt the Einstein summation convention.

2. Vector valued forms on graded manifolds

2.1. NQ-manifolds and vector NQ-bundles. We refer to [Roytenberg 2002; Mehta
2006; Cattaneo and Schätz 2011] for details about graded manifolds, and, in
particular, N-manifolds. In the following, we just recall some basic facts which will
be often used below. We will work with the simplest possible notion of a graded
manifold. Namely, any graded manifold M in this paper is equipped with one single
Z-grading in its algebra C∞(M) of smooth functions (unless otherwise stated).
Moreover, C∞(M) is graded commutative with respect to the grading. We will
call degree the grading. We will focus on N-manifolds, i.e., nonnegatively graded
manifolds. Recall that the degree of an N-manifold is the highest degree of its
coordinates. Similarly, the degree of a vector N-bundle, i.e., a nonnegatively graded
vector bundle over an N-manifold, is the highest degree of its fiber coordinates.

Example 1. Every degree-one N-manifold M is of the form A[1] for some non-
graded vector bundle A → M , and one has C∞(M) = 0(∧•A∗). In particular,
degree-zero functions on M identify with functions on M , and degree-one functions
on M identify with sections of A∗. Accordingly, vector fields of degree −1 on
M identify with sections of A. In the following, we will tacitly understand the
identifications C∞0 (M)' C∞(M), C∞1 (M)' 0(A∗), and X−1(M)' 0(A). The
action of a vector field X ∈0(A) of degree −1 on a degree-one function f ∈0(A∗)
is given by the duality pairing: X ( f )= 〈X, f 〉.

Example 2. Recall that every N-manifold M is fibered over its degree-zero shadow
M . Every degree-zero vector N-bundle E over M is of the form M×M E for some
nongraded vector bundle E → M , and one has 0(E) = C∞(M)⊗0(E) (where
the tensor product is over C∞(M)). In particular, degree-zero sections of E identify
with sections of E . In the following, we will tacitly understand the identification
00(E)' 0(E).

A Q-manifold is a graded manifold M equipped with a homological vector field
Q, i.e., a degree-one vector field Q such that [Q, Q] = 0. An NQ-manifold is a
nonnegatively graded Q-manifold.

Example 3. Every degree-one NQ-manifold (M, Q) is of the form (A[1], dA) for
some nongraded Lie algebroid A→ M (see Appendix B for a definition of Lie
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algebroid). Here dA is the homological derivation induced in 0(∧•A∗)= C∞(M).
The Lie bracket [[−,−]] in 0(A) and the anchor ρ :0(A)→X(M) can be recovered
from Q via formulas

[[X, Y ]] = [[Q, X ], Y ], ρ(X)( f )= [Q, X ]( f ),

where X, Y ∈ 0(A) are also interpreted as vector fields of degree −1 on M (so that
[[Q, X ], Y ] also has degree −1), and f ∈ C∞(M).

Similarly, we call a Q-vector bundle (resp. NQ-vector bundle) a graded vector
bundle E→M (resp. a vector N-bundle) equipped with a homological derivation.
In this respect, recall that a (graded) derivation of E is a graded, R-linear map
X : 0(E)→ 0(E) such that

X( f e)= X ( f )e+ (−)| f ||X| f X(e), f ∈ C∞(M), e ∈ 0(E),

for a (necessarily unique) vector field X ∈X(M) called the symbol of X. Clearly, a
derivation of E is completely determined by its symbol and its action on generators
of 0(E).

Example 4. Denote by 1 the grading vector field on M, i.e., 1( f ) = | f | f , for
all homogeneous functions f on M. The grading 1E : 0(E)→ 0(E), e 7→ |e|e, is
a distinguished degree-zero derivation. Obviously, the symbol of 1E is 1.

Example 5. Let M be an N-manifold, and let E =M×M E be a degree-zero
vector N-bundle on it. Since 0(E) is generated in degree zero, then a negatively
graded derivation X of E is completely determined by its symbol X and, therefore,
it is the same as a negatively graded vector field on M. Specifically, for a section
of E of the form f ⊗ e, f ∈ C∞(M), e ∈ 0(E), one has X( f ⊗ e) = X ( f )⊗ e.
In the following, we will tacitly identify negatively graded derivations of E and
negatively graded vector fields on M.

Derivations of 0(E) are sections of a (graded) Lie algebroid DE over M with
bracket given by the (graded) commutator, and anchor given by the symbol. A
homological derivation of E is a degree-one derivation Q, with symbol Q, such that
[Q,Q] = 0 (in particular, Q is a homological vector field).

Example 6. Any degree-zero NQ-vector bundle (E,Q) over a degree-one N-
manifold M is of the form (A[1] ×M E, dE) for some nongraded Lie algebroid
A→M equipped with a representation E→M . Here dE is the homological deriva-
tion induced on 0(∧•A∗⊗ E)= 0(E). The algebroid structure on A corresponds to
the symbol Q of Q, while the (flat) A-connection ∇E in E can be recovered from
Q via formula

∇
E
X e = [Q, X ](e)=Q(X (e)),
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where X ∈0(A) is also interpreted as a derivation of E of degree−1 (see Example 5),
and e ∈ 0(E).

2.2. Vector valued Cartan calculus on graded manifolds. Let M be a graded
manifold and let E be a graded vector bundle over M. Differential forms on M are
functions on T [1]M which are polynomial on fibers of T [1]M→M. In particular,
the algebra �(M) of differential forms on M is equipped with two gradings: the
“form” degree and the “internal, manifold” degree, which is usually referred simply
as the degree (or, sometimes, the weight). The “total” degree is the sum of the form
degree and the degree. Notice that the algebra �(M) is graded commutative with
respect to the total degree. Similarly, E-valued differential forms on M are sections
of the vector bundle T [1]M×M E→ T [1]M which are polynomial on fibers of
T [1]M→M. The �(M)-module �(M, E)'�(M)⊗0(E) of E-valued forms
is equipped with two gradings. The “internal” degree will be referred to simply as
the degree. We will denote by |ω| the degree of a homogeneous (with respect to
the internal degree) E-valued form ω.

Now, we briefly review the E-valued version of Cartan calculus. Let X be a
derivation of E . There are unique derivations iX and LX of the vector bundle
T [1]M×M E→ T [1]M such that

(1) the symbol of iX is the insertion iX of the symbol X of X,

(2) iX vanishes on 0(E),

(3) the symbol of LX is the Lie derivative LX along the symbol X of X,

(4) LX agrees with X on 0(E).

Notice that, actually, iX does only depend on the symbol of X. For this reason, we
will sometimes write iX for iX.

Example 7. For any homogenous E-valued form ω, L1Eω = |ω|ω.

The following E-valued Cartan identities hold:

(1) [iX, iX′] = 0, [LX, iX′] = i[X,X′], [LX, LX′] = L [X,X′],

for all X,X′ ∈ 0(DE), where the bracket [−,−] denotes the graded commutator.
Moreover,

(2) i f X = f iX, L f X = f LX+ (−)
| f |+|X|d f iX,

for all f ∈ C∞(M).
Now suppose that E is equipped with a flat connection∇. Recall that a connection

in E is a graded, homogeneous, C∞(M)-linear map ∇ :X(M)→ 0(DE), denoted
X 7→∇X , such that the symbol of∇X is precisely X . In particular |∇|=0. Derivation
∇X is called the covariant derivative along X . A connection ∇ is flat if it is a
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morphism of (graded) Lie algebras, i.e., [∇X ,∇Y ] = ∇[X,Y ], for all X, Y ∈ X(M).
A connection ∇ in E determines a unique degree-one derivation d∇ of the vector
bundle T [1]M×M E→ T [1]M such that

(1) the symbol of d∇ is the de Rham differential d ∈ X(T [1]M),

(2) iX d∇e =∇X e for all e ∈ 0(E) and X ∈ X(M).

The derivation d∇ is the de Rham differential of ∇. It is a homological derivation if
and only if ∇ is flat.

Let ∇ be a flat connection in E . The following identities hold:

(3) [i∇X , d∇] = L∇X , [L∇X , d∇] = 0, [d∇, d∇] = 0,

for all X ∈ X(M).

Remark 8. Specialize to the case when M is an N-manifold and E is of degree
zero. Then E =M×M E for some vector bundle E over the degree-zero shadow
M of M. A connection ∇0 in E induces a unique connection ∇ in E such that

∇X e =∇0
X e,

for all e ∈ 0(E) and X ∈ X0(M), where X ∈ X(M) is the projection of X onto M .
The connection ∇ is flat if and only if ∇0 is flat. Moreover, every connection in E
is of this kind. Notice that if ∇ is flat, whatever it is, the covariant derivative along
the grading vector field 1 coincides with the grading derivation 1E . To see this
it is enough to compare the action of ∇1 and 1E on generators. Locally, 0(E) is
generated by ∇0-flat sections of E . Thus, let e ∈ 0(E) be ∇0-flat. Then ∇1e= 0=
1Ee. As an immediate consequence, every d∇-closed E-valued differential form ω

on M of positive degree n is also d∇-exact, i.e., ω = d∇ϑ , for a suitable ϑ . One
can choose, for instance, ϑ = n−1i1Eω. Indeed,

d∇
(1

n
i1Eω

)
=

1
n
[d∇, i1E ]ω =

1
n

L1Eω = ω.

2.3. An alternative description of vector valued forms on N-manifolds. In the
following, we will only consider the case when M is an N-manifold and E is
generated in one single degree. Let M be the degree-zero shadow of M. Then,
up to an irrelevant shift, E is isomorphic to a pull-back M×M E , where E is a
nongraded vector bundle over M (see Example 2). Accordingly, we will often write
C∞(M, E) for 0(E) and �(M, E) for �(M, E).

