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COHOMOLOGY AND EXTENSIONS OF BRACES

VICTORIA LEBED AND LEANDRO VENDRAMIN

Braces and linear cycle sets are algebraic structures playing a major role
in the classification of involutive set-theoretic solutions to the Yang–Baxter
equation. This paper introduces two versions of their (co)homology theories.
These theories mix the Harrison (co)homology for the abelian group struc-
ture and the (co)homology theory for general cycle sets, developed earlier by
the authors. Different classes of brace extensions are completely classified
in terms of second cohomology groups.

1. Introduction

A (left) brace is an abelian group (A,+) with an additional group operation ◦ such
that for all a, b, c ∈ A, the following compatibility condition holds:

a ◦ (b+ c)+ a = a ◦ b+ a ◦ c.(1-1)

The two group structures necessarily share the same neutral element, denoted by 0.
Braces, in a slightly different but equivalent form, were introduced by Rump [2007];
the definition above goes back to Cedó, Jespers, and Okniński [Cedó et al. 2014].
To get a feeling of what braces look like, and to convince oneself that they are not as
rare in practice as one might think, the reader is referred to Bachiller’s classification
of braces of order p3 [2015a]. The growing interest into these structures is due to a
number of reasons. First, braces generalize radical rings. Second, Catino and Rizzo
[2009] and Catino, Colazzo, and Stefanelli [Catino et al. 2015; 2016] unveiled the
role of an F-linear version of this notion into the classification problem for regular
subgroups of affine groups over a field F. Third, braces are enriched cycle sets, and
are therefore important in the study of set-theoretic solutions to the Yang–Baxter
equation (YBE), as we now recall.

A cycle set, as defined by Rump [2005], is a set X with a binary operation ·
having bijective left translations X→ X , a 7→ b · a, and satisfying the relation

(a · b) · (a · c)= (b · a) · (b · c).(1-2)
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Rump showed that nondegenerate cycle sets (i.e., with invertible squaring map
a 7→ a · a) are in bijection with nondegenerate involutive set-theoretic solutions
to the Yang–Baxter equation. Such solutions form a combinatorially rich class of
structures, connected with many other domains of algebra: semigroups of I-type,
Bieberbach groups, Hopf algebras, Garside groups, etc. The cycle set approach
turned out to be extremely fruitful for elucidating the structure of such solutions
and obtaining classification results (see, for instance, [Cedó et al. 2010a; 2014;
Chouraqui 2010; Dehornoy 2015; Gateva-Ivanova 2015; Gateva-Ivanova and Majid
2008; Gateva-Ivanova and Van den Bergh 1998; Jespers and Okniński 2005; Rump
2007; 2008; 2014; Smoktunowicz 2015a; 2015b; Vendramin 2016] and references
therein). In spite of the intensive ongoing research on cycle sets, their structure is
still far from being completely understood. This can be illustrated by numerous
conjectures and open questions in the area, many of which were formulated by
Gateva-Ivanova and Cameron [Gateva-Ivanova 2004; Gateva-Ivanova and Cameron
2012] and by Cedó, Jespers, and del Río [Cedó et al. 2010b].

Etingof, Schedler, and Soloviev [Etingof et al. 1999] initiated the study of the
structure group of a solution to the YBE — and in particular of a cycle set. These
ideas were further explored in [Lu et al. 2000; Soloviev 2000] for noninvolutive
solutions. Concretely, the structure group G(X, · ) of a cycle set (X, · ) is the free
group on the set X , modulo the relations

(a · b)a = (b · a)b

for all a, b ∈ X.1 In [Etingof et al. 1999], the structure group of a nondegenerate
cycle set (X, · ) was shown to be isomorphic, as a set, to the free abelian group Z(X)

on X ; see also [Lebed and Vendramin 2015] for an explicit graphical form of this
isomorphism. The group G(X, · ) thus carries a second, abelian, group structure —
the one pulled back from Z(X) — and becomes a brace. Moreover, G(X, · ) inherits a
cycle set structure from X , and yields a key example of the following notion. A
linear cycle set is a cycle set (A, · ) with an abelian group operation + satisfying,
for all a, b, c ∈ A, the compatibility conditions

a · (b+ c)= a · b+ a · c,(1-3)

(a+ b) · c = (a · b) · (a · c).(1-4)

This structure also goes back to Rump [2007], who showed it to be equivalent to
the brace structure, via the relation

a · b = a−1
◦ (a+ b).

1Some authors prefer an alternative relation a(a ·b)= b(b ·a), which defines an isomorphic group.
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Understanding structure groups and certain classes of their quotients is often
regarded as a reasonable first step towards understanding cycle sets. Even better:
Bachiller, Cedó, and Jespers [Bachiller et al. 2015a] recently reduced the classifica-
tion problem for cycle sets to that for braces. This explains the growing interest
in braces and linear cycle sets. As pointed out by Bachiller, Cedó, Jespers, and
Okniński [Bachiller et al. 2015b], an extension theory for braces would be crucial
for classification purposes, as well as for elaborating new examples. This served as
motivation for our paper.

Lebed and Vendramin [2015] developed a cohomology theory for general cycle
sets, in which second cohomology groups were given particular attention: they
were shown to encode central cycle set extensions. Here we propose homology and
cohomology theories for linear cycle sets, and thus for braces. As usual, central
linear cycle set extensions turn out to be classified by the second cohomology groups.

For pedagogical reasons, we first study extensions that are trivial on the level of
abelian groups, together with a corresponding (co)homology theory (Sections 2–3).
Such extensions are still of interest, since it is often the cycle set operation that
is the most significant part of the linear cycle set structure (as in the example of
structure groups). On the other hand, they are technically much easier to handle
than the general extensions (Sections 4–5). We therefore found it instructive to
present this “reduced” case before the general one.

