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BITWIST MANIFOLDS AND TWO-BRIDGE KNOTS

JAMES W. CANNON, WILLIAM J. FLOYD, LEER LAMBERT,
WALTER R. PARRY AND JESSICA S. PURCELL

Though LeeR Lambert spent his life as an actuary and a musician and was a loving father
of nine girls and one boy, he had always wanted to earn an advanced degree as a math-
ematician. With the encouragement of his wife, he earned his Ph.D. in mathematics at
the age of 68. Many of the results of this paper appeared in his Ph.D. dissertation at
Brigham Young University. At the age of 71, LeeR died of bone cancer. We miss you, LeeR.

We give uniform, explicit, and simple face-pairing descriptions of all the
branched cyclic covers of the 3-sphere, branched over two-bridge knots.
Our method is to use the bitwisted face-pairing constructions of Cannon,
Floyd, and Parry; these examples show that the bitwist construction is of-
ten efficient and natural. Finally, we give applications to computations of
fundamental groups and homology of these branched cyclic covers.

1. Introduction

Branched cyclic covers of S3 have played a major role in topology, and continue
to appear in a wide variety of contexts. For example, branched cyclic covers of S3

branched over two-bridge knots have recently appeared in combinatorial work bound-
ing the Matveev complexity of a 3-manifold [Petronio and Vesnin 2009], in algebraic
and topological work determining relations between L-spaces, left-orderability, and
taut foliations [Gordon and Lidman 2014; Boyer et al. 2013; Hu 2015], and in
geometric work giving information on maps of character varieties [Nagasato and Ya-
maguchi 2012]. They provide a wealth of examples, and a useful collection of mani-
folds on which to study conjectures. Given their wide applicability, and their con-
tinued relevance, it is useful to have many explicit descriptions of these manifolds.

We give a new and elegant construction of the branched cyclic covers of two-
bridge knots, using the bitwist construction of [Cannon et al. 2009]. While other
presentations of these manifolds are known (see, for example, [Minkus 1982;
Mulazzani and Vesnin 2001]), we feel our descriptions have several advantages.

First, they follow from a recipe involving exactly the parameters necessary to
describe a two-bridge knot, namely, continued fraction parameters. Our descriptions

MSC2010: 57M12, 57M25.
Keywords: bitwist manifolds, two-bridge knots, branched cyclic covers.
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apply uniformly to all two-bridge knots, and all branched cyclic covers of S3

branched over two-bridge knots.
Second, they are obtained from a description of a two-bridge knot using a very

straightforward bitwisted face-pairing construction, as in [Cannon et al. 2000; 2002;
2003; 2009]. Bitwisted face-pairings (read “bi-twisted”, as in twisted two ways)
are known to produce all closed orientable 3-manifolds. The examples of this paper
show, in addition, that bitwist constructions are often efficient and natural. While a
generic face-pairing will yield a pseudomanifold, which, with probability 1, will not
be an actual manifold [Dunfield and Thurston 2006], bitwisted face-pairings avoid
this problem. (We will review necessary information on bitwisted face-pairings,
so no prior specialized knowledge is required to understand our constructions.)

Third, our description leads to immediate consequences in geometric group
theory. We obtain a simple proof of the fact that the fundamental group of the
n-fold branched cyclic covering of S3, branched over a two-bridge knot, has a cyclic
presentation. Our description also gives immediate presentations of two well-known
families of groups, the Fibonacci and Sieradski groups. These are known to arise as
fundamental groups of branched cyclic covers of S3 branched over the figure-eight
and trefoil knots, respectively. These groups have received considerable attention
from geometric group theorists; see, for example, [Cavicchioli et al. 1998] for
further references, and Section 6 for more history. Our methods recover the fact
that the first homology groups of Sieradski manifolds are periodic. We also give a
proof that their fundamental groups are distinct using Milnor’s characterization of
these spaces. We consider orders of abelianizations of Fibonacci groups as well.
These orders form an interesting sequence related to the Fibonacci sequence, which
we shall see.

1A. Bitwisted face-pairing description. We will see that the bitwist description
of any two-bridge knot is encoded as the image of the north–south axis in a ball
labeled as in Figure 1, along with an associated vector of integer multipliers. For the
branched cyclic cover, the description is encoded by adding additional longitudinal
arcs to the sphere. We now describe the construction briefly, in order to state the
main results of the paper. A more detailed description of the construction, with
examples, is given in Section 2.

Begin with a finite graph 0 in the 2-sphere S2
= ∂B3 that is the union of the

equator e, one longitude NS from the north pole N to the south pole S, and 2k ≥ 0
latitudinal circles, such that 0 is invariant under reflection

ε : S2
→ S2

in the equator. Then 0 divides S2 into 2(k + 1) faces that are paired by ε. This
face-pairing is shown in Figure 1.
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N

e
v

ε

S

Figure 1. The model face-pairing: a faceted 3-ball with dotted
central axis and reflection face-pairing ε : ∂B3

→ ∂B3.

As with any face-pairing, the edges fall into edge cycles. The equator e forms
one edge cycle c0 since the reflection ε leaves e invariant. Each other edge of the
graph is matched with its reflection to form another edge cycle ci . We number these
edge cycles from 0 through 2k+ 1, with even numbers associated with latitudinal
edges, as indicated in Figure 2.

Now choose nonzero integer multipliers, denoted m0,m1, . . . ,m2k,m2k+1, for
the edge cycles ci . In the case at hand, restrict the choice of multipliers mi as
follows. Each latitudinal edge cycle c2i is assigned either +1 or −1 as multiplier.
Each longitudinal edge cycle c2i+1 may be assigned any integer multiplier m2i+1

whatsoever, including 0. The multiplier m2i+1 = 0 is usually forbidden, but in this
case indicates that the two edges of edge-class c2i+1 must be collapsed to a point
before the bitwist construction is engaged.

N
2k+1

2k
2k−1

2k−2

4 3
2 1
0 v

e

Figure 2. The northern hemisphere, with edge cycles numbered.
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Finally, for the general bitwist construction, we obtain a closed manifold M(ε,m)
by taking the following quotient. First, subdivide each edge in the edge cycle ci

into |ci | · |mi | subedges. Insert an additional edge between each adjacent positive
and negative edge, if any. Then twist each subedge by one subedge in a direction
indicated by the sign of mi . Finally, apply the face-pairing map ε to glue bitwisted
faces. This is the bitwist construction.

In Theorem 4.2, we prove that the bitwist manifold M(ε,m) described above is
the 3-sphere S3. The image of the north–south axis in S3 is a two-bridge knot. In
fact, we prove more. Recall that every two-bridge knot is the closure of a rational
tangle. See [Kauffman and Lambropoulou 2002] for an elementary exposition.
A rational tangle is determined up to isotopy by a single rational number, which
we call the rational number invariant of the tangle. There are two natural ways
to close a tangle so that it becomes a knot or link, the numerator closure and the
denominator closure. The full statement of Theorem 4.2 is below.

Theorem 4.2. The bitwist manifold M(ε,m) is the 3-sphere S3. The image of the
north–south axis in S3 is the two-bridge knot which is the numerator closure of the
tangle T (a/b) whose rational number invariant a/b is

2 ·m0+
1

2·m1+
1

. . .+
1

2·m2k+
1

2·m2k+1

.

Remark 1.1. The 2’s in the continued fraction indicate that the tangle is constructed
using only full twists instead of the possible mixture of full and half twists.

Example 1.2. The simplest case, with only equator and longitude, yields the trefoil
and figure-eight knots, as we shall see in Theorem 4.1. Simple subdivisions yield
their branched cyclic covers, the Sieradski [1986] and Fibonacci [Vesnin and
Mednykh 1996] manifolds.

Definition 1.3. We say that the multiplier function m is normalized if

(1) m2k+1 6= 0, and

(2) if m2i+1 = 0 for some i ∈ {0, . . . , k− 1}, then m2i = m2i+2.

With this definition, the previous theorem and well-known results involving
two-bridge knots yield the following corollary.

Corollary 4.4. Every normalized multiplier function yields a nontrivial two-bridge
knot. Conversely, every nontrivial two-bridge knot K is realized by either one or
two normalized multiplier functions. If K is the numerator closure of the tangle
T (a/b), then it has exactly one such realization if and only if b2

≡ 1 mod a.
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Notice that the n-th branched cyclic covering of S3, branched over K , can
be obtained by unwinding the description n times about the unknotted axis that
represents K , unwinding the initial face-pairing as in Figure 17. This leads to a
new proof of the following result, originally due to Alberto Cavicchioli, Friedrich
Hegenbarth and Ana Chi Kim [Cavicchioli et al. 1999a].

Theorem 5.2. The fundamental group of the n-th branched cyclic covering of S3,
branched over a two-bridge knot K , has a cyclic presentation.

Problem 1.4. How should one carry out the analogous construction for arbitrary
knots?

1B. The Fibonacci and Sieradski manifolds. Since the knots in the face-pairing
description appear as the unknotted axis in B3, it is easy to unwind B3 around the
axis to obtain face-pairings for the branched cyclic coverings of S3, branched over
the trefoil knot and the figure-eight knot. For the trefoil knot, the n-th branched
cyclic cover Sn is called the n-th Sieradski manifold. For the figure-eight knot, the
n-th branched cyclic cover Fn is called the n-th Fibonacci manifold. We will prove:

Theorem 5.4. The fundamental group π1(Fn) is the 2n-th Fibonacci group with
presentation

〈x1, . . . , x2n | x1x2 = x3, x2x3 = x4, . . . , x2n−1x2n = x1, x2nx1 = x2〉.

The fundamental group π1(Sn) is the n-th Sieradski group with presentation

〈y1, . . . , yn | y1 = y2 yn, y2 = y3 y1, y3 = y4 y2, . . . , yn = y1 yn−1〉.

Remark 1.5. The group presentations are well known once the manifolds are
recognized as branched cyclic covers of S3, branched over the figure-eight knot
and the trefoil knot. But these group presentations also follow immediately from
the description of the bitwist face-pairings, as we shall see.

The first homology of the Sieradski manifolds has an intriguing periodicity
property, which is well known (see, for example, Rolfsen [1976]). In particular,
it is periodic of period 6. The following theorem, concerning their fundamental
groups, is not as well known; it is difficult to find in the literature. We give a proof
using Milnor’s characterization of these spaces.

Theorem 5.13. No two of the Sieradski groups are isomorphic. Hence no two of
the branched cyclic covers of S3, branched over the trefoil knot, are homeomorphic.

1C. Organization. In Section 2, we give a more careful description of the bitwisted
face-pairing, and work through the description for two examples, which will corre-
spond to the trefoil and figure-eight knots.
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In Section 3, we recall many of the results in our previous papers [Cannon et al.
2003; 2009] to make explicit the connections between face-pairings, Heegaard
splittings, and surgery descriptions of 3-manifolds. We apply these to the examples
of bitwisted face-pairings given here, to give surgery descriptions. We use these
descriptions in Section 4 to prove that our constructions yield two-bridge knots.
The proofs of the main geometric theorems are given in this section.

In Section 5 we turn to geometric group theory. We prove that our presentations
easily lead to well-known results on presentations of fundamental groups. We also
give results on Fibonacci and Sieradski groups in this section.

Finally, Section 6 explains some of the history of these problems.

2. Bitwisted face-pairing: trefoil and figure-eight knots

In this section we step through the bitwisted face-pairing description more carefully.
We believe it will be most useful to work through a pair of examples. We will see in
subsequent sections that these examples lead to Fibonacci and Sieradski manifolds.

As an example, consider the simplest model, shown in Figure 3 (left). The
graph has three edges and three vertices, and divides the sphere into two singular
“triangles”, which are then matched by reflection ε in the equator e.

Bitwisted face-pairings require an integer multiplier for each edge cycle. For this
simple model there are two edge cycles, namely the singleton c0 = {e} and the pair
c1 = {Nv, Sv}. We will see that multiplying every multiplier by −1 takes the knot
which we construct to its mirror image. So up to taking mirror images, the two
simplest choices for multipliers are m0 =±1 for c0 and m1 = 1 for c1. The bitwist
construction requires that each edge in the cycle ci be subdivided into |ci | · |mi |

subedges. When both positive and negative multipliers appear on edges of the
same face, we must insert an additional edge, called a sticker, between a negative

N

e v
ε

S

N

a

e v

a′

S

N

a

xe v

x ′ a′

S

Figure 3. A faceted 3-ball with vertices N , v, and S and edges Nv,
Sv, and e (left), subdivisions for M+ (middle), and subdivisions
for M− (right).
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and positive edge in a given, fixed orientation of S2. We will use the clockwise
orientation.

With the facets modified as described in the previous paragraph, we are prepared
for the bitwisting. Twist each subedge of each face by one subedge before applying
the model map ε. Edges with positive multiplier are twisted in the direction of
the fixed orientation. Edges with negative multiplier are twisted in the opposite
direction. The stickers resolve the twisting conflict between negative and positive
subedges. A sticker in the domain of the map splits into two subedges. A sticker in
the range of the map absorbs the folding together of two subedges.

We denote by M+ the face-pairing in which both multipliers are +1 and by M−
the face-pairing where one multiplier is +1 and the other is −1. The two results
are shown in Figure 3 (middle and right).

After this subdivision, the faces can be considered to have five edges for M+
and seven edges for M−. Before making the identification of the northern face with
the southern face, we rotate the 5-gon one notch (= one edge = one-fifth of a turn,
combinatorially) in the direction of the given orientation on S2 before identification.
We rotate the edges of the 7-gon with positive multiplier one notch (= one edge =
one-seventh of a turn, combinatorially) in the direction of the orientation before
identification. The edges with negative multiplier are twisted one notch in the
opposite direction. The stickers absorb the conflict at the joint between positive
and negative. Thus the face-pairings ε+ and ε− in terms of the edges forming the
boundaries of the faces are given as follows.

For M+: ε+ :

(
av e va aN Na
e va′ a′S Sa′ a′v

)
.

For M−: ε− :

(
av e vx xv va aN Na
vx ′ x ′v e va′ a′S Sa′ a′v

)
.

The bitwist theorem [Cannon et al. 2009, Theorem 3.1] implies that the resulting
identification spaces are closed manifolds, which we denote by F1 for M+ and S1

for M−. We shall see that both of these manifolds are S3, and thus topologically
uninteresting. But as face-pairings, these identifications are wonderfully interesting
because the north–south axis from B3 becomes the figure-eight knot K+ in F1 and
becomes the trefoil knot K− in S1. We prove this in Theorem 4.1.

3. Pseudo-Heegaard splittings and surgery diagrams

In order to recognize the quotients of B3 described in Section 1 as the 3-sphere
and to recognize the images of the north–south axis as two-bridge knots, we need
to make more explicit the connections between face-pairings, Heegaard splittings,
and surgery descriptions of 3-manifolds, described in our previous papers [Cannon
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0
N

Figure 4. The addition of new red arcs.

et al. 2003; 2009]. We use these connections to transfer knots from the face-pairing
description to the surgery descriptions.

3A. The pseudo-Heegaard splitting. We begin with the following information:

B: a faceted 3-ball which we identify with B3
= [0, 1] ·S2 (where · is scalar

multiplication).

0 ⊂ ∂B = S2: the 1-skeleton of B, a connected, finite graph with at least
one edge.

1: the dual 1-skeleton, consisting of a cone from the center 0 of B to points
of ∂B, one in the interior of each face of B.

N : a regular neighborhood of 0 in ∂B.

N0 =
[ 3

4 , 1
]
· N : a regular neighborhood of 0 in B.

N1 = cl(B− N0): a regular neighborhood of 1 in B.

Add extra structure to N and N0 as follows.
First, from each vertex v of 0, we extend arcs from v to ∂N , one to each local

side of 0 at v so that the interiors of these arcs are mutually disjoint. Label these
arcs red. Figure 4 shows this for the simplest model described above.

Next, momentarily disregarding both the vertices and edges of 0, we view the
red arcs as subdividing N into quadrilaterals (occasionally singular at the arc ends),
every quadrilateral having two sides in ∂N and two sides each of which is the union
of two (or one in the singular case) of these red arcs, as on the left of Figure 5.

Every such quadrilateral contains exactly one edge of 0. We cut these quadrilat-
erals into half-quadrilaterals by arcs transverse to the corresponding edge of 0 at
the middle of that edge. Label these transverse arcs blue. For the simplest model,
this is shown in Figure 5 (right).

If we cut N along the new red arcs and blue transverse arcs, multiply by the
scalar interval

[ 3
4 , 1

]
, and desingularize, we obtain cubes, each containing exactly

one vertex of 0 in its boundary. Endow these cubes with a cone structure, coned to
its vertex in 0. See Figure 6.

Finally, we assume that ε : ∂B→ ∂B is an orientation-reversing face-pairing,
based on the faceted 3-ball B, that respects all of this structure as much as possible:
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Figure 5. The addition of blue transverse arcs.

Figure 6. The cone structure.

faces are paired; N is invariant under the pairing; the regions bounded by the new
arcs, the transverse arcs, the boundary of N , and 0 are paired by ε; and cone
structures are preserved.

Definition 3.1. Let C0 be the union of the products of the transverse arcs with[ 3
4 , 1

]
. Let C1 = N1 ∩ (∂B). Define D0 = C0/ε, D1 = C1/ε, H0 = N0/ε, and

H1 = N1/ε, and let δ = ∂D1 and γ = ∂D0.

The following is essentially contained in [Cannon et al. 2003, Theorem 4.2.1].

Theorem 3.2. The space H1 is a handlebody with one handle for each face pair
of B. The set D1 is a disjoint union of disks that form a complete set of handle
disks for H1; the curves δ form a complete set of handle curves.

The space H0 is a handlebody if and only if M(ε) = B/ε is a 3-manifold. In
that case, D0 is a disjoint union of disks that form a complete set of handle disks
for H0 and γ forms a complete set of handle curves. Whether M(ε) is a manifold
or not, the disks of D0 cut H0 into pieces X i , each containing exactly one vertex vi

of M(ε), and each X i is a cone vi Si , where Si is a closed orientable surface. The
space M(ε) is a manifold if and only if each Si is a 2-sphere. (The cone structure
on X i uses the cone structures of the pieces described above.)

Terminology 3.3. Even when M(ε)= B/ε is not a manifold, we call the disks of D0

handle disks for H0 and the curves γ = ∂D0 handle curves for H0. We call H0
a pseudohandlebody and the pair (H0, H1) a pseudo-Heegaard splitting for M(ε).

All bitwist manifolds based on the face-pairing (B, ε) have Heegaard splittings
and surgery descriptions that can be based on any unknotted embedding of H1 =
N1/ε in S3

= R3
∪{∞}. The closure of the complement is then also a handlebody,

which we shall denote by H . We describe here a particular unknotted embedding



10 J. W. CANNON, W. J. FLOYD, L. LAMBERT, W. R. PARRY AND J. S. PURCELL

3
4 · B

B

δi

δj

Figure 7. The ball with chimneys N1 (left), and the handlebody H1 (right).

of H1 in S3, and illustrate with the constructions from Section 1A, especially those
of Section 2.

Note that N1=
([

0, 3
4

]
·S2

)
∪
([3

4 , 1
]
·C1

)
, where

[
0, 3

4

]
·S2 is, of course, a 3-ball,

and
[ 3

4 , 1
]
·C1 is a family of chimneys attached to that 3-ball, as in Figure 7 (left).

The space H1 is formed by identifying the tops of those chimneys in pairs. We
may therefore assume H1 is embedded in S3

= R3
∪ {∞} as shown in Figure 7

(right). We identify
[
0, 3

4

)
·S2 with R2

× (−∞, 0) ⊂ R3. The 2-sphere
( 3

4

)
·S2

minus one point is identified with R2
×{0} ⊂R3. The chimneys with tops identified

become handles.

3B. Pseudo-Heegaard splittings of our examples. For the constructions of Sec-
tions 1A and 2, we now determine the curves δ and γ on the handlebody H1.

Begin with the simple face-pairing description of Section 2. The handlebody H1
is embedded in R3

∪ {∞} as above, with the plane R2
×{0} identified with

( 3
4

)
·S3

minus a point. Sketch the graph
( 3

4

)
·0 on R2

×{0}, with the vertex
( 3

4

)
·v at∞, as in

Figure 8 (left). There is just one pair of faces, hence just one handle in this case, as
shown. Thus D1 is a single disk with boundary δ, shown in the left side of the figure.

We need to determine the curves γ = ∂D0. Recall that D0 = C0/ε, and the
disks C0 consist of the union of the products of the blue transverse arcs with

[ 3
4 , 1

]
.

e

δ

0
γ0

γ1

Figure 8. The graph
( 3

4

)
·0 and curve δ for the simple example

(left), and the graph with curves γ added in, running partly along
blue transverse arcs (right).
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Thus curves in γ will contain blue transverse arcs, as well as arcs along the handles
of H1, running from the blue transverse arcs to a curve δj .

In the case of the simple example, following the action of ε, we see that the
transverse arc τ0 dual to the edge e gives a single simple closed curve γ0 that
follows τ0, then connects the endpoints of τ0 via an arc that runs over the single
handle of H1. The two transverse arcs dual to Nv and Sv are identified by ε. Thus
endpoints of these arcs are connected by arcs running over the handle. We obtain a
simple closed curve γ1. This is shown in Figure 8 (right).

The general picture, for the construction of Section 1A, follows similarly. We
summarize in a lemma.

Lemma 3.4. Let 0 and ε be as in Section 1A, with 0 the union of the equator e,
one longitude NS from the north pole N to the south pole S, and 2k ≥ 0 latitudinal
circles, such that 0 is invariant under reflection ε in the equator. Then the handle
curves on H1 for this face-pairing are as follows.

(1) There are k + 1 handles of H1, corresponding to the k + 1 regions in the
complement of 0 in the northern hemisphere, each running from the region
to its mirror region in the southern hemisphere. These give curves δ0, . . . , δk

encircling the handles.

(2) The transverse arc dual to the edge e gives a curve γ0 with endpoints connecting
to itself over the handle corresponding to the faces on either side of e, which
are identified by ε.

(3) Each latitudinal arc distinct from e, if any, is joined to its mirror over two
handles, one for each face on opposite sides of the latitudinal edge. These
give curves γ2i , i = 1, . . . , k, with index corresponding to the edge label as in
Figure 2.

(4) Each transverse arc dual to a longitudinal arc is joined to its mirror over a
handle corresponding to the region on either side of that arc. These give curves
γ2i+1, i = 0, . . . , k, with index corresponding to edge label as in Figure 2.

Curves parallel to those of Lemma 3.4 are illustrated in Figure 9. These curves
have been pushed slightly to be disjoint, in a manner described in the next section.

3C. The surgery description. We assume now that we are given a bitwist construc-
tion based on (B, ε). We are given the following information:

c1, . . . , ck : the edge cycles of ε.

m = {m1, . . . ,mk}: a set of nonzero integer multipliers assigned to these
edge cycles.

εm : ∂B→ ∂B: the associated bitwist face-pairing.

M(ε,m)= M(εm)= B/εm : the resulting bitwist manifold.
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N ′ S′

Figure 9. The curves δ and γ in H1. Curves δ are shown in
blue, γ0 is in dark green at the bottom of the diagram, curves of γ
corresponding to latitudinal transverse arcs are in green, and curves
of γ corresponding to longitudinal transverse arcs are in red.

The set δ = ∂D1 is a disjoint union of simple closed handle curves δ1, . . . , δg

for H1, one for each face pair of ε. We first push each δi slightly into R3rH1 to
a curve δ′i . We let Vi denote a solid torus neighborhood of δ′i in R3rH1, remove
it, and sew a new solid torus V ′i back in with meridian and longitude reversed
(0-surgery on each δ′i ). The curve δi now bounds a disk Ei , disjoint from H1,
consisting of an annulus from δi to ∂V ′i and a meridional disk in V ′i . The result is a
new handlebody

H ′ =
[
cl(S3rH1)r

⋃
Vi
]
∪
[⋃

V ′i
]

with the same handle curves δ1, . . . , δg as H1 and with handle disks E1, . . . , Eg.
The union H1 ∪ H ′ is homeomorphic to (S2

×S1) # · · · # (S2
×S1).

The set γ = ∂D0 is a disjoint union of simple closed curves γ1, . . . , γk on ∂H ′,
one for each edge class of ε. We push each γ j slightly into int(H ′)r

(⋃
V ′i
)

to a
curve γ ′j . On each γ ′j we perform lk(γ j , γ

′

j )+(1/m j ) surgery. Note from Lemma 3.4
that in our applications, the curves γ j will be unknotted and the curves γ ′j will have
linking number 0 with them.

These surgeries modify H ′ to form a new handlebody H ′′. By [Cannon et al.
2009, Theorem 4.3], (H1, H ′′) is a Heegaard splitting for M(ε,m) (or, because
of ambiguities associated with orientations, the manifold M(ε,−m), with −m =
{−m1, . . . ,−mk}, which is homeomorphic with M(ε,m)).
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For our purposes, it is important to see that these surgeries can be realized by an
explicit homeomorphism from H ′ to H ′′ defined by Dehn–Lickorish moves. To
that end, we enclose γ ′j in a solid torus neighborhood Uj that is joined to γ j by
an annulus Aj . We remove Uj and cut the remaining set along Aj . Let A′j denote
one side of the cut. We may parametrize a neighborhood of A′j by (θ, s, t), where
θ ∈ R (mod 2π) is the angle around the circle γ j , s ∈ [0, 1] is the depth into H ′,
and t ∈ [0, 1] is the distance from A′j . Then one twists this neighborhood of A′j
by the map (θ, s, t) 7→ (θ + (1 − t) · m j · 2π, s, t) before reattaching A′j to its
partner A′′j to reconstitute Aj . This twisting operation defines a homeomorphism
φ :
[
H ′r

(⋃
Uj
)]
→
[
H ′r

(⋃
Uj
)]

. One then reattaches the solid tori Uj via the
homeomorphisms φ|∂Uj

to form H ′′, with an extended homeomorphism8:H ′→H ′′.
The homeomorphism 8 is the identity except in a small neighborhood of γ . The
new handle disks are 8(E1), . . . , 8(Eg).

We apply this to obtain a surgery description for our construction. Recall from
Section 1A that our multipliers were chosen to be±1 on latitudinal edge cycles, and
any integer mi on longitudinal edges. We record the result in the following lemma.

Lemma 3.5. Let 0 and ε be as in Section 1A, with handle curves as in Lemma 3.4.
Then the manifold M(ε,m) has the following surgery description.

(1) There are k + 1 simple closed curves δ′0, . . . , δ
′

k , with each δ′j parallel to δj ,
pushed to the exterior of the handle of H1. Each δ′j has surgery coefficient 0.

(2) Each curve of γ corresponding to a latitudinal edge class γ2i appears with
surgery coefficient m2i =±1, i = 0, . . . , k.

(3) Each curve of γ corresponding to longitudinal edge class γ2i+1 has surgery
coefficient 1/m2i+1. If one of these multipliers is 0, so that the edge collapses
to a point and disappears as an edge class, we retain the corresponding curve,
but with surgery coefficient 1

0 =∞. �

The curves are shown in Figure 9.

3D. The knot as the image of the north–south axis. It is now an easy matter to
identify the image of the north–south axis in our bitwist constructions. In particular,
we want to recognize this curve in the associated surgery description of the manifold.
The portion of the curve in the handlebody H1 is obvious. That portion in the
handlebody H0 is simple, yet not so obvious. We need a criterion that allows us to
recognize it.

To that end, suppose that H0 is a pseudohandlebody with one vertex x . Recall
that H0rD0 has a natural cone structure from x . We say that an arc α in H0rD0 is
boundary parallel if there is a disk D in H0rD0 such that (∂D)∩(int(H0))= int(α)
and (∂D)∩ (∂H0) is an arc α′.
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Lemma 3.6. Suppose a, b ∈ (∂H0)rD0 with a 6= b. Then the arc α = ax ∪ bx
(using the cone structure) is boundary parallel, and any arc β that has a and b as
endpoints and is boundary parallel is, in fact, isotopic to α.

Proof. The set D0 is a disjoint union of handle disks for H0 , hence does not separate
∂H0 . There is therefore an arc α′ from a to b in (∂H0)rD0 . The disk xα′, which
uses the cone structure, proves that α is boundary parallel. If β is boundary parallel,
as certified by disk E and arc β ′, we may first assume int(E)⊂ int(H0rD0), and
then we may straighten E so that, near (∂H0)rD0, E is part of the cone over β ′.
The arc β may be slid along E near to β ′, then isotoped along the cone over β ′

until it coincides with α. �

In our construction, we are mainly interested in a curve of the form (Ov∪Ow)/εm ,
where O is the center of B and v and w are vertices of 0, all of which are identified
by εm to a single vertex x in H0 . The set (Ov∪Ow)∩H1 is immediately apparent.
However, we must identify β = (v′v∪w′w)/εm , where v′=

( 3
4

)
·v and w′=

( 3
4

)
·w.

The images of v and w in H0 are the single vertex x of H0, and the image of β
is a cone from x in the cone structure on H0rD0. Therefore, by Lemma 3.6, to
identify β it suffices to find a boundary parallel arc in H0 with endpoints v′ and w′.

The vertices v′ =
( 3

4

)
· v and w′ =

( 3
4

)
· w lie in R2

× {0}, disjoint from the
disks

( 3
4

)
· D1, i.e., the attaching disks of the handles of D1 in R2

×{0}. Hence,
there is an arc α′ in (R2

× {0})r
( 3

4

)
· D1 from v′ to w′. Take the product of α′

and a small closed interval with left endpoint 0 in R2
× [0,∞) ⊂ R3. We obtain

a disk D in the handlebody H that is the closure of S3rH1. This disk exhibits
the complementary arc α ⊂ ∂D as boundary parallel in H . We fix this arc and
construct the handlebodies H ′ and H ′′. Provided that the annuli and tori used in
constructing H ′ from H are chosen close enough to the curves δ= ∂D1 to avoid D,
the disk D will also certify that α misses the handle disks Ei of H ′ so that α is
boundary parallel in H ′. If the annuli Aj and tori Uj are chosen close enough to
γ = ∂D0 to avoid α (but not D), then the homeomorphism 8 : H ′ → H ′′ will
fix α and will take the disks Ei to handle disks for H ′′, and the disk 8(D) will
show that α is boundary parallel in H ′′. Thus (Ov′∪Ow′)∪α represents the curve
(Ov ∪ Ow)/εm as desired.

Now we add this axis to our surgery descriptions. For the simplest construction,
with equator e and longitudinal arc NS, and handle curves as shown in Figure 8,
the surgery description is obtained by pushing δ0 slightly into H . Let N ′ =

( 3
4

)
· N

and S′ =
( 3

4

)
· S on

( 3
4

)
·0 ⊂ R2

×{0}. The arc (ON ′ ∪ OS′) runs below the plane
R2
× {0} in H1. To find the arc α, we take an arc α′ from N ′ to S′ in R2

× {0}
disjoint from the handle, and, fixing the endpoints, push this above R2

×{0} slightly.
By the above discussion, this gives the desired arc of the axis NS. The surgery
diagram and the axis are shown for this example in Figure 10.
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γ1

N ′ S′

γ0

K±

Figure 10. The surgery diagram for K±, S1, and F1.

4. Two-bridge knots

In this section, we prove that the image of the NS axis in Figure 10 represents
the figure-eight knot in S3 when the surgery coefficient is taken to be +1, and the
trefoil knot in S3 when the coefficient is taken to be −1.

More generally, we prove that the NS axis in the general construction represents
a two-bridge knot in S3.

4A. Identifying the trefoil and figure-eight. We will modify the surgery diagram
of Figure 10 by means of Rolfsen twists. We remind the reader of the effect of
a Rolfsen twist. We assume we are given an unknotted curve J with surgery
coefficient p/q through which pass a number of curves, some of which are surgery
curves Ki with surgery coefficients ri , and some of which may be of interest for
some other reasons, such as our knot axis. We perform an n-twist on J . The curves
passing through J acquire n full twists as a group. The curve J acquires the new
surgery coefficient p/(q + np); in particular, if p = 1, then a twist of −q will
change the coefficient to∞, and any curve with a surgery coefficient∞ can be
removed from the diagram. Finally, each surgery curve Ki that passes through J
acquires the new surgery coefficient ri + n · lk(J, Ki )

2.

Theorem 4.1. The surgery description of M(ε,m) for the simple face-pairing of
Figure 3 (left) yields the manifold S3. The image of the north–south axis is the
trefoil knot when m = (−1, 1) and the figure-eight knot when m = (1, 1).

Proof. We apply Rolfsen twists to our surgery curves in the order γ1, γ0, and δ′ to
change their surgery coefficients, one after the other, to∞. We trace the effect on
the axis K±1, and show this in Figure 11.

In detail, we first perform a −1 Rolfsen twist on γ1. This changes the surgery
coefficient on γ1 to∞ so that γ1 can be removed from the diagram. In the process,
one negative full twist is added to the axis representing K±.



16 J. W. CANNON, W. J. FLOYD, L. LAMBERT, W. R. PARRY AND J. S. PURCELL

K±

0

1
±1 ±1

0
∓1

K−

K+

trefoil

figure-eight

Figure 11. Analyzing S1, F1, K−, and K+.

We next perform a Rolfsen twist on γ0 to change its surgery coefficient to∞ so
that it too can be removed from the diagram. If the coefficient on γ0 was originally 1,
this twist must be a −1 twist. If the coefficient on γ0 was originally −1, this twist
must be a +1 twist. The coefficient of this twist is added to the 0 coefficient on
the δ′ curve. The axis is not affected.

Finally, we perform a Rolfsen twist on δ′, opposite to its surgery coefficient ∓1
so that its coefficient is changed to∞. That makes it possible to remove δ′ from
the diagram. Since the diagram is now empty, we can conclude that the quotient
manifold is S3.

This last twist adds a ±1 full twist to the axis and results in either the trefoil knot
for the (−1, 1)multiplier pair or the figure-eight knot for the (1, 1)multiplier pair. �

4B. The general case. Having analyzed the simplest model face-pairing, we pro-
ceed to the general case. Thus we consider the 2-sphere S2

= ∂B3 subdivided by one
longitude, the equator e, k ≥ 0 latitudinal circles in the northern hemisphere, and
their reflections in the southern hemisphere. As usual, we pair faces by reflection
in the equator. There are k+ 1 face pairs in this model face-pairing.

The general surgery description is given in Lemma 3.5, and illustrated in Figure 9.
Section 3D tells us how to recognize the image of the north–south axis in this
diagram. It is the union of a boundary parallel arc below the plane R2

× {0}
from N ′ to S′ and a boundary parallel arc above the plane R2

×{0} from N ′ to S′.
Straightening this axis curve and the surgery diagram, we obtain the diagram in
Figure 12.

Recall that the integers m2i+1 are arbitrary — positive, negative, or zero. The
integers m2i are either +1 or −1. Note that the surgery curves fall naturally into
three families, each with k + 1 curves: the δ curves, circling the handles with
surgery coefficients 0, the latitudinal curves, linking the 0-curves together in a chain
and having coefficients 1/m2i =±1, and the longitudinal curves with coefficients
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1/m3

1/`3

0 0 0 0

1/`2 1/`1

1/m2 1/m1 1/m0

1/`0

Figure 12. The surgery diagram.

1/m2i+1. Each of these curve families has a natural left-to-right order, as in the
figure. To simplify notation, we denote the latitudinal curves from left to right by
Lk, Lk−1, . . . , L1, L0, and let the corresponding surgery coefficients be denoted
1/`k, 1/`k−1, . . . , 1/`i , 1/`0, respectively (so `i now replaces notation m2i ). We
denote the longitudinal curves from left to right by Mk,Mk−1, . . . ,M1,M0, and
renumber their surgery coefficients to be 1/mk, 1/mk−1, . . . , 1/m1, 1/m0. We
denote the δ curves from left to right by Ok, Ok−1, . . . , O1, O0, with surgery
coefficients 0. This decreasing order of subscripts is suggested by the usual
inductive description of a rational tangle and the associated continued fraction
[a0, a1, . . . , an] = a0 + 1/(a1 + 1/(a2 + · · · + 1/an)), where the coefficient an

represents the first twist made in the construction and a0 represents the last twist.
We now prove the following theorem.

Theorem 4.2. The bitwist manifold M(ε,m) is the 3-sphere S3. The image of the
north–south axis in S3 is the two-bridge knot which is the numerator closure of the
tangle T (a/b) whose rational number invariant a/b is

[2`0, 2m0, 2`1, 2m1, . . . , 2`k, 2mk],

or in continued fraction form,

2 · `0+
1

2·m0+
1

2·`1+
1

2·m1+
1
. . .

.

Here `0, `1, `2, . . . and m0,m1,m2, . . . are the multipliers of the latitudinal and
longitudinal edge cycles, respectively.
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1/mk (−mk) full twists

Figure 13. Removing the curve Mk adds −mk horizontal twists.

Proof. We shall reduce the surgery diagram to the empty diagram by a sequence of
Rolfsen twists. This will show that the quotient manifold is S3. We shall track the
development of the axis as we perform those twists and show that, at each stage, the
knot is a two-bridge knot. We perform the Rolfsen twists on curves in decreasing
order of subscripts in the following order: Mk, Lk, Ok,Mk−1, Lk−1, Ok−1, etc., in
order to change surgery coefficients one after the other to∞. Once a coefficient
is∞, that curve can be removed from the diagram.

There are two cases.
Case 1: If mk = 0, so that 1/mk =∞, we simply remove Mk and the axis is not

affected. We may then remove Lk and Ok without affecting the rest of the diagram
as follows. First, twist −`k =∓1 about Lk , to give Lk a surgery coefficient of∞.
This allows us to remove Lk . It also links Ok and Ok−1 and changes the surgery
coefficient on each from 0 to −`k , but it does not affect the axis or the other link
components. Now twist `k times about Ok . This allows us to remove Ok , returns
the surgery coefficient of Ok−1 to 0, and leaves the rest of the diagram unchanged.
The diagram is now as in Figure 12, only with fewer link components. Thus we
repeat the argument with this new link component. By induction, either all m j = 0,
all link components can be removed, resulting in S3 with the unknot as the image
of the axis, or eventually we are in case 2.

Case 2: If mk 6= 0, we twist −mk times about Mk . The coefficient of Mk then
becomes∞ so that Mk can be removed from the surgery diagram. This twists two
strands of the axis together as in Figure 13, introducing −2 ·mk half twists into the
axis (according to our sign convention). This twist has no effect on the other curves
in the diagram.

Note that the axis has formed a rational tangle at the top left of the diagram. To
identify the tangle, we will use work of Kauffman and Lambropoulou [2002], with
attention to orientation. Our twisting orientation agrees with theirs for horizontal
twists, and so at this point, the rational tangle has continued fraction with the single
entry [−2mk].

The proof now proceeds by induction. We will assume that at the j-th step, we
have a surgery diagram with image of the axis with the following properties.
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Tj

0

±1

1
m j−1

0

Tj

−1

+1

Tj Tj

Tj

+1 +1

−1 −1
1

m j−1

1
m j−1

0

0

1
m j−1

1
m j−1

Figure 14. The effect of Rolfsen twists to remove first L j and then Oj .

(1) In the top-left corner, there is a rational tangle Tj with continued fraction

[−2m j ,−2`j , . . . ,−2`k,−2mk].

(2) Two strands run from the tangle through the link component Oj .

(3) Link components Mk, Lk, . . . through Mj have been removed.

(4) To the right, the surgery diagram is identical to the original surgery diagram,
beginning with link components L j and running to the right through the
components M0 and L0. That is, the link components are identical for this
portion of the diagram, and the surgery coefficients are also identical.

The next step is to remove link components L j and Oj . This is shown in Figure 14,
for both cases `j = ±1. Carefully, we twist −`j times about L j . The coefficient
of L j then becomes∞ so that L j can be removed from the surgery diagram. That
twist adds −`j to the 0 surgery coefficients of Oj and Oj−1 and links those two
curves together with overcrossing having sign equal to −`j . This twist has no effect
on the axis. Now twist `j times about Oj . The coefficient of Oj then becomes∞
so that Oj can be removed from the surgery diagram. The twist returns the surgery
coefficient of Oj−1 back to 0. The twist also adds 2 ·`j half twists to the two strands
of the axis that were running through Oj . Note this yields a new rational tangle,
with a vertical twist added to the tangle Tj . Our twisting orientation for vertical
twists is opposite that of Kauffman and Lambropoulou [2002], and so the continued
fraction of this new tangle becomes T = [−2`j ,−2m j , . . . ,−2`k,−2mk].

We now need to consider Mj−1. If m j−1 = 0, so its surgery coefficient is ∞,
we simply remove Mj−1 from the surgery diagram, and we have completed the
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T T T

Figure 15. Removing Mj−1 through twisting.

inductive step. Otherwise, we twist −mi times about Mi , as in Figure 15, after
which four strands of the axis pass through Oj−1. However, the central two strands
can be isotoped upward through Oj−1. This adds −2m j−1 horizontal crossings to
the tangle T , yielding a tangle Tj−1, and completes the inductive step.

After the final step j = 0, we have removed all Mj , L j , Oj from the surgery
diagram, yielding S3, and our axis has become the denominator closure of a rational
tangle T (c/d) with continued fraction

[−2`0,−2m0, . . . ,−2`k,−2mk] =
1

−2`0+
1

−2m0+
1

−2`1+
1

−2m1+
1
. . .

.

The continued fraction begins with 1/(−2`0+· · · ) instead of−2·`0+· · · because `0

corresponds to a vertical twist. Loosely speaking, horizontal twists correspond to
addition and vertical twists correspond to addition and inversion. Hence our knot is
the numerator closure of the tangle T (a/b) with a/b =−d/c, as in the statement
of the theorem. �

Recall from Section 1 that a multiplier function m with values m0, . . . ,m2k+1

is normalized if m2k+1 6= 0, and if m2i+1 = 0 for some i ∈ {0, . . . , k − 1}, then
m2i = m2i+2. The following example helps to motivate this definition.

Example 4.3. Figure 16 shows an example arising from multipliers

m6 = 3, m5 = 0, m4 = 0, m3 = 2, m2 =−3, m1 = 0, m0 = 2,

`6 = 1, `5 =−1, `4 =−1, `3 =−1, `2 = 1, `1 = 1, `0 = 1.

In the notation of the previous paragraph, the multiplier function has values
`0,m0, `1,m1, . . . ,m6. This multiplier function is not normalized since `5 =−`6

even though m5=0. As a result, the second vertical twist cancels the first one, and so
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−2

−2
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2

2

Figure 16. An example.

they can be eliminated. This is consistent with the fact that x+1/(0+1/y)= x+ y,
so that a continued fraction with a term equal to 0 can be simplified. Also notice that
if m6= 0 instead of m6= 3, then the first three vertical twists can be untwisted, and
so they can be eliminated. This is consistent with the fact that x + 1/

(
y+ 1

0

)
= x .

Corollary 4.4. Every normalized multiplier function yields a nontrivial two-bridge
knot. Every nontrivial two-bridge knot K is realized by either one or two normalized
multiplier functions. Furthermore, if K is the numerator closure of the tangle
T (a/b), then it has exactly one such realization if and only if b2

≡ 1 mod a.

Proof. Note that our construction allows us to obtain any two-bridge knot with a
rational invariant made only of even integers, by choosing m j = 0 appropriately. On
the other hand, it is a classical result that any rational number p/q with p odd and q
even has a continued fraction expansion of the form [2a0, . . . , 2an] with n odd.
This result can also be derived by a modification of the Euclidean algorithm. The
corollary then follows from Theorem 4.2 and standard results involving two-bridge
knots, many of which are contained in [Bleiler and Moriah 1988] and [Kauffman
and Lambropoulou 2002]. �

5. Cyclic presentations

Let Mn(Km) denote the n-fold branched cyclic covering of S3, branched over the
two-bridge knot Km realized by the multiplier m. It is known (see [Cavicchioli
et al. 1999a]) that the fundamental group Gn of Mn(Km) has a cyclic presentation.
We shall show here that the bitwist representation of Mn(Km) easily leads to the
same result.
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Definition 5.1. Let X = {x1, . . . , xn} be a finite alphabet. Let φ denote the cyclic
permutation of X that takes each xi to xi+1, with subscripts taken modulo n. Let
W (X) denote a finite word in the letters of X and their inverses. Then the group
presentation

〈X |W (X), φ(W (X)), . . . , φn−1(W (X))〉

is called a cyclic presentation.

Theorem 5.2. The fundamental group of the n-th branched cyclic covering of S3,
branched over a two-bridge knot K , has a cyclic presentation.

Equivalently, the group Gn = π1(Mn(Km)) has a cyclic presentation. Before
giving the proof, we recall the algorithm that gives a presentation for the fundamental
group of the bitwist manifold M(ε,m). We work with the model faceted 3-ball.
We assign a generator x( f ) to each face f . We will need to assign a word W ( f, e)
to each pair ( f, e) consisting of a face f and boundary edge e of f , and a word
W ( f ) to each face f .

If f is a face, denote the matching face by f −1. Then x( f −1)= x( f )−1. If f
is a face and e is a boundary edge of f , then there is a (shortest) finite sequence
( f, e) = ( f1, e1), ( f2, e2), . . . , ( fk, ek) = ( f, e) such that ε( fi ) takes ei onto ei+1

and takes fi onto the face across ei+1 from fi+1. We define W ( f, e) to be the word
x( f1)·x( f2) · · · x( fk−1). Finally, if f is a face and e1, e2, . . . , ej are the edges of f ,
in order, with assigned multipliers m1,m2, . . . ,m j , then we assign f the word

W ( f )=W ( f, e1)
m1 ·W ( f, e2)

m2 · · ·W ( f, ej )
m j .

The next lemma follows from standard results. See also [Cannon et al. 2002,
Theorem 4.8].

Lemma 5.3. The group π1(M(ε,m)) has presentation

〈x( f ), f a face |W ( f ), f a face〉

Proof of Theorem 5.2. We begin with a model faceted 3-ball and multipliers
`0,m0, . . . , `k,mk used to construct M1(Km) in Section 4B. We take its n-fold
branched cyclic cover branched over the north–south axis. We label the faces of
the northern hemisphere x(i, j) as in Figure 17.

We use the same labels x(i, j) as group generators. The corresponding faces and
generators for the southern hemisphere are x(i, j)−1. We distinguish three types
of faces: those bordering on the equator, which are designated as type 0, those
touching the poles, which are designated as type 2, and all others, designated type 1.
We initially assume that k > 0 so that we don’t have faces that are both type 0
and type 2. Since edge classes have size 1 or size 2, the words associated with a
face-edge pair have length 1 or length 2. Figure 18 shows edges of the three types
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x(k, 2)

x(0, 1)

x(0, 2)

x(0, n)

· · ·

· · ·

· · ·

· · ·

x(1, 1)

x(1, 2)

· · ·

· · ·

· · ·

· · ·

x(1, n) · · ·

· · ·

x(k, 1)

x(k, n)

Figure 17. The model for the n-fold branched cyclic cover, with
the face generators labeled x(i, j). Faces of type 0 are shaded
white, faces of type 1 are shaded light gray, and faces of type 2 are
shaded darker gray.

x(0, j)

x(0, j)x(1, j)−1

x(0, j)x(0, j+1)−1

x(0, j)

x(0, j)x(0, j−1)−1

x(i, j)

x(i, j)x(i, j+1)−1

x(i, j)x(i−1, j)−1

x(i, j)x(i+1, j)−1

x(i, j)x(i, j−1)−1

x(k, j)x(k−1, j)−1

x(k, j)

x(k, j)x(k, j+1)−1

x(k, j)x(k, j−1)−1

Figure 18. A face of type 0, with face-edge words (left), a face of
type 1 (middle), and a face of type 2 (right).

of faces labeled with those face-edge words. These words are then raised to the
appropriate powers and multiplied together to give the word associated with the
corresponding face. We call these words R(i, j)’s since they are the relators of the
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fundamental group. We have

R(0, j)= [x(0, j)]`0[x(0, j)x(0, j+1)−1
]
m0

×[x(0, j)x(1, j)−1
]
`1[x(0, j)x(0, j−1)−1

]
m0,

R(i, j)= [x(i, j)x(i−1, j)−1
]
`i [x(i, j)x(i, j+1)−1

]
mi

×[x(i, j)x(i+1, j)−1
]
`i+1[x(i, j)x(i, j−1)−1

]
mi ,

R(k, j)=[x(k, j)x(k−1, j)−1
]
`k [x(k, j)x(k, j+1)−1

]
mk [x(k, j)x(k, j−1)−1

]
mk .

We conclude that the fundamental group has a presentation

〈x(i, j) | R(i, j), i = 0, . . . , k, j = 1, . . . , n〉.

Since each of the multipliers `0, `1, . . . , `k is either +1 or −1, the letter x(1, j)±1

appears at most once in the relator R(0, j). Similarly, the letter x(i, j)±1 appears
at most once in the relator R(i−1, j), for i = 2, . . . , k−1, and the letter x(k, j)±1

appears at most once in the relator R(k−1, j). Hence, these relators may be solved
for x(1, j), x(2, j), . . . , x(k, j) iteratively, and then these relators and generators
may be removed. The only generators remaining are the generators x(0, j), with
j=1, . . . , n; and, with appropriate generator substitutions made, the only remaining
relators are the relators R(k, j). The presentation

〈x(0, j) | R(k, j), j = 1, . . . , n〉

is clearly a cyclic presentation.
Finally, if k = 0, then every face is both type 0 and type 2. In this case the

presentation is 〈x(0, j) | R(0, j), j = 1, . . . , n〉, which is cyclic. �

5A. The Fibonacci and Sieradski manifolds. Recall from Section 1 that the n-th
branched cyclic cover Sn of the trefoil knot is called the n-th Sieradski manifold. The
n-th branched cyclic cover Fn of the figure-eight knot is called the n-th Fibonacci
manifold.

We illustrate the above group calculations by proving a well-known theorem.

Theorem 5.4. The fundamental group π1(Fn) is the 2n-th Fibonacci group with
presentation

〈x1, . . . , x2n | x1x2 = x3, x2x3 = x4, . . . , x2n−1x2n = x1, x2nx1 = x2〉.

The fundamental group π1(Sn) is the n-th Sieradski group with presentation

〈y1, . . . , yn | y1 = y2 yn, y2 = y3 y1, y3 = y4 y2, . . . , yn = y1 yn−1〉.

Proof. The faceted 3-ball that serves as the model for the face-pairings is the same for
both manifolds; it is as in Figure 17 with k= 0, so without interior latitudinal circles.



BITWIST MANIFOLDS AND TWO-BRIDGE KNOTS 25

For the Fibonacci manifolds, we label the faces of the northern hemisphere as
x(2), x(4), . . . , x(2n). All subscript calculations are modulo 2n. We obtain the
following cyclic presentation for the fundamental group:

〈x(2), x(4), . . . , x(2n) | x(2 j) · [x(2 j)x(2 j + 2)−1
] · [x(2 j)x(2 j − 2)−1

]〉,

with j = 1, 2, . . . , n. We can then introduce intermediate generators x(2 j − 1)=
x(2 j − 2)−1

· x(2 j). The presentation becomes the standard presentation for the
2n-th Fibonacci group, as desired:

〈x(1), . . . , x(2n) | x(i + 2)= x(i) · x(i + 1)〉.

For the Sieradski manifolds, we label the faces of the northern hemisphere as
y(1), y(2), . . . , y(n). Subscript calculations are modulo n. We obtain the following
cyclic presentation for the fundamental group:

〈y(1), . . . , y(n) | y( j)−1
· [y( j)y( j + 1)−1

] · [y( j)y( j − 1)−1
], j = 1, . . . , n〉,

or, reversing the order of the subscripts so that x(1)= y(n), . . . , x(n)= y(1),

〈x(1), . . . , x(n) | x(i)= x(i − 1) · x(i + 1)〉,

the standard presentation for the n-th Sieradski group. �

5B. Branched cyclic covers with periodic homology. In this section we consider
first homology groups of our cyclic branched covers of S3. This is a topic which
has received and still receives considerable attention. There are two very different
behaviors. The first homology groups of the n-fold cyclic covers Mn of S3 branched
over a knot K are either periodic in n or their orders grow exponentially fast.
Specifically, Gordon [1972] proved that when the roots of the Alexander polynomial
of K are all roots of unity, then H1(Mn,Z) is periodic in n. Riley [1990] and,
independently, González-Acuña and Short [1991] proved that if the roots of the
Alexander polynomial are not all roots of unity, then the finite values of H1(Mn,Z)

grow exponentially fast in n. Silver and Williams [2002] extended these results to
links and replaced “finite values” with “orders of torsion subgroups”. See also [Le
2009; Bergeron and Venkatesh 2013; Brock and Dunfield 2015] for more recent
results and conjectures on this topic.

We are particularly fascinated by the first homology of the branched cyclic covers
of S3 branched over the knots that are two-strand braids. These knots are the only
two-bridge knots that are not hyperbolic.

The northern hemisphere of the model before bitwisting looks like Figure 17.
We construct the n-fold branched cyclic cover of S3, branched over a knot that is
a two-strand braid, by using k ≥ 0 latitudes and n longitudes in the open north-
ern hemisphere, assigning multipliers −1 to the latitudinal edges, and assigning
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multipliers +1 to all longitudinal edges. We calculate the fundamental group as in
the proof of Theorem 5.2 and transform it into a cyclic presentation as explained
there. We then abelianize, and let a0, a1, . . . , a2k+2 denote the exponent sums of
the generators in the defining cyclic word W .

We very briefly indicate by diagram how these integers may be computed. Every
relator corresponds to a diagram as follows:

j−1 j j+1

R(k, j) k 1 −1 1
k−1 −1

j−1 j j+1

i+1 −1
R(i, j) i 1 0 1

i−1 −1

j−1 j j+1

1 −1
R(0, j) 0 1 0 1

We begin with the diagram for R(k, j) and use the diagrams for R(k − 1, j),
R(k− 2, j), . . . to successively transform the entries in rows k, k− 1, . . . , 1 to 0.
The defining cyclic word is the final result in row 0.

1 −1 1
−1

−→

0 0 0
1 −1 −1+1+1 −1 1
−1 1 −1

−→

0 0 0
0 0 0 0 0

1 −1 −1+1+1 1−1+1 −1+1+1 −1 1
−1 1 −1 1 −1

−→ · · ·

We find that the polynomial a0 + a1 · t + · · · + a2k+2 · t2k+2 is the cyclotomic
polynomial

1− t + t2
− t3
+ · · ·− t2k+1

+ t2k+2.

(If 2k+3> n, then the polynomial folds on itself because powers are to be identified
modulo n. However, once n ≥ 2k+ 3, there is no folding.)
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Remark 5.5. The computation indicated by the diagram is a continued fraction al-
gorithm. For the fundamental group of a general two-bridge knot, the corresponding
polynomial may be taken to be the numerator of the continued fraction

Q0−
1

Q1−
1

Q2−
1

. . .−
1

Qk

,

where

Qi (t)= mi t − (`i + `i+1+ 2mi )+mi t−1 for 0≤ i ≤ k− 1

and

Qk(t)= mk t − (`k + 2mk)+mk t−1.

We shall prove that, for a given knot realized as a two-strand braid, the abelianiza-
tions of the fundamental group of the n-fold branched cover are periodic functions
of n. However, as a warm up, we use row reduction of the presentation matrix
to prove the much easier theorem that no two of the Fibonacci groups F(n) are
isomorphic for n > 1 since no two of the abelianizations have the same order.
Johnson [1976, page 35] poses this problem as an exercise and suggests using the
two-variable presentation of the group. We use the n-variable presentation and note
that the Fibonacci numbers f0 = 0, f1 = 1, f2 = 1, f3 = 2, . . . appear in a very
natural way. In this case we have the behavior of exponential growth of orders.

Theorem 5.6. Let

F(n)= 〈x1, x2, . . . , xn | xi xi+1 = xi+2 for all i〉,

with subscripts calculated modulo n. For odd n, the order of the abelianization is the
sum fn−1+ fn+1 of two Fibonacci numbers. For even n, the order is fn−1+ fn+1−2.

Remark 5.7. Recall that for even n these abelianizations are the first homology
groups of the Fibonacci manifolds. This theorem gives successive orders of
1, 1, 4, 5, 11, 16, 29, 45, 76, 121, . . . for the abelianizations of the Fibonacci groups.
It is clear from the definition of the Fibonacci numbers that these numbers are
strictly increasing after the numbers 1, 1. These numbers are also known as the
associated Mersenne numbers [Sloane and Guy 1991]. The sums fn−1+ fn+1 are
also known as Lucas numbers.
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Proof. The presentation matrix has the form

1 1 −1 0 0 · · · 0 0 0
0 1 1 −1 0 · · · 0 0 0
0 0 1 1 −1 · · · 0 0 0

· · · · · · · · ·

0 0 0 0 0 · · · 1 1 −1
−1 0 0 0 0 · · · 0 1 1

1 −1 0 0 0 · · · 0 0 1


.

The absolute value of the determinant of this matrix is the order of the abelianization
of the group unless the determinant is 0. In that case, the group is infinite. The goal
is to move the entries in the lower-left corner to the right by adding multiples of
the upper rows. These operations do not change the determinant.

We use the upper rows in descending order, with each successive row moving
the lower-left 2× 2 matrix one column to the right. We first trace the evolution of
the two entries in the next-to-last row:

(−1, 0)→ (1,−1)→ (−2, 1)→ (3,−2)→ (−5, 3)→ (8,−5)→ · · · .

The reader will easily identify the first in the k-th pair as (−1)k fk , and the second
as (−1)k−1 fk−1. Since the second of these, namely (1,−1), coincides with the first
pair in the bottom row, we see that the bottom row evolves just one step ahead of
the next-to-last row. Thus after k moves, the 2× 2 matrix evolves into the matrix(

(−1)k fk (−1)k−1 fk−1

(−1)k+1 fk+1 (−1)k fk

)
,

which has determinant f 2
k − fk+1 · fk−1 = (−1)k−1. After the appropriate number

of moves, this matrix will be added to the matrix(
1 1
0 1

)
from the lower-right corner to form the very last lower-right-corner matrix(

(−1)k fk + 1 (−1)k−1 fk−1+ 1
(−1)k+1 fk+1 (−1)k fk + 1

)
.

The matrix then has determinant

[ f 2
k + 2 · (−1)k · fk + 1] − [ fk+1 · fk−1+ (−1)k+1 fk+1]

= (−1)k+1
+ 1+ (−1)k[ fk + fk+2].

The absolute value of this determinant is the order of the abelianization, and since
the last value of k is n− 1, it agrees with the value claimed in the theorem. �
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j+1 k︷ ︸︸ ︷ ︷ ︸︸ ︷

a0 a1 a2 · · · a j

a0 a1 a2 · · · a j

a0 a1 a2 · · · a j 0
· · · · · · · · · · · · · · · · ·

0a j

a j−1 a j
. . .

a1 a2 · · · a j

a0 a1 a2 · · · a j

a0 a1 · · · a j−1
. . .

a0


Figure 19. The relator matrix for n = j + 1+ k.

For the moment, we fix two integers j>0 and k≥0, and let Gn , with n= j+1+k,
denote an abelian group with generators x0, x1, x2, . . . such that xi = xi+n and with
relators a0 · xi +a1 · xi+1+· · ·+a j · xi+ j for each i . Then the group has a circulant
relator matrix of the form shown in Figure 19. In the following theorem we have
the behavior of periodic homology groups.

Theorem 5.8. Let j , k, and Gn be as immediately above, so that n = j + 1+ k.
Assume that p(t)= a0+ a1 · t + · · ·+ a j · t j is a cyclotomic polynomial, by which
we mean that there is a polynomial q(t) = b0 + b1 · t + · · · + b` · t` such that
p(t) · q(t)= 1− t j+`. Then the groups Gn and Gn+ j+` are isomorphic.

Proof. We manipulate the relator matrix for Gn+ j+` using integral row and column
operations. See Figure 19. We use the rows at the top of the matrix to remove
entries from the triangle at the lower-left corner of the matrix.

Let x be such an entry in row Ra . Let Rb denote the row whose initial entry on
the diagonal is above x . Subtract from row Ra the expression

x · [b0 · Rb+ b1 · Rb+1+ · · ·+ b` · Rb+`].

The effect is to move entry x to the right j+` places. Similarly, we move all entries
in the lower-left triangle j + ` places to the right. Because a0 =±1, we may use
column operations to make every entry to the right of the first j + ` a0’s equal to 0.
The lower-right n×n block of the resulting matrix is the relator matrix for Gn . The
theorem follows. �
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Remark 5.9. The same calculation can be carried out if the polynomial is any
integer multiple α · p(t) of a cyclotomic polynomial p(t), except that the diagonal
entries above the periodic box all become α’s. Thus the abelianization has a periodic
component together with an increasing direct sum of Zα’s. It can be shown that
these are the only polynomials with these periodicity properties.

Corollary 5.10. If K is a knot that is a two-strand braid and Mn is the n-fold cyclic
branched cover of S3 over K , then the homology groups H1(Mn) are periodic in n.

Remark 5.11. Lambert [2010] explicitly calculated all of the homology groups of
the branched cyclic covers of S3, branched over knots that are two-strand braids.
These are the only two-bridge knots that are not hyperbolic. His tables give an
explicit picture of the periodicity we have just proved. Rolfsen [1976] notes that
the period for the trefoil is 6. We shall also see that as follows.

Proof of Corollary 5.10. It suffices to find the appropriate polynomials q(t), and
thereby determine the period. If p(t) = 1 − t + t2, as for the trefoil, then the
appropriate q(t) of smallest degree is q(t) = 1+ t − t3

− t4 so that the period is
2+4=6. With five half twists, p(t)=1−t+t2

−t3
+t4 and q(t)=1+t−t5

−t6 and
the period is 4+6= 10. Each added pair of half twists in the braid adds two terms to
p(t), multiplies the negative entries of q(t) by t2, and increases the period by 4. �

Remark 5.12. By [Gordon 1972], the homology groups H1(Mn) of the cyclic
branched covers Mn of the complement of a knot K are periodic with period
dividing m if and only if the first Alexander invariant (the quotient of the first two
Alexander polynomials) of K is a divisor of the polynomial tm

− 1. Furthermore,
if the first Alexander invariant is a divisor of tm

−1 and n is a positive integer, then
H1(Mn) = H1(M(m,n)), where (m, n) is the greatest common divisor of m and n.
Since the first Alexander invariant of the trefoil knot is 1−t+t2, which divides t6

−1,
Gordon’s theorem shows that the first homology groups of the cyclic branched covers
of the trefoil knot are periodic with period 6 and H1(S6 j+2)= H1(S6 j+4) for all j .

We use the calculation of the period of the trefoil in establishing the next theorem.

Theorem 5.13. No two of the Sieradski groups are isomorphic. Hence no two of
the branched cyclic covers of S3, branched over the trefoil knot, are homeomorphic.

Proof. Milnor [1975] defines the Brieskorn manifold M(p, q, r) to be the orientable
closed 3-manifold obtained by intersecting the complex algebraic surface given
by z p

1 + zq
2 + zr

3 = 0 with the unit sphere given by |z1|
2
+ |z2|

2
+ |z3|

2
= 1. Here

p, q, r should be integers at least 2. Theorem 2.1 of [Cavicchioli et al. 1998], by
Cavicchioli, Hegenbarth, and A. C. Kim, states that Sn is the Brieskorn manifold
M(2, 3, n). This follows from the fact that Sn is the n-fold cyclic branched cover
of S3 branched over the trefoil knot, which is the torus knot of type (2, 3), and
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Lemma 1.1 of [Milnor 1975], which states that the Brieskorn manifold M(p, q, r)
is the r -fold cyclic branched cover of S3 branched over a torus link of type (p, q).

The first few n-fold cyclic covers of S3 branched over the right-hand trefoil knot
are discussed in Section 10D of Rolfsen’s book [1976], which begins on page 304.
Here are the results.

• n = 1: The manifold S1 is the 3-sphere S3, and so G1 = 1.

• n = 2: The manifold S2 is the lens space L(3, 1), so G2 ∼= Z/3Z.

• n= 3: The manifold S3 is the spherical 3-manifold with fundamental group G3

the quaternion group of order 8. It appears in Example 7.2 of [Cannon et al.
2002]. This group might be called the binary Klein 4-group.

• n= 4: The manifold S4 is the spherical 3-manifold with fundamental group G4

the binary tetrahedral group.

• n= 5: The manifold S5 is the spherical 3-manifold with fundamental group G5

the binary icosahedral group. In other words, this is the Poincaré homology
sphere.

• n = 6: The manifold S6 is the Heisenberg manifold. Here

G6 ∼= 〈x, y : [x, [x, y]] = [y, [x, y]] = 1〉.

Milnor [1975] proves that M(2, 3, n), which we know is homeomorphic to Sn ,
is an S̃L(2,R)-manifold for n ≥ 7. It follows that G1, . . . ,G6 are distinct and
that they are not S̃L(2,R) manifold groups. Because of this and Milnor’s result
that Sn is an S̃L(2,R)-manifold for n ≥ 7, to prove that the groups Gn are distinct,
it suffices to prove that the groups Gn are distinct for n ≥ 7.

As stated on page 304 of [Rolfsen 1976], for every positive integer n the first
homology group H1(Sn) is Z⊕Z, 0, Z/3Z, or Z/2Z⊕Z/2Z when n ≡ 0, ±1, ±2,
or 3 mod 6. So to prove that Sieradski groups Gm and Gn are distinct, we may
assume that m ≡±n mod 6.

For the rest of this section suppose that n ≥ 7. Milnor [1975] (see the bottom
of page 213 and Lemma 3.1) proved that Gn is isomorphic to the commutator
subgroup of the centrally extended triangle group

0(2, 3, n)= 〈γ1, γ2, γ3 : γ
2
1 = γ

3
2 = γ

n
3 = γ1γ2γ3〉.

Let 1(2, 3, n)= 〈δ1, δ2, δ3 : δ
2
1 = δ

3
2 = δ

n
3 = δ1δ2δ3 = 1〉, a homomorphic image

of 0(2, 3, n). The group 1(2, 3, n) is the group of orientation-preserving elements
of the (2, 3, n)-triangle group. Let 1′(2, 3, n) denote the commutator subgroup
of 1(2, 3, n). We see that the quotient group 1(2, 3, n)/1′(2, 3, n) is isomorphic
to the group generated by the elements (1, 0, 0), (0, 1, 0), and (0, 0, 1) in Z3 with
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relations corresponding to a matrix which row reduces as follows:
1 1 1
2 0 0
0 3 0
0 0 n

−→


1 1 1
0 −2 −2
0 3 0
0 0 n

−→


1 1 1
0 −2 −2
0 1 −2
0 0 n

−→


1 0 3
0 1 −2
0 0 6
0 0 n

.
So 1(2, 3, n)/1′(2, 3, n) is a cyclic group of order k = GCD(6, n). This computa-
tion also shows that δ1 ∈1

′(2, 3, n) if and only if n 6≡ 0 mod 2, that δ2 ∈1
′(2, 3, n)

if and only if n 6≡ 0 mod 3, and that δk
3 is the smallest power of δ3 in 1′(2, 3, n).

In particular δk
3 is a nontrivial elliptic element of 1′(2, 3, n). Every element of

1′(2, 3, n) which commutes with δk
3 must fix the fixed point of δk

3 . It easily follows
that the center of 1′(2, 3, n) is trivial, and in the same way that the center of
1(2, 3, n) is trivial.

Since the kernel of the homomorphism from 0(2, 3, n) to1(2, 3, n) is generated
by the central element γ1γ2γ3 and the center of 1(2, 3, n) is trivial, it follows that
the kernel of this homomorphism is the center of 0(2, 3, n). So 0(2, 3, n) modulo
its center is isomorphic to 1(2, 3, n). Similarly, Gn modulo its center is isomorphic
to 1′(2, 3, n).

Now suppose that n ≡±1 mod 6. Then Gn modulo its center is isomorphic to
1′(2, 3, n)=1(2, 3, n). The largest order of a torsion element in 1(2, 3, n) is n.
So Gm and Gn are distinct if m ≡ n ≡±1 mod 6. Next suppose that n ≡±2 mod 6.
In this case the largest order of a torsion element in 1′(2, 3, n) is n/2. So Gm

and Gn are distinct if m≡n≡±2 mod 6. The same argument is valid if n≡ 3 mod 6.
Finally suppose that n≡ 0 mod 6. In this case neither δ1 nor δ2 are in1′(2, 3, n). In
this case every torsion element in 1′(2, 3, n) is conjugate to a power of δ6

3 , which
has order n/6. Again Gm and Gn are distinct if m ≡ n ≡ 0 mod 6. �

6. History

There is a large literature concerning the Fibonacci groups, the Sieradski groups,
their generalizations, cyclic presentations of groups, the relationship between cyclic
presentations and branched cyclic covers of manifolds, two-bridge knots, and
their generalizations. We are incapable of digesting, let alone giving an adequate
summary of, this work. We plead forgiveness for having omitted important and
beautiful work and for misrepresenting work that we have not adequately studied.