Remark 9. Despite the huge simplifications inherent to the hypothesis E 'M×M

E , this case still captures many interesting situations. For instance, a degree-n
symplectic N-manifold [Roytenberg 2002] or contact N-manifold [Grabowski 2013;
Mehta 2013] can each be understood as an N-manifold M equipped with a degree-n
differential form with values in a vector bundle concentrated in just one degree
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(the trivial bundle M×R in the symplectic case, and a generically nontrivial line
bundle concentrated in degree n in the contact case). We hope to discuss the case
of a general vector bundle E elsewhere.

Theorem 10. Let n be a positive integer. A degree-n differential k-form on M with
values in E is equivalent to the following data:

• a degree-n (first order) differential operator D : X−(M)→�k(M, E), and

• a degree-n C∞(M)-linear map ` : X−(M)→�k−1(M, E),

such that

(4) D( f X)= f D(X)+ (−)|X |d f `(X),

and, moreover,

LX D(Y )− (−)|X ||Y |LY D(X)= D([X, Y ]),(5)

LX`(Y )− (−)|X |(|Y |−1)iY D(X)= `([X, Y ]),(6)

iX`(Y )− (−)(|X |−1)(|Y |−1)iY `(X)= 0.(7)

for all X, Y ∈ X−(M), and f ∈ C∞(M).

Remark 11. By induction on n, Theorem 10 provides a description of E-valued
differential forms in terms of nongraded data. Indeed, D and ` take values in
lower-degree forms and one can use degree-zero forms, namely E-valued forms on
M as base of induction.

Proof. Let ω be a degree-n, E-valued differential k-form on M. Define D :
X−(M)→�k(M, E) and ` : X−(M)→�k−1(M, E) by putting

(8) D(X) := LXω, and `(X) := iXω, X ∈ X−(M).

Properties (4), (5), (6), and (7) immediately follow from identities (1), and (2).
Conversely, let D and ` be as in the statement of the theorem, and prove that

there exists a unique degree-n differential form ω ∈�k(M, E) fulfilling (8). We
propose a local proof. One can pass to the global setting by partition of unity
arguments. Let . . . , za, . . . be positively graded coordinates on M and ∂a := ∂/∂za .
In particular the grading derivation 1E is locally given by

1E = |za
|za∂a.

Moreover, X−(M) is locally generated, as a C∞(M)-module, by vector fields

zb1 · · · zbk∂b, |zb1 | + · · · + |zbk | − |zb
|< 0.

Put
ω :=

|za
|

n
(
za D(∂a)+ dza`(∂a)

)
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and prove (8). First of all, for X = Xa∂a ,

LXω =
|za
|

n
LX
(
za D(∂a)+ dza`(∂a)

)
=
|za
|

n
(
XaD(∂a)+(−)

|za
||X |LXD(∂a)+(−)

|X |dXa`(∂a)+(−)
|X |(|za

|+1)dzaLX`(∂a)
)
.

In view of (5) and (6),

(−)|z
a
||X |LX D(∂a)= L∂a D(X)− D([∂a, X ])

and
(−)|X |(|z

a
|+1)LX`(∂a)= i∂a D(X)− (−)|X |`([∂a, X ]),

so that

(9) LXω =
1
n

L1E D(X)+ |z
a
|

n
(
Xa D(∂a)+ (−)

|X |d Xa`(∂a)

− za D([∂a, X ])− (−)|X |dza`([∂a, X ])
)

=
n+|X |

n
D(X)+ |z

a
|

n
(
Xa D(∂a)+ (−)

|X |d Xa`(∂a)

− za D([∂a, X ])− (−)|X |dza`([∂a, X ])
)
.

Similarly

(10) iXω =
n+|X |

n
`(X)+ |z

a
|

n
(
Xa`(∂a)− za`([∂a, X ])

)
.

Using X = ∂b in (9) and (10) gives

(11) L∂bω = D(∂b), and i∂bω = `(∂b).

In view of identity (4), in order to prove (8), it is enough to restrict to vector fields
X of the form zb1 · · · zbk∂b. This case can be treated by induction on k, using (11)
as the base. Namely, use X = zb1 · · · zbk∂b in (9), with k > 0. Since

[∂a, X ] =
∑

i

(−)(|z
b1 |+···+|zbi−1 |)|za

|δbi
a zb1 · · · ẑbi · · · zbk∂b,

where a hat “−̂” denotes omission, by the induction hypothesis we have

D([∂a, X ])= L [∂a,X ]ω, and `([∂a, X ])= i[∂a,X ]ω.

A direct computation shows that the second summand in the right-hand side of (9)
is equal to −(|X |/n)LXω. Similarly, the second summand in the right-hand side of
(10) is equal to −(|X |/n)iXω. Notice that, since k > 0, we have |X |>−n and can
conclude that LXω = D(X), and similarly, iXω = `(X).

To prove uniqueness, it is enough to show that a degree-n differential form ω

with values in E is completely determined by contraction with, and Lie derivative
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along, negatively graded derivations. Thus,

nω = L1Eω = |z
a
|(za L∂aω+ dzai∂aω).

In particular ω is completely determined by L∂aω and i∂aω. �

We will refer to the data (D, `) corresponding to a vector valued form ω as
the Spencer data of ω. Indeed, as we will show in Section 5, they are a vast
generalization of the Spencer operators considered in [Crainic et al. 2015; Salazar
2013].

Example 12. Let E → M be a nongraded vector bundle equipped with a flat
connection ∇, and let M be an N-manifold. As discussed in Section 2.2, ∇ induces
a flat connection in the graded vector bundle M×M E →M which we denote
again by ∇. In its turn, the induced connection determines a homological derivation
d∇ of the vector bundle T [1]M×M E→ T [1]M of E-valued forms on M. Notice
that d∇ maps k-forms to (k + 1)-forms. Now, let ω ∈ �k(M, E) and let (D, `)
be the corresponding Spencer data. We want to describe the Spencer data (D′, `′)
of d∇ω. To do this, we first observe that a discussion similar to that in Remark 8
shows that, whatever ∇, the covariant derivative along a negatively graded vector
field X ∈ X−(M) satisfies ∇X = X . Hence, from (3)

D′(X)= LX d∇ω = L∇X d∇ω = d∇LXω = d∇D(X)

and

`′(X)= iX d∇ω = i∇X d∇ω = LXω− (−)
|X |d∇ iXω = D(X)− (−)|X |d∇`(X),

which completely describe (D′, `′) in terms of (D, `) and d∇ .

Example 13. Let E → M be a nongraded vector bundle. The first jet bundle
J 1 E→ M fits in an exact sequence

(12) 0−→�1(M, E)−→ 0(J 1 E)
p
−→ 0(E)−→ 0

of C∞(M)-linear maps, where p is the canonical projection. Sequence (12) splits
(beware, over R not over C∞(M)) via the universal first order differential operator
j1
: 0(E) → 0(J 1 E). Accordingly, there is a first order differential operator

S : 0(J 1 E)→ �1(M, E) sometimes called the Spencer operator. The degree-n
N-manifold M = J 1 E[n] comes equipped with an E-valued, degree-n Cartan
1-form θ . In order to define θ , recall that negatively graded vector fields on M
are concentrated in degree −n, and X−n(M) identifies with 0(J 1 E) as a C∞(M)-
module. Now, θ is uniquely defined by the properties

(13) i j1eθ = e and L j1eθ = 0,
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for all e ∈ 0(E). It immediately follows from (13) that the Spencer data (D, `)
of θ identify with (−)n times the Spencer operator S : 0(J 1 E)→�1(M, E) and
the projection 0(J 1 E)→ 0(E) respectively.

Example 14. Let M be a nongraded manifold. The degree-n N-manifold M =
T ∗[n]M comes equipped with the obvious tautological, degree-n 1-form ϑ . Con-
sider the degree-n 2-form ω = dϑ . Negatively graded vector fields on M are
concentrated in degree −n, and X−n(M) is naturally isomorphic to �1(M) as a
C∞(M)-module. It is easy to see that ω is uniquely defined by the properties

(14) id f ω = d f and Ld f ω = 0,

for all f ∈ C∞(M). It immediately follows from (14) that the Spencer data (D, `)
of ω identify with (−)n times the exterior differential d : �1(M)→ �2(M) and
the identity id :�1(M)→�1(M) respectively.

Example 15. Let E → M be a nongraded vector bundle equipped with a flat
connection ∇. The degree-n N-manifold M = T ∗[n]M ⊗ E is equipped with a
tautological, degree-n E-valued 1-form ϑ . The flat connection ∇ induces a flat
connection in the graded vector bundle M×M E→M which we denote again by ∇.
Consider the homological derivation d∇ as in Example 12. Notice that d∇ agrees
with the de Rham differential of ∇ on degree-zero forms, i.e., elements of�(M, E).
Consider the degree-n 2-form ω = d∇ϑ with values in E . Negatively graded
vector fields on M are concentrated in degree −n, and X−n(M) is isomorphic to
�1(M, E) as a C∞(M)-module. It is easy to see that ω is uniquely defined by the
properties

(15) id∇eω = d∇e and Ld∇eω = 0,

for all e ∈ 0(E). It immediately follows from (15) that the Spencer data (D, `) of
ω identify with (−)n times the de Rham differential d∇ :�1(M, E)→�2(M, E)
and the identity id :�1(M, E)→�1(M, E) respectively.