When finishing this paper, we learned that an analogous extension theory was
independently developed by Bachiller [2015b], using the language of braces. Some
fragments of it in the F-linear setting also appeared in the work of Catino, Colazzo,
and Stefanelli [2015]. An alternative approach to extensions was suggested earlier
by Ben David and Ginosar [2016]. Concretely, they studied the lifting problem
for bijective 1-cocycles — which is yet another avatar of braces. Their work was
translated into the language of braces by Bachiller [2015a]. Our choice of the
linear cycle set language leads to more transparent constructions. Moreover, it
made possible the development of a full cohomology theory extending the degree 2
constructions motivated by the extension analysis. Such a theory was missing in all
the previous approaches.

2. Reduced linear cycle set cohomology

From now on we work with linear cycle sets (LCS). As explained in the introduction,
all constructions and results can be directly translated into the language of braces.
We will perform this translation for major results only.

Take an LCS (A, · ,+) and an abelian group 0. For n > 0, let RCn(A;0) denote
the abelian group 0⊗Z ZA×n

' 0(A
×n), modulo the linearity relation

(2-1) γ (a1, . . . , an−1, an + a′n)= γ (a1, . . . , an−1, an)+ γ (a1, . . . , an−1, a′n)
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for the last copy of A. Denote by RCD
n (A;0) the abelian subgroup of RCn(A;0)

generated by the degenerate n-tuples, i.e., γ (a1, . . . , an) with ai = 0 for some
1 6 i 6 n. Consider also the quotient RCN

n (A;0) = RCn(A;0)/RCD
n (A;0).

Further, define the maps ∂n : 0A×n
→ 0A×(n−1), n > 1, as the linearizations of

(2-2) ∂n(a1, . . . , an)= (a1 · a2, . . . , a1 · an)

+

n−2∑
i=1

(−1)i (a1, . . . , ai + ai+1, . . . , an)

+ (−1)n−1(a1, . . . , an−2, an).

Complete this family of maps by ∂1 = 0. Dually, for n > 0, let RCn(A;0) denote
the set of maps f : A×n

→ 0 linear in the last coordinate:

(2-3) f (a1, . . . , an−1, an + a′n)= f (a1, . . . , an−1, an)+ f (a1, . . . , an−1, a′n),

and let RCn
N(A;0)⊂ RCn(A;0) comprise the maps vanishing on all degenerate

n-tuples. Define the maps ∂n
: Fun(A×n, 0)→ Fun(A×(n+1), 0), n > 1, by

(2-4) (∂n f )(a1, . . . , an+1)= f (a1 · a2, . . . , a1 · an+1)

+

n−1∑
i=1

(−1)i f (a1, . . . , ai + ai+1, . . . , an+1)

+ (−1)n f (a1, . . . , an−1, an+1).

These formulas resemble the group (co)homology construction for (A,+). We will
now show that they indeed define a (co)homology theory.

Proposition 2.1. Let (A, · ,+) be a linear cycle set and 0 be an abelian group.

(1) The maps ∂• above

– square to zero: ∂n−1∂n = 0 for all n > 1;
– induce maps RCn(A;0)→ RCn−1(A;0);
– and further restrict to maps RCD

n (A;0)→ RCD
n−1(A;0).

(2) The maps ∂• above

– square to zero: ∂n+1∂n
= 0 for all n > 1;

– restrict to maps RCn(A;0)→ RCn+1(A;0);
– and further restrict to maps RCn

N(A;0)→ RCn+1
N (A;0).

The induced or restricted maps from the proposition will be abusively denoted
by the same symbols ∂•, ∂•. In the proof we shall need the special properties of the
zero element of an LCS.

Lemma 2.2. In any LCS A, the relations a · 0= 0 and 0 ·a = a hold for all a ∈ A.
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Proof. By the LCS axioms, one has a ·0= a ·(0+0)= a ·0+a ·0 and hence a ·0= 0.
Similarly, 0 · a = (0+ 0) · a = (0 · 0) · (0 · a)= 0 · (0 · a), and the relation a = 0 · a
follows by canceling out 0 (recall that the left translation 0 · − is bijective). �

Proof of Proposition 2.1. We treat only the homological statements here; they imply
the cohomological ones by duality.

The maps ∂n can be presented as signed sums ∂n =
∑n−1

i=0 (−1)i∂n;i , where

∂n;0(a1, . . . , an)= (a1 · a2, . . . , a1 · an),(2-5)

∂n;i (a1, . . . , an)= (a1, . . . , ai + ai+1, . . . , an), 16 i 6 n− 2,(2-6)

∂n;n−1(a1, . . . , an)= (a1, . . . , an−2, an).(2-7)

The relation ∂n−1∂n = 0 then classically reduces to the “almost commutativity”
∂n−1; j∂n;i = ∂n−1;i∂n; j+1 for all i 6 j . In the case i > 0 this latter relation is either
tautological, or follows from the associativity of + . For i = 0< j , it follows from
the left distributivity (1-3) for A. For i = 0= j , it is a consequence of the second
LCS relation (1-4) for A.

Further, using the linearity (1-3) of the left translations an 7→ a1 · an , one sees
that when applied to expressions of type

( . . . , an−1, an + a′n)− ( . . . , an−1, an)− ( . . . , an−1, a′n),

all the maps ∂n;i yield expressions of the same type. Hence their signed sums ∂•
induce a differential on RC•. The possibility to further restrict to RC•D is guaranteed
by Lemma 2.2. �

Proposition 2.1 legitimizes the following definition:

Definition 2.3. The reduced (resp., normalized) cycles, boundaries, and homology
groups of a linear cycle set (A, · ,+) with coefficients in an abelian group 0 are
those of the chain complex (RC•(A;0), ∂•) (resp., (RC•N(A;0), ∂•)) above. Dually,
the reduced (resp., normalized) cocycles, coboundaries, and cohomology groups
of (A, · ,+) are those of the complex (RC •(A;0), ∂•) (resp., (RC •N(A;0), ∂

•)).
We use the usual notation for these groups: RQn(A;0), RQN

n (A;0), RQn(A;0),
RQn

N(A;0), where Q is one of the letters Z , B, or H.

Remark 2.4. We actually showed that our (co)homology constructions can be
refined into (co)simplicial ones in the proof of Proposition 2.1.

