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CONFORMAL DESIGNS AND
MINIMAL CONFORMAL WEIGHT SPACES
OF VERTEX OPERATOR SUPERALGEBRAS

TOMONORI HASHIKAWA

We give equivalent conditions for conformal designs of the minimal conformal
weight spaces of SVOAs, and show that if the minimal conformal weight space
of an SVOA forms a conformal 2m-design, then it also forms a conformal
.2m C 1/-design. Also, we derive trace formulae for the zero-modes of ele-
ments of the conformal weight 2 space on the minimal conformal weight space
when the minimal conformal weight space forms a conformal 4-design. As
an application of the trace formulae, we classify code SVOAs whose minimal
conformal weight spaces form conformal 4-designs. Moreover, we show that
the classified code SVOAs are of class S5.

1. Introduction

Vertex operator algebras (VOA) and vertex operator superalgebras (SVOA) have
deep connections to binary codes, integral lattices, and other combinatorial objects.
The notion of conformal designs was introduced in [Höhn 2008], and is an analogue
of the notions of combinatorial and spherical designs based on binary codes and
integral lattices, respectively. Also, an analogue of the theorems of Assmus and
Mattson [1969] and Venkov [2001] was presented in the same work. Due to this
result, we expect that analogues of other properties of combinatorial and spherical
designs hold in the theory of conformal designs. An integral lattice whose set of
minimum norm vectors is a spherical design has been studied in [loc. cit.]. As one
of the results, it was proved that an integral lattice whose set of minimum norm
vectors forms a spherical 4-design, which is called a strongly perfect lattice, is
isomorphic to the root lattices A1;A2;D4;E6;E7, or E8 if its minimum norm is 2.
Also, strongly perfect lattices with minimum norm 3 have been classified in the
same paper. Due to these circumstances, we speculate that a structural symmetry
of an algebraic object is dominated by a subset which has a design structure. From
this point of view, our purpose of this study is to clarify how the symmetry of the
minimal conformal weight space of an SVOA influences a structural symmetry of
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the SVOA. VOAs of class Sn with minimal conformal weight 2 have been discussed
in [Matsuo 2001]. The notion of VOAs of class Sn was introduced in the same
paper, and gives a sufficient condition that the minimal conformal spaces of VOAs
form conformal n-designs. The conformal designs have been studied in [Yamauchi
2014] under the assumption for introducing the notion of extended Griess algebras.
Considering these known results, we maintain the theory of the minimal conformal
weight spaces of SVOAs and conformal designs. The following are the main results
obtained in Section 3 of this paper.

Main Result 1 (Theorems 3.5 and 3.6). Let V be an SVOA and � the minimal
conformal weight of V. Assume that � <1. Then the following hold:

(1) The space V� forms a conformal t-design based on the even part of V if and
only if the t-th Casimir vector, introduced in [Matsuo 2001], belongs to the
sub-VOA V! generated by the Virasoro element !.

(2) If V� is a conformal 2m-design based on the even part of V, then it is also a
conformal .2mC 1/-design.

By using the computation of traces and invariant bilinear forms in [Yamauchi
2014], we have (1) of Main Result 1. The crucial point of the proof of (2) of
Main Result 1 is that the .2mC 1/-th Casimir vector can be determined from the
n-th Casimir vectors for n � 2m and the action of L.�1/. Note that (2) is an
analogue of a well-known result in the theory of integral lattices and spherical
designs. Moreover, trace formulae of the zero-modes of elements of the conformal
weight-2 space on the minimal conformal weight space of an SVOA are obtained
when the minimal conformal weight space forms a conformal 4-design.

As another related topic of conformal designs and SVOAs, there are classification
problems of SVOAs whose minimal conformal weight spaces form conformal
t -designs. This problem has been solved in [Höhn 2008] for the case that the
minimal conformal weight is 1 and t D 6. More precisely, SVOAs with minimal
conformal weight 1 are isomorphic to lattice VOAs associated to the root lattices of
type A1 and E8 if the conformal weight-1 space forms a conformal 6-design. Also,
it was proved in [Tuite 2009] that a VOA whose 4th Casimir vector belongs to V!
is isomorphic to one of the simple affine VOA associated to the Deligne exceptional
series of the simple Lie algebras A1;A2;G2;D4;F4;E6;E7, and E8 at level 1 if
the minimal conformal weight is 1. Using (1) of Main Result 1, this classification
result can be obtained under the condition that the conformal weight-1 space forms
a conformal 4-design. This result is actually an analogue of the result in [Venkov
2001], as already mentioned. Due to the classification in [Tuite 2009], one can
consider the classification problem in the case of SVOAs with minimal conformal
weight 3

2
and t D 4. The commutant superalgebra (see [Yamauchi 2005]) of an

Ising vector in the lattice type VOA V
Cp

2E8
is included in the list of candidates of
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SVOAs with minimal conformal weight 3
2

whose 4th Casimir vector belongs to V!
(see [Tuite and Van 2014]), and is isomorphic to the code SVOA VH4

associated to
the Hamming code H4 (see [Miyamoto 1996a] for the definition of code SVOAs).
The notion of SVOAs of class Sn is an analogue of the ordinary notion introduced
in [Matsuo 2001] and gives a sufficient condition that the minimal conformal weight
spaces of SVOAs form conformal n-designs in the same way as the cases of VOAs
of class Sn.

In this paper, we show that VH4
is of class S5. Moreover, we classify code

SVOAs whose minimal conformal weight spaces form conformal 4-designs as an
application of the results in Section 3 and show that the classified code SVOAs,
which contain VH4

, are of class S5. We obtain the following.

Main Result 2 (Theorems 4.8 and 5.9). Let C be a binary code. Assume that the
minimal conformal weight � of the code SVOA VC is not1. Then:

(1) If .VC /� forms a conformal 4-design based on the even part, then C is equiva-
lent to one of

f.01/; .11/g; yH3; E8; E.H4/; H4; and yH4;

where Hm;E.Hm/; yHm, and E8 are the Hamming code of length 2m � 1, the
even subcode of Hm, the extended Hamming code of Hm, and the set of all even
weight vectors in F8

2
, respectively.

(2) The code SVOAs associated to the codes in (1) are of class S5.

We see that for a code SVOA the minimal conformal weight space forms a
conformal 4-design if and only if the SVOA is of class S5.

In the following, we sketch the proof of Main Result 2. Let C be a binary code
of length n and � the minimal conformal weight of VC . Obviously, we can exclude
the case � > 2. Considering the trace formulae on the minimal conformal weight
space, nD 1; 8, and 15 if �D 1

2
; 1, and 3

2
, respectively. In case �D 1

2
, C must be

f.01/; .11/g because it has a weight-1 vector. In cases �D 1; 3
2

, and 2, we show
that .�n;C.2�// is a combinatorial 2-design if .VC /� is a conformal 4-design,
where �n WD f1; : : : ; ng and C.2�/ is the set of all weight 2� vectors in C . By this
result, C Š E8 if �D 1, and C Š H4 if �D 3

2
. Also, we have C Š yH3;E.H4/,

or yH4 by using fundamental techniques of algebraic coding theory and a list of
possible central charges of VOAs with �D 2 which is obtained in [Matsuo 2001].
Thus (1) of Main Result 2 holds. Now we turn to (2) of that result. Obviously,