6A. The Fibonacci groups. John Conway told the first-named author of this paper
that he created the Fibonacci group F(5), with presentation

〈x1, . . . , x5 | x1x2 = x3, x2x3 = x4, x3x4 = x5, x4x5 = x1, x5x1 = x2〉,
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and asked that his graduate students calculate its structure as an exercise to demon-
strate that it is not easy to read the structure of a group from a group presentation.
For example, our straightforward coset enumeration program creates four layers
and more than 200 vertices before the coset graph collapses to its final 11 ele-
ments. Conway [1965] presented the calculation as a problem. The definition was
immediately generalized to give the group F(n). Coset enumeration showed that
F(n) is finite for n < 6 and for n = 7. The Cayley graph for group F(6) can be
constructed systematically and recognized as a 3-dimensional infinite Euclidean
group. Roger Lyndon proved, using small cancellation theory, that F(n) is infinite
if n ≥ 11 (unpublished). A. M. Brunner [1974] proved that F(8) and F(10) are
infinite. George Havas, J. S. Richardson, and Leon S. Sterling [Havas et al. 1979]
showed that F(9) has a quotient of order 152 · 518, and, finally, M. F. Newman
[1990] proved that F(9) is infinite. Derek F. Holt [1995] later reported a proof by
computer that F(9) is automatic, from which it could be seen directly from the
word-acceptor that the generators have infinite order.

At the International Congress in Helsinki (1978), Bill Thurston was advertising
the problem (eventually solved by Misha Gromov) of proving that a group of
polynomial growth has a nilpotent subgroup of finite index. The first-named author
brought up the example of F(6) as such a group. Thurston immediately recognized
the group as a branched cyclic cover of S3, branched over the figure-eight knot.
And before our dinner of reindeer steaks was over, Thurston had conjectured that the
even-numbered Fibonacci groups were probably also branched cyclic covers of S3,
branched over the figure-eight knot. This conjecture was verified by H. M. Hilden,
M. T. Lozano, and J. M. Montesinos-Amilibia [Hilden et al. 1992] and by H. Helling,
A. C. Kim, and J. L. Mennicke [Helling et al. 1998]. C. Maclachlan [1995] proved
that, for odd n, the group F(n) is not a fundamental group of a hyperbolic 3-orbifold
of finite volume.

6B. Sieradski manifolds. The Sieradski manifolds have a similar rich history, but
not one we know as well. They were introduced by A. Sieradski [1986], who used
the same faceted 3-ball that we employ, though his face-pairings were different.
Richard M. Thomas [1991] showed that the Sieradski groups, which he calls G(n),
are infinite if and only if n≥ 6 and that G(6) is metabelian. Cavicchioli, Hegenbarth,
and A. C. Kim [Cavicchioli et al. 1998] showed that the Sieradski manifolds are
branched over the trefoil knot.

6C. Cyclic presentations. Cyclic presentations are particularly interesting because
of their connections with branched cyclic coverings of 3-manifolds. Fundamental
results about cyclic presentations appear in the book Presentations of groups by
D. L. Johnson [1976, Chapter 16]. Arye Juhász [2007] considered the question of
when cyclically presented groups are finite. Andrzej Szczepański and Andrei Y.
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Vesnin [2000] asked which cyclically presented groups can be groups of hyperbolic
3-orbifolds of finite volume and which cannot. Cavicchioli and Fulvia Spaggiari
[2006] showed that nonisomorphic cyclically presented groups can have the same
polynomial.

6D. Dunwoody manifolds. M. J. Dunwoody [1995] managed to enumerate, with
parameters, a large class of 3-manifolds admitting Heegaard splittings with cyclic
symmetry. The fundamental groups were all cyclically presented. He observed that
the polynomials associated with the cyclic presentations were Alexander polyno-
mials of knots and asked whether the spaces were in fact branched cyclic covers
of S3, branched over knots or links. Cavicchioli, Hegenbarth, and A. C. Kim
[Cavicchioli et al. 1999a] showed that the Dunwoody manifolds included branched
covers with singularities that were torus knots of a specific type. L. Grasselli and
Michele Mulazzani [2001] showed that Dunwoody manifolds are cyclic coverings
of lens spaces branched over (1, 1)-knots. Cavicchioli, Beatrice Ruini, and Spag-
giari [Cavicchioli et al. 2001] proved Dunwoody’s conjecture that the Dunwoody
manifolds are n-fold cyclic coverings branched over knots or links. Soo Hwan Kim
and Yangkok Kim [2004] determined the Dunwoody parameters explicitly for a
family of cyclically presented groups that are the n-fold cyclic coverings branched
over certain torus knots and certain two-bridge knots. Nurullah Ankaralioglu
and Huseyin Aydin [2008] identified certain of the Dunwoody parameters with
generalized Sieradski groups.

6E. Two-bridge knots. The first general presentation about the branched cyclic
coverings of the two-bridge knots seems to be that of Jerome Minkus [1982]. A very
nice presentation appears in [Cavicchioli et al. 1999b], where cyclic presentations are
developed that correspond to cyclically symmetric Heegaard decompositions. In that
paper, Cavicchioli, Ruini, and Spaggiari showed that the polynomial of the presenta-
tion is the Alexander polynomial. They use the very clever and efficient RR-system
descriptions of the Heegaard decompositions. They pass from the Heegaard de-
compositions to face-pairings and determine many of the geometric structures.
Mulazzani and Vesnin [2001] exhibited the many ways cyclic branched coverings
can be viewed: polyhedral, Heegaard, Dehn surgery, colored graph constructions.

In addition to these very general presentations, there are a number of concrete
special cases in the literature [Bleiler and Moriah 1988; Kim et al. 1998; Kim
2000; Kim and Kim 2003; 2004; Jeong 2006; Jeong and Wang 2008; Grasselli and
Mulazzani 2009; Telloni 2010].

Significant progress has been made beyond the two-bridge knots. Maclachlan
and A. Reid [1997] and Vesnin and A. C. Kim [1998] considered 2-fold branched
covers over certain 3-braids. Alexander Mednykh and Vesnin [1995] considered
2-fold branched covers over Turk’s head links.
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Alessia Cattabriga and Mulazzani [Mulazzani 2003; Cattabriga and Mulazzani
2003] developed strongly cyclic branched coverings with cyclic presentations over
the class of (1, 1) knots, which includes all of the two-bridge knots as well as many
knots in lens spaces. P. Cristofori, Mulazzani, and Vesnin [Cristofori et al. 2007]
described strongly cyclic branched coverings of knots via (g, 1)-decompositions.
Every knot admits such a description.
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RECOGNIZING RIGHT-ANGLED COXETER GROUPS
USING INVOLUTIONS
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We consider the question of determining whether or not a given group
(especially one generated by involutions) is a right-angled Coxeter group.
We describe a group invariant, the involution graph, and we characterize
the involution graphs of right-angled Coxeter groups. We use this char-
acterization to describe a process for constructing candidate right-angled
Coxeter presentations for a given group or proving that one cannot exist.
We apply this process to a number of examples. Our new results imply sev-
eral known results as corollaries. In particular, we provide an elementary
proof of rigidity of the defining graph for a right-angled Coxeter group, and
we recover an existing result stating that if 0 satisfies a particular graph
condition (called no SILs), then Aut0(W0) is a right-angled Coxeter group.
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1. Introduction

Given a finite simple graph 0, the right-angled Coxeter group defined by 0 is the
group W =W0 generated by the vertices of 0. The relations of W0 declare that the
generators all have order 2, and adjacent vertices commute with each other. Right-
angled Coxeter groups (commonly abbreviated RACG) have a rich combinatorial
and geometric history [Davis 2008]. The particular presentation specified by 0
is called a right-angled Coxeter system. When encountering a group generated
by involutions, a natural question is to ask whether or not this group might be a
right-angled Coxeter group, and if so, how to identify the preferred presentation.
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The main objective of this paper is the development of a recognition procedure
that successfully answers this question for certain families of groups. Although the
procedure may be applied more generally, our applications focus primarily on two
classes of examples. Given a right-angled Coxeter group W0, we consider

(1) extensions of W0 by subgroups of Out0(W0), and

(2) subgroups of W0 generated by chosen sets of involutions.

(Recall that Aut0(W0) consists of the automorphisms of W0 which map each gen-
erator to a conjugate of itself, and Out0(W0) is the quotient Aut0(W0)/ Inn(W0).)
In each of these cases, we give examples of groups which are right-angled Coxeter
and examples which are not. For those cases which are right-angled Coxeter, our
procedure produces the preferred presentations. We show:

Theorem 1.1 (p. 57). Suppose χ1, . . . , χk are pairwise commuting partial conju-
gations of the right-angled Coxeter group W0 such that whenever χi and χ j have
the same acting letter, their domains don’t intersect. Then G =W o 〈χ1, . . . , χk〉

is a right-angled Coxeter group. Further, writing Si ⊆ {χ1, . . . , χk} for the set
comprising those partial conjugations with acting letter ai , we have{

a1
∏
χi∈S1

χi , . . . , an

∏
χi∈Sn

χi

}
∪ {χ1, . . . , χk}

is a Coxeter generating set for G.

If a group G has only 2-torsion, and G is not a right-angled Coxeter group, then
G is not a Coxeter group. So our procedure may in fact enable one to show that
a given group is not a Coxeter group. Cunningham [2015] has used some of the
methods described here to show that Out0(Wn) for n≥4 is not a Coxeter group. (Wn

is the universal Coxeter group whose defining graph has n vertices and no edges.)
Given a group G, the involution graph 1G of G is the group invariant defined

as follows: the vertices in 1G correspond to the conjugacy classes of involutions
in G; vertices are adjacent when there exist commuting representatives of the
corresponding conjugacy classes. In general, this invariant is unwieldy. It may be
infinite, and even when it’s finite, it may be impossible to construct. Nevertheless,
for certain classes of groups the invariant promises insights. Like any invariant,
it can allow us to distinguish between groups. It also carries information on the
automorphism group of G. Since an automorphism must permute conjugacy classes
of involutions and must preserve commuting relations, Aut(G) acts naturally on1G .
The kernel of this action is therefore a natural normal subgroup of Aut(G), and has
finite index in Aut(G) when 1G is finite.

The involution graph for a right-angled Coxeter group W0 is easily constructed
directly from 0: the vertices in1W correspond to cliques in 0; vertices are adjacent
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when the union of the corresponding cliques is also a clique. When constructed in
this manner, we denote the graph 0K and call it the clique graph for 0. Tits [1988]
proved that the kernel of the action Aut(W )�1W has a natural complement, which
is therefore a finite subgroup of Aut(1W ). Thus the involution graphs of right-
angled Coxeter groups are significantly more tractable than the involution graphs of
arbitrary groups, and may be more convenient for certain purposes than the defining
graph 0. Aaron Meyers, in his undergraduate thesis under the supervision of Piggott,
began to explore some properties of clique graphs and how to recover their base
graphs. (As this work is unpublished, new proofs are given in the following sections.)

The reader may compare our use of the clique graph and involution graph to
the use of the clique graph, extension graph, and commutation graph in [Kim and
Koberda 2013] in the context of right-angled Artin groups. Our use of the term
and notation for the clique graph comes from that reference. In addition, Kim and
Koberda define the extension graph 0e of 0 and the commutation graph of a subset
S ⊂ A(0) of elements of the right-angled Artin group. The vertices of 0e are the
words in the right-angled Artin group A(0) which are conjugate to a vertex of 0,
and two such vertices are connected by an edge if they commute with one another.
More generally, the commutation graph of S has vertices given by the elements
of S, and two of these are connected by an edge if they commute with each other.

It is straightforward to define the extension and commutation graphs in the context
of right-angled Coxeter groups. Note that the vertices of 0e are the individual
group elements, not conjugacy classes, so that 0e is infinite whereas 1W0

is finite.
Moreover, 0e does not contain words that are only conjugate to a product of pairwise
commuting generators, so it is not the case that 1W0

is a quotient graph of 0e.
[Kim and Koberda 2013, Theorem 1.3] states that, given graphs 3 and 0, if 3 is
contained in 0e, then A(3)≤ A(0). The analogous statement about right-angled
Coxeter groups is certainly false, and a counterexample is provided by

D∞ =W2 = 〈a, b | a2
= b2
= 1〉.

The defining graph 0 consists of two vertices with no edges. The extension graph 0e

has countably many vertices and no edges, but D∞ cannot contain subgroups which
are free products of more than two copies of Z/2Z. If we replace the extension
graph with the involution graph 1W0

in [Kim and Koberda 2013], the claim would
still be false: 1W0

contains cliques which are larger than any clique in 0.
Finally, we note that the involution graph 1G of a group which is not a right-

angled Coxeter group may not be a commutation graph on any subset {g1, . . . , gn} of
elements. A priori, it could be the case that there is no single collection of elements,
one from each conjugacy class, which simultaneously exhibit all commuting and
noncommuting relationships dictated by the involution graph. (When W0 is a
right-angled Coxeter group, 1W0

is the commutation graph on the set of products
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of pairwise commuting generators.) It may be that the techniques of [Kim and
Koberda 2013] could be adapted to the case of right-angled Coxeter groups, but
as the current paper focuses on the recognition problem, we have not considered
questions of embeddability.

In Section 2, we summarize our recognition procedure, which attempts to con-
struct right-angled Coxeter presentations for a given group. This procedure relies
on many facts about clique graphs and involution graphs which, for clarity of
exposition, are only stated in that section. Detailed proofs have been relegated to
Section 4 at the end of the paper. Section 2 contains all necessary definitions and
results to understand the applications in Section 3.

In Section 3, we apply our procedure to several first examples of potential right-
angled Coxeter groups. Section 3A collects examples of families of groups which
are right-angled Coxeter. 0 is said to contain a separating intersection of links
(SIL) if, for some pair of vertices v and w with d(v,w)≥ 2, there is a connected
component of 0 \ (Lk(v)∩Lk(w)) which contains neither v nor w. Otherwise, we
say 0 contains no SILs. Section 3A also gives a new, shortened proof of [Charney
et al. 2010, Theorem 3.6]: that Aut0(W0) is right-angled Coxeter if 0 contains no
SILs. Section 3B shows several examples of groups which we prove cannot be
right-angled Coxeter. This includes, in particular, an iterated extension

G︷ ︸︸ ︷
(W0 oZ/2Z)︸ ︷︷ ︸

H

oZ/2Z

in which H is not right-angled Coxeter, but G is. We also note that Aut0(W3) is
not right-angled Coxeter, answering a motivating question for the authors.

Section 3C states some results that essentially identify features of a given graph3
which indicate that W3 has a semidirect product decomposition W3 = W0 o H,
where H ≤ Out0(W0). The results of this section follow from those in Section 3A
quite easily, and the semidirect product decompositions are certainly not unique.

Section 4 presents detailed proofs for many facts stated without proof in Section 2.
In this section, we present a characterization of those finite graphs which arise as
clique graphs (i.e., a characterization of those graphs which arise as the involution
graphs of right-angled Coxeter groups). We present a collapsing procedure to
recover 0 from 0K , and we establish the correctness of our recognition procedure
for constructing right-angled Coxeter presentations.

Finally, in Section 5 we give many follow-up questions which may be approach-
able using our recognition procedure. These include the question of characterizing
those subgroups H ≤ Out0(W0) such that W0 o H is again right-angled Coxeter,
and determining when the involution graph of a subgroup H ≤ G can be calculated
easily from the involution graph of G.
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2. A summary of the recognition algorithm

In this section, we present the definitions and basic properties of the clique graph,
star poset, and involution graph constructions. We state one of our main theorems
characterizing those finite graphs which arise as clique graphs, and we describe a
procedure which recovers a graph 0 from its clique graph 0K . Finally, we prove
several algebraic results about right-angled Coxeter groups which allow us to modify
this procedure to seek right-angled Coxeter presentations of a given group. Many
of the proofs of this section are elementary or nongeometric in nature, so they have
been pushed to Section 4 at the end of the paper, where the interested reader will
find all of the details. In this section, we present only the definitions and statements
of results necessary to understand the applications in Section 3.

A finite simple graph 0 = (V, E) is an ordered pair of finite sets. We require
that V, the set of vertices, is nonempty and E , the set of edges, consists of 2-element
subsets of V. We say a, b ∈ V are adjacent if {a, b} ∈ E . All graphs we consider
in this paper will be undirected and have finitely many vertices, no loops, and no
parallel edges. We will use the notation

Lk(v)= {w ∈ V | {v,w} ∈ E}

for the link of v and
St(v)= Lk(v)∪ {v}

for the star of v.

Definition 2.1. Let 0 be a graph. A clique in 0 is a nonempty subset of pairwise
adjacent vertices. The clique graph of 0 is the graph 0K = (VK , EK ) whose vertices
correspond to the cliques of 0. Two vertices of 0K are adjacent if the union of the
corresponding cliques in 0 is also a clique. Figure 1 depicts an example.

The relation v ∼ w when St(v) = St(w) is an equivalence relation on V (0).
Write [v] for the equivalence class of v. Declaring that [v] ≤ [w] if St(v)⊆ St(w)
we define a partial ordering, and we write P(0) for the poset of star-equivalence
classes of vertices in 0.

a1

a2

a3

a4
{a1, a2, a3}

{a2, a3}

{a1, a3}

{a1, a2}

{a3}
{a2}

{a1}

{a4}

{a1, a4}

Figure 1. A graph 0 (left) and its corresponding clique graph 0K (right).
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Throughout this paper, we will write 01, 02, . . . , 0r for the maximal cliques of 0.
If I ⊂ {1, 2, . . . , r}, then

0I =
⋂
i∈I

0i

is the corresponding intersection of maximal cliques.

Definition 2.2. A vertex v ∈ 0 is called minimal if it is contained in a unique
maximal clique. Given J ⊂ {1, 2, . . . , r}, we say v is J-minimal if there is no
J ′ ⊃ J such that 0J ′ ( 0J and v ∈ 0J ′ .

Theorem 2.3 (p. 64). Let 0′ be a graph. There exists a graph 0 such that 0′ = 0K

if and only if the following three conditions are satisfied:

(1) Maximal clique condition (MCC): For all I, there exists some kI such that

|0′I | = 2kI − 1.

(2) Minimal vertex condition (MVC): Each nonempty intersection 0′J contains
some J-minimal vertex vJ .

(3) Inclusion-exclusion condition (IEC): For each J ,∑
I)J

(−1)|I\J |+1kI ≤ kJ .

Moreover, if 0′ is a clique graph, then the graph 0 such that 0′ = 0K is unique.
The following procedure, which we call the collapsing procedure, recovers 0
from 0′. We may write 0 = C(0′).

Theorem 2.4 (p. 68). Let 0′ be a graph which satisfies the MCC, MVC, and IEC.
Then there is a unique (up to isomorphism) graph 0 such that 0′ is isomorphic to
0K . Moreover, the following collapsing procedure produces the graph 0 if it exists.

(1) Initially, let V = { }.

(2) Let [w] ∈ P(0′) be a class such that every class [v] with [w]< [v] has already
been considered. Write

Sw =
⋃
[v]≥[w]

[v].

Then there is some k such that |Sw| = 2k
− 1. Let k ′ be the number of vertices

of Sw which are already contained in V. Choose k− k ′ vertices of [w] to add to
the vertex set V.

(3) Repeat the previous step until all classes of P(0′) have been considered.

(4) Return the graph C(0′) which is the induced subgraph of 0′ on the vertex set V.
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The set Sw forms a clique in 0′ which is an intersection of maximal cliques, so
its size has the desired form by the MCC. The details can be found in Section 4A.

Definition 2.5. Let G be a (finitely generated) group. The involution graph 1G

of G is defined as follows. The vertices are the conjugacy classes of involutions
in G. Two vertices [x] and [y] are connected by an edge if there exist representatives
gxg−1 and hyh−1 that commute with each other.

We make a few remarks. The particular conjugates which witness commutativity
are chosen for each edge individually. A system of representatives of each conjugacy
class which act as witnesses for every edge simultaneously is called a full system of
representatives. Such a system need not exist in general, but a right-angled Coxeter
group will always have a full system of representatives.

We have also said earlier that all graphs we consider do not have loops, although
the involution graph as defined here may contain a loop if an involution commutes
with a conjugate of itself. This may happen in general, but it will never happen in
a right-angled Coxeter group. So, if the involution graph of a given G contains a
loop, we may immediately conclude that G is not a right-angled Coxeter group.

Lemma 2.6. Let 0 be a graph. Then 1W0
= 0K .

Proof. It is a well-known fact about right-angled Coxeter groups that the only
nontrivial torsion elements have order 2, and that any involution is conjugate to
some product of pairwise commuting generators. The set of products of pairwise
commuting generators forms a full system of representatives for the involution
graph (this follows essentially from the deletion condition), and two such products
commute if and only if all the generators involved in each product pairwise commute,
i.e., if the collection of all these generators forms a clique in 0. �

We recover the rigidity of right-angled Coxeter groups as an immediate conse-
quence. This was originally proven in [Green 1990] (for a more general class of
groups), and many other proofs have been presented for different classes of groups
containing right-angled Coxeter groups as a subclass; see, for example, [Droms
1987; Laurence 1995; Radcliffe 2003].

Corollary 2.7. The defining graph of a right-angled Coxeter group W0 is unique
up to isomorphism.

Proof. The involution graph is an algebraic invariant (it does not depend on the
chosen right-angled Coxeter presentation). By the previous lemma, the involution
graph 1W0

is a clique graph, and by Theorem 2.3 the collapsed graph C(1W0
) is

unique (up to isomorphism). �

At this point, we can essentially describe our recognition procedure for seeking a
right-angled Coxeter presentation for a given group G. First, we form the involution
graph 1G . If this is not a clique graph, then G is not a right-angled Coxeter group.
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If it is, then we must find a full system of representatives for the vertices. If such
a system does not exist, then G is not a right-angled Coxeter group. If we find a
full system of representatives, then the collapsing procedure will produce a labeled
graph 0 = C(1G), which gives a map W0→ G by sending the generators of W0

to the labels of the corresponding vertices. If we can show the candidate map is an
isomorphism, then G is a right-angled Coxeter group, and the labels of 0 form a
right-angled Coxeter generating set. (On the other hand, if the candidate map is not
an isomorphism, we cannot conclude that G is not a right-angled Coxeter group.
We may have simply chosen the wrong full system of representatives for 1G .)

We must address one subtlety in this procedure. In Theorem 2.4, we chose
vertices from [w] to add to the vertex set V arbitrarily. It only mattered that we
had the right number of vertices from each intersection of maximal cliques. In the
algebraic setting, this is not sufficient, as the following simple example shows.

Example 2.8. Let 0 be a triangle with vertices a, b, c. Then 0K = 1W0
is a

clique of size 7 with the labels a, b, c, ab, ac, bc, abc. In the star poset P(0K ),
all vertices are equivalent, so there is only one [w] to consider. The collapsing
procedure says to choose 3 vertices from this class at random. If we choose, for
example, the vertices a, b, c, then the collapsing procedure recovers 0. If we choose
a, ab, abc, then we find a new right-angled Coxeter presentation for W0 . However,
if we pick a, b, ab, then we don’t get a right-angled Coxeter presentation (because
there is an additional relation between these vertices).

Essentially, at this step in the collapsing procedure we are choosing which
vertices of the involution graph represent generators and which represent products of
generators. There are (generally) many different ways that we can make this choice,
but we have to make use of some algebraic information to avoid choosing products
as if they were generators. The following results are certainly of independent
interest, but we will, in particular, use them to make intelligent choices during the
collapsing procedure.

Since we wish to avoid choosing vertices whose labels have a nontrivial product
relation, it would certainly help if we could solve the word problem in G. However,
depending on how G is presented, such a solution may or may not be evident (if it
even exists). For this reason, we pass to the abelianization Gab, in which there is a
solution to the word problem. If G is a right-angled Coxeter group, then

Gab ∼= (Z/2Z)n,

and a product relation among involutions in G must also occur in Gab.
From this point forward, for g ∈ G, we will write g for the image of g in the

abelianization. An important fact about right-angled Coxeter groups is that the
abelianization is injective on conjugacy classes of involutions.
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Proposition 2.9. Let W0 be a right-angled Coxeter group. Let x, y ∈W0 such that
x2
= y2
= 1. Then x = y in W ab

0 if and only if x and y are conjugate in W0.

Proof. The “if” direction is trivial. Now, suppose x and y are not conjugate in W0 .
Since x, y are involutions, there are pairwise commuting generators a1, a2, . . . , ak ,
pairwise commuting generators b1, b2, . . . , b`, and words g, h such that

x = ga1a2 · · · ak g−1 and y = hb1b2 · · · b`h−1.

Without loss of generality, since x and y are not conjugate, there is a bj that does
not appear among the ai . But since it is a generator, there is a Z/2Z direct factor in
W ab
0 corresponding to that bj . Therefore, y will have a 1 in this factor and x will

have a 0. Thus, x 6= y in W ab
0 . �

Corollary 2.10. For a right-angled Coxeter group W0 , if H is a subgroup generated
by distinct, commuting involutions, then H ∼= H ab injects into W ab

0 .

Proof. H is a finite subgroup of W0 and so is conjugate to a special subgroup H ′.
Each element of H ′ is a distinct product of commuting generators from W0 and so
each gets sent to a distinct element of W ab

0 . Thus, no two elements of H ′ can be
conjugate in W0 and so neither can any two elements of H . By Proposition 2.9,
H injects into W ab

0 . �

Proposition 2.11 (p. 72). If W0 is a right-angled Coxeter group, then in step 2 of
the collapsing procedure in Theorem 2.4, we can choose the k− k ′ involutions of
W0 so that the chosen elements do not exhibit a nontrivial product relation.

This proposition, which is proved in Section 4B, makes use of the available
algebraic information to amend our collapsing procedure and avoid nontrivial
product relations. We can make further use of the available algebraic information to
improve upon the procedure. In general, we have no particular method (or hope of
finding a method) to construct 1G for an arbitrary G. Each of the following steps
seem to be generally insurmountable:

(1) Identify all involutions in G.

(2) Separate all involutions into their conjugacy classes.

(3) Determine the presence or lack of each edge in1G (i.e., find a pair of commuting
representatives or prove that none exist).

(4) Find a full system of representatives.

(5) Identify a full system of representatives so that the candidate maps are isomor-
phisms.

For a right-angled Coxeter system, it happens that all of these steps are not just
possible, but straightforward.
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Proposition 2.12 (p. 74). If W0 is a right-angled Coxeter group, then two conjugacy
classes of involutions [x] and [y] are connected by an edge in 1W0

if and only if
there exists another class [z] such that z = xy in the abelianization.

If we are given a group G, supposing we can identify the conjugacy classes
of involutions (i.e., the vertices of 1G), we can identify hypothetical edges and
nonedges by looking for such z in Gab. If G is a right-angled Coxeter group, then
this will produce the correct involution graph, and the remainder of the procedure
will (hopefully, if we pick a good full system of representatives) identify a right-
angled Coxeter presentation. On the other hand, if this not-quite involution graph
of G is not a clique graph, we can be certain that G is not a right-angled Coxeter
group. At no point do we directly need to check that we have calculated the true
involution graph of G. We summarize this discussion with the following amended
collapsing procedure. For details (including a full description of how to do these
calculations in the abelianization), refer to Section 4B.

Theorem 2.13 (p. 74). Suppose G is a group whose only torsion elements all have
order 2, so that Gab∼= (Z/2Z)n for some n. If the following procedure returns TRUE,
then G is a right-angled Coxeter group (and the procedure indicates a right-angled
Coxeter presentation). If the procedure returns FALSE, then G is not a right-angled
Coxeter group.

(1) Determine all conjugacy classes of involutions in G, and let these be the vertices
of a graph 0′. If there are not finitely many, return FALSE.

(2) Apply Proposition 2.12 to construct the edges of 0′.

(3) If 0′ is not a clique graph, return FALSE.

(4) Find a full system of representatives for the vertices of 0′. If no such system
exists, return FALSE.

(5) Collapse as in Theorem 2.4, using Proposition 2.11 to ensure that nontrivial
product relations are avoided. Write C(0′) for the resulting graph.

(6) Let 0 be a graph isomorphic to C(0′) with generic vertex labels a1, . . . , an .
Let ϕ :W0→G be the map which sends the generators of W0 to the word given
by the corresponding labels of vertices in C(0′). If ϕ is an isomorphism, return
TRUE.

(7) Otherwise, return UNKNOWN.

3. Applications and results

In this section, we apply the recognition procedure from Section 2 to seek out
right-angled Coxeter presentations for certain families of groups. We focus in
particular on
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(1) semidirect products of a given right-angled Coxeter group W0 by certain sub-
groups of Out0(W0), and

(2) subgroups of a given W0 generated by chosen subsets of involutions.

In particular, we note that the families of groups that we consider are already
generated by involutions, have no torsion of order other than 2, and are usually
given by presentations which are nearly right-angled Coxeter.

If D is a union of connected components of 0 \ St(ai ) for some i , then the
automorphism of W0 determined by

χi,D(aj )=

{
ai aj ai , aj ∈ D,
aj , otherwise,

is called the partial conjugation with acting letter ai and domain D. (Note that this
terminology is not entirely consistent in the literature. Other papers have reserved
partial conjugation for the case in which D is a single connected component
[Gutierrez et al. 2012; Charney et al. 2010], while Laurence [1995] used the term
locally inner automorphism before the term partial conjugation became common.
We have preferred here to allow for multiple connected components in the domain of
a partial conjugation, and we would propose the term elementary partial conjugation
for the case in which D consists of a single connected component.) The partial
conjugations generate Out0(W0).

In Section 3A, we present families of groups which our procedure shows to be
right-angled Coxeter. One example is worked out in full detail to demonstrate the
procedure. For the remaining results, we simply state the resulting right-angled
Coxeter group and the isomorphism determined by our procedure. The reader is
left to verify the details. Most of these results are about split extensions of a given
W0 by a finite subgroup of Out0(W0) generated by (pairwise commuting) partial
conjugations.

In Section 3B, we present families of groups which our procedure shows cannot
be right-angled Coxeter. Again, one example is worked out in full detail. We note
one example which is of particular interest: we find a group W0 with two elements
x, y ∈ Out0(W0) such that G = W0 o 〈x, y〉 is a right-angled Coxeter group, but
H = W0 o 〈xy〉 is not. In particular, we can realize G as the iterated semidirect
product

G = (W0 o 〈xy〉)o 〈x〉,

where each extension has degree 2. So this gives, to our knowledge, the first
example in which the existence of a right-angled Coxeter presentation is lost and
then recovered by semidirect product extensions.

Finally, in Section 3C, we note that many of our examples of right-angled
Coxeter families arise as semidirect products. By analyzing the properties of
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the defining graphs of the groups arising from these semidirect products, we can
identify semidirect product decompositions in many cases. Such decompositions
are generally not unique, and we cannot at the moment provide an exhaustive list
of graph features of 0 which indicate a semidirect product decomposition of W0.

3A. Groups which are right-angled Coxeter.

Example 3.1. We begin with an explicit example in which we demonstrate the
recognition procedure in detail. Consider the defining graph in Figure 2.

Write x = χ1,{2} for the partial conjugation with acting letter a1 and domain {a2}.
We consider the group G =W0 o 〈x〉, which has the presentation

G =
〈
a1, a2, a3, a4, x

∣∣ a2
i = x2

= 1, [a1, a4] = [a2, a4] = [a3, a4] = 1,

[a1, x] = [a3, x] = [a4, x] = 1, xa2x = a1a2a1
〉
.

This is not quite a right-angled Coxeter presentation, so we apply our procedure to
see if we can find one.

First, we compute Gab (removing any relations that become trivial and under-
standing that group presentations with additive notation are assumed to be abelian):

Gab
= 〈a1, a2, a3, a4, x | 2ai = 2x = 0〉
∼= 〈a1〉× 〈a2〉× 〈a3〉× 〈a4〉× 〈x〉 ∼= (Z/2Z)5.

The relation matrix 
2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2


is already in Smith normal form, and so our canonical abelianization map G→Gab

is given by g 7→ g.
We now want to list all conjugacy classes of involutions in G. The classes of

involutions in W0 are evident by inspection of 0: ai for each i , and aj a4 for each
1≤ j ≤ 3. The new generator x is also an involution, and the products of x with the
other generators that commute with it give new involutions: xa1, xa3, xa4. There
are two remaining conjugacy classes of involutions, namely xa1a2 and xa1a2a4.

a1

a2 a3

a4

Figure 2. The defining graph 0.
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[xa3]

[a3]

[xa3a4] [a3a4]

[a4]

[x]

[a1] [a1a4]

[xa1]

[xa1a4]

[xa1a2]

[a2]

[xa1a2a4][a2a4]

[xa4] [xa1a4]

Figure 3. The involution graph 1G .

These are all of the conjugacy classes of involutions in G. We could try to prove
this directly, but it will also end up following from the fact that our procedure in
this case does in fact construct an explicit isomorphism with a right-angled Coxeter
group. Thus, we can omit the details.

We claim that the graph in Figure 3 is the involution graph1G . The given system
of representatives is a full system, and the commuting relations are straightforward
to check. (If they weren’t as straightforward, we could easily construct the edge
relations given by Proposition 2.12.)

The brackets in the involution graph represent conjugacy classes. Since we now
have a full system of representatives, we may stop writing these brackets. For
the remainder of the calculation, brackets around a vertex label will denote its
star-equivalence class. Before calculating the star poset structure, we observe that
this graph clearly satisfies the MCC and MVC, and the IEC is straightforward to
verify.

The equivalence classes in the star poset are the following (identified by the
dashed ellipses in Figure 3):

[a1] = {a1, a1a4}, [a2] = {a2, a2a4, xa1a2, xa1a2a4},

[a3] = {a3, a3a4, xa3, xa3a4}, [a4] = {a4},

[x] = {x, xa4}, [xa1] = {xa1, xa1a4}.

The Hasse diagram for this poset is depicted in Figure 4.
The element [a4] is maximal in the poset structure and contains a single element.

We add a4 to V. Next, we consider [x] (or [xa1]; the order in which we consider
these classes is irrelevant). The clique above [x] has size 3, so 2 of its vertices
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[a4]

[x] [xa1]

[a3] [a1] [a2]

Figure 4. The Hasse diagram for the poset P(1G).

a3

x

a4

xa1

a2 b1

b2

b3

b4

b5

Figure 5. The collapsed graph 3 (left) and an isomorphic graph
with generic labels (right).

must be added to V. We have already added 1, so we must pick one more from [x].
Examining the abelianization, 〈a4, x〉 ∼= (Z/2Z)2 and either of x or xa4 will extend
a4 into a basis. So we choose to add x to V. Similarly, we consider [xa1] and add
xa1 to V.

The remaining three classes are all minimal. Suppose we take [a2] next. The
clique above [a2] has size 7, so we must choose 3 elements from it. We have already
chosen 2, so we need to choose 1 more. Checking the abelianization again, we see
that any choice of the 4 elements in [a2] will extend to a basis, and so we add a2

to V. Similarly, from [a3], we add a3 to V.
Finally, we consider [a1]. The clique above [a1] has size 7, and we have al-

ready chosen 3 of these vertices, so we choose no more. This leaves us with
V = {a2, a3, a4, x, xa1}. We take the induced subgraph 3 of 1G on these vertices;
see Figure 5.

We now have a candidate map ϕ :W3→ G. It is straightforward to check that
the map ψ below is the inverse, and that ϕ and ψ are isomorphisms:

ϕ : b1 7→ a3, b2 7→ x, b3 7→ a4, b4 7→ xa1, b5 7→ a2,

ψ : a1 7→ b2b4, a2 7→ b5, a3 7→ b1, a4 7→ b3, x 7→ b2.

Thus, G is a right-angled Coxeter group, completing the example.

In this example, we were extending a right-angled Coxeter group by a single
partial conjugation. It turns out that this will always yield a right-angled Coxeter
group, and in fact we can say much more.

Lemma 3.2. Suppose W0 is a right-angled Coxeter group. If α1, . . . , αk are partial
conjugations of W with the same acting letter and pairwise disjoint domains, then
G =W o 〈α1, . . . , αk〉 is a right-angled Coxeter group.
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Proof. Without loss of generality, we may assume each αj has acting letter a1. Let
Di denote the domain of αi for each 1≤ i ≤ k. Now G is generated by the elements

{a1, . . . , an, α1, . . . , αk}

with the relations

(R1) a2
i = 1, for 1≤ i ≤ n,

(R2) [ai , aj ] = 1, for {ai , aj } ∈ E(0),

(R3) α2
i = 1, for 1≤ i ≤ k,

(R4) [αi , αj ] = 1, for 1≤ i < j ≤ k,

(R5) [αi , aj ] = 1, for aj /∈ Dj ,

(R6) αi ajαi = a1aj a1, for aj ∈ Di .

Let H be the group generated by

{b1, . . . , bn, β1, . . . , βk}

with the relations

(S1) b2
i = 1, for 1≤ i ≤ n,

(S2) [bi , bj ] = 1, for {ai , aj } ∈ E(0),

(S3) β2
i = 1, for 1≤ i ≤ k,

(S4) [βi , βj ] = 1, for 1≤ i < j ≤ k,

(S5) [βi , bj ] = 1, for aj /∈ Di ,

(S6) [b1, bi ] = 1, for 2≤ i ≤ n and ai ∈ D1 ∪ · · · ∪ Dk .

We note that the given presentation for H is a right-angled Coxeter presentation.
We define maps

ϕ̂ : {a1, . . . , an, α1, . . . , αk} → {b1, . . . , bn, β1, . . . , βk},

a1 7→ b1β1 · · ·βk,

αi 7→ βi (1≤ i ≤ k),

ai 7→ bi (2≤ i ≤ n),

ψ̂ : {b1, . . . , bn, β1, . . . , βk} → {a1, . . . , an, α1, . . . , αk},

b1 7→ a1α1 · · ·αk,

βi 7→ αi (1≤ i ≤ k),

bi 7→ ai (2≤ i ≤ n).

It is straightforward to check that ϕ̂ and ψ̂ preserve the relations (R1)–(R6) and
(S1)–(S6), respectively, so they induce homomorphisms ϕ :G→ H and ψ : H→G.
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(Note that the preservation of the relation (S6) uses the assumption that the domains
Di are pairwise disjoint.) Finally, it is straightforward to see that ϕ and ψ are
inverses to each other, hence G and H are isomorphic. That is, G is a right-angled
Coxeter group. �

Suppose H ≤Out0(W0) is generated by partial conjugations χ1, . . . , χk . Having
shown that the semidirect product extension of W0 by any single partial conjugation
is again right-angled Coxeter, we might hope to show that W0 o H is right-angled
Coxeter by observing that this is isomorphic to taking the iterated semidirect
products, each by a single χi :

W0 o H =
(
· · · ((W0 o 〈χ1〉)o 〈χ2〉)o · · ·o 〈χk〉

)
.

However, there is a subtlety that ruins this argument, namely, that χ2 will extend to
some automorphism of W0 o 〈χ1〉, but not necessarily to a partial conjugation. We
cannot extend inductively, since we cannot ensure that we are always extending
by single partial conjugations. The following lemma and theorem identify certain
cases in which this inductive argument works.

Lemma 3.3. Suppose W, 0, a1, α1, . . . , αk , H, and G are as in the lemma and
proof above. Let γ be a partial conjugation of W with acting letter a2 6= a1 and
such that γ commutes with each of the automorphisms α1, . . . , αk . Then γ acts
on G as a partial conjugation.

Proof. Without loss of generality we may assume γ has acting letter a2 and
domain D. Recall that a2 = b2. To show that γ acts on G as a partial con-
jugation we consider the result of conjugation by γ on each of the generators
b1, . . . , bn, β1, . . . , βk . Firstly we note: γβiγ = βi for 1 ≤ i ≤ k; γ biγ = bi for
1 ≤ i ≤ n and ai /∈ D; γ biγ = b2bi b2 for 2 ≤ i ≤ n and ai ∈ D. If a1 /∈ D, then
γ b1γ = γ a1γ = b1. Suppose a1 ∈ D. Since γ commutes pairwise with α1, . . . , αk ,
we have a2 /∈ D1 ∪ · · · ∪ Dk . We compute

γ b1γ = γ a1α1 · · ·αkγ

= γ a1γα1 · · ·αk

= a2a1a2α1 · · ·αk

= a2a1α1 · · ·αka2

= b2b1b2.

Since γ is an automorphism of G, and γ takes each generator to either itself or the
conjugate of itself by b2, we may conclude that γ is a partial conjugation of G.

Write ϕ : {a1, . . . , an}→ {b1, . . . , bn} for the map ϕ(ai )= bi . From the calcula-
tions above, the domain of γ acting on G is ϕ(D). �
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Theorem 1.1. Suppose χ1, . . . , χk are pairwise commuting partial conjugations of
the right-angled Coxeter group W0 such that whenever χi and χ j have the same
acting letter, their domains don’t intersect. Then G =W o 〈χ1, . . . , χk〉 is a right-
angled Coxeter group. Further, writing Si ⊆ {χ1, . . . , χk} for the set comprising
those partial conjugations with acting letter ai ,{

a1
∏
χi∈S1

χi , . . . , an

∏
χi∈Sn

χi

}
∪ {χ1, . . . , χk}

is a Coxeter generating set for G.

Proof. The proof is by induction, applying the lemmas above at each step. Let
α1, . . . , αk1 be those χi with acting letter 1. By assumption, they have pairwise
disjoint domains. By Lemma 3.2, W0 o 〈α1, . . . , αk1〉 is a RACG.

Moreover, by Lemma 3.3, the remaining χi still act like partial conjugations,
and their domains do not intersect, since they didn’t before the extension. Now
take β1, . . . , βk2 among the remaining χi to be those which have acting letter 2,
and extend by 〈β1, . . . , βk2〉.

Continuing inductively, we extend at the i-th step by all remaining partial conju-
gations with acting letter i . The result follows. �

In [Gutierrez et al. 2012], the authors investigate the automorphism groups of
graph products of cyclic groups. In the case that W is a right-angled Coxeter group,
the authors recover a result of Tits [1988] which shows Aut(W ) = Aut0(W )o
Aut1(W ) with Aut1(W ) finite. Thus Aut0(W ) (sometimes denoted AutPC(W )),
which is the subgroup of Aut(W ) generated by all partial conjugations of W, is a
finite index subgroup of Aut(W ). They also show that Aut0(W ) splits as Inn(W )o
Out0(W ). Finally, they give the following condition on 0, called no SILs, which
characterizes exactly when Out0(W ) is finite and is thus isomorphic to Zn

2 .

Definition 3.4. A graph 0 has a separating intersection of links (SIL) if, for some
vertices v and w with d(v,w) ≥ 2, there is a component of 0 \ (Lk(v)∩Lk(w))
which contains neither v nor w. Otherwise, 0 is said to have no SILs.

Inn(W0) is known to be a right-angled Coxeter group. In the case that 0 has
no SILs, Aut0(W0) is a finite extension of Inn(W0). In [Charney et al. 2010], it is
shown that Aut0(W0) is again a right-angled Coxeter group in that case. We arrive
at this same result as a direct application of the previous corollary.

Corollary 3.5. If 0 contains no SILs, then Aut0(W ) is a right-angled Coxeter
group and thus Aut(W ) contains a right-angled Coxeter group as a subgroup of
finite index.
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Proof. Without loss of generality we may assume W has trivial center. Suppose 0
contains no SILs. Then

Aut0(W )= Inn(W )oOut0(W )∼=W oOut0(W ),

and Out0(W ) is generated by pairwise commuting partial conjugations which satisfy
the condition in the corollary above. �

In general, one should not expect Aut(W ) to be right-angled Coxeter. The
elements of Aut1(W ) include graph symmetries, which could then introduce torsion
elements of order other than 2. One should not generally expect that Aut0(W ) is
a right-angled Coxeter group, but one might see the no SILs result as suggesting
that we restrict our attention to extensions of right-angled Coxeter groups by finite
subgroups of Out0(W ) (although Example 3.8 in the following section demonstrates
that even this restriction is not sufficient).

3B. Groups which are not right-angled Coxeter.

Example 3.6. As in the previous section, we begin with an explicitly worked out
example. Let G denote the group presented as

G = 〈a, b, c, x, y | a2, b2, c2, x2, y2, xax = a, xbx = b, xcx = aca,

yay = a, yby = b, ycy = bcb〉.

Let W =〈a, b, c〉 and H=〈x, y〉. Then W =Z/2Z∗Z/2Z∗Z/2Z, H∼=Z/2Z∗Z/2Z,
and G ∼=W oH , where x and y act as a pair of noncommuting partial conjugations.

To construct 1G , we must understand the involutions in G. Since G =W o H ,
each g ∈ G may be written uniquely in the form g =wh, where w ∈W and h ∈ H .
Further, g2

= whwh = whw(h−1h)h = wwh−1
h2. Since every element in G can

be uniquely written as a product of an element of G and an element of H, if g
is an involution, then h is an involution and wh−1

= wh
= w−1. Because H is

a right-angled Coxeter group (in fact, D∞), every nontrivial involution in H is
conjugate to either x or y; it follows that, up to conjugation, we may suppose g has
one of the forms

(1) w such that w2
= 1,

(2) wx such that wx
= w−1, or

(3) wy such that wy
= w−1.

Every element of the first type is conjugate to either a, b, or c. Now we’ll try to list
elements of the second type (elements of the third type will be analogous).

Suppose g = wx with wx
= w−1. We further suppose that, within the collection

of words of this form in the conjugacy class of g, we choose the shortest possible w.
The element w can be written uniquely in the form u0bu1b · · · um−1bum , where
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m ≥ 0, each ui is a geodesic word in {a, c}∗, and only u0 and um may be trivial.
Then wx

= ux
0bux

1b · · · ux
m−1bux

m =w
−1 implies that ux

0 = u−1
m , ux

1 = u−1
m−1, and so

on. We now consider a few subcases.
If m > 0 and u0 is not trivial, then

u−1
0 (wx)u0 = u−1

0 (u0bu1b · · · um−1bum x)u0

= bu1b · · · um−1bumux
0 x

= bu1b · · · um−1bx .

This contradicts the minimality of the length of w, so either m = 0 or u0 is trivial.
If u0 is trivial and m > 1, then w begins and ends with b, so |b(wx)b| < |wx |.
Again, this contradicts minimality, hence either m = 0 or w = b.

If m = 0, then w = u0 ∈ 〈a, c〉 is geodesic and so is an alternating string of
a and c. If |w| > 1 and |w| is odd, then w begins and ends with the same letter.
If w begins and ends with a, then |awxa| = |awax |< |wx |; if w begins and ends
with c then wx begins and ends with a; hence wx

6= w−1. In either case, we have
a contradiction, so |w| = 1, in which case w = a or w = c, or else |w| is even.
If w = (ac)n and n > 1, then |aca(wx)aca|< |wx |; if w = (ca)n and n > 1, then
|cwxc|< |wx |. In both cases, we have a contradiction. Our only case left is m = 0,
n = 1, which corresponds to w = ac or w = ca. Therefore, our only nontrivial
possibilities for w are w = b, a, c, ac, ca.

Note that a(cax)a = acx , so these cases fall into the same conjugacy classes. In
summary, we have that each involution of the form wx is conjugate to exactly one of
the elements x, ax, bx, acx . (We observe that the final option cx is not, in fact, an
involution. In this case, w = c, and wx

6=w−1.) We also observe that none of these
involutions are conjugate to each other since they all map to distinct elements in Gab.

Similarly, each involution of the form wy is conjugate to exactly one of the
elements y, ay, by, bcy. Therefore, the following is the complete list of conjugacy
classes in G, and hence serves as the list of vertex labels in 1G :

[a], [b], [c], [x], [ax], [bx], [acx], [y], [ay], [by], [bcy].

We now consider pairs of distinct conjugacy classes, to see whether or not they
should be adjacent in 1G . By Proposition 2.12, we can just check the product
relations among the images of the involutions in Gab. We omit the actual calculation
and show the resulting involution graph in Figure 6.

Now 1G is not a clique graph, since, for example, the IEC fails. (The reader
can check this directly for the maximal cliques labeled 03 and 04 in the figure.)

Example 3.7. Aut0(W3) is not a right-angled Coxeter group. The details are very
similar to the previous example (we extend by one further partial conjugation), and
are omitted here. The involution graph is shown in Figure 7.



60 CUNNINGHAM, EISENBERG, PIGGOTT AND RUANE

[acx] [c] [bcy]

[ax]

[a]

[x]

[bx]

[b] [by]

[y]

[ay]

01 02

03 04

05

06

Figure 6. An involution graph which cannot be a clique graph.
The labeled triangles 0i are the maximal cliques.

[acx] [c] [bcy]

[ax]

[a]

[x]

[bx]

[b] [by]

[y]

[ay]

[z]
[az]

[cz]
[cbz]

Figure 7. The involution graph for Aut0(W3).

Here we must give the following warning. The proof above relies on finding a
portion of the involution graph which we know should not appear in any clique graph.
In the example, it is the “triangle of triangles” configuration (see Example 4.2). This
should not occur in the involution graph of a right-angled Coxeter group, essentially
because it means that all three vertices of the central triangle must be generators
(whereas, by construction of the involution graph in the case of right-angled Coxeter
groups, we should expect two of the vertices to be generators and the third to be
their product).

However, we must point out that, strictly speaking, there is no such thing as
a “poison pill” subgraph — a subgraph which, by its presence, prevents the given
graph from being a clique graph. Indeed, if 0 is any graph, then 0 is an induced
subgraph of 0K . In this way, any finite graph may appear as an induced subgraph
in some clique graph (even the “triangle of triangles”). In the example above, it
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a1 a2

a3 a4 a5 a6

Figure 8. The defining graph 0.

is important that we know the central triangles 03 and 04 to be not just induced
subgraphs, but also maximal cliques.

In all of the previous results, we have only considered split extensions by sub-
groups H ≤ Out0(W0) which were generated by partial conjugations. In particular,
if the partial conjugations commuted pairwise, then H was finite and the extension
G =W0 o H was right-angled Coxeter. On the other hand, in the example above,
the partial conjugations did not commute, thus H was infinite and G was not
right-angled Coxeter. One might wonder whether the existence of a right-angled
Coxeter presentation for the extension G depends only on the finiteness of H . The
following example answers this question in the negative.

Example 3.8. Let 0 be the graph shown in Figure 8. Let x be the partial conjugation
with acting letter a1 and domain {a3, a4}, and let y be the partial conjugation with
acting letter a2 and domain {a3, a5}. Since a1 and a2 commute, so do x and y.
Now write z = xy for the product, which is also an involution. It follows from
Theorem 1.1 that G =W0 o 〈x, y〉 is a right-angled Coxeter group. Consider the
subgroup H =W0 o 〈z〉 ≤ G. The defining graph for G and the involution graph
for H are shown in Figure 9.

The reader could verify 1H in two ways — first, by directly calculating the
involutions and checking their commuting relations; and second, using the defining
graph of G to calculate 1G , and then picking out the subset of vertices in 1G

which are labeled by elements in the subgroup H . (Note that this latter method

xa1ya2

a3

a4a5

a6

x y

a1

z
a2

za1

za2

a1a2

za1a2

a6

za6

a3

za1a2a3

a4

za1a4

a5

za2a5

Figure 9. The defining graph of G (left) and the involution graph
of H (right).
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of constructing the involution graph of a subgroup will not work in general. It
works for the current example because G is a right-angled Coxeter group and H is
normal.)

We can realize G as the iterated semidirect product

G = (W0 o 〈z〉)o 〈x〉 = H o 〈x〉.

This gives an example of a right-angled Coxeter group W0 with a degree-2 split
extension H which is not right-angled Coxeter. Moreover, taking a further degree-2
extension G, we recover the right-angled Coxeter property.

3C. Semidirect product decompositions. Here we present some results which are
unrelated to the problem of recognizing right-angled Coxeter groups. These results
fall naturally out of the applications in Section 3A, and they generally address
our ability to recognize semidirect product decompositions of W0 by identifying
features of 0.

To give the basic idea of how to generate these results, we give the following
alternate description of Lemma 3.2. Suppose a1, . . . , an are the vertices of 0
and α1, . . . , αk are partial conjugations as in the lemma. We will suppose that a1

is the acting letter and Di is the domain of αi . The lemma says that the group
G =W0o〈α1, . . . , αk〉 is a right-angled Coxeter group, and the proof of the lemma
gives the right-angled Coxeter generating set. We can directly construct the defining
graph 3 for G from 0 as follows:

(1) Add k new vertices labeled α1, . . . , αk , all connected to one another and to a1.

(2) Connect each αi to every aj where aj /∈ Di .

(3) Relabel a1 as a1α1α2 · · ·αk and connect this to each vertex in D1∪D2∪· · ·∪Dk .

The vertices a1, α1, . . . , αk form a clique of size k+ 1, and the union of the stars
of these vertices cover all of 3. The restriction in Lemma 3.2 that the domains be
pairwise disjoint implies the following: we can distinguish Di as those elements
in St(a1) \ St(αi ) which are contained in St(αj ) for every j 6= i . The following
corollary is immediate from this description.

Corollary 3.9. Suppose 3 contains k + 1 vertices a1, α1, . . . , αk satisfying: the
following properties:

(1) a1, α1, . . . , αk form a clique.

(2) St(a1)∪
⋃

i St(αi )=3.

(3) the sets Di = (St(a1) \St(αi ))∩
⋂

j 6=i St(αj ) are all nonempty.

Define 0 to be the graph obtained from 3 by removing the vertices α1, . . . , αk and
any edge from a1 to any Di . Then W3 can be realized as the semidirect product
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3
a1 a2 a3

a4 a5

02

a1 a2 a3

a4 a5

01

Figure 10. W3 =W01 o 〈x〉 =W02 o 〈y〉, where x, y act like the
partial conjugations x =χ4,{1} and y=χ2,{1} on 01, 02, respectively.

W0oH, where H ≤Out0(W0) is generated by the partial conjugations with acting
letter a1 and domains Di .

Theorem 1.1 yields an analogous corollary, since in each case they tell how to
build the defining graph of the extension from the original defining graph, and the
process is always reversible. It is not uniquely reversible. A given right-angled
Coxeter group will, in general, have many semidirect product decompositions. As
an example, consider the decompositions shown in Figure 10.

4. Details

In this section we explore the properties of the clique graph, the star poset, and the
involution graph introduced in Section 2. We present detailed proofs of these prop-
erties, including proofs establishing claims made in that section and the correctness
of our collapsing algorithms.

4A. The clique graph and the star poset. Recall that, given a graph 0, we write 0I

for the intersections of maximal cliques in 0. We begin by establishing a correspon-
dence between the maximal clique structure of a graph 0 and its clique graph 0K .
By maximal clique structure, we mean that there is a bijection between the maximal
cliques of 0 and those of 0K , which respects intersections.

Proposition 4.1. Suppose 0 is a finite graph with maximal cliques 01, . . . , 0r . For
any subset I ⊆ {1, 2, . . . , r}, write

0I =
⋂
i∈I

0i .

Similarly, write 0K,1, . . . , 0K,s for the maximal cliques of 0K , and write 0K,I for
the intersections of maximal cliques. Then, possibly after reindexing:

(1) r = s.
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(2) Each 0K,J contains at least one J-minimal vertex (namely, the vertex labeled
by the clique 0J ).

(3) 0K,i = (0i )K (that is, (0i )K naturally injects as a labeled graph into 0K , and
the image is precisely 0K,i ).

(4) 0K,I = (0I )K .

(5) If 0I is a clique of size k, then 0K,I is a clique of size 2k
− 1.

Proof. (1) For each maximal clique 0i in 0, there is a corresponding vertex vi

in 0K . This vertex is adjacent only to vertices representing subsets of 0i since 0i

is maximal, and so vi is contained in the unique maximal clique St(vi ) in 0K . In
particular, since each vi , vj can be in the same maximal clique of 0K , we have r ≤ s.

Conversely, each vertex of the maximal clique 0K,i is labeled by some clique
of vertices in 0. Since 0K,i forms a clique, the collection of all vertices of 0
which appear in the labels of vertices of 0K,i must form a clique 3 in 0. It is
clear that 3 is maximal, since 0K,i is. Thus 3 = 0j for some j . That is, s ≤ r ,
establishing (1). The description we have just given of the cliques in 0K also
establishes the correspondence in (3), and therefore in (4).

As noted in the claim, the clique 0J forms a vertex of 0K . It is straightforward
to see that this vertex is J-minimal in 0K,J , establishing (2).

Finally, if 0I is a clique of size k, then every nonempty subset of vertices induces
a clique, and so corresponds to a vertex in 0K,I . There are 2k

− 1 of these subsets,
which correspond to 2k

− 1 vertices in 0K,I . �

Let 0 be a finite graph with maximal cliques 01, . . . , 0r . As before, write 0I for
the intersections of the maximal cliques, and suppose |0I | = kI . Then∑

I)J

(−1)|I\J |+1kI ≤ kJ .

This is a direct application of the inclusion-exclusion principle, since the left hand
side of the inequality counts the number of vertices in 0J ∩

⋃
i /∈J 0i (while the

right-hand side is, by definition, the total number of vertices in 0J ). We have
therefore established that any clique graph must satisfy the MCC, MVC, and IEC.
This gives one direction of the characterization theorem:

Theorem 2.3. Let 0′ be a graph. There exists a graph 0 such that 0′ = 0K if and
only if the following three conditions are satisfied:

(1) Maximal clique condition (MCC): For all I , there exists some kI such that

|0′I | = 2kI − 1.

(2) Minimal vertex condition (MVC): Each nonempty intersection 0′J contains some
J-minimal vertex vJ .
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a

b
c

Figure 11. The triangle {a, b, c} forms a maximal clique which
fails the IEC. This was essentially the feature of Example 3.6 which
prevented the group there from being right-angled Coxeter.

(3) Inclusion-exclusion condition (IEC): For each J ,∑
I)J

(−1)|I\J |+1kI ≤ kJ .

If we are faced with some graph which we do not know to be a clique graph,
we can check directly that the intersections of maximal cliques have sizes of the
form n I = 2kI −1, and we can check directly that the system of integers kI satisfies
the inclusion-exclusion inequalities. Thus, determining whether a graph arises as
a clique graph is reduced to checking a system of integer inequalities (once we
establish the other direction of the theorem).

Example 4.2. Consider the graph in Figure 11. In this graph, all intersections of
maximal cliques have sizes of the form 2k

− 1, but the IEC fails. So the graph
cannot arise as a clique graph.

We will establish the converse of Theorem 2.3 by proving that, for any graph
which satisfies the MCC, MVC, and IEC, the proposed collapsing procedure of
Theorem 2.4 produces the desired output. In order to evaluate the collapsing
procedure, we must explore some properties of the star poset P(0).

Lemma 4.3. Let [v] ∈ P(0). Then the vertices

S =
⋃
[v]≤[w]

[w]

form a clique in 0. If this clique is maximal, then [v] is minimal in P(0).

Proof. If w,w′ ∈ S are any vertices, then w ∈ St(v) ⊆ St(w′), so w and w′ are
adjacent. Thus S forms a clique.

We now suppose [v] is not minimal. Then there is some [w]< [v]. In particular,
w /∈ S, but w ∈ St(w) ⊆ St(s) for any s ∈ S, hence w is a vertex outside of S
adjacent to all of S. Thus S is not maximal. �

Definition 4.4. For [v] ∈P(0), we call the clique S defined in the lemma the clique
above [v]. We will use the notation Sv if we need to keep track of the vertex v.
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Figure 12. It is easy to check that each vertex is its own star-
equivalence class, and that these equivalence classes are pairwise
not comparable. In particular, each [v] is minimal, and each
Sv = {v} is not a maximal clique.

The converse of the lemma (i.e., that minimality of [v] implies maximality of Sv)
is false in general. A simple example is given in Figure 12. However, we claim
that the converse does hold for those 0 which are clique graphs. Namely:
Proposition 4.5. Suppose 0 satisfies the MVC. Then [v] is a minimal element of
P(0) if and only if v is a minimal vertex of 0. In this case, Sv is the unique maximal
clique containing v.

Proof. Suppose v is a minimal vertex of 0. Then St(v) is the unique maximal
clique containing v. Since Sv is a clique containing v, it is clear that Sv ⊆ St(v).
Conversely, if x ∈ St(v), then St(v) ⊆ St(x), hence [v] ≤ [x] and x ∈ Sv. Thus
St(v)= Sv is maximal. By the previous lemma, since Sv is maximal, [v] is minimal.

Conversely, suppose v is not minimal. Then v is contained in the intersection of
two distinct maximal cliques, 01 and 02. Since 0i are maximal cliques, they contain
minimal vertices wi . By the above argument, [wi ] ≤ [v], and this must be a strict
inequality since, e.g., w2 ∈ St(v) \St(w1). Thus [v] is not minimal. �

Proposition 4.6. For any finite graph 0 and [v] ∈ P(0), Sv is an intersection of
maximal cliques.

Proof. Let 01, . . . , 0k be all the maximal cliques of 0 containing Sv . It is clear that
Sv ⊆

⋂
0i .

Conversely, let v′ ∈
⋂
0i and suppose v′ /∈ Sv. Since St(v) * St(v′), there is

some x ∈ St(v) which is not in St(v′). In particular, since
⋃
0i ⊆ St(v′), we must

have x /∈ 0i for any i . By construction of Sv, we must have x ∈ St(w) for each
w ∈ Sv. Now Sv ∪ {x} forms a clique which contains Sv and is not equal to 0i for
any i , contradicting our assumption that the list of 0i contained all maximal cliques
containing Sv . So there can exist no such v′, hence Sv =

⋂
0i , proving the claim. �

We observe that the previous two propositions say the following in the case of
clique graphs (which must satisfy the MVC):

Corollary 4.7. Suppose 0K is a clique graph.
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(1) [v] is minimal in P(0K ) if and only if v is minimal in 0K .

(2) If [v] is nonminimal, then Sv is the intersection of maximal cliques (and there-
fore has size of the form 2k

− 1). In this case,

Sv =
⋂

[w]minimal
[w]≤[v]

Sw.

This shows that the star poset also records information about the intersections of
maximal cliques: any clique above [v] is such an intersection. Finally, we prove
the converse.

Proposition 4.8. Suppose 0K is a clique graph. Then any intersection of maximal
cliques is equal to Sv for some v.

Proof. Since 0K is a clique graph, it satisfies the MVC. Let 0K,J be any intersection
of maximal cliques, and let v ∈ 0K,J be a J-minimal vertex. Without loss of
generality, let J be the maximal index set without changing the intersection. In
particular, J is precisely the index set of all maximal cliques containing v, so that
St(v)=

⋃
j∈J 0K, j .

We claim that Sv = 0K,J . Let u ∈ Sv. By definition of Sv, [v] ≤ [u], so

St(u)⊃ St(v)=
⋃
j∈J

0K, j .

That is, u is adjacent to every vertex in 0K, j , for each j ∈ J . Since each 0K, j is a
maximal clique, this shows u ∈ 0K, j for each j ∈ J . That is, u ∈ 0K,J .

Conversely, let w ∈ 0K,J . Then w is adjacent to all vertices in 0K, j for j ∈ J ,
thus

⋃
j∈J 0K, j ⊆ St(w). That is, St(v)⊆ St(w), so [v] ≤ [w]. By its definition, Sv

contains w. �

We note that the previous proof gives a nice description of the elements of each
star-equivalence class.

Corollary 4.9. Suppose 0K is a clique graph. Then any [v] ∈ P(0K ) consists
precisely of the J-minimal vertices of 0K , where J is the largest index set such
that v ∈ 0J .

Proof. Clearly, all J-minimal vertices for the same index set J must have the same
star (namely,

⋃
j∈J 0K, j ). Conversely, suppose v is J-minimal and [v] = [w] for

some w. Then w ∈0j for each j ∈ J , and w /∈0i for any i /∈ J . (Otherwise, all of 0i

would be in St(w), which we have assumed to be equal to St(v), a contradiction.)
Therefore, w is J-minimal. �

These results establish that, for a clique graph, the cliques above vertices are
precisely the intersections of maximal cliques, and every intersection of maximal
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cliques is the clique above some vertex. (This is not, in general, a bijective corre-
spondence. As remarked earlier, it may be that 0K,J = 0K,J ′ = Sv , where J 6= J ′.)
In our collapsing algorithm to recover 0 from 0K , we begin at the top of the poset
(this is the deepest intersection of maximal cliques) and work downwards. The
previous proposition ensures that the algorithm examines every intersection of
maximal cliques as it traverses every element in the poset structure.

We now wish to prove the correctness of our collapsing procedure, which also
establishes the other direction of Theorem 2.3. Recall the procedure:

Theorem 2.4. Let 0′ be a graph which satisfies the MCC, MVC, and IEC. Then
there is a unique (up to isomorphism) graph 0 such that 0′ is isomorphic to 0K .
Moreover, the following collapsing procedure produces the graph 0 if it exists.

(1) Initially, let V = { }.

(2) Let [w] ∈ P(0′) be a class such that every class [v] with [w]< [v] has already
been considered. Write

Sw =
⋃
[v]≥[w]

[v].

Then there is some k such that |Sw| = 2k
− 1. Let k ′ be the number of vertices

of Sw which are already contained in V. Choose k− k ′ vertices of [w] to add to
the vertex set V.

(3) Repeat the previous step until all classes of P(0′) have been considered.

(4) Return the graph C(0′) which is the induced subgraph of 0′ on the vertex set V.

We first must address a subtlety, namely, that we can carry out the choice in
step 2 of the algorithm.

Proposition 4.10. In step 2 of the collapsing procedure, 0≤ k− k ′ ≤ |[w]|. So we
are able to choose an appropriate number of vertices from [w] to add to V.

Proof. The clique Sw is some intersection of maximal cliques 0′J by Proposition 4.5.
From this clique, we have already chosen k ′ vertices, and every vertex among those
already chosen comes from a larger poset element, which is therefore a strictly
smaller intersection of maximal cliques. By the IEC, the number of elements we
could have chosen is at most kJ = k, hence k ′ ≤ k.

Now Sw =
(⋃
[w]<[v] Sv

)
∪ [w]. Because

|Sw| = 2k
− 1,

∣∣∣∣ ⋃
[w]<[v]

Sv

∣∣∣∣≤ 2k′
− 1, and [w] ≤ 2|[w]|,

we have 2k
− 1≤ 2k′

− 1+ 2|[w]|. Therefore, 2k
≤ 2k′

+ 2|[w]|. But 2x
+ 2y
≤ 2x+y

for all pairs of positive integers x, y. Thus 2k
≤ 2k′+|[w]|, and k ≤ k ′+ |[w]|. �
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We also see that step 2 does not tell us explicitly which vertices of [w] to add
to V. We claim this choice does not matter:

Proposition 4.11. Given 0′, if the procedure above does not return FALSE, then
the isomorphism type of the graph 0 does not depend on the choices made in step 2
of the collapsing procedure.

Proof. Without loss of generality, we will suppose our choices differ by a single
vertex. Suppose we are about to consider [v] and have constructed the set V thus
far. Let v1, . . . , vk+1 ∈ [v], where k > 0 is the number of vertices from [v] which
we must add to V. Let

V1 = V ∪ {v1, . . . , vk},

V2 = V ∪ {v1, . . . , vk−1, vk+1}.

We observe that we can make all future choices the same (since we haven’t changed
the number of vertices we must pick from [w] for any [w] ≤ [v]), so that we create
two final graphs 01 and 02 whose vertex sets differ only by switching vk and vk+1.

We now claim that the resulting graphs 01 and 02 are isomorphic. By the previous
observation, the vertex sets of 01 and 02 differ only by switching vk and vk+1. So
we can define a map ϕ : 01→ 02 which sends each vertex other than vk to itself,
and which sends vk to vk+1. We claim that ϕ defines a graph isomorphism. Clearly
any adjacency relation not involving vk is preserved under ϕ. Suppose w is a vertex
of 01 adjacent to vk . Then w ∈ St(vk)= St(vk+1), so w is adjacent to vk+1. Thus ϕ
is a graph homomorphism. By the same argument, the analogous map ψ : 02→ 01

is also a graph homomorphism, and the two maps are clearly inverses. Hence 01 is
isomorphic to 02. The full result follows by induction. �

This shows that the isomorphism type of an output graph C(0′) is determined.
However, a priori it could be the case that there are two graphs 0,3 such that 0K

and 3K are isomorphic, but the collapsing procedure applied to 0K always outputs
the isomorphism type 0. The following proposition says that the maximal clique
structure of 0′ determines the maximal clique structure of the output C(0′). The
theorem following the proposition establishes that the maximal clique structure
(including information about the sizes of all intersections of maximal cliques)
determines a graph up to isomorphism. By Proposition 4.1, any graph whose
clique graph is 0′ will have the same clique graph structure, and will therefore be
isomorphic. These results together show that the collapsing procedure outputs the
unique graph 0 up to isomorphism so that 0K = 0

′.

Proposition 4.12. Let 0′ be a finite graph satisfying the MCC, MVC, and IEC. In
particular, this implies there is a system of integers kI such that |0′I | = 2kI − 1. Let
C(0′)= 0. Then the maximal cliques of 0 correspond to the maximal cliques of 0′,
and |0I | = kI for all I .