In the three remaining sections we use Theorem 10 (and Proposition 17 below)
to describe degree-one NQ-manifolds equipped with a compatible vector valued
differential form (see below) in terms of nongraded data. In particular, we manage
to give alternative proofs of known results about compatible contact structures
[Grabowski 2013; Mehta 2013], involutive distributions [Zambon and Zhu 2012],
and symplectic forms [Roytenberg 2002] on degree-one NQ-manifolds. We also
manage to find new results about compatible, presymplectic and locally conformal
symplectic structures, and, more generally, higher order vector valued forms on
degree-one NQ-manifolds. It turns out (Theorem 36) that a compatible degree-one
differential k-form on a degree-one NQ-manifold (M, Q) is equivalent to a Lie
algebroid equipped with a structure recently identified in [Crainic et al. 2015] as the
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infinitesimal counterpart of a multiplicative vector valued form on a Lie groupoid
(see also [Salazar 2013]), namely, a k-th order Spencer operator.

Let M be an N-manifold, with degree-zero shadow M , and let (E,Q) be an
NQ-vector bundle over it. We denote by Q the symbol of Q.

Definition 16. An E-valued differential form on M, ω, is compatible with Q if
LQω = 0.

Suppose E is of degree zero. Then E =M×M E for a nongraded vector bundle
E→ M . For later use, we conclude this section expressing the compatibility of an
E-valued form ω on M with Q in terms of Spencer data.

Proposition 17. Let ω ∈�k(M, E) be an E-valued k-form on M of degree n > 0,
and let (D, `) be its Spencer data. Then ω is compatible with Q, i.e., LQω = 0, if
and only if

(16) A(X, Y ) := D([[Q, X ], Y ])− L [Q,X ]D(Y )

− (−)|X ||Y |
(
L [Q,Y ]D(X)− LQLY D(X)

)
= 0,

(17) B(X, Y ) := `([[Q, X ], Y ])− (−)|Y |i[Q,X ]D(Y )

− (−)|X ||Y |
(
L [Q,Y ]`(X)− LQLY `(X)

)
= 0,

(18) C(X, Y ) := i[Q,X ]`(Y )+ (−)(|X |−1)(|Y |−1)(i[Q,Y ]`(X)− LQiY `(X)
)
= 0.

Remark 18. By induction on n, Proposition 17 provides a description of the
compatibility condition between ω and Q in terms of nongraded data (see also
Remark 19 below). Notice that, when |ω| = 1, the last summand in (16), (17) and
(18) vanishes by degree reasons.

Proof. First of all, notice that [[Q, X ], Y ] is negatively graded for all X, Y . Hence
it identifies with [[Q, X ], Y ]. In particular, the left-hand side of (16), (17) and (18)
are well-defined. Now, for any ω as in the statement, LQω is a form of degree n+1.
Since every form of positive degree on M is completely determined by its Spencer
data, LQω vanishes if and only if

LY LX LQω = iY LX LQω = LY iX LQω = iY iX LQω = 0,

for all X, Y ∈ X−(M). It immediately follows from the second Cartan iden-
tity (1) that condition iY LX LQω = 0 is actually redundant. It remains to compute
LY LX LQω, LY iX LQω, and iY iX LQω. So

LY LX LQω = LY L [X,Q]ω− (−)|Y |LY LQLXω

= (−)|X |+|Y |(|X |+1)(L [[Q,X ],Y ]ω− L [Q,X ]LYω
)

− (−)|X |+|Y |
(
L [Q,Y ]LXω− LQLY LXω

)
,
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which differs from A(X, Y ) in (16) by an overall sign (−)|X |+|Y |(|X |+1). Similarly,

LY iX LQω = (−)
|X |LY i[Q,X ]ω− (−)|X |LY LQiXω

= (−)(|X |+1)(|Y |+1)(i[[Q,X ],Y ]ω− (−)|Y |i[Q,X ]LYω
)

+ (−)|X |+|Y |
(
L [Q,Y ]iXω− LQLY iXω

)
,

which differs from B(X, Y ) in (17) by an overall sign (−)(|X |+1)(|Y |+1). Finally,

iY iX LQω = (−)
|X |iY i[Q,X ]ω− (−)|X |iY LQiXω

= (−)|X ||Y |i[Q,X ]iYω− (−)
|X |+|Y |(i[Q,Y ]iX − LQiY iXω

)
,

which differs from C(X, Y ) in (18) by an overall sign (−)|X ||Y |. �

Remark 19. When M is the total space of a negatively graded vector bundle
V→M (which is always the case up to a noncanonical isomorphism), a homological
vector field on M is the same as an L∞-algebroid structure on 0(V ∗) (see, e.g.,
[Bonavolontà and Poncin 2013; Bruce 2011; Sati et al. 2012; Vitagliano 2015b]).
We conjecture the existence of formulas expressing the compatibility between ω
and Q in terms of the higher brackets (and the anchor) of this L∞-algebroid, and
the Spencer data of ω. Similarly, when no isomorphism M' V is assigned, there
should be formulas involving Getzler higher derived brackets on X−(M) [Getzler
2010]. Finding these formulas goes beyond the scopes of this paper and we postpone
this task to a subsequent publication.

3. Vector valued 1-forms on NQ-manifolds

3.1. Vector valued 1-forms and distributions. Let M be a degree-n N-manifold,
n > 0, and let (E = M ×M E,Q) be a degree-zero NQ-vector bundle over it.
According to Definition 16, a degree-n 1-form θ with values in E is compatible with
Q if, by definition, LQθ = 0. Several interesting geometric structures are described
by compatible 1-forms. For instance, compatible distributions on an NQ-manifold
are equivalent to surjective compatible 1-forms. Namely, Let (M, Q) be a degree-n
NQ-manifold, and let D ⊂ TM be a distribution on M. Consider the normal
bundle TM/D. Projection TM→ TM/D can be interpreted as a degree-zero
surjective 1-form with values in TM/D. We say that D is cogenerated in degree
k if TM/D is generated in degree −k. In this case, TM/D =M×M E[k] for a
suitable nongraded vector bundle E→M , and the projection θD : TM→M×M E
can be interpreted as a degree-k, surjective, E-valued 1-form such that ker θD = D.
Conversely, if E→ M is a nongraded vector bundle and θ is a degree-k, surjective
1-form with values in E , then D := ker θ is a distribution such that θD = θ .

Definition 20. A distribution D on M, cogenerated in degree n, is compatible with
Q if [Q, 0(D)] ⊂ 0(D).
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Now, let D be a distribution cogenerated in degree-n and E be such that TM/D=
M×M E[−n]. If D is compatible with Q, then the commutator with Q restricts to
a homological derivation of D, hence it also descends to a homological derivation of
the vector bundle M×M E which we denote by Q. Moreover, LQθD = 0. Indeed,
for every vector field X ∈ X(M),

(19) iX LQθD = (−)
|X |(i[Q,X ]θD−Q(iXθD)

)
= 0.

Conversely, if (E,Q) is a degree-zero NQ-bundle and θ is a degree-n surjective
1-form with values in E , then it follows from (19) that LQθ = 0 if and only if 1)
ker θ is a distribution compatible with the symbol Q of Q, and 2) Q is induced
on 0(E) by the adjoint operator [Q,−] on X(M). One concludes that compatible
distributions are the same as compatible surjective 1-forms.

Remark 21. The above discussion is actually independent of the degree of Q.
Hence, it shows that an infinitesimal symmetry of D, i.e., any vector field X such
that [X, 0(D)] ⊂ 0(D), determines a derivation X of TM/D via

X(Y mod D) := [X, Y ] mod D.

The symbol of X is precisely X . Moreover, one can compute the Lie derivative
LXθD, and find LXθD = 0.

Now recall that a distribution D on a (graded) manifold M comes equipped with
a curvature form

ωD : 0(D)×0(D)→ 0(TM/D), (X, Y ) 7→ [X, Y ] mod 0(D).

The curvature form ωD measures how far is D from being involutive. The two
limit cases ωD nondegenerate and ωD = 0 are of special interest. The first one
corresponds to maximally nonintegrable distributions, the second one to involutive
distributions.

3.2. Degree one contact NQ-manifolds. Let M be an N-manifold and let C be a
hyperplane distribution on it. Since L := TM/C is a line bundle, it is generated in
one single degree. A degree-n contact N-manifold is an N-manifold M equipped
with a degree-n contact structure, i.e., a hyperplane distribution C , such that the
line bundle L := TM/C is generated in degree n, and the curvature form ωC is
nondegenerate (see [Grabowski 2013] for an alternative definition exploiting the
“symplectization trick”).

Example 22. Let L→ M be a nongraded line bundle. The kernel of the Cartan
form θ on J 1L[n] (see Example 13) is a degree-n contact structure.

It follows from the definition that, if (M,C) is a degree-n contact N-manifold,
then the degree of M is at most n. When L is a trivial line bundle, C is the
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kernel of a (nowhere vanishing) 1-form α which can be used to simplify the theory
significantly (see [Mehta 2013]). In this case the contact structure is said to be
coorientable and a choice of α provides a coorientation (i.e., an orientation of L).
In the general case, L :=M×M L[n] for a nongraded line bundle L→ M , and C
is the kernel of a (degree-n) 1-form θC with values in a (generically nontrivial) line
bundle L .

A degree-n contact structure on M determines a nondegenerate Jacobi bracket
{−,−} of degree −n on 0(L), i.e., a Lie bracket of degree −n which is a graded
first order differential operator in each entry and such that the associated morphism
J 1L⊗ J 1L→L is nondegenerate (see also Appendix A). For the details about how
to define the Jacobi bracket {−,−} from C in the nongraded case see, for instance,
[Crainic and Salazar 2015]. The generalization to the graded case can be carried out
straightforwardly and the obvious details are left to the reader. A degree-n contact
NQ-manifold is a degree-n contact manifold (M,C) equipped with a homological
vector field Q such that [Q, 0(C)] ⊂ 0(C), in other words it is an NQ-manifold
equipped with a compatible degree-n contact structure. If (M,C, Q) is a contact
NQ-manifold, the homological vector field Q induces a homological derivation Q

of L as discussed above. Thus, equivalently, a degree-n contact NQ-manifold is a
degree-n contact manifold (M,C) equipped with a homological derivation Q of L
such that LQθC = 0.