Example 2.5. Recall from the introduction that for a nondegenerate cycle set (X, · ),
the free abelian group (Z(X),+) can be seen as a linear cycle set, with the cycle set
operation induced from · . In this case RC1(Z

(X)
;0) is simply the abelian group

0 ⊗Z Z(X) = 0(X), and for a1, a2 ∈ Z(X) one calculates ∂1(a1, a2) = a1 · a2 − a2.
Standard arguments from LCS theory then yield

RH1(Z
(X)
;0)∼= 0

(Orb(X)),



196 VICTORIA LEBED AND LEANDRO VENDRAMIN

where Orb(X) is the set of orbits of X , i.e., classes for the equivalence relation
generated by a1 · a2 ∼ a2 for all a1, a2 ∈ X . Similarly, one calculates the first
reduced cohomology group:

RH 1(Z(X);0)∼= Fun(Orb(X), 0).

We finish with a comparison between the (co)homology of an LCS (A, · ,+)
and the (co)homology of its underlying cycle set (A, · ), as defined in [Lebed and
Vendramin 2015]. Recall that the homology H CS

n (A;0) of (A, · ) is computed by
the complex (0(A

×n), ∂CS
n ), where

∂CS
n (a1, . . . , an)=

n−1∑
i=1

(−1)i−1((ai · a1, . . . , ai · ai−1, ai · ai+1, . . . , ai · an)

− (a1, . . . , ai−1, ai+1, . . . , an)
)
.

Dually, the cohomology H n
CS(A;0) of (A, · ) is computed from the complex

(Fun(A×n, 0), ∂n
CS), with ∂n

CS f = f ◦ ∂CS
n+1.

Denoting by (−1)σ the sign of the permutation σ , define Sn : 0
(A×n)
→ RCn(A;0)

as the composition of the antisymmetrization map

γ (a1, . . . , an) 7→
∑

σ∈Symn−1

(−1)σγ (aσ(1), . . . , aσ(n−1), an)

and the obvious projection 0(A
×n)� RCn(A;0).

Proposition 2.6. Let (A, · ,+) be a linear cycle set and 0 be an abelian group.
The map S defined above yields a map of chain complexes

Sn : (0
(A×n), ∂CS

n )→ (RCn(A;0), ∂n).

Proof. One has to compare the evaluations of the maps ∂n Sn and Sn−1∂
CS
n on

γ (a1, . . . , an). For this, it is convenient to use the decomposition

∂n =

n−1∑
i=0

(−1)i∂n;i

from (2-5)–(2-7). For 0< i < n− 1, the map ∂n;i Sn is zero: in its evaluation, the
terms ±γ ( . . . , a j + ak, . . . ) and ∓γ ( . . . , ak + a j , . . . ), with the sum at the i-th
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position, cancel. A careful sign inspection yields

∂n;0Sn(γ (a1, . . . , an))

=

n−1∑
i=1

(−1)i−1Sn−1(γ (ai · a1, . . . , ai · ai−1, ai · ai+1, . . . , ai · an)),

∂n;n−1Sn(γ (a1, . . . , an))

=

n−1∑
i=1

(−1)n−1−i Sn−1(γ (a1, . . . , ai−1, ai+1, . . . , an)),

hence the maps ∂n Sn and Sn−1∂
CS
n coincide. �

As a consequence, one obtains the dual map

Sn
: (RCn(A;0), ∂n)→ (Fun(A×n, 0), ∂n

CS)

of cochain complexes, and the induced maps in (co)homology.

3. Cycle-type extensions vs. reduced 2-cocycles

We now turn to a study of the reduced 2-cocycles of a linear cycle set (A, · ,+),
i.e., maps f : A× A→ 0 (where 0 is an abelian group) satisfying

f (a, b+ c)= f (a, b)+ f (a, c),(3-1)

f (a+ b, c)= f (a · b, a · c)+ f (a, c),(3-2)

for all a, b, c ∈ A. The last relation, together with the commutativity of + , yields

(3-3) f (a · b, a · c)+ f (a, c)= f (b · a, b · c)+ f (b, c),

implying ∂2
CS( f )= 0, so our f is necessarily a cocycle of the cycle set (A, · ).

Among the reduced 2-cocycles we distinguish the reduced 2-coboundaries

∂1(θ)(a, b)= θ(a · b)− θ(b),

where the map θ : A→ 0 is linear.

Example 3.1. Let A and 0 be abelian groups. Consider the trivial linear cycle set
structure a ·tr b = b over A. A map f : A× A→ 0 is a reduced 2-cocycle of this
LCS if and only if f is a bicharacter, in the sense of the bilinearity relations

f (a+ b, c)= f (a, c)+ f (b, c) and f (a, b+ c)= f (a, b)+ f (a, c).

The reduced 2-coboundaries are all trivial in this case. Thus RH 2(A;0) is the
abelian group of bicharacters of A with values in 0. Observe that for the cycle set
(A, ·tr), all the differentials ∂n

CS vanish. The second cohomology group H 2
CS(A;0)
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of this cycle set thus comprises all the maps f : A× A→ 0, and is strictly larger
than RH 2(A;0).

Example 3.2. Let A= {0, 1, 2, 3} = Z/4 be the cyclic group of 4 elements written
additively. Then A is a brace with

a ◦ b = a+ b+ 2ab and a−1
= (2a− 1)a.

The corresponding linear cycle set structure on A is given by the operation

a · b = a−1
◦ (a+ b)= (1+ 2a)b,

which is b when one of a, b is even, and b+ 2 otherwise. Take 0 = {0, 1} = Z/2.
For a map f : Z/4 × Z/4 → Z/2, relation (3-1) means that f is of the form
f (a, b)= bψ(a) (where the product is taken in Z/2, and b is reduced modulo 2),
for some ψ : Z/4→ Z/2. Relation (3-2) then translates as

ψ(a+ b)= ψ(b+ 2ab)+ψ(a).

The substitution b= 0 yields ψ(0)= 0. Analyzing other values of a and b, one sees
that ψ(1) and ψ(3) can be chosen arbitrarily, and ψ(2) has to equal ψ(1)+ψ(3).
The reduced 2-coboundaries are again trivial: a linear map θ : Z/4 → Z/2 is
necessarily of the form θ(a)= at for some constant t ∈ Z/2, yielding

θ(a · b)= (a · b)t = (1+ 2a)bt = bt = θ(b)

(since 2a = 0 in Z/2). Summarizing, one gets

RH 2(Z/4;Z/2)' Z/2×Z/2.