70 CUNNINGHAM, EISENBERG, PIGGOTT AND RUANE

Proof. By assumption, each 0′I contains an I -minimal vertex v′I . We have |0′I | =
2kI − 1, and the algorithm chooses exactly kI vertices from Sv′I . Corollary 4.7
implies that the maximal cliques in 0 have sizes of the form ki , and Proposition 4.8
ensures that we have |0I | = kI for all intersections of maximal cliques (since all
intersections 0′I occur as the clique above some element in the poset). �

We have shown now that, if the algorithm returns any graph, then it returns a graph
with a certain number of maximal cliques, and the intersections of the maximal
cliques have certain sizes. We now establish that a finite graph is determined up to
isomorphism by the sizes of the intersections of maximal cliques.

Theorem 4.13. Let 0,3 be finite graphs. Suppose both graphs have r maximal
cliques which may be indexed in such a way that, for all index sets I ⊂ {1, 2, . . . , r},
|0I | = |3I |. That is, all intersections of maximal cliques have the same sizes in each
graph. Then there is an isomorphism ϕ : 0→3 which maps 0i to 3i for each i .

Proof. We first claim that the poset structures P(0) and P(3) are the same,
and the corresponding equivalence classes have the same sizes. For each v ∈ 0,
let Jv be the maximal index set such that v ∈ 0Jv . Then St(v) =

⋃
j∈Jv 0j . The

equivalence class of v consists of the Jv-minimal vertices of 0 by Corollary 4.9.
By assumption, |0Jv | = |3Jv |. Moreover, the number of vertices which are in some
further intersection is given by the inclusion-exclusion formula:∑

J)Jv

(−1)|J\Jv |+1
|0J | =

∑
J)Jv

(−1)|J\Jv |+1
|3J |.

That is, the number of Jv-minimal vertices in 0 and in 3 is the same. Since this is
for any v, the sizes of star-equivalence classes of vertices in 0 and 3 are equal for
every class. Each equivalence class is represented by some index set J (although
not every index set represents a class).

An equivalence class represented by J is smaller in the poset structure than
another represented by J ′ if and only if J ⊆ J ′. Since this holds in both 0 and 3,
it follows that the poset structures are equivalent.

Now, we build a map ϕ :0→3 by piecing together (arbitrary) bijections between
each pair of corresponding equivalence classes. We observe that, by construction,

ϕ([v])= [ϕ(v)].

We also observe that 0i is mapped to 3i for each i . Let v ∈ 0i , so that i ∈ Jv . By
construction, ϕ(v) ∈3Jv , which is an intersection of maximal cliques including 3i .
That is, ϕ(v) ∈3i . It follows that ϕ maps 0I to 3I for each I .

We must show that ϕ preserves adjacency. Suppose v,w ∈ 0 are adjacent. Then
the edge {v,w} extends to some maximal clique 0i . Now ϕ maps 0i to 3i , so ϕ(v)
and ϕ(w) are still adjacent. �
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This completes the proofs of Theorem 2.4 and Theorem 2.3.

4B. Calculations in the abelianization. We now discuss the modifications to the
collapsing procedure to make use of algebraic information. Recall from the discus-
sion in Section 2 that, given a group G, we first form the involution graph 1G and
try to find a full system of representatives (i.e., a labeling of the vertices of 1G

which exhibit all commuting relations simultaneously). If 1G is a clique graph, the
collapsing procedure will give a graph 0 = C(1G) such that 0K =1G . Moreover,
0 will carry the labels of the vertices chosen during the collapsing, so that the
choice of which vertices to keep and which to omit is essentially the choice of
which elements of G will be the generators in a (hypothetical) right-angled Coxeter
presentation. For this reason, we must take care when choosing our generator
vertices to avoid choosing group elements which have a nontrivial product relation.
We will now demonstrate a method of passing to the abelianization Gab to determine
product relations using straightforward calculations.

Suppose we are given a finitely presented group

G = 〈s1, . . . , sm | r1, . . . , rk〉.

Recall that, for g ∈ G, we write g for the image of g in the abelianization. A
presentation for Gab is given by

Gab ∼= 〈s1, s2, . . . , sm | r1, r2, . . . , rk, [si , sj ] for 1≤ i, j ≤ m〉.

Writing the group operation additively in Gab, we can write the relations as linear
combinations of the generators with integer coefficients:

ri = ai,1s1+ ai,2s2+ · · ·+ ai,msm .

The coefficients (ai, j ) form a k×m matrix R, called the relations matrix for Gab.
We briefly recall the Smith normal form. Given the k × m integer matrix R,

there exist k × k and m × m invertible matrices P, Q and a diagonal matrix S
such that R = P SQ, and the diagonal elements of S are α1, . . . , αr , 0, . . . , 0 such
that αi | αi+1. The diagonal matrix S is called the Smith normal form of R.

Interpreting S as the relation matrix for a presentation, we have that Gab is in a
canonical form as a direct product of cyclic groups. Normal forms are immediate and
computations in Gab are much easier. Moreover, we now have an effective quotient
map from G→ Gab in this canonical form. Namely, for any g ∈ G with g =

∏
sj ,

we have g =
∑

sj =
∑m

i=1 bi si . The vector-matrix product (b1 b2 · · · bm)Q will
give the coefficients of g in the Smith normal form presentation of Gab. This makes
product relations easy to compute.

We now apply this method to show that, in step 2 of the collapsing procedure,
we can avoid nontrivial product relations.
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Proposition 2.11. If W0 is a right-angled Coxeter group, then in step 2 of the
collapsing procedure in Theorem 2.4, we can choose the k− k ′ involutions of W0

so that the chosen elements do not exhibit a nontrivial product relation.

Proof. In step 2 of our collapsing procedure, we consider an equivalence class [w]
of 1W0

and the clique above it, Sw, where |Sw| = 2k
−1 for some k. If (W0, S) is a

right-angled Coxeter system for W0 and the labels are distinct, pairwise commuting
involutions, then H = Sw ∪ {e} is a finite subgroup isomorphic to (Z/2Z)k : the
elements of Sw are all involutions which pairwise commute. Any product g of
these elements is an involution and commutes with all other elements of Sw (so
it is connected to all of Sw). Moreover, any h which commutes with all of Sw
commutes with any product of elements in Sw (namely g), and so g is contained in
any maximal clique containing all of Sw. Since Sw is an intersection of maximal
cliques and g is in all of these cliques, g lies in Sw. So H is a subgroup.

By Corollary 2.10, this subgroup projects injectively as a vector subspace into W ab
0 .

Inductively, we assume that there exists a choice of a right-angled Coxeter system
(W0, S) such that V is a set of standard basis elements for (W0, S)ab ∼= (Z/2Z)k,
i.e., each element has only one nonzero component in the representation for the
abelianization given by our choice of right-angled Coxeter system (W0, S). (The
base case is V =∅ and any choice of (W0, S).)

It follows that V ∩ Sw is a linearly independent set in the Z/2Z-vector space W ab
0 .

We can then choose k− k ′ labels in Sw − V to extend this linearly independent set
to a basis B of 〈Sw〉. (It’s possible that k − k ′ = 0.) Since H projects injectively,
choosing a basis for 〈Sw〉 is the same as choosing a basis for 〈Sw〉. We need to
show that V ∪ B is linearly independent as well.

To clarify, we are now keeping track of two different representations of the
abelianization. W ab

0 is the form calculated from the Smith normal form in step 0 of
the procedure, and (W0, S)ab is the form wherein each element of V is a standard
basis element. We will show that such a form must exist if W0 is a right-angled
Coxeter group, but it will not be directly computable during the procedure itself.
The existence of this form will be used to show that any choice of B during our
procedure will result in no nontrivial product relations.

Since H is a finite subgroup of (W0, S), it is conjugate to a special subgroup:
gHg−1

= 〈a1, a2, . . . , ak〉 for {a1, a2, . . . , ak} ⊆ S. Consider b ∈ B ⊆ Sw. Then,
reordering the vertices of S if necessary, gbg−1

= a1a2 · · · am in (W0, S). By
the deletion condition of right-angled Coxeter groups (see, for example, [Davis
2008]), a product c1c2 · · · c` of distinct commuting generators of (W0, S) commutes
with a1a2 · · · am if and only if cj commutes with ai for each i, j . In particular,
[b] = [a1a2 · · · am] ≤ [ai ] for each 1≤ i ≤ m.

Suppose that [b]� [ai ] for each i . Then the procedure has already considered
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[ai ], and a subset of V is a basis for 〈Sai 〉, which contains ai . But by our inductive
hypothesis, V is a set of standard basis elements relative to (W0, S)ab; moreover ai

is also a standard basis element since ai ∈ S. So the only way that ai ∈ 〈V 〉 is if
ai ∈ V (and so by injectivity g−1ai g ∈ V ). Thus, b = g−1a1a2 · · · am g ∈ 〈V 〉, and
so b would not be chosen by the procedure to linearly extend V.

Therefore, there must be some i such that [b] = [ai ]. By reordering the vertices
of S if necessary, [b] = [a1]. But then gbg−1

= a1a2 · · · am and a1 are involutions
that commute with exactly the same involutions, and so

ϕ :W0→W0, ϕ(aj )=

{
a1a2 · · · am if j = 1,

aj otherwise,

is an involutive automorphism (in fact a transvection) of (W0, S).
Now, (W0, ϕ(S)) is also a right-angled Coxeter system for W0 with the exact

same generators except for swapping a1 and the product a1a2 · · · am . The set V
consists of standard basis elements not including a1 and so is unchanged under the
induced map ϕ : (W0, S)ab

→ (W0, ϕ(S))ab. Alternatively, ϕ(b)= ϕ(g)−1a1ϕ(g)
and so ϕ(b) = a1. So if we let (W0, S′) = (W0, ϕ(S)) be our new right-angled
Coxeter system and let V ′ = V ∪ {b} be our new subset of labels from our chosen
full set of representatives of 1W0

, then the inductive hypothesis is still satisfied. In
particular, in our Smith normal form W ab

0 , the set V ′ is still linearly independent.
For each b ∈ B, we can perform this procedure in succession, making sure that

for each b we choose different ai such that [b] = [ai ]. If at any point this were not
possible, it would mean that there was some bn = g−1a1a2 · · · am g (in the updated
system (W0, S′) with V ′) such that each aj either satisfies

(1) [bn]� [aj ], in which case aj ∈ V ′ from a previous step in the procedure, or

(2) bl=aj for some l<n, in which case aj ∈V ′ from a previous element of the basis.

In either case, since all of the aj lie in Sw, this would give a linear dependence
in Sw among B, which contradicts its choice as a basis.

Thus, by induction on both elements of the poset, and then within each class on
the elements of each chosen basis, it will always be the case that V will consist
of elementary basis elements in (W0, S)ab for some choice of system (W0, S).
Since every generator ai of S is in Sai , we have ai ∈ 〈V ∩ Sai 〉, but since V are all
elementary basis vectors, it must be that ai ∈V . Thus, at the end of the procedure, V
will always be the full standard basis for some system (W0, S)ab, and in particular,
V will always be a basis of W ab

0 .
Any nontrivial product relation among the elements of V would induce a linear

dependence among their images in W ab
0 . But since V is a basis, this can never

happen. �
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Finally, we prove the proposition that allows us to hypothetically build edges in
the involution graph of a given group by doing calculations in the abelianization:

Proposition 2.12. If W0 is a right-angled Coxeter group, then two conjugacy
classes of involutions [x] and [y] are connected by an edge in 1W0

if and only if
there exists another class [z] such that z = xy in the abelianization.

Proof. Let (W0, S) be a right-angled Coxeter system for W0 , and let [x] and [y] be
conjugacy classes of involutions. Since x and y are involutions in a right-angled
Coxeter group, they are each conjugate to a product of commuting generators. So
there exist a1, a2, . . . , an, b1, b2, . . . , bm ∈ S and g, h ∈W0 such that

gxg−1
= a1a2 · · · an and hyh−1

= b1b2 · · · bm,

where all of the ai pairwise commute, and all of the bj pairwise commute. Consider
the product

w = a1a2 · · · anb1b2 · · · bm = c1c2 · · · ck,

where the c` are the generators that appear among either the ai or the bj but not
both. (The ones that appear in both cancel with each other since they can be brought
to the front or back of their respective words.) In the abelianization W ab

0 , we have
x = a1a2 · · · an, y = b1b2 · · · bm, and w = c1c2 · · · ck .

Now suppose that [x] and [y] are connected by an edge in 1W0
. That means

that some conjugates of x and y commute. This implies that the product z of those
conjugates is an involution. But then z = x y in W ab

0 .
Conversely, suppose that there exists an involution z such that z = x y. Since z is

an involution, it must be conjugate to a product of distinct, commuting generators,
each of which is mapped to its corresponding generator of W ab

0 and so can be
recovered directly from z. Thus, these generators must be exactly the cl , and so they
each pairwise commute. In particular, w is an involution, and gxg−1 and hyh−1

commute. Thus, [x] and [y] should be connected by an edge in 1W0
. �

We have now established the correctness of our right-angled Coxeter recognition
procedure:

Theorem 2.13. Suppose G is a group whose only torsion elements all have order 2,
so that Gab ∼= (Z/2Z)n for some n. If the following procedure returns TRUE, then G
is a right-angled Coxeter group (and the procedure indicates a right-angled Coxeter
presentation). If it returns FALSE, then G is not a right-angled Coxeter group.

(1) Determine all conjugacy classes of involutions in G, and let these be the vertices
of a graph 0′. If there are not finitely many, return FALSE.

(2) Apply Proposition 2.12 to construct the edges of 0′.

(3) If 0′ is not a clique graph, return FALSE.
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(4) Find a full system of representatives for the vertices of 0′. If no such system
exists, return FALSE.

(5) Collapse as in Theorem 2.4, using Proposition 2.11 to ensure that nontrivial
product relations are avoided. Write C(0′) for the resulting graph.

(6) Let 0 be a graph isomorphic to C(0′) with generic vertex labels a1, . . . , an .
Let ϕ : W0 → G be the map which sends the generators of W0 to the word
given by the corresponding labels of vertices in C(0′). If ϕ is an isomorphism,
return TRUE.

(7) Otherwise, return UNKNOWN.

5. Further research

While we have used our decision procedure to successfully establish both positive
and negative identification of right-angled Coxeter presentations among extensions
of right-angled Coxeter groups, much work remains to be done. One might hope
to eventually characterize all subgroups H ≤ Out0(W0) (or H ≤ Aut(W0)) such
that W0 o H is right-angled Coxeter. We note that subgroups H ≤ Out0(W0)

are not necessarily generated by partial conjugations (they may be generated by
products of partial conjugations). Even if we only considered those H generated
by partial conjugations, we could not extend Lemma 3.2 by induction. If x, y are
two commuting partial conjugations of W0, then

W0 o 〈x, y〉 ∼= (W0 o 〈x〉)o 〈y〉;

however, y may not act on W0 o 〈x〉 as a partial conjugation (it will generally act
as a product of partial conjugations). Theorem 1.1 extends the lemma by induction,
but we have many more examples of right-angled Coxeter extensions which are not
covered by this theorem. More work is required for a complete characterization.

As in Section 3C, following a characterization of extensions W0 o H which
are right-angled Coxeter, we would also gain insight into semidirect product de-
compositions of right-angled Coxeter groups. Given a graph 3, we could hope
to obtain a complete list of graph features which identify W3 as W0 o H, where
H ≤ Out0(W0). (We observe that this would not identify all semidirect product
decompositions of right-angled Coxeter groups. There are certainly decompositions
which are not of this form.)

We strongly suspect that, whenever H ≤ Out0(W0) is isomorphic to D∞, the
product W0 o H is not right-angled Coxeter. The first example of Section 3B is of
this form. Much of the argument in that example rests on using a normal form to
establish that the given list of classes of involutions is complete. A general proof
would require substantially more work to prove that we can accurately build the
involution graph in the general case.
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ai

x

xai

yaj

b

aj

Figure 13. Dashed lines represent edges that may be present in some cases.

In particular, in the case of universal right-angled Coxeter groups (those whose
defining graphs have no edges), the outer automorphism groups act on a contractible
simplicial complex called McCullough–Miller space [Piggott 2012]. This space
is analogous to Culler–Vogtmann outer space for the case of free groups [Culler
and Vogtmann 1986], and we can use the action to classify all conjugacy classes
of involutions in the outer automorphism groups. An analogous structure does not
currently exist for the outer automorphism group of a general right-angled Coxeter
group, and such a theory would need to be developed in order to construct the
involution graph and confirm our conjecture.

Nevertheless, we can provide the following heuristic about what ought to go
wrong in such an extension. Consider, for simplicity, a D∞ generated by two
noncommuting partial conjugations. If x = χi,D and y = χ j,E are the partial
conjugations, let b be any vertex other than aj which is outside St(ai )∪ D. Then
Figure 13 shows part of the involution graph of the extension.

In the figure, the edge from b to yaj will be present if b ∈ E ; the edge from b
to aj will be present if b ∈ St(aj ). The figure as drawn so far cannot be a clique
graph, because the central triangle is a maximal clique which does not satisfy the
IEC. But even if other vertices were present which could turn the central triangle
into a 7-clique (or larger) so that the condition would be satisfied, the collapsing
procedure would need to choose all three vertices x, ai , xai , which are not linearly
independent in the abelianization. However, this only establishes that the given
pattern of labeling vertices in the involution graph — a pattern which has produced
full systems of labels in all other examples so far — does not give an isomorphism
to a right-angled Coxeter group in this case. We have not sufficiently established
that the extension could not have any right-angled Coxeter presentation.
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ON YAMABE-TYPE PROBLEMS
ON RIEMANNIAN MANIFOLDS WITH BOUNDARY
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Let (M, g) be an n-dimensional compact Riemannian manifold with bound-
ary. We consider the Yamabe-type problem{

−1gu+ au = 0 on M,

∂νu+ n−2
2 bu = (n− 2)un/(n−2)±ε on ∂M,

where a ∈C1(M), b∈C1(∂M), ν is the outward pointing unit normal to ∂M,
1gu := divg∇gu, and ε is a small positive parameter. We build solutions
which blow up at a point of the boundary as ε goes to zero. The blowing-up
behavior is ruled by the function b− Hg , where Hg is the boundary mean
curvature.

1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3 with
a boundary ∂M which is the union of a finite number of smooth closed compact
submanifolds embedded in M .

A well-known problem in differential geometry is whether (M, g) is necessarily
conformally equivalent to a manifold of constant scalar curvature whose boundary
is minimal. When the boundary is empty this is called the Yamabe problem (see
Yamabe [1960]), which has been completely solved by Aubin [1976], Schoen [1984]
and Trudinger [1968]. Cherrier [1984] and Escobar [1992a; 1992b] studied the
problem in the context of manifolds with boundary and gave an affirmative solution
to the question in almost every case. The remaining cases were studied by Marques
[2005; 2007], by Almaraz [2010] and by Brendle and Chen [2014].

Once the problem is solvable, a natural question about compactness of the full set
of solutions arises. Concerning the Yamabe problem, it was first raised by Schoen
in a topics course at Stanford University in 1988. A necessary condition is that the
manifold is not conformally equivalent to the standard sphere Sn , since the group of
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conformal transformations of the round sphere is not compact itself. The problem
of compactness has been widely studied in recent years and has been completely
solved by Brendle [2008], Brendle and Marques [2009] and Khuri, Marques and
Schoen [Khuri et al. 2009].

In the presence of a boundary, a necessary condition is that M is not conformally
equivalent to the standard ball Bn . The problem when the boundary of the manifold
is not empty has been studied by V. Felli and M. Ould Ahmedou [2003; 2005],
Han and Li [1999] and Almaraz [2011a; 2011b]. In particular, Almaraz studied
the compactness property in the case of scalar-flat metrics. Indeed, the zero scalar
curvature case is particularly interesting because it leads one to study a linear
equation in the interior with a critical Neumann-type nonlinear boundary condition

(1-1)

−1gu+ n−2
4(n−1)

Rgu = 0 on M , u > 0 in M ,

∂νu+
n−2

2
Hgu = (n− 2)un/(n−2) on ∂M ,

where ν is the outward pointing unit normal to ∂M , Rg is the scalar curvature of
M with respect to g, and Hg is the boundary mean curvature with respect to g.

We note that in this case compactness of solutions is equivalent to establish
a priori estimates for solutions to equation (1-1). Almaraz [2011b] proved that
compactness holds for a generic metric g. On the other hand, in [Almaraz 2011a]
it was proved that if the dimension of the manifold is n ≥ 25, compactness does
not hold because it is possible to build blowing-up solutions to (1-1) for a suitable
metric g. We point out that the problem of compactness in dimension n ≤ 24 is
still not completely understood.

An interesting issue, closely related to the compactness property, is the stability
problem. One can ask whether or not the compactness property is preserved under
perturbations of the equation, which is equivalent to having or not having uniform
a priori estimates for solutions of the perturbed problem. Let us consider the more
general problem

(1-2)
{
−1gu+ a(x)u = 0 in M , u > 0 in M ,
∂νu+ b(x)u = (n− 2)un/(n−2) on ∂M .

We say that the problem (1-2) is stable if for any sequences of C1 functions
aε : M → R and bε : ∂M → R converging in C1 to functions a : M → R and
b : ∂M→ R, for any sequence of exponents pε := n/(n− 2)± ε converging to the
critical one n/(n− 2) and for any sequence of associated solutions uε bounded in
H 1(M) of the perturbed problems

(1-3)

{
−1gu+ aε(x)u = 0 in M , uε > 0 in M ,

∂νu+
n−2

2
bε(x)u = (n− 2)un/(n−2)±ε

ε on ∂M ,
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there is a subsequence uεk which converges in C2 to a solution to the limit problem
(1-2). The stability of the Yamabe problem has been introduced and studied by
Druet [2003; 2004] and by Druet and Hebey [2005a; 2005b]. Recently, Esposito,
Pistoia and Vetois [Esposito et al. 2014], Micheletti, Pistoia and Vetois [Micheletti
et al. 2009] and Esposito and Pistoia [2014] proved that a priori estimates fail for
perturbations of the linear potential or of the exponent.

In this paper, we investigate the question of stability of the problem (1-2). It is
clear that it is not stable if it is possible to build solutions uε to perturbed problems
(1-3) which blow up at one or more points of the manifold as the parameter ε goes to
zero. Here, we show that the behavior of the sequence uε is dictated by the difference

(1-4) ϕ(q)= b(q)− Hg(q) for q ∈ ∂M.

More precisely, we consider the problem

(1-5)

−1gu+ a(x)u = 0 on M , u > 0 in M ,
∂

∂ν
u+ n−2

2
b(x)u = (n− 2)un/(n−2)±ε on ∂M .

We assume that a ∈ C1(M) and b ∈ C1(∂M) are such that the linear operator
Lu := −1gu+ au with Neumann boundary condition Bu := ∂νu+ 1

2(n− 2)bu is
coercive; namely, there exists a constant c > 0 such that

(1-6)
∫

M

(
|∇gu|2+ a(x)u2) dµg +

n−2
2

∫
∂M

b(x)u2 dσ ≥ c‖u‖2H1(M).

Here ε > 0 is a small parameter, 1gu := divg∇gu, and the space H 1(M) is the
closure of C∞(M) with respect to the norm

‖u‖H1 =

(∫
M

(
|∇gu|2+ u2) dµg

)1/2

.

The problem (1-5) turns out to be either slightly subcritical or slightly supercritical
if the exponent in the nonlinearity is either n/(n−2)−ε or n/(n−2)+ε, respectively.
Let us state our main result.

Theorem 1. Assume (1-6) and n ≥ 7.

(i) If q0 ∈ ∂M is a strict local minimum point of the function ϕ defined in (1-4)
with ϕ(q0) > 0, then provided ε > 0 is small enough, there exists a solution uε
of (1-5) in the slightly subcritical case such that uε blows up at a boundary
point when ε→ 0+.

(ii) If q0 ∈ ∂M is a strict local maximum point of the function ϕ defined in (1-4)
with ϕ(q0) < 0, then provided ε < 0 is small enough, there exists a solution uε
of (1-5) in the slightly supercritical case such that uε blows up at a boundary
point when ε→ 0+.
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We say that uε blows up at a point q0 of the boundary if there exists a family
of points qε ∈ ∂M such that qε→ q0 as ε→ 0 and, for any neighborhood U ⊂ M
of q0, we have that supq∈U uε(q)→+∞ as ε→ 0.

Our result does not concern the stability of the geometric Yamabe problem (1-1).
Indeed, the function ϕ in (1-4) turns out to be identically zero. It would be interesting
to discover the function which rules the behavior of blowing-up sequences in this
case. We expect that it depends on the trace-free second fundamental form as it is
suggested by Almaraz [2011b], where a compactness result in the subcritical case
is established.

The case of low dimension also remains open, where we expect that the function
ϕ in (1-4) should be replaced by a function which depends on the Weyl tensor of
the boundary, as suggested by Escobar [1992a; 1992b].

The proof of our result relies on a very well known Ljapunov–Schmidt procedure.
In Section 2 we set up the problem, and in Section 3 we reduce the problem to a
finite dimensional one, which is then studied in Section 4.

2. Setting of the problem

Let us rewrite problem (1-5) in a more convenient way.
First of all, assumption (1-6) allows us to endow the Hilbert space H := H 1(M)

with the scalar product

〈〈u, v〉〉H :=
∫

M
(∇gu∇gv+ a(x)uv) dµg +

n−2
2

∫
∂M

b(x)uv dσ

and the induced norm ‖u‖2H := 〈〈u, u〉〉H . We define the exponent

sε =


2(n−1)

n−2
in the subcritical case,

2(n−1)
n−2

+ nε in the supercritical case,

and the Banach space H := H 1(M)∩ Lsε(∂M) endowed with the norm ‖u‖H =
‖u‖H + |u|Lsε (∂M).

Notice that in the subcritical case H is identical to the Hilbert space H .
By trace theorems, we have the inclusion W 1,τ (M)⊂ L t(∂M) for any t and τ

satisfying t ≤ τ(n− 1)/(n− τ).
We consider i : H 1(M)→ L2(n−1)/(n−2)(∂M) and its adjoint with respect to
〈〈 · , · 〉〉H , namely

i∗ : L2(n−1)/n(∂M)→ H 1(M)

defined by

〈〈ϕ, i∗(g)〉〉H =
∫
∂M
ϕg dσ for all ϕ ∈ H 1,
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so that u = i∗(g) is the weak solution of the problem

(2-1)

−1gu+ a(x)u = 0 on M ,
∂

∂ν
u+ n−2

2
b(x)u = g on ∂M .

We recall that by [Nittka 2011], if u ∈ H 1(M) is a solution of (2-1), then for
2n/(n+ 2)≤ q ≤ n/2 and r > 0 we have

(2-2) ‖u‖L(n−1)q/(n−2q)(∂M) = ‖i
∗(g)‖L(n−1)q/(n−2q)(∂M) ≤ ‖g‖L(n−1)q/(n−q)+r (∂M).

By this result, we can choose q and r such that

(2-3) (n−1)q
n−2q

=
2(n−1)

n−2
+ nε and (n−1)q

n−q
+ r = 2(n−1)+n(n−2)ε

n+(n−2)ε
,

that is,

q =
2n+ n2

(n−2
n−1

)
ε

n+ 2+ 2n
( n−2

n−1

)
ε

and r =
2(n− 1)+ n(n− 2)ε

n+ (n− 2)ε
−

2(n− 1)+ n(n− 2)ε
n+ (n− 2)

( n
n−1

)
ε
.

So, if u ∈ L2(n−1)/(n−2)+nε(∂M), then

|u|
n

n−2+ε ∈ L
2(n−1)+n(n−2)ε

n+ε(n−2) (∂M)

and, in light of (2-2), also i∗(|u|n/(n−2)+ε) ∈ L2(n−1)/(n−2)+nε(∂M).
Finally, we rewrite problem (1-5) — both in the subcritical and the supercritical

case — as

(2-4) u = i∗( fε(u)), u ∈H,

where the nonlinearity fε(u) is defined as fε(u) := (n − 2)(u+)n/(n−2)+ε in the
supercritical case or fε(u) := (n − 2)(u+)n/(n−2)−ε in the subcritical case. Here
u+(x) :=max{0, u(x)}. By assumption (1-6), a solution to problem (2-4) is strictly
positive and actually is a solution to problem (1-5). Therefore, we are led to build
solutions to problem (2-4) which blow-up at a boundary point as ε goes to zero.

The main ingredient to cook up our solutions are the standard bubbles

Uδ,ξ (x, t) := δ(n−2)/2

((δ+t)2+|x−ξ |2)(n−2)/2 , (x, t) ∈ Rn−1
×R+, δ > 0, ξ ∈ Rn−1,

which are all the solutions to the limit problem

(2-5)
{
−1U = 0 on Rn−1

×R+,
∂νU = (n− 2)U n/(n−2) on Rn−1

×{t = 0}.

We set Uδ(x, t) :=Uδ,0(x, t).
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We also need to introduce the linear problem

(2-6)
{
−1V = 0 on Rn−1

×R+,
∂νV = nU 2/(n−2)

1 V on Rn−1
×{t = 0}.

In [Almaraz 2011b] it has been proved that the n-dimensional space of solutions of
(2-6) is generated by the functions

Vi =
∂U1
∂xi
= (2− n)

xi

((1+ t)2+ |x |2)n/2
for i = i, . . . , n− 1,

V0 =
∂Uδ

∂δ

∣∣∣
δ=1
=

n−2
2

(
1

(1+t)2+|x |2

)n/2(
t2
+ |x |2− 1

)
.

Next, for a point q ∈ ∂M and the (n− 1)-dimensional unitary ball Bn−1(0, R)
in Rn−1, we introduce the Fermi coordinates ψ∂q : B

n−1(0, R)×[0, R)→ M . We
read the bubble on the manifold as the function

Wδ,q(ξ)=Uδ

(
(ψ∂q )

−1ξ
)
χ
(
(ψ∂q )

−1ξ
)
,

and the functions Vi on the manifold as the functions

Z i
δ,q(ξ)=

1
δ(n−2)/2 Vi

(1
δ
(ψ∂q )

−1ξ
)
χ
(
(ψ∂q )

−1ξ
)

for i = 0, . . . , n− 1,

where χ(x, t)= χ̃(|x |)χ̃(t), for χ̃ a smooth cut off function, χ̃(s)≡ 1 for 0≤ s <
R/2 and χ̃(s)≡ 0 for s ≥ R. Then, it is necessary to split the Hilbert space H into
the sum of the orthogonal spaces

Kδ,q = Span
〈
Z0
δ,q , . . . , Zn−1

δ,q

〉
and

K⊥δ,q =
{
ϕ ∈ H 1(M) | 〈〈ϕ, Z i

δ,q〉〉H = 0 for all i = 0, . . . , n− 1
}
.

Finally, we can look for a solution to problem (2-4) in the form

uε(x)=Wδ,q(x)+φ(x)

where the blow-up point q is in ∂M , the blowing-up rate δ satisfies

(2-7) δ := dε for some d > 0

and the remainder term φ belongs to the infinite dimensional space K⊥δ,q ∩H of
codimension n. We are led to solve the system

5⊥δ,q
{
Wδ,q(x)+φ(x)− i∗

(
fε(Wδ,q(x)+φ(x))

)}
= 0,(2-8)

5δ,q
{
Wδ,q(x)+φ(x)− i∗

(
fε(Wδ,q(x)+φ(x))

)}
= 0,(2-9)

5⊥δ,q and 5δ,q being the projections on K⊥δ,q and Kδ,q , respectively.
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3. The finite dimensional reduction

In this section we perform the finite dimensional reduction. We rewrite the auxiliary
equation (2-8) in the equivalent form

(3-1) L(φ)= N (φ)+ R,

where L = Lδ,q : K⊥δ,q ∩H→ K⊥δ,q ∩H is the linear operator

L(φ)=5⊥δ,q
{
φ(x)− i∗( f ′ε(Wδ,q)[φ])

}
,

N (φ) is the nonlinear term

(3-2) N (φ)=5⊥δ,q
{
i∗
(

fε(Wδ,q(x)+φ(x))
)
−i∗

(
fε(Wδ,q(x))

)
−i∗( f ′ε(Wδ,q)[φ])

}
and the error term R is defined by

(3-3) R =5⊥δ,q
{
i∗
(

fε(Wδ,q(x))
)
−Wδ,q(x)

}
.

3.1. The invertibility of the linear operator L.

Lemma 2. For a, b∈R with 0<a<b, there exists a positive constant C0=C0(a, b)
such that, for ε small, for any q ∈ ∂M , for any d ∈ [a, b] and for any φ ∈ K⊥δ,q ∩H,
we have

‖Lδ,q(φ)‖H ≥ C0‖φ‖H.

Proof. We argue by contradiction. Suppose that there exist two sequences of real
numbers εm→ 0 and dm ∈ [a, b], a sequence of points qm ∈ ∂M and a sequence of
functions φεmdm ,qm ∈ K⊥εmdm ,qm

∩H such that

‖φεmdm ,qm‖H = 1 and ‖Lεmdm ,qm (φεmdm ,qm )‖H→ 0 as m→+∞.

For the sake of simplicity, we set δm = εmdm and define

φ̃m := δ
(n−2)/2
m φδm ,qm(ψ

∂
qm
(δmη))χ(δmη) for η = (z, t) ∈ Rn

+
, z ∈ Rn−1, t ≥ 0.

Since ‖φεmdm ,qm‖H ≤1, by a change of variables we easily get that {φ̃m}m is bounded
in D1,2(Rn

+
) (but not in H 1(Rn

+
)). Therefore, there exists φ̃ ∈ D1,2(Rn

+
) such that

φ̃m ⇀ φ̃ almost everywhere, weakly in D1,2(Rn
+
), in L2n/(n−2)(Rn

+
) and strongly

in L2(n−1)/(n−2)
loc (∂Rn

+
).

Since φδm ,qm ∈ K⊥δm ,qm
, and taking (2-6) into account, for i = 0, . . . , n− 1 we

get

(3-4) o(1)=
∫

Rn
+

∇φ̃∇Vi dz dt = n
∫

Rn−1
U 2/(n−2)

1 (z, 0)Vi (z, 0)φ̃(z, 0) dz.
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Indeed, by a change of variables we have

0=
〈〈
φδm ,qm , Z i

δm ,qm

〉〉
H

=

∫
M

(
∇gφδm ,qm∇g Z i

δm ,qm
+ a(x)φδm ,qm Z i

δm ,qm

)
dµg

+
n−2

2

∫
∂M

b(x)φδm ,qm Z i
δm ,qm

dσ

=

∫
Rn
+

|gqm (δη)|
1/2δ(n−2)/2gαβqm

(δη)
∂

∂ηα
Vi (η)χ(δη)

∂

∂ηα
φδm ,qm (ψ

∂
qm
(δmη)) δη

+

∫
Rn
+

|gqm (δη)|
1/2δ(n+2)/2a(ψ∂qm

(δη))Vi (η)φδm ,qm (ψ
∂
qm
(δmη)) δη

+

∫
∂Rn
+

|gqm (δz, 0)|1/2δn/2b(ψ∂qm
(δη))φδm ,qm (ψ

∂
qm
(δmz, 0))Vi (δmz, 0) dz

=

∫
Rn
+

∇Vi (η)∇φ̃m(η)+ δ
2a(qm)Vi (η)φ̃m(η) δη

+ δ

∫
∂Rn
+

b(qm)Vi (z, 0)φ̃m(z, 0) δη+ O(δ)

=

∫
Rn
+

∇Vi (η)∇φ̃m(η)+ O(δ)=
∫

Rn
+

∇Vi (η)∇φ̃(η)+ o(1),

By definition of Lδm ,qm we have

(3-5) φδm ,qm − i∗( f ′ε(Wδm ,qm )[φδm ,qm ])− Lδm ,qm (φδm ,qm )=

n−1∑
i=0

ci
m Z i

δm ,qm
.

We want to prove that, for all i = 0, . . . , n− 1, ci
m → 0 as m→∞. Multiplying

(3-5) by Z j
δm ,qm

we obtain, by definition of i∗,

n−1∑
i=0

ci
m
〈〈

Z i
δm ,qm

, Z j
δm ,qm

〉〉
H =

〈〈
i∗( f ′εm

(Wδm ,qm )[φδm ,qm ]), Z j
δm ,qm

〉〉
H

=

∫
∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]Z

j
δm ,qm

dσ.

Moreover, by multiplying (3-5) by φδm ,qm we obtain that

‖φδm ,qm‖H −

∫
∂M

f ′εm
(Wδm ,qm )φ

2
δm ,qm

dσ → 0.

Thus ( f ′εm
(Wδm ,qm ))

1/2φδm ,qm is bounded and weakly convergent in L2(∂M). With
this consideration we easily get
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∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]Z

j
δm ,qm

dσ

=

∫
∂M
( f ′εm

(Wδm ,qm ))
1/2φδm ,qm ( f ′εm

(Wδm ,qm ))
1/2 Z j

δm ,qm
dσ

= n
∫

Rn−1
U 2/(n−2)

1 (z, 0)φ̃(z, 0)Vi (z, 0) dz+ o(1)= o(1),

once we take (3-4) into account.
Now, it is easy to prove that〈〈

Z i
δm ,qm

, Z j
δm ,qm

〉〉
H = Cδi j + o(1),

hence we can conclude that ci
m → 0 as m→∞ for each i = 0, . . . , n− 1. This,

combined with (3-5) and using ‖Lεmdm ,qm (φεmdm ,qm )‖H→ 0, gives us that

(3-6)
∥∥φδm ,qm − i∗( f ′ε(Wδm ,qm )[φδm ,qm ])

∥∥
H =

n−1∑
i=0

ci
m‖Z

i
‖H+ o(1)= o(1).

Choose a smooth function ϕ ∈ C∞0 (R
n
+
) and define

ϕm(x)=
1

δ
(n−2)/2
m

ϕ
( 1
δm

(
ψ∂qm

)−1
(x)
)
χ
((
ψ∂qm

)−1
(x)
)

for x ∈ M.

We have that ‖ϕm‖H is bounded and, by (3-6), that

〈〈φδm ,qm , ϕm〉〉H

=

∫
∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]ϕm dσ +

〈〈
φδm ,qm − i∗( f ′εm

(Wδm ,qm )[φδm ,qm ]), ϕm
〉〉

H

=

∫
∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]ϕm dσ + o(1)

= (n± εm(n− 2))
∫

Rn−1

1
δ
±εn/(n−2)
m

U 2/(n−2)±εm
1 (z, 0)φ̃m(z, 0)ϕ dz+ o(1)

= n
∫

Rn−1
U 2/(n−2)

1 (z, 0)φ̃(z, 0)ϕ(z, 0) dz+ o(1),

by the strong L2(n−1)/(n−2)
loc (∂Rn

+
) convergence of φ̃m . On the other hand,

〈〈φδm ,qm , ϕm〉〉H =

∫
Rn
+

∇φ̃∇ϕ δη+ o(1),

so φ̃ is a weak solution of (2-5) and we conclude that

φ̃ ∈ Span{V0, V1, . . . , Vn}.
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This, combined with (3-4), gives that φ̃ = 0. Proceeding as before we have

〈〈φδm ,qm , φδm ,qm 〉〉H

=

∫
∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]φδm ,qm dσ + o(1)

= (n± εm(n− 2))
∫

Rn−1

1
δ
±εn/(n−2)
m

U 2/(n−2)±εm
1 (z, 0)φ̃2

m(z, 0)ϕ dz+ o(1)= o(1).

In a similar way, by (3-6) we have

|φδm ,qm |Lsε =
∣∣i∗( f ′ε(Wδm ,qm )[φδm ,qm ])

∣∣
Lsε+ o(1)= o(1),

which gives ‖φδm ,qm‖H→ 0, which is a contradiction. �

3.2. The estimate of the error term R.
Lemma 3. For a, b∈R with 0<a<b, there exists a positive constant C1=C1(a, b)
such that, for ε small, for any q ∈ ∂M and for any d ∈ [a, b] we have

‖Rε,δ,q‖H ≤ C1ε|ln ε|

Proof. We estimate∥∥i∗
(

fε(Wδ,q(x))
)
−Wδ,q(x)

∥∥
H

≤
∥∥i∗
(

fε(Wδ,q(x))
)
− i∗

(
f0(Wδ,q(x))

)∥∥
H +

∥∥i∗
(

f0(Wδ,q(x))
)
−Wδ,q(x)

∥∥
H .

By definition of i∗ there exists 0 which solves the equation

(3-7)

−1g0+ a(x)0 = 0 on M ,
∂

∂ν
0+

n−2
2

b(x)0 = f0(Wδ,q) on ∂M ,

so, by (3-7), we have∥∥i∗
(

f0(Wδ,q(x))
)
−Wδ,q(x)

∥∥
H

= ‖0(x)−Wδ,q(x)‖2H

=

∫
M
[−1g(0−Wδ,q)+ a(0−Wδ,q)](0−Wδ,q) dµg

+

∫
∂M

[
∂

∂ν
(0−Wδ,q)+

(n−2)
2

b(x)(0−Wδ,q)
]
(0−Wδ,q) dµg

=

∫
M
[1gWδ,q − aWδ,q ](0−Wδ,q) dµg

+

∫
∂M

[
f0(Wδ,q)−

∂

∂ν
Wδ,q

]
(0−Wδ,q) dµg

−
n−2

2

∫
∂M

b(x)Wδ,q(0−Wδ,q) dµg := I1+ I2+ I3.



ON YAMABE-TYPE PROBLEMS ON RIEMANNIAN MANIFOLDS WITH BOUNDARY 89

We obtain

(3-8) I1 = ‖0−Wδ,q‖H O(δ).

In fact,
I1 ≤ |1gWδ,q − aWδ,q |L2n/(n+2)(M)|0−Wδ,q |L2n/(n−2)(M)

≤ |1gWδ,q − aWδ,q |L2n/(n+2)(M)‖0−Wδ,q‖H .

We easily have that |Wδ,q |L2n/(n+2) = O(δ2). For the other term we have, in coordi-
nates,

(3-9) 1gWδ,q =1[Uδχ ] + (gab
− δab)∂ab[Uδχ ] − gab0k

ab∂k[Uδχ ],

0k
ab being the Christoffel symbols. Using the expansion of the metric gab given by

(4-2) and (4-3) we have that

(3-10)

∣∣(gab
− δab)∂ab[Uδχ ]

∣∣
L2n/(n+2)(M) = O(δ),∣∣gab0k

ab∂k[Uδχ ]
∣∣

L2n/(n+2)(M) = O(δ2).

Since Uδ is a harmonic function we deduce

(3-11) |1[Uδχ ]|L2n/(n+2)(M) = |Uδ1χ + 2∇Uδ∇χ |L2n/(n+2)(M) = O(δ2).

For the second integral I2 we have

(3-12) I2 = ‖0−Wδ,q‖H O(δ2),

since

I2 ≤

∣∣∣ f0(Wδ,q)−
∂

∂ν
Wδ,q

∣∣∣
L2(n−1)/n(∂M)

|0−Wδ,q |L2(n−1)/n−2(∂M)

≤ C
∣∣∣ f0(Wδ,q)−

∂

∂ν
Wδ,q

∣∣∣
L2(n−1)/n(∂M)

‖0−Wδ,q‖H ,

and, using the boundary condition for (2-5), we have

(3-13)
∣∣∣ f0(Wδ,q)−

∂

∂ν
Wδ,q

∣∣∣
L2(n−1)/n(∂M)

=
1
δn/2

(∫
Rn−1
|g(δz, 0)|1/2

[
(n− 2)U n/(n−2)(z, 0)χn/(n−2)(δz, 0)

−χ(δz, 0)∂U
∂t
(z, 0)

] 2(n−1)
n

δn−1 dz
) n

2(n−1)

≤ C
(∫

Rn−1

[
(n− 2)U n/(n−2)(z, 0)[χn/(n−2)(δz, 0)

−χ(δz, 0)]
]2(n−1)

n dz
) n

2(n−1)
= O(δ2).
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Lastly,

(3-14) I3 ≤ |Wδ,q |L2(n−1)/n(∂M)|0−Wδ,q |L2(n−1)/(n−2)(∂M) = ‖0−Wδ,q‖H O(δ).

By (3-8), (3-12) and (3-14) we conclude that∥∥i∗
(

f0(Wδ,q(x))
)
−Wδ,q(x)

∥∥
H = ‖0(x)−Wδ,q(x)‖H = O(δ).

To conclude the proof we estimate the term
∥∥i∗
(

fε(Wδ,q(x))
)
−i∗

(
f0(Wδ,q(x))

)∥∥
H .

We have, by the properties of i∗, that∥∥i∗
(

fε(Wδ,q(x))
)
− i∗

(
f0(Wδ,q(x))

)∥∥
H

≤
∣∣Wδ,q(x)n/(n−2)±ε

−W n/(n−2)
δ,q (x)

∣∣
L2(n−1)/n(∂M)

=

(∫
Rn−1

[(
1

δ±ε(n−2)/2 U±ε(z, 0)− 1
)

U n/(n−2)(z, 0)
]2(n−1)

n
dz

) n
2(n−1)

+ O(δ2).

To estimate the last integral, we first recall two Taylor expansions with respect to ε:

U±ε = 1± ε ln U + 1
2
ε2 ln2 U + o(ε2),(3-15)

δ∓ε(n−2)/2
= 1∓ εn−2

2
ln δ+ ε2 (n−2)2

8
ln2 δ+ o(ε2 ln2 δ).(3-16)

In light of (3-15) and (3-16) we have

(3-17)
∥∥i∗( fε(Wδ,q))− i∗( f0(Wδ,q))

∥∥
H

≤

(∫
Rn−1

∣∣∣(∓n−2
2
ε ln δ± ε ln U (z, 0)+ O(ε2)

+ O(ε2 ln δ)
)

U n/(n−2)(z, 0)
∣∣∣2(n−1)

n
dz
) n

2(n−1)
+ O(δ2)

=
n−2

2
ε ln δ

∣∣U (z, 0)
∣∣n/(n−2)

L2(n−1)/(n−2)(Rn−1)

+ ε

(∫
Rn−1

U 2(n−1)/(n−2)(z, 0) ln U (z, 0) dz
) n

2(n−1)

+ O(ε2)+ O(ε2
|ln δ|)+ O(δ2)

= O(ε)+ O(ε|ln δ|)+ O(δ2).

Choosing δ = dε concludes the proof of Lemma 3 for the subcritical case.
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For the supercritical case, we have to control |Rε,δ,q |Lsε (∂M). As in the previous
case we consider

|Rε,δ,q |Lsε (∂M) ≤
∣∣i∗( fε(Wδ,q(x))

)
− i∗

(
f0(Wδ,q(x))

)∣∣
Lsε (∂M)

+
∣∣i∗( f0(Wδ,q(x))

)
−Wδ,q(x)

∣∣
Lsε (∂M).

As before, set 0 = i∗( f0(Wδ,q(x)). Since 0 solves (3-7), 0−Wδ,q solves
−1g(0−Wδ,q)+ a(x)(0−Wδ,q)=−1gWδ,q + a(x)Wδ,q on M ,

∂

∂ν
(0−Wδ,q)+

n−2
2

b(x)(0−Wδ,q)

= f0(0)+
∂

∂ν
Wδ,q +

n−2
2

b(x)Wδ,q

on ∂M .

We choose q as in (2-3), and r = ε. Thus, by Theorem 3.14 in [Nittka 2011], we
have

|0−Wδ,q |Lsε (∂M) ≤ |−1gWδ,q + a(x)Wδ,q |Lq+ε(M)

+

∣∣∣ f0(0)+
∂

∂ν
Wδ,q +

n−2
2

b(x)Wδ,q

∣∣∣
L(n−1)q/(n−q)+ε(∂M)

.

We remark that

q =
2n+ n2

( n−2
n−1

)
ε

n+ 2+ 2n
( n−2

n−1

)
ε
=

2n
n+2

+ O+(ε) with 0< O+(ε) < Cε

for some positive constant C . By direct computation we have

|a(x)Wδ,q |Lq+ε(M) ≤ Cδ2−O+(ε),

|b(x)Wδ,q |L(n−1)q/(n−q)+ε(∂M) ≤ Cδ1−O+(ε).

Moreover, proceeding as in (3-9), (3-10), (3-11) and (3-13) we get

|1gWδ,q |Lq+ε(M) ≤ Cδ2−O+(ε),∣∣∣ f0(0)+
∂

∂ν
Wδ,q

∣∣∣
L(n−1)q/(n−q)+ε(∂M)

≤ Cδ1−O+(ε).

Since i∗( fε(Wδ,q)) solves (1-5), and i∗( fε|u|n/(n−2)+ε(Wδ,q)) solves (1-5), we
again use Theorem 3.14 in [Nittka 2011]. Taking (3-15) and (3-16) into account,
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we finally get

(3-18)
∣∣i∗( fε(Wδ,q))− i∗( f0(Wδ,q))

∣∣
Lsε (∂M)

≤ | fε(Wδ,q)− f0(Wδ,q)|L2(n−1)/n+O+(ε)(∂M)

≤ δ−O+(ε)
(∫

Rn−1

[( 1
δε(n−2)/2 U ε(z, 0)− 1

)
·U n/(n−2)(z, 0)

] 2(n−1)
n +O+(ε)

dz
) 1

2(n−1)/n+O+(ε)
+ O(δ2)

= δ−O+(ε)(O(ε|ln δ|)+ O(ε))+ O(δ2).

Now, choosing δ = dε, we can conclude the proof, since

δ−O+(ε)
= 1+ O+(ε)|ln(εd)| = 1+ O+(ε|ln ε|)= O(1). �

3.3. Solving (2-8): the remainder term φ.

Proposition 4. For a, b ∈ R with 0 < a < b, there exists a positive constant
C = C(a, b) such that, for ε small, for any q ∈ ∂M and for any d ∈ [a, b] there
exists a unique φδ,q which solves (2-8). This solution satisfies

‖φδ,q‖H ≤ Cε|ln ε|.

Moreover the map q 7→ φδ,q is a C1(∂M,H) map.

Proof. First of all, we point out that N is a contraction mapping. We remark that
the conjugate exponent of sε is

s
′

ε =


2(n−1)

n
in the subcritical case,

2(n−1)+εn(n−2)
n+εn(n−2)

in the supercritical case.

By the properties of i∗ and using the expansion of fε(Wδ,q + φ1) centered in
Wδ,q +φ2 we have

‖N (φ1)−N (φ2)‖H ≤
∥∥ fε(Wδ,q+φ1)− fε(Wδ,q+φ2)− f ′ε(Wδ,q)[φ1−φ2]

∥∥
Ls′ε (∂M)

≤
∥∥( f ′ε(Wδ,q+θφ1+(1−θ)φ2)− f ′ε(Wδ,q)

)
[φ1−φ2]

∥∥
Ls′ε (∂M)

and, since |φ1−φ2|
s′ε ∈ Lsε/s′ε(∂M) and | f ′ε(·)|

s′ε ∈ L(sε/s
′
ε)
′

(∂M) as f ′ε(·)∈ Lsε(∂M),
we have

‖N (φ1)− N (φ2)‖H

≤
∥∥( f ′ε(Wδ,q + θφ1+ (1− θ)φ2)− f ′ε(Wδ,q)

)∥∥
Lsε (∂M)‖φ1−φ2‖Lsε (∂M)

= γ ‖φ1−φ2‖H,
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where

γ =
∥∥( f ′ε(Wδ,q + θφ1+ (1− θ)φ2)− f ′ε(Wδ,q)

)∥∥
Lsε (∂M) < 1

provided ‖φ1‖H and ‖φ2‖H are sufficiently small.
In the same way we can prove that ‖N (φ)‖H ≤ γ ‖φ‖H with γ < 1 if ‖φ‖H is

sufficiently small.
Next, by Lemmas 2 and 3 we have

‖L−1(N (φ)+ Rε,δ,q)‖H ≤ C(γ ‖φ‖H+ ε|ln ε|),

where C =max{C0,C0C1}> 0, for the constants C0,C1 which appear in Lemmas 2
and 3. Notice that, given C > 0, it is possible (up to a choice of ‖φ‖H sufficiently
small) to choose 0< Cγ < 1

2 .
Now, if ‖φ‖H ≤ 2Cε|ln ε|, then the map

T (φ) := L−1(N (φ)+ Rε,δ,q)

is a contraction from the ball ‖φ‖H ≤ 2Cε|ln ε| in itself, so, by the fixed point
theorem, there exists a unique φδ,q with ‖φδ,q‖H ≤ 2Cε|ln ε| solving (3-1), and
hence (2-8). The regularity of the map q 7→ φδ,q can be proven via the implicit
function theorem. �

4. The reduced problem

Problem (1-5) has a variational structure. Weak solutions to (1-5) are critical points
of the energy functional Jε :H→ R given by

Jε(u)=
1
2

∫
M
(|∇u|2+ a(x)u2) dµg

+
n−2

4

∫
∂M

b(x)u2 dσ − (n−2)2

2n−2±ε(n−2)

∫
∂M

u(2n−2)/(n−2)±ε dσ.

Let us introduce the reduced energy Iε : (0,+∞)× ∂M→ R by

(4-1) Iε(d, q) := Jε(Wεd,q +φεd,q),

where the remainder term φεd,q has been found in Proposition 4.

4.1. The reduced energy. Here we use the following expansion for the metric
tensor on M :

gi j (y)= δi j + 2hi j (0)yn + O(|y|2) for i, j = 1, . . . , n− 1,(4-2)

gin(y)= δin for i = 1, . . . , n− 1,(4-3)
√

g(y)= 1− (n− 1)H(0)yn + O(|y|2),(4-4)
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where (y1, . . . , yn) are the Fermi coordinates and, by definition of hi j ,

(4-5) H = 1
n−1

n−1∑
i

hi i .

We also recall that on ∂M the Fermi coordinates coincide with the exponential ones,
so we have that

(4-6)
√

g(y1, . . . , yn−1, 0)= 1+ O(|y|2).

To improve the readability of this paper, hereafter we write z = (z1, . . . , zn−1)

to indicate the first n − 1 Fermi coordinates and t to indicate the last one, so
(y1, . . . , yn−1, yn) = (z, t). Moreover, indices i, j conventionally refer to sums
from 1 to n− 1, while l,m usually refer to sums from 1 to n.

Proposition 5. (i) If (d0, q0) ∈ (0,+∞)× ∂M is a critical point for the reduced
energy Iε defined in (4-1), then Wεd0,q0 +φεd0,q0 ∈H solves problem (1-5).

(ii) It holds true that{
Iε(d, q)= cn(ε)+ ε[αndϕ(q)−βn ln d] + o(ε) in the subcritical case,
Iε(d, q)= cn(ε)+ ε[αndϕ(q)+βn ln d] + o(ε) in the supercritical case,

C0-uniformly with respect to d in compact subsets of (0,+∞) and q ∈ ∂M.
Here cn(ε) is a constant which only depends on ε and n, αn and βn are positive
constants which only depend on n, and ϕ(q)= h(q)− Hg(q) is the function
defined in (1-4) .

Proof. (i) Set q := q(y)= ψ∂q0
(y). Since (d0, q0) is a critical point, we have, for

any h ∈ 1, . . . , n− 1,

0= ∂

∂yh
Iε
(
d, ψ∂q0

(y)
)∣∣∣

y=0

=

〈〈
Wεd,q(y)+φεd,q(y)− i∗( fε(Wεd,q(y)+φεd,q(y))),

∂

∂yh
Wεd,q(y)+

∂

∂yh
φεd,q(y)

〉〉
H

∣∣∣
y=0

=

n−1∑
i=0

ci
ε

〈〈
Z i
εd,q(y),

∂

∂yh
Wεd,q(y)+

∂

∂yh
φεd,q(y)

〉〉
H

∣∣∣
y=0

=

n−1∑
i=0

ci
ε

〈〈
Z i
εd,q(y),

∂

∂yh
Wεd,q(y)

〉〉
H

∣∣∣
y=0
−

n−1∑
i=0

ci
l

〈〈
∂

∂yh
Z i
εd,q(y), φεd,q(y)

〉〉
H

∣∣∣
y=0
,

using that φεd,q(y) is a solution of (2-8) and that〈〈
Z i
εd,q(y),

∂

∂yh
φεd,q(y)

〉〉
H
=−

〈〈
∂

∂yh
Z i
εd,q(y), φεd,q(y)

〉〉
H



ON YAMABE-TYPE PROBLEMS ON RIEMANNIAN MANIFOLDS WITH BOUNDARY 95

since φεd,q(y) ∈ K⊥εd,q(y) for all y. Now it is enough to observe that〈〈
∂

∂yh
Z i
εd,q(y), φεd,q(y)

〉〉
H
≤

∥∥∥ ∂

∂yh
Z i
εd,q(y)

∥∥∥
H
‖φεd,q(y)‖H = o(1),〈〈

Z i
εd,q(y),

∂

∂yh
Wεd,q(y)

〉〉
H
=

1
εd
〈〈

Z i
εd,q(y), Zh

εd,q(y)
〉〉

H =
1
εd
δih
+ o(1),

to conclude that

0= 1
εd

n−1∑
i=0

ci
ε(δ

ih
+ o(1)),

and so ci
ε = 0 for all i = 0, . . . , n− 1. This concludes the proof of (i).

(ii) We prove (ii) in two steps.

Step 1. We prove that for ε small enough and for any q ∈ ∂M ,

|Jε(Wδ,q +φδ,q)− Jε(Wδ,q)| ≤ ‖φδ,q‖
2
H+Cε|ln ε|‖φδ,q‖H = o(ε).

We have

|Jε(Wδ,q +φδ,q)− Jε(Wδ,q)|

=

∣∣∣∣∫
M
[−1gWδ,q + a(x)Wδ,q ]φδ,q dµg

∣∣∣∣+ 1
2
‖φδ,q‖

2
H

+

∣∣∣∣∫
∂M

[
∂

∂ν
Wδ,q +

n−2
2

b(x)Wδ,q − f0(Wδ,q)
]
φδ,q dσ

∣∣∣∣
+

∣∣∣∣∫
∂M

[
f0(Wδ,q)− fε(Wδ,q)

]
φδ,q dσ

∣∣∣∣
+

∣∣∣∣∫
∂M

(n−2)2

2n−2±ε(n−2)
[
(Wδ,q +φδ,q)

(2n−2)/(n−2)±ε
−W (2n−2)/(n−2)±ε

δ,q

]
− fε(Wδ,q)φδ,q dσ

∣∣∣∣.
With the same estimate of I1 in Lemma 3 we obtain that∣∣∣∣∫

M
[−1gWδ,q + a(x)Wδ,q ]φδ,q dµg

∣∣∣∣= O(δ)‖φδ,q‖H ,

and in light of the estimate of I2 and I3 in Lemma 3 we get∣∣∣∣∫
∂M

[
∂

∂ν
Wδ,q +

n−2
2

b(x)Wδ,q − f0(Wδ,q)
]
φδ,q dσ

∣∣∣∣= O(δ)‖φδ,q‖H .
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In the subcritical case, following the computation in (3-17) we obtain∣∣∣∣∫
∂M
[ f0(Wδ,q)− fε(Wδ,q)]φδ,q dσ

∣∣∣∣
≤ C | f0(Wδ,q)− fε(Wδ,q)|L2(n−1)/n(∂M)|φδ,q |L2(n−1)/(n−2)(∂M)

= [O(ε)+ O(ε ln δ)]‖φδ,q‖H = O(ε|ln ε|)‖φδ,q‖H ,

and in a similar way, for the supercritical case, in light of (3-18) we get∣∣∣∣∫
∂M
[ f0(Wδ,q)− fε(Wδ,q)]φδ,q dσ

∣∣∣∣
≤ C | f0(Wδ,q)− fε(Wδ,q)|L2(n−1)/n+O+(ε)(∂M)

|φδ,q |L2(n−1)/(n−2)−O+(ε)(∂M)

≤
(
δ−O+(ε)(O(ε ln δ)+ O(ε))+ O(δ2)

)
‖φδ,q‖H = O(ε|ln ε|)‖φδ,q‖H .

Finally, by the Taylor expansion formula, for some θ ∈ (0, 1) we immediately have∣∣∣∣∫
∂M

(n−2)2

2n−2±ε(n−2)

[(
Wδ,q +φδ,q

)2n−2
n−2 ±ε −W

2n−2
n−2 ±ε
δ,q

]
− fε(Wδ,q)φδ,q dσ

∣∣∣∣
=

∣∣∣∣n±ε(n−2)
2

∫
∂M

(
Wδ,q + θφδ,q

) 2
n−2±εφ2

δ,q dσ
∣∣∣∣

≤ C
[∫

∂M

∣∣Wδ,q + θφδ,q
∣∣( 2

n−2±ε
)

sε
sε−2 dσ

] sε−2
sε
[∫

∂M
|φδ,q |

sε dσ
] 2

sε

≤ C |Wδ,q + θφδ,q |
sε−2
Lsε ‖φδ,q‖

2
H ≤ C‖φδ,q‖2H.

Choosing δ = dε, and recalling that, by Proposition 4, ‖φδ,q‖H = O(ε| ln ε|)
concludes the proof.

Step 2. We prove that

Jε(Wδ,q)

= C(ε)+ ε
(

d n−2
4
[b(q)− H(q)] ± ln d (n−2)3(n−3)

4(n−2)(2n−2)

)
ωn−1 I n−2

n−2 + o(ε)

C0-uniformly with respect to d in compact subsets of (0,+∞) and q ∈ ∂M , where

C(ε)= 1
2

∫
Rn
+

|∇U (y)|2 dy

−
(n−2)2

2n−2

∫
Rn−1

U
2n−2
n−2 (z, 0) dz± ε (n−2)3

2n−2

∫
Rn−1

U
2n−2
n−2 (z, 0) dz

∓ ε
(n−2)2

2n−2

∫
Rn−1

U
2n−2
n−2 (z, 0) ln U (z, 0) dz

∓ ε|ln ε| (n−2)3

2(2n−2)

∫
Rn−1

U
2n−2
n−2 (z, 0) dz,
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and

I n−2
n−2 =

∫
∞

0

sn−2

(1+s2)n−2 dz,

and ωn−1 is the volume of the (n− 1)-dimensional unit ball.

We compute each term separately. First, we have, by a change of variables and
by (4-2), (4-3) and (4-4),∫

M
|∇Wδ,q |

2 dµg =

n∑
l,m=1

∫
Rn
+

glm(δy) ∂
∂yl

U (y) ∂
∂ym

U (y)
√

g(δy) dy+ o(δ)

=

∫
Rn
+

|∇U (y)|2 dy− δ(n− 1)H(q)
∫

Rn
+

yn|∇U (y)|2 dy

+ 2δ
n−1∑

i, j=1

∫
Rn
+

ynhi j (q)
∂

∂yi
U (y) ∂

∂y j
U (y) dy+ o(δ).

By a symmetry argument we can simplify the last integral to obtain, in a more
compact form,

1
2

∫
M
|∇Wδ,q |

2 dµg =
1
2

∫
Rn
+

|∇U |2− δ (n−1)H(q)
2

∫
Rn
+

yn|∇U |2

+ δ

n−1∑
i=1

hi i (q)
∫

Rn
+

yn

(
∂U
∂yi

(y)
)2
+ o(δ).

Since ∂U
∂yi
=
∂U
∂yl

for all i, l = 1, . . . , n− 1, by (4-9) we get

n−1∑
i=1

hi i (q)
∫

Rn
+

yn

(
∂U
∂yi

(y)
)2

dy = 1
n−1

n−1∑
i=1

hi i (q)
∫

Rn
+

yn

n−1∑
l=1

(
∂U
∂yl

(y)
)2

dy

=
H(q)

4

∫
Rn−1

U 2(z, 0) dz,

and in light of (4-7) we conclude that

1
2

∫
M
|∇Wδ,q |

2 dµg =
1
2

∫
Rn
+

|∇U |2− δ (n−2)H(q)
4

∫
Rn−1

U 2(z, 0) dz+ o(δ).

By a change of variables, we immediately obtain

1
2

∫
M

a(x)|Wδ,q |
2 dµg =

δ2

2

∫
Rn
+

a(x)U 2(y)
√

g(δy) dy+ o(δ2)= O(δ2).
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Coming to the boundary integral, we get, by a change of variables, by (4-6), and by
expanding b,

n−2
4

∫
∂M

b(z)|Wδ,q |
2 dσ = δ n−2

4

∫
Rn−1

b(δz)U 2(z, 0)
√

g(δz) dz+ O(δ2)

= δb(q) n−2
4

∫
Rn−1

U 2(z, 0) dz+ O(δ2).

Introducing the abbreviation Un(z) = U (2n−2)/(n−2)(z, 0), by (3-15), (3-16) and
(4-6), we have∫
∂M
|Wδ,q |

(2n−2)/(n−2)±ε dσ

=

∫
Rn−1

δ∓ε(n−2)/2Un(z)U±ε(z, 0)
√

g(δz) dz+ o(δ)

=

∫
Rn−1

Un(z) dz± ε
∫

Rn−1
Un(z) ln U (z, 0) dz∓ n−2

2
ε ln δ

∫
Rn−1

Un(z) dz

+ o(δ)+ O(ε2)+ O(ε2 ln δ),

and, since (n−2)2

2n−2±ε(n−2)
=
(n−2)2

2n−2
∓ ε

(n−2)3

2n−2
, we get

−
(n−2)2

2n−2±ε(n−2)

∫
∂M
|Wδ,q |

(2n−2)/(n−2)−ε dσ

=−
(n−2)2

2n−2

∫
Rn−1

Un(z) dz± ε (n−2)3

2n−2

∫
Rn−1

Un(z) dz

∓ ε
(n−2)2

2n−2

∫
Rn−1

Un(z) ln U (z, 0) dz± (n−2)3

2(2n−2)
ε ln δ

∫
Rn−1

Un(z) dz

+ o(δ)+ O(ε2)+ O(ε2 ln δ).

Notice that, with the choice δ = dε it holds that o(δ)+ O(ε2)+ O(ε2 ln δ)= o(ε)
and ε ln δ = ε ln d − ε|ln ε|. At this point we have

Jε(Wδ,q)= C(ε)+ εd n−2
4
[b(q)− H(q)]

∫
Rn−1

U 2(z, 0) dz

± ε
(n−2)3

2(2n−2)
ln d

∫
Rn−1

Un(z) dz+ o(ε|ln ε|).

To conclude, observe that∫
Rn−1

U 2(z, 0) dz = ωn−1 I n−2
n−2 and

∫
Rn−1

Un(z) dz = ωn−1 I n−2
n−1 ,
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where

I αβ =
∫
∞

0

sα

(1+s2)β
ds.

The conclusion follows after we observe that I n−2
n−1 =

n−3
2(n−2)

I n−2
n−2 (for a proof, see

[Almaraz 2011b, Lemma 9.4(b)]). �

4.2. Proof of Theorem 1. Let us introduce

Î (d, q)= αndϕ(q)−βn ln d.

If q0 is a local minimizer of ϕ(q) with ϕ(q0) > 0, set d0 = βn/(αnϕ(q0)) > 0.
Thus the pair (d0, q0) is a critical point for Î . Moreover, since there exists a
neighborhood B such that ϕ(q) > ϕ(q0) on ∂B, it is possible to find a neighborhood
B̃ ⊂ [a, b]×∂M , (d0, q0) ∈ B̃ such that Î (d, q) > Î (d0, q0) for (d, q) ∈ ∂ B̃. Since,
in the subcritical case, by (i) of Proposition 5 we have

Iε(d, q)= cn(ε)+ ε Î (d, q)+ o(ε),

we get that for ε sufficiently small there is a (d∗, q∗)∈ B̃ such that Wεd∗,q∗+φεd∗,q∗

is a critical point for Iε. Then, by (i) of Proposition 5, Wεd∗,q∗ +φεd∗,q∗ ∈H is a
solution for problem (1-5) in the subcritical case.

The proof for the supercritical case follows in a similar way. �

4.3. Some technicalities. If U is a solution of (2-5), then the following hold:∫
Rn
+

t |∇U |2 dz dt = 1
2

∫
Rn−1

U 2(z, 0) dz,(4-7) ∫
Rn
+

t |∇U |2 dz dt = 2
∫

Rn
+

t |∂tU |2 dz dt,(4-8)

∫
Rn
+

t
n−1∑
i=1

|∂zi U |
2 dz dt = 1

4

∫
Rn−1

U 2(z, 0) dz.(4-9)

Proof. To simplify the notation, we set

η = (z, t) ∈ Rn
+

where z ∈ Rn−1 and t ≥ 0.

The first estimate can be obtained by integration by parts, taking into account that
1U = 0. Indeed,∫

Rn
+

ηn|∇U |2 δη =−
n∑

l=1

∫
Rn
+

U∂l[ηn∂lU ] δη =−
∫

Rn
+

U∂nU δη −

∫
Rn
+

ηnU1U δη

=−
1
2

∫
Rn
+

∂n[U 2
] δη =

1
2

∫
Rn−1

U 2(z, 0) dz.