Vf.01/;.11/g DL
�

1
2
; 0
�
˚L

�
1
2
; 1

2

�
is of class S1. Note that the code SVOAs VE8

;VyH3
, and VyH4

have already been
proved; see [Maruoka et al. 2016; Hashikawa and Shimakura 2016]). Also, if VH4

is of class S5, then so is VE.H4/ because VE.H4/ is the even part of VH4
. Hence
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it is sufficient to show that VH4
is of class S5. Using the same method as in [Lam

et al. 2007, Propositions 3.13], one can show that the automorphism group of a
code SVOA is generated by �-involutions and the lift of the automorphism group
of the binary code if the minimum weight of the code is greater than or equal to 3.
Considering the action of a �-involution associated to an Ising vector of �-type
which is not included in the standard Ising frame of VH4

, we prove that VH4
is of

class S5. Therefore, (2) holds.
This paper is organized as follows. In Section 2, we recall the notions of SVOAs

and Ising vectors of SVOAs. In Section 3, we recall the notions of conformal designs,
give necessary and sufficient conditions for conformal designs of minimal conformal
weight spaces, and show that conformal 2m-designs imply conformal .2mC 1/-
designs. Also, we give trace formulae on the minimal conformal weight space of
an SVOA by using the same argument as in [Matsuo 2001]. In Section 4, using
the trace formulae obtained in Section 3, we classify code SVOAs whose minimal
conformal weight spaces form conformal 4-designs. In Section 5, we show that the
code SVOAs associated to the codes in the classification of Section 4 are of class S5.

2. Preliminaries

In this section, we recall the notion of vertex operator superalgebras and Ising
vectors. Additionally, we show an analogue of [Höhn et al. 2012, Lemma 2.6],
which will be used in Section 3.

Vertex operator superalgebras. A vertex operator superalgebra (SVOA)

V D V 0
˚V 1

is a Z2-graded C-vector space equipped with a linear map

Y . � ; z/ W V ! End.V /ŒŒz; z�1��; v 7!
X
n2Z

v.n/z
�n�1

and two nonzero vectors 1 and ! in V 0, which are called the vacuum vector and
the Virasoro element, respectively, satisfying certain conditions; see [Frenkel et al.
1993; Kac 1998] for details. As one of the conditions, the Virasoro relation holds
on V :

ŒL.m/;L.n/�D .m� n/L.mC n/C
m3�m

12
ımCn;0 c

for m; n 2 Z, where Y .!; z/ D
P

n2Z L.n/z�n�2, ıij is the Kronecker symbol,
and c 2 C is the central charge of V. The subspaces V 0 and V 1 are called the even
part and the odd part of V, respectively. Throughout the paper, we assume that an
SVOA V has the following grading:

V 0
D

M
n2Z�0

Vn and V 1
D

M
n2 1

2
CZ�0

Vn;
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where Vn is the eigenspace of the L.0/-operator with eigenvalue n. We also assume
that V is of CFT-type, i.e., V0DC1. An SVOA V D V 0˚V 1 is said to be a vertex
operator algebra (VOA) if V 1D 0. If u2Vm, then we write wt.u/ WDm. Define the
zero-mode of a homogeneous element u by o.u/ WD u.wt.u/�1/, and extend linearly.

Let V! denote the sub-VOA of an SVOA V generated by the Virasoro element !.
Then the minimal conformal weight of V is defined by min

˚
n2 1

2
Z�0 jVn¤ .V!/n

	
if V ¤ V! and1 if V D V! . Since we assume that V is of CFT-type, the minimal
conformal weight of V is always greater than zero throughout this paper.

An element � of GL.V / is called an automorphism of an SVOA V if it satisfies

�.u.m/v/D �.u/.m/�.v/ for all u; v 2 V; m 2 Z; and �.!/D !:

Let Aut.V / denote the group of all automorphisms of V.

Ising vectors of SVOAs. Let V be an SVOA. An element e 2 V2 is called an
Ising vector of V if it satisfies e.1/e D 2e; e.3/e D

1
4

1, and the subalgebra Vir.e/
generated by e is isomorphic to the simple Virasoro VOA L

�
1
2
; 0
�

with central
charge 1

2
. It is known that L

�
1
2
; 0
�

is rational and has three irreducible modules

L
�

1
2
; 0
�
; L

�
1
2
; 1

2

�
; and L

�
1
2
; 1

16

�
I

see [Dong et al. 1994, Theorem 3.4] for details. Let e be an Ising vector of V. Note
that fLe.n/ WD e.nC1/ j n 2 Zg satisfies the Virasoro relation with central charge 1

2
.

Since Vir.e/ŠL
�

1
2
; 0
�
, we have a decomposition

V D Ve.0/˚Ve

�
1
2

�
˚Ve

�
1

16

�
;

where Ve.k/ for k 2
˚
0; 1

2
; 1

16

	
, is the sum of all irreducible Vir.e/-submodules

of V isomorphic to L
�

1
2
; k
�
. Let � be the minimal conformal weight of V. Set

(2-1) W e
�.k/ WD fu 2 V� j o.e/uD kug:

The following lemma is an analogue of [Höhn et al. 2012, Lemma 2.6].

Lemma 2.1. Let V be an SVOA and e an Ising vector. If � 2 f1g[
�

1
2
CZ�0

�
, then

V� DW e
�.0/˚W e

�

�
1
2

�
˚W e

�

�
1

16

�
:

Proof. Since o.e/ preserves V� and acts semisimply on V, the space can be
decomposed into the direct sum of the eigenspaces of o.e/. Let v 2 V� be an
eigenvector of o.e/ with eigenvalue �. It is sufficient to show that �2

˚
0; 1

2
; 1

16

	
. In

case � 2 1
2
CZ�0 we have Le.m/v 2 V��mD 0 for m� 1, and hence Vir.e/v is a

Vir.e/-module whose top weight is �. Since Vir.e/ŠL
�

1
2
; 0
�
, this case holds. For

�D1, we have Le.m/v2V1�mD0 for m�2. If we suppose that Le.1/vD0, then
this case also holds by using the same method as in the case of � 2 1

2
CZ�0. We

show Le.1/vD0. Suppose the claim is not true. Since o.e/Le.1/vD .��1/Le.1/v
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and o.e/1D e.1/1D 0, we have �D 1. However, this contradicts the nonexistence
of an o.e/-weight-1 vector. �

Here, we give the definitions of Ising vectors of � -type and Ising frames, which
will be used later. An Ising vector e of an SVOA V is said to be of �-type if
Ve

�
1

16

�
D 0. For an Ising vector e of � -type, the linear map

(2-2) �e WD

�
1 on Ve.0/;

�1 on Ve

�
1
2

�
;

is an automorphism of V ; see [Miyamoto 1996b, Theorem 4.8]. A subset fe1; : : : ; eng

of V2 such that ! D e1C � � �C en is called an Ising frame if ei is an Ising vector
of V for each 1� i � n and ŒY .ei; z/; Y .ej; z/�D 0 for i ¤ j.

3. Conformal designs

In this section, we first review the notion of conformal designs, and obtain necessary
and sufficient conditions in the case where the minimal conformal weight spaces
of SVOAs form conformal designs. Also, we show that if the minimal conformal
weight space of an SVOA forms a conformal 2m-design, then it also forms a
conformal .2mC 1/-design. Afterward, we give trace formulae of the composition
of the zero-modes of elements of V2 on the minimal conformal weight space when
the space forms a conformal 4-design.