Let us now turn to the underlying cycle set (Z/4, · ). Playing with (3-3), one verifies
that its 2-cocycles are maps f : Z/4×Z/4→ Z/2 verifying 3 linear relations:

f (0, 1)+ f (0, 3)= 0,

f (2, 1)+ f (2, 3)= 0,

f (1, 1)+ f (1, 3)+ f (3, 1)+ f (3, 3)= 0.

Its only nontrivial 2-coboundary is f (a, b)= ab mod 2. This implies

Z2
CS(Z/4;Z/2)' (Z/2)

4×4−3
= (Z/2)13,

H 2
CS(Z/4;Z/2)' (Z/2)

12.

We will now construct extensions of our LCS A by 0 out of 2-cocycles, show
that any central cycle-type extension is isomorphic to one of this type, and that
reduced 2-cocycles, modulo reduced 2-coboundaries, classify such extensions.
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Lemma 3.3. Let (A, · ,+) be a linear cycle set, let 0 be an abelian group, and let
f : A× A→ 0 be a map. Then the abelian group 0⊕ A with the operation

(γ, a) · (γ ′, a′)= (γ ′+ f (a, a′), a · a′), γ, γ ′ ∈ 0, a, a′ ∈ A

is a linear cycle set if and only if f is a reduced 2-cocycle, i.e., f ∈ RZ2(A;0).

Notation 3.4. The LCS from the lemma is denoted by 0⊕ f A.

Proof. The left translation invertibility for 0⊕ f A follows from to the same prop-
erty for A. Properties (1-3) and (1-4) are equivalent for 0⊕ f A to, respectively,
properties (3-1) and (3-2) from the definition of a 2-cocycle for f . The cycle set
property (1-2) follows from (1-4) and the commutativity of + . �

Lemma 3.3 and the correspondence between linear cycle sets and braces yield
the following result.

Lemma 3.5. Let (A, ◦,+) be a brace, let 0 be an abelian group, and let f :
A× A→ 0 be a map. Then the abelian group 0⊕ A with the product

(γ, a) ◦ (γ ′, a′)= (γ + γ ′+ f (a, a′), a ◦ a′), γ, γ ′ ∈ 0, a, a′ ∈ A,

is a brace if and only if for the corresponding linear cycle set (A, · ,+), the map
f (a, b)= f (a, a · b) is a reduced 2-cocycle.

Before introducing the notion of LCS extensions, we need some preliminary
definitions.

Definition 3.6. A morphism between linear cycle sets A and B is a map ϕ : A→ B
preserving the structure, i.e., for all a, a′ ∈ A one has ϕ(a+a′)= ϕ(a)+ϕ(a′) and
ϕ(a ·a′)= ϕ(a) ·ϕ(a′). The kernel of ϕ is defined by Kerϕ = ϕ−1(0). The notions
of the image Imϕ = ϕ(A), of a short exact sequence of linear cycle sets, and of
linear cycle subsets, are defined in the obvious way. A linear cycle subset A′ of A
is called central if for all a ∈ A, a′ ∈ A′, one has a · a′ = a′ and a′ · a = a.

For a LSC morphism ϕ : A→ B, Kerϕ and Imϕ are clearly linear cycle subsets
of A and B respectively. Lemma 2.2 can be rephrased by stating that {0} is a central
linear cycle subset of A.

Definition 3.7. A central cycle-type extension of a linear cycle set (A, · ,+) by an
abelian group 0 is the datum of a short exact sequence of linear cycle sets

0→ 0
ι
→ E

π
→ A→ 0,(3-4)

where 0 is endowed with the trivial cycle set structure γ · γ ′ = γ ′, its image ι(0) is
central in E (in the sense of Definition 3.6), and the short exact sequence of abelian
groups underlying (3-4) splits.
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The adjective cycle-type refers here to the fact that our extensions are interesting
on the level of the cycle set operation · only, and trivial on the level of the additive
operation + , since we require the short exact sequences to linearly split. More
general extensions — those taking into account the additive operation as well — are
postponed until the next section. Cycle-type extensions are important, for example,
for comparing the LCS structures on the structure group of a cycle set before and
after a cycle set extension; see the introduction for more detail on structure groups,
and [Lebed and Vendramin 2015] for the cycle set extension theory.

The LCS 0⊕ f A from Lemma 3.3 is an extension of A by 0 in the obvious way.
We now show that this example is essentially exhaustive.

Definition 3.8. Two central cycle-type LCS extensions

0
ι
� E

π
� A and 0

ι′

� E ′
π ′

� A

are called equivalent if there exists an LCS isomorphism ϕ : E→ E ′ making the
following diagram commute:

(3-5)

E
π

)) ))
ϕ∼

��
0
55

ι
55

)) ι′

))

A

E ′
π ′ 55 55

The set of equivalence classes of central cycle-type extensions of A by 0 is denoted
by CTExt(A, 0).

Lemma 3.9. Let 0
ι
� E

π
� A be a central cycle-type LCS extension, and s : A→ E

be a linear section of π . Then the map

f̃ : A× A→ E, (a, a′) 7→ s(a) · s(a′)− s(a · a′)

takes values in ι(0) and defines a reduced cocycle f ∈ RZ2(A;0). Extensions E
and 0 ⊕ f A are equivalent. Furthermore, a cocycle f ′ obtained from another
section s ′ of π is cohomologous to f .