Theorem 23 [Mehta 2013; Grabowski 2013]. Every degree-one contact N-manifold
(M,C) is of the kind (J 1L[1], ker θ), up to contactomorphisms, where L → M
is a (nongraded) line bundle, and θ is the Cartan form on J 1L[1]. Moreover,
there is a one-to-one correspondence between degree-one contact NQ-manifolds
and (nongraded) manifolds equipped with an abstract Jacobi structure (see the
appendixes).

Notice that Mehta does only discuss the case when C is coorientable, i.e., TM/C
is globally trivial. Moreover, he selects a contact form, which amounts to selecting
a global trivialization TM/C 'M×R[1] (see [Mehta 2013] for details). On the
other hand, in independent work Grabowski discusses the general case (he actually
treats the degree-two case as well). His proof relies on the “symplectization trick”
which consists in understanding a contact manifold as a homogeneous symplectic
manifold (see [Grabowski 2013]) and then using already known results in the
symplectic case. We propose an alternative proof avoiding the “symplectization
trick” and focusing on the Spencer data of the structure 1-form of C . We refer to
[Crainic and Salazar 2015] for details on abstract Jacobi structures.

Proof. Let (M= A[1],C) be a degree-one contact N-manifold, and let L= TM/C
be the associated degree-one line-bundle. Then L=M×M L[1] for a nongraded line
bundle L→ M , and θC is a degree-one L-valued 1-form on M. Denote by (D, `)
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the Spencer data of θC . The Jacobi bracket {−,−} determines a isomorphism of
graded vector bundles of degree −1 between J 1L and DL. Since negatively graded
derivations are completely determined by their symbol, this gives an isomorphism
0(J 1L)' X−1(M)' 0(A), hence a diffeomorphism M' J 1L[1]. The diagram

0(L) 0(A) D
//

`
oo

˜

�1(M, L)

0(L) 0(J 1L)
−S
//

p
oo �1(M, L)

commutes, as can be easily seen. This shows that the diffeomorphism M' J 1L[1]
identifies θC with the Cartan form θ (see Example 13), thus proving the first part
of the statement. In the following we identify M and J 1L[1]. For the second
part of the statement, let Q be a homological derivation of L and let Q be its
symbol. Moreover, let (J 1L , ρ, [[−,−]]) and (L ,∇L) be the Lie algebroid and
the Lie algebroid representation associated to Q. We use Proposition 17 to see
when is (M,C,Q) a contact NQ-manifold. Since θ is a 1-form, Equation (18)
is automatically satisfied, and θ is compatible with Q if and only if A(X, Y ) =
B(X, Y ) = 0, with ω = θ and X, Y ∈ X−1(M) ' 0(J 1L). In fact, one can even
restrict to X, Y in the form j1λ, j1µ, with λ,µ ∈ 0(L). In this case, one gets

A(X, Y )= D([[Q, j1λ], j1µ])=−S[[ j1λ, j1µ]],

and

B(X, Y )= `([[Q, j1λ], j1µ])+ L [Q, j1µ]λ= p[[ j1λ, j1µ]] +∇L
j1µ
λ,

where we used that `( j1λ)= i j1λθ = λ, and D( j1λ)= L j1λθ = 0 (see Example 13).
Concluding, (M,C,Q) is a contact NQ-manifold if and only if p[[ j1λ, j1µ]] =

−∇
L
j1µ
λ=∇L

j1λ
µ and S[[ j1λ, j1µ]] = 0, i.e., if and only if (J 1L , [[−,−]], ρ) is the

Lie algebroid associated to a Jacobi structure on L → M , and ∇L is its natural
representation (see Appendix B). �

3.3. Involutive distributions on degree-one NQ-manifolds. Compatible involu-
tive distributions (cogenerated in degree one) on a degree-one NQ-manifold are
equivalent to infinitesimally multiplicative (IM) foliations of a special kind. Let
(A, [[−,−]], ρ) be a Lie algebroid over a manifold M , and let F ⊂ TM be an
involutive distribution. An IM foliation of A over F [Jotz and Ortiz 2011] is a triple
consisting of

• an involutive distribution F ,

• a Lie subalgebroid B ⊂ A,

• a flat F-connection ∇ in the quotient bundle A/B,
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such that

(1) sections X of A such that X mod B is ∇-flat form a Lie subalgebra in 0(A)
with sections of B as a Lie ideal,

(2) ρ takes values in the stabilizer of F ,

(3) ρ|B takes values in F .

As the terminology suggests, IM foliations are infinitesimal counterparts of involu-
tive multiplicative distributions on Lie groupoids [Jotz and Ortiz 2011]. Zambon
and Zhu [2012] proved that IM foliations can be also understood as degree-one NQ-
manifolds equipped with an involutive distribution preserved by the homological
vector field. In the following, we restrict to distributions cogenerated in degree
one. In this particularly simple situation, we can provide an alternative proof of
Zambon–Zhu result exploiting the description of vector valued forms in terms of
their Spencer data.

Lemma 24. Let (A,[[−,−]],ρ) be a Lie algebroid over a manifold M. If (TM, B,∇)
is an IM foliation of A over TM , then there is a flat A-connection ∇ A/B in A/B
such that

(20) ∇
A/B
X (Y mod B)=∇ρ(Y )(X mod B)− [[Y, X ]] mod B,

and, moreover,

(21) d∇([[X, Y ]] mod B)= L
∇

A/B
X

d∇(Y mod B)− L
∇

A/B
Y

d∇(X mod B),

for all X, Y ∈ 0(A). Conversely, if B ⊂ A is a vector subbundle, ∇ is a flat
connection in A/B, and ∇ A/B is a flat A-connection in A/B satisfying (20) and
(21), then (TM, B,∇) is an IM foliation of A over TM.

Proof. For the first part of the statement, let (TM, B,∇) be an IM foliation as in
the statement. Denote by 0∇ the sheaf on M consisting of sections X of A such
that X mod B is ∇-flat. Since 0(A/B) is locally generated by flat sections, 0(A)
is locally generated by 0∇ . Now, the left-hand side of (20) is clearly C∞(M)-linear
in X . Moreover, it vanishes whenever Y ∈ 0(B). To see this, it is enough to
compute on local generators X ∈0∇ . In this case, the left-hand side of (20) reduces
to −[[Y, X ]] mod B which vanishes by property (1) of IM foliations whenever
Y ∈ 0(B). One concludes that (20) defines a differential operator ∇ A/B

X in 0(A/B)
for all X ∈ 0(A). It is easy to see that, besides being C∞(M)-linear in X , ∇ A/B

X is
actually a derivation with symbol ρ(X). Thus ∇ A/B is a well-defined A-connection
in A/B. To see that it is flat, check that the curvature

R(X, Y )(Z mod B) :=
(
[∇

A/B
X ,∇

A/B
Y ] −∇

A/B
[[X,Y ]]

)
(Z mod B)
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vanishes on all X, Y, Z . Since R is linear in the first two arguments, it is enough to
check that it vanishes on X, Y ∈ 0∇ . In this case [[X, Y ]] ∈ 0∇ as well and

R(X, Y )(Z mod B)= [[[[Z , Y ]], X ]] − [[[[Z , X ]], Y ]] + [[Z , [[X, Y ]]]] = 0

by the Jacobi identity.
Finally, notice that Equation (21) is equivalent to

(22) ∇Z ([[X, Y ]] mod B)

=
(
∇

A/B
X ∇Z −∇[ρ(X),Z ]

)
(Y mod B)−

(
∇

A/B
Y ∇Z −∇[ρ(Y ),Z ]

)
(X mod B),

X, Y ∈ 0(A), and Z ∈ X(M). Actually, (22) can be easily obtained from (21), by
inserting Z in both sides, and using

[iZ , L
∇

A/B
X
] = i[Z ,ρ(X)].

Thus it is enough to check that the expression

S(X, Y ; Z) := ∇Z ([[X, Y ]] mod B)

−
(
∇

A/B
X ∇Z −∇[ρ(X),Z ]

)
(Y mod B)+

(
∇

A/B
Y ∇Z −∇[ρ(Y ),Z ]

)
(X mod B)

vanishes for all X, Y, Z . A direct computation shows that S is C∞(M)-linear in its
first two arguments. Therefore, it is enough to compute S(X, Y ; Z) for X, Y ∈ 0∇ .
In this case [[X, Y ]] ∈ 0∇ as well and S(X, Y ; Z) vanishes.

The second part of the statement immediately follows from (20) and (21). �

Theorem 25 [Zambon and Zhu 2012]. There is a one-to-one correspondence be-
tween degree-one NQ-manifolds equipped with a compatible involutive distribution,
cogenerated in degree one, and Lie algebroids A→M equipped with an IM foliation
over TM.

Proof. Let M = A[1] be a degree-one N-manifold, and let D be an involutive
distribution on it, cogenerated in degree one. Denote by π :M→ M the projection
of M onto its zero dimensional shadow. The quotient bundle TM/D identifies
with M×M E[1] for a nongraded vector bundle E→ M , and θD is a degree-one E-
valued 1-form on M. Moreover, D projects surjectively onto TM , i.e., π∗D = TM .
In particular, for any vector field Z on M there is a (degree-zero) vector field
Z̃ ∈ 0(D) that is π -related to Z .