Conditions of SVOAs. Set �r D e�
p
�1r for r 2 Q, and let V be an SVOA. A

bilinear form . � j � / on V is said to be invariant if it satisfies

.Y .a; z/u j v/D
�
u j Y .ezL.1/z�2L.0/�L.0/C2L.0/2a;�z/v

�
for a;u; v 2 V. It was proved in [Frenkel et al. 1993; Li 1994; Yamauchi 2014]
that any invariant bilinear form on an SVOA is symmetric and there is a one-to-one
correspondence between invariant bilinear forms and elements of the dual space
of V0=L.1/V1. In this paper, we assume that V has a nondegenerate invariant
bilinear form . � j � /. Due to the results above, the bilinear form is unique up to
scalar since V is of CFT-type. Moreover, we assume that V as a V!-module is a
direct sum of highest weight modules. Hence

V D
M

n2 1
2

Z�0

V Œn�;

where V Œn� is the sum of highest weight V!-submodules of V with highest weight
n 2 1

2
Z. Note that V Œ0�D V! holds. We have the following lemma.

Lemma 3.1. The spaces V Œ0� and V Œm� for m ¤ 0 are orthogonal with respect
to . � j � /.
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Proof. Let n2Z�0; u2 V Œ0�\Vn, and v 2 V Œm�\Vn. By the invariance of . � j � /,

(3-1) .u j v/D
X
`�0

�nC2n2

`!

�
1
ˇ̌
.L.1/`u/.2n�1�`/v

�
:

Since V Œm� is a V!-module, .L.1/`u/.2n�1�`/v belongs to V Œm�\ V0 for each
` � 0. Because V0 � V Œ0� and V Œ0�\V Œm�D 0, the right hand side of (3-1) is 0.
Therefore, we have this lemma because .Vk j Vk0/D 0 for k ¤ k 0. �

Define the projection map

� W V D
M

n2 1
2

Z�0

V Œn�! V Œ0�D V! ;

which is a V!-module homomorphism.

Minimal conformal weight spaces and conformal designs. The notion of confor-
mal designs was introduced by Höhn in [2008].

Definition 3.2 [Höhn 2008, Section 2]. Let U be a VOA and M a U-module. An
L.0/-homogeneous subspace X of M is called a conformal t-design based on U

if trj
X

o.a/D trj
X

o.�.a// holds for any a 2
L

0�n�t Un.

Let V D V 0˚ V 1 be an SVOA. Clearly, V 0 and V 1 are V 0-modules. From
now on, we assume that the minimal conformal weight � of V is not1.

Remark 3.3. Assume that V has an involution g. Set V ˙ WD fu2V j g.u/D˙ug.
Yamauchi [2014] considered that the top weight space of V � forms a conformal
design based on V 0\V C under some assumptions, and obtained various results.
However, these results do not contain the general cases � 2

˚
1
2
; 1
	
. We are going

to include these general cases in our discussion.

By Lemma 3.1, . � j � / is also nondegenerate on .V!/� and P�, where

P� WD fu 2 V� jL.k/uD 0 for all k 2 Z�0g:

Moreover, V� D .V!/�˚P� holds because

V D
M

n2 1
2

Z�0

V Œn�:

Let fvig
p�
iD1

be a basis of P�, and fvig
p�
iD1

the dual basis of fvig
p�
iD1

with respect to
. � j � /, where p� WD dim P�. We consider the vector

�m
� WD �

�C2�2

p�X
iD1

vi
.2��1�m/vi 2 Vm:
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Note that ��C2�2

�m
� is called the quadratic Casimir vector in [Tuite 2009; Tuite

and Van 2014]. We also note that if �m
� 2V! , then �`� 2V! for `�m; see [loc. cit.].

Set q� WD dim.V!/�. Let fwig
q�
iD1

be a basis of .V!/� and fwig
q�
iD1

the dual basis
of fwig

q�
iD1

with respect to . � j � /. The following lemma holds.

Lemma 3.4. Let V be an SVOA with minimal conformal weight �. Then

trjV�o.u/D .�1/wt.u/.u j �wt.u/
� /

for a homogeneous element u 2
L

n2Z>0
V Œn�.

Proof. Because fvig
p�
iD1
[ fwig

q�
iD1

is the dual basis of fvig
p�
iD1
[ fwig

q�
iD1

with
respect to . � j � /,

(3-2) trjV�o.u/D

p�X
iD1

.o.u/vi
j vi/C

q�X
iD1

.o.u/wi
j wi/:

Since o.u/wi 2
L

n>0V Œn� and wi 2 V Œ0�, the second summation of (3-2) is 0 by
Lemma 3.1, i.e., trj

V�
o.u/D

Pp�
iD1

.o.u/vi j vi/ holds. By the same computation
as in [Yamauchi 2014, Section 4.1, Lemma 5], we obtain the statement. �

Set d� WD dim V�, let fuig
d�
iD1

be a basis of V�, and let fuig
d�
iD1

be its dual basis
with respect to . � j � /. We also consider the following Casimir vector (see [Matsuo
2001; Yamauchi 2014]):

(3-3) �m
� WD �

�C2�2

d�X
iD1

ui
.2��1�m/ui D �

m
� C �

�C2�2

q�X
iD1

wi
.2��1�m/wi 2 Vm:

We obtain the following equivalent conditions to define conformal designs. It
has already been discussed in [Yamauchi 2014] for � 2 1

2
CZ�1.

Theorem 3.5. Let V be an SVOA with minimal conformal weight �. Then the
following are equivalent: (1) V� is a conformal t -design based on V 0, (2) �t

� 2 V! ,
and (3) �t

� 2 V! .

Proof. By (3-3), (2) () (3) holds. We show (1) () (3). Let a 2 V 0
t . Set

a WD a � �.a/. Then trj
V�

o.a/ D trj
V�

o.�.a//C .�1/t .a j �t
�/ by Lemma 3.4.

Therefore, trj
V�

o.a/ D trj
V�

o.�.a// if and only if .a j �t
�/ D 0. We see from

Lemma 3.1 that .a j �t
�/D 0 for any a 2 V 0

t if and only if �t
� 2 V Œ0�D V! . �

It is known that if the set of minimum norm vectors of an integral lattice forms
a spherical 2m-design, then it also forms .2mC 1/-design; see [Venkov 2001,
Section 5, p. 23]. The assertion of the following theorem is an analogy of this
particular result in the case of a conformal design. A method to prove this when
�D 2 was mentioned briefly in [Matsuo 2001, Section 2, p. 573].
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Theorem 3.6. Let V be an SVOA with minimal conformal weight �. If V� forms
a conformal 2m-design based on the even part, then it also forms a conformal
.2mC 1/-design.

Proof. By the skew symmetry,

�2mC1
� DX
`�0

.�1/2��.2mC1/C`

`!
L.�1/`

�
��C2�2

d�X
iD1

.�1/ju
ijjuij.ui/.2��1�.2mC1/C`/u

i

�
;

where jaj equals 0 if a 2 V 0, and 1 if a 2 V 1. Since jui jjui j D 2� mod 2, we have

�2mC1
� D

X
`�0

.�1/1C`

`!
L.�1/`�2mC1�`

� :

Hence,

(3-4) �2mC1
� D

1

2

X
`�1

.�1/1C`

`!
L.�1/`�2mC1�`

� :

If V� forms a conformal 2m-design based on the even part, then by Theorem 3.5
�s
� 2 V! for 1� s � 2m. Therefore, using (3-4) and Theorem 3.5, we are done. �

From now on, we assume that the central charge of an SVOA is neither 0 nor�22
5

.
This assumption implies that the degree m subspace of V! with m� 5 has a basis˚

L.�n1/ � � �L.�nr /1
ˇ̌
n1 � � � � � nr � 2;

Pr
iD1 ni Dm

	
I

see [Kac and Raina 1987, Lecture 8].
We also assume that the bilinear form is normalized by .1 j 1/D 1. The following

lemma holds.

Lemma 3.7. Let V be an SVOA, a; b 2 V2, m 2 Z�2, and n 2 Z. Then:

(1) .L.�m/1 ja.n/b/D .2m�2/ımCn;3.a j b/�
m2�3mC4

2
ımCn;3.L.1/a jL.1/b/,

(2) .L.�2/21 j a.�1/b/D 2.a j !/.b j !/C 8.a j b/� 4.L.1/a jL.1/b/.