100 MARCO GHIMENTI, ANNA MARIA MICHELETTI AND ANGELA PISTOIA

To obtain (4-8), we proceed in a similar way: since 1U = 0 we have

0=−
∫

Rn
+

1Uη2
n∂nU δη =

n∑
l=1

∫
Rn
+

∂lU∂l[η
2
n∂nU ] δη

=

∫
Rn
+

2ηn|∂nU |2 δη+
n∑

l=1

∫
Rn
+

η2
n∂lU∂2

lnU δη

=

∫
Rn
+

2ηn|∂nU |2 δη+ 1
2

∫
Rn
+

η2
n∂n|∇U |2 δη

=

∫
Rn
+

2ηn|∂tU |2 δη −
∫

Rn
+

ηn|∇U |2 δη,

so (4-8) is proved. Now (4-9) is a direct consequence of the first two equalities. In
fact, by (4-8) we have∫

Rn
+

ηn|∇U |2 δη =
∫

Rn
+

ηn

n−1∑
i=1

|∂iU |2 δη+
∫

Rn
+

ηn|∂nU |2 δη

=

∫
Rn
+

ηn

n−1∑
i=1

|∂iU |2 δη+
1
2

∫
Rn
+

ηn|∇U |2 δη.

Thus, ∫
Rn
+

ηn

n−1∑
i=1

|∂iU |2 δη =
1
2

∫
Rn
+

ηn|∇U |2 δη,

and in light of (4-7) we get the proof. �
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QUANTIFYING SEPARABILITY
IN VIRTUALLY SPECIAL GROUPS

MARK F. HAGEN AND PRIYAM PATEL

We give a new, effective proof of the separability of cubically convex-
cocompact subgroups of special groups. As a consequence, we show that
if G is a virtually compact special hyperbolic group, and Q ≤ G is a
K-quasiconvex subgroup, then any g ∈ G − Q of word length at most n
is separated from Q by a subgroup whose index is polynomial in n and
exponential in K . This generalizes a result of Bou-Rabee and the authors
on residual finiteness growth (Math. Z. 279 (2015), 297–310) and a result
of Patel on surface groups (Proc. Amer. Math. Soc. 142 (2014), 2891–2906).

Introduction

Early motivation for studying residual finiteness and subgroup separability was a
result of the relevance of these properties to decision problems in group theory.
An observation of Dyson [1964] and Mostowski [1966], related to earlier ideas
of McKinsey [1943], states that finitely presented residually finite groups have a
solvable word problem. The word problem is a special case of the membership
problem, i.e., the problem of determining whether a given g ∈ G belongs to a
particular subgroup H of G. Separability can produce a solution to the membership
problem in essentially the same way that a solution to the word problem is provided
by residual finiteness; see, e.g., the discussion in [Aschenbrenner et al. 2015]. A
subgroup H ≤ G is separable in G if, for all g ∈ G − H, there exists G ′ ≤f.i. G
with H ≤ G ′ and g 6∈ G ′. Producing an upper bound, in terms of g and H, on the
minimal index of such a subgroup G ′ is what we mean by quantifying separability
of H in G. Quantifying separability is related to the membership problem; see
Remark D below.

Recently, separability has played a crucial role in low-dimensional topology,
namely in the resolutions of the virtually Haken and virtually fibered conjectures
[Agol 2013; Wise 2011]. Its influence in topology is a consequence of the seminal
paper of Scott [1978], which establishes a topological reformulation of subgroup
separability. Roughly, Scott’s criterion allows one to use separability to promote

MSC2010: primary 20E26; secondary 20F36.
Keywords: subgroup separable, right-angled Artin groups, quantifying, virtually special groups.
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(appropriately construed) immersions to embeddings in finite covers. Agol [2013]
proved the virtually special conjecture of Wise, an outstanding component of the
proofs of the above conjectures. Agol’s theorem shows that every word hyperbolic
cubical group virtually embeds in a right-angled Artin group (hereafter, RAAG).
Cubically convex-cocompact subgroups of RAAGs are separable [Hsu and Wise
2002; Haglund 2008] and Agol’s theorem demonstrates that word hyperbolic cubical
groups inherit this property via the virtual embeddings (separability properties
are preserved under passing to subgroups and finite index supergroups). In fact,
since quasiconvex subgroups of hyperbolic cubical groups are cubically convex-
cocompact [Haglund 2008; Sageev and Wise 2015], all quasiconvex subgroups
of such groups are separable. In this paper, we give a new, effective proof of the
separability of cubically convex-cocompact subgroups of special groups. Our main
technical result is:

Theorem A. Let 0 be a simplicial graph and let Z be a compact connected cube
complex, based at a 0-cube x , with a based local isometry Z → S0. For all
g ∈ A0 −π1 Z , there is a cube complex (Y, x) such that

(1) Z ⊂ Y,

(2) there is a based local isometry Y → S0 such that Z→ S0 factors as

Z ↪→ Y → S0,

(3) any closed based path representing g lifts to a nonclosed path at x in Y,

(4) |Y (0)| ≤ |Z (0)|(|g| + 1),

where |g| is the word length of g with respect to the standard generators.

Via Haglund–Wise’s canonical completion [2008], Theorem A provides the
following bounds on the separability growth function (defined in Section 1) of
the class of cubically convex-cocompact subgroups of a (virtually) special group.
Roughly, separability growth quantifies separability of all subgroups in a given class.

Corollary B. Let G ∼= π1 X , with X a compact special cube complex, and let QR be
the class of subgroups represented by compact local isometries to X whose domains
have at most R vertices. Then

SepQR
G,S(Q, n)≤ PR n

for all Q ∈ QR and n ∈ N, where the constant P depends only on the generating
set S. Hence, letting Q′K be the class of subgroups Q ≤ G such that the convex hull
of Qx̃ lies in NK (Qx̃) and x̃ ∈ X̃ (0),

SepQ′K
G,S(Q, n)≤ P ′ grX̃ (K )n,

where P ′ depends only on G, X̃ ,S, and where grX̃ is the growth function of X̃ (0).
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In the hyperbolic case, where cubically convex-cocompactness is equivalent to
quasiconvexity, we obtain a bound that is polynomial in the length of the word and
exponential in the quasiconvexity constant:

Corollary C. Let G be a group with an index-J special subgroup. Fixing a word
length ‖ − ‖S on G, suppose that (G, ‖ − ‖S) is δ-hyperbolic. For each K ≥ 1,
let QK be the set of subgroups Q ≤ G such that Q is K-quasiconvex with respect
to ‖−‖S . Then there exists a constant P= P(G,S) such that for all K ≥ 0, Q ∈QK,
and n ≥ 0,

SepQK
G,S(Q, n)≤ P grG(P K )J !n J !,

where grG is the growth function of G.

Corollary C says that if G is a hyperbolic cubical group, the subgroup Q ≤ G is
K-quasiconvex, and g ∈ G−Q, then g is separated from Q by a subgroup of index
bounded by a function polynomial in ‖g‖S and exponential in K.

The above results fit into a larger body of work dedicated to quantifying residual
finiteness and subgroup separability of various classes of groups; see, e.g., [Bou-
Rabee and Kaletha 2012; Bou-Rabee and McReynolds 2015; Kassabov and Matucci
2011; Buskin 2009; Patel 2014; 2013; Rivin 2012; Bou-Rabee 2011; Bou-Rabee and
McReynolds 2014; Kozma and Thom 2016]. When G is the fundamental group of a
hyperbolic surface, compare Corollary C to [Patel 2014, Theorem 7.1]. Combining
various cubulation results with [Agol 2013], the groups covered by Corollary C
include fundamental groups of hyperbolic 3-manifolds [Bergeron and Wise 2012;
Kahn and Markovic 2012], hyperbolic Coxeter groups [Haglund and Wise 2010],
simple-type arithmetic hyperbolic lattices [Bergeron et al. 2011], hyperbolic free-
by-cyclic groups [Hagen and Wise 2015], hyperbolic ascending HNN extensions
of free groups with irreducible monodromy [Hagen and Wise 2013], hyperbolic
groups with a quasiconvex hierarchy [Wise 2011], C ′

( 1
6

)
small cancellation groups

[Wise 2004], and hence random groups at low enough density [Ollivier and Wise
2011], among many others.

Bou-Rabee, Hagen and Patel [2015] quantified residual finiteness for virtually
special groups, by working in RAAGs and appealing to the fact that upper bounds
on residual finiteness growth are inherited by finitely generated subgroups and
finite index supergroups. Theorem A generalizes a main theorem of [loc. cit.], and
accordingly the proof is reminiscent of the one in that reference. However, residual
finiteness is equivalent to separability of the trivial subgroup, and thus it is not
surprising that quantifying separability for an arbitrary convex-cocompact subgroup
of a RAAG entails engagement with a more complex geometric situation. Our
techniques thus significantly generalize those of [loc. cit.].

Remark D (membership problem). If H is a finitely generated separable subgroup
of the finitely presented group G, and one has an upper bound on Sep{H}G,S(|g|) for
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some finite generating set S of G, then the following procedure decides if g ∈ H :
first, enumerate all subgroups of G of index at most Sep{H}G,S(|g|) using a finite
presentation of G. Second, for each such subgroup, test whether it contains g; if so,
ignore it, and if not, proceed to the third step. Third, for each finite index subgroup
not containing g, test whether it contains each of the finitely many generators of H ;
if so, we have produced a finite index subgroup containing H but not g, whence
g 6∈ H. If we exhaust the subgroups of index at most Sep{H}G,S(|g|) without finding
such a subgroup, then g ∈ H. In particular, Corollary C gives an effective solution to
the membership problem for quasiconvex subgroups of hyperbolic cubical groups,
though it does not appear to be any more efficient than the more general solution
to the membership problem for quasiconvex subgroups of (arbitrary) hyperbolic
groups recently given by Kharlampovich, Myasnikov and Weil [Kharlampovich
et al. 2014].

The paper is organized as follows. In Section 1, we define the separability growth
of a group with respect to a class Q of subgroups, which generalizes the residual
finiteness growth introduced in [Bou-Rabee 2010]. We also provide some necessary
background on RAAGs and cubical geometry. In Section 2, we discuss corollaries
to the main technical result, including Corollary C, before concluding with a proof
of Theorem A in Section 3.

1. Background

Separability growth. Let G be a group generated by a finite set S and let H ≤G be
a subgroup. Let�H ={1≤G : H ≤1}, and define a map D�H

G :G−H→N∪{∞}

by
D�H

G (g)=min{[G :1] :1 ∈�H , g 6∈1}.

This is a special case of the notion of a divisibility function defined in [Bou-Rabee
2010] and discussed in [Bou-Rabee and McReynolds 2015]. Note that H is a
separable subgroup of G if and only if D�H

G takes only finite values.
The separability growth of G with respect to a class Q of subgroups is a function

SepQ
G,S :Q×N→ N∪ {∞} given by

SepQ
G,S(Q, n)=max

{
D�Q

G (g) : g ∈ G− Q, ‖g‖S ≤ n
}
.

If Q is a class of separable subgroups of G, then the separability growth measures
the index of the subgroup to which one must pass in order to separate Q from an
element of G−Q of length at most n. For example, when G is residually finite and
Q= {{1}}, then SepQ

G,S is the residual finiteness growth function. The following
fact is explained in greater generality in [Bou-Rabee et al. 2015, Section 2]. (In the
notation of that reference, SepQ

G,S(Q, n)= RF�Q
G,S(n) for all Q ∈Q and n ∈ N.)
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Proposition 1.1. Let G be a finitely generated group and let Q be a class of
subgroups of G. If S,S ′ are finite generating sets of G, then there exists a constant
C > 0 with

SepQ
G,S ′(Q, n)≤ C ·SepQ

G,S(Q,Cn)

for Q ∈Q, n ∈N. Hence the asymptotic growth rate of SepQ
G,S is independent of S.

(Similar statements assert that upper bounds on separability growth are inherited
by finite index supergroups and arbitrary finitely generated subgroups but we do
not use, and thus omit, these.)

Nonpositively curved cube complexes. We assume familiarity with nonpositively
curved and CAT(0) cube complexes and refer the reader to, e.g., [Hagen 2014;
Haglund 2008; Wise 2012; 2011] for background. We now make explicit some
additional notions and terminology, related to convex subcomplexes, which are
discussed in greater depth in [Behrstock et al. 2014]. We also discuss some basic
facts about RAAGs and Salvetti complexes. Finally, we will use the method of
canonical completion, introduced in [Haglund and Wise 2008], and refer the reader
to [Bou-Rabee et al. 2015, Lemma 2.8] for the exact statement needed here.

Local isometries, convexity, and gates. A local isometry φ : Y → X of cube com-
plexes is a locally injective combinatorial map with the property that, if e1, . . . , en

are 1-cubes of Y all incident to a 0-cube y, and the (necessarily distinct) 1-cubes
φ(e1), . . . , φ(en) all lie in a common n-cube c (containing φ(y)), then e1, . . . , en

span an n-cube c′ in Y with φ(c′) = c. If φ : Y → X is a local isometry and X
is nonpositively curved, then Y is as well. Moreover, φ lifts to an embedding
φ̃ : Ỹ → X̃ of universal covers, and φ̃(Ỹ ) is convex in X̃ in the following sense.

Let X̃ be a CAT(0) cube complex. The subcomplex K ⊆ X̃ is full if K contains
each n-cube of X̃ whose 1-skeleton appears in K. If K is full, then K is isometrically
embedded if K ∩

⋂
i Hi is connected whenever {Hi } is a set of pairwise-intersecting

hyperplanes of X̃ . Equivalently, the inclusion K (1) ↪→ X̃ (1) is an isometric em-
bedding with respect to the graph-metric. If the inclusion K ↪→ X̃ of the full
subcomplex K is a local isometry, then K is convex. Note that a convex subcomplex
is necessarily isometrically embedded, and in fact K is convex if and only if K (1)

is metrically convex in X̃ (1). A convex subcomplex K is a CAT(0) cube complex in
its own right, and its hyperplanes have the form H ∩ K, where K is a hyperplane
of X̃ . Moreover, if K is convex, then hyperplanes H1∩K , H2∩K of K intersect if
and only if H1 ∩ H2 6=∅. We often say that the hyperplane H crosses the convex
subcomplex K to mean that H ∩ K 6=∅ and we say the hyperplanes H, H ′ cross
if they intersect.

Hyperplanes are an important source of convex subcomplexes, in two related
ways. First, recall that for all hyperplanes H of X̃ , the carrier N (H) is a convex
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subcomplex. Second, N (H) ∼= H ×
[
−

1
2 ,

1
2

]
, and the subcomplexes H ×

{
±

1
2

}
of X̃ “bounding” N (H) are convex subcomplexes isomorphic to H (when H is
given the cubical structure in which its n-cubes are midcubes of (n+1)-cubes of X̃ ).
A subcomplex of the form H ×

{
±

1
2

}
is a combinatorial hyperplane. The convex

hull of a subcomplex S ⊂ X̃ is the intersection of all convex subcomplexes that
contain S; see [Haglund 2008].

Let K ⊆ X̃ be a convex subcomplex. Then there is a map gK : X̃ (0)
→ K such

that for all x ∈ X̃ (0), the point gK(x) is the unique closest point of K to x . (This
point is often called the gate of x in K ; gates are discussed further in [Chepoi 2000;
Bandelt and Chepoi 2008].) This map extends to a cubical map gK : X̃→ K, the
gate map. See, e.g., [Behrstock et al. 2014] for a detailed discussion of the gate
map in the language used here; we use only that it extends the map on 0-cubes and
has the property that for all x, y, if gK(x), gK(y) are separated by a hyperplane H,
then the same H separates x from y. Finally, the hyperplane H separates x from
gK(x) if and only if H separates x from K. The gate map allows us to define the
projection of the convex subcomplex K ′ of X̃ onto K to be gK ′(K ), which is the
convex hull of the set {gK(x) ∈ K : x ∈ K ′(0)}. Convex subcomplexes K , K ′ are
parallel if gK ′(K )= K ′ and gK(K ′)= K. Equivalently, K , K ′ are parallel if and
only if, for each hyperplane H, we have H ∩ K 6= ∅ if and only if H ∩ K ′ 6= ∅.
Note that parallel subcomplexes are isomorphic.

Remark 1.2. We often use the following facts. Let K , K ′ be convex subcomplexes
of X̃ . Then the convex hull C of K ∪ K ′ contains the union of K , K ′ and a convex
subcomplex of the form G K (K ′)× γ̂ , where G K (K ′) is the image of the gate map
discussed above and γ̂ is the convex hull of a geodesic segment γ joining a closest
pair of 0-cubes in K , K ′, by [Behrstock et al. 2014, Lemma 2.4]. A hyperplane H
crosses K and K ′ if and only if H crosses G K (K ′); the hyperplane H separates
K , K ′ if and only if H crosses γ̂ . All remaining hyperplanes either cross exactly
one of K , K ′ or fail to cross C . Observe that the set of hyperplanes separating K , K ′

contains no triple H, H ′, H ′′ of disjoint hyperplanes, none of which separates the
other two. (Such a configuration is called a facing triple.)

Salvetti complexes and special cube complexes. Let 0 be a simplicial graph and let
A0 be the corresponding right-angled Artin group (RAAG), i.e., the group presented
by

〈V (0) | [v,w], {v,w} ∈ E(0)〉,

where V (0) and E(0) respectively denote the vertex- and edge-sets of 0. The
phrase generator of 0 refers to this presentation; we denote each generator of A0
by the corresponding vertex of 0.

The RAAG A0 is isomorphic to the fundamental group of the Salvetti complex S0,
introduced in [Charney and Davis 1995], which is a nonpositively curved cube
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complex with one 0-cube x , an oriented 1-cube for each v ∈ V (0), labeled by v,
and an n-torus (an n-cube with opposite faces identified) for every n-clique in 0.

A cube complex X is special if there exists a simplicial graph 0 and a local
isometry X→ S0 inducing a monomorphism π1 X→ A0 and a π1 X -equivariant
embedding X̃ → S̃0 of universal covers whose image is a convex subcomplex.
Specialness allows one to study geometric features of π1 X by working inside
of S̃0, which has useful structure not necessarily present in general CAT(0) cube
complexes; see the next section. Following Haglund and Wise [2008], a group G
is (virtually) [compact] special if G is (virtually) isomorphic to the fundamental
group of a [compact] special cube complex.

Cubical features particular to Salvetti complexes. Let 0 be a finite simplicial
graph and let 3 be an induced subgraph of 0. The inclusion 3 ↪→ 0 induces a
monomorphism A3→ A0. In fact, there is an injective local isometry S3→ S0
inducing A3→ A0. Hence each conjugate Ag

3 of A3 in A0 is the stabilizer of a
convex subcomplex gS̃3 ⊆ S̃0. A few special cases warrant extra consideration.

When 3⊂ 0 is an n-clique, for some n ≥ 1, then S3 ⊆ S0 is an n-torus, which
is the Salvetti complex of the sub-RAAG isomorphic to Zn generated by n pairwise-
commuting generators. In this case, S3 is a standard n-torus in S0. (When n = 1,
S3 is a standard circle.) Each lift of S̃3 to S̃0 is a standard flat; when n = 1, we
use the term standard line; a compact connected subcomplex of a standard line is a
standard segment. The labels and orientations of 1-cubes in S0 pull back to S̃0; a
standard line is a convex subcomplex isometric to R, all of whose 1-cubes have the
same label, such that each 0-cube has one incoming and one outgoing 1-cube.

When Lk(v) is the link of a vertex v of 0, the subcomplex SLk(v) is an immersed
combinatorial hyperplane in the sense that S̃Lk(v) is a combinatorial hyperplane
of S̃0. There is a corresponding hyperplane, whose carrier is bounded by S̃Lk(v)

and v S̃Lk(v), that intersects only 1-cubes labeled by v. Moreover, S̃Lk v is contained
in S̃St(v), where St(v) is the star of v, i.e., the join of v and Lk(v). It follows that

S̃St(v) ∼= S̃Lk(v)× S̃v,

where S̃v is a standard line. Note that the combinatorial hyperplane S̃Lk(v) is parallel
to vk S̃Lk(v) for all k ∈ Z. Likewise, S̃v is parallel to gS̃v exactly when g ∈ A3, and
parallel standard lines have the same labels. We say S̃v is a standard line dual
to S̃Lk(v), and is a standard line dual to any hyperplane H such that N (H) has S̃Lk(v)

as one of its bounding combinatorial hyperplanes.

Remark 1.3. We warn the reader that a given combinatorial hyperplane may cor-
respond to distinct hyperplanes whose dual standard lines have different labels;
this occurs exactly when there exist multiple vertices in 0 whose links are the
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same subgraph. However, the standard line dual to a genuine (noncombinatorial)
hyperplane is uniquely determined up to parallelism.

Definition 1.4 (frame). Let K ⊆ S̃0 be a convex subcomplex and let H be a
hyperplane. Let L be a standard line dual to H. The frame of H is the convex
subcomplex H ′× L ⊆ S̃0 described above, where H ′ is a combinatorial hyperplane
bounding N (H). If K ⊆ S̃0 is a convex subcomplex, and H intersects K, then the
frame of H in K is the complex K ∩ (H × L). It is shown in [Bou-Rabee et al.
2015] that the frame of H in K has the form (H ∩ K )× (L ∩ K ), provided that L
is chosen in its parallelism class to intersect K. Note that the frame of H is in fact
well-defined, since all possible choices of L are parallel.

2. Consequences of Theorem A

Assuming Theorem A, we quantify separability of cubically convex-cocompact
subgroups of special groups with the proofs of Corollaries B and C, before proving
Theorem A in the next section.

Proof of Corollary B. Let 0 be a finite simplicial graph so that there is a local
isometry X→ S0. Let Q ∈QR be represented by a local isometry Z→ X . Then
for all g ∈ π1 X −π1 Z , by Theorem A, there is a local isometry Y → S0 such that
Y contains Z as a locally convex subcomplex, g 6∈ π1Y, and |Y (0)| ≤ |Z (0)|(|g|+1).
Applying canonical completion [Haglund and Wise 2008] to Y → S0 yields a
cover Ŝ0→ S0 in which Y embeds; this cover has degree |Y (0)| by [Bou-Rabee
et al. 2015, Lemma 2.8]. Let H ′ = π1 Ŝ0 ∩ π1 X , so that π1 Z ≤ H ′, g 6∈ H ′, and
[π1 X : H ′] ≤ |Z (0)|(|g| + 1). The first claim follows.

Let G ∼= π1 X with X compact special, Q ≤ G, and let the convex hull of Qx̃
in X̃ lie in NK (Q X̃). Then the second claim follows since we can choose Z to be
the quotient of the hull of Qx̃ by the action of Q, and |Z (0)| ≤ grX̃ (K ). �

In general, the number of 0-cubes in Z is computable from the quasiconvexity
constant of a Q-orbit in X̃ (1) by [Haglund 2008, Theorem 2.28]. In the hyperbolic
case, we obtain Corollary C in terms of the quasiconvexity constant, without
reference to any particular cube complex:

Proof of Corollary C. We use Corollary B when J = 1, and promote the result to a
polynomial bound when J ≥ 1. Let Q ∈QK and let g ∈ G− Q.

The special case: Suppose J = 1 and let X be a compact special cube complex
with G ∼= π1 X . Let Z→ X be a compact local isometry representing the inclusion
Q → G. Such a complex exists by quasiconvexity of Q and [Haglund 2008,
Theorem 2.28], although we shall use the slightly more computationally explicit
proof in [Sageev and Wise 2015]. Let A′ ≥ 1, B ′ ≥ 0 be constants such that an orbit
map (G, ‖−‖S)→ (X̃ (1), d) is an (A′, B ′)-quasi-isometric embedding, where d is
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the graph-metric. Then there exist constants A, B, depending only on A′, B ′ and
hence on ‖−‖S , such that Qx is (AK + B)-quasiconvex, where x is a 0-cube in
Z̃ ⊂ X̃ . By the proof of of [op. cit., Proposition 3.3], the convex hull Z̃ of Qx lies
in the ρ-neighborhood of Qx , where

ρ = AK + B+
√

dim X + δ′
(

csc
(1

2
sin−1 1

√
dim X

)
+ 1
)

and δ′ = δ′(δ, A′, B ′). Corollary B provides G ′ ≤ G with g 6∈ G ′, and the bound
[G : G ′] ≤ |Z (0)|(|g| + 1). But |g| + 1 ≤ A′‖g‖S + B ′+ 1, while |Z (0)| ≤ grX̃ (ρ).
Thus [G : G ′] ≤ grX̃ (ρ)A

′
‖g‖S + grX̃ (ρ)B

′
+ grX̃ (ρ), so there exists P1 such that

SepQK
G,S(Q, n)≤ P1 grX̃ (P1K )n

for all K , Q ∈QK , n ∈ N, where P1 depends only on X .
The virtually special case: Now suppose that J ≥ 1. We have a compact special

cube complex X , and [G : G ′] ≤ J !, where G ′ ∼= π1 X and G ′ GG. Let Q ≤ G be
a K-quasiconvex subgroup. By Lemma 2.1, there exists C = C(G,S) such that
Q ∩G ′ is C J !(K + 1)-quasiconvex in G, and thus is P2C J !(K + 1)-quasiconvex
in G ′, where P2 depends only on G and S.

Let g ∈ G− Q. Since G ′ GG, the product QG ′ is a subgroup of G of index at
most J ! that contains Q. Hence, if g 6∈ QG ′, then we are done. We thus assume
g ∈ QG ′. Hence we can choose a left transversal {q1, . . . , qs} for Q ∩ G ′ in Q,
with s ≤ J ! and q1 = 1. Write g = qi g′ for some i ≤ s, with g′ ∈ G ′. Suppose that
we have chosen each qi to minimize ‖qi‖S among all elements of qi (Q ∩G ′), so
that, by Lemma 2.3, ‖qi‖ ≤ J ! for all i . Hence ‖g′‖S ≤ (‖g‖S + J !).

By the first part of the proof, there exists a constant P1, depending only on
G,G ′,S, and a subgroup G ′′ ≤ G ′ such that Q ∩G ′ ≤ G ′′ and g′ 6∈ G ′′, and

[G ′ : G ′′] ≤ P1 grG ′(P1 P2C J !(K + 1))‖g′‖S ≤ P1 grG(P1 P2C J !(K + 1))‖g′‖S .

Let G ′′′=
⋂s

i=1 qi G ′′q−1
i , so that g′ 6∈G ′′′ and Q∩G ′≤G ′′′ (since G ′ is normal),

and
[G ′ : G ′′′] ≤

(
P1 grG(P1 P2C J !(K + 1))‖g′‖S

)s
.

Finally, let H =QG ′′′. This subgroup clearly contains Q. Suppose that g=qi g′∈H.
Then g′ ∈ QG ′′′, i.e., g′ = ag′′′ for some a ∈ Q and g′′′ ∈ G ′′′. Since g′ ∈ G ′ and
G ′′′ ≤ G ′, we have a ∈ Q ∩G ′, whence a ∈ G ′′′, by construction. This implies that
g′ ∈ G ′′′ ≤ G ′′, a contradiction. Hence H is a subgroup of G separating g from Q.
Finally,

[G : H ] ≤ [G : G ′′′] ≤ J !
[
P1 grG(P1 P2C J !(K + 1))(‖g‖S + J !)

]J !
,

and the proof is complete. �



112 MARK F. HAGEN AND PRIYAM PATEL

Lemma 2.1. Let the group G be generated by a finite set S and let (G, ‖−‖S) be
δ-hyperbolic. Let Q ≤G be K-quasiconvex, and let G ′≤G be an index-I subgroup.
Then Q∩G ′ is C I (K +1)-quasiconvex in G for some C depending only on δ and S.

Proof. Since Q is K-quasiconvex in G, it is generated by a set T of q ∈ Q with
‖q‖S ≤ 2K + 1 by [Bridson and Haefliger 1999, Lemma III.0.3.5]. A standard
argument shows (Q, ‖ − ‖T ) ↪→ (G, ‖ − ‖S) is a (2K + 1, 0)-quasi-isometric
embedding. Lemma 2.3 shows that Q ∩G ′ is I -quasiconvex in (Q, ‖−‖T ), since
[Q : Q∩G ′]≤ I . Hence Q∩G ′ has a generating set making it ((2I+1)(2K+1), 0)-
quasi-isometrically embedded in (G, ‖−‖S). Apply Lemma 2.2 to conclude. �

The next lemma is standard, but we include it to highlight the constants involved:

Lemma 2.2. Let G be a group generated by a finite set S and suppose that
(G, ‖− ‖S) is δ-hyperbolic. Then there exists a (sub)linear function f : N→ N,
depending on S and δ, such that σ ⊆ Nf (λ)(γ ) whenever γ : [0, L] → G is a
(λ, 0)-quasigeodesic and σ is a geodesic joining γ (0) to γ (L).

Proof. See, e.g., the proof of [Bridson and Haefliger 1999, Theorem III.H.1.7]. �

Lemma 2.3. Let Q be a group generated by a finite set S and let Q′ ≤ Q be a
subgroup with [Q : Q′] = s <∞. Then there exists a left transversal {q1, . . . , qs}

for Q′ such that ‖qi‖S ≤ s for 1≤ i ≤ s. Hence Q′ is s-quasiconvex in Q.

Proof. Suppose that qk = sik · · · si1 is a geodesic word in S ∪S−1 and that qk is a
shortest representative of qk Q′. Let q j = si j · · · si1 be the word in Q consisting of the
last j letters of qk for all 1< j < k, and let q1=1. We claim that each q j is a shortest
representative for q j Q′. Otherwise, there would exist p with ‖p‖S < j such that
q j Q′= pQ′. But then sk · · · s j+1 pQ′=qk Q′, and thus qk was not a shortest represen-
tative. It also follows immediately that q j Q′ 6=q j ′Q′ for j 6= j ′. Thus, q1, q2, . . . , qk

represent distinct left cosets of Q′ provided k ≤ s, and the claim follows. �

Remark 2.4 (embeddings in finite covers). Given a compact special cube complex
X and a compact local isometry Z→ X , Theorem A gives an upper bound on the
minimal degree of a finite cover in which Z embeds; indeed, producing such an
embedding entails separating π1 Z from finitely many elements in π1 X . However, it
is observed in [Bou-Rabee et al. 2015, Lemma 2.8] that the Haglund–Wise canonical
completion construction [2008] produces a cover X̂→ X of degree |Z (0)| in which
Z embeds.

3. Proof of Theorem A

In this section, we give a proof of the main technical result.

Definition 3.1. Let S0 be a Salvetti complex and let S̃0 be its universal cover. The
hyperplanes H, H ′ of S̃0 are collateral if they have a common dual standard line
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(equivalently, the same frame). Clearly collateralism is an equivalence relation, and
collateral hyperplanes are isomorphic and have the same stabilizer.

Being collateral implies that the combinatorial hyperplanes bounding the carrier
of H are parallel to those bounding the carrier of H ′. However, the converse is
not true when 0 contains multiple vertices whose links coincide. In the proof
of Theorem A, we will always work with hyperplanes, rather than combinatorial
hyperplanes, unless we explicitly state otherwise.

Proof of Theorem A. Let x̃ ∈ S̃0 be a lift of the base 0-cube x in S0, and let Z̃ ⊆ S̃0
be the lift of the universal cover of Z containing x̃ . Since Z→ S0 is a local isometry,
Z̃ is convex. Let Ẑ ⊂ Z̃ be the convex hull of a compact connected fundamental
domain for the action of π1 Z ≤ A0 on Z̃ . Denote by K the convex hull of Ẑ ∪{gx̃}
and let S be the set of hyperplanes of S̃0 intersecting K. We will form a quotient
of K, restricting to Ẑ→ Z on Ẑ , whose image admits a local isometry to S0.

The subcomplex bẐc. Let L be the collection of standard segments ` in K that map
to standard circles in S0 with the property that `∩ Ẑ has noncontractible image
in Z . Let bẐc be the convex hull of Ẑ ∪

⋃
`∈L `, so that Ẑ ⊆ bẐc ⊆ K.

Partitioning S. We now partition S according to the various types of frames in K.
First, let Z be the set of hyperplanes intersecting Ẑ . Second, let N be the set of
N ∈S−Z such that the frame (N∩K )×(L∩K ) of N in K has the property that for
some choice of x0 ∈ N (0), the segment ({x0}× L)∩ Ẑ maps to a nontrivial cycle of
1-cubes in Z . Let nN ≥ 1 be the length of that cycle. By convexity of Ẑ , the number
nN is independent of the choice of the segment L within its parallelism class. Note
that N is the set of hyperplanes that cross bẐc, but do not cross Ẑ . Hence each
N ∈N is collateral to some W ∈ Z. Third, fix a collection {H1, . . . Hk} ⊂S−Z

such that:

(1) For 1≤ i ≤ k− 1, the hyperplane Hi separates Hi+1 from bẐc.

(2) For 1≤ i < j ≤ k, if a hyperplane H separates Hi from Hj , then H is collateral
to H` for some ` ∈ [i, j]. Similarly, if H separates H1 from bẐc, then H is
collateral to H1, and if H separates Hk from gx̃ , then H is collateral to Hk .

(3) For each i , the frame (Hi ∩ K )× L i of Hi in K has the property that for every
h ∈ H (0)

i , the image in Z of the segment ({h}×L i )∩ Ẑ is empty or contractible.
(Here, L i is a standard segment of a standard line dual to Hi .)

Let H be the set of all hyperplanes of S−Z that are collateral to Hi for some i .
Condition (3) above ensures that H∩N=∅, while H=∅ only if K =bẐc. Finally,
let B=S− (Z∪N∪H). Note that each B ∈B crosses some Hi . Figure 1 shows
a possible K and various families of hyperplanes crossing it.
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N1

N2

B1

B2

H1

H2

H3

Figure 1. Hyperplanes crossing K (the dark shaded area on the
left is Ẑ ).

Mapping bẐc to Z. We now define a quotient map q : bẐc → Z extending the
restriction Ẑ → Z of Z̃ → Z . Note that if N = ∅, then bẐc = Ẑ , and q is just
the map Ẑ→ Z . Hence suppose N 6=∅ and let N1, . . . ,Ns be the collateralism
classes of hyperplanes in N, and for 1≤ i ≤ s, let N′i be the collateralism class of
Ni in S, i.e., Ni together with a nonempty set of collateral hyperplanes in Z. For
each i , let L i be a maximal standard line segment of bẐc, each of whose 1-cubes
is dual to a hyperplane in N′i and which crosses each element of N′i . For each i ,
let Ni ∈Ni be a hyperplane separating Ẑ from gx̃ . Then Ni ∩ N j 6=∅ for i 6= j ,
since neither separates the other from Ẑ . We can choose the L i so that there is an
isometric embedding

∏k
i=1 L i →bẐc, since whether or not two hyperplanes of S̃0

cross depends only on their collateralism classes.
For each nonempty I ⊆{1, . . . , k}, a hyperplane W ∈Z crosses some U ∈

⋃
i∈I N

′

i
if and only if W crosses each hyperplane collateral to U. Hence, by Lemma 7.11
of [Hagen 2014], there is a maximal convex subcomplex Y (I ) ⊂ Ẑ , defined up
to parallelism, such that a hyperplane W crosses each U ∈

⋃
i∈I N

′

i if and only
if W ∩ Y (I ) 6= ∅. Let A(I ) be the set of hyperplanes crossing Y (I ). By the
definition of Y (I ) and the lemma just cited, there is a combinatorial isometric
embedding Y (I )×

∏
i∈I L i →bẐc, whose image we denote by F(I ) and refer to

as a generalized frame. Moreover, for any 0-cube z ∈ bẐc that is not separated from
a hyperplane in

⋃
i∈I N

′

i ∪A(I ) by a hyperplane not in that set, we can choose F(I )
to contain z; this follows from the proof of the same lemma of Hagen. Figures 2
and 3 show possible collateralism classes N′i and generalized hyperplane frames.

To build q, we will express bẐc as the union of Ẑ and a collection of generalized
frames, define q on each generalized frame, and check that the definition is compat-
ible where multiple generalized frames intersect. Let z ∈ bẐc be a 0-cube. Either
z ∈ Ẑ , or there is a nonempty set I ⊂ {1, . . . , k} such that the set of hyperplanes
separating z from Ẑ is contained in

⋃
i∈I N

′

i , and each N′i contains a hyperplane
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N′1

N′2

Figure 2. Collateral families N′1 and N′2 (left) and Y ({1})× L1 (right).

Figure 3. Y ({2})× L2 (left) and Y ({1, 2})× (L1× L2) (right).

separating z from Ẑ . If H ∈A(I )∪
⋃

i∈I N
′

i is separated from z by a hyperplane U,
then U ∈A(I )∪

⋃
i∈I N

′

i , whence we can choose F(I ) to contain z. Hence bẐc is
the union of Ẑ and a finite collection of generalized frames F(I1), . . . , F(It).

For any p ∈ {1, . . . , t}, we have F(Ip) = Y (Ip) ×
∏

j∈Ip
L j and we define

Y (Ip)= im(Y (Ip)→ Z). Also, let L j = im(L j ∩ Ẑ→ Z) be the cycle of length nNj

to which L j maps, for each j ∈ Ip. Note that Z contains F(Ip)= Y (Ip)×
∏

j∈IP
L j

and so we define the quotient map qp : F(Ip)→ Z as the product of the above
combinatorial quotient maps, namely, qp(y, (rj ) j∈IP )= (y, (rj mod nNj ) j∈Ip) for
y ∈ Y (Ip) and rj ∈ L j .

To ensure that qp(F(Ip)∩ F(Ij ))= q j (F(Ip)∩ F(Ij )) for all i, j ≤ t , it suffices
to show that

F(Ip)∩F(Ij ) :=

(
Y (Ip)×

∏
k∈Ip

Lk

)
∩

(
Y (Ij )×

∏
`∈Ij

L
)̀
= [Y (Ip)∩Y (Ij )] ×

∏
k∈Ip∩Ij

Lk .

This in turn follows from [Caprace and Sageev 2011, Proposition 2.5]. Hence,
the quotient maps qp are compatible and thus define a combinatorial quotient map
q : bẐc→ Z extending the maps qp.
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Observe that if H = ∅, i.e., K = bẐc, then we take Y = Z . By hypothesis,
Z admits a local isometry to S0 and has the desired cardinality. Moreover, our
hypothesis on g ensures that g 6∈ π1Y, but the map q shows that any closed combi-
natorial path in S0 representing g lifts to a (nonclosed) path in Z , so the proof of
the theorem is complete. Thus we can and shall assume that H 6=∅.

Quotients of H-frames. To extend q to the rest of K, we now describe quotient
maps, compatible with the map Ẑ→ Z , on frames associated to hyperplanes in H.
An isolated H-frame is a frame (H ∩ K )× L , where H ∈ H and H crosses no
hyperplane of Ẑ (and hence crosses no hyperplane of bẐc). An interfered H-frame
is a frame (H ∩K )× L , where H ∈H and H crosses an element of Z. Equivalently,
(H ∩ K )× L is interfered if gN (H)(Ẑ) contains a 1-cube and is isolated otherwise.

Define quotient maps on isolated H-frames by the same means as was used
for arbitrary frames in [Bou-Rabee et al. 2015]. Let (H ∩ K )× L be an isolated
H-frame. Let H be the immersed hyperplane in S0 to which H is sent by S̃0→ S0,
and let H ∩ K be the image of H ∩ K. We form a quotient YH = H ∩ K × L of
every isolated H-frame (H ∩ K )× L .

Now we define the quotients of interfered H-frames. Let Â = gN (H)(Ẑ) and let
A be the image of Â under Ẑ→ Z . There is a local isometry A→ S0, to which we
apply canonical completion to produce a finite cover

...
S0→ S0 where A embeds.

By [Bou-Rabee et al. 2015, Lemma 2.8], deg(
...
S0→ S0)= |

...
S (0)0 | = |A

(0)
| ≤ |Z (0)|.

Let H ∩ K = im(H ∩ K →
...
S0), and map the interfered H-frame (H ∩ K )× L to

YH = H ∩ K × L .

Constructing Y. We now construct a compact cube complex Y ′ from Z and the
various quotients YH. A hyperplane W in K separates H1 from Ẑ only if W ∈N.
Each H-hyperplane frame has the form (Hi ∩ K ) × L i = (Hi ∩ K ) × [0, mi ],
parametrized so that (Hi ∩ K )×{0} is the closest combinatorial hyperplane in the
frame to Ẑ . We form Y ′(1) by gluing YH1 to Z along the image of gẐ((H1∩K )×{0}),
enabled by the fact that the quotients of interfered H-frames are compatible with
Ẑ→ Z . In a similar manner, form Y ′(i) from Y ′(i − 1) and YHi by identifying the
image of (Hi−1∩K )×{mi−1}∩ (Hi ∩K )×{0} in YHi−1 ⊂ Y ′(i−1) with its image
in YHi . Let Y ′ = Y ′(k).

Let
K ′ = bẐc ∪

⋃
Hi∈H

(Hi ∩ K )× L i .

Since Hi ∩ Hj = ∅ for i 6= j , there exists a map (K ′, x̃)→ (Y ′, x) and a map
(Y ′, x)→ (S0, x) such that the composition is precisely the restriction to K ′ of the
covering map (S̃0, x̃)→ (S0, x).

If Y ′→ S0 fails to be a local isometry, then there exists i and nontrivial open
cubes e ⊂ Hi−1 ∩ K × {mi−1} (or Z if i = 1) and c ⊂ Hi ∩ K × {0} such that S0
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contains an open cube e × c, where e, c are the images of e, c under S̃0 → S0,
respectively. Moreover, since gẐ(Hi ∩ K )⊆ gẐ(Hi−1 ∩ K ), we can assume that c
is disjoint from each immersed hyperplane of S0 crossing Z . Hence the closure
Cl(c) is a standard torus. Glue Cl(e)×Cl(c) to Y ′, if necessary, in the obvious
way. Note that this gluing adds no new 0-cubes to Y ′. Indeed, every 0-cube of
Cl(e)×Cl(c) is identified with an existing 0-cube of Y ′ lying in Hi−1 ∩ K×{mi−1}.
Adding Cl(e)×Cl(c) also preserves the existence of a local injection from our
cube complex to S0. Either this new complex admits a local isometry to S0, or
there is a missing cube of the form e× c where Cl(c) is a standard torus and e lies
in Y ′. We add cubes of this type until we have no missing corners. That the process
terminates in a local isometry with compact domain Y is a consequence of the
following facts: at each stage, every missing cube has the form e× c where e lies
in Y ′ and Cl(c) is a standard torus, so the number of 0-cubes remains unchanged;
each gluing preserves the existence of a local injection to S0; each gluing increases
the number of positive dimensional cubes containing some 0-cube; cubes that we
add are images of cubes in K, which is compact.

There exists a combinatorial path γ in K ′ joining x̃ to gx̃ . It follows from the
existence of γ that the convex hull of K ′ is precisely equal to K. Hence, there exists
a based cubical map (K , x̃)→ (Y, x)→ (S0, x), so that the composition is the
restriction of the covering map (S̃0, x̃)→ (S0, x). Therefore, any closed path in S0
representing g lifts to a nonclosed path at x in Y. It is easily verified that the number
of 0-cubes in Y is bounded by |Z (0)|(m1+ · · ·+mk), where each mi is the length
of L i , and hence |Y (0)| ≤ |Z (0)|(|g| + 1). Thus, Y is the desired cube complex. �

Remark 3.2. When dim S0 = 1, arguing as above shows that Y can be chosen so
that |Y (0)| ≤ |Z (0)| + |g|. Hence, if F is freely generated by S, with |S| = r , then
SepQK

F,S(Q, n)≤ (2r)K
+ n.
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CONFORMAL DESIGNS AND
MINIMAL CONFORMAL WEIGHT SPACES
OF VERTEX OPERATOR SUPERALGEBRAS

TOMONORI HASHIKAWA

We give equivalent conditions for conformal designs of the minimal conformal
weight spaces of SVOAs, and show that if the minimal conformal weight space
of an SVOA forms a conformal 2m-design, then it also forms a conformal
.2m C 1/-design. Also, we derive trace formulae for the zero-modes of ele-
ments of the conformal weight 2 space on the minimal conformal weight space
when the minimal conformal weight space forms a conformal 4-design. As
an application of the trace formulae, we classify code SVOAs whose minimal
conformal weight spaces form conformal 4-designs. Moreover, we show that
the classified code SVOAs are of class S5.

1. Introduction

Vertex operator algebras (VOA) and vertex operator superalgebras (SVOA) have
deep connections to binary codes, integral lattices, and other combinatorial objects.
The notion of conformal designs was introduced in [Höhn 2008], and is an analogue
of the notions of combinatorial and spherical designs based on binary codes and
integral lattices, respectively. Also, an analogue of the theorems of Assmus and
Mattson [1969] and Venkov [2001] was presented in the same work. Due to this
result, we expect that analogues of other properties of combinatorial and spherical
designs hold in the theory of conformal designs. An integral lattice whose set of
minimum norm vectors is a spherical design has been studied in [loc. cit.]. As one
of the results, it was proved that an integral lattice whose set of minimum norm
vectors forms a spherical 4-design, which is called a strongly perfect lattice, is
isomorphic to the root lattices A1;A2;D4;E6;E7, or E8 if its minimum norm is 2.
Also, strongly perfect lattices with minimum norm 3 have been classified in the
same paper. Due to these circumstances, we speculate that a structural symmetry
of an algebraic object is dominated by a subset which has a design structure. From
this point of view, our purpose of this study is to clarify how the symmetry of the
minimal conformal weight space of an SVOA influences a structural symmetry of

MSC2010: 17B69.
Keywords: vertex operator superalgebra, conformal design, binary code.
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the SVOA. VOAs of class Sn with minimal conformal weight 2 have been discussed
in [Matsuo 2001]. The notion of VOAs of class Sn was introduced in the same
paper, and gives a sufficient condition that the minimal conformal spaces of VOAs
form conformal n-designs. The conformal designs have been studied in [Yamauchi
2014] under the assumption for introducing the notion of extended Griess algebras.
Considering these known results, we maintain the theory of the minimal conformal
weight spaces of SVOAs and conformal designs. The following are the main results
obtained in Section 3 of this paper.

Main Result 1 (Theorems 3.5 and 3.6). Let V be an SVOA and � the minimal
conformal weight of V. Assume that � <1. Then the following hold:

(1) The space V� forms a conformal t-design based on the even part of V if and
only if the t-th Casimir vector, introduced in [Matsuo 2001], belongs to the
sub-VOA V! generated by the Virasoro element !.

(2) If V� is a conformal 2m-design based on the even part of V, then it is also a
conformal .2mC 1/-design.

By using the computation of traces and invariant bilinear forms in [Yamauchi
2014], we have (1) of Main Result 1. The crucial point of the proof of (2) of
Main Result 1 is that the .2mC 1/-th Casimir vector can be determined from the
n-th Casimir vectors for n � 2m and the action of L.�1/. Note that (2) is an
analogue of a well-known result in the theory of integral lattices and spherical
designs. Moreover, trace formulae of the zero-modes of elements of the conformal
weight-2 space on the minimal conformal weight space of an SVOA are obtained
when the minimal conformal weight space forms a conformal 4-design.

As another related topic of conformal designs and SVOAs, there are classification
problems of SVOAs whose minimal conformal weight spaces form conformal
t -designs. This problem has been solved in [Höhn 2008] for the case that the
minimal conformal weight is 1 and t D 6. More precisely, SVOAs with minimal
conformal weight 1 are isomorphic to lattice VOAs associated to the root lattices of
type A1 and E8 if the conformal weight-1 space forms a conformal 6-design. Also,
it was proved in [Tuite 2009] that a VOA whose 4th Casimir vector belongs to V!
is isomorphic to one of the simple affine VOA associated to the Deligne exceptional
series of the simple Lie algebras A1;A2;G2;D4;F4;E6;E7, and E8 at level 1 if
the minimal conformal weight is 1. Using (1) of Main Result 1, this classification
result can be obtained under the condition that the conformal weight-1 space forms
a conformal 4-design. This result is actually an analogue of the result in [Venkov
2001], as already mentioned. Due to the classification in [Tuite 2009], one can
consider the classification problem in the case of SVOAs with minimal conformal
weight 3

2
and t D 4. The commutant superalgebra (see [Yamauchi 2005]) of an

Ising vector in the lattice type VOA V
Cp

2E8
is included in the list of candidates of
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SVOAs with minimal conformal weight 3
2

whose 4th Casimir vector belongs to V!
(see [Tuite and Van 2014]), and is isomorphic to the code SVOA VH4

associated to
the Hamming code H4 (see [Miyamoto 1996a] for the definition of code SVOAs).
The notion of SVOAs of class Sn is an analogue of the ordinary notion introduced
in [Matsuo 2001] and gives a sufficient condition that the minimal conformal weight
spaces of SVOAs form conformal n-designs in the same way as the cases of VOAs
of class Sn.

In this paper, we show that VH4
is of class S5. Moreover, we classify code

SVOAs whose minimal conformal weight spaces form conformal 4-designs as an
application of the results in Section 3 and show that the classified code SVOAs,
which contain VH4

, are of class S5. We obtain the following.

Main Result 2 (Theorems 4.8 and 5.9). Let C be a binary code. Assume that the
minimal conformal weight � of the code SVOA VC is not1. Then:

(1) If .VC /� forms a conformal 4-design based on the even part, then C is equiva-
lent to one of

f.01/; .11/g; yH3; E8; E.H4/; H4; and yH4;

where Hm;E.Hm/; yHm, and E8 are the Hamming code of length 2m � 1, the
even subcode of Hm, the extended Hamming code of Hm, and the set of all even
weight vectors in F8

2
, respectively.

(2) The code SVOAs associated to the codes in (1) are of class S5.

We see that for a code SVOA the minimal conformal weight space forms a
conformal 4-design if and only if the SVOA is of class S5.

In the following, we sketch the proof of Main Result 2. Let C be a binary code
of length n and � the minimal conformal weight of VC . Obviously, we can exclude
the case � > 2. Considering the trace formulae on the minimal conformal weight
space, nD 1; 8, and 15 if �D 1

2
; 1, and 3

2
, respectively. In case �D 1

2
, C must be

f.01/; .11/g because it has a weight-1 vector. In cases �D 1; 3
2

, and 2, we show
that .�n;C.2�// is a combinatorial 2-design if .VC /� is a conformal 4-design,
where �n WD f1; : : : ; ng and C.2�/ is the set of all weight 2� vectors in C . By this
result, C Š E8 if �D 1, and C Š H4 if �D 3

2
. Also, we have C Š yH3;E.H4/,

or yH4 by using fundamental techniques of algebraic coding theory and a list of
possible central charges of VOAs with �D 2 which is obtained in [Matsuo 2001].
Thus (1) of Main Result 2 holds. Now we turn to (2) of that result. Obviously,

Vf.01/;.11/g DL
�

1
2
; 0
�
˚L

�
1
2
; 1

2

�
is of class S1. Note that the code SVOAs VE8

;VyH3
, and VyH4

have already been
proved; see [Maruoka et al. 2016; Hashikawa and Shimakura 2016]). Also, if VH4

is of class S5, then so is VE.H4/ because VE.H4/ is the even part of VH4
. Hence
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it is sufficient to show that VH4
is of class S5. Using the same method as in [Lam

et al. 2007, Propositions 3.13], one can show that the automorphism group of a
code SVOA is generated by �-involutions and the lift of the automorphism group
of the binary code if the minimum weight of the code is greater than or equal to 3.
Considering the action of a �-involution associated to an Ising vector of �-type
which is not included in the standard Ising frame of VH4

, we prove that VH4
is of

class S5. Therefore, (2) holds.
This paper is organized as follows. In Section 2, we recall the notions of SVOAs

and Ising vectors of SVOAs. In Section 3, we recall the notions of conformal designs,
give necessary and sufficient conditions for conformal designs of minimal conformal
weight spaces, and show that conformal 2m-designs imply conformal .2mC 1/-
designs. Also, we give trace formulae on the minimal conformal weight space of
an SVOA by using the same argument as in [Matsuo 2001]. In Section 4, using
the trace formulae obtained in Section 3, we classify code SVOAs whose minimal
conformal weight spaces form conformal 4-designs. In Section 5, we show that the
code SVOAs associated to the codes in the classification of Section 4 are of class S5.

2. Preliminaries

In this section, we recall the notion of vertex operator superalgebras and Ising
vectors. Additionally, we show an analogue of [Höhn et al. 2012, Lemma 2.6],
which will be used in Section 3.

Vertex operator superalgebras. A vertex operator superalgebra (SVOA)

V D V 0
˚V 1

is a Z2-graded C-vector space equipped with a linear map

Y . � ; z/ W V ! End.V /ŒŒz; z�1��; v 7!
X
n2Z

v.n/z
�n�1

and two nonzero vectors 1 and ! in V 0, which are called the vacuum vector and
the Virasoro element, respectively, satisfying certain conditions; see [Frenkel et al.
1993; Kac 1998] for details. As one of the conditions, the Virasoro relation holds
on V :

ŒL.m/;L.n/�D .m� n/L.mC n/C
m3�m

12
ımCn;0 c

for m; n 2 Z, where Y .!; z/ D
P

n2Z L.n/z�n�2, ıij is the Kronecker symbol,
and c 2 C is the central charge of V. The subspaces V 0 and V 1 are called the even
part and the odd part of V, respectively. Throughout the paper, we assume that an
SVOA V has the following grading:

V 0
D

M
n2Z�0

Vn and V 1
D

M
n2 1

2
CZ�0

Vn;
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where Vn is the eigenspace of the L.0/-operator with eigenvalue n. We also assume
that V is of CFT-type, i.e., V0DC1. An SVOA V D V 0˚V 1 is said to be a vertex
operator algebra (VOA) if V 1D 0. If u2Vm, then we write wt.u/ WDm. Define the
zero-mode of a homogeneous element u by o.u/ WD u.wt.u/�1/, and extend linearly.

Let V! denote the sub-VOA of an SVOA V generated by the Virasoro element !.
Then the minimal conformal weight of V is defined by min

˚
n2 1

2
Z�0 jVn¤ .V!/n

	
if V ¤ V! and1 if V D V! . Since we assume that V is of CFT-type, the minimal
conformal weight of V is always greater than zero throughout this paper.

An element � of GL.V / is called an automorphism of an SVOA V if it satisfies

�.u.m/v/D �.u/.m/�.v/ for all u; v 2 V; m 2 Z; and �.!/D !:

Let Aut.V / denote the group of all automorphisms of V.

Ising vectors of SVOAs. Let V be an SVOA. An element e 2 V2 is called an
Ising vector of V if it satisfies e.1/e D 2e; e.3/e D

1
4

1, and the subalgebra Vir.e/
generated by e is isomorphic to the simple Virasoro VOA L

�
1
2
; 0
�

with central
charge 1

2
. It is known that L

�
1
2
; 0
�

is rational and has three irreducible modules

L
�

1
2
; 0
�
; L

�
1
2
; 1

2

�
; and L

�
1
2
; 1

16

�
I

see [Dong et al. 1994, Theorem 3.4] for details. Let e be an Ising vector of V. Note
that fLe.n/ WD e.nC1/ j n 2 Zg satisfies the Virasoro relation with central charge 1

2
.

Since Vir.e/ŠL
�

1
2
; 0
�
, we have a decomposition

V D Ve.0/˚Ve

�
1
2

�
˚Ve

�
1

16

�
;

where Ve.k/ for k 2
˚
0; 1

2
; 1

16

	
, is the sum of all irreducible Vir.e/-submodules

of V isomorphic to L
�

1
2
; k
�
. Let � be the minimal conformal weight of V. Set

(2-1) W e
�.k/ WD fu 2 V� j o.e/uD kug:

The following lemma is an analogue of [Höhn et al. 2012, Lemma 2.6].

Lemma 2.1. Let V be an SVOA and e an Ising vector. If � 2 f1g[
�

1
2
CZ�0

�
, then

V� DW e
�.0/˚W e

�

�
1
2

�
˚W e

�

�
1

16

�
:

Proof. Since o.e/ preserves V� and acts semisimply on V, the space can be
decomposed into the direct sum of the eigenspaces of o.e/. Let v 2 V� be an
eigenvector of o.e/ with eigenvalue �. It is sufficient to show that �2

˚
0; 1

2
; 1

16

	
. In

case � 2 1
2
CZ�0 we have Le.m/v 2 V��mD 0 for m� 1, and hence Vir.e/v is a

Vir.e/-module whose top weight is �. Since Vir.e/ŠL
�

1
2
; 0
�
, this case holds. For

�D1, we have Le.m/v2V1�mD0 for m�2. If we suppose that Le.1/vD0, then
this case also holds by using the same method as in the case of � 2 1

2
CZ�0. We

show Le.1/vD0. Suppose the claim is not true. Since o.e/Le.1/vD .��1/Le.1/v
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and o.e/1D e.1/1D 0, we have �D 1. However, this contradicts the nonexistence
of an o.e/-weight-1 vector. �

Here, we give the definitions of Ising vectors of � -type and Ising frames, which
will be used later. An Ising vector e of an SVOA V is said to be of �-type if
Ve

�
1

16

�
D 0. For an Ising vector e of � -type, the linear map

(2-2) �e WD

�
1 on Ve.0/;

�1 on Ve

�
1
2

�
;

is an automorphism of V ; see [Miyamoto 1996b, Theorem 4.8]. A subset fe1; : : : ; eng

of V2 such that ! D e1C � � �C en is called an Ising frame if ei is an Ising vector
of V for each 1� i � n and ŒY .ei; z/; Y .ej; z/�D 0 for i ¤ j.

3. Conformal designs

In this section, we first review the notion of conformal designs, and obtain necessary
and sufficient conditions in the case where the minimal conformal weight spaces
of SVOAs form conformal designs. Also, we show that if the minimal conformal
weight space of an SVOA forms a conformal 2m-design, then it also forms a
conformal .2mC 1/-design. Afterward, we give trace formulae of the composition
of the zero-modes of elements of V2 on the minimal conformal weight space when
the space forms a conformal 4-design.

Conditions of SVOAs. Set �r D e�
p
�1r for r 2 Q, and let V be an SVOA. A

bilinear form . � j � / on V is said to be invariant if it satisfies

.Y .a; z/u j v/D
�
u j Y .ezL.1/z�2L.0/�L.0/C2L.0/2a;�z/v

�
for a;u; v 2 V. It was proved in [Frenkel et al. 1993; Li 1994; Yamauchi 2014]
that any invariant bilinear form on an SVOA is symmetric and there is a one-to-one
correspondence between invariant bilinear forms and elements of the dual space
of V0=L.1/V1. In this paper, we assume that V has a nondegenerate invariant
bilinear form . � j � /. Due to the results above, the bilinear form is unique up to
scalar since V is of CFT-type. Moreover, we assume that V as a V!-module is a
direct sum of highest weight modules. Hence

V D
M

n2 1
2

Z�0

V Œn�;

where V Œn� is the sum of highest weight V!-submodules of V with highest weight
n 2 1

2
Z. Note that V Œ0�D V! holds. We have the following lemma.

Lemma 3.1. The spaces V Œ0� and V Œm� for m ¤ 0 are orthogonal with respect
to . � j � /.
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Proof. Let n2Z�0; u2 V Œ0�\Vn, and v 2 V Œm�\Vn. By the invariance of . � j � /,

(3-1) .u j v/D
X
`�0

�nC2n2

`!

�
1
ˇ̌
.L.1/`u/.2n�1�`/v

�
:

Since V Œm� is a V!-module, .L.1/`u/.2n�1�`/v belongs to V Œm�\ V0 for each
` � 0. Because V0 � V Œ0� and V Œ0�\V Œm�D 0, the right hand side of (3-1) is 0.
Therefore, we have this lemma because .Vk j Vk0/D 0 for k ¤ k 0. �

Define the projection map

� W V D
M

n2 1
2

Z�0

V Œn�! V Œ0�D V! ;

which is a V!-module homomorphism.

Minimal conformal weight spaces and conformal designs. The notion of confor-
mal designs was introduced by Höhn in [2008].

Definition 3.2 [Höhn 2008, Section 2]. Let U be a VOA and M a U-module. An
L.0/-homogeneous subspace X of M is called a conformal t-design based on U

if trj
X

o.a/D trj
X

o.�.a// holds for any a 2
L

0�n�t Un.

Let V D V 0˚ V 1 be an SVOA. Clearly, V 0 and V 1 are V 0-modules. From
now on, we assume that the minimal conformal weight � of V is not1.

Remark 3.3. Assume that V has an involution g. Set V ˙ WD fu2V j g.u/D˙ug.
Yamauchi [2014] considered that the top weight space of V � forms a conformal
design based on V 0\V C under some assumptions, and obtained various results.
However, these results do not contain the general cases � 2

˚
1
2
; 1
	
. We are going

to include these general cases in our discussion.

By Lemma 3.1, . � j � / is also nondegenerate on .V!/� and P�, where

P� WD fu 2 V� jL.k/uD 0 for all k 2 Z�0g:

Moreover, V� D .V!/�˚P� holds because

V D
M

n2 1
2

Z�0

V Œn�:

Let fvig
p�
iD1

be a basis of P�, and fvig
p�
iD1

the dual basis of fvig
p�
iD1

with respect to
. � j � /, where p� WD dim P�. We consider the vector

�m
� WD �

�C2�2

p�X
iD1

vi
.2��1�m/vi 2 Vm:
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Note that ��C2�2

�m
� is called the quadratic Casimir vector in [Tuite 2009; Tuite

and Van 2014]. We also note that if �m
� 2V! , then �`� 2V! for `�m; see [loc. cit.].

Set q� WD dim.V!/�. Let fwig
q�
iD1

be a basis of .V!/� and fwig
q�
iD1

the dual basis
of fwig

q�
iD1

with respect to . � j � /. The following lemma holds.

Lemma 3.4. Let V be an SVOA with minimal conformal weight �. Then

trjV�o.u/D .�1/wt.u/.u j �wt.u/
� /

for a homogeneous element u 2
L

n2Z>0
V Œn�.

Proof. Because fvig
p�
iD1
[ fwig

q�
iD1

is the dual basis of fvig
p�
iD1
[ fwig

q�
iD1

with
respect to . � j � /,

(3-2) trjV�o.u/D

p�X
iD1

.o.u/vi
j vi/C

q�X
iD1

.o.u/wi
j wi/:

Since o.u/wi 2
L

n>0V Œn� and wi 2 V Œ0�, the second summation of (3-2) is 0 by
Lemma 3.1, i.e., trj

V�
o.u/D

Pp�
iD1

.o.u/vi j vi/ holds. By the same computation
as in [Yamauchi 2014, Section 4.1, Lemma 5], we obtain the statement. �

Set d� WD dim V�, let fuig
d�
iD1

be a basis of V�, and let fuig
d�
iD1

be its dual basis
with respect to . � j � /. We also consider the following Casimir vector (see [Matsuo
2001; Yamauchi 2014]):

(3-3) �m
� WD �

�C2�2

d�X
iD1

ui
.2��1�m/ui D �

m
� C �

�C2�2

q�X
iD1

wi
.2��1�m/wi 2 Vm:

We obtain the following equivalent conditions to define conformal designs. It
has already been discussed in [Yamauchi 2014] for � 2 1

2
CZ�1.

Theorem 3.5. Let V be an SVOA with minimal conformal weight �. Then the
following are equivalent: (1) V� is a conformal t -design based on V 0, (2) �t

� 2 V! ,
and (3) �t

� 2 V! .

Proof. By (3-3), (2) () (3) holds. We show (1) () (3). Let a 2 V 0
t . Set

a WD a � �.a/. Then trj
V�

o.a/ D trj
V�

o.�.a//C .�1/t .a j �t
�/ by Lemma 3.4.

Therefore, trj
V�

o.a/ D trj
V�

o.�.a// if and only if .a j �t
�/ D 0. We see from

Lemma 3.1 that .a j �t
�/D 0 for any a 2 V 0

t if and only if �t
� 2 V Œ0�D V! . �

It is known that if the set of minimum norm vectors of an integral lattice forms
a spherical 2m-design, then it also forms .2mC 1/-design; see [Venkov 2001,
Section 5, p. 23]. The assertion of the following theorem is an analogy of this
particular result in the case of a conformal design. A method to prove this when
�D 2 was mentioned briefly in [Matsuo 2001, Section 2, p. 573].
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Theorem 3.6. Let V be an SVOA with minimal conformal weight �. If V� forms
a conformal 2m-design based on the even part, then it also forms a conformal
.2mC 1/-design.

Proof. By the skew symmetry,

�2mC1
� DX
`�0

.�1/2��.2mC1/C`

`!
L.�1/`

�
��C2�2

d�X
iD1

.�1/ju
ijjuij.ui/.2��1�.2mC1/C`/u

i

�
;

where jaj equals 0 if a 2 V 0, and 1 if a 2 V 1. Since jui jjui j D 2� mod 2, we have

�2mC1
� D

X
`�0

.�1/1C`

`!
L.�1/`�2mC1�`

� :

Hence,

(3-4) �2mC1
� D

1

2

X
`�1

.�1/1C`

`!
L.�1/`�2mC1�`

� :

If V� forms a conformal 2m-design based on the even part, then by Theorem 3.5
�s
� 2 V! for 1� s � 2m. Therefore, using (3-4) and Theorem 3.5, we are done. �

From now on, we assume that the central charge of an SVOA is neither 0 nor�22
5

.
This assumption implies that the degree m subspace of V! with m� 5 has a basis˚

L.�n1/ � � �L.�nr /1
ˇ̌
n1 � � � � � nr � 2;

Pr
iD1 ni Dm

	
I

see [Kac and Raina 1987, Lecture 8].
We also assume that the bilinear form is normalized by .1 j 1/D 1. The following

lemma holds.

Lemma 3.7. Let V be an SVOA, a; b 2 V2, m 2 Z�2, and n 2 Z. Then:

(1) .L.�m/1 ja.n/b/D .2m�2/ımCn;3.a j b/�
m2�3mC4

2
ımCn;3.L.1/a jL.1/b/,

(2) .L.�2/21 j a.�1/b/D 2.a j !/.b j !/C 8.a j b/� 4.L.1/a jL.1/b/.

Proof. By the commutator formula, for k; ` 2 Z,

(3-5) ŒL.k/; a.`/�

D .k � `C 1/a.kC`/C
�
kC1

2

�
.L.1/a/.kC`�1/C

�
kC1

3

�
ıkC`;1.a j !/:

Since V is of CFT-type and has a nondegenerate invariant bilinear form, L.1/V1D0.
We compute X WD .L.�m/1 j a.n/b/:

X D .1 j a.n/L.m/b/„ ƒ‚ …
D0

C .1 j ŒL.m/; a.n/�b/ (by invariance)
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D .m� nC 1/.1 j a.mCn/b/C
�
mC1

2

�
.1 j .L.1/a/.mCn�1/b/ (by (3-5))

D ımCn;3

�
.2m� 2/.1 j a.3/b/C

�
mC1

2

�
.1 j .L.1/a/.2/b/

�
(since .Vk j V`/D 0 if k ¤ `)

D ımCn;3

�
.2m� 2/.a j b/� m2�3mC4

2
..L.1/a/.�2/1 j b/

�
(by invariance, L.1/V1 D 0)

D ımCn;3

�
.2m� 2/.a j b/� m2�3mC4

2
.L.1/a jL.1/b/

�
:

(since .L.1/a/.�2/1DL.�1/L.1/a)

Hence, we obtain (1). Next, we show (2). By (1) for .m; n/D .2; 1/, the invariance,
and (3-5),

(3-6) .L.�2/21 j a.�1/b/

D 2.a j !/.b j !/C 8.a j b/� 4.L.1/a jL.1/b/C 3.! j .L.1/a/.0/b/:

We show .! j .L.1/a/.0/b/D 0. By (3-5),

(3-7) .! j ŒL.1/; a.0/�b/D 4.a j b/� 2.L.1/a jL.1/b/C .! j .L.1/a/.0/b/:

On the other hand, by (1) for .m; n/D .3; 0/ and the Virasoro relation,

(3-8) .! j ŒL.1/; a.0/�b/D .L.�1/! j a.0/b/� .! j a.0/L.1/b/

D 4.a j b/� 2.L.1/a jL.1/b/� .! j a.0/L.1/b/:

We see from (3-5), (3-7), and (3-8) that .! j .L.1/a/.0/b/ is computed as follows:

.! j .L.1/a/.0/b/D�.! j a.0/L.1/b/

D�.1 j ŒL.2/; a.0/�L.1/b/

D�3..1 j a.2/L.1/b/C .1 j .L.1/a/.1/L.1/b//

D�3.L.1/a jL.1/b/C 3.L.1/a jL.1/b/D 0:

Therefore (2) holds by (3-6). �

Let V be an SVOA with minimal conformal weight � 2
˚

1
2
; 1; 3

2
; 2
	
. We give

trace formulae of the zero-modes of elements of V2 on V� by using the same method
as in [Matsuo 2001, Section 2.3]. Let a; b 2 V2, and w 2 V�. In general, by the
Borcherds–Jacobi identity (see [Kac 1998]), for u; v 2 V 0 and p; q; r 2 Z,

(3-9)
X
`�0

�
p

`

�
.u.rC`/v/.pCq�`/

D

X
`�0

.�1/`
�

r

`

�
.u.pCr�`/v.qC`/� .�1/rv.qCr�`/u.pC`//:
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By (3-9) for p D 2; q D 1, and r D�1,

a.1/b.1/w D

2X
`D0

�
2

`

�
.a.�1C`/b/.3�`/w� a.�1/b.3/w� b.�1/a.3/w:

Therefore,

trjV�o.a/o.b/D

2X
`D0

�
2

`

�
trjV�o.�.a.�1C`/b//� 2ı�;2.a j b/

if V� forms a conformal 4-design based on the even part. Then, by Lemma 3.7 one
can compute the trace because �.a.�`C1/b/ 2 .V!/4�`, yielding

trjV�o.L.�4/1/D 3�d�; trjV�o.L.�2/21/D �d�.�C 2/C cı�;2;

trjV�o.L.�3/1/D�2�d�; trjV�o.L.�2/1/D �d�:

Note that the cases � 2 1
2
CZ�1[f2g have already been obtained in [Matsuo 2001;

Yamauchi 2014].