Denote by (D, `) the Spencer data of θD. In particular, ` : 0(A)→ 0(E) is
surjective. Let B = ker ` so that E identifies with A/B and ` identifies with the
projection 0(A)→0(A/B). In the following we will understand this isomorphism.
There is a unique first order differential operator δ : 0(A/B)→�1(M, A/B) such
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that diagram

0(A) D
//

��

�1(M, A/B)

0(A/B)
δ

77

commutes. To see this it is enough to show that 0(B) ⊂ ker D. Since 0(B) =
0−1(D), and sections of D are infinitesimal symmetries by involutivity, D(X)=
LXθD = 0 for all X ∈ 0(B) (see Remark 21). It follows from (4) that δ( f α) =
f δα − d f ⊗ α for all f ∈ C∞(M), and α ∈ 0(A/B). Therefore, δ is minus the

(first) de Rham differential of a unique connection ∇ in A/B. We claim that ∇ is a
flat connection. Indeed, first of all, notice that for all Z ∈ X(M) and X ∈ 0(A),

∇Z (X mod B)= iZ d∇(X mod B)=−iZ D(X)=−i Z̃ LXθD,

where Z̃ is any degree-zero vector field on M that is π -related to Z . We can choose
Z̃ ∈ 0(D) so that

∇Z (X mod B)=−i Z̃ LXθD =−i
[X,Z̃ ]θD = [Z̃ , X ] mod B.

Now, let Y, Z be vector fields on M , and let Ỹ , Z̃ be vector fields in D that are
π -related to them. Then, by involutivity, [Ỹ , Z̃ ] is in D and it is π -related to [Y, Z ].
Thus

∇[Y,Z ](X mod B)= [[Ỹ , Z̃ ], X ] mod B

=
(
[Ỹ , [Z̃ , X ]] − [Z̃ , [Ỹ , X ]]

)
mod B

= [∇Y ,∇Z ](X mod B).

Conversely, let B ⊂ A be a vector subbundle and let ∇ be a flat connection in A/B.
Denote by ` : A→ A/B the projection. Then (−d∇ ◦ `, `) are Spencer data for an
A/B-valued 1-form θ on M. Put D = ker θ . To see that D is involutive, notice
that 0−1(D)= ker `= 0(B). Moreover, D projects surjectively on TM , therefore
0(D) is generated by 1) sections of B and 2) degree-zero vector fields in D that
are projectable onto M . Commuting the latter with the former, one gets sections of
B which are again in D. It remains to show that the commutator of two projectable
vector fields Z̃ , Ỹ in D is again in D, i.e., i

[Ỹ ,Z̃ ]θ = 0. Now i
[Ỹ ,Z̃ ]θ = 0 if and only if

LX i
[Ỹ ,Z̃ ]θ = 0 for all X ∈ X−(M)= 0(A). The same computation as above shows

that
LX i
[Ỹ ,Z̃ ]θ =

(
[∇Y ,∇Z ] −∇[Y,Z ]

)
(X mod B)= 0,

where Y = π∗Ỹ , and Z = π∗ Z̃ . We conclude that involutive distributions D on
M cogenerated in degree one are equivalent to the following (nongraded) data: a
vector subbundle B ⊂ A and a flat connection in A/B.
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Finally, let D be an involutive distribution on M cogenerated in degree one and
let (B,∇) be the corresponding nongraded data. Moreover, let Q be a homological
derivation of TM/D=M×M A/B, let Q be its symbol, and let (A, [[−,−]], ρ) and
(A/B,∇ A/B) be the Lie algebroid and the Lie algebroid representation correspond-
ing to Q. The distribution D is compatible with Q, and Q is induced by [Q,−], if
and only if θD is compatible with Q. To see when this is the case, we use again
Proposition 17. Identity (18) is automatically satisfied by ω = θD. Additionally, for
ω = θD and X, Y ∈ X−(M)= 0(A), one gets

A(X, Y )= D([[Q, X ], Y ])− L [Q,X ]D(Y )+ L [Q,Y ]D(X)

= − d∇([[X, Y ]] mod B)+ L
∇

A/B
X

d∇(Y mod B)− L
∇

A/B
Y

d∇(X mod B),

and

B(X, Y )= `([[Q, X ], Y ])+ i[Q,X ]D(Y )+ L [Q,Y ]`(X)

= [[X, Y ]] mod B−∇ρ(X)(Y mod B)+∇ A/B
Y (X mod B),

where we used that D =−d∇ ◦ `. Proposition 17 and Lemma 24 then show that D
is compatible with Q, and Q is induced by [Q,−], if and only if (B,∇, TM) is an
IM foliation of A over TM , and ∇ A/B is the A-connection in the statement of the
lemma. �

4. Vector Valued 2-forms on NQ-manifolds

4.1. Degree one symplectic NQ-manifolds. Recall that a degree-n symplectic N-
manifold is an N-manifold M equipped with a degree-n symplectic structure, i.e.,
a degree-n nondegenerate, closed 2-form ω.

It immediately follows from the definition that, if (M, ω) is a degree-n symplectic
N-manifold, then the degree of M is at most n. If n > 0, then ω = dϑ , with
ϑ = n−1i1ω.

Example 26. The degree-n 2-form ω on T ∗[n]M (see Example 14) is a degree-n
symplectic structure.

A degree-n symplectic NQ-manifold is a degree-n symplectic manifold (M, ω)

equipped with a homological vector field Q such that LQω = 0.

Theorem 27 [Roytenberg 2002]. Every degree-one symplectic N-manifold (M, ω)

is of the kind (T ∗[1]M, dϑ), up to symplectomorphisms, where ϑ is the tautological
degree-one 1-form on T ∗[1]M (see Example 14). Moreover, there is a one-to-one
correspondence between degree-one symplectic NQ-manifolds and (nongraded)
Poisson manifolds.

Roytenberg’s proof exploits explicitly the Poisson bracket. We propose an
alternative proof focusing on Spencer data. The advantage is that we can apply the
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same strategy to degenerate (Theorem 30 and Corollary 31) or higher-degree forms
(Theorems 36 and 39) in a straightforward way.

Proof. Let (M, ω) be a degree-one symplectic N-manifold, and let (D, `) be the
Spencer data of ω. In particular, M= A[1] for some vector bundle A→ M . By
nondegeneracy ` : X−1(M)→ �1(M) is an isomorphism 0(A) ' �1(M), i.e.,
M= A[1] ' T ∗[1]M . Moreover, since ω is closed, the diagram

(23) 0(A) D
//

`

��

�2(M)

�1(M)
−d

::

commutes. This shows that diffeomorphism M ' T ∗[1]M identifies ω with the
canonical symplectic structure on T ∗[1]M (see Example 14), thus proving the
first part of the statement. In the following we identify M and T ∗[1]M . For the
second part of the statement, let Q be a homological vector field on M and let
(T ∗M, ρ, [[−,−]]) be the corresponding Lie algebroid. Similarly to the previous
section, (M, ω, Q) is a symplectic NQ-manifold if and only if it satisfies (17), and
(18), for all X, Y ∈X−1(M)'�1(M). Indeed, since ω is closed, condition (16) is
actually a consequence of (17), and (18). It is easy to see that one can even restrict
to X, Y in the form d f, dg, with f, g ∈ C∞(M). In this case, one gets

B(X, Y )= `([[Q, d f ], dg])+ L [Q,d f ]`(dg)= [[d f, dg]] + Lρ(d f )dg

= [[d f, dg]] + dρ(d f )(g),
and

C(X, Y )= i[Q,d f ]`(dg)+ i[Q,dg]`(d f )= ρ(d f )(g)+ ρ(dg)( f ),

where we used that `(d f )= id f ω = d f , and D(d f )= Ld f ω = 0 (see Example 14).
Concluding, (M, ω, Q) is a symplectic NQ-manifold if and only if

ρ(d f )(g)+ ρ(dg)( f )= 0 and [[dg, d f ]] = −dρ(d f )(g)= dρ(dg)( f ),

i.e., if and only if (T ∗M, ρ, [[−,−]]) is the Lie algebroid associated to a Poisson
structure on M (see Appendix B). �

4.2. Degree one presymplectic NQ-manifolds. In this subsection we relax the
hypothesis about nondegeneracy of the 2-form in the previous subsection.

Definition 28. A degree-n presymplectic N-manifold is a degree-n N-manifold
M equipped with a degree-n presymplectic structure, i.e., a degree-n (possibly
degenerate) closed 2-form ω. A degree-n presymplectic NQ-manifold is a degree-n
presymplectic manifold (M, ω) equipped with a homological vector field Q such
that LQω = 0.
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Remark 29. Unlike the symplectic case, the existence of a presymplectic form
on an N-manifold M doesn’t bound the degree of M. This is the reason why we
added a condition on the degree of M in the definition of a degree-n presymplectic
N-manifold above.

In what follows we show that degree-one presymplectic NQ-manifolds (with an
additional nondegeneracy condition) are basically equivalent to Dirac manifolds.
Recall that a Dirac manifold is a manifold M equipped with a Dirac structure, i.e.,
a subbundle D⊂ TM ⊕ T ∗M such that 1) D is maximally isotropic with respect to
the canonical, split signature, symmetric form on TM ⊕ T ∗M

(24) 〈〈(X, σ ), (X ′, σ ′)〉〉 = iXσ ′+ iX ′σ,

and 2) sections of D are preserved by the Dorfman (equivalently, Courant) bracket

(25) [(X, σ ), (X ′, σ ′)]D := ([X, X ′], LXσ
′
− iX ′dσ),

X, X ′ ∈ X(M), σ, σ ′ ∈ �1(M). Any Dirac structure D is a Lie algebroid, with
anchor given by projection TM ⊕ T ∗M→ TM and bracket given by the Dorfman
bracket (25). Dirac manifolds encompass presymplectic and Poisson manifolds
(see [Courant 1990; Bursztyn 2013] for more details). They are sometimes re-
garded as Lagrangian submanifolds in certain degree-two symplectic NQ-manifolds.
Corollary 31 below shows that they can be also regarded as suitable degree-one
presymplectic NQ-manifolds.