Proof. By the commutator formula, for k; ` 2 Z,

(3-5) ŒL.k/; a.`/�

D .k � `C 1/a.kC`/C
�
kC1

2

�
.L.1/a/.kC`�1/C

�
kC1

3

�
ıkC`;1.a j !/:

Since V is of CFT-type and has a nondegenerate invariant bilinear form, L.1/V1D0.
We compute X WD .L.�m/1 j a.n/b/:

X D .1 j a.n/L.m/b/„ ƒ‚ …
D0

C .1 j ŒL.m/; a.n/�b/ (by invariance)
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D .m� nC 1/.1 j a.mCn/b/C
�
mC1

2

�
.1 j .L.1/a/.mCn�1/b/ (by (3-5))

D ımCn;3

�
.2m� 2/.1 j a.3/b/C

�
mC1

2

�
.1 j .L.1/a/.2/b/

�
(since .Vk j V`/D 0 if k ¤ `)

D ımCn;3

�
.2m� 2/.a j b/� m2�3mC4

2
..L.1/a/.�2/1 j b/

�
(by invariance, L.1/V1 D 0)

D ımCn;3

�
.2m� 2/.a j b/� m2�3mC4

2
.L.1/a jL.1/b/

�
:

(since .L.1/a/.�2/1DL.�1/L.1/a)

Hence, we obtain (1). Next, we show (2). By (1) for .m; n/D .2; 1/, the invariance,
and (3-5),

(3-6) .L.�2/21 j a.�1/b/

D 2.a j !/.b j !/C 8.a j b/� 4.L.1/a jL.1/b/C 3.! j .L.1/a/.0/b/:

We show .! j .L.1/a/.0/b/D 0. By (3-5),

(3-7) .! j ŒL.1/; a.0/�b/D 4.a j b/� 2.L.1/a jL.1/b/C .! j .L.1/a/.0/b/:

On the other hand, by (1) for .m; n/D .3; 0/ and the Virasoro relation,

(3-8) .! j ŒL.1/; a.0/�b/D .L.�1/! j a.0/b/� .! j a.0/L.1/b/

D 4.a j b/� 2.L.1/a jL.1/b/� .! j a.0/L.1/b/:

We see from (3-5), (3-7), and (3-8) that .! j .L.1/a/.0/b/ is computed as follows:

.! j .L.1/a/.0/b/D�.! j a.0/L.1/b/

D�.1 j ŒL.2/; a.0/�L.1/b/

D�3..1 j a.2/L.1/b/C .1 j .L.1/a/.1/L.1/b//

D�3.L.1/a jL.1/b/C 3.L.1/a jL.1/b/D 0:

Therefore (2) holds by (3-6). �

Let V be an SVOA with minimal conformal weight � 2
˚

1
2
; 1; 3

2
; 2
	
. We give

trace formulae of the zero-modes of elements of V2 on V� by using the same method
as in [Matsuo 2001, Section 2.3]. Let a; b 2 V2, and w 2 V�. In general, by the
Borcherds–Jacobi identity (see [Kac 1998]), for u; v 2 V 0 and p; q; r 2 Z,

(3-9)
X
`�0

�
p

`

�
.u.rC`/v/.pCq�`/

D

X
`�0

.�1/`
�

r

`

�
.u.pCr�`/v.qC`/� .�1/rv.qCr�`/u.pC`//:
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By (3-9) for p D 2; q D 1, and r D�1,

a.1/b.1/w D

2X
`D0

�
2

`

�
.a.�1C`/b/.3�`/w� a.�1/b.3/w� b.�1/a.3/w:

Therefore,

trjV�o.a/o.b/D

2X
`D0

�
2

`

�
trjV�o.�.a.�1C`/b//� 2ı�;2.a j b/

if V� forms a conformal 4-design based on the even part. Then, by Lemma 3.7 one
can compute the trace because �.a.�`C1/b/ 2 .V!/4�`, yielding

trjV�o.L.�4/1/D 3�d�; trjV�o.L.�2/21/D �d�.�C 2/C cı�;2;

trjV�o.L.�3/1/D�2�d�; trjV�o.L.�2/1/D �d�:

Note that the cases � 2 1
2
CZ�1[f2g have already been obtained in [Matsuo 2001;

Yamauchi 2014].

Proposition 3.8 [Matsuo 2001, Theorem 2.1; Yamauchi 2014, Theorem 1]. Let V

be an SVOA of central charge c with minimal conformal weight � 2
˚

1
2
; 1; 3

2
; 2
	
.

(1) If V� forms a conformal 2-design, then for a 2 V2,

trjV�o.a/D
2�d�

c
.a j !/:

(2) If V� forms a conformal 4-design, then for a; b 2 V2,

trjV�o.a/o.b/D
2.�d�.22�� c/� 5c2ı�;2/

c.5cC 22/
.a j b/

�
2.�d�.cC 6C 8�/C 8cı�;2/

c.5cC 22/
.L.1/a jL.1/b/

C
4.�d�.5�C 1/C 5cı�;2/

c.5cC 22/
.a j !/.b j !/:

Remark 3.9. The reason why we consider the cases where � 2
˚

1
2
; 1; 3

2
; 2
	

is that
the trace of o.a/ on V� for a2V2 is a multiple of �d� because V2D .V!/2 if �> 2.
Hence, we consider trace formulae on V� in the cases �� 2 only.

Set de
�.k/ WD dim W e

�.k/, where W e
�.k/ is defined in (2-1). The following

corollary holds. It has already been mentioned in the introduction of [loc. cit.] for
�D 2.

Corollary 3.10. Let V be an SVOA with minimal conformal weight � 2
˚

1
2
; 1; 3

2

	
,

and e an Ising vector. If V� forms a conformal 4-design based on V 0, then

de
�.0/D

d�.c.5cC 22� 61�/C 2�.196�� 95//

c.5cC 22/
:



132 TOMONORI HASHIKAWA

Also,

(3-10) de
�

�
1

2

�
D
�d�.56�� 3c � 2/

c.5cC 22/
and de

�

�
1

16

�
D

64�d�.cC 3� 7�/

c.5cC 22/
:

Proof. Obviously, trj
V�

o.1/D d�. Note that L.1/e D 0 since V is of CFT-type;
see [Yamauchi 2004, Lemma 8.1.2]. Since .! j e/D .e j e/D 1

4
, by Proposition 3.8,

trjV�o.e/D
�d�

2c
and trjV�o.e/2 D

�d�.49�� 2cC 1/

4c.5cC 22/
:

By Lemma 2.1,2641 1 1

0 1
2

1
16

0 .1
2
/2 . 1

16
/2

375
264 de

�.0/

de
�.

1
2
/

de
�.

1
16
/

375D
2664

d�
�d�
2c

�d�.49��2cC1/

4c.5cC22/

3775:
Therefore, we obtain this corollary by direct computation. �

The following corollary is obtained from (3-10) immediately.

Corollary 3.11. Let V be an SVOA of central charge c with minimal conformal
weight �2

˚
1
2
; 1; 3

2

	
, and e an Ising vector of V. Assume that V� forms a conformal

4-design based on the even part. Then c D 7�� 3 if and only if de
�

�
1

16

�
D 0.

An R-form W of an SVOA V is an R-subalgebra of V with the same Virasoro
element such that V Š C˝W. As an application of the trace formulae, we have
the following theorem.