Proposition 3.8 [Matsuo 2001, Theorem 2.1; Yamauchi 2014, Theorem 1]. Let V

be an SVOA of central charge c with minimal conformal weight � 2
˚

1
2
; 1; 3

2
; 2
	
.

(1) If V� forms a conformal 2-design, then for a 2 V2,

trjV�o.a/D
2�d�

c
.a j !/:

(2) If V� forms a conformal 4-design, then for a; b 2 V2,

trjV�o.a/o.b/D
2.�d�.22�� c/� 5c2ı�;2/

c.5cC 22/
.a j b/

�
2.�d�.cC 6C 8�/C 8cı�;2/

c.5cC 22/
.L.1/a jL.1/b/

C
4.�d�.5�C 1/C 5cı�;2/

c.5cC 22/
.a j !/.b j !/:

Remark 3.9. The reason why we consider the cases where � 2
˚

1
2
; 1; 3

2
; 2
	

is that
the trace of o.a/ on V� for a2V2 is a multiple of �d� because V2D .V!/2 if �> 2.
Hence, we consider trace formulae on V� in the cases �� 2 only.

Set de
�.k/ WD dim W e

�.k/, where W e
�.k/ is defined in (2-1). The following

corollary holds. It has already been mentioned in the introduction of [loc. cit.] for
�D 2.

Corollary 3.10. Let V be an SVOA with minimal conformal weight � 2
˚

1
2
; 1; 3

2

	
,

and e an Ising vector. If V� forms a conformal 4-design based on V 0, then

de
�.0/D

d�.c.5cC 22� 61�/C 2�.196�� 95//

c.5cC 22/
:
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Also,

(3-10) de
�

�
1

2

�
D
�d�.56�� 3c � 2/

c.5cC 22/
and de

�

�
1

16

�
D

64�d�.cC 3� 7�/

c.5cC 22/
:

Proof. Obviously, trj
V�

o.1/D d�. Note that L.1/e D 0 since V is of CFT-type;
see [Yamauchi 2004, Lemma 8.1.2]. Since .! j e/D .e j e/D 1

4
, by Proposition 3.8,

trjV�o.e/D
�d�

2c
and trjV�o.e/2 D

�d�.49�� 2cC 1/

4c.5cC 22/
:

By Lemma 2.1,2641 1 1

0 1
2

1
16

0 .1
2
/2 . 1

16
/2

375
264 de

�.0/

de
�.

1
2
/

de
�.

1
16
/

375D
2664

d�
�d�
2c

�d�.49��2cC1/

4c.5cC22/

3775:
Therefore, we obtain this corollary by direct computation. �

The following corollary is obtained from (3-10) immediately.

Corollary 3.11. Let V be an SVOA of central charge c with minimal conformal
weight �2

˚
1
2
; 1; 3

2

	
, and e an Ising vector of V. Assume that V� forms a conformal

4-design based on the even part. Then c D 7�� 3 if and only if de
�

�
1

16

�
D 0.

An R-form W of an SVOA V is an R-subalgebra of V with the same Virasoro
element such that V Š C˝W. As an application of the trace formulae, we have
the following theorem.

Theorem 3.12. Let V be an SVOA with minimal conformal weight 1
2

and let W be
an R-form which has a positive definite invariant bilinear form. If V1=2 forms a
conformal 4-design based on the even part, then V is isomorphic to

L
�

1
2
; 0
�
˚L

�
1
2
; 1

2

�
:

Remark 3.13. [Höhn 2008, Theorem 4.1(a)] shows that V, as in Theorem 3.12, is
isomorphic to L.1

2
; 0/˚L

�
1
2
; 1

2

�
if the minimal conformal weight space forms a

conformal 6-design. Hence, Theorem 3.12 is more general than the theorem in that
reference.

Proof of Theorem 3.12. Since the bilinear form is positive definite on W, we can take
an orthogonal basis fxig

d1=2

iD1
of W1=2 such that .xi j xj /D 1

2
ıij . Since V ŠC˝W,

fxig
d1=2

iD1
is also a basis of V1=2. Set

ei
WD �xi

.�2/x
i and Lei

.n/D ei
.nC1/

for each 1� i � d1=2 and n2Z. Then for each 1� i � d1=2 we can check by direct
computation that fLei

.n/gn2Z satisfies the Virasoro relation with central charge 1
2

.
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Since e1; : : : ; ed1=2 belong to W, the vectors are Ising vectors; see [Miyamoto
1996b, Section 6, p. 540]. Also by direct computation,

Lei
.0/xj D

1
2
ıij xj

for 1 � i; j � d1=2. Because fxig
d1=2

iD1
is a basis of V1=2, the central charge of

V is 1
2

by Corollary 3.11. Then by Proposition 3.8 we also have d1=2 D 1 since
trj

V1=2
o.ei/D 1

2
. Since the central charge is 1

2
and ! is the Virasoro element of W,

we may conclude that ! is an Ising vector of V. Because the L.0/-weights of V

are half-integers, V D V Œ0�˚V
�

1
2

�
, where V Œk� is the V!-submodule of V defined

at the beginning of Section 3. Therefore,

V D V! ˚V
�

1
2

�
ŠL

�
1
2
; 0
�
˚L

�
1
2
; 1

2

�
because V Œ0�D V! and d1=2 D 1. �

4. Conformal designs and code SVOAs

In this section, we first review the notion of binary codes and combinatorial designs.
Next, we recall the definition of code SVOAs, and classify the code SVOAs whose
minimal conformal weight spaces form conformal 4-designs.

Binary codes. A binary code C of length n is a subspace of Fn
2
. The support

supp.x/ and the weight wt.x/ of x D .x1; : : : ;xn/ 2 Fn
2

are defined by

supp.x/ WD f1� i � n j xi ¤ 0g and wt.x/ WD # supp.x/;

respectively. A binary code C is said to be even if wt.c/ 2 2Z for all c 2 C . Let
.0n/ and .1n/ denote the vectors .0; : : : ; 0/ 2 Fn

2
and .1; : : : ; 1/ 2 Fn

2
, respectively.

The minimum weight of C is minfwt.c/ j c 2 C n f.0n/gg if C ¤ f.0n/g and 1
if C D f.0n/g. For x D .x1; : : : ;xn/;y D .y1; : : : ;yn/ 2 Fn

2
, let x � y denote the

vector .x1y1; : : : ;xnyn/2 Fn
2
. For C a binary code with minimum weight d ¤1,

(4-1) #C � 2n
ı b d�1

2
cX

iD0

�
n

i

�
;

where
�

1
2
.d � 1/

˘
is the largest integer not greater than 1

2
.d � 1/. The upper

bound of #C is called the sphere-packing bound of C ; see [Assmus and Key 1992,
Theorem 2.1.3]. It is easy to see that d is an odd integer if equality holds in (4-1).

Set yH2 WD f.0
4/; .14/g. Define the binary code yHm for m 2 Z�3 by

f.u;uC v/ j u 2 E2m�1 ; v 2 yHm�1g;
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where E` is the set of all even weight vectors in F`
2
. Set

Hm WD f.c1; : : : ; c2m�1/ j .c1 : : : ; c2m/ 2 yHmg � F2m�1
2

for m 2 Z�2. The binary codes Hm and yHm are called the Hamming code of
length 2m � 1 and the extended Hamming code of length 2m, respectively; see
[MacWilliams and Sloane 1977, Chapters 1 and 13]. Denote by E.Hm/ the even
subcode of Hm. Note that the dimensions of Hm and yHm are 2m �m� 1. The
following lemmas are obtained by a basic method of algebraic coding theory. For
the reader’s convenience we include the proof.

Lemma 4.1. Let m 2 Z�2 and D a binary code of length 2m whose minimum
weight is greater than or equal to 3. If D has a subcode equivalent to yHm, then D

is equivalent to yHm.

Proof. By (4-1),

#D � 22mı 1X
iD0

�
2m

i

�
< 22m�m:

Hence dim D is less than or equal to 2m�m�1. Since dim yHmD 2m�m�1, the
assertion holds. �

Lemma 4.2. Let m 2 Z�2 and D a binary code of length 2m� 1 whose minimum
weight is greater than or equal to 3. If D has a subcode equivalent to E.Hm/,
then D is equivalent to E.Hm/ or Hm.

Proof. We see from (4-1) that #D � 22m�1=
P1

iD0

�
2m�1

i

�
D 22m�1�m. Hence

dim D is 2m�1�m or 2m�2�m because D has a subcode equivalent to E.Hm/.
Clearly, D is equivalent to E.Hm/ if dim D is 2m�2�m. If dim D equals 2m�1�m,
then equality holds in (4-1). As already mentioned before, the minimum weight of
D must be an odd integer, and hence it must be 3. Thus D is a binary code of length
2m� 1 whose dimension and minimum weight are 2m� 1�m and 3, respectively.
It is known that such a code is equivalent to Hm; see [MacWilliams and Sloane
1977, Chapter 1, Section 7, Problem (28)]. Therefore, this lemma holds. �

Combinatorial designs and binary codes. Set �n WD f1; : : : ; ng. Let k be a non-
negative integer such that k � n. Denote the set of all k-subsets of �n by

�
�n

k

�
.

Let B be a subset of
�
�n

k

�
. A pair .�n;B/ is a t-.n; k; �/-design if there exists a

constant � such that #fB 2 B j X � Bg D � for all X 2
�
�n

t

�
. For D � Fn

2
, set

D.k/ WD fu2D jwt.u/D kg. We often say that .�n;D.k// is a t -.n; k; �/-design
if the pair of �n and fsupp.u/ j u 2 D.k/g forms a t-.n; k; �/-design. By using
a basic method for algebraic coding theory, the following proposition holds. We
include the proof for the reader’s convenience.
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Proposition 4.3. Let m 2 Z�2 and C a binary code of length 2m with minimum
weight 4. If .�2m ;C.4// forms a 3-.2m; 4; 1/-design, then C is equivalent to yHm.
Analogously, let C be a binary code of length 2m � 1 with minimum weight 3. If
.�2m�1;C.3// forms a 2-.2m� 1; 3; 1/-design, then C is equivalent to Hm.

Proof. We show the yHm case only because the Hm case is obtained by the same
method. If we show that #.F2m

2
=C /D 2mC1, then we obtain the statement because

a binary code of length 2m whose dimension and minimum weight are 2m� 1�m

and 4, respectively, is equivalent to yHm [MacWilliams and Sloane 1977, Chapter 1,
Section 9, Problem (41)]. Let u 2 F2m

2
such that wt.u/ > 2. Then there exists

v 2 C.4/ such that wt.uC v/ � wt.u/� 2 because .�2m ;C.4// is a 3-.2m; 4; 1/-
design. Hence, every element of F2m

2
=C is represented by an element of weight

at most 2. Also, since the weight of the sum of vectors x;x0 2 F2m

2
such that

wt.x/� 1;wt.x0/� 2, and x¤ x0 is less than 4 and the minimum weight of C is 4,
xCC and x0CC are distinct. Set Xi WD fyCC 2 F2m

2
=C j wt.y/D ig. By the

argument above, we have

F2m

2 =C DX0qX1qX2; #X0 D 1; and # X1 D 2m:

Hence, it is sufficient to show that #X2 D 2m � 1. Let yCC 2 X2. It is easy to
check that

.yCC /.2/D fygq fyC c j c 2 C.4/ such that supp.y/� supp.c/g:

Hence, #.yCC /.2/D 2m�1 because .�2m ;C.4// is also a 2-.2m; 4; 2m�1 � 1/-
design [op. cit., Chapter 2, Section 5, Theorem 9]. Since

F2m

2 .2/D
a

zCC2X2

.zCC /.2/;

we have #X2 D
1

2m�1

�
2m

2

�
D 2m� 1, completing the proof of this proposition. �

In order to prove our main result, we need the following two lemmas.

Lemma 4.4. Let t 2 Z�2 and let C be a binary code of length n� 3 with minimum
weight tC1. Then the cardinality of C.tC1/ is at most 1

tC1

�
n
t

�
. Moreover, equality

holds in the inequality if and only if .�n;C.t C 1// forms a t -.n; t C 1; 1/-design.

Proof. Consider the cardinality of

S WD
˚
X 2

�
�n

t

� ˇ̌
there exists u 2 C.t C 1/ such that X � supp.u/

	
:

Since t � 2 and the minimum weight of C is t C 1, for X 2
�
�n

t

�
the cardinality of

fu 2 C.t C 1/ jX � supp.u/g is at most 1. Hence

(4-2) S D
a

u2C.tC1/

�
supp.u/

t

�
:
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By (4-2), �
n

t

�
� #S D

X
u2C.tC1/

#
�

supp.u/
t

�
D .t C 1/ # C.t C 1/:

Therefore, the first claim of this lemma holds. Also, from (4-2), that equality
holds in the inequality if and only if

�
�n

t

�
D S . Hence we have the second claim

because
�
�n

t

�
D S implies that .�n;C.t C 1// forms a t -.n; t C 1; 1/-design. �

Lemma 4.5. Let C be an even code of length 2m�1 (m�2) with minimum weight 4.
If .�2m�1;C.4// forms a 2-.2m� 1; 4; 2m�1� 2/-design, then C ŠE.Hm/.

Proof. Set D WD hC; .12m�1/iF2
D C q ..12m�1/CC /. Note that if we show that

the minimum weight of D is 3 and .�2m�1;D.3// forms a 2-.2m�1; 3; 1/-design,
then this lemma follows from Lemma 4.2 since the even subcode of D is C .

First we show that the minimum weight of D is 3. Fix X 2
�
�2m�1

2

�
. Set

CX WD fu 2 C.4/ j X � supp.u/g and wX WD
P

u2CX
u. Let u; v 2 CX such that

u¤ v. Then supp.u/\ supp.v/DX because the minimum weight of C is 4. Since
.�2m�1;C.4// forms a 2-.2m � 1; 4; 2m�1 � 2/-design, the cardinality of CX is
2m�1 � 2, and hence we have wt.wX / D 2m � 4 and .12m�1/CwX 2 D.3/. If
we suppose that D has a weight-1 vector v, then .12m�1/CwY C v 2 D.2/ for
Y 2

�
�2m�1

2

�
such that supp.v/� Y, which contradicts D.2/D C.2/D∅. Thus,

the minimum weight of D is 3.
Next we show that .�2m�1;D.3// forms a 2-.2m � 1; 3; 1/-design. Set zX WD

.12m�1/C wX for X 2
�
�2m�1

2

�
. Then wt.wX C wY / D 6 � 2 wt.zX � zY / for

X;Y 2
�
�2m�1

2

�
. Since C.2/ D ∅, we have wt.zX � zY / � 1 if wX ¤ wY , and

wt.zX � zY /D 3 if wX D wY . Because the support of zX � zY is

.�2m�1 n supp.wX //\ .�2m�1 n supp.wY //;

we have wX D wY if and only if Y � �2m�1 n supp.wX /. By this argument,
#fwX jX 2

�
�2m�1

2

�
g is exactly 1

3

�
2m�1

2

�
. Hence #D.3/� 1

3

�
2m�1

2

�
. We see from

Lemma 4.4 that the assertion holds. �

Code SVOAs. Let X be the free fermionic SVOA of central charge 1
2

, i.e., X D

L
�

1
2
; 0
�
˚L

�
1
2
; 1

2

�
. Set X k WDL

�
1
2
; k

2

�
for k D 0; 1. Then X˝n is an SVOA as a

tensor product of SVOAs. Set V ˛ WDX ˛1 ˝ � � �˝X ˛n for ˛ D .˛1; : : : ; ˛n/ 2 Fn
2
.

Note that V ˛ is a V .0n/-module. For a binary code C of length n, set

VC WD

M
˛2C

V ˛;

which is a sub-SVOA of X˝n. The SVOA VC is called the code SVOA associated
to C ; see [Miyamoto 1996a; Lam et al. 2007] for details. We remark that the
central charge of VC is half of the length of C. Let u0 D 1 be the vacuum vector
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of X 0 and u1 a highest weight vector of X 1 such that u1
.�2/

u1 D 2!, where ! is
the Virasoro element of X 0. For ˛ D .˛1; : : : ; ˛n/ 2 Fn

2
, set

(4-3) u˛ WD u˛1 ˝ � � �˝u˛n 2 V ˛:

Note that u˛ is a highest weight vector of V ˛. For 1� i � n, set

ei
WD 1˝ � � �˝!˝ � � �˝ 1 2 VC ;

where the Virasoro element ! of X 0 is the i-th tensor factor. It is known that ei

is an Ising vector of �-type; see [Miyamoto 1996a]. Let . � j � / be the invariant
bilinear form on VC such that .1 j 1/D 1. Then .ei j ej /D 1

4
ıij obviously holds.

Set N WD
L

1�i;j�2n Z.xiCxj /, where fxig
2n
iD1

is an orthonormal basis of R2n.
Let .VN /R be the lattice VOA over R associated to N . In [Miyamoto 2004], it
was proved that if a binary code C of length n is even, then the code VOA over R

is embedded into the VOA .V C
N
/R˚

p
�1.V �

N
/R, where .V ˙

N
/R � .VN /R is the

eigenspace of a lift of the �1 isometry of N with eigenvalue ˙1, respectively.
The VOA .V C

N
/R˚

p
�1.V �

N
/R has a positive definite invariant bilinear form; see

[op. cit., Proposition 2.7]. Replacing N by L WD
L2n

iD1 Zxi , one can show the case
that C has an odd weight vector, and hence the following holds.

Proposition 4.6 [Miyamoto 2004, Corollary 3.6]. Let C be a binary code. Then VC

has an R-form which has a positive definite invariant bilinear form. In particular,
VC satisfies the assumptions in Section 3 on page 126.

Conformal 4-designs and code SVOAs. Let C be a binary code and � the minimal
conformal weight of the code SVOA VC . Assume that � <1. We show that C is
equivalent to f.01/; .11/g; yH3; E8;E.H4/;H4, or yH4 if .VC /� forms a conformal
4-design based on V 0

C
. The next lemma plays an important role in our main result.

Lemma 4.7. Let C be a binary code of length n and � the minimal conformal
weight of VC . Assume that � 2

˚
1; 3

2
; 2
	
. If .VC /� forms a conformal 4-design

based on V 0
C

, then .�n;C.2�// forms a 2-.n; 2�; �/-design, where

� D
4�.5�C 1/ # C.2�/C 98nı�;2

n.5nC 44/
:

Proof. A basis of .VC /� is given by(
fu˛ j ˛ 2 C.2�/g if �D 1; 3

2
;

fei j 1� i � ng[ fu˛ j ˛ 2 C.4/g if �D 2;

where ei and u˛ are defined in Section 4 on page 137. Let i; j 2�n with i ¤ j .
Due to .ei j ej /D 0, L.1/ei DL.1/ej D 0, and Proposition 3.8(2),

(4-4) trj.VC /�
o.ei/o.ej /D

�d�.5�C 1/C 5cı�;2

4c.5cC 22/
;
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where c is the central charge of VC , i.e., c D n
2

and

d� D dim.VC /� D #C.2�/C nı�;2:

On the other hand,

(4-5) trj.VC /�
o.ei/o.ej /D 1

4
# f˛ 2 C.2�/ j i; j 2 supp.˛/g

since

o.ei/o.ej /u˛ D

�1
4
u˛ if i; j 2 supp.˛/;

0 otherwise;
and o.ei/o.ej /ek

D 0

for ˛ 2 C and k 2�n. It follows from (4-4) and (4-5) that

(4-6) #f˛ 2 C.2�/ j i; j 2 supp.˛/g D
�d�.5�C 1/C 5cı�;2

c.5cC 22/

D
4�.5�C 1/ # C.2�/C 98nı�;2

n.5nC 44/
;

concluding the proof. �

One of our main results is the following.

Theorem 4.8. Let C be a binary code and � the minimal conformal weight of VC .
Assume that � <1. If .VC /� forms a conformal 4-design based on V 0

C
, then C is

equivalent to f.01/; .11/g, yH3, E8, E.H4/, H4, or yH4.

Proof. Let n be the length of C . Note that � must be 1 if � > 2, because
.VC /2 D .V!/2 implies that VC D L

�
1
2
; 0
�

by the construction of code SVOAs.
Hence our assumption implies �� 2.

Recall that the Ising vectors ei are of �-type. We see from Corollary 3.11 that
the central charge is uniquely determined by � if � 2

˚
1
2
; 1; 3

2

	
. In case �D 1

2
, the

central charge is 1
2

, i.e., nD 1. Moreover the minimum weight of C is 1 because
.VC / 1

2
D SpanCfu

˛ j ˛ 2 C.1/g. Hence C must be f.01/; .11/g. It follows from
Lemma 4.7 that .�n;C.2�// forms a 2-.n; 2�; �/-design, where

� D
4�.5�C 1/ # C.2�/C 98nı�;2

n.5nC 44/
;

if�2
˚
1; 3

2
; 2
	
. Also, the length of C is 8 if�D1, and 15 if�D 3

2
by Corollary 3.11.

For �D 1, C.2/ is equal to F8
2
.2/ because .�8;C.2// forms a 2-.8; 2; #C.2/=28/-

design. Hence hC.2/iF2
is equivalent to E8, and so is C because the minimum

weight of C is 2. If �D 3
2

, then .�15;C.3// forms a 2-.15; 3; #C.3/=35/-design.
More precisely, .�15;C.3// forms a 2-.15; 3; 1/-design because the minimum
weight of C is 3. Then it follows from Proposition 4.3 that hC.3/iF2

is equivalent
to H4, and hence we have C ŠH4 by Lemma 4.2. In case �D 2, a list of possible
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pairs of the central charge and dim.VC /2 has been obtained in [Matsuo 2001,
Section 3.2, Table 3.2] since the central charge is a half-integer. Using this list,
we obtain another list of possible pairs n and #C.4/ since dim.VC /2 D nC #C.4/.
The two lists are given as follows:

c dim.VC /2 c dim.VC /2

4 22 19
2

418
15
2

120 10 685

8 156 21
2

1491

H)

n #C.4/ n #C.4/

8 14 19 399

15 105 20 665

16 140 21 1470

However, .n; #C.4// cannot be .19; 399/; .20; 665/; .21; 1470/ because these pairs
do not satisfy the inequality in Lemma 4.4. By using Lemma 4.4 again, .�8;C.4//

(resp., .�16;C.4//) forms a 3-.8; 4; 1/- design (resp., 3-.16; 4; 1/-design). Hence
it follows from Proposition 4.3 that hC.4/iF2

is equivalent to yH3 (resp., yH4). Since
the minimum weight of C is 4, C must be yH3 (resp., yH4) by Lemma 4.1. Also,
by (4-6) the pair .�15;C.4// forms a 2-.15; 4; 6/-design if .n; #C.4//D .15; 105/.
We see from Lemma 4.5 that hC.4/iF2

is equivalent to E.H4/. Hence C ŠE.H4/

by Lemma 4.2. This finishes the proof of the theorem. �

Remark 4.9. The �D 1
2

case in Theorem 4.8 has been obtained in Theorem 3.12.
Nevertheless, we provided a second proof, because this method is easier than the
method of Theorem 3.12 when we consider only code SVOAs.

Remark 4.10. It is known that VE8
is isomorphic to the lattice VOA VD4

associated
to the root lattice of D4 type; see [Dong et al. 1998]. It was proved in [Tuite 2009,
Theorem 2.8] that a VOA with minimal conformal weight 1 whose 4th Casimir
element belongs to V! is isomorphic to one of the level 1 affine VOAs associated
to the Deligne exceptional series of simple Lie algebras. Thanks to Theorem 3.5,
we see that this classification, which contains VD4

, can be obtained under the
condition that V1 forms a conformal 4-design. In fact, VD4

is the only VOA in the
classification by [op. cit.] which is a code SVOA.

5. Code SVOAs of class S5

In this section, we show that the code SVOAs associated to the codes in Theorem 4.8
are of class S5. In particular, their minimal conformal weight spaces form conformal
5-designs.

SVOAs of class Sn. The notion of SVOAs of class Sn is an analogue of the notion
of VOAs of class Sn introduced by Matsuo.
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Definition 5.1 [Matsuo 2001, Definition 1.1]. An SVOA V D V 0˚V 1 is said to
be of class Sn if .V 0/Aut.V / coincides with V! up to degree n subspace, i.e.,

.V 0/Aut.V /
m D .V!/m for 0�m� n:

Clearly, the definition above is the ordinary definition in [loc. cit.] when V is a
VOA. Note that the fixed point subspace of V 1 is always 0 since an SVOA has an
involution which is the identity on the even part and acts as �1 on the odd part.

Proposition 5.2 [Hashikawa and Shimakura 2016, Proposition 2.12]. Let U be a
VOA and W a sub-VOA of U with the same Virasoro element !. Assume that U is
completely reducible as a V!-module. If Wn D .V!/n, then Wn�1 D .V!/n�1. In
particular, an SVOA V is of class Sn if V 0 is completely reducible as a V!-module
and .V 0/Aut.V /

n D .V!/n.

The following lemma holds.

Lemma 5.3. Let V D V 0˚V 1 be an SVOA of class Sn. Then:

(1) The even part V 0 is also of class Sn.

(2) The minimal conformal weight space of V forms a conformal n-design based
on V 0.

Proof. Since Aut.V / preserves V 0, there exists a group homomorphism

' W Aut.V /! Aut.V 0/; g 7! gjV 0 :

Then we have Aut.V /= ker' Š Im' � Aut.V 0/. Hence (1) is proved because
.V 0/Aut.V /

n contains .V 0/Aut.V 0/
n . Also, since �n

� 2 .V
0/Aut.V /

n D .V!/n, we ob-
tain (2) by Theorem 3.5. �

Automorphism groups of code SVOAs. The symmetric group Sn of degree n acts
on Fn

2
by �.x1; : : : ;xn/ WD .x��1.1/; : : : ;x��1.n// for � 2Sn and .x1; : : : ;xn/2Fn

2
.

Let C be a binary code of length n. An element � 2 Sn is called an automorphism
of C if �.C /D C. Let Aut.C / denote the group of automorphisms of C. Every
� 2 Aut.C / induces an automorphism Q� of VC [Miyamoto 1996a, Section 5]. We
call Q� a lift of �. In particular, Q� acts as a permutation on V .0n/, that is,

Q�.v1
˝ � � �˝ vn/D v�

�1.1/
˝ � � �˝ v�

�1.n/ for v1
˝ � � �˝ vn

2 V .0n/:

Set

(5-1) t˛ WD
1

8

8X
iD1

ei
C

1

8

X
ˇ2yH3.4/

.�1/wt.ˇ�˛/uˇ 2 VyH3
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for ˛ 2 F8
2
. It is known that t˛ is an Ising vector of �-type of VyH3

; see [op. cit.].
Set �i WD .0

i�110n�i/ 2 Fn
2
.

Proposition 5.4 [Matsuo and Matsuo 2000, Proposition 2.4.1; Miyamoto 1999,
Lemma 2.3]. The Hamming code VOA VyH3

has exactly three Ising frames:

I0 WD fe
i
j 1� i � 8g; I1 WD ft

�i j 1� i � 8g; and I2 WD ft
�1C�i j 1� i � 8g:

Moreover, if f 2 Ia, then �f .Ib/ D Ic if fa; b; cg D f0; 1; 2g, where �f is the
involution defined in (2-2).

Let C be a binary code. Set

D.C / WD fD � C jD Š yH3 and # .supp.˛/\ supp.D// 2 2Z for all ˛ 2 C g;

where
supp.D/ WD

[
d2D

supp.d/:

Let I.VC / denote the set of all Ising vectors of � -type of VC .

Proposition 5.5 [Lam et al. 2007, Proposition 3.8, Lemma 3.10]. Let C be a binary
code of length n whose minimum weight is at least 3, and f 2 I.VC /. If f 62 feign

iD1
,

then there exists D 2D.C / such that f 2VD �VC and f is of the form (5-1) in VD .
Also, if f 2 VD � VC is an Ising vector of � -type for D 2 D.C /, then f 2 I.VC /.

The following proposition for the VOA case has been obtained in [Lam et al.
2007, Proposition 3.13]. Using the same argument, one can also show the SVOA
case.

Proposition 5.6. Let C be a binary code whose minimum weight is at least 3. Then
Aut.VC / is generated by f�f j f 2 I.VC /g and the lift of Aut.C /.

Examples of code SVOAs of class S5. The SVOA L
�

1
2
; 0
�
˚L

�
1
2
; 1

2

�
is clearly of

class S1. Note that VE8
is isomorphic to the lattice VOA VD4

, and VyH3
and VyH4

are
isomorphic to the lattice-type VOAs V

Cp
2D4

and V
Cp

2E8
, respectively; see [Dong

et al. 1998; Lam et al. 2007]. It was shown in [Maruoka et al. 2016; Hashikawa
and Shimakura 2016] that

V
D4
; V

Cp
2D4

; and V
Cp

2E8

are of class S5. Therefore the code VOAs are also of class S5. By Lemma 5.3(2),
their minimal conformal weight spaces are conformal 5-designs. Hence we show
that the remaining code SVOAs VE.H4/ and VH4

are also of class S5.
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Note that yH3 and H4 are generated by the rows of the following matrices.

(5-2) yH3 W

2664
0000 1111

1111 0000

0011 0011

0101 0101

3775; H4 W

2666666666666666664

0001 0001 0001 000

0010 0010 0010 001

0100 0100 0100 010

1000 1000 1000 100

0101 0000 0101 000

1010 0000 1010 000

1100 0000 1100 000

0000 1111 0000 000

1111 0000 0000 000

0011 0011 0000 000

0101 0101 0000 000

3777777777777777775

:

It is easily seen from (5-2) that D.H4/¤∅. Also, it is known that Aut.H4/ acts dou-
bly transitively on �15 [MacWilliams and Sloane 1977, Chapter 13, Theorem 9.24,
and Problem (9)].

Theorem 5.7. The code SVOAs VH4
and VE.H4/ are of class S5.

Proof. Obviously, VE.H4/ is the even part of VH4
. Now by Proposition 5.2 and

Lemma 5.3(1), it is sufficient to show that

.V 0
H4
/

Aut.VH4
/

5
D .V!/5:

A basis of .V!/5 is given by fL.�5/1;L.�3/L.�2/1g because the central charge
of VH4

is neither 0 nor �22
5

(see Section 3.2). Note that for n 2 Z,

L.n/D

15X
iD1

Lei

.n/; where Lei

.n/D ei
.nC1/ for 1� i � 15:

Let P be the subgroup of Aut.VC / generated by f�ei j 1� i � 15g. Since �ei acts
as .�1/wt.˛��i / on V ˛ for ˛ 2 C , the fixed point subspace of P in .VC /5 is

V
.015/

5
D
˝
Lei

.�5/1; Lei

.�3/Lej.�2/1
ˇ̌
1� i; j � 15

˛
C
:

Set X WD
P15

iD1 Lei
.�3/Lei

.�2/1. Then

L.�3/L.�2/1DX C
X

1�i¤j�15

Lei

.�3/Lej.�2/1:

The double transitivity of Aut.H4/ gives

.V .015//
Aut.H4/
5

D

D
L.�5/1;X;

X
1�i¤j�15

Lei

.�3/Lej.�2/1
E
C

D hL.�5/1;L.�3/L.�2/1;X iC:
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Hence we also have .V 0
H4
/

Aut.VH4
/

5
� .V!/5 ˚ hX iC because P and the lift of

Aut.H4/ are subgroups of Aut.VH4
/. We show X 62 .V 0

H4
/

Aut.VH4
/

5
. Let D 2D.H4/

such that supp.D/Df1; : : : ; 8g. By (5-2), we can take such a subcode. Let ff ig8
iD1

and fgig8
iD1

be distinct Ising frames of VD except for feig8
iD1

(see Proposition 5.4).
We see from Proposition 5.5 that f i and gi are also Ising vectors of � -type of VH4

.
By Proposition 5.4,

�f 1.X /D

8X
iD1

Lgi

.�3/Lgi

.�2/1C
15X

iD9

Lei

.�3/Lei

.�2/1;

where Lgi

.n/Dgi
.nC1/

for 1� i �8 and n2Z. By direct computation, �f 1.X /¤X .
Therefore the assertion holds. �
Remark 5.8. As already mentioned before, the cases of VyH3

and VyH4
have already

been obtained in [Hashikawa and Shimakura 2016]. By using the same method as
in Theorem 5.7, one can also show these cases.

In conclusion, we obtain the following.

Theorem 5.9. The code SVOAs associated to the codes in Theorem 4.8 are of
class S5.

As a corollary of Theorems 4.8 and 5.9, the following holds.

Corollary 5.10. Let C be a binary code. Then the minimal conformal weight space
of VC is a conformal 4-design based on V 0

C
if and only if VC is of class S5.

Remark 5.11. It is known that the code VOA VE.H4/ is isomorphic to the commu-
tant subalgebra of an Ising vector in the VOA V

Cp
2E8

[Lam et al. 2007, Section 4
and Corollary 5.6].
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COACTION FUNCTORS

S. KALISZEWSKI, MAGNUS B. LANDSTAD AND JOHN QUIGG

A certain type of functor on a category of coactions of a locally compact
group on C �-algebras is introduced and studied. These functors are in-
tended to help in the study of the crossed-product functors that have been
recently introduced in relation to the Baum–Connes conjecture. The most
important coaction functors are the ones induced by large ideals of the
Fourier–Stieltjes algebra. It is left as an open problem whether the “min-
imal exact and Morita compatible crossed-product functor” is induced by a
large ideal.

1. Introduction

In [Baum et al. 2016], with an eye toward expanding the class of locally compact
groups G for which the Baum–Connes conjecture holds, the authors study “crossed-
product functors” that take an action of G on a C �-algebra and produce an “exotic
crossed product” between the full and reduced ones, in a functorial manner.

In [KLQ 2013], inspired by [Brown and Guentner 2013], we studied certain
quotients of C �.G/ that lie “above” C �r .G/— namely those that carry a quotient
coaction. We characterized these intermediate (which we now call “large”) quotients
as those for which the annihilator E, in the Fourier–Stieltjes algebra B.G/, of
the kernel of the quotient map is a G-invariant weak*-closed ideal containing
the reduced Fourier–Stieltjes algebra Br .G/ (which we now call “large ideals”
of B.G/). We went on to show how, if ˛ is an action of G on a C �-algebra B,
large ideals E induce exotic crossed products B Ì˛;E G intermediate between the
full and reduced crossed products B Ì˛ G and B Ì˛;r G. One of the reasons this
interested us is the possibility of “E-crossed-product duality” for a coaction ı of G

on a C �-algebra A: namely, that the canonical surjection

ˆ WAÌı G Ìyı G!A˝K.L2.G//

descends to an isomorphism

AÌı G Ìyı;E G ŠA˝K:
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Crossed-product duality

AÌı G Ìyı;r G ŠA˝K

for normal coactions and

AÌı G Ìyı G ŠA˝K

for maximal coactions are the extreme cases with E D Br .G/ and B.G/, re-
spectively. We (rashly) conjectured that every coaction satisfies E-crossed-product
duality for some E, and moreover that the dual coaction on every E-crossed product
B Ì˛;E G satisfies E-crossed-product duality.

Buss and Echterhoff [2014] disproved the first of the above conjectures and proved
the second, and in [KLQ 2016] we independently proved the second conjecture.
(Note: in that paper we wrote “We originally wondered whether every coaction
satisfies E-crossed product duality for some E. In [KLQ 2013, Conjecture 6.12] we
even conjectured that this would be true for dual coactions.” This is slightly inaccu-
rate — [KLQ 2013, Conjecture 6.14] concerns dual coactions, while Conjecture 6.12
says “Every coaction satisfies E-crossed-product duality for some E.”)

In [KLQ 2016, Section 3] we showed that every large ideal E of B.G/ induces
a transformation .A; ı/ 7! .AE ; ıE/ of G-coactions, where AE D A=AE and
AE D ker.id˝ qE/ ı ı, and where in turn

qE W C
�.G/! C �E.G/ WD C �.G/=?E

is the quotient map.
In this paper we further study this assignment .A; ı/ 7! .AE ; ıE/. When .A; ı/D

.B Ì˛ G; y̨/, the composition

.B; ˛/ 7! .B Ì˛ G; y̨/ 7! .B Ì˛;E G; y̨E/

was shown to be functorial in [Buss and Echterhoff 2014, Corollary 6.5]; here
we show that .A; ı/ 7! .AE ; ıE/ is functorial, giving an alternate proof of the
Buss–Echterhoff result.

In fact, we study more general functors on the category of coactions of G, of
which the functors induced by large ideals of B.G/ are special cases. We are most
interested in the connection with the crossed-product functors of [Baum et al. 2016].
In particular, we introduce a “minimal exact and Morita compatible” coaction
functor. When this functor is composed with the full-crossed-product functor for
actions, the result is a crossed-product functor in the sense of [loc. cit.]. We briefly
discuss various possibilities for how these functors are related: for example, is the
composition mentioned in the preceding sentence equal to the minimal exact and
Morita compatible crossed-product functor of [loc. cit.]? Also, is the greatest lower
bound of the coaction functors defined by large ideals itself defined by a large ideal?
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These are just two among others that arise naturally from these considerations.
Unfortunately, at this early stage we have more questions than answers.

After a short section on preliminaries, in Section 3 we define the categories
we will use for our functors. In numerous previous papers, we have used “nonde-
generate categories” of C �-algebras and their equivariant counterparts. But these
categories are inappropriate for the current paper, primarily due to our need for
short exact sequences. Rather, here we must use “classical” categories, where
the homomorphisms go between the C �-algebras themselves, not into multiplier
algebras. In order to avail ourselves of tools that have been developed for the
equivariant nondegenerate categories, we include a brief summary of how the basic
theory works for the classical categories. Interestingly, the crossed products are the
same in both versions of the categories (see Corollaries 3.9 and 3.13).

In Section 4 we define coaction functors, which are a special type of functor
on the classical category of coactions. Composing such a coaction functor with
the full-crossed-product functor on actions, we get crossed-product functors in
the sense of Baum, Guentner and Willett [loc. cit.]; it remains an open problem
whether every such crossed-product functor is of this form. Maximalization and
normalization are examples of coaction functors, but there are lots more — for
example, the functors induced by large ideals of the Fourier–Stieltjes algebra (see
Section 6). In Section 4 we also define a partial ordering on coaction functors,
and prove in Theorem 4.9 that the class of coaction functors is complete in the
sense that every nonempty collection of them has a greatest lower bound. We also
introduce the general notions of exact or Morita compatible coaction functors, and
prove in Theorem 4.22 that they are preserved by greatest lower bounds. We show
in Proposition 4.24 that our partial order, exactness and Morita compatibility are
consistent with those of [loc. cit.].

To help prepare for the study of coaction functors associated to large ideals,
in Section 5 we introduce decreasing coaction functors, and show how Morita
compatibility takes a particularly simple form for these functors in Proposition 5.5.

In Section 6 we study the coaction functors �E induced by large ideals E of B.G/.
Perhaps interestingly, maximalization is not among these functors. We show that
these functors �E are decreasing in Proposition 6.2, and how the test for exactness
simplifies significantly for them in Proposition 6.7. Moreover, �E is automatically
Morita compatible (see Proposition 6.10). Composing maximalization followed
by �E , we get a related functor that we call E-ization. We show that these functors
are also Morita compatible in Theorem 6.14. Although E-ization and �E have
similar properties, they are not naturally isomorphic functors (see Remark 6.15).
The outputs of E-ization are precisely the coactions we call E-coactions, namely
those for which E-crossed-product duality holds [KLQ 2016, Theorem 4.6] (see
also [Buss and Echterhoff 2014, Theorem 5.1]). Theorem 6.17 shows that �E gives
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an equivalence of maximal coactions with E-coactions. We close Section 6 with
some open problems that mainly concern the application of the coaction functors �E

to the theory of [Baum et al. 2016].
Finally, the Appendix supplies a few tools that show how some properties of

coactions can be more easily handled using the associated B.G/-module structure.

2. Preliminaries

We refer to [Echterhoff et al. 2004; 2006, Appendix A] for background material on
coactions of locally compact groups on C �-algebras, and [Echterhoff et al. 2006,
Chapters 1–2] for imprimitivity bimodules and their linking algebras. Throughout,
G will denote a locally compact group, and A;B;C; : : : will denote C �-algebras.

Recall from [loc. cit., Definition 1.14] that the multiplier bimodule of an A�B

imprimitivity bimodule X is defined as M.X /D LB.B;X /, where B is regarded
as a Hilbert module over itself in the canonical way. Also recall [loc. cit., Corol-
lary 1.13] that M.X / becomes an M.A/�M.B/ correspondence in a natural way.
The linking algebra of an A�B imprimitivity bimodule X is

L.X /D

�
A X
zX B

�
;

where zX is the dual B �A imprimitivity bimodule. A, B and X are recovered
from L.X / via the corner projections

p D

�
1 0

0 0

�
; q D

�
0 0

0 1

�
2M.L.X //:

The multiplier algebra of L.X / decomposes as

M.L.X //D

�
M.A/ M.X /

M. zX / M.B/

�
:

We usually omit the lower left corner of the linking algebra, writing L.X /D
�

A
�

X
B

�
,

since it takes care of itself. Also recall from [loc. cit., Lemma 1.52] (see also
[Echterhoff and Raeburn 1995, Remark (2), p. 307]) that nondegenerate homo-
morphisms of imprimitivity bimodules correspond bijectively to nondegenerate
homomorphisms of their linking algebras.

For an action .A; ˛/ of G, we use the following notation for the (full) crossed
product AÌ˛ G:

� iA D i˛
A
W A!M.A Ì˛ G/ and iG D i˛

G
W G !M.A Ì˛ G/ make up the

universal covariant homomorphism .iA; iG/.

� y̨ is the dual coaction on AÌ˛ G.
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On the other hand, for the reduced crossed product AÌ˛;r G we use the following
notation:

� ƒ WAÌ˛ G!AÌ˛;r G is the regular representation.

� ir
A
D i

˛;r
A
D ƒ ı iA and ir

G
D i

˛;r
G
D ƒ ı iG are the canonical maps into

M.AÌ˛;r G/.

� y̨n is the dual coaction on AÌ˛;r G.

We will need to work extensively with morphisms between coactions, in particular
(but certainly not only) with maximalization and normalization. In the literature,
the notation for these maps has not yet stabilized. Recall that a coaction .A; ı/ is
called normal if the canonical surjection

ˆ WAÌı G Ìyı G!A˝K.L2.G//

factors through an isomorphism of the reduced crossed product

ˆr WAÌı G Ìyı;r G!A˝K.L2.G//;

and maximal if ˆ itself is an isomorphism. One convention is, for a coaction .A; ı/
of G, to write

qm
A W .A

m; ım/! .A; ı/

for a maximalization, and

qn
A W .A; ı/! .An; ın/

for a normalization. We will use this convention for maximalization, but we will
need the letter “q” for other similar purposes, and it would be confusing to keep
using it for normalization. Instead, we will use

ƒDƒA W .A; ı/! .An; ın/

for normalization — this is supposed to remind us that for crossed products by
actions the regular representation

ƒ W .AÌ˛ G; y̨/! .AÌ˛;r G; y̨n/

is a normalization.

B.G /-modules. Every coaction .A; ı/ of G induces B.G/-module structures on
both A and A�: for f 2 B.G/, define

f � aD .id˝f / ı ı.a/ for a 2A;

.! �f /.a/D !.f � a/ for ! 2A�; a 2A:
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Many properties of coactions can be handled using these module structures rather
than the coactions themselves. For example (see the Appendix), letting .A; ı/ and
.B; "/ be coactions of G:

(1) A homomorphism � WA!B is ı� " equivariant, meaning " ı� D �˝ id ı ı,
if and only if

�.f � a/D f ��.a/ for all f 2 B.G/; a 2A:

(2) An ideal I of A is weakly ı-invariant, meaning I � ker q˝ id ı ı, where
q WA!A=I is the quotient map, if and only if

B.G/ � I � I;

because the proof of [KLQ 2013, Lemma 3.11] shows that

ker.q˝ id/ ı ı D fa 2A W B.G/ � a� Ig:

If I is a weakly ı-invariant ideal of A, then in fact I D ker.q˝ id/ ı ı, and the
quotient map q is ı� ıI equivariant for a unique coaction ıI on A=I , which we
call the quotient coaction. Since the slice map id˝f WM.A˝C �.G//!M.A/ is
strictly continuous [Landstad et al. 1987, Lemma 1.5], the B.G/-module structure
extends to M.A/, and moreover m 7! f �m is strictly continuous on M.A/ for
every f 2 B.G/.

Short exact sequences. Several times we will need the following elementary lemma.

Lemma 2.1. Let

0

��

0

��

0

��

0 // A1

�1
//

�A
��

B1

 1
//

�B
��

C1
//

�C
��

0

0 // A2

�2
//

�A

��

B2

 2
//

�B

��

C2
//

�C

��

0

0 // A3

�3
//

��

B3

 3
//

��

C3
//

��

0

0 0 0

be a commutative diagram of C �-algebras, where the columns and the middle row
are exact. Suppose that the �� are inclusions of ideals and the �� are quotient maps.
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Then the bottom (interesting) row is exact if and only if both

(2-1) �2.A1/D �2.A2/\B1

and

(2-2) �2.A2/CB1 �  
�1
2 .C1/:

Proof. Since  3ı�B D�C ı 2 and  B and �2 are both surjective,  3 is surjective,
so the bottom row is automatically exact at C3.

Thus, the only items to consider are exactness of the bottom row at A3 and B3,
i.e., whether �3 is injective and �3.A3/D ker 3.

The map �3 is injective if and only if ker�A D ker�B ı�2, which, since �2 is
injective, is equivalent to (2-1).

Since  2 ı �2 D 0 and �A is surjective,  3 ı �3 D 0, so �3.A3/ � ker 3

automatically. Since �B is surjective, �3.A3/� ker 3 if and only if

��1
B .�3.A3/� �

�1
B .ker 3/:

Since ��1
B
.�3.A3// consists of all b 2 B2 for which

�B.a/ 2 �3.A3/D �3.�A.A2//D �B.�2.A2//;

equivalently for which
b 2 �2.A2/CB1;

we see that
��1

B .�3.A3//D �2.A2/CB1:

On the other hand,

��1
B .ker 3/D ker 3 ı�B D ker�C ı 2 D . 2/

�1.C1/:

Thus, the bottom row is exact at B3 if and only if (2-2) holds. �

Remark 2.2. In this lemma, we were interested in characterizing exactness of the
bottom (interesting) row of the diagram. Lemma 3.5 of [Baum et al. 2016] does
this in terms of subsets of the spectrum yB2, which could just as well be done with
subsets of Prim B2, but we instead did it directly in terms of ideals of B2. Note
that, although the �� were inclusion maps of ideals and the �� were the associated
quotient maps, for technical reasons we did not make the analogous assumptions
regarding the middle row.

There is a standard characterization from homological algebra, namely that the
bottom row is exact if and only if the top row is — this is sometimes called the nine
lemma, and is an easy consequence of the snake lemma. However, this doesn’t
seem to lead to a simplification of the proof.
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3. The categories and functors

We want to study coaction functors. Among other things, we want to apply the
theory we’ve developed in [KLQ 2013; 2016] concerning large ideals E of B.G/.
On the other hand, it is important to us in this paper for our theory to be consistent
with the crossed-product functors of [Baum et al. 2016]. In particular, we want to
be able to apply our coaction functors to short exact sequences.

But now a subtlety arises: some of us working in noncommutative duality for
C �-dynamical systems have grown accustomed to doing everything in the “non-
degenerate” categories, where the morphisms are nondegenerate homomorphisms
into multiplier algebras (possibly preserving some extra structure). But the maps in
a short exact sequence

0 //I
�
//A

 
//B //0

are not of this type, most importantly �. So, we must replace the nondegenerate
category by something else. We can’t just allow arbitrary homomorphisms into
multiplier algebras, because they wouldn’t be composable. We can’t require “ex-
tendible homomorphisms” into multiplier algebras, because the inclusion of an
ideal won’t typically have that property. Thus, it seems we need to use the “classical
category” of homomorphisms between the C �-algebras, not into multiplier algebras.
This is what [Baum et al. 2016] uses, so presumably our best chance of seamlessly
connecting with their work is to do likewise.

Since most of the existing categorical theory of coactions uses nondegenerate
categories, it behooves us to establish the basic theory we need in the context of
the classical categories, which we do below.

One drawback to this is that the covariant homomorphisms and crossed products
can’t be constructed using morphisms from the classical C �-category — so, it seems
we have to abandon some of the appealing features of the nondegenerate category.

Definition 3.1. A morphism � WA!B in the classical category C� of C �-algebras
is a *-homomorphism from A to B in the usual sense (no multipliers).

Definition 3.2. A morphism � W .A; ı/! .B; "/ in the classical category Coact of
coactions is a morphism � WA! B in C� such that the diagram

A
ı
//

�

��

zM .A˝C �.G//

�˝id
��

B
"
// zM .B˝C �.G//

commutes, and we call � a ı� " equivariant homomorphism.
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To make sense of the above commuting diagram, recall that for any C �-algebra C ,

zM .A˝C /D
˚
m 2M.A˝C / Wm.1˝C /[ .1˝C /m�A˝C

	
;

and that for any homomorphism � W A! B there is a canonical extension to a
homomorphism

�˝ id W zM .A˝C /! zM .B˝C /;

by [Echterhoff et al. 2006, Proposition A.6]. It is completely routine to verify that
C� and Coact are categories, i.e., there are identity morphisms and there is an
associative composition.

Remark 3.3. Thus, a coaction is not itself a morphism in the classical category;
this will cause no trouble.

To work in the classical category of coactions, we need to be just a little bit
careful with covariant homomorphisms and crossed products. We write wG for
the unitary element of M.C0.G/˝ C �.G// D Cb.G;M

ˇ.C �.G/// defined by
wG.s/D s, where we have identified G with its canonical image in M.C �.G//,
and where the superscript ˇ means that we use the strict topology on M.C �.G//.

Definition 3.4. A degenerate covariant homomorphism of a coaction .A; ı/ to a
C �-algebra B is a pair .�; �/, where � WA!M.B/ and � W C0.G/!M.B/ are
homomorphisms such that � is nondegenerate and the diagram

A
ı

//

�

��

zM .A˝C �.G//

�˝id
��

M.B/
Ad.�˝id/.wG/ı. �˝1/

// M.B˝C �.G//

commutes, where the bottom arrow is the map b 7! Ad.�˝ id/.wG/.b˝ 1/. If
� W A!M.B/ happens to be nondegenerate, we sometimes refer to .�; �/ as a
nondegenerate covariant homomorphism for clarity.

Remark 3.5. The homomorphisms � and � are not morphisms in the classical
category C�; this will cause no trouble, but does present a danger of confusion.

Remark 3.6. Thus, in our new definition of degenerate covariant homomorphism,
we include all the usual nondegenerate covariant homomorphisms, and we add more,
allowing the homomorphism � of A (but not the homomorphism � of C0.G/) to
be degenerate.

Remark 3.7. We wrote M.B˝C �.G//, rather than the relative multiplier algebra
zM .B ˝C �.G//, in the above diagram, because � ˝ id will in general not map
zM .A˝C �.G// into zM .B˝C �.G// since � does not map A into B.
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Although we have apparently enlarged the supply of covariant homomorphisms,
in some sense we have not. In Lemma 3.8 below we use the following terminology:
given C �-algebras A� B, the idealizer of A in B is fb 2 B W bA[Ab �Ag.

Lemma 3.8. Let .�; �/ be a degenerate covariant homomorphism of .A; ı/ to B,
as in Definition 3.4. Put

B0 D spanf�.A/�.C0.G//g:

Then:

(1) B0 D spanf�.C0.G//�.A/g.

(2) B0 is a C �-subalgebra of M.B/.

(3) � and � map into the idealizer D of B0 in M.B/. Let � WD!M.B0/ be the
homomorphism given by

�.m/b0 Dmb0 for m 2D �M.B/; b0 2 B0 � B;

and let �0 D � ı� W A!M.B0/ and �0 D � ı� W C0.G/!M.B0/. Then
.�0; �0/ is a nondegenerate covariant homomorphism of .A; ı/ to B0.

(4) For all a 2A and f 2 C0.G/ we have

�0.a/�0.f /D �.a/�.f / 2 B0:

Proof. For (1), by symmetry it suffices to show that for a 2 A and f 2 C0.G/

we have
�.f /�.a/ 2 B0;

and we use an old trick from [Landstad et al. 1987, proof of Lemma 2.5]: since
A.G/ is dense in C0.G/, it suffices to take f 2 A.G/, and then since A.G/ is a
nondegenerate C �.G/-module via hy;g �xiD hxy;gi for x;y 2C �.G/, g2A.G/,
by Cohen’s factorization theorem we can write f D g � x. Then the following
approximation suffices:

�.f /�.a/D h.�˝ id/.wG/; id˝f i�.a/

D h.�˝ id/.wG/.�.a/˝ 1/; id˝f i

D h� ˝ id.ı.a//.�˝ id/.wG/; id˝g �xi

D h.� ˝ id/..1˝x/ı.a//.�˝ id/.wG/; id˝gi

�

X
i

h.� ˝ id/.ai ˝xi/.�˝ id/.wG/; id˝gi

for finitely many ai 2A, xi 2 C �.G/

D

X
i

h.�.ai/˝xi/.�˝ id/.wG/; id˝gi
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D

X
i

�.ai/h.�˝ id/.wG/; id˝g �xii

D

X
i

�.ai/�.g �xi/:

From (1) it follows that B0 is a �-subalgebra of B, giving (2).

(3) It is now clear that

�.A/B0[B0�.A/� B0;

and similarly for �, so both � and � map into D. It is also clear that �0 and �0

map nondegenerately into M.B0/. The covariance property for .�0; �0/ follows
quickly from that of .�; �/: if a 2A then

Ad.�0˝ id/.wG/.�0.a/˝ 1/D .�˝ id/ ıAd.�˝ id/.wG/.�.a/˝ 1/

D .�˝ id/ ı� ˝ id ı ı.a/

D �0˝ id ı ı.a/:

(4) This follows from the construction. �

Let .AÌı G; jA; jG/ be the usual crossed product of the coaction .A; ı/, i.e.,
.jA; jG/ is a nondegenerate covariant homomorphism of .A; ı/ to A Ìı G that
is universal in the sense that if .�; �/ is any nondegenerate covariant homo-
morphism of .A; ı/ to a C �-algebra B, then there is a unique homomorphism
� �� WAÌı G!M.B/ such that

� �� ı jA D �;

� �� ı jG D �;

equivalently such that

(3-1) � ��
�
jA.a/jG.f /

�
D �.a/�.f / for all a 2A; f 2 C0.G/:

Corollary 3.9. With the above notation, .jA; jG/ is also universal among degener-
ate covariant homomorphisms (in the sense of Definition 3.4). More precisely: for
any degenerate covariant homomorphism .�; �/ of .A; ı/ to B as in Definition 3.4,
there is a unique homomorphism � �� WAÌı G!M.B/ satisfying (3-1).

Proof. Let �0; �0;B0 be as in the preceding lemma. Then we have a unique
homomorphism �0 ��0 WAÌı G!M.B0/ such that

�0 ��0

�
jA.a/jG.f /

�
D �0.a/�0.f / for all a 2A; f 2 C0.G/:

By construction we have ���.AÌıG/�B0. Since B0�M.B/, we can regard �0

as a homomorphism � WA!M.B/, and similarly for � W C0.G/!M.B/. Then
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we regard �0 ��0 as a homomorphism � �� W AÌı G !M.B/, and trivially
(3-1) holds. Since �0.a/�0.f /D �.a/�.f / 2 B0 for all a 2 A; f 2 C0.G/, the
homomorphism � �� is unique. �

Similarly, and more easily, for actions:

Definition 3.10. A morphism � W .A; ˛/! .B; ˇ/ in the classical category Act of
actions is a morphism � WA! B in C� such that

ˇs ı� D � ı˛s for all s 2G:

Definition 3.11. A degenerate covariant homomorphism of an action .A; ˛/ to
a C �-algebra is a pair .�;u/, where � W A ! M.B/ is a homomorphism and
u WG!M.B/ is a strictly continuous unitary homomorphism such that

� ı˛s D Ad us ı� for all s 2G:

We call .�;u/ nondegenerate if � WA!M.B/ is.

Lemma 3.12. Let .�;u/ be a degenerate covariant homomorphism of an action
.A; ˛/ to B, and put

B0 D spanf�.A/u.C �.G//g;

where we use the same notation u for the associated nondegenerate homomorphism
u W C �.G/!M.B/. Then:

(1) B0 D spanfu.C �.G//�.A/g.

(2) B0 is a C �-subalgebra of M.B/.

(3) � and u map into the idealizer D of B0 in M.B/. Let � WD!M.B0/ be the
homomorphism given by

�.m/b0 Dmb0 for m 2D �M.B/; b0 2 B0 � B;

and let �0D �ı� WA!M.B0/ and u0D �ıu WG!M.B0/. Then .�0;u0/

is a nondegenerate covariant homomorphism of .A; ˛/ to B0.

(4) For all a 2A and c 2 C �.G/ we have

�0.a/u0.c/D �.a/u.c/ 2 B0:

Let .AÌ˛G; iA; iG/ be the usual crossed product of the action .A; ˛/, i.e., .iA; iG/
is a nondegenerate covariant homomorphism of .A; ˛/ to AÌ˛ G that is universal
in the sense that if .�;u/ is any nondegenerate covariant homomorphism of .A; ˛/
to a C �-algebra B, then there is a unique homomorphism � �u WAÌ˛G!M.B/

such that

(3-2) � �u
�
iA.a/iG.c/

�
D �.a/u.c/ for all a 2A; c 2 C �.G/:
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Corollary 3.13. With the above notation, .iA; iG/ is also universal among degener-
ate covariant homomorphisms (in the sense of Definition 3.4): for any degenerate
covariant homomorphism .�;u/ of .A; ˛/ to B as in Definition 3.11, there is a
unique homomorphism � �u WAÌ˛ G!M.B/ satisfying (3-2).

If � W .A; ı/! .B; "/ is a morphism in Coact, then a routine adaptation of the
usual arguments shows that we get a morphism

� ÌG D .jB ı�/� j B
G W .AÌı G; yı/! .B Ì"G; y"/

in Act, and similarly if � W .A; ˛/! .B; ˇ/ is a morphism in Act we get a morphism

� ÌG D .iB ı�/� iB
G W .AÌ˛ G; y̨/! .B Ìˇ G; y̌/

in Coact. Thus we have crossed-product functors between the classical categories
of coactions and actions.

It is also routine to verify that if .A; ı/ is a coaction then the canonical surjection

ˆ WAÌı G Ìyı G!A˝K

is a natural transformation between the double crossed-product functor and stabi-
lization.1

We need to check that normalization and maximalization behave appropriately
in the new coaction category.

Maximalization. A maximalization of a coaction .A; ı/ consists of a maximal
coaction .Am; ım/ and a surjective morphism qm W .Am; ım/! .A; ı/ in Coact
such that

qm ÌG WAm Ìım G!AÌı G

is an isomorphism. Existence of maximalizations is established in [Fischer 2004,
Theorem 6.4; Echterhoff et al. 2004, Theorem 3.3].

To make maximalization into a functor on the classical category of coactions,
we note that the argument of [Fischer 2004, proof of Lemma 6.2] carries over to
give an appropriate version of the universal property: given coactions .A; ı/ and
.B; "/, with " maximal, and a morphism � W .B; "/! .A; ı/ in Coact, there is a
unique morphism z� in Coact making the diagram

.B; "/
z�
//

� &&

.Am; ım/

qm

��

.A; ı/

1It is completely routine to verify that stabilization A 7! A˝ K is a functor on the classical
category C�.
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commute. Thus, given a morphism � W .A; ı/! .B; "/ in Coact, there is a unique
morphism �m making the diagram

.Am; ım/
�m

//

qm
A

��

.Bm; "m/

qm
B

��

.A; ı/
�

// .B; "/

commute in Coact. Uniqueness makes the assignments � 7! �m functorial, and
the maximalizing maps qm give a natural transformation from the maximalization
functor to the identity functor. Also, the universal property implies that the maximal-
ization functor is faithful, i.e., if �; W .A; ı/! .B; "/ are distinct morphisms in
Coact, then the maximalizations �m;  m W .Am; ım/! .Bm; "m/ are also distinct.

Remark 3.14. It is important for us that maximalization is a functor; however, when
we refer to .Am; ım/ as “the” maximalization of a coaction .A; ı/, we do not have
in mind a specific C �-algebra Am, rather we regard the maximalization as being
characterized up to isomorphism by its universal properties, but for the purpose
of having a functor we imagine that a choice of maximalization has been made
for every coaction — any other choices would give a naturally isomorphic functor.
On the other hand, whenever we have a maximal coaction .B; "/, we may call a
morphism � W .B; "/! .A; ı/ with the defining property a maximalization of .A; ı/.

Normalization. A normalization of a coaction .A; ı/ consists of a normal coaction
.An; ın/ and a surjective morphism ƒ W .A; ı/! .An; ın/ in Coact such that

ƒÌG WAÌı G!An Ìın G

is an isomorphism. Existence of normalizations is established in [Quigg 1994,
Proposition 2.6].

To make normalization into a functor on the classical category of coactions,
we note that [Echterhoff et al. 2004, Lemma 2.1] says that, given a morphism
� W .A; ı/! .B; "/ in Coact, there is a unique morphism �n making the diagram

.A; ı/
�

//

ƒA

��

.B; "/

ƒB

��

.An; ın/
�n

// .Bn; "n/

commute in Coact. Uniqueness makes the assignments � 7! �n functorial, and the
normalizing maps ƒ give a natural transformation from the identity functor to the
normalization functor.
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Remark 3.15. The comments of Remark 3.14 can be adapted in an obvious way
to normalization, and also to crossed products, etc. There are numerous “natu-
ral” relationships among such functors; for example, maximalization is naturally
isomorphic to the composition

.A; ı/ 7! .An; ı/ 7! .Anm; ınm/

of normalization followed by maximalization, and the dual coaction y̨n on the
reduced crossed product AÌ˛;r G of an action .A; ˛/ is naturally isomorphic to the
normalization of the dual coaction y̨ on the full crossed product AÌ˛G [Echterhoff
et al. 2006, Proposition A.61].

The normalizationƒ W .A; ı/! .An; ın/ of a maximal coaction is also a maximal-
ization of the normal coaction ın. It follows that the normalization functor is faithful,
i.e., if �; W .A; ı/! .B; "/ are distinct morphisms in Coact, then the normaliza-
tions �n;  n W .An; ın/! .Bn; "n/ are also distinct. It follows from this and surjec-
tivity of the normalizing maps ƒA W .A; ı/! .An; ın/ that the normalizing maps
are monomorphisms in the category Coact, i.e., if �; W .A; ı/! .B; "/ are distinct
morphisms in Coact, then the compositions ƒB ı �;ƒB ı W .A; ı/! .Bn; "n/

are also distinct.2

Exact sequences. It is crucial for us to note that in each of the classical categories
C�, Coact, and Act there is an obvious concept of short exact sequence. Nilsen
[1999] develops the basic theory of short exact sequences for coactions and crossed
products. We briefly outline the essential facts here.

Definition 3.16. Let .A; ı/ be a coaction. An ideal I of A is strongly ı-invariant if

spanfı.I/.1˝C �.G//g D I ˝C �.G/:

We will normally just write invariant to mean strongly invariant.

Nilsen proves [1999, Propositions 2.1 and 2.2, Theorem 2.3] (see also [Landstad
et al. 1987, Proposition 4.8]) that, using her conventions, if I is strongly invariant
then:

(1) ı restricts to a coaction ıI on I .

(2) I ÌıI G is (canonically isomorphic to) an ideal of AÌı G.

(3) I is weakly ı-invariant, i.e., ı descends to a coaction ıI on A=I .

(4) 0! I ÌıI G!AÌı G! .A=I/ÌıI G! 0 is a short exact sequence in the
classical category C�.

2The analogous fact for the nondegenerate category of coactions is [Bédos et al. 2011, Corol-
lary 6.1.20].
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We point out that Nilsen had to do a bit of work to map I ÌıI G into AÌı G;
in our framework with the classical categories, we just note that the inclusion
� W I ,!A is ıI �ı equivariant, hence gives a morphism in Coact, so we can apply
the functor CP to get a morphism

� ÌG W I ÌıI G!AÌı G in C�:

Definition 3.17. A functor between any two of the categories C�, Coact, Act is
exact if it preserves short exact sequences.

Example 3.18. The full crossed-product functor

.A; ˛/ 7! .AÌ˛ G; y̨/;

� 7! � ÌG

from Act to Coact is exact [Green 1978, Proposition 12]. However, the reduced
crossed-product functor is not exact, due to Gromov’s examples of nonexact groups.

Example 3.19. The crossed-product functor

.A; ı/ 7! .AÌı G; yı/;

� 7! � ÌG

from Coact to Act is exact [Nilsen 1999, Theorem 2.3].

Example 3.20. The stabilization functor

A 7!A˝K;
� 7! �˝ id

on C� is exact.

4. Coaction functors

Baum, Guentner and Willett [Baum et al. 2016] defined a crossed-product as a
functor .B; ˛/ 7! B Ì˛;� G, from the category of actions to the category of C �-
algebras, equipped with natural transformations

B Ì˛ G //

��

B Ì˛;� G

xx

B Ì˛;r G

where the vertical arrow is the regular representation, such that the horizontal arrow
is surjective.
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Our predilection is to decompose such a crossed-product functor as a composition

.B; ˛/ 7! .B Ì˛ G; y̨/ 7! B Ì˛;� G;

where the first arrow is the full crossed product and the second arrow depends only
upon the dual coaction y̨. Our approach will require the target C �-algebra BÌ˛;�G

to carry a quotient of the dual coaction. Thus, it is certainly not obvious that our
techniques can handle all crossed-product functors of [Baum et al. 2016], because
that paper does not require the crossed products B Ì˛;� G to have coactions, and
even if they all do, there is no reason to believe that the crossed-product functor
factors in this way. Nevertheless, we think that it is useful to study crossed-product
functors that do factor, and thus we can focus upon the second functor, where all
the action stays within the realm of coactions. The following definition is adapted
more or less directly from [loc. cit., Definition 2.1]:

Definition 4.1. A coaction functor is a functor � W .A; ı/ 7! .A� ; ı� / on the category
of coactions, together with a natural transformation q� from maximalization to �
such that for every coaction .A; ı/,

(1) q�
A
WAm!A� is surjective, and

(2) ker q�
A
� kerƒAm .

Example 4.2. (1) Maximalization .A; ı/ 7! .Am; ım/ is a coaction functor, with
natural surjections given by the identity maps idAm .

(2) Normalization .A; ı/ 7! .An; ın/ is a coaction functor, with natural surjections
ƒAm WAm!An.

(3) The identity functor is a coaction functor, with natural surjections qm
A
WAm!A.

Lemma 4.3. If � is a coaction functor, then for every coaction .A; ı/ there is a
unique ı� � ın equivariant surjection ƒ�

A
making the diagram

(4-1)
Am

q�
A
//

ƒAm

��

A�

ƒ�
A}}

An

commute. Moreover, ƒ� is a natural transformation from � to normalization.

Proof. The first statement follows immediately from the definitions. To verify that
ƒ� is a natural transformation, we must show that the homomorphisms ƒ�

(1) are morphisms of coactions, and

(2) are natural.
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(1) In the commuting triangle (4-1), we must show that ƒ�
A

is a B.G/-module map,
but this follows since ƒAm and q�

A
are module maps and q�

A
is surjective.

(2) For the naturality, let � W .A; ı/! .B; "/ be a morphism in the category of
coactions. Consider the diagram

Am �m

//

ƒAm

��

q�
A

!!

Bm

q�
B

""

ƒBm

��

A�
��

//

ƒ�
A}}

B�

ƒ�
B}}

An

�n
// Bn

We need to know that the lower quadrilateral, with horizontal and southwest arrows,
commutes, and this follows from surjectivity of q�

A
and commutativity of the other

two quadrilaterals and the two triangles. �

Corollary 4.4. If � is a coaction functor, then in (4-1) we have

(1) q� WAm!A� is a maximalization of ı� , and

(2) ƒ� WA� !An is a normalization of ı� .

Proof. Taking crossed products in (4-1), we get a commutative diagram

Am Ìım G
q�ÌG

'
//

ƒÌG '

��

A� Ìı� G

ƒ�ÌG

'

xx

An Ìın G

where the horizontal arrow is surjective because q� is, and is injective because of
the vertical isomorphism, and then the diagonal arrow is an isomorphism because
the other two arrows are. Thus q� and ƒ� satisfy the defining properties of maxi-
malization and normalization, respectively. �

Remark 4.5. Caution: it might seem that � should factor through the maximaliza-
tion functor, at least up to natural isomorphism. This would entail, in particular, that

.Am� ; ım� /Š .A� ; ı� / for every coaction .A; ı/:

But this is violated with � D id.
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Notation 4.6. With the above notation, we define an ideal of Am by

Am
� WD ker q�A:

Note that for the maximalization functor m we have Am
m D f0g, while for the

normalization functor n the associated ideal Am
n is the kernel of the normalization

map ƒAm WAm!Amn ŠAn.