Let M be a manifold, denote by prT :TM⊕T ∗M→TM , and prT ∗ :TM⊕T ∗M→
T ∗M the canonical projections.

Theorem 30. There is a one-to-one correspondence between degree-one presym-
plectic NQ-manifolds and (nongraded) Lie algebroids A→ M equipped with a
vector bundle morphism 8 : A→ TM ⊕ T ∗M such that

(1) the anchor of A equals the composition prT ◦8,

(2) the image of 8 is an isotropic subbundle with respect to (24), and

(3) 8 intertwines the Lie bracket [[−,−]] on 0(A) and the Dorfman bracket (25)
on 0(TM ⊕ T ∗M), i.e., 8[[X, Y ]] = [8(X),8(Y )]D for all X, Y ∈ 0(A).

Proof. Let (M, ω) be a degree-one presymplectic N-manifold, and let (D, `) be
the corresponding Spencer data. Moreover, let Q be a homological vector field on
M, and let (A, ρ, [[−,−]]) be the corresponding Lie algebroid. Since ω is closed,
diagram (23) commutes and ω is completely determined by `. Now, combine `
and ρ : A→ TM in a vector bundle morphism 8 := (ρ, `) : A→ TM ⊕ T ∗M . In
particular, ρ = prT ◦8, i.e., 8 satisfies property (1) in the statement. Similarly as in
the proof of Theorem 27, (M, ω, Q) is a presymplectic NQ-manifold if and only
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if (17) and (18) are satisfied for all X, Y ∈ X−1(M)'�1(M). One gets

B(X, Y )= `([[Q, X ], Y ])+ i[Q,X ]D(Y )+ L [Q,Y ]`(X)

= `([[X, Y ]])− iρ(X)d`(Y )+ Lρ(X)`(X)

= prT ∗(8[[X, Y ]] − [8(X),8(Y )]D),
and

C(X, Y )= i[Q,X ]`(Y )+ i[Q,Y ]`(X)= iρ(X)`(Y )− iρ(Y )`(X)= 〈〈8(X),8(Y )〉〉.

Since prT ([8(X),8(Y )]D) = [ρ(X), ρ(Y )] = ρ[X, Y ] = prT 8[[X, Y ]], one con-
cludes that (M, ω, Q) is a presymplectic NQ-manifold if and only if 8, besides
satisfying property (1) in the statement, does also satisfy properties (2) and (3).

Conversely, Let 8 : A→ TM ⊕ T ∗M be a vector bundle morphism. Put ` :=
prT ∗◦8. It is easy to see that (`,−d ◦ `) is a pair of Spencer data corresponding to
a degree-one presymplectic form ω on M. If, additionally, 8 satisfies properties
(1), (2), and (3) in the statement, then the same computations as above show that
(M, ω, Q) is a presymplectic NQ-manifold. �

Corollary 31. There is a one-to-one correspondence between degree-one presym-
plectic NQ-manifolds (M, ω, Q) such that

(1) rank A = dim M , and

(2) ker `∩ ker ρ = 0,

where (A→ M, ρ, [[−,−]]) is the Lie algebroid corresponding to (M, Q), and
(`, D) are Spencer data corresponding to ω, and (nongraded) Lie algebroids
A→ M equipped with a Lie algebroid isomorphism 8 : A ' D with values in a
Dirac structure D⊂ TM ⊕ T ∗M over M.

Proof. Let (M, ω, Q) be a degree-one presymplectic NQ-manifold and let (A,8)
be the corresponding nongraded data as in Theorem 30. The vector bundle morphism
8 is injective if and only if condition (2) in the statement is satisfied. In this case,
8 is an isomorphism onto its image D. Additionally, D is maximally isotropic in
TM ⊕ T ∗M , hence a Dirac structure, if and only if rank D = rank A is precisely
dim M , i.e., condition (1) in the statement is satisfied. �

4.3. Degree one locally conformal symplectic NQ-manifolds. The original defini-
tion of a locally conformal symplectic (lcs) structure is (equivalent to) the following
[Vaisman 1985]: an lcs structure on a manifold M is a pair (φ, ω), where φ is
a closed 1-form and ω is a nondegenerate 2-form on M such that dω = φ ∧ ω.
Ordinary symplectic manifolds and lcs manifolds share some properties, but the
latter are manifestly more general. Moreover, they are examples of Jacobi manifolds.
In this paper we adopt an approach to lcs manifolds which is slightly more intrinsic



472 LUCA VITAGLIANO

than the traditional one (see Appendix A) in the same spirit as the intrinsic approach
to contact and Jacobi geometry of [Crainic and Salazar 2015].

Definition 32. A degree-n abstract lcs N-manifold is an N-manifold M equipped
with a degree-n abstract lcs structure, i.e., a triple (L,∇, ω) where L→M is a
line N-bundle, ∇ is a flat connection in L, and ω is a degree-n, nondegenerate,
d∇-closed, L-valued 2-form ω.

First of all, notice that L, being a line bundle, is actually generated in one single
degree −k. Up to a shift in degree in the above definition we may (and we actually
will) assume k = 0. In particular, L =M×M L , for some (nongraded) vector
bundle L on the degree-zero shadow M of M, and ∇ is actually induced from a flat
connection on L . Exactly as in the symplectic case [Roytenberg 2002] one shows
that, if M possesses a degree-n abstract lcs structure, then, by nondegeneracy, the
degree of M is at most n. If n > 0, then ω = d∇ϑ , with ϑ = n−1i1Lω.

Example 33. Consider the degree-n 2-form ω of Example 15. If E = L is a line
bundle then the triple (T [1]M×M L ,∇, ω) is a degree-n abstract lcs structure.

A degree-n abstract lcs symplectic NQ-manifold is a degree-n abstract lcs
manifold (M,L,∇, ω) equipped with a homological derivation Q of L such that
LQω = 0. The proposition below shows that, actually, Q is completely determined
by its symbol.

Proposition 34. Let (M,L,∇, ω) be an abstract lcs N-manifold with homological
derivation Q, and let Q be the symbol of Q. Then Q is the covariant derivative
along Q.

Proof. The derivations Q and ∇Q share the same symbol Q and, therefore, their
difference Q−∇Q is a degree-one endomorphism of L which can only consist in
multiplying sections by a degree-one function f on M. Thus,

0= LQω = L∇Qω+ f ω =−d∇ iQω+ f ω

So that f ω = d∇ iQω. It follows that

0= d∇( f ω)= d f ·ω.

Hence, by nondegeneracy, d f = 0. Since f is a function of positive degree, one
concludes that f = 0. �

Theorem 35. Every degree-one abstract lcs N-manifold (M,L,∇, ω) is of the
form (T ∗[1]M⊗L , (T ∗[1]M⊗L)×M L ,∇, d∇ϑ), up to isomorphisms (and a shift
in the degree of L), where ϑ is the tautological degree-one L-valued 1-form on
T ∗[1]M⊗ L and ∇ is a flat connection in the line bundle L→ M (see Example 15).
Moreover, there is a one-to-one correspondence between degree-one abstract lcs
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NQ-manifolds and (nongraded) abstract locally conformal Poisson manifolds (see
Appendix A for a definition).

Proof. The proof is a suitable adaptation of both the proofs of Theorem 23 and
Theorem 27. Let (M,L,∇, ω) be a degree-one abstract lcs N-manifold, and let
(D, `) be the Spencer data of ω. In particular, M= A[1] for some vector bundle
A→M , and L= A[1]×M L for some line bundle L→M (up to a shift). Moreover
∇ is induced in L by a flat connection in L which, abusing the notation, we denote
by ∇ again.

By nondegeneracy ` :X−1(M)→�1(M,L) is an isomorphism0(A)'�1(M,L),
i.e., M= A[1] ' T ∗[1]M ⊗ L . Moreover, since ω is d∇-closed, the diagram

0(A) D
//

`

��

�2(M, L)

�1(M, L)
−d∇

88

commutes. This shows that the diffeomorphism M' T ∗[1]M⊗L identifies ω with
the canonical L-valued 2-form on T ∗[1]M ⊗ L (see Example 15), thus proving the
first part of the statement. In the following we identify M and T ∗[1]M ⊗ L . For
the second part of the statement, let Q be a homological derivation of L=M×M L .
The derivation Q is equivalent to a Lie algebroid (T ∗M ⊗ L , ρ, [[−,−]]) equipped
with a representation (L ,∇L) (beware not to confuse the Lie algebroid connection
∇

L and the standard connection ∇). As above (M,L,∇, ω) is an abstract lcs NQ-
manifold with homological derivation Q if and only if (17), and (18) are satisfied
for all X, Y ∈ X−1(M) ' �1(M, L). Similarly to the proof of Theorem 27, one
can even restrict to X, Y in the form d∇λ, d∇µ, with λ,µ ∈ 0(L). In this case one
gets

B(X, Y )= `([[Q, d∇λ], d∇µ])+ L [Q,d∇λ]`(d∇µ)

= [[d∇λ, d∇µ]] +∇L
ρ(d∇λ)d∇µ

= [[d∇λ, d∇µ]] + d∇∇L
ρ(d∇λ)µ,

and

C(X, Y )= i[Q,d∇λ]`(d∇µ)+ i[Q,d∇µ]d∇λ=∇
L
ρ(d∇λ)µ+∇

L
ρ(d∇µ)λ,

where we used that `(d∇λ) = id∇λω = d∇λ, and D(d∇λ) = Ld∇λω = 0 (see
Example 14). Concluding, (M,L,∇, ω) is an abstract lcs NQ-manifold with
homological derivation Q if and only if∇L