Proof. The computation

π( f̃ (a, a′))= πs(a) ·πs(a′)−πs(a · a′)= a · a′− a · a′ = 0

yields Im f̃ ⊆Kerπ = Im ι (by the definition of a short exact sequence). Hence the
map f : A× A→ 0 can be defined by the formula f = ι−1 f̃ . It remains to check
relations (3-1)-(3-2) for this map. The linearity of s and of the left translations
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tb : a 7→ b · a gives

f̃ (a, b+ c)= s(a) · s(b+ c)− s(a · (b+ c))

= s(a) · (s(b)+ s(c))− s(a · b+ a · c)

= s(a) · s(b)+ s(a) · s(c)− s(a · b)− s(a · c)= f̃ (a, b)+ f̃ (a, c).

hence f (a, b+ c)= f (a, b)+ f (a, c), by the linearity of ι. Similarly, one has

f̃ (a+ b, c) = s(a+ b) · s(c)− s((a+ b) · c)

= (s(a)+ s(b)) · s(c)− s((a · b) · (a · c))

= (s(a) · s(b)) · (s(a) · s(c))+ f̃ (a · b, a · c)− s(a · b) · s(a · c)

= f̃ (a · b, a · c)+ ( f̃ (a, b)+ s(a · b)) · (s(a) · s(c))− s(a · b) · s(a · c)
(1)
= f̃ (a · b, a · c)+ s(a · b) · (s(a) · s(c))− s(a · b) · s(a · c)

= f̃ (a · b, a · c)+ s(a · b) · (s(a) · s(c)− s(a · c))

= f̃ (a · b, a · c)+ s(a · b) · f̃ (a, c)
(2)
= f̃ (a · b, a · c)+ f̃ (a, c).

In (1) we got rid of f̃ (a, b) ∈ ι(0) since the centrality of ι(0) yields

( f̃ (a, b)+ x) · y = ( f̃ (a, b) · x) · ( f̃ (a, b) · y)= x · y

for all x, y ∈ E . This centrality was also used in (2). The relation f (a+ b, c)=
f (a · b, a · c)+ f (a, c) is now obtained from the corresponding relation for f̃ by
applying ι−1.

We will next show that the linear map ϕ : 0⊕ f A→ E , γ ⊕ a 7→ ι(γ )+ s(a)
yields an equivalence of extensions. It is bijective, the inverse given by the map
x 7→ ι−1(x−sπ(x))⊕π(x) (this map is well defined since x−sπ(x)∈Kerπ = Im ι).
Let us check that ϕ intertwines the cycle set operations. One has

ϕ((γ ⊕ a) · (γ ′⊕ a′))= ϕ((γ ′+ f (a, a′))⊕ a · a′)= ι(γ ′+ f (a, a′))+ s(a · a′)

= ι(γ ′)+ f̃ (a, a′)+ (s(a) · s(a′)− f̃ (a, a′))

= ι(γ ′)+ s(a) · s(a′)= s(a) · ι(γ ′)+ s(a) · s(a′)

= s(a) · (ι(γ ′)+ s(a′))= (ι(γ )+ s(a)) · (ι(γ ′)+ s(a′))

= ϕ(γ ⊕ a) ·ϕ(γ ′⊕ a′).

We use the centrality of ι(γ ′) and ι(γ ). The commutativity of the diagram (3-5)
is obvious, and completes the proof.

Suppose now that the reduced cocycles f and f ′ are obtained from the sections s
and s ′ respectively. Put θ̃ = s − s ′ : A→ E . This is a linear map with its image
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contained in Kerπ = Im ι. Hence it defines a linear map θ : A→0. To show that f
and f ′ are cohomologous, we establish the property f ′− f = ∂1θ by computing

( f̃ − f̃ ′)(a, a′)= f̃ (a, a′)− f̃ ′(a, a′)

= s(a) · s(a′)− s(a · a′)− s ′(a) · s ′(a′)+ s ′(a · a′)

= s(a) · s(a′)− s(a) · s ′(a′)− θ̃ (a · a′)

= s(a) · (s(a′)− s ′(a′))− θ̃ (a · a′)

= s(a) · θ̃ (a′)− θ̃ (a · a′)
(1)
= θ̃ (a′)− θ̃ (a · a′),

and applying ι−1, where we use the centrality of θ̃ (a′) in (1). �

We now compare extensions constructed out of different 2-cocycles.

Lemma 3.10. Let (A, · ,+) be a linear cycle set, let 0 be an abelian group, and
let f, f ′ ∈ RZ2(A;0) be two reduced 2-cocycles. The linear cycle set extensions
0⊕ f A and 0⊕ f ′ A are equivalent if and only if f and f ′ are cohomologous.

Proof. Suppose that a linear map ϕ : 0⊕ f A→ 0⊕ f ′ A provides an equivalence
of extensions. The commutativity of the diagram (3-5) forces it to be of the form
ϕ(γ ⊕ a)= (γ + θ(a))⊕ a for some linear map θ : A→ 0. Further, one computes

ϕ((γ ⊕ a) · (γ ′⊕ a′))= ϕ((γ ′+ f (a, a′))⊕ a · a′)

= (γ ′+ f (a, a′)+ θ(a · a′))⊕ a · a′,

ϕ(γ ⊕ a) ·ϕ(γ ′⊕ a′)= ((γ + θ(a))⊕ a) · ((γ ′+ θ(a′))⊕ a′)

= (γ ′+ θ(a′)+ f ′(a, a′))⊕ a · a′.

Thus the map ϕ entwines the cycle set operations if and only if f ′ − f is the
coboundary ∂1θ .

In the opposite direction, take cohomologous cocycles f and f ′. This means that
the relation f ′− f = ∂1θ holds for a linear map θ : A→0. Repeating the arguments
above, one verifies that the map ϕ(γ ⊕ a) = (γ + θ(a))⊕ a is an equivalence of
extensions 0⊕ f A→ 0⊕ f ′ A. �

Put together, the preceding lemmas yield:

Theorem 3.11. Let (A, · ,+) be a linear cycle set and 0 be an abelian group. The
construction from Lemma 3.9 yields a bijective correspondence

CTExt(A, 0)
1:1
←→ RH 2(A;0).

We finish this section by observing that in degree 2, the normalization brings
nothing new to the reduced LCS cohomology theory:
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Proposition 3.12. In a linear cycle set (A, · ,+), every reduced 2-cocycle is nor-
malized. Moreover, one has an isomorphism in cohomology:

RH 2(A;0)∼= RH 2
N(A;0).

