Vol. 284, No. 1, 2016

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On Yamabe-type problems on Riemannian manifolds with boundary

Marco Ghimenti, Anna Maria Micheletti and Angela Pistoia

Vol. 284 (2016), No. 1, 79–102
Abstract

Let (M,g) be an n-dimensional compact Riemannian manifold with boundary. We consider the Yamabe-type problem

Δgu + au = 0  on M, νu + n2 2 bu = (n 2)un(n2)±ε on M,

where a C1(M), b C1(M), ν is the outward pointing unit normal to M, Δgu :=  divggu, and ε is a small positive parameter. We build solutions which blow up at a point of the boundary as ε goes to zero. The blowing-up behavior is ruled by the function b Hg, where Hg is the boundary mean curvature.

Keywords
Yamabe problem, blowing-up solutions, compactness
Mathematical Subject Classification 2010
Primary: 35J20, 58J05
Milestones
Received: 29 May 2015
Revised: 17 January 2016
Accepted: 31 March 2016
Published: 10 July 2016
Authors
Marco Ghimenti
Dipartimento di Matematica
Università di Pisa
Via F. Buonarroti 1/c
56127 Pisa
Italy
Anna Maria Micheletti
Dipartimento di Matematica
Università di Pisa
Via F. Buonarroti 1/c
56127 Pisa
Italy
Angela Pistoia
Dipartimento Scienze di Base e Applicate per l’Ingegneria
Universtà di Roma “La Sapienza”
Via Antonio Scarpa 16
00161 Roma
Italy