ρ(d∇λ)µ+∇
L
ρ(d∇µ)λ=0 and [[d∇λ, d∇µ]]=

−d∇∇L
ρ(d∇λ)µ= d∇∇L

ρ(d∇µ)λ, i.e., if and only if (T ∗M ⊗ L , ρ, [[−,−]]) is the Lie
algebroid associated to a locally conformal Poisson structure (L ,∇, P) on M , and
(L ,∇L) is its canonical representation. �
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5. Higher-degree forms on degree-one NQ-manifolds

5.1. Vector valued forms on degree-one NQ-manifolds and Spencer operators.
In this section, we discuss general degree-one compatible vector valued forms on
degree-one NQ-manifolds. It turns out that they are equivalent to the recently intro-
duced Spencer operators on Lie algebroids [Crainic et al. 2015]. Let (A, [[−,−]], ρ)
be a Lie algebroid over a manifold M , (E,∇E) a representation of A, and let k be
a nonnegative integer. An E-valued k-Spencer operator [Crainic et al. 2015] is a
pair consisting of

• a (first order) differential operator D : 0(A)→�k(M, E), and

• a C∞(M)-linear map ` : 0(A)→�k−1(M, E),

such that
D( f X)= f D(X)− d f ∧ `(X)

and, moreover,

(26) L
∇

E
X

D(Y )− L
∇

E
Y

D(X)= D([[X, Y ]]),

L
∇

E
X
`(Y )+ iρ(Y )D(X)= `([[X, Y ]]),

iρ(X)`(Y )+ iρ(Y )`(X)= 0,

for all X, Y ∈ 0(A). There is a difference in signs between the above definition
and the original one in [Crainic et al. 2015]. The original definition is recovered by
replacing D→−D. We chose the sign convention which makes formulas simpler
in the present graded context.

Spencer operators are the infinitesimal counterparts of multiplicative vector
valued forms on Lie groupoids. When the vector bundle is a trivial line bundle,
they reduce to the IM forms of Bursztyn and Cabrera [2012] (see also [Bursztyn
et al. 2009] for the 2-form case). Hence the result of this section is the expected
generalization of the following (well) known facts:

• Jacobi manifolds can be understood either as infinitesimal counterparts of
contact Lie groupoids [Crainic and Salazar 2015] or as degree-one contact
NQ-manifolds [Mehta 2013; Grabowski 2013].

• Poisson manifolds can be understood either as infinitesimal counterparts of
symplectic Lie groupoids [Weinstein 1987] or as degree-one symplectic NQ-
manifolds [Roytenberg 2002].

Theorem 36. There is a one-to-one correspondence between

• degree-one N-manifolds equipped with a degree-zero NQ-vector bundle E and
a degree-one compatible E-valued differential k-form, and
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• Lie algebroids equipped with a representation (E,∇E) and an E-valued k-
Spencer operator.

Proof. Let M be a degree-one N-manifold, and let (E,Q) be a degree-zero NQ-
vector bundle over it. In particular E =M×M E for a nongraded vector bundle
E → M . Let (T ∗M, ρ, [[−,−]]) and (E,∇E) be the Lie algebroid and the Lie
algebroid representation corresponding to Q. Finally, let ω be a degree-one E-
valued k-form on M. Then, ω is compatible with Q if and only if (16), (17), and
(18) are satisfied, for all X, Y ∈ X−1(M)' 0(A). Denote by (D, `) the Spencer
data corresponding to ω. Then

A(X, Y )= D([[X, Y ]])− L
∇

E
X

D(Y )+ L
∇

E
Y

D(X),

B(X, Y )= `([[X, Y ]])+ iρ(X)D(Y )+ L
∇

E
Y
`(X),

C(X, Y )= iρ(X)`(Y )+ iρ(Y )`(X).

Concluding, ω is compatible with Q if and only if (D, `) is an E-valued k-
Spencer operator on the Lie algebroid A. �

5.2. Degree one multisymplectic NQ-manifolds. We conclude this section spe-
cializing to degree-one multisymplectic NQ-manifolds. Let k be a positive integer.
Recall that a k-plectic manifold (see, for instance, [Rogers 2012], see also [Cantrijn
et al. 1999] for more details on multisymplectic geometry) is a manifold N equipped
with a k-plectic structure, i.e., a closed (k + 1)-form ω which is nondegenerate
in the sense that the vector bundle morphism TN → ∧k T ∗N , X 7→ iXω is an
embedding. As expected, degree-one multisymplectic NQ-manifolds are equivalent
to Lie algebroids equipped with an IM multisymplectic structure, also called a
higher Poisson structure in [Bursztyn et al. 2015]. The latter are infinitesimal
counterparts of multisymplectic groupoids. Specifically, an IM k-plectic structure
on a Lie algebroid (A, [[−,−]], ρ) (see [Bursztyn et al. 2015]) is a C∞(M)-linear
map ` : A→�k(M) such that

iρ(X)`(Y )+ iρ(Y )`(X)= 0,(27)

Lρ(X)`(Y )− iρ(Y )d`(X)= `([[X, Y ]]),(28)

for all X, Y ∈ 0(A), and, moreover,

ker ` := {a ∈ A : `(a)= 0} = 0, (im `)◦ := {ζ ∈ TM : iζ ◦ `= 0} = 0.

Definition 37. A degree-n k-plectic N-manifold is a degree-n N-manifold M
equipped with a degree-n k-plectic structure, i.e., a closed (k + 1)-form which
is nondegenerate in the sense that the degree-n vector bundle morphism TM→
Sk T ∗[−1]M, X 7→ iXω is an embedding. A k-plectic NQ-manifold of degree-n is
an NQ-manifold equipped with a compatible k-plectic structure.
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Example 38. Let M be an ordinary (nongraded) manifold. The degree-n N-
manifold M= (∧k T ∗)[n]M comes equipped with the obvious tautological, degree-n
k-form ϑ . Consider the degree-n (k+ 1)-form ω = dϑ . It is a degree-n k-plectic
structure. Negatively graded vector fields on M identify with k-forms on M and it
is easy to see, along similar lines as in Example 14, that the Spencer data (D, `) of
ω identify with (−)n times the exterior differential d :�k(M)→�k+1(M) and the
identity id :�k(M)→�k(M) respectively.

Theorem 39. Degree one k-plectic NQ-manifolds are in one-to-one correspon-
dence with Lie algebroids equipped with an IM k-plectic structure.

Proof. Let M be a degree-one N-manifold, ω a degree-one (k+1)-form on it and let
(D, `) be the corresponding Spencer data. In particular, M= A[1] for some vector
bundle A→ M . Moreover, ω is closed if and only if iX dω = 0 for all negatively
graded vector fields X on M. Indeed, from iX dω= 0 it also follows that LX dω= 0.
In other words, dω = 0 if and only if the diagram

0(A) D
//

`

��

�k+1(M)

�k(M)
−d

99

commutes. Conversely, a C∞(M)-linear map ` : 0(A)→�k(M) uniquely deter-
mines a closed degree-one (k+ 1)-form on M whose Spencer data are (−d ◦ `, `).
Concluding, degree-one N-manifolds equipped with a closed (k + 1)-form are
equivalent to vector bundles A→M equipped with a linear map ` :0(A)→�k(M).

Now, let Q be a homological vector field on M and let (A, ρ, [[−,−]]) be the
corresponding Lie algebroid. The (k+1)-form ω is compatible with Q if and only if
(−d ◦ `, `) is a (k+1)-Spencer operator, i.e., ` fulfills (27) and (28) (Equation (26)
then follows from D =−d ◦ `).

Finally, we need to characterize nondegeneracy of the closed form ω in terms
of `. Recall that M can be understood as a submanifold in M via the “zero section”
of M→ M , and the vector bundle morphism 0 : TM→ Sk T ∗[−1]M, X 7→ iXω,
restricts to a vector bundle morphism 0|M : TM|M→ Sk T ∗[−1]M|M . Now, there
are canonical identifications TM|M = TM ⊕ A[1], and

Sk T ∗[−1]M|M =
⊕

i+ j=k

∧
i T ∗M ⊗ S j A∗[−1].

It follows from |ω| = 1 that 0|M does actually take values in ∧k−1T ∗M⊗ A∗[−1]⊕
∧

k T ∗M . More precisely, it identifies with the pair of vector bundle morphisms

A[1] → ∧k T ∗M, X 7→ `(X).
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and
TM→∧k−1T ∗M ⊗ A∗[−1], Z 7→ iZ ◦ `.

Consequently, ker ` and (im `)◦ are trivial if and only if 0|M is an embedding. It
remains to show that ω is nondegenerate provided 0|M is an embedding. This is
easily seen, for instance, in local coordinates: let x i be coordinates in M and za be
(degree-one) fiber coordinates in A[1] → M . Locally,

ω = ωa|i1···ik dzadx i1 · · · dx ik +ω′a|i1···ik+1
zadx i1 · · · dx ik+1 .

In the basis { ∂/∂za
| ∂/∂x i

} of X(M) and { dx i1 · · · dx ik | dzadx i1 · · · dx ik−1 | · · · }

of �k(M), the vector bundle morphism 0 is represented by the matrix
ωa|i1···ik 0 · · ·

∗ kωa|wei1···ik · · ·


and 0|M is represented by the same matrix with the lower-left block set to zero.
This concludes the proof. �

Appendix A: Locally conformal symplectic manifolds revisited

We refer to [Vaisman 1985] for details about standard locally conformal symplec-
tic (lcs) structures. Here, we present a slightly more intrinsic approach to them
(A. M. Vinogradov, personal communication, 2014; see also [Vitagliano 2015a,
Section 3]). Let M be a smooth manifold.