Partial ordering of coaction functors. Baum, Guentner and Willett [Baum et al.
2016, p. 8] define one crossed-product functor � to be smaller than another one � if
the natural surjection AÌ˛;� G!AÌ˛;r G factors through the � -crossed product.

We adapt this definition of partial order to coaction functors, but “from the top
rather than toward the bottom”.

Definition 4.7. If � and � are coaction functors, then � is smaller than � , written
� � � , if for every coaction .A; ı/ we have

Am
� �Am

� :

Lemma 4.8. For coaction functors �; � , the following are equivalent:

(1) � � � .

(2) For every coaction .A; ı/ there is a homomorphism ��;� making the diagram

Am q�
//

q� ""

A�

��;�

��

A�

commute.

(3) For every coaction .A; ı/ there is a homomorphism ��;� making the diagram

A�

ƒ�

}}
��;�

��

An A�
ƒ�
oo

commute.

Moreover, if these equivalent conditions hold then ��;� is unique, is surjective, and
is a natural transformation from � to � .

Proof. (1) is equivalent to (2) since Am
� D ker q� and Am

� D ker q� . Moreover, (1)
implies that ��;� is unique and is surjective, since the maps q� are surjective.
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Assume (3). Consider the combined diagram

(4-2)

Am qt

//

q�

!!

ƒAm

��

A�

ƒ�

}}

��;�

��

An A�
ƒ�

oo

The upper left and lower left triangles commute by definition of coaction functor,
and the lower right triangle commutes by assumption. Thus the upper right triangle
commutes after postcomposing with ƒ� . Since the latter map is a normalizer, by
[Bédos et al. 2011, Corollary 6.1.20] it is a monomorphism in the category of
coactions. Thus the upper right triangle commutes.

Similarly (but more easily), assuming (2), the lower right triangle in the diagram
(4-2) commutes because it commutes after precomposing with the surjection q�.

Naturality of ��;� is proved by virtually the same argument as in Lemma 4.3. �
The following is a coaction-functor analogue of [Baum et al. 2016, Lemma 3.7],

and we adapt their argument:

Theorem 4.9. Every nonempty collection T of coaction functors has a greatest
lower bound � with respect to the above partial ordering, characterized by

Am
� D span

�2T
Am
�

for every coaction .A; ı/.

Proof. Let .A; ı/ be a coaction, Then the ideal

Am
� WD span

�2T
Am
�

of Am is contained in the kernel of the normalization map ƒAm . Put

A� DAm=Am
� ;

and let
q�A WA

m
!A�

be the quotient map.
Am
� is a weakly ım-invariant ideal of Am for all � 2 T , so for all f 2 B.G/

we have
f �Am

� �Am
� �Am

� ;

and it follows that f �Am
� �Am

� , i.e., Am
� is a weakly ım-invariant ideal. Thus q�

is equivariant for ım and a unique coaction ı� on A� .
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We now have assignments

.A; ı/ 7! .A� ; ı� /

on objects, and we need to handle morphisms. Thus, let � W .A; ı/! .B; "/ be a
morphism of coactions; i.e., � WA!B is a ı�" equivariant homomorphism. Since

Am
� � .�

m/�1.Bm
� /� .�

m/�1.Bm
� / for all � 2 T ,

we have

ker q�A DAm
� D span

�2T
Am
� � .�

m/�1.Bm
� /D ker q�B ı�

m:

Thus there is a unique homomorphism �� making the diagram

(4-3) Am �m

//

q�
A
��

Bm

q�
B
��

A�
��
// B�

commute. Moreover, �� is ı� � "� equivariant because the other three maps are
and q�

A
is surjective.

We need to verify that the assignments � 7! �� of morphisms are functorial.
Obviously identity morphisms are preserved. For compositions, let

.A; ı/
�
//

�
$$

.B; "/

�

��

.C;  /

be a commuting diagram of coactions. Consider the diagram

Am �m

//

q�
A

��

�m
""

Bm

q�
B

��

�m
||

C m

q�
C

��

A�
��

//

�� ""

B�

��||

C �
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The three vertical quadrilaterals and the top triangle commute, and q�
A

is surjective.
It follows that the bottom triangle commutes, and we have shown that composition
is preserved.

Thus we have a functor � on the category of coactions. Moreover, � is a coaction
functor, since the surjections q� have small kernels and the commuting diagram
(4-3) shows that q� gives a natural transformation from maximalization to � . By
construction, � is a greatest lower bound for T . �

Exact coaction functors. As a special case of our general Definition 3.17, we
explicitly record:

Definition 4.10. A coaction functor � is exact if for every short exact sequence

0 �! .I;  /
�
�! .A; ı/

 
�! .B; "/ �! 0

of coactions the associated sequence

0 �! .I � ;  � /
��
�! .A� ; ı� /

 �
�! .B� ; "� / �! 0

is exact.

Theorem 4.11. The maximalization functor is exact.

Proof. Let
0 �! .I;  /

�
�! .A; ı/

 
�! .B; "/ �! 0

be an exact sequence of coactions. Taking crossed products twice, we get an exact
sequence

0 �! I Ì G Ìy G
�ÌGÌG
�����!AÌı G Ìyı G

 ÌGÌG
������! B Ì"G Ìy"G �! 0:

Since the identity functor on coactions is a coaction functor, we get an isomorphic
sequence

0 �! Im Ìm G Ì ym G
�mÌGÌG
�������!Am Ìım G Ì yım G

 mÌGÌG
�������! Bm Ì"m G Ì y"m G �! 0;

which is therefore also exact. Since the canonical surjection ˆ is a natural transfor-
mation from the double crossed-product functor to the stabilization functor, and
since the coactions are now maximal, we get an isomorphic sequence

0 �! Im
˝K

�m˝id
����!Am

˝K
 m˝id
�����! Bm

˝K �! 0;

which is therefore also exact. Since K is an exact C �-algebra,

.ker�m/˝KD ker.�m
˝ id/D f0g;
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so ker�m D f0g, and similarly

.ker m/˝KD ker. m
˝ id/D .�m

˝ id/.Im
˝K/D �m.Im/˝K;

so, because �m.Im/� ker m by functoriality, we must have �m.Im/D ker m.
Therefore the sequence

0 �! Im �m

�!Am  m

�!Bm
�! 0

is exact. �

Theorem 4.12. A coaction functor � is exact if and only if for any short exact
sequence

0 �! .I; ıI /
�
�! .A; ı/

 
�! .B; ıI / �! 0

of coactions, both
�m.Im

� /D �
m.Im/\Am

�

and
�m.Im/CAm

� D . 
m/�1.Bm

� /

hold.

Proof. We have a commutative diagram

(4-4)

0

��

0

��

0

��

0 // Im
�

�I
��

�mj
// Am
�

�A
��

 mj
// Bm
�

�B
��

// 0

0 // Im

qI

��

�m

// Am

qA

��

 m

// Bm

qB

��

// 0

0 // I �
��
//

��

A�
 �
//

��

B� //

��

0

0 0 0

in which the columns are exact by definition, and the middle row is exact by
Theorem 4.11. Thus the result follows immediately from Lemma 2.1. �

Morita compatible coaction functors. If we have coactions .A; ı/ and .B; "/, and
a ı � " compatible coaction � on an A�B imprimitivity bimodule X , we’ll say
that .X; �/ is an .A; ı/� .B; "/ imprimitivity bimodule.
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Example 4.13. The double dual bimodule coaction

.Y; �/ WD .X Ì� G Ìy� G; yy� /

is an
.AÌı G Ìyı G;yyı /� .B Ì"G Ìy"G;yy" /

imprimitivity bimodule. Since the identity functor on coactions is a coaction functor,
.Y; �/ becomes an

.Am Ìım G Ì yım G;
yyım /� .Bm Ì"m G Ì y"m G;

yy"m /

imprimitivity bimodule. Since maximalizations satisfy full-crossed-product duality,
.Y; �/ becomes, after replacing the double dual coactions by exterior equivalent
coactions, an

.Am
˝K; ım

˝� id/� .Bm
˝K; "m

˝� id/

imprimitivity bimodule (see [Echterhoff et al. 2004, Lemma 3.6]).

We need the following basic lemma, which is probably folklore, although we
could not find it in the literature. Our formulation is partially inspired by Fischer’s
treatment of relative commutants of K [Fischer 2004, Section 3].

Lemma 4.14. Let A and B be C �-algebras, and let Y be an .A˝K/� .B˝K/
imprimitivity bimodule. Define

X D
˚
m 2M.Y / W .1A˝ k/ �mDm � .1B˝ k/ 2 Y for all k 2 K

	
:

Then:

(1) X is an .A˝ 1K/� .B˝ 1K/ submodule of M.Y /.

(2) spanhX;X iM.B˝K/ D B˝ 1K.

(3) span M.A˝K/hX;X i DA˝ 1K.

Thus X becomes an A�B imprimitivity bimodule in an obvious way, and moreover
there is a unique .A˝K/� .B˝K/ imprimitivity bimodule isomorphism

� WX ˝K
Š
�! Y

such that
�.m˝ k/Dm � .1B˝ k/ for m 2X; k 2 K:

Lemma 4.15. Given coactions .A; ı/ and .B; "/, and a ı�" compatible coaction �
on an A�B imprimitivity bimodule X , let .Y; �/ be the

.Am
˝K; ım

˝� id/� .Bm
˝K; "m

˝� id/
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imprimitivity bimodule from Example 4.13, and let X m denote the associated
Am�Bm imprimitivity bimodule as in Lemma 4.14, with an .Am˝K/� .Bm˝K/
imprimitivity bimodule isomorphism � W X m ˝ K! Y . Then there is a unique
ım� "m compatible coaction �m on X m such that � transports �m˝� id to �.

Proof. The diagram

X m˝K �
//

� '

��

M.X m˝K˝C �.G//

�˝id'

��

Y
�

// M.Y ˝C �.G//

certainly has a unique commuting completion, and � is a .ım˝� id/� ."m˝� id/
compatible coaction on X m˝K. In order to recognize that � is of the form �m˝� id,
we need to know that, letting† WK˝C �.G/!C �.G/˝K be the flip isomorphism,
for every � 2X m, the element

m WD .idX m ˝†/ ı .� ˝ id/�1
ı � ı �.�˝ 1K/

of the multiplier bimodule M.X m˝C �.G/˝K/ is contained in the subset M.X m˝

C �.G//˝ 1K, and for this we need only check that for all k 2 K we have

.1A˝C �.G/˝ k/ �mDm � .1B˝C �.G/˝ k/ 2X m
˝C �.G/˝K;

which follows from the properties of the maps involved. Then it is routine to check
that the resulting map �m is a ım� "m compatible coaction on X m. �

Definition 4.16. A coaction functor � is Morita compatible if whenever .X; �/ is
an .A; ı/� .B; "/ imprimitivity bimodule, with associated Am�Bm imprimitivity
bimodule X m as above, the Rieffel correspondence of ideals satisfies

(4-5) X m-Ind Bm
� DAm

� :

We will use without comment the simple observation that if .A; ı/ (and hence
also .B; "/) is maximal, then we can replace X m by X and regard the natural
surjection q�

A
as going from A to A� (and similarly for B), since the maximalizing

maps qm
A

and qm
B

can be combined to give an isomorphism of the Am � Bm

imprimitivity bimodule X m onto X .

Remark 4.17. Caution: Definition 4.16 is not a direct analogue of the definition of
Morita compatibility in [Baum et al. 2016, Definition 3.2], but it suits our purposes
in working with coaction functors, as we will see in Proposition 4.24.

Remark 4.18. Lemma 4.15 says in particular that maximalization preserves Morita
equivalence of coactions. This is almost new: it also follows from first applying
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the cross-product functor, noting that the dual actions are “weakly proper G ÌG-
algebras” in the sense of [Buss and Echterhoff 2014], then applying [Buss and
Echterhoff 2015, Corollary 4.6] with the universal crossed-product norm (denoted
by u in [Buss and Echterhoff 2014]).

Lemma 4.19. A coaction functor � is Morita compatible if and only if whenever
.X; �/ is an .A; ı/�.B; "/ imprimitivity bimodule, there are an A��B� imprimitiv-
ity bimodule X � and a q�

A
� q�

B
compatible imprimitivity-bimodule homomorphism

q�
X
WX m!X � .

Proof. Given X � and q�
X

with the indicated properties, by [Echterhoff et al. 2006,
Lemma 1.20] we have

X m-Ind Bm
� DX m-Ind ker q�B D ker q�A DAm

� :

It follows that � is Morita compatible.
Conversely, suppose � is Morita compatible, and let .X m; �m/ be as above. Then,

by the Rieffel correspondence, X � WD X m=X m � Bm
� is an Am=Am

� � Bm=Bm
�

imprimitivity bimodule, and the quotient map q�
X
WX m!X � is compatible with

the quotient maps Am 7!Am=Am
� and Bm 7! Bm

� . Via the unique isomorphisms
making the diagrams

Am

quotient
map

��

q�
A

$$

Am=Am
� '

// A�

Bm

quotient
map

��

q�
B

$$

Bm=Bm
� '

// B�

commute, q�
X

becomes q�
A
� q�

B
compatible. �

Example 4.20. It follows trivially that the maximalization functor is Morita com-
patible.

Lemma 4.21. The identity functor on coactions is Morita compatible.

Proof. Let .X; �/ be an .A; ı/� .B; "/ imprimitivity bimodule, and let .X m; �m/

be the associated .Am; ım/� .Bm; "m/ imprimitivity bimodule from Lemma 4.15.
By Lemma 4.19 it suffices to find a qm

A
� qm

B
compatible imprimitivity-bimodule

homomorphism qm
X
W X m! X . Now, X m is the upper right corner of the 2� 2

matrix representation of the linking algebra Lm, and the maximalization map qm
L

of the linking algebra L of X preserves the upper right corners. Thus qm
L

takes X m

onto X , and simple algebraic manipulations show that it has the right properties. �

Theorem 4.22. The greatest lower bound of the collection of all exact and Morita
compatible coaction functors is itself exact and Morita compatible.
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Proof. Let T be the collection of all exact and Morita compatible coaction functors,
and let � be the greatest lower bound of T . As in the proof of Theorem 4.9, for
every coaction .A; ı/ we have

Am
� D span

�2T
Am
� :

For exactness, we apply Definition 4.10. Let

0 //.I;  /
�
//.A; ı/

 
//.B; "/ //0

be a short exact sequence of coactions. Then

�m.Im
� /D �

m
�
span
�2T

Im
�

�
D span

�2T
�m.Im

� /

D span
�2T

.�m.Im/\Am
� / (since � is exact)

D �m.Im/\ span
�2T

Am
�

(since all spaces involved are ideals in C �-algebras)

D �m.Im/\Am
� ;

and

�m.Im/CAm
� D �

m.Im/C span
�2T

Am
�

D span
�2T

.�m.Im/CAm
� /

D span
�2T

. m/�1.Bm
� / (since � is exact)

D . m/�1
�
span
�2T

Bm
�

�
D . m/�1.Bm

� /;

so � is exact.
For Morita compatibility, let .X; �/ be an .A; ı/� .B; "/ imprimitivity bimodule,

with associated Am�Bm imprimitivity bimodule X m. Then

X m-Ind Bm
� DX m-Ind span

�2T
Bm
�

D span
�2T

X m-Ind Bm
� (by continuity of Rieffel induction)

D span
�2T

Am
� (since � is Morita compatible)

DAm
� ;

so � is Morita compatible. �
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Definition 4.23. We call the above greatest lower bound of the collection of all exact
and Morita compatible coaction functors the minimal exact and Morita compatible
coaction functor.

Comparison with [Baum et al. 2016]. As we mentioned previously, [Baum et al.
2016, p. 8] defines one crossed-product functor �1 to be smaller than another one �2,
written �1 � �2, if the natural surjection AÌ˛;�2

G! AÌ˛;r G factors through
the �1-crossed product.

Let � be a coaction functor, and let � D � ıCP be the associated crossed-product
functor, i.e.,

.A; ˛/� DAÌ˛;� G WD .AÌ˛ G/� :

For a morphism � W .A; ˛/! .B; ˇ/ of actions, we write

� Ì� G D .� ÌG/� WAÌ˛;� G! B Ìˇ;� G

for the associated morphism of � -crossed products.

Proposition 4.24. With the above notation, if the coaction functor � is exact or
Morita compatible, then the associated crossed-product functor � has the same
property. Moreover, if �1 � �2 then �1 � �2.

Proof. The last statement follows immediately from the definitions. For the other
statement, first assume that � is exact, and let

0 // .I;  /
�
// .A; ˛/

 
// .B; ˇ/ // 0

be a short exact sequence of actions. Then the sequence

0 // .I Ì G; y /
�ÌG

// .AÌ˛ G; y̨/
 ÌG

// .B Ìˇ G; y̌/ // 0

of coactions is exact, since the full-crossed-product functor is exact. Then by
exactness of � we see that the sequence

0 // I Ì;� G
�Ì�G

// AÌ˛;� G
 Ì�G

// B Ìˇ;� G // 0

is also exact.
On the other hand, assume that the coaction functor � is Morita compatible.

As in [Baum et al. 2016, Section 3], the unwinding isomorphism ˆ, which is the
integrated form of the covariant pair

�.a˝ k/D iA.a/˝ k;

us D iG.s/˝�s;
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fits into a diagram

(4-6)

.A˝K/Ì˛˝Ad�G
ˆ

'
//

q�
.A˝K/Ì˛˝Ad�G

��

.AÌ˛ G/˝K

q�
AÌ˛G

˝id
��

.A˝K/Ì˛˝Ad�;� G
'

‡
// .AÌ˛;� G/˝K

i.e.,

ker q�.A˝K/Ì˛˝Ad�G D ker.q�AÌ˛G ˝ id/ ıˆ:

The diagram (4-6) fits into a more elaborate diagram

.A˝K/Ì˛˝Ad�G
ˆ

'
//

q�
.A˝K/Ì˛˝Ad�G

��

.AÌ˛ G/˝K

q�
.AÌ˛G/˝K
��

q�
AÌ˛G

˝id

��

.A˝K/Ì˛˝Ad�;� G
'

ˆ�
//

‡

'

..

..AÌ˛ G/˝K/�

�

'
))

.AÌ˛;� G/˝K

which we proceed to analyze. There is a unique

.3˛˝Ad�/� � .y̨ ˝� id/�

equivariant homomorphism ˆ� making the upper left rectangle commute, since �
is functorial. Moreover, ˆ� is an isomorphism since ˆ is, again by functoriality.
Applying Morita compatibility of � to the equivariant ..AÌ˛ G/˝K/� .AÌ˛ G/

imprimitivity bimodule .AÌ˛ G/˝L2.G/ shows that there is a unique

.y̨ ˝� id/� � .y̨� ˝� id/

equivariant isomorphism � that makes the upper right triangle commute. Thus there
is a unique isomorphism ‡ making the lower left triangle commute, and then the
outer quadrilateral commutes, as desired. �

Question 4.25. (1) Is the minimal exact and Morita compatible crossed product
of [Baum et al. 2016, Section 4] naturally isomorphic to the composition
of the minimal exact and Morita compatible coaction functor and the full
crossed product?

(2) More generally, given a crossed-product functor on actions, when does it de-
compose as a full crossed product followed by a coaction functor? Does it make
any difference if the crossed-product functor is exact or Morita compatible?
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5. Decreasing coaction functors

In this section we introduce a particular type of coaction functor with the convenient
property that we do not need to check things by going through the maximalization
functor, as we’ll see in Propositions 5.4 and 5.5. Suppose that for each coaction
.A; ı/ we have a coaction .A� ; ı� / and a ı�ı� equivariant surjection Q� WA!A� ,
and further suppose that for each morphism � W .A; ı/! .B; "/ we have

ker Q�
A � ker Q�

B ı�;

so that there is a unique morphism �� making the diagram

.A; ı/
�
//

Q�
A

��

.B; "/

Q�
B

��

.A� ; ı� /
��

!
// .B� ; ı� /

commute. The uniqueness and surjectivity assumptions imply that � constitutes
a functor on the category of coactions, and moreover Q� W id ! � is a natural
transformation.

Definition 5.1. We call a functor � as above decreasing if for each coaction .A; ı/
we have

ker Q�
A � kerƒA:

Lemma 5.2. Every decreasing functor � on coactions is a coaction functor, and
moreover � � id.

Proof. For each coaction .A; ı/, define a homomorphism q�
A

by the commutative
diagram

Am

qm
A
��

q�
A

!!

A
Q�

A

// A�

where qm
A

is the maximalization map. The map q� is natural and surjective since
both qm and Q� are. We have

ker q�A D fa 2Am
W qm

A .a/ 2 ker Q�
Ag

� fa 2Am
W qm

A .a/ 2 kerƒAg

D kerƒA ı qm
A

D kerƒAm :

Thus � is a coaction functor, and then � � id by Lemma 4.8. �
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Notation 5.3. For a decreasing coaction functor � and any coaction .A; ı/ put

A� D ker Q�
A:

Proposition 5.4. A decreasing coaction functor � is exact if and only if for any
short exact sequence

(5-1) 0 // .I; ıI /
�
// .A; ı/

 
// .B; ıI / // 0

of coactions, both
�.I� /D �.I/\A�

and
�.I/CA� �  

�1.B� /

hold.

Proof. The proof is very similar to, and slightly easier than, that of Theorem 4.12,
using the commutative diagram

0

��

0

��

0

��

0 // I�

�I
��

�j
// A�

�A
��

 j
// B�

�B
��

// 0

0 // I

Q�
I
��

�
// A

Q�
A
��

 
// B

Q�
B
��

// 0

0 // I �
��
//

��

A�
 �
//

��

B� //

��

0

0 0 0 �

Proposition 5.5. A decreasing coaction functor � is Morita compatible if and only if
whenever .X; �/ is an .A; ı/� .B; "/ imprimitivity bimodule, there are an A� �B�

imprimitivity bimodule X � and a Q�
A
�Q�

B
compatible imprimitivity-bimodule

homomorphism Q�
X
WX !X � .

Proof. First suppose � is Morita compatible. Let .X; �/ be an .A; ı/�.B; "/ imprim-
itivity bimodule,and let q�

X
W X m! X � be a qm

A
� qm

B
compatible imprimitivity-

bimodule homomorphism onto an A� � B� imprimitivity bimodule X � , as in
Lemma 4.19. By Lemmas 4.21 and 4.19 there is also a qm

A
� qm

B
compatible

imprimitivity bimodule homomorphism qm
X

of X m!X . By definition, we have

q�A DQ�
A ı qm

A WA
m
!A� :
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Thus

ker qm
X D .ker qm

A / �X
m

� .ker Q�
A ı qm

A / �X
m

D .ker q�A/ �X
m

D ker q�X ;

and hence q�
X

factors through a commutative diagram

X m

q�
X

��

qm
X

!!

X

Q�
X

!

}}

X �

for a unique imprimitivity bimodule homomorphism Q�
X

. Moreover, Q�
X

is com-
patible on the left with Q�

A
by construction, and similar reasoning, using the Rieffel

correspondence of ideals, shows that it is also Q�
B

compatible on the right.
Conversely, suppose we have .X; �/, X � and Q�

X
as indicated, and let .X m; �m/

be the associated .Am; ım/� .Bm; "m/ imprimitivity bimodule from Lemma 4.15.
By Lemma 4.19 it suffices to find a qm

A
� qm

B
compatible imprimitivity-bimodule

homomorphism q�
X
W X m ! X � . Since q� D Q� ı qm on both Am and Bm, by

Lemma 4.21 and our assumptions we can take q�
X
DQ�

X
ı qm

X
. �

6. Coaction functors from large ideals

The most important source of examples of the decreasing coaction functors of the
preceding section is large ideals. We recall some basic concepts from [KLQ 2013;
2016]. Let E be an ideal of B.G/ that is large, meaning it is nonzero, G-invariant,
and weak*-closed. Then the preannihilator ?E of E in C �.G/ is an ideal contained
in the kernel of the regular representation �. Write C �

E
.G/D C �.G/=?E for the

quotient group C �-algebra and qE W C
�.G/! C �

E
.G/ for the quotient map. The

ideal ?ED ker qE of C �.G/ is weakly ıG-invariant, i.e., ıG descends to a coaction,
which we denote by ıE

G
, on the quotient C �

E
.G/.

For any coaction .A; ı/ and any large ideal E of B.G/,

AE WD fa 2A WE � aD f0gg D ker.id˝ qE/ ı ı

is a small ideal of A (that is, an ideal contained in ker jA D kerƒA) and we write
AE D A=AE for the quotient C �-algebra and QE

A
W A! AE for the quotient
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map. AE is weakly ı-invariant [KLQ 2016, Lemma 3.5], and we write ıE for the
quotient coaction on AE .

Remark 6.1. The properties of the B.G/-module structure (see the Appendix)
allow for a shorter proof of invariance than in [KLQ 2016]: if a 2AE , f 2 B.G/,
and g 2E then

g � .f � a/D .gf / � aD 0;

because E is an ideal, and it follows that B.G/ �AE �AE .

Proposition 6.2. The functor .A; ı/ 7! .AE ; ıE/ is a decreasing coaction functor,
which we denote by �E .

Proof. By the above discussion and Lemma 5.2, it suffices to observe that for any
morphism � W .A; ı/! .B; "/ of coactions and for all a 2 ker QE

A
and f 2E,

f ��.a/D �.f � a/D 0;

which implies that ker QE
A
� ker QE

B
ı�. �

Remark 6.3. Proposition 6.2 should be compared with [Buss and Echterhoff 2014,
Corollary 6.5 and Lemma 7.1], [Buss and Echterhoff 2015, Lemma 2.3], and [Baum
et al. 2016, Lemma A.3].

Example 6.4. The functor �B.G/ is the identity functor.

Example 6.5. The functor �Br .G/ is naturally isomorphic to the normalization
functor.

Example 6.6. The maximalization functor is not of the form .A; ı/ 7! .AE ; ıE/

for any large ideal E of B.G/, because the maximalization functor is not decreasing
in the sense of Definition 5.1.

Proposition 6.7. For a large ideal E of B.G/, the coaction functor �E is exact if
and only if , for every coaction .A; ı/ and every strongly invariant ideal I of A,

(6-1) I CAE � fa 2A WE � a� Ig:

Proof. Let

(6-2) 0 //.I; �/
�
//.A; ı/

 
//.B; "/ //0

be a short exact sequence of coactions. Exactness of the associated sequence

(6-3) 0 // IE �E

// AE  E

// BE // 0

will not be affected if we replace the short exact sequence (6-2) by an isomorphic
one, so without loss of generality � is the inclusion of an ideal I of A and  is the
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quotient map onto B DA=I . By Proposition 5.4, the sequence (6-3) is exact if and
only if

(6-4) IE D I \AE

and

(6-5) I CAE �  
�1.BE/:

Since
IE D fa 2 I WE � aD f0gg;

(6-4) automatically holds in this context. On the other hand, (6-5) is equivalent to
(6-1) because

BE D faC I 2 B DA=I WE � .aC I/D f0gg

D faC I WE � a� Ig: �

Remark 6.8. Techniques similar to those used in the above proof, showing that
(6-4) holds automatically, can also be used to show that the functor �E preserves
injectivity of morphisms: if � WA! B is an injective equivariant homomorphism
and a 2 ker�E , then we can write aDQE

A
.a0/ for some a0 2A. We have

0D �E.a/D �E
ıQE

A .a
0/DQE

B ı�.a
0/;

so
�.a/ 2 ker QE

B D BE :

Thus for all f 2E we have

0D f ��.a0/D �.f � a0/;

so f � a0 D 0 since � is injective. But then a0 2 AE D ker QE
A

, so a D 0. This
remark should be compared with [Buss and Echterhoff 2014, Proposition 6.2].

Corollary 6.9. Let E and F be large ideals of B.G/, and let hEFi denote the
weak*-closed linear span of the set EF of products. If �E or �F is exact then
hEFi DE \F .

Proof. Without loss of generality assume that �E is exact. Note that, since E is an
ideal of B.G/,

?E D fa 2 C �.G/ WE � aD f0gg;

and similarly for ?F . We claim that

?EC?F D ?hEFi:
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To see this, note that, since E is exact, by Proposition 6.7 with .A; ı/D .C �.G/; ıG/
and I D ?F we have

?F C?E � fa 2 C �.G/ WE � a� ?Fg:

Now, for a 2 C �.G/ we have

E � a� ?F () F � .E � a/D f0g

() .EF / � aD f0g
�
() hEFi � aD f0g

() a 2 ?hEFi;

where the equivalence at * holds since for every a 2 C �.G/ the map from B.G/ to
C �.G/ defined by f 7! f �a is weak*-weak continuous. Thus ?FC?E � ?hEFi.

For the reverse containment, note that EF � E because E is an ideal, so
hEFi � E because E is weak*-closed, and hence ?E � ?hEFi. Similarly,
?F � ?hEFi, and so ?EC?F � ?hEFi, proving the claim.

Now, since ?E and ?F are closed ideals of C �.G/, it follows from the elementary
duality theory for Banach spaces that

?EC?F D ?.E \F /;

and the corollary follows upon taking annihilators. �

The following result should be compared with [Baum et al. 2016, Lemma A.5]:

Proposition 6.10. The coaction functor �E is Morita compatible.

Proof. Let .X; �/ be an .A; ı/�.B; "/ imprimitivity bimodule. Since � is decreasing,
by Proposition 5.5, it suffices to show that X -Ind BE DAE . The external tensor
product X ˝C �

E
.G/ is an .A˝C �

E
.G//� .B˝C �

E
.G// imprimitivity bimodule,

and we have an .idA ˝ qE/ � .idB ˝ qE/ compatible imprimitivity bimodule
homomorphism

idX ˝ qE WX ˝C �.G/!X ˝C �E.G/:

The composition

.idX ˝ qE/ ı � WX !M.X ˝C �E.G//

is an .idA˝qE/ı ı� .idB˝qE/ı " compatible imprimitivity bimodule homomor-
phism. We have

ker.idA˝ qE/ ı ı DAE ;

ker.idB˝ qE/ ı "D BE :
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Thus, by [Echterhoff et al. 2006, Lemma 1.20], AE is the ideal of A associated to
the ideal BE of B via the Rieffel correspondence. �

Remark 6.11. Proposition 6.10 subsumes [KLQ 2016, Lemma 4.8], which is the
special case of exterior equivalent coactions. It is tempting to try to use this to
simplify the proof of [loc. cit., Theorem 4.6], which says that .A; ı/ satisfies E-
crossed-product duality if and only if it is isomorphic to .AmE ; ımE/, since we
have Morita equivalences

.Am; ım/�M .Am
˝K; ı˝� id/�M .AÌı G Ìyı G;

yyı/:

However, it turns out that appealing to Proposition 6.10 would not shorten the proof
much. Nevertheless, it is interesting to note that, by Proposition 6.10, we have

.A; ı/D .AmE
; ımE

/ () .A˝K; ı˝� id/D ..Am
˝K/E ; .ım

˝� id/E/;

or, equivalently,
kerˆD .AÌı G Ìyı G/E ;

which by definition is equivalent to E-crossed-product duality for .A; ı/.

For some purposes, albeit not for the purposes of this paper, a more appropriate
coaction functor associated to E is the following (see also [Buss and Echterhoff
2014, Theorem 5.1]):

Definition 6.12. The E-ization of a coaction .A; ı/ is

.AE-ize; ıE-ize/ WD ..Am/E ; .ım/E/:

E-ization is a functor on the category of coactions, being the composition
of the functors maximalization and �E . The E-ization of a ı � " equivariant
homomorphism � WA! B is

�E-ize
D .�m/E WAmE

! BmE :

Proposition 6.13. E-ization is a coaction functor.

Proof. We must produce a suitable natural transformation qE-ize W .Am; ım/!

.AE-ize; ıE-ize/, and we take

qE-ize
A DQE

Am WA
m
!AmE

DAE-ize:

The map qE-ize is natural since �E is a decreasing coaction functor. �

Theorem 6.14. For any large ideal E of B.G/, the E-ization coaction functor is
Morita compatible.
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Proof. Let .X; �/ be an .A; ı/� .B; "/ imprimitivity bimodule, with associated
.Am; ım/� .Bm; "m/ imprimitivity bimodule .X m; �m/. We must show that

X m-Ind ker qE-ize
B D ker qE-ize

A :

But this follows immediately by applying Proposition 6.10 to .X m; �m/, since

qE-ize
A DQAm

E and qE-ize
B DQBm

E : �

Remark 6.15. For any large ideal E, the two coaction functors �E and E-ization
have similar properties; e.g., they are both Morita compatible (Proposition 6.10 and
Theorem 6.14). However, in general they are not naturally isomorphic functors. For
example, if E DB.G/ then �E is the identity functor and E-ization is maximaliza-
tion. That being said, for E D Br .G/ we do have �E Š �E ımaximalization.

Note that, given a coaction .A; ı/, we have two homomorphisms of the maxi-
malization .Am; ım/:

.Am; ım/

qm

��

qE-ize

''

.A; ı/ .AE-ize; ıE-ize/

In [KLQ 2013, Definition 3.7] we said .A; ı/ is E-determined from its maxi-
malization if ker qm D ker qE-ize, in which case there is a natural isomorphism
.A; ı/Š .AE-ize; ıE-ize/.

Given an action .B; ˛/, in [KLQ 2013, Definition 6.1] we defined the E-crossed
product as

B Ì˛;E G D .B Ì˛ G/=.B Ì˛ G/E D .B Ì˛ G/E ;

where in the last expression we have composed the full-crossed-product functor
with �E .

As in [Buss and Echterhoff 2014, Definition 4.5], we say a coaction .A; ı/ satisfies
E-duality (called “E-crossed product duality” in [KLQ 2016, Definition 4.3]), or
is an E-coaction, if there is an isomorphism � making the diagram

AÌı G Ìyı G
ˆ
//

QE

��

A˝K

AÌı G Ìyı;E G

�

'

88

commute, or, equivalently,

kerˆD .AÌı G Ìyı G/E ;

where ˆ is the canonical surjection.
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In [KLQ 2016, Theorem 4.6] we proved that .A; ı/ is an E-coaction if and
only if it is E-determined from its maximalization. (Theorem 5.1 of [Buss and
Echterhoff 2014] proves the converse direction.)

Lemma 6.16. For a coaction .A; ı/, the following are equivalent:

(1) .A; ı/ is an E-coaction.

(2) .A; ı/ is E-determined from its maximalization.

(3) There exists a maximal coaction .B; "/ such that .A; ı/Š .BE ; "E/.

Proof. The equivalence of (1) and (2) is [KLQ 2016, Theorem 4.6], and (2) trivially
implies (3). Assume (3), i.e., that .B; "/ is maximal and we have an isomorphism
� W .BE ; "E/! .A; ı/. The surjection QB

E
W .B; "/! .BE ; "E/ is a maximalization,

since " is maximal and ker QB
E
� ker qn

B
. Thus � ıQB

E
is a maximalization of .A; ı/.

Since any two maximalizations of .A; ı/ are isomorphic, there is an isomorphism  

making the diagram

.Am; ım/

qm
A

��

.B; "/
 

'

oo

QE

��

.A; ı/ .BE ; "E/
�

'
oo

commute. Thus qm
A
ı is also a maximalization of .A; ı/. Therefore

ker qm
A D  .ker QE/D  .BE/DAm

E ;

giving (2). �

Theorem 6.17. The functor �E restricts to give an equivalence of the category of
maximal coactions to the category of E-coactions.

In this statement, we mean the full subcategories of the category of coactions.

Proof. By abstract nonsense, it suffices to show that the functor is essentially
surjective and fully faithful, i.e.,

(1) every E-coaction .A; ı/ is isomorphic to .BE ; "E/ for some maximal coaction
.B; "/, and

(2) for any two maximal coactions .A; ı/ and .B; "/,

� 7! �E

maps the set of equivariant homomorphisms � WA! B bijectively onto the
set of equivariant homomorphisms  WAE! BE .
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Statement (1) is immediate from Lemma 6.16. For (2), given maximal co-
actions .A; ı/ and .B; "/ and distinct nondegenerate equivariant homomorphisms
�; WA! B, we have an equivariant commutative diagram

A
�

//

QE
A

!!

ƒA

��

B
QE

B

!!

AE �E

//

ƒE
A}}

ƒB

��

BE

ƒE
B}}

An

�n
// Bn

where QE
A

is a maximalization of .AE ; ıE/, ƒA is a normalization of .A; ı/,
and ƒE

A
is a normalization of .AE ; ıE/, and similarly for the right-hand triangle

involving the Bs. There is a similar commutative diagram for  . Since the nor-
malizations �n and  n are distinct, by [Bédos et al. 2011, Corollary 6.1.19], we
must have �E ¤  E by commutativity of the diagram. This proves injectivity.
For the surjectivity, let � WAE! BE be an equivariant homomorphism. Then the
maximalization �m WA!B of � is the unique equivariant homomorphism making
the diagram

A
�m

//

QE
A
��

B

QE
B

��

AE

�
// BE

commute. Applying the functor �E , we see that the diagram

A
�m

//

QE
A
��

B

QE
B

��

AE

.�m/E
// BE

also commutes, so we must have �m D ..�m/E/m by the universal property of
maximalization, and hence � D .�m/E by [loc. cit.]. �

Remark 6.18. Much of the development in this paper regarding “classical” cate-
gories carries over to the “nondegenerate” categories (involving multiplier algebras).
The nondegenerate version of the above result resembles the “maximal-normal
equivalence” of [Kaliszewski and Quigg 2009, Theorem 3.3], which says that
normalization restricts to an equivalence between maximal and normal coactions.
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However, there are some properties missing: for example, the functor �E is not a
reflector in the categorical sense, because

QE W .A
E ; ıE/! .AEE ; ıEE/

is not an isomorphism in general. Indeed, [KLQ 2016, Proposition 8.4] shows
that if .A; ı/ is a maximal coaction then the composition .id˝ qE/ ı ı

E in the
commutative diagram

A
QE

// AE ıE
//

.id˝qE/ıı
E ((

M.AE ˝C �.G//

id˝qE

��

M.AE ˝C �
E
.G//

need not be faithful. Thus we cannot characterize the E-coactions as the coactions
that are “E-normal” in the sense that the map QE is faithful. Furthermore, unlike
with normalization, Remark 6.15 shows that �E is not isomorphic to its composition
with maximalization.

Question 6.19. Let F be a collection of large ideals of B.G/, and let

F D
\

E2F

E:

Then F is a large ideal of B.G/. Is �F a greatest lower bound for the coaction
functors f�E W E 2 Fg? (It is easy to see that �F is a lower bound.) What if we
take F to be the set of all large ideals E of B.G/ for which �E is exact?

Question 6.20. Given a coaction functor � , is there a large ideal E of B.G/ such
that, after restricting to maximal coactions, � is naturally isomorphic to �E? Note
that at the level of objects the statement is false: [Buss and Echterhoff 2014,
Example 5.4] gives a source of examples of a maximal coaction .A; ı/ and a weakly
invariant ideal I � ker qn

A
such that the quotient coaction .A=I; ıI / is not of the

form .AE ; ıE/ for any large ideal E. (Theorem 6.10 of [KLQ 2016] gives related
examples, albeit not involving maximal coactions.)

Here is a related question: do there exist coaction functors that include the Buss–
Echterhoff examples? Such a functor could not be exact, since the Buss–Echterhoff
examples are explicitly based upon short exact sequences whose image under the
quotient maps are not exact. We could ask the same question for the functor �E ,
which, again, is exact for E D B.G/ but not for E D Br .G/.

Question 6.21. For which large ideals E is the coaction functor E-ization exact?
Exactness trivially holds for E D B.G/, since B.G/-ization coincides with max-
imalization. On the other hand, exactness does not always hold for E D Br .G/,
because Gromov has shown the existence of nonexact groups.
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Question 6.22. Let � be the minimal exact and Morita compatible coaction functor.
Applying � to the canonical coaction .C �.G/; ıG/, we get a coaction .C �.G/� ; ı�

G
/,

with a canonical quotient map

q� W C �.G/! C �.G/� :

Then
E� WD .ker q� /?

is a large ideal of B.G/, by [KLQ 2013, Corollary 3.13].
Does the functor � coincide with E� -ization? This is related to the following

question: is

E� D
\
fE WE is a large ideal such that E-ization is exactg?

Again we could ask the analogous questions for �E . See also the discussion in
[Baum et al. 2016, Section 8.1].

Remark 6.23. Related to Question 6.19 above, what if we consider only finitely
many large ideals? Let E and F be two large ideals, and let D DE \F , which is
also a large ideal. Suppose that the coaction functors �E and �F are both exact.

Is �D exact? We proved in Corollary 6.9 that exactness of E implies that D is
the weak*-closed span of the set of products EF , and then we can deduce from
this that if

0 // .I;  /
�
// .A; ı/

 
// .B; "/ // 0

is a short exact sequence of coactions, and if we assume that ı is w-proper in the
sense that .!˝ id/ ı ı.A/� C �.G/ for all ! 2A�, then the sequence

0 // ID �D

// AD  D

// BD // 0

is exact. We see a way to parlay this into a proof that �D is indeed exact, but this
requires a somewhat more elaborate version of Morita compatibility, involving not
only imprimitivity bimodules but more general C �-correspondences. This will
perhaps resemble the property that Buss, Echterhoff and Willett call correspondence
functoriality (see [Buss et al. 2015, Theorem 4.9]). We plan to address this in a
forthcoming publication.

Appendix: B.G /-module lemmas

Every coaction ı W A!M.A˝ C �.G// gives rise to a B.G/-module structure
on A via

f � aD .id˝f / ı ı.a/ for f 2 B.G/; a 2A:
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We feel that this module structure is under-appreciated, and will point out here
several situations in which it makes things easier, since it allows us to avoid
computations with tensor products.

Proposition A.1. Let .A; ı/ and .B; "/ be coactions of G, and let � WA! B be a
homomorphism. Then � is ı� " equivariant if and only if it is a module map, i.e.,

�.f � a/D f ��.a/ for all f 2 B.G/; a 2A:

Proof. First assume that � is ı� " equivariant, and let f 2 B.G/ and a 2A. Then

�.f � a/D �..id˝f / ı ı.a//

D .id˝f /..�˝ id/ ı ı.a//

D .id˝f /." ı�.a//

D f ��.a/:

Conversely, assume that � is a module map, and let a 2 A. Then for every
f 2 B.G/ the above computation shows that

.id˝f /..�˝ id/ ı ı.a//D .id˝f /." ı�.a//;

and it follows that .� ˝ id/ ı ı.a/ D " ı �.a/ since slicing by B.G/ D C �.G/�

separates points of M.B˝C �.G//. �

Proposition A.2. Let .A; ı/ be a coaction, and let I be an ideal of A. Then I is
weakly ı-invariant if and only if it is invariant for the module structure, i.e.,

B.G/ � I � I:

Proof. First assume that I is ı-invariant, and let f 2 B.G/ and a 2 I . We must
show that f � a 2 I . Let q WA!A=I be the quotient map. We have

q.f � a/D q..id˝f /.ı.a///

D .id˝f /..q˝ id/ ı ı.a//

D 0 (since I � ker.q˝ id/ ı ı).

Conversely, assume that I is B.G/-invariant, and let a 2 I . We need to show
that a 2 ker.q˝ id/ ı ı. For every f 2 B.G/ we have f � a 2 I , so

0D q.f � a/D .id˝f /..q˝ id/ ı ı.a//:

It then follows that .q˝ id/ ı ı.a/D 0 since slicing by B.G/ separates points in
M.A˝C �.G//. �
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Remark A.3. It has been noticed elsewhere in the literature that the B.G/-module
structure can be useful in other ways. For example, ı is slice-proper [KLQ 2016,
Definition 5.1] if and only if the maps

f 7! f � a W B.G/!A

are weak*-weak continuous (for a 2 A) [KLQ 2016, Lemma 5.3]. Also, for any
full coaction .A; ı/,

A0 WD spanfA.G/ �Ag

is a C �-subalgebra and a nondegenerate A.G/-submodule of A, where A.G/ is the
Fourier algebra of A, and ı is nondegenerate if and only if A0 DA [Quigg 1994,
Lemma 1.2, Corollary 1.5] (see also [Katayama 1984, Lemma 2]). In the same vein,
[Quigg 1994, Corollary 1.7] says that if B is a nondegenerate A.G/-submodule of
M.A/, then ıjB is a nondegenerate coaction of G on B.
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COHOMOLOGY AND EXTENSIONS OF BRACES

VICTORIA LEBED AND LEANDRO VENDRAMIN

Braces and linear cycle sets are algebraic structures playing a major role
in the classification of involutive set-theoretic solutions to the Yang–Baxter
equation. This paper introduces two versions of their (co)homology theories.
These theories mix the Harrison (co)homology for the abelian group struc-
ture and the (co)homology theory for general cycle sets, developed earlier by
the authors. Different classes of brace extensions are completely classified
in terms of second cohomology groups.

1. Introduction

A (left) brace is an abelian group (A,+) with an additional group operation ◦ such
that for all a, b, c ∈ A, the following compatibility condition holds:

a ◦ (b+ c)+ a = a ◦ b+ a ◦ c.(1-1)

The two group structures necessarily share the same neutral element, denoted by 0.
Braces, in a slightly different but equivalent form, were introduced by Rump [2007];
the definition above goes back to Cedó, Jespers, and Okniński [Cedó et al. 2014].
To get a feeling of what braces look like, and to convince oneself that they are not as
rare in practice as one might think, the reader is referred to Bachiller’s classification
of braces of order p3 [2015a]. The growing interest into these structures is due to a
number of reasons. First, braces generalize radical rings. Second, Catino and Rizzo
[2009] and Catino, Colazzo, and Stefanelli [Catino et al. 2015; 2016] unveiled the
role of an F-linear version of this notion into the classification problem for regular
subgroups of affine groups over a field F. Third, braces are enriched cycle sets, and
are therefore important in the study of set-theoretic solutions to the Yang–Baxter
equation (YBE), as we now recall.

A cycle set, as defined by Rump [2005], is a set X with a binary operation ·
having bijective left translations X→ X , a 7→ b · a, and satisfying the relation

(a · b) · (a · c)= (b · a) · (b · c).(1-2)

MSC2010: 20E22, 20N02, 55N35, 16T25.
Keywords: brace, cycle set, Yang–Baxter equation, extension, cohomology.
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Rump showed that nondegenerate cycle sets (i.e., with invertible squaring map
a 7→ a · a) are in bijection with nondegenerate involutive set-theoretic solutions
to the Yang–Baxter equation. Such solutions form a combinatorially rich class of
structures, connected with many other domains of algebra: semigroups of I-type,
Bieberbach groups, Hopf algebras, Garside groups, etc. The cycle set approach
turned out to be extremely fruitful for elucidating the structure of such solutions
and obtaining classification results (see, for instance, [Cedó et al. 2010a; 2014;
Chouraqui 2010; Dehornoy 2015; Gateva-Ivanova 2015; Gateva-Ivanova and Majid
2008; Gateva-Ivanova and Van den Bergh 1998; Jespers and Okniński 2005; Rump
2007; 2008; 2014; Smoktunowicz 2015a; 2015b; Vendramin 2016] and references
therein). In spite of the intensive ongoing research on cycle sets, their structure is
still far from being completely understood. This can be illustrated by numerous
conjectures and open questions in the area, many of which were formulated by
Gateva-Ivanova and Cameron [Gateva-Ivanova 2004; Gateva-Ivanova and Cameron
2012] and by Cedó, Jespers, and del Río [Cedó et al. 2010b].

Etingof, Schedler, and Soloviev [Etingof et al. 1999] initiated the study of the
structure group of a solution to the YBE — and in particular of a cycle set. These
ideas were further explored in [Lu et al. 2000; Soloviev 2000] for noninvolutive
solutions. Concretely, the structure group G(X, · ) of a cycle set (X, · ) is the free
group on the set X , modulo the relations

(a · b)a = (b · a)b

for all a, b ∈ X.1 In [Etingof et al. 1999], the structure group of a nondegenerate
cycle set (X, · ) was shown to be isomorphic, as a set, to the free abelian group Z(X)

on X ; see also [Lebed and Vendramin 2015] for an explicit graphical form of this
isomorphism. The group G(X, · ) thus carries a second, abelian, group structure —
the one pulled back from Z(X) — and becomes a brace. Moreover, G(X, · ) inherits a
cycle set structure from X , and yields a key example of the following notion. A
linear cycle set is a cycle set (A, · ) with an abelian group operation + satisfying,
for all a, b, c ∈ A, the compatibility conditions

a · (b+ c)= a · b+ a · c,(1-3)

(a+ b) · c = (a · b) · (a · c).(1-4)

This structure also goes back to Rump [2007], who showed it to be equivalent to
the brace structure, via the relation

a · b = a−1
◦ (a+ b).

1Some authors prefer an alternative relation a(a ·b)= b(b ·a), which defines an isomorphic group.
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Understanding structure groups and certain classes of their quotients is often
regarded as a reasonable first step towards understanding cycle sets. Even better:
Bachiller, Cedó, and Jespers [Bachiller et al. 2015a] recently reduced the classifica-
tion problem for cycle sets to that for braces. This explains the growing interest
in braces and linear cycle sets. As pointed out by Bachiller, Cedó, Jespers, and
Okniński [Bachiller et al. 2015b], an extension theory for braces would be crucial
for classification purposes, as well as for elaborating new examples. This served as
motivation for our paper.

Lebed and Vendramin [2015] developed a cohomology theory for general cycle
sets, in which second cohomology groups were given particular attention: they
were shown to encode central cycle set extensions. Here we propose homology and
cohomology theories for linear cycle sets, and thus for braces. As usual, central
linear cycle set extensions turn out to be classified by the second cohomology groups.

For pedagogical reasons, we first study extensions that are trivial on the level of
abelian groups, together with a corresponding (co)homology theory (Sections 2–3).
Such extensions are still of interest, since it is often the cycle set operation that
is the most significant part of the linear cycle set structure (as in the example of
structure groups). On the other hand, they are technically much easier to handle
than the general extensions (Sections 4–5). We therefore found it instructive to
present this “reduced” case before the general one.

When finishing this paper, we learned that an analogous extension theory was
independently developed by Bachiller [2015b], using the language of braces. Some
fragments of it in the F-linear setting also appeared in the work of Catino, Colazzo,
and Stefanelli [2015]. An alternative approach to extensions was suggested earlier
by Ben David and Ginosar [2016]. Concretely, they studied the lifting problem
for bijective 1-cocycles — which is yet another avatar of braces. Their work was
translated into the language of braces by Bachiller [2015a]. Our choice of the
linear cycle set language leads to more transparent constructions. Moreover, it
made possible the development of a full cohomology theory extending the degree 2
constructions motivated by the extension analysis. Such a theory was missing in all
the previous approaches.

2. Reduced linear cycle set cohomology

From now on we work with linear cycle sets (LCS). As explained in the introduction,
all constructions and results can be directly translated into the language of braces.
We will perform this translation for major results only.

Take an LCS (A, · ,+) and an abelian group 0. For n > 0, let RCn(A;0) denote
the abelian group 0⊗Z ZA×n

' 0(A
×n), modulo the linearity relation

(2-1) γ (a1, . . . , an−1, an + a′n)= γ (a1, . . . , an−1, an)+ γ (a1, . . . , an−1, a′n)
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for the last copy of A. Denote by RCD
n (A;0) the abelian subgroup of RCn(A;0)

generated by the degenerate n-tuples, i.e., γ (a1, . . . , an) with ai = 0 for some
1 6 i 6 n. Consider also the quotient RCN

n (A;0) = RCn(A;0)/RCD
n (A;0).

Further, define the maps ∂n : 0A×n
→ 0A×(n−1), n > 1, as the linearizations of

(2-2) ∂n(a1, . . . , an)= (a1 · a2, . . . , a1 · an)

+

n−2∑
i=1

(−1)i (a1, . . . , ai + ai+1, . . . , an)

+ (−1)n−1(a1, . . . , an−2, an).

Complete this family of maps by ∂1 = 0. Dually, for n > 0, let RCn(A;0) denote
the set of maps f : A×n

→ 0 linear in the last coordinate:

(2-3) f (a1, . . . , an−1, an + a′n)= f (a1, . . . , an−1, an)+ f (a1, . . . , an−1, a′n),

and let RCn
N(A;0)⊂ RCn(A;0) comprise the maps vanishing on all degenerate

n-tuples. Define the maps ∂n
: Fun(A×n, 0)→ Fun(A×(n+1), 0), n > 1, by

(2-4) (∂n f )(a1, . . . , an+1)= f (a1 · a2, . . . , a1 · an+1)

+

n−1∑
i=1

(−1)i f (a1, . . . , ai + ai+1, . . . , an+1)

+ (−1)n f (a1, . . . , an−1, an+1).

These formulas resemble the group (co)homology construction for (A,+). We will
now show that they indeed define a (co)homology theory.

Proposition 2.1. Let (A, · ,+) be a linear cycle set and 0 be an abelian group.

(1) The maps ∂• above

– square to zero: ∂n−1∂n = 0 for all n > 1;
– induce maps RCn(A;0)→ RCn−1(A;0);
– and further restrict to maps RCD

n (A;0)→ RCD
n−1(A;0).

(2) The maps ∂• above

– square to zero: ∂n+1∂n
= 0 for all n > 1;

– restrict to maps RCn(A;0)→ RCn+1(A;0);
– and further restrict to maps RCn

N(A;0)→ RCn+1
N (A;0).

The induced or restricted maps from the proposition will be abusively denoted
by the same symbols ∂•, ∂•. In the proof we shall need the special properties of the
zero element of an LCS.

Lemma 2.2. In any LCS A, the relations a · 0= 0 and 0 ·a = a hold for all a ∈ A.
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Proof. By the LCS axioms, one has a ·0= a ·(0+0)= a ·0+a ·0 and hence a ·0= 0.
Similarly, 0 · a = (0+ 0) · a = (0 · 0) · (0 · a)= 0 · (0 · a), and the relation a = 0 · a
follows by canceling out 0 (recall that the left translation 0 · − is bijective). �

Proof of Proposition 2.1. We treat only the homological statements here; they imply
the cohomological ones by duality.

The maps ∂n can be presented as signed sums ∂n =
∑n−1

i=0 (−1)i∂n;i , where

∂n;0(a1, . . . , an)= (a1 · a2, . . . , a1 · an),(2-5)

∂n;i (a1, . . . , an)= (a1, . . . , ai + ai+1, . . . , an), 16 i 6 n− 2,(2-6)

∂n;n−1(a1, . . . , an)= (a1, . . . , an−2, an).(2-7)

The relation ∂n−1∂n = 0 then classically reduces to the “almost commutativity”
∂n−1; j∂n;i = ∂n−1;i∂n; j+1 for all i 6 j . In the case i > 0 this latter relation is either
tautological, or follows from the associativity of + . For i = 0< j , it follows from
the left distributivity (1-3) for A. For i = 0= j , it is a consequence of the second
LCS relation (1-4) for A.

Further, using the linearity (1-3) of the left translations an 7→ a1 · an , one sees
that when applied to expressions of type

( . . . , an−1, an + a′n)− ( . . . , an−1, an)− ( . . . , an−1, a′n),

all the maps ∂n;i yield expressions of the same type. Hence their signed sums ∂•
induce a differential on RC•. The possibility to further restrict to RC•D is guaranteed
by Lemma 2.2. �

Proposition 2.1 legitimizes the following definition:

Definition 2.3. The reduced (resp., normalized) cycles, boundaries, and homology
groups of a linear cycle set (A, · ,+) with coefficients in an abelian group 0 are
those of the chain complex (RC•(A;0), ∂•) (resp., (RC•N(A;0), ∂•)) above. Dually,
the reduced (resp., normalized) cocycles, coboundaries, and cohomology groups
of (A, · ,+) are those of the complex (RC •(A;0), ∂•) (resp., (RC •N(A;0), ∂

•)).
We use the usual notation for these groups: RQn(A;0), RQN

n (A;0), RQn(A;0),
RQn

N(A;0), where Q is one of the letters Z , B, or H.

Remark 2.4. We actually showed that our (co)homology constructions can be
refined into (co)simplicial ones in the proof of Proposition 2.1.

Example 2.5. Recall from the introduction that for a nondegenerate cycle set (X, · ),
the free abelian group (Z(X),+) can be seen as a linear cycle set, with the cycle set
operation induced from · . In this case RC1(Z

(X)
;0) is simply the abelian group

0 ⊗Z Z(X) = 0(X), and for a1, a2 ∈ Z(X) one calculates ∂1(a1, a2) = a1 · a2 − a2.
Standard arguments from LCS theory then yield

RH1(Z
(X)
;0)∼= 0

(Orb(X)),
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where Orb(X) is the set of orbits of X , i.e., classes for the equivalence relation
generated by a1 · a2 ∼ a2 for all a1, a2 ∈ X . Similarly, one calculates the first
reduced cohomology group:

RH 1(Z(X);0)∼= Fun(Orb(X), 0).

We finish with a comparison between the (co)homology of an LCS (A, · ,+)
and the (co)homology of its underlying cycle set (A, · ), as defined in [Lebed and
Vendramin 2015]. Recall that the homology H CS

n (A;0) of (A, · ) is computed by
the complex (0(A

×n), ∂CS
n ), where

∂CS
n (a1, . . . , an)=

n−1∑
i=1

(−1)i−1((ai · a1, . . . , ai · ai−1, ai · ai+1, . . . , ai · an)

− (a1, . . . , ai−1, ai+1, . . . , an)
)
.

Dually, the cohomology H n
CS(A;0) of (A, · ) is computed from the complex

(Fun(A×n, 0), ∂n
CS), with ∂n

CS f = f ◦ ∂CS
n+1.

Denoting by (−1)σ the sign of the permutation σ , define Sn : 0
(A×n)
→ RCn(A;0)

as the composition of the antisymmetrization map

γ (a1, . . . , an) 7→
∑

σ∈Symn−1

(−1)σγ (aσ(1), . . . , aσ(n−1), an)

and the obvious projection 0(A
×n)� RCn(A;0).

Proposition 2.6. Let (A, · ,+) be a linear cycle set and 0 be an abelian group.
The map S defined above yields a map of chain complexes

Sn : (0
(A×n), ∂CS

n )→ (RCn(A;0), ∂n).

Proof. One has to compare the evaluations of the maps ∂n Sn and Sn−1∂
CS
n on

γ (a1, . . . , an). For this, it is convenient to use the decomposition

∂n =

n−1∑
i=0

(−1)i∂n;i

from (2-5)–(2-7). For 0< i < n− 1, the map ∂n;i Sn is zero: in its evaluation, the
terms ±γ ( . . . , a j + ak, . . . ) and ∓γ ( . . . , ak + a j , . . . ), with the sum at the i-th
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position, cancel. A careful sign inspection yields

∂n;0Sn(γ (a1, . . . , an))

=

n−1∑
i=1

(−1)i−1Sn−1(γ (ai · a1, . . . , ai · ai−1, ai · ai+1, . . . , ai · an)),

∂n;n−1Sn(γ (a1, . . . , an))

=

n−1∑
i=1

(−1)n−1−i Sn−1(γ (a1, . . . , ai−1, ai+1, . . . , an)),

hence the maps ∂n Sn and Sn−1∂
CS
n coincide. �

As a consequence, one obtains the dual map

Sn
: (RCn(A;0), ∂n)→ (Fun(A×n, 0), ∂n

CS)

of cochain complexes, and the induced maps in (co)homology.

3. Cycle-type extensions vs. reduced 2-cocycles

We now turn to a study of the reduced 2-cocycles of a linear cycle set (A, · ,+),
i.e., maps f : A× A→ 0 (where 0 is an abelian group) satisfying

f (a, b+ c)= f (a, b)+ f (a, c),(3-1)

f (a+ b, c)= f (a · b, a · c)+ f (a, c),(3-2)

for all a, b, c ∈ A. The last relation, together with the commutativity of + , yields

(3-3) f (a · b, a · c)+ f (a, c)= f (b · a, b · c)+ f (b, c),

implying ∂2
CS( f )= 0, so our f is necessarily a cocycle of the cycle set (A, · ).

Among the reduced 2-cocycles we distinguish the reduced 2-coboundaries

∂1(θ)(a, b)= θ(a · b)− θ(b),

where the map θ : A→ 0 is linear.

Example 3.1. Let A and 0 be abelian groups. Consider the trivial linear cycle set
structure a ·tr b = b over A. A map f : A× A→ 0 is a reduced 2-cocycle of this
LCS if and only if f is a bicharacter, in the sense of the bilinearity relations

f (a+ b, c)= f (a, c)+ f (b, c) and f (a, b+ c)= f (a, b)+ f (a, c).

The reduced 2-coboundaries are all trivial in this case. Thus RH 2(A;0) is the
abelian group of bicharacters of A with values in 0. Observe that for the cycle set
(A, ·tr), all the differentials ∂n

CS vanish. The second cohomology group H 2
CS(A;0)
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of this cycle set thus comprises all the maps f : A× A→ 0, and is strictly larger
than RH 2(A;0).

Example 3.2. Let A= {0, 1, 2, 3} = Z/4 be the cyclic group of 4 elements written
additively. Then A is a brace with

a ◦ b = a+ b+ 2ab and a−1
= (2a− 1)a.

The corresponding linear cycle set structure on A is given by the operation

a · b = a−1
◦ (a+ b)= (1+ 2a)b,

which is b when one of a, b is even, and b+ 2 otherwise. Take 0 = {0, 1} = Z/2.
For a map f : Z/4 × Z/4 → Z/2, relation (3-1) means that f is of the form
f (a, b)= bψ(a) (where the product is taken in Z/2, and b is reduced modulo 2),
for some ψ : Z/4→ Z/2. Relation (3-2) then translates as

ψ(a+ b)= ψ(b+ 2ab)+ψ(a).

The substitution b= 0 yields ψ(0)= 0. Analyzing other values of a and b, one sees
that ψ(1) and ψ(3) can be chosen arbitrarily, and ψ(2) has to equal ψ(1)+ψ(3).
The reduced 2-coboundaries are again trivial: a linear map θ : Z/4 → Z/2 is
necessarily of the form θ(a)= at for some constant t ∈ Z/2, yielding

θ(a · b)= (a · b)t = (1+ 2a)bt = bt = θ(b)

(since 2a = 0 in Z/2). Summarizing, one gets

RH 2(Z/4;Z/2)' Z/2×Z/2.

Let us now turn to the underlying cycle set (Z/4, · ). Playing with (3-3), one verifies
that its 2-cocycles are maps f : Z/4×Z/4→ Z/2 verifying 3 linear relations:

f (0, 1)+ f (0, 3)= 0,

f (2, 1)+ f (2, 3)= 0,

f (1, 1)+ f (1, 3)+ f (3, 1)+ f (3, 3)= 0.

Its only nontrivial 2-coboundary is f (a, b)= ab mod 2. This implies

Z2
CS(Z/4;Z/2)' (Z/2)

4×4−3
= (Z/2)13,

H 2
CS(Z/4;Z/2)' (Z/2)

12.

We will now construct extensions of our LCS A by 0 out of 2-cocycles, show
that any central cycle-type extension is isomorphic to one of this type, and that
reduced 2-cocycles, modulo reduced 2-coboundaries, classify such extensions.
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Lemma 3.3. Let (A, · ,+) be a linear cycle set, let 0 be an abelian group, and let
f : A× A→ 0 be a map. Then the abelian group 0⊕ A with the operation

(γ, a) · (γ ′, a′)= (γ ′+ f (a, a′), a · a′), γ, γ ′ ∈ 0, a, a′ ∈ A

is a linear cycle set if and only if f is a reduced 2-cocycle, i.e., f ∈ RZ2(A;0).

Notation 3.4. The LCS from the lemma is denoted by 0⊕ f A.

Proof. The left translation invertibility for 0⊕ f A follows from to the same prop-
erty for A. Properties (1-3) and (1-4) are equivalent for 0⊕ f A to, respectively,
properties (3-1) and (3-2) from the definition of a 2-cocycle for f . The cycle set
property (1-2) follows from (1-4) and the commutativity of + . �

Lemma 3.3 and the correspondence between linear cycle sets and braces yield
the following result.

Lemma 3.5. Let (A, ◦,+) be a brace, let 0 be an abelian group, and let f :
A× A→ 0 be a map. Then the abelian group 0⊕ A with the product

(γ, a) ◦ (γ ′, a′)= (γ + γ ′+ f (a, a′), a ◦ a′), γ, γ ′ ∈ 0, a, a′ ∈ A,

is a brace if and only if for the corresponding linear cycle set (A, · ,+), the map
f (a, b)= f (a, a · b) is a reduced 2-cocycle.

Before introducing the notion of LCS extensions, we need some preliminary
definitions.

Definition 3.6. A morphism between linear cycle sets A and B is a map ϕ : A→ B
preserving the structure, i.e., for all a, a′ ∈ A one has ϕ(a+a′)= ϕ(a)+ϕ(a′) and
ϕ(a ·a′)= ϕ(a) ·ϕ(a′). The kernel of ϕ is defined by Kerϕ = ϕ−1(0). The notions
of the image Imϕ = ϕ(A), of a short exact sequence of linear cycle sets, and of
linear cycle subsets, are defined in the obvious way. A linear cycle subset A′ of A
is called central if for all a ∈ A, a′ ∈ A′, one has a · a′ = a′ and a′ · a = a.

For a LSC morphism ϕ : A→ B, Kerϕ and Imϕ are clearly linear cycle subsets
of A and B respectively. Lemma 2.2 can be rephrased by stating that {0} is a central
linear cycle subset of A.

Definition 3.7. A central cycle-type extension of a linear cycle set (A, · ,+) by an
abelian group 0 is the datum of a short exact sequence of linear cycle sets

0→ 0
ι
→ E

π
→ A→ 0,(3-4)

where 0 is endowed with the trivial cycle set structure γ · γ ′ = γ ′, its image ι(0) is
central in E (in the sense of Definition 3.6), and the short exact sequence of abelian
groups underlying (3-4) splits.
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The adjective cycle-type refers here to the fact that our extensions are interesting
on the level of the cycle set operation · only, and trivial on the level of the additive
operation + , since we require the short exact sequences to linearly split. More
general extensions — those taking into account the additive operation as well — are
postponed until the next section. Cycle-type extensions are important, for example,
for comparing the LCS structures on the structure group of a cycle set before and
after a cycle set extension; see the introduction for more detail on structure groups,
and [Lebed and Vendramin 2015] for the cycle set extension theory.

The LCS 0⊕ f A from Lemma 3.3 is an extension of A by 0 in the obvious way.
We now show that this example is essentially exhaustive.

Definition 3.8. Two central cycle-type LCS extensions

0
ι
� E

π
� A and 0

ι′

� E ′
π ′

� A

are called equivalent if there exists an LCS isomorphism ϕ : E→ E ′ making the
following diagram commute:

(3-5)

E
π

)) ))
ϕ∼

��
0
55

ι
55

)) ι′

))

A

E ′
π ′ 55 55

The set of equivalence classes of central cycle-type extensions of A by 0 is denoted
by CTExt(A, 0).

Lemma 3.9. Let 0
ι
� E

π
� A be a central cycle-type LCS extension, and s : A→ E

be a linear section of π . Then the map

f̃ : A× A→ E, (a, a′) 7→ s(a) · s(a′)− s(a · a′)

takes values in ι(0) and defines a reduced cocycle f ∈ RZ2(A;0). Extensions E
and 0 ⊕ f A are equivalent. Furthermore, a cocycle f ′ obtained from another
section s ′ of π is cohomologous to f .

Proof. The computation

π( f̃ (a, a′))= πs(a) ·πs(a′)−πs(a · a′)= a · a′− a · a′ = 0

yields Im f̃ ⊆Kerπ = Im ι (by the definition of a short exact sequence). Hence the
map f : A× A→ 0 can be defined by the formula f = ι−1 f̃ . It remains to check
relations (3-1)-(3-2) for this map. The linearity of s and of the left translations
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tb : a 7→ b · a gives

f̃ (a, b+ c)= s(a) · s(b+ c)− s(a · (b+ c))

= s(a) · (s(b)+ s(c))− s(a · b+ a · c)

= s(a) · s(b)+ s(a) · s(c)− s(a · b)− s(a · c)= f̃ (a, b)+ f̃ (a, c).

hence f (a, b+ c)= f (a, b)+ f (a, c), by the linearity of ι. Similarly, one has

f̃ (a+ b, c) = s(a+ b) · s(c)− s((a+ b) · c)

= (s(a)+ s(b)) · s(c)− s((a · b) · (a · c))

= (s(a) · s(b)) · (s(a) · s(c))+ f̃ (a · b, a · c)− s(a · b) · s(a · c)

= f̃ (a · b, a · c)+ ( f̃ (a, b)+ s(a · b)) · (s(a) · s(c))− s(a · b) · s(a · c)
(1)
= f̃ (a · b, a · c)+ s(a · b) · (s(a) · s(c))− s(a · b) · s(a · c)

= f̃ (a · b, a · c)+ s(a · b) · (s(a) · s(c)− s(a · c))

= f̃ (a · b, a · c)+ s(a · b) · f̃ (a, c)
(2)
= f̃ (a · b, a · c)+ f̃ (a, c).