Proof. Putting a = b = 0 in the defining relation (3-2) for a reduced 2-cocycle f ,
and using the properties of the element 0 from Lemma 2.2, f (0, c)= 0 for all c ∈ A.
Moreover, f (c, 0)= 0 by linearity. So f is normalized, hence the identification

RZ2(A;0)= RZ2
N(A;0).

In degree 1 the normalized and usual complexes coincide, yielding the desired
cohomology group isomorphism in degree 2. �

4. Full linear cycle set cohomology

The previous section treated linear cycle set extensions of the form 0⊕ f A. They
can be thought of as the direct product 0⊕ A of LCS with the cycle set operation ·
deformed by f . From now on we will handle a more general situation: the additive
operation + on 0⊕ A will be deformed as well. Most proofs in this general case
are analogous to but more technical than those from the previous sections.

Take a linear cycle set (A, · ,+) and an abelian group 0. For i > 0, j > 1, let
ShCi, j (A;0) be the abelian subgroup of 0(A

×(i+ j)), generated by the partial shuffles

(4-1)
∑

σ∈Shr, j−r

(−1)σγ (a1, . . . , ai , ai+σ−1(1), . . . , ai+σ−1( j))

taken for all 1 6 r 6 j − 1, ak ∈ A, γ ∈ 0. Here Shr, j−r is the subset of all the
permutations σ of j elements satisfying σ(1)6 · · ·6 σ(r), σ(r +1)6 · · ·6 σ( j).
The term shuffle is used when i = 0. Put

Ci, j (A;0)= 0(A
×(i+ j))/ShCi, j (A;0).

Recall the notation

∂n;0(a1, . . . , an)= (a1 · a2, . . . , a1 · an),(4-2)

∂n;i (a1, . . . , an)= (a1, . . . , ai + ai+1, . . . , an), 16 i 6 n− 1,(4-3)

from the proof of Proposition 2.1, and consider the coordinate omitting maps

(4-4) ∂ ′n;i (a1, . . . , an)= (a1, . . . , ai−1, ai+1, . . . , an), 16 i 6 n.
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Combine (the linearizations of) these maps into what we will show to be horizontal
and vertical differentials of a bicomplex:

∂h
i, j = ∂i+ j;0+

i−1∑
k=1

(−1)k∂i+ j;k + (−1)i∂ ′i+ j;i , i > 1, j > 1;(4-5)

−∂vi, j = ∂
′

i+ j;i+1+

j−1∑
k=1

(−1)k∂i+ j;i+k + (−1) j∂ ′i+ j;i+ j , i > 0, j > 2.(4-6)

Here the empty sums are zero by convention. As before, CD
i, j (A;0) denotes the

abelian subgroup of 0(A
×(i+ j)) generated by the degenerate (i + j)-tuples, and

CN
i, j (A;0) is the quotient 0(A×(i+ j))/(CD

i, j (A;0)+ShCi, j (A;0)).
Dually, for f ∈ Fun(A×(i+ j), 0), put

∂ i, j
h f = f ◦ ∂h

i+1, j and ∂ i, j
v f = f ◦ ∂vi, j+1,

where i > 0, j > 1, and f is extended to Z(A
×(i+ j)) by linearity. Let C i, j (A;0) be

the abelian group of maps A×(i+ j)
→ 0 whose linearization vanishes on all partial

shuffles (4-1) (with γ omitted), and let C i, j
N (A;0)⊆C i, j (A;0) comprise the maps

which are moreover zero on all the degenerate (i + j)-tuples.
We now assemble these data into both chain and cochain bicomplex structures

with normalization.

Theorem 4.1. Let (A, · ,+) be a linear cycle set and 0 be an abelian group.

(1) The abelian groups 0(A
×(i+ j)), i > 0, j > 1, together with the linear maps ∂h

i, j
and ∂vi, j above, form a chain bicomplex. In other words, the following relations
are satisfied:

∂h
i−1, j ∂

h
i, j = 0, i > 2, j > 1;(4-7)

∂vi, j−1∂
v
i, j = 0, i > 0, j > 3;(4-8)

∂h
i, j−1∂

v
i, j = ∂

v
i−1, j ∂

h
i, j , i > 1, j > 2.(4-9)

Moreover, these maps restrict to the subgroups ShCi, j (A;0) and CD
i, j (A;0),

and thus induce chain bicomplex structures on Ci, j (A;0) and CN
i, j (A;0).

(2) The linear maps ∂ i, j
h and ∂ i, j

v yield a cochain bicomplex structure for the
abelian groups Fun(A×(i+ j), 0), i > 0, j > 1. This structure restricts to
C i, j (A;0) and further to C i, j

N (A;0).

We abusively denote the induced or restricted maps from the theorem by the
same symbols ∂•h , ∂•v, etc.

The proof of the theorem relies on the following interpretation of our bicomplex.
Its j -th row is almost the complex from Proposition 2.1, with a slight modification:
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the last entry in an n-tuple, to which the ∂n;i with i >0 did nothing and on which ∂n;0

acted by a left translation an 7→ a1 ·an , is replaced with the j -tuple of last elements
behaving in the same way. In the i-th column, the first i entries of A×(i+•) are never
affected; on the remaining entries the vertical differentials ∂vi,• act as the differentials
from Proposition 2.1 computed for the trivial cycle set operation a · b = b. Alterna-
tively, the i-th column can be seen as the Hochschild complex for (A,+) with coef-
ficients in A×i, on which A acts trivially on both sides. Modding out ShCi, j (A;0)
means passing from the Hochschild to the Harrison complex in each column.

Proof. As usual, it suffices to treat only the homological statements.
Due to the observation preceding the proof, the horizontal relation (4-7) and the

vertical relation (4-8) follow from Proposition 2.1. For the mixed relation (4-9), note
that the horizontal and vertical differentials involved affect, respectively, the first i
and the last j entries of an (i + j)-tuple, with the exception of the ∂n;0 component
of ∂h. However, this component also commutes with ∂v because of the linearity
(with respect to + ) of the left translation a1 · − involved.