Definition 40. An abstract lcs structure on M is a triple (L ,∇, ω), where L→ M
is a line bundle, ∇ is a flat connection in L , and ω is a nondegenerate L-valued
2-form on M such that d∇ω= 0, where d∇ :�(M, L)→�(M, L) is the de Rham
differential of ∇. A manifold equipped with an abstract lcs structure is an abstract
lcs manifold.

Example 41. Let (L ,∇, ω) be an abstract lcs structure on M . If L = M×R is the
trivial line bundle, then ∇ is the same as a closed 1-form on M , specifically, the
connection 1-form φ :=−d∇1∈�1(M). Moreover, ω is a standard (nondegenerate)
2-form on M and it is easy to see that (φ, ω) is a standard lcs structure, i.e.,
dω = φ ∧ω. In particular, if φ = 0, then ω is a symplectic structure.

The word “abstract” in Definition 40 refers to the fact that ω takes values in
an “abstract” line-bundle L , as opposed to the concrete, trivial line bundle M ×R.
Similarly, one can define “abstract” locally conformal Poisson manifolds (see
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below) and, more generally, “abstract” Jacobi manifolds. An abstract Jacobi
structure (called a Jacobi bundle in [Marle 1991]) on a manifold M is a line bundle
L equipped with a Lie bracket {−,−} on 0(L) which is a first order differential
operator in each entry (see, e.g., [Crainic and Salazar 2015] for details). Abstract
Jacobi manifolds where introduced by Kirillov [1976] under the name local Lie
algebras with one dimensional fibers. An abstract lcs structure (L ,∇, ω) on M
determines an abstract Jacobi structure (L , {−,−}) as follows. First of all, by
nondegeneracy, ω establishes an isomorphism TM→ T ∗M⊗L , X 7→ iXω. Denote
by ] : T ∗M ⊗ L → TM the inverse isomorphism and, for λ ∈ 0(L), put Xλ :=
](d∇λ) ∈ X(M). Finally, put

{λ,µ} := ω(Xλ, Xµ)=∇Xλµ,

λ,µ ∈ 0(L). Clearly, {−,−} is a first order differential operator in each entry.
Moreover, the Jacobi identity is equivalent to d∇ω = 0. Thus, (L , {−,−}) is an
abstract Jacobi structure on M . Notice that there exists a unique linear morphism
P : ∧2(T ∗M ⊗ L)→ L such that

{λ,µ} = P(d∇λ, d∇µ), for all λ,µ ∈ 0(L).

Example 42. Let L=M×R so that (L ,∇, ω) is the same as a standard lcs structure
(φ, ω). Then, for f, g ∈ C∞(M)= 0(L), X f is implicitly defined by

iX f ω = d f − f φ,

and

{ f, g} := ω(X f , Xg)= X f (g)− gφ(X f ).

In particular, if φ = 0, then P is the Poisson bivector determined by the symplectic
structure ω.

More generally, Let M be a smooth manifold, (L ,∇) a line bundle over M
equipped with a flat connection, and let P :∧2(T ∗M⊗L)→ L be a linear morphism.
One can then define a bracket {−,−}P in 0(L) by putting

{λ,µ}P = P(d∇λ, d∇µ),

λ, µ ∈ 0(L).

Definition 43. An abstract locally conformal Poisson structure on M is a triple
(L ,∇, P), where L → M is a line bundle, ∇ is a flat connection in L , and P
is a linear morphism P : ∧2(T ∗M ⊗ L)→ L such that {−,−}P is a Lie bracket.
A manifold equipped with an abstract locally conformal Poisson structure is an
abstract locally conformal Poisson manifold.
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Thus, abstract lcs manifolds are abstract locally conformal Poisson manifolds
(much as standard symplectic manifolds are standard Poisson manifolds), but the
latter are more general.

Example 44. Let (L ,∇, P) be an abstract locally conformal Poisson structure
on M . If L = M × R is the trivial line bundle, and φ := −d∇1 ∈ �1(M) is
the connection 1-form, then P is a standard bivector on M and a lengthy but
straightforward computation shows that (φ, P) is a locally conformal Poisson
structure in the sense of [Vaisman 2007], i.e., [P, P]ns = iφP ∧ P (where [−,−]ns

is the Nijenhuis–Schouten bracket of multivectors). In particular, if φ = 0, then P
is a Poisson structure.

Finally, notice also that abstract locally conformal Poisson manifolds are abstract
Jacobi manifolds (of a special kind).

Appendix B: Lie algebroids and their representations

Recall that a Lie algebroid over a manifold M is a vector bundle A→ M equipped
with 1) a C∞(M)-linear map ρ : 0(A)→ X(M) called the anchor, and 2) a Lie
bracket [[−,−]] on 0(A) such that

[[X, f Y ]] = ρ(X)( f )Y + f [[X, Y ]], X, Y ∈ 0(A), f ∈ C∞(M).

Example 45. The tangent bundle TM is a Lie algebroid with Lie bracket given by
the commutator of vector fields and anchor given by the identity.

Let A→M be a Lie algebroid. A representation of A is a vector bundle E→M
equipped with a flat A-connection ∇E , i.e., a C∞(M)-linear map

∇
E
: 0(A)→ 0(DE), X 7→ ∇E

X ,

such that the symbol of the derivation ∇E
X is ρ(X), and [∇E

X ,∇
E
Y ] = ∇

E
[[X,Y ]], for

all X, Y ∈ 0(A). Let (E,∇E) be a representation of A. The graded vector space
0(∧•A∗⊗ E) of alternating, C∞(M)-multilinear, 0(E)-valued forms on 0(A) is
naturally equipped with a homological operator dE given by the following Chevalley–
Eilenberg formula:

(dEϕ)(X1, . . . , Xk+1)

:=

∑
i

(−)i+1
∇

E
X i
(ϕ(. . . , X̂ i , . . .))+

∑
i< j

(−)i+ jϕ([[X i , X j ]], . . . , X̂ i , . . . , X̂ j , . . .),

where ϕ ∈0(∧k A∗⊗E) is an alternating form with k-entries, X1, . . . , Xk+1 ∈0(A),
and a hat (−̂) denotes omission.
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Example 46. Let ∇ be a standard flat connection in a vector bundle E . Then
(E,∇) is a representation of the Lie algebroid TM and the de Rham operator d∇
of ∇ is its associated homological operator.

Example 47. Let A→ M be a Lie algebroid. Clearly (M ×R, ρ) is a canonical
representation of A. In particular, 0(∧∗A) is equipped with a homological operator
(in fact a derivation) which we denote by dA.

Example 48. Let (L , {−,−}) be an abstract Jacobi structure on a manifold M .
There is a unique Lie algebroid (J 1L , ρ, [[−,−]]) such that [[ j1λ, j1µ]] = j1

{λ,µ},
and ρ( j1λ) is the symbol of the first order differential operator (in fact a derivation)
{λ,−}, where λ,µ ∈ 0(L). Moreover, there is a unique representation (L ,∇L) of
J 1L such that ∇L

j1λ
µ= {λ,µ}. In particular,

(29) [[ j1λ, j1µ]] = j1(∇L
j1λ
µ).

Conversely, let (J 1L , ρ, [[−,−]]) be a Lie algebroid equipped with a representa-
tion (L ,∇L) such that (29) holds. For λ,µ ∈ 0(L) put {λ,µ} := ∇L

j1λ
µ. Then

(L , {−,−}) is an abstract Jacobi structure on M . This shows that abstract Jacobi
structures (L , {−,−}) are equivalent to Lie algebroids (J 1L , ρ, [[−,−]]) equipped
with a representation (L ,∇L) such that (29) holds.

Example 49. Let {−,−} be a Poisson structure on a manifold M . There is a unique
Lie algebroid (T ∗M, ρ, [[−,−]]) such that [[d f, dg]] = d{ f, g}, and ρ(d f ) is the
Hamiltonian vector field of f , where f, g ∈ C∞(M). In particular,

(30) [[d f, dg]] = d(ρ(d f )(g)) and ρ(d f )(g)+ ρ(dg)( f )= 0.

Conversely, let (T ∗M, ρ, [[−,−]]) be a Lie algebroid such that (30) holds. For f, g∈
C∞(M) put { f, g} := ρ(d f )(g). Then {−,−} is a Poisson structure on M . This
shows that Poisson structures are equivalent to Lie algebroids (T ∗M, ρ, [[−,−]])
such that (30) holds.

Example 50. Let (L ,∇, ω) be an abstract locally conformal Poisson structure
on a manifold M (see the previous appendix). There is a unique Lie algebroid
(T ∗M⊗L , ρ, [[−,−]]) such that [[d∇λ, d∇µ]]=d∇{λ,µ}, and ρ(d∇λ) is the symbol
of the first order differential operator {λ,−}, where λ,µ ∈ 0(L). Moreover, there
is a unique representation (L ,∇L) of T ∗M ⊗ L such that ∇L

d∇λµ = {λ,µ}. In
particular,

(31) [[d∇λ, d∇µ]] = d∇(∇L
d∇λµ) and ∇

L
d∇λµ+∇

L
d∇µλ= 0.

Conversely, let (T ∗M ⊗ L , ρ, [[−,−]]) be a Lie algebroid equipped with a rep-
resentation (L ,∇L) such that (31) holds. For λ,µ ∈ 0(L) put {λ,µ} := ∇L

d∇λµ.
Then (L ,∇, {−,−}) is a locally conformal Poisson structure on M . Thus locally
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conformal Poisson structures are equivalent to Lie algebroids (T ∗M⊗L , ρ, [[−,−]])
such that (31) holds.
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manuscript and for her/his suggestions to improve the readability of the paper.
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