In (1) we got rid of f̃ (a, b) ∈ ι(0) since the centrality of ι(0) yields

( f̃ (a, b)+ x) · y = ( f̃ (a, b) · x) · ( f̃ (a, b) · y)= x · y

for all x, y ∈ E . This centrality was also used in (2). The relation f (a+ b, c)=
f (a · b, a · c)+ f (a, c) is now obtained from the corresponding relation for f̃ by
applying ι−1.

We will next show that the linear map ϕ : 0⊕ f A→ E , γ ⊕ a 7→ ι(γ )+ s(a)
yields an equivalence of extensions. It is bijective, the inverse given by the map
x 7→ ι−1(x−sπ(x))⊕π(x) (this map is well defined since x−sπ(x)∈Kerπ = Im ι).
Let us check that ϕ intertwines the cycle set operations. One has

ϕ((γ ⊕ a) · (γ ′⊕ a′))= ϕ((γ ′+ f (a, a′))⊕ a · a′)= ι(γ ′+ f (a, a′))+ s(a · a′)

= ι(γ ′)+ f̃ (a, a′)+ (s(a) · s(a′)− f̃ (a, a′))

= ι(γ ′)+ s(a) · s(a′)= s(a) · ι(γ ′)+ s(a) · s(a′)

= s(a) · (ι(γ ′)+ s(a′))= (ι(γ )+ s(a)) · (ι(γ ′)+ s(a′))

= ϕ(γ ⊕ a) ·ϕ(γ ′⊕ a′).

We use the centrality of ι(γ ′) and ι(γ ). The commutativity of the diagram (3-5)
is obvious, and completes the proof.

Suppose now that the reduced cocycles f and f ′ are obtained from the sections s
and s ′ respectively. Put θ̃ = s − s ′ : A→ E . This is a linear map with its image
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contained in Kerπ = Im ι. Hence it defines a linear map θ : A→0. To show that f
and f ′ are cohomologous, we establish the property f ′− f = ∂1θ by computing

( f̃ − f̃ ′)(a, a′)= f̃ (a, a′)− f̃ ′(a, a′)

= s(a) · s(a′)− s(a · a′)− s ′(a) · s ′(a′)+ s ′(a · a′)

= s(a) · s(a′)− s(a) · s ′(a′)− θ̃ (a · a′)

= s(a) · (s(a′)− s ′(a′))− θ̃ (a · a′)

= s(a) · θ̃ (a′)− θ̃ (a · a′)
(1)
= θ̃ (a′)− θ̃ (a · a′),

and applying ι−1, where we use the centrality of θ̃ (a′) in (1). �

We now compare extensions constructed out of different 2-cocycles.

Lemma 3.10. Let (A, · ,+) be a linear cycle set, let 0 be an abelian group, and
let f, f ′ ∈ RZ2(A;0) be two reduced 2-cocycles. The linear cycle set extensions
0⊕ f A and 0⊕ f ′ A are equivalent if and only if f and f ′ are cohomologous.

Proof. Suppose that a linear map ϕ : 0⊕ f A→ 0⊕ f ′ A provides an equivalence
of extensions. The commutativity of the diagram (3-5) forces it to be of the form
ϕ(γ ⊕ a)= (γ + θ(a))⊕ a for some linear map θ : A→ 0. Further, one computes

ϕ((γ ⊕ a) · (γ ′⊕ a′))= ϕ((γ ′+ f (a, a′))⊕ a · a′)

= (γ ′+ f (a, a′)+ θ(a · a′))⊕ a · a′,

ϕ(γ ⊕ a) ·ϕ(γ ′⊕ a′)= ((γ + θ(a))⊕ a) · ((γ ′+ θ(a′))⊕ a′)

= (γ ′+ θ(a′)+ f ′(a, a′))⊕ a · a′.

Thus the map ϕ entwines the cycle set operations if and only if f ′ − f is the
coboundary ∂1θ .

In the opposite direction, take cohomologous cocycles f and f ′. This means that
the relation f ′− f = ∂1θ holds for a linear map θ : A→0. Repeating the arguments
above, one verifies that the map ϕ(γ ⊕ a) = (γ + θ(a))⊕ a is an equivalence of
extensions 0⊕ f A→ 0⊕ f ′ A. �

Put together, the preceding lemmas yield:

Theorem 3.11. Let (A, · ,+) be a linear cycle set and 0 be an abelian group. The
construction from Lemma 3.9 yields a bijective correspondence

CTExt(A, 0)
1:1
←→ RH 2(A;0).

We finish this section by observing that in degree 2, the normalization brings
nothing new to the reduced LCS cohomology theory:
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Proposition 3.12. In a linear cycle set (A, · ,+), every reduced 2-cocycle is nor-
malized. Moreover, one has an isomorphism in cohomology:

RH 2(A;0)∼= RH 2
N(A;0).

Proof. Putting a = b = 0 in the defining relation (3-2) for a reduced 2-cocycle f ,
and using the properties of the element 0 from Lemma 2.2, f (0, c)= 0 for all c ∈ A.
Moreover, f (c, 0)= 0 by linearity. So f is normalized, hence the identification

RZ2(A;0)= RZ2
N(A;0).

In degree 1 the normalized and usual complexes coincide, yielding the desired
cohomology group isomorphism in degree 2. �

4. Full linear cycle set cohomology

The previous section treated linear cycle set extensions of the form 0⊕ f A. They
can be thought of as the direct product 0⊕ A of LCS with the cycle set operation ·
deformed by f . From now on we will handle a more general situation: the additive
operation + on 0⊕ A will be deformed as well. Most proofs in this general case
are analogous to but more technical than those from the previous sections.

Take a linear cycle set (A, · ,+) and an abelian group 0. For i > 0, j > 1, let
ShCi, j (A;0) be the abelian subgroup of 0(A

×(i+ j)), generated by the partial shuffles

(4-1)
∑

σ∈Shr, j−r

(−1)σγ (a1, . . . , ai , ai+σ−1(1), . . . , ai+σ−1( j))

taken for all 1 6 r 6 j − 1, ak ∈ A, γ ∈ 0. Here Shr, j−r is the subset of all the
permutations σ of j elements satisfying σ(1)6 · · ·6 σ(r), σ(r +1)6 · · ·6 σ( j).
The term shuffle is used when i = 0. Put

Ci, j (A;0)= 0(A
×(i+ j))/ShCi, j (A;0).

Recall the notation

∂n;0(a1, . . . , an)= (a1 · a2, . . . , a1 · an),(4-2)

∂n;i (a1, . . . , an)= (a1, . . . , ai + ai+1, . . . , an), 16 i 6 n− 1,(4-3)

from the proof of Proposition 2.1, and consider the coordinate omitting maps

(4-4) ∂ ′n;i (a1, . . . , an)= (a1, . . . , ai−1, ai+1, . . . , an), 16 i 6 n.
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Combine (the linearizations of) these maps into what we will show to be horizontal
and vertical differentials of a bicomplex:

∂h
i, j = ∂i+ j;0+

i−1∑
k=1

(−1)k∂i+ j;k + (−1)i∂ ′i+ j;i , i > 1, j > 1;(4-5)

−∂vi, j = ∂
′

i+ j;i+1+

j−1∑
k=1

(−1)k∂i+ j;i+k + (−1) j∂ ′i+ j;i+ j , i > 0, j > 2.(4-6)

Here the empty sums are zero by convention. As before, CD
i, j (A;0) denotes the

abelian subgroup of 0(A
×(i+ j)) generated by the degenerate (i + j)-tuples, and

CN
i, j (A;0) is the quotient 0(A×(i+ j))/(CD

i, j (A;0)+ShCi, j (A;0)).
Dually, for f ∈ Fun(A×(i+ j), 0), put

∂ i, j
h f = f ◦ ∂h

i+1, j and ∂ i, j
v f = f ◦ ∂vi, j+1,

where i > 0, j > 1, and f is extended to Z(A
×(i+ j)) by linearity. Let C i, j (A;0) be

the abelian group of maps A×(i+ j)
→ 0 whose linearization vanishes on all partial

shuffles (4-1) (with γ omitted), and let C i, j
N (A;0)⊆C i, j (A;0) comprise the maps

which are moreover zero on all the degenerate (i + j)-tuples.
We now assemble these data into both chain and cochain bicomplex structures

with normalization.

Theorem 4.1. Let (A, · ,+) be a linear cycle set and 0 be an abelian group.

(1) The abelian groups 0(A
×(i+ j)), i > 0, j > 1, together with the linear maps ∂h

i, j
and ∂vi, j above, form a chain bicomplex. In other words, the following relations
are satisfied:

∂h
i−1, j ∂

h
i, j = 0, i > 2, j > 1;(4-7)

∂vi, j−1∂
v
i, j = 0, i > 0, j > 3;(4-8)

∂h
i, j−1∂

v
i, j = ∂

v
i−1, j ∂

h
i, j , i > 1, j > 2.(4-9)

Moreover, these maps restrict to the subgroups ShCi, j (A;0) and CD
i, j (A;0),

and thus induce chain bicomplex structures on Ci, j (A;0) and CN
i, j (A;0).

(2) The linear maps ∂ i, j
h and ∂ i, j

v yield a cochain bicomplex structure for the
abelian groups Fun(A×(i+ j), 0), i > 0, j > 1. This structure restricts to
C i, j (A;0) and further to C i, j

N (A;0).

We abusively denote the induced or restricted maps from the theorem by the
same symbols ∂•h , ∂•v, etc.

The proof of the theorem relies on the following interpretation of our bicomplex.
Its j -th row is almost the complex from Proposition 2.1, with a slight modification:
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the last entry in an n-tuple, to which the ∂n;i with i >0 did nothing and on which ∂n;0

acted by a left translation an 7→ a1 ·an , is replaced with the j -tuple of last elements
behaving in the same way. In the i-th column, the first i entries of A×(i+•) are never
affected; on the remaining entries the vertical differentials ∂vi,• act as the differentials
from Proposition 2.1 computed for the trivial cycle set operation a · b = b. Alterna-
tively, the i-th column can be seen as the Hochschild complex for (A,+) with coef-
ficients in A×i, on which A acts trivially on both sides. Modding out ShCi, j (A;0)
means passing from the Hochschild to the Harrison complex in each column.

Proof. As usual, it suffices to treat only the homological statements.
Due to the observation preceding the proof, the horizontal relation (4-7) and the

vertical relation (4-8) follow from Proposition 2.1. For the mixed relation (4-9), note
that the horizontal and vertical differentials involved affect, respectively, the first i
and the last j entries of an (i + j)-tuple, with the exception of the ∂n;0 component
of ∂h. However, this component also commutes with ∂v because of the linearity
(with respect to + ) of the left translation a1 · − involved.

Applying a left translation a · − to each entry of a partial shuffle (4-1), one
still gets a partial shuffle. Consequently, the horizontal differentials ∂h restrict
to ShCi, j (A;0). In order to show that the ∂v restrict to ShCi, j (A;0) as well, it
suffices to check that the expression∑
σ∈Shr, j−r

(−1)σ (aσ−1(2), . . . , aσ−1( j))

+

j−1∑
k=1

(−1)k
∑

σ∈Shr, j−r

(−1)σ (aσ−1(1), . . . , aσ−1(k)+ aσ−1(k+1), . . . , aσ−1( j))

+ (−1) j
∑

σ∈Shr, j−r

(−1)σ (aσ−1(1), . . . , aσ−1( j−1))

is a linear combination of shuffles for all j > 1, 16 r 6 j − 1, ak ∈ A. Let S1, S2,
and S3 denote the three sums above, and consider the classical notation

r, j−r (a1, . . . , a j )=
∑

σ∈Shr, j−r

(−1)σ (aσ−1(1), . . . , aσ−1( j))

for shuffles, and the convention 0, j = j,0= Id. Recall also notation (4-3)–(4-4).
The sums Si then rewrite as

S1 = r−1, j−r∂
′

j;1+ (−1)r r, j−r−1 ∂
′

j;r+1,

S3 = (−1)r r−1, j−r ∂
′

j;r + (−1) j
r, j−r−1 ∂

′

j; j ,

S2 =

r−1∑
k=1

(−1)k r−1, j−r ∂j;k +

j−1∑
k=r+1

(−1)k r, j−r−1 ∂ j;k,
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with empty sums declared to be zero. The decomposition for S1 follows from the
analysis of the two possibilities for σ−1(1)with σ ∈Shr, j−r , namely, σ−1(1)=1 and
σ−1(1)= r+1. The decomposition for S3 corresponds to the dichotomy σ−1( j)= r
or σ−1( j) = j . In S3, the summands with σ−1(k) = u 6 r < v = σ−1(k + 1)
and σ−1(k) = v, σ−1(k + 1) = u appear with opposite signs and can therefore
be discarded. The remaining ones can be divided into two classes: those with
σ−1(k) < σ−1(k + 1) 6 r and those with r < σ−1(k) < σ−1(k + 1), giving the
decomposition above. Our Si are thus signed sums of shuffles, with the exception
of the cases r ∈ {1, j − 1}. For r = 1, the nonshuffle terms ∂ ′j;1 and −∂ ′j;1 appear
in S1 and S3 respectively; they annihilate each other in the total sum. The case
r = j − 1 is treated similarly.

The possibility to restrict all the ∂h and ∂v to CD
i, j (A;0) is taken care of, as

usual, by Lemma 2.2. As a consequence, one obtains a chain bicomplex structure
on CN

i, j (A;0). �

We are now in a position to define the full (co)homology of a linear cycle set:

Definition 4.2. The cycles, boundaries, homology groups of a linear cycle set
(A, · ,+)with coefficients in an abelian group 0 are those of the total chain complex(

Cn(A;0)=
⊕

i+ j=n

Ci, j (A;0), ∂n|Ci, j
= ∂h

i, j + (−1)i∂vi, j

)
of the bicomplex above. Dually, the cocycles, coboundaries, cohomology groups of
(A, · ,+) are those of the complex(

Cn(A;0)=
⊕

i+ j=n

C i, j (A;0), ∂n
= ∂∗n+1

)
.

In the normalized case, one uses the complexes(
CN

n (A;0)=
⊕

i+ j=n

CN
i, j (A;0), ∂n

)
and

(
Cn

N(A;0)=
⊕

i+ j=n

C i, j
N (A;0), ∂n

)
.

We use the usual notations Qn(A;0), etc., where Q is one of the letters Z , B, or H.

Remark 4.3. In fact our (co)chain bicomplex constructions can be refined into
bisimplicial ones.

Remark 4.4. Instead of considering the total complex of our bicomplex, one
could start by, say, computing the homology H v

i,• of each column. The horizontal
differentials then induce a chain complex structure on each row H v

•, j . Observe that
the first row is precisely the complex from Proposition 2.1. Its homology is then
the reduced homology of our linear cycle set.
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5. General linear cycle set extensions

Our next step is to describe what a 2-cocycle looks like for the full version of
linear cycle set cohomology theory. Such a 2-cocycle consists of two components
f,g : A×A→0, seen as elements of C1,1(A;0)=Fun(A×A, 0) and C0,2(A;0)=
Sym(A× A, 0), respectively. Here Sym denotes the abelian group of symmetric
maps, i.e., satisfying

(5-1) g(a, b)= g(b, a).

These maps should satisfy three identities, one for each component of

C3(A;0)= C2,1(A;0)⊕C1,2(A;0)⊕C0,3(A;0).

Explicitly, these identities read

f (a+ b, c)= f (a · b, a · c)+ f (a, c),(5-2)

f (a, b+ c)− f (a, b)− f (a, c)= g(a · b, a · c)− g(b, c),(5-3)

g(a, b)+ g(a+ b, c)= g(b, c)+ g(a, b+ c).(5-4)

In particular, f is a 2-cocycle of the cycle set (A, · ), and g is a symmetric 2-cocycle
of the group (A,+). The reduced cocycles are precisely those with g = 0. Further,
the 2-coboundaries are couples of maps

f (a, b)= θ(a · b)− θ(b),(5-5)

g(a, b)= θ(a+ b)− θ(a)− θ(b)(5-6)

for some θ : A→ 0.
We next give some elementary properties of 2-cocycles and 2-coboundaries.

Lemma 5.1. Let ( f, g) be a 2-cocycle of a linear cycle set (A, ·,+) with coeffi-
cients in an abelian group 0.

(1) For all x ∈ A,
f (0, x)= f (x, 0)= 0,

g(0, x)= g(x, 0) = g(0, 0).

(2) The 2-cocycle ( f, g) is normalized if and only if g(0, 0)= 0.

Proof. Let us prove the first claim. The relation f (0, x)= 0 follows from (5-2) by
choosing a = 0. Similarly, the relation f (x, 0)= 0 is (5-3) specialized at b= c= 0.
Substitutions b = 0 and either a = 0 or c = 0 in (5-4) yield the last relation. Now
the second claim directly follows from the previous point. �
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Lemma 5.2. Let (A, · ,+) be a linear cycle set, let 0 be an abelian group, and let
f, g : A× A→ 0 be two maps. Then the set 0× A with the operations

(γ, a)+ (γ ′, a′)= (γ + γ ′+ g(a, a′), a+ a′),

(γ, a) · (γ ′, a′)= (γ ′+ f (a, a′), a · a′)

for γ, γ ′ ∈ 0, a, a′ ∈ A, is a linear cycle set if and only if ( f, g) is a 2-cocycle, i.e.,
( f, g) ∈ Z2(A;0).

Notation 5.3. The LCS from the lemma is denoted by 0⊕ f,g A.

Proof. The left translation invertibility for 0⊕ f,g A follows from the same property
for A. Properties (1-3) and (1-4) for 0 ⊕ f,g A are equivalent to, respectively,
properties (5-3) and (5-2) for ( f, g). The associativity and the commutativity
of + on 0⊕ f,g A are encoded by property (5-4) for 0⊕ f,g A and the symmetry
of g respectively. Finally, if ( f, g) is a 2-cocycle, then Lemma 5.1 implies that
(−g(0, 0), 0) is the zero element for (0⊕ f,g A, +), and the opposite of (γ, a) is
(−γ − g(0, 0)− g(a,−a), −a). �

As we did in Lemma 3.5, we now translate Lemma 5.2 into the language of
braces.

Lemma 5.4. Let (A, ◦,+) be a brace, 0 be an abelian group, and f, g : A×A→0

be two maps. Then the set 0× A with the operations

(γ, a)+ (γ ′, a′)= (γ + γ ′+ g(a, a′), a+ a′),

(γ, a) ◦ (γ ′, a′)= (γ + γ ′+ f (a, a′), a ◦ a′)

for γ, γ ′ ∈ 0, a, a′ ∈ A, is a brace if and only if for the corresponding linear cycle
set (A, · ,+), the maps

(5-7) f (a, b)=− f (a, a · b)+ g(a, b)

and g form a 2-cocycle ( f , g) ∈ Z2(A;0).

Proof. Recall the correspondence a · b = a−1
◦ (a+ b) between the corresponding

brace and LCS operations. It can also be rewritten as a ◦ b = a+ a ∗ b, where the
map a 7→ a ∗ b is the inverse of the left translation a 7→ a · b.

Now, given any ( f , g) ∈ Z2(A;0), the formulas from Lemma 5.2 describe an
LCS structure on 0× A. Its operation ∗ reads

(γ, a) ∗ (γ ′, a′)= (γ ′− f (a, a ∗ a′), a ∗ a′).

The operations

(γ, a)+ (γ ′, a′)= (γ + γ ′+ g(a, a′), a+ a′),



COHOMOLOGY AND EXTENSIONS OF BRACES 209

and
(γ, a) ◦ (γ ′, a′)= (γ, a)+ (γ, a) ∗ (γ ′, a′)

= (γ + γ ′− f (a, a ∗ a′)+ g(a, a ∗ a′), a ◦ a′)

then yield a brace structure on 0× A. These formulas have the desired form, with

f (a, a′)=− f (a, a ∗ a′)+ g(a, a ∗ a′),

which, through the substitution b = a ∗ a′, is equivalent to (5-7).
Conversely, starting from a brace structure on 0× A of the desired form, one

sees that its associated LCS structure is as described in Lemma 5.2 with some
( f , g) ∈ Z2(A;0). Repeating the argument above, one obtains the relation (5-7)
connecting f , f , and g. �

Definition 5.5. A central extension of a linear cycle set (A, · ,+) by an abelian
group 0 is the datum of a short exact sequence of linear cycle sets

(5-8) 0→ 0
ι
→ E

π
→ A→ 0,

where 0 is endowed with the trivial cycle set structure, and its image ι(0) is central
in E (in the sense of Definition 3.6). The notion of equivalence for central cycle-type
LCS extensions (Definition 3.8) transports verbatim to these general extensions. The
set of equivalence classes of central extensions of A by 0 is denoted by Ext(A, 0).

The LCS 0⊕ f,g A from Lemma 5.2 is an extension of A by 0 in the obvious
way. We now show that this example is essentially exhaustive.

Lemma 5.6. Let 0
ι
�E

π
�A be a central LCS extension, and let s : A→ E be a

set-theoretic section of π .

(1) The maps f̃, g̃ : A× A→ E defined by

f̃ : (a, a′) 7→ s(a) · s(a′)− s(a · a′),

g̃ : (a, a′) 7→ s(a)+ s(a′)− s(a+ a′)

both take values in ι(0) and determine a cocycle ( f, g) ∈ Z2(A;0).

(2) The cocycle above is normalized if and only if s is such, in the sense of s(0)= 0.

(3) Extensions E and 0⊕ f,g A are equivalent.

(4) A cocycle ( f ′, g′) obtained from another section s ′ of π is cohomologous to
( f, g). If both cocycles are normalized, then they are cohomologous in the
normalized sense.

Lemma 5.7. Let (A, · ,+) be a linear cycle set, let 0 be an abelian group, and let
( f, g), ( f ′, g′) ∈ Z2(A;0) be 2-cocycles. The linear cycle set extensions 0⊕ f,g A
and 0 ⊕ f ′,g′ A are equivalent if and only if the cocycle ( f, g) − ( f ′, g′) is a
normalized 2-coboundary.
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Recall that a normalized 2-coboundary is a couple of maps of the form ∂1θ ,
where the map θ : A→ 0 is normalized, in the sense of θ(0)= 0.

The proof of these lemmas is technical but conceptually analogous to the proofs
of Lemmas 3.9 and 3.10, and will therefore be omitted.

Put together, the preceding lemmas prove:

Theorem 5.8. Let (A, · ,+) be a linear cycle set and 0 be an abelian group. The
construction from Lemma 5.6 yields a bijective correspondence

Ext(A, 0)
1:1
←→ H 2

N(A;0).

In other words, the central extensions of LCS (and thus of braces) are completely
determined by their second normalized cohomology groups.
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NONCOMMUTATIVE DIFFERENTIALS ON POISSON–LIE
GROUPS AND PRE-LIE ALGEBRAS

SHAHN MAJID AND WEN-QING TAO

We show that the quantisation of a connected simply connected Poisson–Lie
group admits a left-covariant noncommutative differential structure at low-
est deformation order if and only if the dual of its Lie algebra admits a pre-
Lie algebra structure. As an example, we find a pre-Lie algebra structure
underlying the standard 3-dimensional differential structure on Cq[SU2].
At the noncommutative geometry level we show that the enveloping algebra
U(m) of a Lie algebra m, viewed as quantisation of m∗, admits a connected
differential exterior algebra of classical dimension if and only if m admits
a pre-Lie algebra structure. We give an example where m is solvable and
we extend the construction to tangent and cotangent spaces of Poisson–Lie
groups by using bicross-sum and bosonisation of Lie bialgebras. As an ex-
ample, we obtain a 6-dimensional left-covariant differential structure on the
bicrossproduct quantum group C[SU2]IGUλ(su∗2).

1. Introduction

It is well-known following [Drinfeld 1987] that the semiclassical objects underlying
quantum groups are Poisson–Lie groups. This means a Lie group together with a
Poisson bracket such that the group product is a Poisson map. The infinitesimal
notion of a Poisson–Lie group is a Lie bialgebra, meaning a Lie algebra g equipped
with a “Lie cobracket” δ : g→ g⊗ g forming a Lie 1-cocycle and such that its
adjoint is a Lie bracket on g∗. Of the many ways of thinking about quantum groups,
this is a “deformation” point of view in which the coordinate algebra on a group is
made noncommutative, with commutator controlled at lowest order by the Poisson
bracket.

In recent years, the examples initially provided by quantum groups have led to a
significant “quantum groups approach” to noncommutative differential geometry in

Majid was on leave at the Mathematical Institute, Oxford, during 2014 when this work was completed.
Tao was supported by the China Scholarship Council.
MSC2010: 17D25, 58B32, 81R50.
Keywords: noncommutative geometry, quantum group, left-covariant, differential calculus,

bicovariant, deformation, Poisson–Lie group, pre-Lie algebra, (co)tangent bundle, bicrossproduct,
bosonisation.

213

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2016.284-1
http://dx.doi.org/10.2140/pjm.2016.284.213


214 SHAHN MAJID AND WEN-QING TAO

which the next layers of geometry beyond the coordinate algebra are considered,
and often classified with the aid of quantum group symmetry. The most important
of these is the differential structure (also known as the differential calculus) on
the coordinate algebra, expressed normally as the construction of a bimodule �1

of “1-forms” over the (possibly noncommutative) coordinate algebra A and a map
d : A→�1 (called the exterior derivation) satisfying the Leibniz rule. Usually, �1

is required to be spanned by elements of the form a db, where a, b ∈ A. This is
then typically extended to a differential graded algebra (DGA) (�, d) of all degrees
where � is formulated as a graded algebra �=

⊕
i≥0�

i generated by �0
= A, �1,

and d is a degree-one map such that d2
= 0 and the “super-Leibniz rule” holds,

namely d(ξη)= (dξ)η+(−1)nξ dη for all ξ ∈�n, η∈�. The semiclassical version
of what this data means at the Poisson level is known to be a Poisson-compatible
preconnection (or “Lie–Rinehart connection”; see Remark 2.2). The systematic
analysis in [Beggs and Majid 2006] found, in particular, a no-go theorem proving
the nonexistence of a left and right translation-covariant differential structure of
classical dimension on standard quantum group coordinate algebras Cq [G] when
G is the connected and simply connected Lie group of a complex semisimple Lie
algebra g. Beggs and Majid [2010] had a similar result for the nonexistence of
ad-covariant differential structures of classical dimension on enveloping algebras
of semisimple Lie algebras. Such results tied in with experience at the algebraic
level, where one often has to go to higher-dimensional �1, and [Beggs and Majid
2006; 2010] also provided an alternative, namely to consider nonassociative exterior
algebras corresponding to preconnections with curvature. This has been taken up
further in [Beggs and Majid 2014b].

The present paper revisits the analysis focussing more clearly on the Lie algebraic
structure. For left-covariant differentials on a connected and simply connected
Poisson–Lie group, we find (Corollary 4.2) that the semiclassical data exists if
and only if the dual Lie algebra g∗ of the Lie algebra g admits a so-called pre-Lie
structure 4 : g∗⊗ g∗→ g∗. Here a pre-Lie structure is a product obeying certain
axioms such that the commutator is a Lie algebra, such objects also being called left-
symmetric or Vinberg algebras; see [Cartier 2009] and [Burde 2006] for two reviews.
Our result has no contradiction to g being semisimple and includes quantum groups
such as Cq [SU2], where we exhibit the pre-Lie structure that corresponds to its
known 3-dimensional calculus in [Woronowicz 1989].

Even better, the duals g∗ for all the quantum groups Cq [G] are known to be
solvable [Majid 1990a] and it may be that all solvable Lie algebras admit pre-Lie
algebra structures, a question posed by Milnor; see [Burde 2006]. This suggests
for the first time a systematic route to the construction of left-covariant differential
calculi for all Cq [G], currently an unsolved problem. We build on the initial analysis
of this example in [Beggs and Majid 2006]. Next, for the calculus to be both left
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and right covariant (i.e., bicovariant), we find an additional condition (4-6) on 4
which we relate to infinitesimal or Lie-crossed modules with the coadjoint action;
see Theorems 3.1 and 4.1.

The paper also covers in detail the important case of the enveloping algebra
U (m) of a Lie algebra m, viewed as a quantisation of m∗. This is a Hopf algebra
so, trivially, a quantum group, and our theory applies with g = m∗ an abelian
Poisson–Lie group with its Kirillov–Kostant Poisson bracket. In fact our result in
this example turns out to extend canonically to all orders in deformation theory, not
just the lowest semiclassical order. We show (Proposition 4.4) that U (m) admits
a connected bicovariant differential exterior algebra of classical dimension if and
only if m admits a pre-Lie structure. The proof builds on results in [Majid and
Tao 2015b]. We do not require ad-invariance but the result excludes the case that
m is semisimple since semisimple Lie algebras do not admit pre-Lie structures
[Burde 1994]. The m that are allowed do, however, include solvable Lie algebras
of the form [xi , t] = xi , which have been extensively discussed for the structure of
“quantum spacetime” (here xi and t are now viewed as space and time coordinates,
respectively), most recently in [Beggs and Majid 2014a]. In the 2-dimensional
case we use the known classification of 2-dimensional pre-Lie structures over C in
[Burde 1998] to classify all possible left-covariant differential structures of classical
dimension. This includes the standard calculus previously used in [Beggs and Majid
2014a] as well as some other differential calculi in the physics literature [Meljanac
et al. 2012]. The 4-dimensional case and its consequences for quantum gravity are
explored in our related paper [Majid and Tao 2015a].

We then apply our theory to the quantisation of the tangent bundle and cotangent
bundle of a Poisson–Lie group. In Section 5, we recall the use of the Lie bialgebra
g of a Poisson–Lie group G to construct the tangent bundle as a bicrossproduct
of Poisson–Lie groups and its associated “bicross-sum” of Lie bialgebras [Majid
1995]. Our results (see Theorem 5.6) then suggest a full differential structure,
not only at semiclassical level, on the associated bicrossproduct quantum groups
C[G]IGUλ(g

∗) in [Majid 1990a; 1990b; 1995]. We prove this in Proposition 5.7
and give C[SU2]IGUλ(su∗2) in detail. Indeed, these bicrossproduct quantum groups
were exactly conceived in the 1980s as quantum tangent spaces of Lie groups. In
Section 6, we use a pre-Lie structure on g∗ to make g into a braided-Lie biaglebra
[Majid 2000] (see Lemma 6.1). The Lie bialgebra of the cotangent bundle becomes
a “bosonisation” in the sense of [Majid 2000] and we construct in some cases a
natural preconnection for the semiclassical differential calculus. As before, we
cover abelian Lie groups with the Kirillov–Kostant Poisson bracket and a restricted
class of quasitriangular Poisson–Lie groups as examples.

Most of the work in the paper is at the semiclassical level but occasionally we
have results about differentials at the Hopf algebra level as in [Woronowicz 1989],
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building on [Majid and Tao 2015b]. We recall that a Hopf algebra A is an algebra
equipped with a compatible coalgebra and an “antipode” S in the role of inverse.
We denote the coproduct 1 : A→ A⊗ A by the Sweedler notation 1a = a(1)⊗a(2).
A differential calculus (�1, d) on a Hopf algebra is called left-covariant if �1

is a left A-comodule with coaction 1L : �
1
→ A ⊗�1 satisfying 1L(a db) =

a(1)b(1)⊗ a(2)db(2) for all a, b ∈ A. Similarly for a right-covariant calculus with
structure map 1R : �

1
→ �1

⊗ A satisfying 1R(adb) = a(1)db(1) ⊗ a(2)b(2). A
calculus is bicovariant if it is both left- and right-covariant. A left-covariant calculus
can always be put in the form �1

= A⊗31 as a left A-module, where 31 is the
space of invariants under the left coaction, and in the bicovariant case extends
canonically to a differential graded algebra � [Woronowicz 1989].

2. Preliminaries

2A. Deformation of noncommutative differentials. We follow the setting given in
[Beggs and Majid 2006]. Let M be a smooth manifold and consider the deformation
of the coordinate algebra C∞(M) by replacing the usual commutative point-wise
multiplication (usually omitted) with a new multiplication • of the form a • b =
ab + O(λ) for all a, b ∈ C∞(M). The noncommutativity of the new product
can be expressed in a bracket { , } : C∞(M) ⊗ C∞(M) → C∞(M) defined by
[a, b]• = a • b − b • a = λ{a, b} + O(λ2). We assume that we are working in a
deformation setting where we can equate order by order in λ. Then it is well-known
that the new product • is associative up to order O(λ2) if and only if the bracket { , }
is a Poisson bracket. We denote the associated bivector by π , so {a, b} = π(da, db).

In the same spirit, however, one can likewise consider the deformation of differ-
ential forms. The n-forms �n(M) and exterior algebra �(M) are identified with
their classical counterparts as vector spaces. But now �1(M) is equipped with
new left/right actions a • τ = aτ + O(λ) and τ • a = τa + O(λ). The deformed
derivation d• :�n(M)→�n+1(M) is of the form d•a = da+O(λ). Define a linear
map γ : C∞(M)⊗�1(M)→�1(M) by

a • τ − τ • a = [a, τ ]• = λγ (a, τ )+ O(λ2).

It was shown in [Hawkins 2004; Beggs and Majid 2006] that for �1(M) with
new left/right actions to be a (C∞(M), • )-bimodule up to order O(λ2) requires the
associated map γ to satisfy

γ (ab, τ )= γ (a, τ )b+ aγ (b, τ ),(2-1)

γ (a, bτ)= bγ (a, τ )+{a, b}τ.(2-2)

If d• is a derivation up to order O(λ2), then γ should also satisfy

(2-3) d{a, b} = γ (a, db)− γ (b, da),
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where d : C∞(M)→�1(M) is the usual exterior derivation.

Definition 2.1. Any map γ :C∞(M)⊗�1(M)→�1(M) satisfying (2-1) and (2-2)
is called a preconnection on M . A preconnection γ is said to be Poisson-compatible
if (2-3) also holds.

Such preconnections can arise by pullback along the map that associates a Hamil-
tonian vector fields â={a,−} to a function a ∈C∞(M), i.e., γ (a,−)=∇â for a co-
variant derivative defined at least along Hamiltonian vector fields, in which case the
remaining (2-3) appears as a constraint on its torsion. From the analysis above, we
see that a Poisson-compatible preconnection controls the noncommutativity of func-
tions and 1-forms, and thus plays a vital role in deforming a differential graded alge-
bra�(M) at lowest order, parallel to the Poisson bracket for C∞(M) at lowest order.

Remark 2.2. As pointed out by the referee, a Poisson-compatible preconnection
in Definition 2.1 can be seen as an example of a Lie–Rinehart connection; cf.
[Huebschmann 1990]. If M is a Poisson manifold then the pair (C∞(M),�1(M))
forms a Lie–Rinehart algebra with�1(M) a Lie algebra by [da, db]= d{a, b} for all
a, b∈C∞(M), where (�1(M), [ , ]) acts on C∞(M) by (da)Fb=π(da, db)={a,b}
for all a, b ∈ C∞(M). In this context we can consider a Poisson-compatible
preconnection as a covariant derivative ∇η along 1-forms η ∈�1 by ∇da = γ (a,−)
extended C∞(M)-linearly, i.e., a Lie–Rinehart connection in this context. Here
(2-2) appears as the connection property ∇η(aτ)= π(η, da)τ + a∇ητ while (2-3)
appears as the further property [η, τ ] = ∇ητ −∇τη for all η, τ ∈�1(M).

2B. Poisson–Lie groups and Lie bialgebras. Throughout the paper, we mainly
work over a Poisson–Lie group G and its Lie bialgebra g. By definition, the Poisson
bracket { , } : C∞(G)⊗C∞(G)→ C∞(G) is determined uniquely by a so-called
Poisson bivector π = π (1)⊗π (2), i.e., {a, b} = π (1)(da)π (2)(db). Then g is a Lie
bialgebra with Lie cobracket δ : g→ g⊗ g given by

δ(x)= d
dt
π (1)(g)g−1

⊗π (2)(g)g−1
∣∣∣
t=0
,

where g = exp t x ∈ G for any x ∈ g. The map δ is a Lie 1-cocycle with respect
to the adjoint action, and extends to group 1-cocycles D(g) = (Rg−1)∗π(g) with
respect to the left adjoint action and D∨(g)= (Lg−1)∗π(g) with respect to the right
adjoint action, respectively. Here D∨ and D are related by D∨(g)= Adg−1 D(g)
and thus are equivalent. We recall that a left group cocycle means

D(uv)= D(u)+Adu(D(v)) for all u, v ∈ G, D(e)= 0.

When G is connected and simply connected, one can recover D for a given δ by
solving

dD(x̃)(g)= Adg(δx), D(e)= 0,
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where x̃ is the left-invariant vector field corresponding to x ∈ g. We then recover
the Poisson bracket by π(g)= Rg∗(D(g)) for all g ∈ G. These notions are due to
Drinfeld and an introduction can be found in [Majid 1995].

For convenience, we recall that a left g-module over a Lie algebra g is a vec-
tor space V together with a linear map F : g ⊗ V → V such that [x, y] F v =
x F (y F v)− y F (x F v) for all x, y ∈ g and v ∈ V . Dually, a left g-comodule over a
Lie coalgebra (g, δ) is a vector space V together with a linear map α : V → g⊗ V
such that (δ⊗id)◦α= ((id−τ)⊗id)◦(id⊗δ)◦α. Over a Lie bialgebra (g, [ , ], δ), a
left g-crossed module (V, F, α) is both a left g-module (V, F) and a left g-comodule
(V, α) such that

α(x F v)= ([x, ]⊗ id+id⊗ xF)α(v)+ δ(x) F v

for any x ∈ g, v ∈ V . When g is finite-dimensional, the notion of a left g-crossed
module is equivalent to a left g-module (V, F) that admits a left g∗op-action F′

satisfying

(2-4) φ(1) F
′ v〈φ(2), x〉+ x(1) F v〈φ, x(2)〉 = x F (φ F′ v)−φ F′ (x F v)

for any x ∈ g, φ ∈ g∗ and v ∈ V , where the left g∗op-action F′ corresponds to the
left g-coaction α above via φ F′ v= 〈φ, v(1)〉v(2) with α(v)= v(1)⊗v(2). Therefore,
a left g-crossed module is precisely a left D(g)-module, where D(g) is the Drinfeld
double of g; see [Majid 1995]. For brevity, we call a left g-module V with linear
map F′ : g∗⊗ V → V (not necessarily an action) such that (2-4) holds a left almost
g-crossed module.

2C. Left-covariant preconnections. The algebra of functions on a Poisson–Lie
group G typically deforms to a noncommutative Hopf algebra A and a semiclassical
analysis of the covariance of a differential structure was initiated in [Beggs and Majid
2006] in terms of preconnection γ . By definition, a preconnection γ is said to be
left-covariant (right-covariant, or bicovariant) if the associated differential calculus
on (C∞(G), • ) is left-covariant (right-covariant, or bicovariant) over (C∞(G), • )
up to O(λ2). [Beggs and Majid 2006, Lemma 4.3] gives a precise characterisation
of this in terms of a map 4 as follows.

We first explain the notations used in [Beggs and Majid 2006]. We recall that there
is a one-to-one correspondence between 1-forms �1(G) and C∞(G, g∗), the set of
smooth sections of the trivial g∗ bundle. For any 1-form τ , define τ̃ ∈C∞(G, g∗) by
letting τ̃g= L∗g(τg). Conversely, any s∈C∞(G, g∗) defines an 1-form (denoted by ŝ)
by setting ŝg= L∗g−1(s(g)). In particular, we know da ∈�1(G) and d̃a ∈C∞(G, g∗)
for any a ∈ C∞(G). Denote d̃a by L̂a , then

〈L̂a(g), v〉 = 〈d̃a(g), v〉 = 〈L∗g((da)g), v〉 = 〈(da)g, (Lg)∗v〉 = (Lg)∗(v)a,
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which is the directional derivation of a with respect to v ∈ g at g.
Using the above notations, a preconnection γ can now be rewritten on g∗-valued

functions as γ̃ : C∞(G)×C∞(G, g∗)→ C∞(G, g∗) by letting γ̃ (a, τ̃ )= γ̃ (a, τ ).
Note that for any φ,ψ ∈ g∗ and g ∈ G, there exist a ∈ C∞(G), s ∈ C∞(G, g∗)
such that L̂a(g)= φ and s(g)=ψ . One can define a map 4̃ : G×g∗×g∗→ g∗ by

γ̃ (a, s)(g)= {a, s}(g)+ 4̃(g, L̂a(g), s(g)).

For brevity, the notation for the Poisson bracket is extended to include g∗-valued
functions on one side.

Beggs and Majid [2006, Proposition 4.5] show that a preconnection γ is left-
covariant if and only if 4̃(gh, φ, ψ)= 4̃(h, φ, ψ) for any g, h ∈ G and φ, ψ ∈ g∗.
Hence for a left-covariant preconnection the map 4̃ defines a map 4 : g∗⊗g∗→ g∗

by 4(φ,ψ)= 4̃(e, φ, ψ) and conversely, given 4 : g∗⊗ g∗→ g∗,

(2-5) γ̃ (a, s)(g)= {a, s}(g)+4(L̂a(g), s(g))

defines the corresponding left-covariant preconnection γ . In addition, Beggs and
Majid [2006, Proposition 4.6] show that a left-covariant preconnection is Poisson-
compatible if and only if the corresponding 4 obeys

(2-6) 4(φ,ψ)−4(ψ, φ)= [φ,ψ]g∗

for all φ,ψ ∈ g∗.
Based on these results, we can write down a formula for the preconnection γ in

coordinates. Let {ei } be a basis of g and { f i
} be the dual basis of g∗. Let {ωi

} be
the basis of left-invariant 1-forms that is dual to {∂i } the left-invariant vector fields
(generated by {ei }) of G. Then the Maurer–Cartan form is

ω =
∑

i

ωi ei ∈�
1(G, g).

For any η =
∑

i ηiω
i
∈ �1(G) with ηi ∈ C∞(G), we know η corresponds to

η̃=
∑

i ηi f i
∈C∞(G, g∗). On the other hand, any s =

∑
i si f i

∈C∞(G, g∗) with
si ∈ C∞(G) corresponds to ŝ =

∑
i siω

i
∈�1(G). In particular, d̃a =

∑
i (∂i a) f i .

For any a ∈ C∞(G) and τ =
∑

i τiω
i
∈�1(G), we know {a, τ̃ } =

∑
i {a, τi } f i

and

4(d̃a(g), τ̃ (g))=4
(∑

i

(∂i a)(g) f i ,
∑

j

τ j (g) f j
)

=

∑
i, j

(∂i a)(g)τ j (g)4( f i , f j )

=

∑
i, j,k

(∂i a)(g)τ j (g)〈4( f i , f j ), ek〉 f k,
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so

γ̃ (a, τ̃ )=
∑

k

(
{a, τk}+

∑
i, j

(∂i a)τ j 〈4( f i , f j ), ek〉

)
f k .

If we write 4i j
k = 〈4( f i , f j ), ek〉 (or 4( f i , f j )=

∑
k 4

i j
k f k) for any i, j, k, then

we have

(2-7) γ (a, τ )=
∑

k

(
{a, τk}+

∑
i, j

4
i j
k (∂i a)τ j

)
ωk .

In particular, we have a more handy formula,

(2-8) γ (a, ω j )=
∑
i,k

(∂i a)〈4( f i , f j ), ek〉ω
k
=

∑
i,k

4
i j
k (∂i a)ωk for all j.

3. Bicovariant preconnections

Beggs and Majid [2006, Theorem 4.14] show that γ is bicovariant at the Poisson–Lie
group level if and only if

(3-1) 4(φ,ψ)−Ad∗g−1 4(Ad∗g φ,Ad∗g ψ)= φ(g
−1π (1)(g)) ad∗g−1π (2)(g) ψ

for all g ∈ G and φ,ψ ∈ g∗. We now give a new characterisation in terms of Lie
bialgebra-level data.

Theorem 3.1. Let G be a connected and simply connected Poisson–Lie group. A
left-covariant preconnection on G determined by 4 : g∗⊗ g∗→ g∗ is bicovariant if
and only if (ad∗,−4) makes g∗ into a left almost g-crossed module, or explicitly,

(3-2) ad∗x 4(φ,ψ)−4(ad∗x φ,ψ)−4(φ, ad∗x ψ)= φ(x(1)) ad∗x(2)(ψ)

for all x ∈ g and φ,ψ ∈ g∗, where δ(x)= x(1)⊗ x(2). This is equivalent to

(3-3) δg∗4(φ,ψ)−4(φ(1), ψ)⊗φ(2)−4(φ,ψ(1))⊗ψ(2) = ψ(1)⊗[φ,ψ(2)]g∗

for all φ,ψ ∈ g∗.

Proof. We first show the “only if” part. To obtain the corresponding formula at the
Lie algebra level for (3-1), we substitute g with exp t x and differentiate at t = 0.
Notice that d Ad∗(exp t x)/dt |t=0 = ad∗x and Ad∗(exp t x)|t=0 = idg∗ . This gives
(3-2) as stated, where δ(x)= x(1)⊗ x(2)= dg−1 P(g)/dt |t=0 when g= exp t x . Now
denote ad∗x by xF and let −4(φ, ) = φF, the left g∗op-action; then the left-hand
side of (3-2) becomes

−x F (φ Fψ)+φ(1) Fψ〈φ(2), x〉+φ F (x Fψ),
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while the right-hand side is

φ(x(1)) ad∗x(2)(ψ)=−φ(x(2)) ad∗x(1)(ψ)=−x(1) Fψ〈φ, x(2)〉.

Hence (3-2) is the content of

φ(1) Fψ〈φ(2), x〉+ x(1) Fψ〈φ, x(2)〉 = x F (φ Fψ)−φ F (x Fψ)

in our case, i.e., that g∗ is a left almost g-crossed module under (ad∗,−4).
Conversely, we can exponentiate x near zero, and solve the ordinary differential

equation (3-2) near g = e. It has a unique solution (3-1) near the identity. Since the
Lie group G is connected and simply connected, one can show that (3-1) is valid
on the whole group.

Notice that ad∗x φ = φ(1)〈φ(2), x〉 for any x ∈ g and φ ∈ g∗, so the left-hand side
of (3-2) becomes

−4(φ,ψ)(1)〈4(φ,ψ)(2), x〉−4(φ(1), ψ)〈φ(2), x〉−4(φ,ψ(1))〈ψ(2), x〉,

while the right-hand side of (3-2) is

φ(x(1))ψ(1)〈ψ(2), x(2)〉 = ψ(1)〈[φ,ψ(2)]g∗, x〉,

thus (3-2) is equivalent to (3-3) by using the duality pairing between g and g∗. �

4. Flat preconnections

As in [Beggs and Majid 2006], the curvature of a preconnection γ is defined on
Hamiltonian vector fields x̂ = {x,−} by

R(x, y)τ = γ (x, γ (y, τ ))− γ (y, γ (x, τ ))− γ ({x, y}, τ ) for all τ ∈�1(G),

which agrees with the covariant derivative curvature along Hamiltonian vector
fields x̂ , ŷ when this applies, on noting that [x̂, ŷ] = {x̂, y}. The curvature of a
preconnection reflects the obstruction to the Jacobi identity on any functions x, y
and 1-form τ up to third order, namely

[x, [y, τ ]•]•+ [y, [τ, x]•]•+ [τ, [x, y]•]• = λ2 R(x̂, ŷ)(τ )+ O(λ3).

This is the deformation-theoretic meaning of curvature in this context. We say a
preconnection is flat if its curvature is zero. This takes a similar form in terms of γ̃ ,
namely

(4-1) γ̃ (x, γ̃ (y, s))− γ̃ (y, γ̃ (x, s))− γ̃ ({x, y}, s)= 0

for all x, y ∈ C∞(G) and s ∈ C∞(G, g∗).

Theorem 4.1. Let G be a connected and simply connected Poisson–Lie group with
Lie algebra g and γ a Poisson-compatible left-covariant preconnection.
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(i) γ is flat if and only if the corresponding map −4 is a right g∗-action (or left
g∗op-action) on g∗,

(4-2) 4([φ,ψ]g∗, ζ )=4(φ,4(ψ, ζ ))−4(ψ,4(φ, ζ )) for all φ,ψ, ζ ∈ g∗.

(ii) γ is bicovariant and flat if and only if (ad∗,−4) makes g∗ a left g-crossed
module.

Proof. Let γ be a Poisson-compatible left-covariant preconnection on a Poisson–Lie
group G. Firstly, we can rewrite formula (4-1) in terms of 4 : g∗⊗ g∗→ g∗. By
definition, the three terms in (4-1) become

γ̃ (x, γ̃ (y, s))(g)= {x, {y, s}}(g)+{x, 4(L̂ y(g), s(g))}

+4(L̂ x(g), {y, s}(g))+4
(
L̂ x(g),4(L̂ y(g), s(g))

)
,

γ̃ (y, γ̃ (x, s))(g)= {y, {x, s}}(g)+{y, 4(L̂ x(g), s(g))}

+4(L̂ y(g), {x, s}(g))+ 4
(
L̂ y(g),4(L̂ x(g), s(g))

)
,

and
γ̃ ({x, y}, s)(g)= {{x, y}, s}(g)+4(L̂{x,y}(g), s(g)).

Cancelling terms involving the Jacobi identity of a Poisson bracket, formula (4-1)
becomes

{x, 4(L̂ y(g), s(g))}+4(L̂ x(g), {y, s}(g))+4
(
L̂ x(g),4(L̂ y(g), s(g))

)
−{y, 4(L̂ x(g), s(g))}−4(L̂ y(g), {x, s}(g))−4

(
L̂ y(g),4(L̂ x(g), s(g))

)
=4(L̂{x,y}(g), s(g)).

Note that since γ is Poisson-compatible, this implies

L̂{x,y}(g)= γ̃ (x, L̂ y)(g)− γ̃ (y, L̂ x)(g)

= {x, L̂ y}(g)+4(L̂ x(g), L̂ y(g))−{y, L̂ x}(g)−4(L̂ y(g), L̂ x(g)).

and {x, 4(L̂ y(g), s(g)}=4({x, L̂ y}(g), s(g))+4(L̂ y(g), {x, s}(g)) by the deriva-
tion property of {x,−}. In this case (4-1) is equivalent to

(4-3) 4(L̂ x(g),4(L̂ y(g), s(g)))−4
(
L̂ y(g),4(L̂ x(g), s(g))

)
=4

(
4(L̂ x(g), L̂ y(g))−4(L̂ y(g), L̂ x(g)), s(g)

)
for all x, y ∈ C∞(G) and s ∈ C∞(G, g∗).

Now if γ is flat, we can evaluate this equation at the identity e of G, and for any
φ,ψ, ζ ∈ g∗, set φ = L̂ x(e), ψ = L̂ y(e) and ζ = s(e) for some x, y ∈ C∞(G) and
s ∈ C∞(G, g∗). Then (4-3) becomes

4(4(φ,ψ)−4(ψ, φ), ζ )=4(φ,4(ψ, ζ ))−4(ψ,4(φ, ζ )).
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Using compatibility again, we get (4-2) as displayed. This also shows 4 is a left
g∗-action on itself, or g∗ is a left g∗op-module via −4.

Conversely, if g∗ is a left g∗op-module via F : g∗ ⊗ g∗ → g∗ and such that
−φFψ+ψFφ=[φ,ψ]g∗ , i.e., (4-2) holds. This implies (4-3) for any x, y∈C∞(G),
s ∈ C∞(G, g∗), which is equivalent to (4-1).

The second part of the theorem combines the first part with Theorem 3.1. �

4A. Preconnections and pre-Lie algebras. Now we recall the notion of a left pre-
Lie algebra (also known as a Vinberg algebra or left symmetric algebra). An algebra
(A, ◦ ), not necessarily associative, with product ◦ : A⊗ A→ A is called a (left)
pre-Lie algebra if the identity

(4-4) (x ◦ y) ◦ z− (y ◦ x) ◦ z = x ◦ (y ◦ z)− y ◦ (x ◦ z)

holds for all x, y, z ∈ A. From the definition, every associative algebra is a pre-Lie
algebra and meanwhile every pre-Lie algebra (A, ◦ ) admits a Lie algebra structure
(denoted by gA) with Lie bracket given by

(4-5) [x, y]gA := x ◦ y− y ◦ x

for all x, y ∈ A. The Jacobi identity of [ , ]gA holds automatically due to (4-4). With
this in mind, we can rephrase Theorems 3.1 and 4.1 as follows.

Corollary 4.2. A connected and simply connected Poisson–Lie group G with Lie
algebra g admits a Poisson-compatible left-covariant flat preconnection if and
only if (g∗, [ , ]g∗) admits a pre-Lie structure 4. Moreover, this left-covariant
preconnection is bicovariant if and only if 4 in addition obeys

(4-6) δg∗4(φ,ψ)−4(φ,ψ(1))⊗ψ(2)−ψ(1)⊗4(φ,ψ(2))

=4(φ(1), ψ)⊗φ(2)−ψ(1)⊗4(ψ(2), φ)

for all φ,ψ ∈ g∗.

Proof. The first part is shown by (2-6) and (4-2). For the bicovariant case, the
additional condition on 4 is (3-3). Using compatibility and rearranging terms, we
know that (3-3) is equivalent to (4-6) as displayed. �

Example 4.3. Let m be a finite-dimensional Lie algebra and G =m∗ be an abelian
Poisson–Lie group with its Kirillov–Kostant Poisson–Lie group structure {x, y} =
[x, y] for all x, y ∈m⊂C∞(m∗) or S(m) in an algebraic context. By Corollary 4.2,
this admits a Poisson-compatible left-covariant flat preconnection if and only if m
admits a pre-Lie algebra structure ◦. This preconnection is always bicovariant as
(4-6) vanishes when Lie algebra m∗ is abelian (δm = 0). Then (2-7) with 4 = ◦
implies

γ (x, dy)= d(x ◦ y) for all x, y ∈m.
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(Note that d̃y is a constant-valued function in C∞(G,m), so {x, d̃y} ≡ 0 and
γ̃ (x, d̃y)=4(x, y).)

In fact the algebra and its calculus in this example work to all orders. Thus the
quantisation of C∞(m∗) is Uλ(m), defined as a version of the enveloping algebra
with relations xy− yx = λ[x, y] for all x, y ∈m, where we introduce a deformation
parameter. If m has an underlying pre-Lie structure then the above results lead to
relations

[x, dy] = λ d(x ◦ y) for all x, y ∈m,

and one can check that this works exactly and not only to order λ precisely as a
consequence of the pre-Lie algebra axiom. The full result here is:

Proposition 4.4. Let m be a finite-dimensional Lie algebra over a field k of char-
acteristic zero. Then connected bicovariant calculi �1 of classical dimension (i.e.,
dim31

=dimm) on the enveloping algebra U (m) are in one-to-one correspondence
with pre-Lie structures on m.

Proof. A differential calculus is said to be connected if ker d= k1 (as for a connected
manifold classically). It is clear from [Majid and Tao 2015b, Propositions 2.11
and 4.7] that a bicovariant differential graded algebra on U (m) with left-invariant
1-forms m as a vector space corresponds to a 1-cocycle Z1

G
(m,m) that extends to a

surjective right m-module map ω :U (m)+→m. Here the derivation

d :U (m)→�1(U (m))=U (m)⊗m

is given by da = a(1) ⊗ ω(π(a(2))) for any a ∈ U (m). Suppose that ω is such a
map; we take ζ = ω|m ∈ Z1

G
(m,m). For any x ∈ m such that ζ(x) = 0, we have

dx = 1⊗ω(x) = 0, then ker d = k1 implies x = 0, so ζ is an injection, hence a
bijection as m is finite-dimensional. Now we can define a product ◦ :m⊗m→m

by x ◦ y =−ζ−1(ζ(y)G x). The 1-cocycle property ζ([x, y])= ζ(x)G y− ζ(y)G x
implies [x, y] = ζ−1(ζ(x)G y− ζ(y)G x)=−y ◦ x + x ◦ y for all x, y ∈m. Hence
this makes m into a left pre-Lie algebra as

[x, y] ◦ z =−ζ−1(ζ(z) G [x, y])
= ζ−1((ζ(z) G y) G x)− ζ−1((ζ(z) G x) G y)
= x ◦ (y ◦ z)− y ◦ (x ◦ z).

Conversely, if m admits a left pre-Lie structure ◦, then y G x = −x ◦ y makes
m into a right m-module and ζ = idm, the identity map, becomes a bijective 1-
cocycle in Z1

G
(m,m). The extended map ω : U (m)+ → m and the derivation

d :U (m)→U (m)⊗m are given by ω(x1x2 · · · xn)= ((x1 G x2) G · · · G xn) for any
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x1x2 · · · xn ∈U (m)+ and

d(x1x2 · · · xn)=

n−1∑
p=0

∑
σ∈Sh(p,n−p)

xσ(1) · · · xσ(p)⊗ω(xσ(p+1) · · · xσ(n))

for any x1x2 · · · xn ∈ U (m), respectively. We need to show that ker d = k1. On
the one hand, k1 ⊆ ker d, as d(1) = 0. On the other hand, denote by Un(m) the
subspace of U (m) generated by the products x1x2 · · · x p, where x1, . . . , x p ∈m and
p ≤ n. Clearly, U0 = k1, U1(m) = k1⊕m, Up(m)Uq(m) ⊆ Up+q(m) and thus
(Un(m))n≥0 is a filtration of U (m). In order to show ker d⊆ k1, it suffices to show
that the intersection

(ker d)∩Un(m)= k1 for any integer n ≥ 0.

We prove this by induction on n ≥ 0. It is obvious for n = 0, and true for n = 1
as, for any v =

∑
i xi ∈ (ker d)∩m, 0= dv =

∑
i 1⊗ω(xi )=

∑
i 1⊗ xi implies

v =
∑

i xi = 0. Suppose that (ker d) ∩ Un−1(m) = k1 for n ≥ 2. For any v ∈
(ker d)∩Un(m), without loss of generality we can write v =

∑
i xi1 xi2 · · · xin + v

′,
where xi j ∈m and v′ is an element in Un−1(m). We have

dv =
∑

i

1⊗ω(xi1 · · · xin )+
∑

i

n∑
j=1

xi1 · · · xi( j−1) x̂i j xi( j+1) · · · xin ⊗ xi j

+

∑
i

n−2∑
r=1

∑
σ∈Sh(r,n−r)

xiσ(1) · · · xiσ(r) ⊗ω(xiσ(r+1) · · · xiσ(n))+ dv′.

We denote the elements

ui j := xi1 · · · xi( j−1) x̂i j xi( j+1) · · · xin ∈Un−1(m)

for any i, 1≤ j ≤ n. Except the term
∑

i
∑n

j=1 ui j ⊗ xi j , all the summands in dv
lie in Un−2(m)⊗m, thus

∑
i
∑n

j=1 ui j ⊗ xi j also lies in Un−2(m)⊗m as dv = 0.
This implies

∑
i
∑n

j=1 ui j xi j = v
′′ for some element v′′ ∈Un−1(m). Rearrange this

and add n− 1 copies of
∑

i uin xin =
∑

i xi1 xi2 · · · xin on both sides; we get

n
∑

i

xi1 · · · xin =

∑
i

n−1∑
j=1

xi1 · · · xi( j−1)[xi j , xi j+1 · · · xin ] + v
′′
;

therefore,

v =
1
n

∑
i

n−1∑
j=1

xi1 · · · xi( j−1)[xi j , xi j+1 · · · xin ] +
1
n
v′′+ v′ ∈Un−1(m).

Thus, we see that v actually lies in (ker d)∩Un−1(m), hence v ∈ k1 by assumption.
Hence (ker d)∩Un(m)= k1 for any n ≥ 0, which completes the proof. �
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We apply this to Uλ(m). Because the Hopf algebra here is cocommutative, the
canonical extension to a DGA is by the classical exterior or Grassmann algebra on
31
=m with d31

= 0. To make contact with real classical geometry in the rest of
the paper, the standard approach in noncommutative geometry is to work over C

with complexified differential forms and functions and to remember the “real form”
by means of a ∗-involution. We recall that a differential graded algebra over C is
called a ∗-DGA if it is equipped with a conjugate-linear map ∗ :�→� such that

∗
2
= id, (ξ ∧ η)∗ = (−1)|ξ ||η|η∗ ∧ ξ∗, d(ξ∗)= (dξ)∗

for any ξ, η ∈ �. Let m be a real pre-Lie algebra, i.e., there is a basis {ei } of m
with real structure coefficients. Then this is also a real form for m as a Lie algebra.
In this case, e∗i = ei extends complex-linearly to an involution ∗ :m→m, which
then makes �(Uλ(m)) a ∗-DGA if λ∗ =−λ, i.e., if λ is imaginary. If we want λ
real then we should take e∗i =−ei .

Example 4.5. Let b be the 2-dimensional complex nonabelian Lie algebra defined
by [x, t] = x . It admits five families of mutually nonisomorphic pre-Lie algebra
structures over C [Burde 1998], which are

b1,α : t ◦ x =−x, t ◦ t = αt,

b2,β 6=0 : x ◦ t = βx, t ◦ x = (β − 1)x, t ◦ t = βt,

b3 : t ◦ x =−x, t ◦ t = x − t,

b4 : x ◦ x = t, t ◦ x =−x, t ◦ t =−2t,

b5 : x ◦ t = x, t ◦ t = x + t,

where α, β ∈ C. (Here b1,0 ∼= b2,0, so we let β 6= 0.) Thus there are five families of
bicovariant differential calculi over Uλ(b):

�1(Uλ(b1,α)) : [t, dx] = −λ dx, [t, dt] = λα dt;

�1(Uλ(b2,β 6=0)) : [x, dt] = λβ dx, [t, dx] = λ(β − 1) dx, [t, dt] = λβ dt;

�1(Uλ(b3)) : [t, dx] = −λ dx, [t, dt] = λ dx − λ dt;

�1(Uλ(b4)) : [x, dx] = λ dt, [t, dx] = −λ dx, [t, dt] = −2λ dt;

�1(Uλ(b5)) : [x, dt] = λ dx, [t, dt] = λ dx + λ dt.

All these examples are ∗-DGAs with x∗ = x and t∗ = t when λ∗ = −λ as {x, t}
is a real form of the relevant pre-Lie algebra. We also need for this that α and β
are real. The further noncommutative geometry of b1,α and b2,β in 4-dimensional
cases is studied in [Majid and Tao 2015a].
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Example 4.6. For q ∈ C, q 6= 0, we recall that the Hopf algebra Cq [SL2] is, as an
algebra, a quotient of a free algebra C〈a, b, c, d〉 modulo relations

ba = qab, ca = qac, db = qbd, dc = qcd, bc = cb,

ad − da = (q−1
− q)bc, ad − q−1bc = 1.

Writing the generators a, b, c, d as a single matrix, the coproduct, counit and
antipode of Cq [SL2] are given by

1

(
a b
c d

)
=

(
a b
c d

)
⊗

(
a b
c d

)
, ε

(
a b
c d

)
=

(
1 0
0 1

)
, S

(
a b
c d

)
=

(
d −qb

−q−1c a

)
,

where we understand 1(a)= a⊗a+b⊗c, ε(a)= 1, S(a)= d , etc. By definition,
the quantum group Cq [SU2] is Hopf algebra Cq [SL2] with q real and ∗-structure(

a∗ b∗

c∗ d∗

)
=

(
d −q−1c
−qb a

)
.

We use the conventions of [Majid 1995] and refer there for the history, which is
related both to [Woronowicz 1989] and the Drinfeld theory [1987].

On Cq [SU2], there is a connected left-covariant calculus �1(Cq [SU2]) in [Woro-
nowicz 1989] with basis, in our conventions,

ω0
= d da− qb dc, ω+ = d db− qb dd, ω− = qa dc− c da

of left-invariant 1-forms which is dual to the basis {∂0, ∂±} of left-invariant vector
fields generated by the Chevalley basis {H, X±} of su2 (so that [H, X±] = ±2X±
and [X+, X−] = H ). The first-order calculus is generated by {ω0, ω±} as a left
module while the right module structure is given by the bimodule relations

ω0 f = q2| f | f ω0, ω± f = q | f | f ω±

for homogeneous f of degree | f |, where |a| = |c| = 1, |b| = |d| = −1, and with
exterior derivatives

da = aω0
+ q−1bω+, db =−q−2bω0

+ aω−,

dc = cω0
+ q−1dω+, dd =−q−2dω0

+ cω−.

These extend to a differential graded algebra �(Cq [SU2]) that has same dimension
as classically. Moreover, it is a ∗-DGA with

ω0∗
=−ω0, ω+∗ =−q−1ω−, ω−∗ =−qω+.

Since Cq [SU2] and �(Cq [SU2]) are q-deformations, from Corollary 4.2 these
must be quantised from some pre-Lie algebra structure of su∗2, which we now
compute. Let

q = eıλ/2
= 1+ ı

2
λ+ O(λ2)
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for imaginary λ. The Poisson bracket from the algebra relations is

{a, b} = − ı
2

ab, {a, c} = − ı
2

ac, {a, d} = −ıbc, {b, c} = 0,

{b, d} = − ı
2

bd, {c, d} = − ı
2

cd.

The reader should not be alarmed by the ı as this is a “complexified” Poisson
bracket on C∞(SU2,C) and is a real Poisson bracket on C∞(SU2,R) when we
choose real-valued functions instead of complex-valued functions a, b, c, d here.

As dx =
∑

i (∂i x)ωi , we know, in the classical limit,

∂0

(
a b
c d

)
=

(
a −b
c −d

)
, ∂+

(
a b
c d

)
=

(
b 0
d 0

)
, ∂−

(
a b
c d

)
=

(
0 a
0 c

)
.

From aω0
−ω0a = (1− q2)aω0

=−ıλaω0
+ O(λ2), we know that γ (a, ω0)=

−ıaω0. Likewise, we can get

γ

((
a b
c d

)
, ωi

)
=

1
2

ti

(
a −b
c −d

)
ωi for all i ∈ {0,±}, t0 =−2ı, t± =−ı.

Now we can compute the pre-Lie structure 4 : su∗2⊗ su∗2 → su∗2 by comparing
with (2-8), namely

γ

((
a b
c d

)
, ω j

)
=

∑
i,k∈{0,±}

4
i j
k

(
∂i

(
a b
c d

))
ωk

tells us that the only nonzero coefficients are

400
0 =−ı, 40+

+
=−

ı
2
, 40−

−
=−

ı
2
.

Then

4(φ, φ)=−ıφ, 4(φ,ψ+)=−
ı
2
ψ+, 4(φ,ψ−)=−

ı
2
ψ−,

and 4 is zero on other terms, where {φ,ψ±} is the dual basis of su∗2 to {H, X±}.
Thus the corresponding pre-Lie structure of su∗2 is

4(φ, φ)=−ıφ, 4(φ,ψ±)=−
ı
2
ψ± and zero otherwise.

Letting t =−2ıφ, x1= ı(ψ++ψ−), x2=ψ+−ψ−, we have a real pre-Lie structure
for su∗2 = span{t, x1, x2}:

t ◦ t =−2t, t ◦ xi =−xi for all i = 1, 2.

This is a 3-dimensional version of b1,−2.

Example 4.7. Let g be a quasitriangular Lie bialgebra with r -matrix

r = r (1)⊗ r (2) ∈ g⊗ g.
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Then g acts on its dual g∗ by coadjoint action ad∗ and by [Majid 2000, Lemma 3.8],
g∗ becomes a left g-crossed module with −4, where 4 is the left g∗-action

4(φ,ψ)=−〈φ, r (2)〉 ad∗r (1) ψ.

To satisfy the Poisson-compatibility (2-6), (g, r) is required to obey

(4-7) r (1)⊗[r (2), x] + r (2)⊗[r (1), x] = 0, i.e., r+ F x = 0, for all x ∈ g,

where r+ = 1
2(r + r21) is the symmetric part of r and the second factor of r+ acts

on x via adjoint action of g. In this case g∗ has a pre-Lie algebra structure with
4(φ,ψ) = −〈φ, r (2)〉 ad∗r (1) ψ by Corollary 4.2. We see in particular that every
finite-dimensional cotriangular Lie bialgebra g∗ is canonically a pre-Lie algebra.
More generally, if the centre Z(g) is nontrivial then any nonzero r+ ∈ Z(g)⊗2

combined with a triangular structure r− gives a strictly quasitriangular r = r−+ r+
obeying (4-7). This is the full content of (4-7) since this requires that the image
of r+ regarded as a map g∗→ g lies in Z(g) and r+ is symmetric. On the other
hand, δ and 4 are the same as computed from r−, so we may as well take r+ = 0
as far as our present applications are concerned.

5. Quantisation of the tangent bundle TG= G F<g

We will be interested in quantisation of the tangent bundle TG of a Poisson–Lie
group G, with natural noncommutative coordinate algebra in this case provided by
a bicrossproduct [Majid 1990b; 1995].