Theorem 3.12. Let V be an SVOA with minimal conformal weight 1
2

and let W be
an R-form which has a positive definite invariant bilinear form. If V1=2 forms a
conformal 4-design based on the even part, then V is isomorphic to

L
�

1
2
; 0
�
˚L

�
1
2
; 1

2

�
:

Remark 3.13. [Höhn 2008, Theorem 4.1(a)] shows that V, as in Theorem 3.12, is
isomorphic to L.1

2
; 0/˚L

�
1
2
; 1

2

�
if the minimal conformal weight space forms a

conformal 6-design. Hence, Theorem 3.12 is more general than the theorem in that
reference.

Proof of Theorem 3.12. Since the bilinear form is positive definite on W, we can take
an orthogonal basis fxig

d1=2

iD1
of W1=2 such that .xi j xj /D 1

2
ıij . Since V ŠC˝W,

fxig
d1=2

iD1
is also a basis of V1=2. Set

ei
WD �xi

.�2/x
i and Lei

.n/D ei
.nC1/

for each 1� i � d1=2 and n2Z. Then for each 1� i � d1=2 we can check by direct
computation that fLei

.n/gn2Z satisfies the Virasoro relation with central charge 1
2

.
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Since e1; : : : ; ed1=2 belong to W, the vectors are Ising vectors; see [Miyamoto
1996b, Section 6, p. 540]. Also by direct computation,

Lei
.0/xj D

1
2
ıij xj

for 1 � i; j � d1=2. Because fxig
d1=2

iD1
is a basis of V1=2, the central charge of

V is 1
2

by Corollary 3.11. Then by Proposition 3.8 we also have d1=2 D 1 since
trj

V1=2
o.ei/D 1

2
. Since the central charge is 1

2
and ! is the Virasoro element of W,

we may conclude that ! is an Ising vector of V. Because the L.0/-weights of V

are half-integers, V D V Œ0�˚V
�

1
2

�
, where V Œk� is the V!-submodule of V defined

at the beginning of Section 3. Therefore,

V D V! ˚V
�

1
2

�
ŠL

�
1
2
; 0
�
˚L

�
1
2
; 1

2

�
because V Œ0�D V! and d1=2 D 1. �

4. Conformal designs and code SVOAs

In this section, we first review the notion of binary codes and combinatorial designs.
Next, we recall the definition of code SVOAs, and classify the code SVOAs whose
minimal conformal weight spaces form conformal 4-designs.

Binary codes. A binary code C of length n is a subspace of Fn
2
. The support

supp.x/ and the weight wt.x/ of x D .x1; : : : ;xn/ 2 Fn
2

are defined by

supp.x/ WD f1� i � n j xi ¤ 0g and wt.x/ WD # supp.x/;

respectively. A binary code C is said to be even if wt.c/ 2 2Z for all c 2 C . Let
.0n/ and .1n/ denote the vectors .0; : : : ; 0/ 2 Fn

2
and .1; : : : ; 1/ 2 Fn

2
, respectively.

The minimum weight of C is minfwt.c/ j c 2 C n f.0n/gg if C ¤ f.0n/g and 1
if C D f.0n/g. For x D .x1; : : : ;xn/;y D .y1; : : : ;yn/ 2 Fn

2
, let x � y denote the

vector .x1y1; : : : ;xnyn/2 Fn
2
. For C a binary code with minimum weight d ¤1,

(4-1) #C � 2n
ı b d�1

2
cX

iD0

�
n

i

�
;

where
�

1
2
.d � 1/

˘
is the largest integer not greater than 1

2
.d � 1/. The upper

bound of #C is called the sphere-packing bound of C ; see [Assmus and Key 1992,
Theorem 2.1.3]. It is easy to see that d is an odd integer if equality holds in (4-1).

Set yH2 WD f.0
4/; .14/g. Define the binary code yHm for m 2 Z�3 by

f.u;uC v/ j u 2 E2m�1 ; v 2 yHm�1g;
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where E` is the set of all even weight vectors in F`
2
. Set

Hm WD f.c1; : : : ; c2m�1/ j .c1 : : : ; c2m/ 2 yHmg � F2m�1
2

for m 2 Z�2. The binary codes Hm and yHm are called the Hamming code of
length 2m � 1 and the extended Hamming code of length 2m, respectively; see
[MacWilliams and Sloane 1977, Chapters 1 and 13]. Denote by E.Hm/ the even
subcode of Hm. Note that the dimensions of Hm and yHm are 2m �m� 1. The
following lemmas are obtained by a basic method of algebraic coding theory. For
the reader’s convenience we include the proof.

Lemma 4.1. Let m 2 Z�2 and D a binary code of length 2m whose minimum
weight is greater than or equal to 3. If D has a subcode equivalent to yHm, then D

is equivalent to yHm.

Proof. By (4-1),

#D � 22mı 1X
iD0

�
2m

i

�
< 22m�m:

Hence dim D is less than or equal to 2m�m�1. Since dim yHmD 2m�m�1, the
assertion holds. �

Lemma 4.2. Let m 2 Z�2 and D a binary code of length 2m� 1 whose minimum
weight is greater than or equal to 3. If D has a subcode equivalent to E.Hm/,
then D is equivalent to E.Hm/ or Hm.

Proof. We see from (4-1) that #D � 22m�1=
P1

iD0

�
2m�1

i

�
D 22m�1�m. Hence

dim D is 2m�1�m or 2m�2�m because D has a subcode equivalent to E.Hm/.
Clearly, D is equivalent to E.Hm/ if dim D is 2m�2�m. If dim D equals 2m�1�m,
then equality holds in (4-1). As already mentioned before, the minimum weight of
D must be an odd integer, and hence it must be 3. Thus D is a binary code of length
2m� 1 whose dimension and minimum weight are 2m� 1�m and 3, respectively.
It is known that such a code is equivalent to Hm; see [MacWilliams and Sloane
1977, Chapter 1, Section 7, Problem (28)]. Therefore, this lemma holds. �

Combinatorial designs and binary codes. Set �n WD f1; : : : ; ng. Let k be a non-
negative integer such that k � n. Denote the set of all k-subsets of �n by

�
�n

k

�
.

Let B be a subset of
�
�n

k

�
. A pair .�n;B/ is a t-.n; k; �/-design if there exists a

constant � such that #fB 2 B j X � Bg D � for all X 2
�
�n

t

�
. For D � Fn

2
, set

D.k/ WD fu2D jwt.u/D kg. We often say that .�n;D.k// is a t -.n; k; �/-design
if the pair of �n and fsupp.u/ j u 2 D.k/g forms a t-.n; k; �/-design. By using
a basic method for algebraic coding theory, the following proposition holds. We
include the proof for the reader’s convenience.
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Proposition 4.3. Let m 2 Z�2 and C a binary code of length 2m with minimum
weight 4. If .�2m ;C.4// forms a 3-.2m; 4; 1/-design, then C is equivalent to yHm.
Analogously, let C be a binary code of length 2m � 1 with minimum weight 3. If
.�2m�1;C.3// forms a 2-.2m� 1; 3; 1/-design, then C is equivalent to Hm.