Applying a left translation a · − to each entry of a partial shuffle (4-1), one
still gets a partial shuffle. Consequently, the horizontal differentials ∂h restrict
to ShCi, j (A;0). In order to show that the ∂v restrict to ShCi, j (A;0) as well, it
suffices to check that the expression∑
σ∈Shr, j−r

(−1)σ (aσ−1(2), . . . , aσ−1( j))

+

j−1∑
k=1

(−1)k
∑

σ∈Shr, j−r

(−1)σ (aσ−1(1), . . . , aσ−1(k)+ aσ−1(k+1), . . . , aσ−1( j))

+ (−1) j
∑

σ∈Shr, j−r

(−1)σ (aσ−1(1), . . . , aσ−1( j−1))

is a linear combination of shuffles for all j > 1, 16 r 6 j − 1, ak ∈ A. Let S1, S2,
and S3 denote the three sums above, and consider the classical notation

r, j−r (a1, . . . , a j )=
∑

σ∈Shr, j−r

(−1)σ (aσ−1(1), . . . , aσ−1( j))

for shuffles, and the convention 0, j = j,0= Id. Recall also notation (4-3)–(4-4).
The sums Si then rewrite as

S1 = r−1, j−r∂
′

j;1+ (−1)r r, j−r−1 ∂
′

j;r+1,

S3 = (−1)r r−1, j−r ∂
′

j;r + (−1) j
r, j−r−1 ∂

′

j; j ,

S2 =

r−1∑
k=1

(−1)k r−1, j−r ∂j;k +

j−1∑
k=r+1

(−1)k r, j−r−1 ∂ j;k,
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with empty sums declared to be zero. The decomposition for S1 follows from the
analysis of the two possibilities for σ−1(1)with σ ∈Shr, j−r , namely, σ−1(1)=1 and
σ−1(1)= r+1. The decomposition for S3 corresponds to the dichotomy σ−1( j)= r
or σ−1( j) = j . In S3, the summands with σ−1(k) = u 6 r < v = σ−1(k + 1)
and σ−1(k) = v, σ−1(k + 1) = u appear with opposite signs and can therefore
be discarded. The remaining ones can be divided into two classes: those with
σ−1(k) < σ−1(k + 1) 6 r and those with r < σ−1(k) < σ−1(k + 1), giving the
decomposition above. Our Si are thus signed sums of shuffles, with the exception
of the cases r ∈ {1, j − 1}. For r = 1, the nonshuffle terms ∂ ′j;1 and −∂ ′j;1 appear
in S1 and S3 respectively; they annihilate each other in the total sum. The case
r = j − 1 is treated similarly.

The possibility to restrict all the ∂h and ∂v to CD
i, j (A;0) is taken care of, as

usual, by Lemma 2.2. As a consequence, one obtains a chain bicomplex structure
on CN

i, j (A;0). �

We are now in a position to define the full (co)homology of a linear cycle set:

Definition 4.2. The cycles, boundaries, homology groups of a linear cycle set
(A, · ,+)with coefficients in an abelian group 0 are those of the total chain complex(

Cn(A;0)=
⊕

i+ j=n

Ci, j (A;0), ∂n|Ci, j
= ∂h

i, j + (−1)i∂vi, j

)
of the bicomplex above. Dually, the cocycles, coboundaries, cohomology groups of
(A, · ,+) are those of the complex(

Cn(A;0)=
⊕

i+ j=n

C i, j (A;0), ∂n
= ∂∗n+1

)
.

In the normalized case, one uses the complexes(
CN

n (A;0)=
⊕

i+ j=n

CN
i, j (A;0), ∂n

)
and

(
Cn

N(A;0)=
⊕

i+ j=n

C i, j
N (A;0), ∂n

)
.

We use the usual notations Qn(A;0), etc., where Q is one of the letters Z , B, or H.

Remark 4.3. In fact our (co)chain bicomplex constructions can be refined into
bisimplicial ones.

Remark 4.4. Instead of considering the total complex of our bicomplex, one
could start by, say, computing the homology H v

i,• of each column. The horizontal
differentials then induce a chain complex structure on each row H v

•, j . Observe that
the first row is precisely the complex from Proposition 2.1. Its homology is then
the reduced homology of our linear cycle set.
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5. General linear cycle set extensions

Our next step is to describe what a 2-cocycle looks like for the full version of
linear cycle set cohomology theory. Such a 2-cocycle consists of two components
f,g : A×A→0, seen as elements of C1,1(A;0)=Fun(A×A, 0) and C0,2(A;0)=
Sym(A× A, 0), respectively. Here Sym denotes the abelian group of symmetric
maps, i.e., satisfying

(5-1) g(a, b)= g(b, a).

These maps should satisfy three identities, one for each component of

C3(A;0)= C2,1(A;0)⊕C1,2(A;0)⊕C0,3(A;0).

Explicitly, these identities read

f (a+ b, c)= f (a · b, a · c)+ f (a, c),(5-2)

f (a, b+ c)− f (a, b)− f (a, c)= g(a · b, a · c)− g(b, c),(5-3)

g(a, b)+ g(a+ b, c)= g(b, c)+ g(a, b+ c).(5-4)

In particular, f is a 2-cocycle of the cycle set (A, · ), and g is a symmetric 2-cocycle
of the group (A,+). The reduced cocycles are precisely those with g = 0. Further,
the 2-coboundaries are couples of maps

f (a, b)= θ(a · b)− θ(b),(5-5)

g(a, b)= θ(a+ b)− θ(a)− θ(b)(5-6)

for some θ : A→ 0.
We next give some elementary properties of 2-cocycles and 2-coboundaries.

Lemma 5.1. Let ( f, g) be a 2-cocycle of a linear cycle set (A, ·,+) with coeffi-
cients in an abelian group 0.

(1) For all x ∈ A,
f (0, x)= f (x, 0)= 0,

g(0, x)= g(x, 0) = g(0, 0).

(2) The 2-cocycle ( f, g) is normalized if and only if g(0, 0)= 0.