Proof. We show the yHm case only because the Hm case is obtained by the same
method. If we show that #.F2m

2
=C /D 2mC1, then we obtain the statement because

a binary code of length 2m whose dimension and minimum weight are 2m� 1�m

and 4, respectively, is equivalent to yHm [MacWilliams and Sloane 1977, Chapter 1,
Section 9, Problem (41)]. Let u 2 F2m

2
such that wt.u/ > 2. Then there exists

v 2 C.4/ such that wt.uC v/ � wt.u/� 2 because .�2m ;C.4// is a 3-.2m; 4; 1/-
design. Hence, every element of F2m

2
=C is represented by an element of weight

at most 2. Also, since the weight of the sum of vectors x;x0 2 F2m

2
such that

wt.x/� 1;wt.x0/� 2, and x¤ x0 is less than 4 and the minimum weight of C is 4,
xCC and x0CC are distinct. Set Xi WD fyCC 2 F2m

2
=C j wt.y/D ig. By the

argument above, we have

F2m

2 =C DX0qX1qX2; #X0 D 1; and # X1 D 2m:

Hence, it is sufficient to show that #X2 D 2m � 1. Let yCC 2 X2. It is easy to
check that

.yCC /.2/D fygq fyC c j c 2 C.4/ such that supp.y/� supp.c/g:

Hence, #.yCC /.2/D 2m�1 because .�2m ;C.4// is also a 2-.2m; 4; 2m�1 � 1/-
design [op. cit., Chapter 2, Section 5, Theorem 9]. Since

F2m

2 .2/D
a

zCC2X2

.zCC /.2/;

we have #X2 D
1

2m�1

�
2m

2

�
D 2m� 1, completing the proof of this proposition. �

In order to prove our main result, we need the following two lemmas.

Lemma 4.4. Let t 2 Z�2 and let C be a binary code of length n� 3 with minimum
weight tC1. Then the cardinality of C.tC1/ is at most 1

tC1

�
n
t

�
. Moreover, equality

holds in the inequality if and only if .�n;C.t C 1// forms a t -.n; t C 1; 1/-design.

Proof. Consider the cardinality of

S WD
˚
X 2

�
�n

t

� ˇ̌
there exists u 2 C.t C 1/ such that X � supp.u/

	
:

Since t � 2 and the minimum weight of C is t C 1, for X 2
�
�n

t

�
the cardinality of

fu 2 C.t C 1/ jX � supp.u/g is at most 1. Hence

(4-2) S D
a

u2C.tC1/

�
supp.u/

t

�
:
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By (4-2), �
n

t

�
� #S D

X
u2C.tC1/

#
�

supp.u/
t

�
D .t C 1/ # C.t C 1/:

Therefore, the first claim of this lemma holds. Also, from (4-2), that equality
holds in the inequality if and only if

�
�n

t

�
D S . Hence we have the second claim

because
�
�n

t

�
D S implies that .�n;C.t C 1// forms a t -.n; t C 1; 1/-design. �

Lemma 4.5. Let C be an even code of length 2m�1 (m�2) with minimum weight 4.
If .�2m�1;C.4// forms a 2-.2m� 1; 4; 2m�1� 2/-design, then C ŠE.Hm/.

Proof. Set D WD hC; .12m�1/iF2
D C q ..12m�1/CC /. Note that if we show that

the minimum weight of D is 3 and .�2m�1;D.3// forms a 2-.2m�1; 3; 1/-design,
then this lemma follows from Lemma 4.2 since the even subcode of D is C .

First we show that the minimum weight of D is 3. Fix X 2
�
�2m�1

2

�
. Set

CX WD fu 2 C.4/ j X � supp.u/g and wX WD
P

u2CX
u. Let u; v 2 CX such that

u¤ v. Then supp.u/\ supp.v/DX because the minimum weight of C is 4. Since
.�2m�1;C.4// forms a 2-.2m � 1; 4; 2m�1 � 2/-design, the cardinality of CX is
2m�1 � 2, and hence we have wt.wX / D 2m � 4 and .12m�1/CwX 2 D.3/. If
we suppose that D has a weight-1 vector v, then .12m�1/CwY C v 2 D.2/ for
Y 2

�
�2m�1

2

�
such that supp.v/� Y, which contradicts D.2/D C.2/D∅. Thus,

the minimum weight of D is 3.
Next we show that .�2m�1;D.3// forms a 2-.2m � 1; 3; 1/-design. Set zX WD

.12m�1/C wX for X 2
�
�2m�1

2

�
. Then wt.wX C wY / D 6 � 2 wt.zX � zY / for

X;Y 2
�
�2m�1

2

�
. Since C.2/ D ∅, we have wt.zX � zY / � 1 if wX ¤ wY , and

wt.zX � zY /D 3 if wX D wY . Because the support of zX � zY is

.�2m�1 n supp.wX //\ .�2m�1 n supp.wY //;

we have wX D wY if and only if Y � �2m�1 n supp.wX /. By this argument,
#fwX jX 2

�
�2m�1

2

�
g is exactly 1

3

�
2m�1

2

�
. Hence #D.3/� 1

3

�
2m�1

2

�
. We see from

Lemma 4.4 that the assertion holds. �

Code SVOAs. Let X be the free fermionic SVOA of central charge 1
2

, i.e., X D

L
�

1
2
; 0
�
˚L

�
1
2
; 1

2

�
. Set X k WDL

�
1
2
; k

2

�
for k D 0; 1. Then X˝n is an SVOA as a

tensor product of SVOAs. Set V ˛ WDX ˛1 ˝ � � �˝X ˛n for ˛ D .˛1; : : : ; ˛n/ 2 Fn
2
.

Note that V ˛ is a V .0n/-module. For a binary code C of length n, set

VC WD

M
˛2C

V ˛;

which is a sub-SVOA of X˝n. The SVOA VC is called the code SVOA associated
to C ; see [Miyamoto 1996a; Lam et al. 2007] for details. We remark that the
central charge of VC is half of the length of C. Let u0 D 1 be the vacuum vector
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of X 0 and u1 a highest weight vector of X 1 such that u1
.�2/

u1 D 2!, where ! is
the Virasoro element of X 0. For ˛ D .˛1; : : : ; ˛n/ 2 Fn

2
, set

(4-3) u˛ WD u˛1 ˝ � � �˝u˛n 2 V ˛:

Note that u˛ is a highest weight vector of V ˛. For 1� i � n, set

ei
WD 1˝ � � �˝!˝ � � �˝ 1 2 VC ;

where the Virasoro element ! of X 0 is the i-th tensor factor. It is known that ei

is an Ising vector of �-type; see [Miyamoto 1996a]. Let . � j � / be the invariant
bilinear form on VC such that .1 j 1/D 1. Then .ei j ej /D 1

4
ıij obviously holds.

Set N WD
L

1�i;j�2n Z.xiCxj /, where fxig
2n
iD1

is an orthonormal basis of R2n.
Let .VN /R be the lattice VOA over R associated to N . In [Miyamoto 2004], it
was proved that if a binary code C of length n is even, then the code VOA over R

is embedded into the VOA .V C
N
/R˚

p
�1.V �

N
/R, where .V ˙

N
/R � .VN /R is the

eigenspace of a lift of the �1 isometry of N with eigenvalue ˙1, respectively.
The VOA .V C

N
/R˚

p
�1.V �

N
/R has a positive definite invariant bilinear form; see

[op. cit., Proposition 2.7]. Replacing N by L WD
L2n

iD1 Zxi , one can show the case
that C has an odd weight vector, and hence the following holds.

Proposition 4.6 [Miyamoto 2004, Corollary 3.6]. Let C be a binary code. Then VC

has an R-form which has a positive definite invariant bilinear form. In particular,
VC satisfies the assumptions in Section 3 on page 126.

Conformal 4-designs and code SVOAs. Let C be a binary code and � the minimal
conformal weight of the code SVOA VC . Assume that � <1. We show that C is
equivalent to f.01/; .11/g; yH3; E8;E.H4/;H4, or yH4 if .VC /� forms a conformal
4-design based on V 0

C
. The next lemma plays an important role in our main result.