Proof. Let us prove the first claim. The relation f (0, x)= 0 follows from (5-2) by
choosing a = 0. Similarly, the relation f (x, 0)= 0 is (5-3) specialized at b= c= 0.
Substitutions b = 0 and either a = 0 or c = 0 in (5-4) yield the last relation. Now
the second claim directly follows from the previous point. �
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Lemma 5.2. Let (A, · ,+) be a linear cycle set, let 0 be an abelian group, and let
f, g : A× A→ 0 be two maps. Then the set 0× A with the operations

(γ, a)+ (γ ′, a′)= (γ + γ ′+ g(a, a′), a+ a′),

(γ, a) · (γ ′, a′)= (γ ′+ f (a, a′), a · a′)

for γ, γ ′ ∈ 0, a, a′ ∈ A, is a linear cycle set if and only if ( f, g) is a 2-cocycle, i.e.,
( f, g) ∈ Z2(A;0).

Notation 5.3. The LCS from the lemma is denoted by 0⊕ f,g A.

Proof. The left translation invertibility for 0⊕ f,g A follows from the same property
for A. Properties (1-3) and (1-4) for 0 ⊕ f,g A are equivalent to, respectively,
properties (5-3) and (5-2) for ( f, g). The associativity and the commutativity
of + on 0⊕ f,g A are encoded by property (5-4) for 0⊕ f,g A and the symmetry
of g respectively. Finally, if ( f, g) is a 2-cocycle, then Lemma 5.1 implies that
(−g(0, 0), 0) is the zero element for (0⊕ f,g A, +), and the opposite of (γ, a) is
(−γ − g(0, 0)− g(a,−a), −a). �

As we did in Lemma 3.5, we now translate Lemma 5.2 into the language of
braces.

Lemma 5.4. Let (A, ◦,+) be a brace, 0 be an abelian group, and f, g : A×A→0

be two maps. Then the set 0× A with the operations

(γ, a)+ (γ ′, a′)= (γ + γ ′+ g(a, a′), a+ a′),

(γ, a) ◦ (γ ′, a′)= (γ + γ ′+ f (a, a′), a ◦ a′)

for γ, γ ′ ∈ 0, a, a′ ∈ A, is a brace if and only if for the corresponding linear cycle
set (A, · ,+), the maps

(5-7) f (a, b)=− f (a, a · b)+ g(a, b)

and g form a 2-cocycle ( f , g) ∈ Z2(A;0).

Proof. Recall the correspondence a · b = a−1
◦ (a+ b) between the corresponding

brace and LCS operations. It can also be rewritten as a ◦ b = a+ a ∗ b, where the
map a 7→ a ∗ b is the inverse of the left translation a 7→ a · b.

Now, given any ( f , g) ∈ Z2(A;0), the formulas from Lemma 5.2 describe an
LCS structure on 0× A. Its operation ∗ reads

(γ, a) ∗ (γ ′, a′)= (γ ′− f (a, a ∗ a′), a ∗ a′).

The operations

(γ, a)+ (γ ′, a′)= (γ + γ ′+ g(a, a′), a+ a′),
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and
(γ, a) ◦ (γ ′, a′)= (γ, a)+ (γ, a) ∗ (γ ′, a′)

= (γ + γ ′− f (a, a ∗ a′)+ g(a, a ∗ a′), a ◦ a′)

then yield a brace structure on 0× A. These formulas have the desired form, with

f (a, a′)=− f (a, a ∗ a′)+ g(a, a ∗ a′),

which, through the substitution b = a ∗ a′, is equivalent to (5-7).
Conversely, starting from a brace structure on 0× A of the desired form, one

sees that its associated LCS structure is as described in Lemma 5.2 with some
( f , g) ∈ Z2(A;0). Repeating the argument above, one obtains the relation (5-7)
connecting f , f , and g. �

Definition 5.5. A central extension of a linear cycle set (A, · ,+) by an abelian
group 0 is the datum of a short exact sequence of linear cycle sets

(5-8) 0→ 0
ι
→ E

π
→ A→ 0,

where 0 is endowed with the trivial cycle set structure, and its image ι(0) is central
in E (in the sense of Definition 3.6). The notion of equivalence for central cycle-type
LCS extensions (Definition 3.8) transports verbatim to these general extensions. The
set of equivalence classes of central extensions of A by 0 is denoted by Ext(A, 0).

The LCS 0⊕ f,g A from Lemma 5.2 is an extension of A by 0 in the obvious
way. We now show that this example is essentially exhaustive.

Lemma 5.6. Let 0
ι
�E

π
�A be a central LCS extension, and let s : A→ E be a

set-theoretic section of π .

(1) The maps f̃, g̃ : A× A→ E defined by

f̃ : (a, a′) 7→ s(a) · s(a′)− s(a · a′),

g̃ : (a, a′) 7→ s(a)+ s(a′)− s(a+ a′)

both take values in ι(0) and determine a cocycle ( f, g) ∈ Z2(A;0).

(2) The cocycle above is normalized if and only if s is such, in the sense of s(0)= 0.

(3) Extensions E and 0⊕ f,g A are equivalent.

(4) A cocycle ( f ′, g′) obtained from another section s ′ of π is cohomologous to
( f, g). If both cocycles are normalized, then they are cohomologous in the
normalized sense.

Lemma 5.7. Let (A, · ,+) be a linear cycle set, let 0 be an abelian group, and let
( f, g), ( f ′, g′) ∈ Z2(A;0) be 2-cocycles. The linear cycle set extensions 0⊕ f,g A
and 0 ⊕ f ′,g′ A are equivalent if and only if the cocycle ( f, g) − ( f ′, g′) is a
normalized 2-coboundary.
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Recall that a normalized 2-coboundary is a couple of maps of the form ∂1θ ,
where the map θ : A→ 0 is normalized, in the sense of θ(0)= 0.

The proof of these lemmas is technical but conceptually analogous to the proofs
of Lemmas 3.9 and 3.10, and will therefore be omitted.

Put together, the preceding lemmas prove:

Theorem 5.8. Let (A, · ,+) be a linear cycle set and 0 be an abelian group. The
construction from Lemma 5.6 yields a bijective correspondence

Ext(A, 0)
1:1
←→ H 2

N(A;0).

In other words, the central extensions of LCS (and thus of braces) are completely
determined by their second normalized cohomology groups.
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