Lemma 4.7. Let C be a binary code of length n and � the minimal conformal
weight of VC . Assume that � 2

˚
1; 3

2
; 2
	
. If .VC /� forms a conformal 4-design

based on V 0
C

, then .�n;C.2�// forms a 2-.n; 2�; �/-design, where

� D
4�.5�C 1/ # C.2�/C 98nı�;2

n.5nC 44/
:

Proof. A basis of .VC /� is given by(
fu˛ j ˛ 2 C.2�/g if �D 1; 3

2
;

fei j 1� i � ng[ fu˛ j ˛ 2 C.4/g if �D 2;

where ei and u˛ are defined in Section 4 on page 137. Let i; j 2�n with i ¤ j .
Due to .ei j ej /D 0, L.1/ei DL.1/ej D 0, and Proposition 3.8(2),

(4-4) trj.VC /�
o.ei/o.ej /D

�d�.5�C 1/C 5cı�;2

4c.5cC 22/
;
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where c is the central charge of VC , i.e., c D n
2

and

d� D dim.VC /� D #C.2�/C nı�;2:

On the other hand,

(4-5) trj.VC /�
o.ei/o.ej /D 1

4
# f˛ 2 C.2�/ j i; j 2 supp.˛/g

since

o.ei/o.ej /u˛ D

�1
4
u˛ if i; j 2 supp.˛/;

0 otherwise;
and o.ei/o.ej /ek

D 0

for ˛ 2 C and k 2�n. It follows from (4-4) and (4-5) that

(4-6) #f˛ 2 C.2�/ j i; j 2 supp.˛/g D
�d�.5�C 1/C 5cı�;2

c.5cC 22/

D
4�.5�C 1/ # C.2�/C 98nı�;2

n.5nC 44/
;

concluding the proof. �

One of our main results is the following.

Theorem 4.8. Let C be a binary code and � the minimal conformal weight of VC .
Assume that � <1. If .VC /� forms a conformal 4-design based on V 0

C
, then C is

equivalent to f.01/; .11/g, yH3, E8, E.H4/, H4, or yH4.

Proof. Let n be the length of C . Note that � must be 1 if � > 2, because
.VC /2 D .V!/2 implies that VC D L

�
1
2
; 0
�

by the construction of code SVOAs.
Hence our assumption implies �� 2.

Recall that the Ising vectors ei are of �-type. We see from Corollary 3.11 that
the central charge is uniquely determined by � if � 2

˚
1
2
; 1; 3

2

	
. In case �D 1

2
, the

central charge is 1
2

, i.e., nD 1. Moreover the minimum weight of C is 1 because
.VC / 1

2
D SpanCfu

˛ j ˛ 2 C.1/g. Hence C must be f.01/; .11/g. It follows from
Lemma 4.7 that .�n;C.2�// forms a 2-.n; 2�; �/-design, where

� D
4�.5�C 1/ # C.2�/C 98nı�;2

n.5nC 44/
;

if�2
˚
1; 3

2
; 2
	
. Also, the length of C is 8 if�D1, and 15 if�D 3

2
by Corollary 3.11.

For �D 1, C.2/ is equal to F8
2
.2/ because .�8;C.2// forms a 2-.8; 2; #C.2/=28/-

design. Hence hC.2/iF2
is equivalent to E8, and so is C because the minimum

weight of C is 2. If �D 3
2

, then .�15;C.3// forms a 2-.15; 3; #C.3/=35/-design.
More precisely, .�15;C.3// forms a 2-.15; 3; 1/-design because the minimum
weight of C is 3. Then it follows from Proposition 4.3 that hC.3/iF2

is equivalent
to H4, and hence we have C ŠH4 by Lemma 4.2. In case �D 2, a list of possible
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pairs of the central charge and dim.VC /2 has been obtained in [Matsuo 2001,
Section 3.2, Table 3.2] since the central charge is a half-integer. Using this list,
we obtain another list of possible pairs n and #C.4/ since dim.VC /2 D nC #C.4/.
The two lists are given as follows:

c dim.VC /2 c dim.VC /2

4 22 19
2

418
15
2

120 10 685

8 156 21
2

1491

H)

n #C.4/ n #C.4/

8 14 19 399

15 105 20 665

16 140 21 1470

However, .n; #C.4// cannot be .19; 399/; .20; 665/; .21; 1470/ because these pairs
do not satisfy the inequality in Lemma 4.4. By using Lemma 4.4 again, .�8;C.4//

(resp., .�16;C.4//) forms a 3-.8; 4; 1/- design (resp., 3-.16; 4; 1/-design). Hence
it follows from Proposition 4.3 that hC.4/iF2

is equivalent to yH3 (resp., yH4). Since
the minimum weight of C is 4, C must be yH3 (resp., yH4) by Lemma 4.1. Also,
by (4-6) the pair .�15;C.4// forms a 2-.15; 4; 6/-design if .n; #C.4//D .15; 105/.
We see from Lemma 4.5 that hC.4/iF2

is equivalent to E.H4/. Hence C ŠE.H4/

by Lemma 4.2. This finishes the proof of the theorem. �

Remark 4.9. The �D 1
2

case in Theorem 4.8 has been obtained in Theorem 3.12.
Nevertheless, we provided a second proof, because this method is easier than the
method of Theorem 3.12 when we consider only code SVOAs.

Remark 4.10. It is known that VE8
is isomorphic to the lattice VOA VD4

associated
to the root lattice of D4 type; see [Dong et al. 1998]. It was proved in [Tuite 2009,
Theorem 2.8] that a VOA with minimal conformal weight 1 whose 4th Casimir
element belongs to V! is isomorphic to one of the level 1 affine VOAs associated
to the Deligne exceptional series of simple Lie algebras. Thanks to Theorem 3.5,
we see that this classification, which contains VD4

, can be obtained under the
condition that V1 forms a conformal 4-design. In fact, VD4

is the only VOA in the
classification by [op. cit.] which is a code SVOA.

5. Code SVOAs of class S5

In this section, we show that the code SVOAs associated to the codes in Theorem 4.8
are of class S5. In particular, their minimal conformal weight spaces form conformal
5-designs.

SVOAs of class Sn. The notion of SVOAs of class Sn is an analogue of the notion
of VOAs of class Sn introduced by Matsuo.
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Definition 5.1 [Matsuo 2001, Definition 1.1]. An SVOA V D V 0˚V 1 is said to
be of class Sn if .V 0/Aut.V / coincides with V! up to degree n subspace, i.e.,

.V 0/Aut.V /
m D .V!/m for 0�m� n:

Clearly, the definition above is the ordinary definition in [loc. cit.] when V is a
VOA. Note that the fixed point subspace of V 1 is always 0 since an SVOA has an
involution which is the identity on the even part and acts as �1 on the odd part.

Proposition 5.2 [Hashikawa and Shimakura 2016, Proposition 2.12]. Let U be a
VOA and W a sub-VOA of U with the same Virasoro element !. Assume that U is
completely reducible as a V!-module. If Wn D .V!/n, then Wn�1 D .V!/n�1. In
particular, an SVOA V is of class Sn if V 0 is completely reducible as a V!-module
and .V 0/Aut.V /

n D .V!/n.

The following lemma holds.

Lemma 5.3. Let V D V 0˚V 1 be an SVOA of class Sn. Then:

(1) The even part V 0 is also of class Sn.

(2) The minimal conformal weight space of V forms a conformal n-design based
on V 0.

Proof. Since Aut.V / preserves V 0, there exists a group homomorphism

' W Aut.V /! Aut.V 0/; g 7! gjV 0 :

Then we have Aut.V /= ker' Š Im' � Aut.V 0/. Hence (1) is proved because
.V 0/Aut.V /

n contains .V 0/Aut.V 0/
n . Also, since �n

� 2 .V
0/Aut.V /

n D .V!/n, we ob-
tain (2) by Theorem 3.5. �

Automorphism groups of code SVOAs. The symmetric group Sn of degree n acts
on Fn

2
by �.x1; : : : ;xn/ WD .x��1.1/; : : : ;x��1.n// for � 2Sn and .x1; : : : ;xn/2Fn

2
.

Let C be a binary code of length n. An element � 2 Sn is called an automorphism
of C if �.C /D C. Let Aut.C / denote the group of automorphisms of C. Every
� 2 Aut.C / induces an automorphism Q� of VC [Miyamoto 1996a, Section 5]. We
call Q� a lift of �. In particular, Q� acts as a permutation on V .0n/, that is,

Q�.v1
˝ � � �˝ vn/D v�

�1.1/
˝ � � �˝ v�

�1.n/ for v1
˝ � � �˝ vn

2 V .0n/:

Set

(5-1) t˛ WD
1

8

8X
iD1

ei
C

1

8

X
ˇ2yH3.4/

.�1/wt.ˇ�˛/uˇ 2 VyH3
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for ˛ 2 F8
2
. It is known that t˛ is an Ising vector of �-type of VyH3

; see [op. cit.].
Set �i WD .0

i�110n�i/ 2 Fn
2
.

Proposition 5.4 [Matsuo and Matsuo 2000, Proposition 2.4.1; Miyamoto 1999,
Lemma 2.3]. The Hamming code VOA VyH3

has exactly three Ising frames:

I0 WD fe
i
j 1� i � 8g; I1 WD ft

�i j 1� i � 8g; and I2 WD ft
�1C�i j 1� i � 8g:

Moreover, if f 2 Ia, then �f .Ib/ D Ic if fa; b; cg D f0; 1; 2g, where �f is the
involution defined in (2-2).

Let C be a binary code. Set

D.C / WD fD � C jD Š yH3 and # .supp.˛/\ supp.D// 2 2Z for all ˛ 2 C g;

where
supp.D/ WD

[
d2D

supp.d/:

Let I.VC / denote the set of all Ising vectors of � -type of VC .

Proposition 5.5 [Lam et al. 2007, Proposition 3.8, Lemma 3.10]. Let C be a binary
code of length n whose minimum weight is at least 3, and f 2 I.VC /. If f 62 feign

iD1
,

then there exists D 2D.C / such that f 2VD �VC and f is of the form (5-1) in VD .
Also, if f 2 VD � VC is an Ising vector of � -type for D 2 D.C /, then f 2 I.VC /.

The following proposition for the VOA case has been obtained in [Lam et al.
2007, Proposition 3.13]. Using the same argument, one can also show the SVOA
case.

Proposition 5.6. Let C be a binary code whose minimum weight is at least 3. Then
Aut.VC / is generated by f�f j f 2 I.VC /g and the lift of Aut.C /.

Examples of code SVOAs of class S5. The SVOA L
�

1
2
; 0
�
˚L

�
1
2
; 1

2

�
is clearly of

class S1. Note that VE8
is isomorphic to the lattice VOA VD4

, and VyH3
and VyH4

are
isomorphic to the lattice-type VOAs V

Cp
2D4

and V
Cp

2E8
, respectively; see [Dong

et al. 1998; Lam et al. 2007]. It was shown in [Maruoka et al. 2016; Hashikawa
and Shimakura 2016] that

V
D4
; V

Cp
2D4

; and V
Cp

2E8

are of class S5. Therefore the code VOAs are also of class S5. By Lemma 5.3(2),
their minimal conformal weight spaces are conformal 5-designs. Hence we show
that the remaining code SVOAs VE.H4/ and VH4

are also of class S5.
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Note that yH3 and H4 are generated by the rows of the following matrices.

(5-2) yH3 W

2664
0000 1111

1111 0000

0011 0011

0101 0101

3775; H4 W

2666666666666666664

0001 0001 0001 000

0010 0010 0010 001

0100 0100 0100 010

1000 1000 1000 100

0101 0000 0101 000

1010 0000 1010 000

1100 0000 1100 000

0000 1111 0000 000

1111 0000 0000 000

0011 0011 0000 000

0101 0101 0000 000

3777777777777777775

:

It is easily seen from (5-2) that D.H4/¤∅. Also, it is known that Aut.H4/ acts dou-
bly transitively on �15 [MacWilliams and Sloane 1977, Chapter 13, Theorem 9.24,
and Problem (9)].

Theorem 5.7. The code SVOAs VH4
and VE.H4/ are of class S5.

Proof. Obviously, VE.H4/ is the even part of VH4
. Now by Proposition 5.2 and

Lemma 5.3(1), it is sufficient to show that

.V 0
H4
/

Aut.VH4
/

5
D .V!/5:

A basis of .V!/5 is given by fL.�5/1;L.�3/L.�2/1g because the central charge
of VH4

is neither 0 nor �22
5

(see Section 3.2). Note that for n 2 Z,

L.n/D

15X
iD1

Lei

.n/; where Lei

.n/D ei
.nC1/ for 1� i � 15:

Let P be the subgroup of Aut.VC / generated by f�ei j 1� i � 15g. Since �ei acts
as .�1/wt.˛��i / on V ˛ for ˛ 2 C , the fixed point subspace of P in .VC /5 is

V
.015/

5
D
˝
Lei

.�5/1; Lei

.�3/Lej.�2/1
ˇ̌
1� i; j � 15

˛
C
:

Set X WD
P15

iD1 Lei
.�3/Lei

.�2/1. Then

L.�3/L.�2/1DX C
X

1�i¤j�15

Lei

.�3/Lej.�2/1:

The double transitivity of Aut.H4/ gives

.V .015//
Aut.H4/
5

D

D
L.�5/1;X;

X
1�i¤j�15

Lei

.�3/Lej.�2/1
E
C

D hL.�5/1;L.�3/L.�2/1;X iC:
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Hence we also have .V 0
H4
/

Aut.VH4
/

5
� .V!/5 ˚ hX iC because P and the lift of

Aut.H4/ are subgroups of Aut.VH4
/. We show X 62 .V 0

H4
/

Aut.VH4
/

5
. Let D 2D.H4/

such that supp.D/Df1; : : : ; 8g. By (5-2), we can take such a subcode. Let ff ig8
iD1

and fgig8
iD1

be distinct Ising frames of VD except for feig8
iD1

(see Proposition 5.4).
We see from Proposition 5.5 that f i and gi are also Ising vectors of � -type of VH4

.
By Proposition 5.4,

�f 1.X /D

8X
iD1

Lgi

.�3/Lgi

.�2/1C
15X

iD9

Lei

.�3/Lei

.�2/1;

where Lgi

.n/Dgi
.nC1/

for 1� i �8 and n2Z. By direct computation, �f 1.X /¤X .
Therefore the assertion holds. �
Remark 5.8. As already mentioned before, the cases of VyH3

and VyH4
have already

been obtained in [Hashikawa and Shimakura 2016]. By using the same method as
in Theorem 5.7, one can also show these cases.

In conclusion, we obtain the following.

Theorem 5.9. The code SVOAs associated to the codes in Theorem 4.8 are of
class S5.

As a corollary of Theorems 4.8 and 5.9, the following holds.

Corollary 5.10. Let C be a binary code. Then the minimal conformal weight space
of VC is a conformal 4-design based on V 0

C
if and only if VC is of class S5.

Remark 5.11. It is known that the code VOA VE.H4/ is isomorphic to the commu-
tant subalgebra of an Ising vector in the VOA V

Cp
2E8

[Lam et al. 2007, Section 4
and Corollary 5.6].
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