5A. Review of bicrossproduct Hopf algebras. We start with the notions of double
cross-sum and bicross-sum of Lie bialgebras [Majid 1995, Chapter 8]. We say
(g,m, G, F) forms a right–left matched pair of Lie algebras if g and m are both Lie
algebras and g right acts on m via G, m left acts on g via F with

[φ,ψ] G ξ = [φ G ξ, ψ] + [φ,ψ G ξ ] +φ G (ψ F ξ)−ψ G (φ F ξ),

φ F [ξ, η] = [φ F ξ, η] + [ξ, φ F η] + (φ G ξ) F η− (φ G η) F ξ,

for any ξ, η ∈ g, φ,ψ ∈m. Given such a matched pair, one can define the “double
cross-sum Lie algebra” g FGm as the vector space g⊕m with the Lie bracket

[(ξ, φ), (η, ψ)] = ([ξ, η] +φ F η−ψ F ξ, [φ,ψ] +φ G η−ψ G ξ).

In addition, if both g and m are now Lie bialgebras with F and G making g a left
m-module Lie coalgebra and m a right g-module Lie coalgebra, such that

φ G ξ(1)⊗ ξ(2)+φ(1)⊗φ(2) F ξ = 0

for all ξ ∈ g, φ ∈m, then the direct sum Lie coalgebra structure makes g FGm into
a Lie bialgebra, the double cross-sum Lie bialgebra.



230 SHAHN MAJID AND WEN-QING TAO

Next, if g is finite-dimensional, the matched pair of Lie bialgebras (g,m, G, F)
equivalently defines a right–left bicross-sum Lie bialgebra m FJ g∗ built on m⊕ g∗

with

[(φ, f ), (ψ, h)] = ([φ,ψ]m, [ f, h]g∗ + f Gψ − h Gφ),(5-1)

δφ = δmφ+ (id−τ)β(φ), δ f = δg∗ f,(5-2)

for any φ,ψ ∈ m and f, h ∈ g∗, where the right action of m on g∗ and the left
coaction of g∗ on m are induced from G and F by

〈 f Gφ, ξ〉 = 〈 f, φ F ξ〉, β(φ)=
∑

i

f i
⊗φ G ei ,

for all φ ∈m, f ∈ g∗, ξ ∈ g and {ei } is a basis of g with dual basis { f i
}. We refer

to [Majid 1995, Section 8.3] for the proof.
Now let (g,m, G, F) be a matched pair of Lie algebras and M be the connected

and simply connected Lie group associated to m. The Poisson–Lie group M FJ g∗

associated to the bicross-sum m FJ g∗ is the semidirect product M F< g∗ (where g∗

is regarded as an abelian group) equipped with Poisson bracket

{ f, g} = 0, {ξ, η} = [ξ, η]g, {ξ, f } = α∗ξ ( f ),

for all functions f , g on M and linear functions ξ , η on g∗, where α∗ξ is the vector
field for the action of g on M . See [Majid 1995, Proposition 8.4.7] for the proof.
Note that here g, m are both viewed as Lie bialgebras with zero cobracket, so the
Lie bracket and Lie cobracket of the bicross-sum Lie bialgebra m FJ g∗ is now
given by (5-1) and (5-2) but with [ , ]g∗ = 0, δm = 0.

More precisely, let (g,m, G, F) be a matched pair of Lie algebras, with the
associated connected and simply connected Lie groups G acting on m and M acting
on g. The action G can be viewed as Lie algebra cocycle G ∈ Z1

F∗⊗− id(m, g
∗
⊗m)

and under some assumptions can then be exponentiated to a group cocycle

a ∈ Z1
F∗⊗AdR

(M, g∗⊗m),

which defines an infinitesimal action of g on M . Hence, by evaluation of the
corresponding vector fields, a defines a left action of the Lie algebra g on C∞(M)
[Majid 1990a]:

(5-3) (ξ̃ f )(s)= ãξ ( f )(s)= d
dt

f
(
s exp(taξ (s))

)∣∣∣
t=0

for all f ∈C∞(M), ξ ∈g.

We also note that m acts on M by a left-invariant vector field:

(φ̃ f )(s)= d
dt

f (s exp (tφ))
∣∣∣
t=0
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for any φ ∈m, f ∈C∞(M), and these two actions fit together to an action of gFGm
on C∞(M).

Finally, we can explain the bicrossproduct C[M]IGUλ(g) based on a matched
pair of Lie algebras (g,m, G, F), where C[M] is an algebraic model of functions
on M . The algebra of C[M]IGUλ(g) is the cross product defined by the action (5-3).
Its coalgebra, on the other hand, is the cross coproduct given in reasonable cases
by a right coaction (defined by the left action of M on g)

β : g→ g⊗C[M], β(ξ)(s)= s F ξ for all ξ ∈ g, s ∈ M.

The map β is extended to products of the generators of Uλ(g) to form a bicross-
product C[M]IGUλ(g) as in [Majid 1995, Theorem 6.2.2].

The Poisson–Lie group MFJg∗ quantises to C[M]IGUλ(g) as a noncommutative
deformation of the commutative algebra of functions C[M FJg∗]. See [Majid 1995,
Section 8.3] for more details. The half-dualisation process we have described at
the Lie bialgebra level also works at the Hopf algebra level, at least in the finite-
dimensional case. So morally speaking, Uλ(g) FGU (m) half-dualises in a similar
way to the bicrossproduct Hopf algebra C[M]IGUλ(g). If one is only interested in
the algebra and its calculus, we can extend to the cross product C∞(M)>GUλ(g).

5B. Poisson–Lie group structures on the tangent bundle G F<g. Let G be a Lie
group with Lie algebra g. As a Lie group, the tangent bundle TG of a Lie group
G can be identified with the semidirect product of Lie groups G F< g (by the right
adjoint action of G on g) with product

(g1, x)(g2, y)= (g1g2,Ad(g−1
2 )(x)+ y) for all g1, g2 ∈ G, x, y ∈ g,

where g is g but viewed as an abelian Poisson–Lie group under addition. Naturally,
the Lie algebra of G F< g is the semidirect sum Lie algebra g F< g with Lie bracket

[ξ, η] = [ξ, η]g, [x, y] = 0, [x, ξ ] = [x, ξ ]g for all ξ, η ∈ g, x, y ∈ g.

Keeping in mind the observations in Section 5A, we propose the following
construction of a Poisson–Lie structure on the tangent bundle G F< g via a bicross-
sum. In what follows we assume that G is a finite-dimensional connected and simply
connected Poisson–Lie group, and g is its Lie algebra with the corresponding Lie
bialgebra structure. We let

g∗ := (g∗, [ , ]g∗, zero Lie cobracket) and g := (g, [ , ]g, zero Lie cobracket),

where g∗ is the dual of Lie bialgebra g= (g, zero bracket, δg). One can check that
g∗ and g together form a matched pair of Lie bialgebras with coadjoint actions, i.e.,

ξ Gφ =− ad∗φ ξ = 〈φ, ξ(1)〉ξ(2), ξ Fφ = ad∗ξ φ = φ(1)〈φ(2), ξ〉
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for any φ ∈ g∗, ξ ∈ g.

5B1. Lie bialgebra level. The double cross-sum Lie bialgebra g∗ FG g is then built
on g∗⊕ g as a vector space with Lie bracket

[φ,ψ] = [φ,ψ]g∗, [ξ, η] = [ξ, η]g,

[ξ, φ] = ξ Gφ+ ξ Fφ = 〈φ, ξ(1)〉ξ(2)+φ(1)〈φ(2), ξ〉

for all φ,ψ ∈ g∗, ξ, η ∈ g, and zero Lie cobracket. This is nothing but the Lie
algebra of the Drinfeld double D(g)= g∗ FG g of g with zero Lie-cobracket.

Correspondingly, the right–left bicross-sum Lie bialgebra defined by the matched
pair (g∗, g, G, F) above is gFJ g, whose Lie algebra is a semidirect sum gF< g and
the Lie coalgebra is semidirect cobracket g>J g, namely

(5-4) [ξ, η] = [ξ, η]g, [x, y] = 0, [x, ξ ] = [x, ξ ]g,

δξ = (id−τ)δg(ξ)= ξ(1)⊗ ξ(2)− ξ(2)⊗ ξ(1), δx = δgx,

for any ξ, η ∈ g, x, y ∈ g. Here the coaction on g is the Lie cobracket δg viewed as
a map from g to g⊗ g.

5B2. Poisson–Lie level. Associated to the right–left bicross-sum Lie bialgebra
g FJ g, the Lie group G F< g is a Poisson–Lie group (denoted by G FJ g) with the
Poisson bracket

(5-5) { f, h} = 0, {φ,ψ} = [φ,ψ]g∗, {φ, f } = φ̃ f

for any φ,ψ ∈ g∗⊆C∞(g) and f, h ∈C∞(G), where φ̃ denotes the left Lie algebra
action of g∗ on C∞(G) (viewed as a vector field on G) and is defined by the right
action of g∗ on g.

The vector field φ̃ for any φ ∈ g∗ in this case can be interpreted more precisely.
We can view the actions between g∗ and g as Lie algebra 1-cocycles, namely the
right coadjoint action G = − ad∗ : g⊗ g∗ → g (of g∗ on g) is viewed as a map
g→ (g∗)∗⊗ g= (g)∗∗⊗ g= g⊗ g. It maps ξ to∑

i

ei ⊗ ξ G f i
=

∑
i

ei ⊗〈 f i , ξ(1)〉ξ(2) = ξ(1)⊗ ξ(2),

which is nothing but the Lie cobracket δg of g. Likewise, the left coadjoint action
of g on g∗ is viewed as the Lie cobracket δg∗ of g∗. We already know that the Lie
1-cocycle δg ∈ Z1

− ad(g, g⊗ g) exponentiates to a group cocycle

D∨ ∈ Z1
AdR
(G, g⊗ g),

thus

(5-6) φ̃g := (Lg)∗((φ⊗ id)D∨(g)) ∈ TgG, for all g ∈ G,
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defines the vector field on G in (5-5).
According to [Majid 1995, Proposition 8.4.7], the Poisson bivector on the tangent

bundle TG= G FJ g is

(5-7) π =
∑

i

(∂i ⊗ f̃ i
− f̃ i
⊗ ∂i )+

∑
i, j,k

d i j
k f k∂i ⊗ ∂ j ,

where {∂i } is the basis of left-invariant vector fields generated by the basis {ei } of g
and { f i

} is the dual basis of g∗. Here

PK K =
∑
i, j,k

d i j
k f k∂i ⊗ ∂ j

is the known Kirillov–Kostant bracket on g with

δgek =
∑

i j

d i j
k ei ⊗ e j .

We arrive at the following special case of [Majid 1995, Proposition 8.4.7]:

Lemma 5.1. Let G be a finite-dimensional connected and simply connected Poisson–
Lie group and g be its Lie algebra. The tangent bundle TG= G F< g of G admits a
Poisson–Lie structure given by (5-5) or (5-7), denoted by GFJg. The corresponding
Lie bialgebra is g FJ g, given by (5-4).

5B3. Bicrossproduct Hopf algebra. Finally, when the actions and coactions are
suitably algebraic, we have a bicrossproduct Hopf algebra C[G]IGUλ(g∗) as a
quantisation of the commutative algebra of functions C[GFJg] on the tangent bundle
G FJ g of a Poisson–Lie group G. The commutation relations of C[G]IGUλ(g∗)

are
[ f, h] = 0, [φ,ψ] = λ[φ,ψ]g∗, [φ, f ] = λφ̃ f

for any φ,ψ ∈ g∗⊆C∞(g) and f, h ∈C[G]. This construction is still quite general
but includes a canonical example for all compact real forms g of complex simple Lie
algebras based in the Iwasawa decomposition to provide the double cross product or
“Manin triple” in this case [Majid 1990a]. We start with an even simpler example.

Example 5.2. Let m be a finite-dimensional real Lie algebra, viewed as a Lie
bialgebra with zero Lie-cobracket. Take G =m∗, the abelian Poisson–Lie group
with Kirillov–Kostant Poisson bracket given by the Lie bracket of m. Then g=m∗

and g∗ = m and g = m∗ = Rn , where n = dimm. Since the Lie bracket of m∗ is
zero, m∗ acts trivially on m, while m acts on m∗ by right coadjoint action − ad∗,
namely

f G ξ =− ad∗ξ f, or 〈 f G ξ, η〉 = 〈 f, [ξ, η]m〉

for any f ∈m∗, ξ, η ∈m. So (m,m∗, G = − ad∗, F = 0) forms a matched pair.



234 SHAHN MAJID AND WEN-QING TAO

The double cross-sum of the matched pair (m,m∗) is m F<m∗, the semidirect
sum Lie algebra with coadjoint action of m on m∗:

[ξ, η] = [ξ, η]m, [ f, h] = 0, [ f, ξ ] = f G ξ = 〈ξ, f(1)〉 f(2),

δξ = 0, δ f = 0 for all ξ, η ∈m, f, h ∈m∗.

Meanwhile, the right–left bicross-sum of the matched pair (m,m∗) is m∗>Jm∗,
the semidirect sum Lie coalgebra

[ f, h] = 0, [φ,ψ] = 0, [φ, f ] = φ G f = 0,

δ f = (id−τ)β( f ), δφ = δm∗φ,

for any f, h ∈m∗, φ,ψ ∈m∗, where the left coaction of m∗ on m∗ is given by

β :m∗→m∗⊗m∗, β( f )=
∑

i

f i
⊗ f G ei ,

and {ei } is a basis of m with dual basis { f i
} of m∗.

The tangent bundle of m∗ is the associated Poisson–Lie group of m∗ >Jm∗,
which is M∗>Jm∗=Rn>Jm∗, an abelian Lie group, where we identify the abelian
Lie group M∗ with its abelian Lie algebra m∗. Let {x i

} be the coordinate functions
on Rn identified with {ei } ⊂m⊆ C∞(m∗)= C∞(Rn), as ei

(∑
j λ j f j

)
= λi . The

right action of m on m∗ transfers to δm∗ ∈ Z1(m∗,m∗⊗m∗). As a Lie group M∗

is abelian and M∗ =m∗ = Rn , so the associated group cocycle is identical to δm∗ ,
thus from (5-6) we have

ξ̃x f = 〈x(1), ξ〉x(2)x f =
∑

i

〈x(1), ξ〉〈x(2), ei 〉 f i
x f =

∑
i

〈[ξ, ei ]m, x〉
∂ f
∂x i (x),

where we use the Lie cobracket in an explicit notation. This shows that

ξ̃ =
∑
i, j,k

〈 f i , ξ〉ck
i j x

k ∂

∂x j for all ξ ∈m,

where ck
i j are the structure coefficients of Lie algebra m, i.e., [ei , e j ]m =

∑
k ck

i j ek .
Therefore the Poisson bracket on Rn >Jm∗ is given by

{ f, h} = 0, {ξ, η} = [ξ, η]m, {ξ, f } = ξ̃ f =
∑
i, j,k

〈 f i , ξ〉ck
i j x

k ∂ f
∂x j ,

where f, h ∈ C∞(Rn) and ξ, η ∈m.
The bicrossproduct Hopf algebra C[G]IGUλ(g∗) = C[Rn

]>GUλ(m), as the
quantisation of C∞(Rn >Jm∗), has commutation relations

[x i , x j
] = 0, [ei , e j ] = λ

∑
k

ck
i j ek, [ei , x j

] = λ
∑

k

ck
i j x

k,



NONCOMMUTATIVE DIFFERENTIALS ON POISSON–LIE GROUPS 235

where {x i
} are coordinate functions of Rn

=m∗, identified via the basis {ei } of m. As
an algebra we can equally well take C∞(Rn)>GUλ(m), i.e., not limiting ourselves
to polynomials. Then [ei , f ] = λ

∑
j,k ck

i j x
k ∂ f/∂x j more generally for the cross

relations.

Example 5.3. We take SU2 with the standard Drinfeld–Sklyanin Lie bialgebra
structure on su2, where the matched pair comes from the Iwasawa decomposition
of SL2(C) [Majid 1990a]. The bicrossproduct Hopf algebra C[SU2]IGUλ(su∗2),
as an algebra, is the cross product C[SU2]>GUλ(su∗2) with a, b, c, d commuting,
ad − bc = 1, [x i , x3

] = λx i (i = 1, 2) and

[x i , t] = λt[ei , t−1e3 t − e3], i = 1, 2, 3,

that is,

(5-8)

[x1, t] = −λbcte2+
λ

2
t diag(ac,−bd)+ λ

2
diag(b,−c),

[x2, t] = λbcte1−
ıλ
2

t diag(ac, bd)+ ıλ
2

diag(b, c),

[x3, t] = −λad t + λ diag(a, d),

where t =
(

a b
c d

)
and {ei } and {x i

} are bases of su2 and su∗2 as the half-real forms
of sl2(C) and sl∗2(C) respectively. The coalgebra of C[SU2]IGUλ(su∗2) is the cross
coproduct C[SU2]I<Uλ(su∗2) associated with

1(x i )= 1⊗ x i
− 2

∑
k

xk
⊗Tr(tei t−1ek), ε(x i )= 0 for all i ∈ {1, 2, 3}.

The ∗-structure is the known one on C[SU2] with x i∗
=−x i for each i .

Proof. We recall that the coordinate algebra C[SU2] is the commutative algebra
C[a, b, c, d] modulo the relation ad − bc = 1 with ∗-structure(

a∗ b∗

c∗ d∗

)
=

(
d −c
−b a

)
.

As a Hopf ∗-algebra, the coproduct, counit and antipode of C[SU2] are given by

1

(
a b
c d

)
=

(
a b
c d

)
⊗

(
a b
c d

)
, ε

(
a b
c d

)
=

(
1 0
0 1

)
, S

(
a b
c d

)
=

(
d −b
−c a

)
.

Let {H, X±} and {φ,ψ±} be the dual bases of sl2(C) and sl∗2(C) respectively,
where

H =
(

1 0
0 −1

)
, X+ =

(
0 1
0 0

)
and X− =

(
0 0
1 0

)
.
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As the half-real forms of sl2(C) and sl∗2(C), the Lie algebras su2 and su∗2 have bases

e1 =−
1
2 ı(X++ X−), e2 =−

1
2(X+− X−), e3 =−

1
2 ı H,

x1
= ψ++ψ−, x2

= ı(ψ+−ψ−), x3
= 2φ,

respectively. Note that x i
=−ı f i , where { f i

} is the dual basis of {ei }.
The Lie brackets and Lie cobrackets of su2 and su∗2 are given by

[ei , e j ] = εi jkek and δei = ıei ∧ e3 for all i, j, k,

[x1, x2
] = 0, [x i , x3

] = x i , i = 1, 2, δx1
= ı(x2

⊗ x3
− x3
⊗ x2),

δx2
= ı(x3

⊗ x1
− x1
⊗ x3), δx3

= ı(x1
⊗ x2
− x2
⊗ x1),

where εi jk is totally antisymmetric and ε123 = 1. Writing ξ = ξ i ei ∈ su2 and
φ = φi x i

∈ su∗2 for 3-vectors Eξ = (ξ i ), Eφ = (φi ), we know that (su∗2, su2) forms a
the matched pair of Lie bialgebras with interacting actions

Eξ G Eφ = (Eξ × Ee3)× Eφ, Eξ F Eφ = Eξ × Eφ.

To obtain the action of su∗2 on C[SU2], we need to solve [Majid 1995, Proposition
8.3.14]

d
dt

aφ(etξu)
∣∣∣
t=0
= Adu−1(ξ G (u Fφ)), aφ(I2)= 0.

Note that SU2 acts on su∗2 by u F Eφ = Rotu Eφ, where we view φ as an element in su2

via ρ(φ)= φi ei . One can check that

a Eφ(u)= Eφ× (Rotu−1( Ee3)− Ee3)

is the unique solution to the differential equation. Now we can compute by (5-3)

(φ F t i
j )(u)=

d
dt

t i
j (uetaφ(u))

∣∣∣
t=0

=

∑
k

d
dt

t i
k(u)t

k
j (e

taφ(u))

∣∣∣
t=0

=

∑
k

ui
k(aφ(u))

k
j

=

∑
k

ui
k[ρ(φ), u−1e3u− e3]

k
j ,

where ρ(φ)=
∑

i φi ei . This shows that

[x i , t] = λx i
F t = λt[ei , t−1e3 t − e3],
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as displayed. For each i , we can work out the terms on the right explicitly (using
ad − bc = 1) as

[x1, t] = −λ
2

(
abd − a2c− 2b, b2d − a2d + a
ad2
− ac2

− d, bd2
− acd + 2c

)
,

[x2, t] = − ıλ
2

(
a2c+ abd − 2b, a2d + b2d − a
ac2
+ ad2

− d, bd2
+ acd − 2c

)
,

[x3, t] = −λ
(

a2d − a, abd
acd, ad2

− d

)
.

These can be rewritten as the formulae (5-8) we stated.
For convenience, we use Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

( 0 −ı
ı 0

)
, σ3 =

( 1 0
0 −1

)
.

Clearly, ei =−
1
2 ıσi and σi obey σiσ j = δi j I2+ ıεi jkσk and [σi , σ j ] = 2ıεi jkσk .

The coaction of C[SU2] on su∗2 is defined by β(φ)(u)= u Fφ = Rotu Eφ for any
u ∈ SU2, φ ∈ su∗2. Again, we view φ as an element in su2, so ρ(u Fφ)= uρ(φ)u−1,
namely

∑
i (u Fφ)iσi =

∑
i φi uσi u−1. In particular, we have

(u F x i )1σ1+ (u F x i )2σ2+ (u F x i )3σ3 = uσi u−1, i = 1, 2, 3.

Multiplying by σk on the right and then taking the trace of both sides, and using
Tr(σiσ j )= 2δi j we have 2(u F x i )k = Tr(uσi u−1σk). Therefore

u F x i
=

1
2

∑
k

Tr(uσi u−1σk)xk
=−2

∑
k

Tr(uei u−1ek)xk,

and thus β(x i )= 1
2

∑
k xk
⊗Tr(tσi t−1σk)=−2

∑
k xk
⊗Tr(tei t−1ek). This gives

rise to the coproduct of x i as stated. This example is dual to a bicrossproduct from
this matched pair computed in [Majid 1995]. �

5C. Preconnections on the tangent bundle G FJg. We use the following lemma
to construct left pre-Lie structures on (gFJg)∗= (g)∗IG(g)∗= g∗IGg∗, where the
Lie bracket is the semidirect sum g∗>G g∗ and the Lie cobracket is the semidirect
cobracket g∗I< g∗, namely

[φ,ψ] = 0, [ f, φ] = f Fφ = [ f, φ]g∗, [ f, g] = [ f, g]g∗,

δφ = δg∗φ = φ(1)⊗φ(2), δ f = f(1)⊗ f(2)− f(2)⊗ f(1),

for any φ,ψ ∈ g∗, f, g ∈ g∗. For convenience, we denote f ∈ g∗ by f if viewed in
g∗ or f if viewed in g∗.

Lemma 5.4. Let (A, ◦ ) be a left pre-Lie algebra and (B, ∗) a left pre-Lie algebra
in the category gA M of left gA-modules, i.e., there is a left gA-action F on B such that

(5-9) a F (x ∗ y)= (a F x) ∗ y+ x ∗ (a F y)
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for any a, b ∈ A, x, y ∈ B. Then there is a left pre-Lie algebra structure on B⊕ A

(x, a) ◦̃ (y, b)= (x ∗ y+ a F y, a ◦ b).

We denote this pre-Lie algebra by B >G A, and have gBoA = gB >G gA for the
associated Lie algebras.

Proof. This is a matter of directly verifying according to the axioms of a left pre-Lie
algebra. �

Corollary 5.5. Let (m, ◦ ) be a left pre-Lie algebra. Suppose it admits a (not
necessarily unital) commutative associative product · such that

[ξ, x · y]m = [ξ, x]m · y+ x · [ξ, η]m for all ξ, x, y ∈m,

where [ , ]m is the Lie bracket defined by ◦ . Denote the underlying pre-Lie algebra
by m= (m, · ). Then m>Gad m is a left pre-Lie algebra with product

(5-10) (x, ξ) ◦̃ (y, η)= (x · y+ [ξ, y]m, ξ ◦ η)

for any x, y ∈m, ξ, η ∈m.

Proof. Take (A, ◦ )= (m, ◦ ) and (B, ∗)= (m, · ) in Lemma 5.4. Here (m, ◦ ) left
acts on (m, · ) by the adjoint action and (5-9) is exactly the condition displayed. �

The assumption made in Corollary 5.5 is that (m, · , [ , ]) is a (not necessarily
unital) Poisson algebra with respect to the Lie bracket, and that the latter admits a
left pre-Lie structure ◦.

Theorem 5.6. Let G be a finite-dimensional connected and simply connected
Poisson–Lie group with Lie bialgebra g. Assume that (g∗, [ , ]g∗) admits a pre-
Lie structure ◦ and also that g∗ admits a (not necessarily unital) Poisson algebra
structure (g∗, ∗, [ , ]g∗)

(5-11) [ f, φ ∗ψ]g∗ = [ f, φ]g∗ ∗ψ +φ ∗ [ f, ψ]g∗

for any φ,ψ ∈ g∗, f ∈ g∗. Then the semidirect sum g∗ >G g∗ admits a pre-Lie
algebra product ◦̃ given by

(5-12) (φ, f ) ◦̃ (ψ, h)= (φ ∗ψ + [ f, ψ]g∗, f ◦ h),

and the tangent bundle G FJ g in Lemma 5.1 admits a Poisson-compatible left-
covariant flat preconnection.

Proof. We take m = g∗ in Corollary 5.5. We know g∗ >G g∗ is the Lie algebra
of g∗ IG g∗, dual to Lie algebra g FJ g of the tangent bundle. Then we apply
Corollary 4.2. �
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The corresponding preconnection can be computed explicitly from (2-8). For a
Poisson–Lie group G, let {ei } be a basis of g and { f i

} the dual basis of g∗. Denote
by {ωi

} the basis of left-invariant 1-forms that is dual to {∂i } the left-invariant vector
fields of G generated by {ei } as before. For the abelian Poisson–Lie group g with
Kirillov–Kostant Poisson bracket, let {Ei } be a basis of g and {x i

} the dual basis
of g∗. Then {dx i

} is the basis of left-invariant 1-forms that is dual to {∂/∂x i
}, the

basis of the left-invariant vector fields on g generated by {Ei }. Now we can choose
{ei , Ei } to be the basis of g FJ g, and so { f i , x i

} is the dual basis for g∗ IG g∗.
Denote by {∂̃i , Di } the left-invariant vector fields on G FJ g generated by {ei , Ei },
and denote by {ω̃i , d̃x i

} the corresponding dual basis of left-invariant 1-forms. By
construction, when viewing any f ∈ C∞(G) and φ ∈ g∗ ⊂ C∞(g) as functions on
the tangent bundle, we know

∂̃i f = ∂i f, ∂̃iφ = ad∗ei
φ, Di f = 0, Diφ =

∂

∂x i φ.

This implies

∂̃i = ∂i+
∑

j

(ad∗ei
x j )

∂

∂x j , Di =
∂

∂x i , ω̃i
=ωi , d̃x i = dx i

−

∑
k

(ad∗ek
x i )ωk .

Let ◦̃ be the pre-Lie structure of g∗ >G g∗ constructed by (5-12) in terms of ∗
and ◦ in the setting of Theorem 5.6. The Poisson-compatible left-covariant flat
preconnection on the tangent bundle is then, for any function a,

γ (a, ω j )=
∑
i,k

∂̃i a〈 f i
∗ f j , ek〉ω

k
+

∑
i,k

Di a〈[x i , f j
]g∗, ek〉ω

k,

γ (a, d̃x j )=
∑
i,k

Di a〈x i
◦ x j , Ek〉d̃xk .

If we write

f i
∗ f j
=

∑
k

ai j
k f k, x i

◦ x j
=

∑
k

bi j
k xk,

[x i , f j
]g∗ =

∑
k

〈[x i , f j
]g∗, ek〉 f k

=

∑
s,k

ds j
k 〈x

i , es〉 f k,

where [ f i , f j
]g∗ = d i j

k f k , then the left-covariant preconnection on the tangent
bundle G FJ g is

γ ( f, ω j )=
∑
i,k

ai j
k (∂i f )ωk, γ ( f, d̃x j )= 0, γ (φ, d̃x j )=

∑
i,k

bi j
k

(
∂φ

∂x i

)
d̃xk,

γ (φ, ω j )=
∑
i,k

(
ai j

k ad∗ei
φ+

∑
s

ds j
k 〈x

i , es〉

(
∂φ

∂x i

))
ωk

for any f ∈ C∞(G), φ ∈ g∗ ⊂ C∞(g).
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This result applies, for example, to tell us that we have a left-covariant differential
structure on quantum groups such as C[G]IGUλ(g

∗) at least to lowest order in
deformation. In the special case when the product ∗ is zero, there is a natural
differential calculus not only at lowest order. Under the notations above, we have:

Proposition 5.7. Let G be a finite-dimensional connected and simply connected
Poisson–Lie group with Lie algebra g. If the dual Lie algebra g∗ admits a pre-
Lie structure ◦ : g∗ ⊗ g∗ → g∗ with respect to its Lie bracket ([ , ]g∗ determined
by δg), then the bicrossproduct C[G]IGUλ(g

∗) (if it exists) admits a left-covariant
differential calculus

�1
= (C[G]IGUλ(g

∗)) F<31

with left-invariant 1-forms 31 spanned by basis {ωi , d̃x i }, where the commutation
relations and the derivatives are given by

[ f, ωi
] = 0, [ f, d̃x i ] = 0, [x i , ω j

] =

∑
k

λ〈[x i , f j
]g∗, ek〉ω

k,

[x i , d̃x j ] = λ ˜d(x i ◦ x j ), d f =
∑

j

(∂ j f )ω j , dx i
= d̃x i +

∑
j

(ad∗e j
x i )ω j

for any f ∈ C[G].

Proof. It is easy to see that we have a bimodule �1. As the notation indicates
[Majid and Tao 2015b], the left action on �1 is the product of the bicrossproduct
quantum group on itself while the right action is the tensor product of the right
action of the bicrossproduct on itself and a right action on 31. The right action of
C[G] here is trivial, namely

ω j
G f = f (e)ω j , d̃x j G f = f (e)d̃x j ;

the right actions of x i are clear from the commutation relations and given (summa-
tion understood) by

ω j
G x i
=−λ〈[x i , f j

]g∗, ek〉ω
k
=−λds j

k 〈x
i , es〉ω

k,

d̃x j G x i
=−λ ˜d(x i ◦ x j )=−λbi j

k d̃xk .

One can check that these fit together to a right action of the bicrossproduct quantum
group by using the Jacobi identity of g∗, the pre-Lie identity on ◦, and the fact that
(x̃ i f )(e)= x̃ i

e f = 0 by (5-6).
We check that the Leibniz rule holds. The conditions

d[ f, h] = 0 and d[x i , x j
] = λd[x i , x j

]g∗

are easy to check, so we omit these. It remains to check that

(5-13) d[x i , f ] = λd(x̃ i f ) for all f ∈ C[G].
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The right-hand side of (5-13) is

λ d(x̃ i f )= λ∂ j (x̃ i f )ω j ,

while the left-hand side of (5-13) is

d[x i , f ] = d(x i f − x i f )= [dx i , f ] + [x i , d f ]

= [d̃x i + (ad∗e j
x i )ω j , f ] + [x i , (∂ j f )ω j

]

= 0+ [ad∗e j
x i , f ]ω j

+ [x i , ∂ j f ]ω j
+ (∂k f )[x i , ωk

]

= [ad∗e j
x i , f ]ω j

+ [x i , ∂ j f ]ω j
+ λ(∂k f )〈[x i , f k

]g∗, e j 〉ω
j

=
(
[ad∗e j

x i , f ] + [x i , ∂ j f ] + λ〈[x i , f k
]g∗, e j 〉(∂k f )

)
ω j

= λ
(
ãd∗e j

x i f + x̃ i (∂ j f )+〈[x i , f k
]g∗, e j 〉(∂k f )

)
ω j .

It suffices to show that ∂ j (x̃ i f )= ãd∗e j
x i f + x̃ i (∂ j f )+〈[x i , f k

]g∗, e j 〉(∂k f ), namely

[∂ j , x̃ i
] = ãd∗e j

x i +〈[x i , f k
]g∗, e j 〉∂k .

Recall that in the double cross-sum g∗ FG g, for any e j ∈ g, x i
∈ g∗,

[e j , x i
] = e j G x i

+ e j F x i
= 〈[x i , f k

]g∗, e j 〉ek + ad∗e j
x i .

Therefore the condition left to check is nothing but the Lie bracket of elements e j

and x i viewed as the infinitesimal action of g∗ FG g on C[G], as explained in the
general theory of double cross-sums in Section 5A. �

Now we compute the left-covariant first-order differential calculus on the bi-
crossproduct quantum group C[SU2]IGUλ(su∗2) constructed in Example 5.3.

Example 5.8. As in Example 4.6, the classical connected left-covariant calculus
on C[SU2] has basis of left-invariant 1-forms

ω0
= d da− b dc = c db− a dd, ω+ = d db− b dd, ω− = a dc− c da

(corresponding to the Chevalley basis {H, X±} of su2) with exterior derivative

da = aω0
+ bω−, db = aω+− bω0, dc = cω0

+ dω−, dd = cω+− dω0.

Let ◦ : su∗2⊗ su∗2→ su∗2 be a left pre-Lie algebra structure of su∗2 with respect to
the Lie bracket [x1, x2

] = 0 and [x i , x3
] = x i for i = 1, 2. Let

{d̃x1, d̃x2, d̃x3}

complete the basis of left-invariant 1-forms on the tangent bundle as explained above.
According to Proposition 5.7, this defines a 6-dimensional connected left-covariant
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differential calculus on the bicrossproduct C[SU2]IGUλ(su∗2) with commutation
relations and exterior derivative given by

[t, ωl
] = 0 for all l ∈ {0,±}, [t, d̃x i ] = 0,

[x i , d̃x j ] = λ ˜d(x i ◦ x j ) for all i, j ∈ {1, 2, 3},

[x1, ω0
] =

1
2λ(ω

+
+ω−), [x1, ω+] = 0, [x1, ω−] = 0,

[x2, ω0
] =

1
2 ıλ(ω+−ω−), [x2, ω+] = 0, [x2, ω−] = 0,

[x3, ω0
] = 0, [x3, ω+] = −λω+, [x3, ω−] = −λω−,

d
(

a b
c d

)
=

(
a b
c d

)(
ω0 ω+

ω− −ω0

)
,

dx1
= d̃x1+ 2ı x2ω0

+ x3ω+− x3ω−, dx2
= d̃x2− 2ı x1ω0

+ ı x3ω++ ı x3ω−,

dx3
= d̃x3− (x1

+ ı x2)ω++ (x1
− ı x2)ω−.

Proof. The commutation relations and derivative are computed from the formulae
provided in Proposition 5.7. It is useful to also provide an independent, more
algebraic proof of the example from [Majid and Tao 2015b, Theorem 2.5], where
left-covariant first-order differential calculi�1 over a Hopf algebra A are constructed
from pairs (31, ω) where 31 is a right A-module and ω : A+→31 is a surjective
right A-module map. Given such a pair, the commutation relation and derivative
are given by [a, v] = av − a(1)v G a(2) and da = a(1) ⊗ ωπε(a(2)) for any a ∈ A
and v ∈31, where πε = id−1ε and ε is the counit.

Firstly, the classical calculus on A := C[SU2] corresponds to a pair (31
A, ωA)

with 31
A = span{ω0, ω±}, where the right C[SU2]-action on 31

A and the right
C[SU2]-module surjective map ωA : C[SU2]

+
→31

A are given by

ω j
G t = ε(t)ω j , j ∈ {0,±},

ωA(t − I2)= ωA

(
a− 1 b

c d − 1

)
=

(
ω0 ω+

ω− −ω0

)
.

Meanwhile, the calculus over H :=Uλ(su∗2) corresponds to a pair (31
H , ωH ) with

31
H = span{d̃x1, d̃x2, d̃x3},

in which the right Uλ(su∗2)-action on 31
H and the right Uλ(su∗2)-module surjective

map ωH :Uλ(su∗2)
+
→31

H are given by

d̃x j G x i
=−λ ˜d(x i ◦ x j ) and ωH (x i )= d̃x i for all i, j ∈ {1, 2, 3}.

Next we construct a pair (31, ω) over Ã= AIGH with direct sum31
=31

A⊕3
1
H .

First, it is clear that 31
H is a right Ã-module with trivial A-action dx j

G t = ε(t) dx j ,
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One can see this more generally as

v G ((h(1) F a)h(2))= ε(a)v G h = (v G h) G a = v G (ha).

Next, we define a right Uλ(su∗2)-action on 31
A by the Lie bracket of su∗2 viewing

{ω0, ω±} as {φ,ψ±} (the dual basis to {H, X±}), where

{x1
= ψ++ψ−, x2

= ı(ψ+−ψ−), x3
= 2φ}

is the basis for the half-real form su∗2 of sl∗2, namely

(5-14)

ω0
G x1
=−

1
2λ(ω

+
+ω−), ω+ G x1

= 0, ω− G x1
= 0,

ω0
G x2
=−

1
2 ıλ(ω+−ω−), ω+ G x2

= 0, ω− G x2
= 0,

ω0
G x3
= 0, ω+ G x3

= λω+, ω− G x3
= λω−.

This H -action commutes with the original trivial A-action on 31
A, hence 31

A also
becomes a right Ã-module, as does 31

A⊕3
1
H .

We then define the map ω : Ã+→31
A⊕3

1
H on generators by

ω(t− I2)=ωA(t− I2)=

(
ω0 ω+

ω− −ω0

)
, ω(x i )=ωH (x i )= d̃x i for i ∈ {1, 2, 3}.

This extends to the whole of Ã+ as a right Ã-module map. To see that ω is
well-defined, it suffices to check

ω(x i t − tx i )= ω([x i , t]) for all i ∈ {1, 2, 3},

where [x i , t] are cross relations (5-8) computed in Example 5.3. On the one hand,

ω(x i t − tx i )= ω(x i t − (t − I2)x i
− x i I2)

= ωH (x i ) G t −ωA(t − I2) G x i
−ωH (x i )I2

=−ωA(t − I2) G x i ,

that is,

(5-15) ω(x i t − tx i )=−

(
ω0 ω+

ω− −ω0

)
G x i .

Since

[x1, t] = −λbcte2+
λ

2
t diag(ac,−bd)+ λ

2
diag(b,−c)

=−λbcte2+
λ

2
(t− I2) diag(ac,−bd)+ λ

2
diag(ca,−bd)+ λ

2
diag(b,−c),
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we know

ω([x1, t])=−λω(b)ε(cte2)+
λ

2
ω((t − I2))ε(diag(ac,−bd))

+
λ

2
diag(ω(c) G a,−ω(b) G d)+ λ

2
diag(ω(b),−ω(c))

=
λ

2
diag(ω++ω−,−ω+−ω−),

using ε(t)= I2. Likewise, we have

ω([x1, t])= λ
2

(
ω++ω− 0

0 −ω+−ω−

)
,

ω([x2, t])= ıλ
2

(
ω+−ω− 0

0 −ω++ω−

)
,

ω([x3, t])= λ
(

0 −ω+

−ω− 0

)
.

Comparing with (5-15), we see that ω(x i t − tx i ) = ω([x i , t]) holds for each
i = 1, 2, 3 if and only if the right H -action on 31

A is the one defined by (5-14).
From the coproduct of x i given in Example 5.3, we know

dx i
= d̃x i + 1

2 xkω
(
πε(Tr(tσi t−1σk))

)
.

This gives rise to the formulae for derivatives on x i as displayed. �

We now analyse when a Poisson-compatible left-covariant flat preconnection is
bicovariant.

Lemma 5.9. Let g be in the setting of Theorem 5.6. The pre-Lie structure ◦̃ given
by (5-12) of g∗IG g∗ gives a bicovariant preconnection in Corollary 4.2 if and only
if

δg∗( f ◦ g)= 0, f(1)⊗[ f(2), g]g∗ = 0,(5-16)

f(1) ◦ g⊗ f(2) =− f ◦ g(1)⊗ g(2),(5-17)

δg∗(φ ∗ψ)= 0, φ ∗ f(1)⊗ f(2) = 0,(5-18)

for all φ,ψ ∈ g∗, f, g ∈ g∗.

Proof. Since the bicovariance condition (4-6) is bilinear on entries, it suffices to
show that ◦̃ obeys (4-6) on any pair of elements (φ, ψ), (φ, f ), ( f, φ) and ( f, g)
if and only if all the displayed identities hold for any φ,ψ ∈ g∗, f, g ∈ g∗.

Firstly, for any f ∈ g∗ and φ ∈ g∗, (4-6) on ◦̃ reduces to

δg∗[ f, φ]g∗ − [ f, φ(1)]⊗φ(2)−φ(1)⊗[ f, φ(2)] = f(1) ∗φ⊗ f(2)+ [ f(1), φ]⊗ f(2).
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The only term in the above identity not lying in g∗⊗ g∗ is f(1) ∗ φ⊗ f(2), which
hence equals zero. Noting that δg∗ is a 1-cocycle, the remaining terms imply that
f(1)⊗[ f(2), φ]g∗=0. Changing the role of f and φ in (4-6) implies φ∗ f(1)⊗ f(2)=0,
as required.

Next, for any f, g ∈ g∗, the condition (4-6) on ◦̃ requires

( f ◦ g)(1)⊗ ( f ◦ g)(2)+ ( f ◦ g)(1)⊗ ( f ◦ g)(2)− [ f, g(2)]g∗ ⊗ g(2)
− f ◦ g(1)⊗ g(2)− g(1)⊗ f ◦ g(2)− g(1)⊗[ f, g(2)]g∗

= [ f(1), g]g∗ ⊗ f(2)+ f(1) ◦ g⊗ f(2)− g(1)⊗ g(2) ◦ f.

The terms in the above identity lying in g∗ ⊗ g∗ are exactly the condition (4-6)
on the pre-Lie structure ◦ for g∗. Cancelling this, the remaining terms in g∗⊗ g∗

reduce to g(1) ◦ f ⊗ g(2)+ g ◦ f(1)⊗ f(2) = 0, which is equivalent to

f(1) ◦ g⊗ f(2)+ f ◦ g(1)⊗ g(2) = 0 for all f, g ∈ g∗.

Combining the above with f(1)⊗[ f(2), φ]g∗ = 0, the condition (4-6) on ◦ reduces
to δg∗( f ◦ g)= 0.

Finally, for any φ,ψ ∈ g∗, the condition (4-6) on ◦̃ reduces to (4-6) on ∗ for g∗.
Since ∗ is commutative, this eventually becomes

(φ ∗ψ)(1)⊗ (φ ∗ψ)(2) = φ ∗ψ(1)⊗ψ(2)+φ(1) ∗ψ ⊗φ(2).

Since φ ∗ f(1)⊗ f(2) = 0, this reduces to δg∗(φ ∗ψ)= 0. �

The conditions in Lemma 5.9 all hold when the Lie bracket of g (or the Lie
cobracket of g∗) vanishes. Putting these results together we have:

Proposition 5.10. Let G be a finite-dimensional connected and simply connected
Poisson–Lie group with Lie bialgebra g. Assume that (g∗, [ , ]g∗) obeys the condi-
tions in Theorem 5.6 and Lemma 5.9. Then the tangent bundle G FJg in Lemma 5.1
admits a Poisson-compatible bicovariant flat preconnection.

Example 5.11. In the setting of Example 5.2, we already know from Corollary 4.2
that the abelian Poisson–Lie group Rn >Jm∗ admits a Poisson-compatible left-
covariant (bicovariant) flat preconnection if and only if (m∗>Jm∗)∗ =m>Gad m

admits a pre-Lie structure.
From Corollary 5.5, we know that such a pre-Lie structure ◦̃ exists and is given

by (x, ξ)◦̃(y, η)= (x · y+ [ξ, y]m, ξ ◦ η) if we assume (m, · , [ , ]m) to be a finite-
dimensional (not necessarily unital) Poisson algebra such that (m, [ , ]m) admits a
pre-Lie structure ◦ :m⊗m→m. Then the corresponding preconnection is

γ ((x, ξ), d(y, η))= d(x · y+ [ξ, y]m, ξ ◦ η)

for any x, y ∈m, ξ, η ∈m.
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In fact this extends to all orders. Under the assumptions above, according to
Proposition 4.4, the noncommutative algebra Uλ(m>Gad m)= S(m)>GUλ(m), or
the cross product of algebras C[Rn

]>GU (m) (as quantisation of C∞(Rn >Jm∗)),
admits a connected bicovariant differential graded algebra

�(Uλ(m>Gad m))= (S(m)>GUλ(m)) F<3(m>Gad m)

as quantisation. Note that d(x, ξ)= 1⊗ (x, ξ)∈ 1⊗31. The commutation relations
on generators are

[ξ, η] = λ[ξ, η]m, [x, y] = 0, [ξ, x] = λ[ξ, x]m,

[x, dy] = λd(x · y), [ξ, dx] = λd[ξ, x]m, [ξ, dη] = λd(ξ ◦ η),

for any x, y ∈m, ξ, η ∈m.

6. Semiclassical data on the cotangent bundle T∗G = g∗>G G

In this section, we focus on the semiclassical data for quantisation of the cotangent
bundle T ∗G of a Poisson–Lie group G. We aim to construct preconnections on T ∗G.

As a Lie group, the cotangent bundle T ∗G can be identified with the semidirect
product of Lie groups g∗>GG with product given by

(φ, g)(ψ, h)= (φ+Ad∗(g)(ψ), gh)

for any g, h ∈G, φ,ψ ∈ g∗. As before, g∗ is g∗ but viewed as an abelian Lie group
under addition. In particular,

(φ, g)−1
= (−Ad∗(g−1)(φ), g−1) and (0, g)(φ, e)(0, g)−1

= (Ad∗(g)φ, e).

Here Ad∗ is the coadjoint action of G on the dual of its Lie algebra. The Lie algebra
of T ∗G is then identified with the semidirect sum of Lie algebras g∗>G g, where
the Lie bracket of g∗>G g is given by

(6-1) [(φ, x), (ψ, y)] = (ad∗x ψ − ad∗y φ, [x, y]g)

for any φ,ψ ∈ g∗, x, y ∈ g. Here g∗ is g∗ viewed as abelian Lie algebra and ad∗

denotes the usual left coadjoint action of g on g∗ (or g∗).
Our strategy to build Poisson–Lie structures on the cotangent bundle here is to

construct Lie bialgebra structures on g∗ >G g via bosonisation of Lie bialgebras.
Then we can exponentiate the obtained Lie cobracket of g∗>G g to a Poisson–Lie
structure on g∗>GG. We can always do this, as we work in the nice case where the
Lie group is connected and simply connected.
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6A. Lie bialgebra structures on g∗ >G g via bosonisation. Let g
gM denote the

monoidal category of left Lie g-crossed modules. A braided-Lie bialgebra b ∈
g
gM

is (b, [ , ]b, δb, F, β) given by a g-crossed module (b, F, β) that is both a Lie algebra
(b, [ , ]b) and a Lie coalgebra (b, δb) living in g

gM, with the infinitesimal braiding
9 :b⊗b→b⊗b obeying9(x, y)= adx δby−ady δbx−δb([x, y]b) for any x, y ∈b.
If b is a braided-Lie bialgebra in g

gM, then the bisum b>G· g with semidirect Lie
bracket/cobracket is a Lie bialgebra [Majid 2000].

For our purposes, a straightforward solution is to ask for

g∗ = (g∗, [ , ] = 0, δg∗, ad∗, α)

to be a braided-Lie algebra in g
gM for some left g-coaction α on g∗.

Lemma 6.1. Let g be a finite-dimensional Lie bialgebra and suppose there is a
linear map 4 : g∗⊗ g∗→ g∗ such that (2-6) holds. Then

g∗ = (g∗, [ , ] = 0, δg∗, ad∗, α)

is a braided-Lie bialgebra in g
gM if and only if 4 is a pre-Lie structure on g∗ such

that 4 is covariant under the Lie cobracket δg∗ , in the sense that

(6-2) 4(φ,ψ)(1)⊗4(φ,ψ)(2) =4(φ,ψ(1))⊗ψ(2)+ψ(1)⊗4(φ,ψ(2))

and

(6-3) 4(φ(1), ψ)⊗φ(2) = ψ(1)⊗4(ψ(2), φ)

for any φ,ψ ∈ g∗. Here the left g-coaction α and the left pre-Lie product 4 of g∗

are mutually determined via

(6-4) 〈α(φ), ψ ⊗ x〉 = −4(ψ, φ)(x)

for any φ,ψ ∈ g∗, x ∈ g. In this case, the bisum g∗>G· g is a Lie bialgebra with Lie
bracket given by (6-1) and Lie cobracket given by

(6-5) δ(φ, X)= δgX + δg∗φ+ (id−τ)α(φ)

for any φ ∈ g∗, X ∈ g.

Proof. Since the Lie bracket is zero, by definition, the question amounts to finding a
left g-coaction α on g∗ such that (1) (ad∗, α) makes g∗ into a left g-crossed module;
(2) δg∗ is a left g-comodule map under α; and (3) the infinitesimal braiding 9 on
g∗ is trivial, i.e.,

(6-6) 9(φ,ψ)= ad∗
ψ (1)

φ⊗ψ (2)−ad∗
φ(1)
ψ⊗φ(2)−ψ (2)⊗ad∗

ψ (1)
φ+φ(2)⊗ad∗

φ(1)
ψ

is zero for any φ,ψ ∈ g∗, where we write α(φ)= φ(1)⊗φ(2).
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Clearly, α is a left g-coaction on g∗ if and only if 4 defines a left g∗ action on
itself, since α and 4 are adjoint to each other by (6-4), thus if and only if 4 is
left pre-Lie structure, due to (2-6). Next, the condition that the Lie cobracket δg∗
is a left g-comodule map under α means δg∗ is a right g∗-module map under −4.
This is exactly the assumption (6-2) on 4. In this case, the cross condition (3-2) or
(4-6) (using compatibility) for making g∗ a left g-crossed module under (ad∗, α)
becomes (6-3).

It suffices to show that the infinitesimal braiding 9 on g∗ is trivial on g∗. By
construction,

〈α(φ), ϕ⊗ x〉 = −4(ϕ, φ)(x),

so

ad∗
ψ (1)

φ⊗ψ (2) = φ(2)⊗4(φ(1), ψ),

where

α(φ)= φ(1)⊗φ(2) and δg∗φ = φ(1)⊗φ(2).

Thus, using (6-3),

9(φ,ψ)= ad∗
ψ (1)

φ⊗ψ (2)− ad∗
φ(1)
ψ ⊗φ(2)−ψ (2)⊗ ad∗

ψ (1)
φ+φ(2)⊗ ad∗

φ(1)
ψ

=4(ψ(1), φ)⊗ψ(2)−ψ(2)⊗4(ψ(1), φ)

−4(φ(1), ψ)⊗φ(2)+φ(2)⊗4(φ(1), ψ)

=4(ψ(1), φ)⊗ψ(2)+ψ(1)⊗4(ψ(2), φ)

−4(φ(1), ψ)⊗φ(2)−φ(1)⊗4(φ(2), ψ)

= 0. �

Example 6.2. Let m be a pre-Lie algebra with product ◦ :m⊗m→m and g=m∗

with zero Lie bracket as in Example 4.3. This meets the conditions in Lemma 6.1
and we have a Lie bialgebra g∗>J g = m>Jm∗ with zero Lie bracket and with
Lie cobracket

δφ = δm∗φ and δx = (id−τ)α(x) for all φ ∈m∗, x ∈m,

where α is given by the pre-Lie algebra structure ◦ on m, i.e., 〈x ⊗ φ, α(y)〉 =
−〈φ, x ◦ y〉. The Lie bialgebra here is the dual of the semidirect sum Lie algebra
m̃=m∗>Gm (viewed as a Lie bialgebra with zero Lie cobracket), where m acts on
m∗ by the adjoint to the action of m on m given by ◦, i.e., 〈x Fφ, y〉 = −φ(x ◦ y),

[x, y]= [x, y]m, [x, φ]= xFφ and [φ,ψ]= 0 for all x, y ∈m, φ, ψ ∈m∗.

The Poisson bracket on m̃∗ =m>Jm∗ is then the Kirillov–Kostant one for m̃, i.e.,
given by this Lie bracket.
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Example 6.3. Let g be a quasitriangular Lie bialgebra with r -matrix

r = r (1)⊗ r (2) ∈ g⊗ g

such that r+ F X = 0 for all X ∈ g. As in Example 4.7, g∗ is a pre-Lie algebra
with product 4(φ,ψ)=−〈φ, r (2)〉 ad∗r (1) ψ . Direct computation shows 4 satisfies
(6-2)–(6-3) without any further requirement. So g∗ = (g∗, [ , ] = 0, δg∗, ad∗, α) is
a braided-Lie bialgebra in g

gM with α(φ)= r (2)⊗ ad∗r (1) φ. Hence, from Lemma 6.1,
g∗>G· g is a Lie bialgebra with Lie bracket given by (6-1) and Lie cobracket given
by (6-5), i.e.,

(6-7) δ(φ, X)= δgX + δg∗φ+ (id−τ)(r (2)⊗ ad∗r (1) φ).

Note that if g is a quasitriangular Lie bialgebra, Majid [2000, Corollary 3.2,
Lemma 3.4] shows that (g∗, δg∗) is a braided-Lie bialgebra with Lie bracket given
by

[φ,ψ] = 2〈φ, r (1)+ 〉 ad∗
r (2)+
ψ = 0

in our case, so in this example g∗ in Lemma 6.1 agrees with a canonical construction.
On the other hand, this class of examples is more useful in the case where g is
triangular.

6B. Poisson–Lie structures on g∗>GG induced from g∗>G· g. Next we exponen-
tiate our Lie bialgebra structure g∗>G·g constructed by Lemma 6.1 to a Poisson–Lie
structure on the cotangent bundle. As usual this is done by exponentiating δ to a
group 1-cocycle D.

Proposition 6.4. Let G be a connected and simply connected Poisson–Lie group.
If its Lie algebra g with a given coaction α meets the conditions of Lemma 6.1 then
g∗>GG is a Poisson–Lie group with

D(φ, g)= Adφ D(g)+ δg∗φ+ (id−τ)(φ(1)⊗φ(2)− 1
2 ad∗

φ(1)
φ⊗φ(2)),

where α(φ)= φ(1)⊗φ(2).

Proof. Because of the cocycle condition, it suffices to find D(φ) := D(φ, e) and
D(g) := D(e, g); then

D(φ, g)= D(φ)+Adφ D(g) for all (φ, g) ∈ g∗>GG,

where
Adφ(X)= X − ad∗X φ for all X ∈ g⊂ g∗>G g, φ ∈ g∗.

We require
d
dt

D(tφ)= Adtφ(δφ),
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which we solve writing
D(φ)= δg∗φ+ Z(φ),

so that

d
dt

Z(tφ)= Adtφ((id−τ) ◦α(φ))= (id−τ) ◦α(φ)− t (id−τ)(ad∗
φ(1)
φ⊗φ(2)),

Z(0)= 0.

Integrating this to

Z(tφ)= t (id−τ) ◦α(φ)− 1
2 t2(id−τ)(ad∗

φ(1)
φ⊗φ(2)),

we obtain

D(φ)= δg∗φ+ (id−τ)
(
φ(1)⊗φ(2)− 1

2 ad∗
φ(1)
φ⊗φ(2)

)
,

where α(φ)=φ(1)⊗φ(2). The general case dD(φ+tψ)/dt |t=0=Adφ(δψ) amounts
to the vanishing of the expression (6-6), which we saw holds under our assumptions
in the proof of Lemma 6.1. �

Example 6.5. In the setting of Example 6.3 with (g, r) quasitriangular such that
r+ F X = 0 for all X ∈ g, we know that g∗>GG is a Poisson–Lie group with

D(φ, g)= δg∗φ+Ad(φ,g)(r)− r + 2r+ Fφ− r+ F (φ⊗φ),

where F denotes the coadjoint action ad∗. As α(φ)= r21 Fφ, direct computation
shows that D(φ) = δg∗(φ)+ (id−τ)r21 F φ+ r− F (φ⊗ φ). Since the differential
equation for D(g) is the usual one on G for g quasitriangular, D(g)= Adg(r)− r
and we obtain the stated result. Note that

Adφ(r)= (r (1)− r (1) Fφ)⊗ (r (2)− r (2) Fφ)

= r + r F (φ⊗φ)− r (1) Fφ⊗ r (2)− r (1)⊗ r (2) Fφ.

The differential equation dD(φ+ tψ)/dt |t=0 = Adφ(δψ) amounts to

r+ F (id−τ)(φ⊗ψ)= 0,

which is guaranteed by r+ F X = 0 for all X ∈ g.
Note that we can view r ∈ (g∗ >G· g)⊗2, where it will obey the the classical

Yang–Baxter equation and, in our case, adφ(r+) = 0 as r+ F φ = 0 on g∗ under
our assumptions. In this case g∗>G· g is quasitriangular with the same r , with Lie
cobracket

δr (φ)= adφ(r)=−r (1) Fφ⊗ r (2)− r (1)⊗ r (2) Fφ = (id−τ)r21 Fφ

at the Lie algebra level (differentiating the above Adtφ) and with δX as before. In
our case the cobracket has an additional δg∗φ term reflected also in D.
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6C. Preconnections on the cotangent bundle g∗>G·G. Letgbe a finite-dimensional
Lie bialgebra and suppose that its dual g∗ admits a pre-Lie structure

4 : g∗⊗ g∗→ g∗

such that (6-2) and (6-3) hold as in the setting of Lemma 6.1. Then the dual of the
Lie bialgebra g∗>G· g is g>G· g∗, with Lie bracket the semidirect sum g>G g∗ and
Lie cobracket the semidirect cobracket g>J g∗, that is,

[x, y] = [x, y]g, [φ, x] = φ F x, [φ,ψ] = [φ,ψ]g∗,

δx = (id−τ)β(x), δφ = δg∗φ,

for any x, y ∈ g, φ,ψ ∈ g∗. Here the left action and coaction of g∗ on g are given
by

(6-8) 〈φ F x, ψ〉 = −4(φ,ψ)(x) and 〈β(x), y⊗φ〉 = 〈φ, [x, y]〉,

respectively.
Here again, we use Lemma 5.4 to construct pre-Lie algebra structures on the

semidirect sum g>G g∗.

Theorem 6.6. Let G be a connected and simply connected Poisson–Lie group with
Lie bialgebra g. Let g∗ admit two pre-Lie structures 4 and ◦, with 4 obeying (6-2)
and (6-3) as in the setting of Lemma 6.1. Let g also admit a pre-Lie structure ∗ such
that

(6-9) φ F (x ∗ y)= (φ F x) ∗ y+ x ∗ (φ F y),

for all x, y ∈ g, φ ∈ g∗, where F is defined by (6-8). Then the Lie algebra g>G g∗

admits a pre-Lie structure ◦̃:

(6-10) (x, φ) ◦̃ (y, ψ)= (x ∗ y+φ F y, φ ◦ψ),

and the cotangent bundle g∗>GG admits a Poisson-compatible left-covariant flat
preconnection.

Proof. Since (g, 4) is in the setting of Lemma 6.1, the left g∗-action in the semidirect
sum g>Gg∗ is the one defined in (6-8). The rest is immediate from Lemma 5.4 and
Corollary 4.2. �

To construct a bicovariant preconnection, the pre-Lie structure constructed in
Theorem 6.6 must satisfy the bicovariance condition (4-6).

Proposition 6.7. In the setting of Theorem 6.6, the pre-Lie structure ◦̃ of g>G g∗

defined by (6-10) obeys the bicovariance condition if and only if ◦ obeys (4-6), ∗ is
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associative and

[x, y] ∗ z = [y, z] ∗ x,(6-11)

((ad∗x ψ) ◦φ)(y)+4(ad∗y φ,ψ)(x)= 0,(6-12)

4(φ,ψ)([x, y]g)=4(φ, ad∗y ψ)(x)− (φ ◦ ad∗x ψ)(y),(6-13)

for any x, y, z ∈ g and φ,ψ ∈ g∗. The associated preconnection is then bicovariant.

Proof. Since (4-6) is bilinear, it suffices to show that (4-6) holds on any pair of
elements (x, y), (x, φ), (φ, x) and (φ, ψ) if and only if all the conditions and
displayed identities hold. Here we write β(x)= x1

⊗ x2 ∈ g
∗
⊗ g, so we know

〈x1, y〉x2 = [x, y]g, x1
〈x2, φ〉 = − ad∗x φ.

Firstly, for any φ,ψ ∈ g∗, the condition (4-6) for ◦̃ reduces to (4-6) on the pre-Lie
structure ◦ for g∗.

Secondly, for any x, y ∈ g, the condition (4-6) requires

(x ∗ y)1⊗ (x ∗ y)2− (x ∗ y)2⊗ (x ∗ y)1− x1
F y⊗ x2+ x2 ∗ y⊗ x1

+ x ∗ y2⊗ y1

= y1
⊗[x, y2]g+ y2⊗ y1

F x .

The terms lying in g⊗g on both sides should be equal, i.e.,−x1
Fy⊗x2= y2⊗y1

Fx ,
which is equivalent to −4(ad∗x ψ, φ)(y)=4(ad∗y φ,ψ)(x). This is true from our
assumption (6-3) on 4. The terms in g⊗ g∗ give [x ∗ y, z] = [x, z] ∗ y+ x ∗ [y, z],
i.e., ∗ is associative. The terms in g∗⊗ g give (x ∗ y)1⊗ (x ∗ y)2 = y1

⊗[x, y2]g

and, applying the first factor to z ∈ g, we obtain [x ∗ y, z] = [x, [y, z]], which is
equivalent to [x, z] ∗ y = [z, y] ∗ x .

Now, for any x ∈ g, φ ∈ g∗, the condition (4-6) reduces to

0= x1
◦φ⊗ x2−φ(1)⊗φ(2) F x .

Applying y⊗ψ , this becomes −4(ad∗y φ,ψ)(x)= ((ad∗x ψ) ◦φ)(y).
Finally, for any φ ∈ g∗, x ∈ g, the condition (4-6) requires

(φ F x)1⊗ (φ F x)2− (φ F x)2⊗ (φ F x)1−φ ◦ x1
⊗ x2

+φ F x2⊗ x1
− x1
⊗φ F x2+ x2⊗φ ◦ x1

= φ(1) F x ⊗φ(2)+ x2⊗ x1
◦φ.

The terms lying in g∗⊗ g give

(φ F x)1⊗ (φ F x)2−φ ◦ x1
⊗ x2− x1

⊗φ F x2 = 0.

Applying y⊗ψ , this is equivalent to

−4(φ, ad∗y ψ)(x)+ (φ ◦ ad∗x ψ)(y)+4(φ,ψ)([x, y]g)= 0.
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Applying ψ ⊗ y to the terms lying in g⊗ g∗, after cancelling the identity just
obtained, we have ((ad∗x ψ) ◦φ)(y)+4(ad∗y φ,ψ)(x)= 0. �

For simplicity, one can choose 4= ◦ in Theorem 6.6 and Proposition 6.7:

Corollary 6.8. Let g be a finite-dimensional Lie bialgebra. Assume that g∗ admits
a pre-Lie structure 4 such that (6-2) and (6-3) hold. Also assume that g admits a
pre-Lie structure ∗ such that (6-9) holds, where the action is defined by (6-8) from4.
Then

(x, φ) ◦̃ (y, ψ)= (x ∗ y+φ F y, 4(φ,ψ))

defines a pre-Lie structure for the Lie algebra g>G g∗, and thus provides a Poisson-
compatible left-covariant flat preconnection on the cotangent bundle g∗ >G· G.
Moreover, if ∗ is associative and obeys (6-11), then the pre-Lie structure ◦̃ obeys
(4-6) and the corresponding preconnection is bicovariant.

Proof. Clearly, there is no further condition on ◦ in the case ◦ =4 in Theorem 6.6.
In the bicovariant case, the further conditions on ◦ in Proposition 6.7 are (4-6),
(6-12) and (6-13). These all can be proven from the assumptions (6-2) and (6-3) we
already made on 4. In particular, (6-3) shows that (6-12) is true, and (6-2) is simply
a variation of (6-13) when ◦ =4. The only conditions left in Proposition 6.7 are
that ∗ is associative and (6-11). �

Example 6.9. In the easier case of Example 6.2, we already know the answer: a
Poisson-compatible bicovariant flat preconnection on m̃∗ =m>Jm∗ corresponds
to a pre-Lie algebra structure on m̃=m∗>Gm.

Assume ◦̃ is such a pre-Lie structure, and also assume ◦̃ is such that ◦̃(m⊗m)⊆m,
◦̃(m∗ ⊗ m∗) ⊆ m∗, ◦̃(m ⊗ m∗) ⊆ m∗ and that the restriction of ◦̃ on the other
subspace is zero. Directly from the definition of pre-Lie structure, one can show
◦ := ◦̃|m⊗m also provides a pre-Lie structure for (m, [ , ]m), while ∗ := ◦̃|m∗⊗m∗
provides a pre-Lie structure for (m∗, [ , ]m∗ = 0), thus ∗ is associative and (6-11)
holds automatically. Meanwhile, F := ◦̃|m⊗m∗ can be shown to be a left m-action
on m∗, which is exactly the adjoint to the left m-action on m given by the pre-Lie
structure ◦ on m. Applying ◦̃ to any x ∈ m, φ,ψ ∈ m∗, one has x F (φ ∗ψ) =
(xFφ)∗ψ+φ∗(xFψ), i.e., (6-9). The analysis above shows that ◦, ∗, F corresponds
to the data in Corollary 6.8. So this example agrees with our construction of Poisson-
compatible bicovariant flat preconnections on g∗ >G· g = m>Jm∗ in the case of
g= (m∗, [ , ]m∗ = 0) in Corollary 6.8.

We already know how to quantise the algebra C∞(m̃∗) or S(m̃) and its differential
graded algebra as in Example 4.3. More precisely, the quantisation of S(m̃) is the
noncommutative algebra Uλ(m̃) with relations xy− yx = λ[x, y] for all x, y ∈ m̃,
so

Uλ(m̃)=Uλ(m
∗>Gm)= S(m∗)>GUλ(m)
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with cross relations xφ − φx = λx F φ for all x ∈ m, φ ∈ m∗. Meanwhile, as in
Example 4.3 and Proposition 4.4, the preconnection on m̃∗ =m>Jm∗ is given by

γ ((φ, x), d(ψ, y))= d((φ, x) ◦̃ (ψ, y))= d(φ ∗ψ + x Fφ, x ◦ y).

Thus, the quantised differential calculus is

�(Uλ(m̃))=Uλ(m̃) F<3(m̃)= (S(m∗)>GUλ(m)) F<3(m
∗
⊕m)

with bimodule relations

[(φ, x), d(ψ, y)] = λ d(φ ∗ψ + x Fφ, x ◦ y)

for all (φ, x), (ψ, y) ∈ m̃ ⊂ Uλ(m̃), where 3(m∗⊕m) denotes the usual exterior
algebra on the vector space m∗⊕m and d(ψ, y)= 1⊗ (ψ + y) ∈ 1⊗3.

For a concrete example, we take m the 2-dimensional complex nonabelian Lie
algebra defined by [x, y] = x and for m∗ the 2-dimensional abelian Lie algebra with
its five families of pre-Lie structures [Burde 1998]. Among many choices of pairs
of pre-Lie structures for m and m∗, there are two pairs which meet our condition
(6-9) and provide a pre-Lie structure for m̃=m∗>Gm, namely

y ◦ x =−x, y2
=−

1
2 y, Y ∗ Y = X,(1)

x F X = 0, x F Y = 0, y F X = X, y F Y = 1
2 Y ;

y ◦ x =−x, X ∗ Y = X, Y ∗ X = X, Y ∗ Y = Y,(2)
x F X = 0, y F Y = 0, y F X = X, y F Y = 0,

where {X, Y } is chosen to be the basis of m∗ dual to {x, y}. By Theorem 6.6 and
the general analysis earlier, we know that �(Uλ(m̃))=Uλ(m̃) F<3(m

∗
⊕m) is a

bicovariant differential graded algebra. In particular,

�1(Uλ(m̃))=Uλ(m̃) dx ⊕Uλ(m̃) dy⊕Uλ(m̃) dX ⊕Uλ(m̃) dY.

The bimodule relations for case (1) are

[y, dx] = −λ dx, [y, dy] = − 1
2λ dy, [Y, dY ] = λ dX,

[y, dX ] = λ dX, [y, dY ] = 1
2λ dY.

For case (2), we have

[y, dx] = −λ dx, [X, dY ] = λ dX, [Y, dX ] = λ dX, [Y, dY ] = λ dY,

[y, dX ] = λ dX.

Example 6.10. Suppose that g is quasitriangular with r+ F x = 0 for all x ∈ g as in
Example 6.3. According to Corollary 6.8, if g admits a pre-Lie product ∗ such that

(6-14) [r (1), x ∗ y]⊗ r (2) = [r (1), x] ∗ y⊗ r (2)+ x ∗ [r (1), y]⊗ r (2),
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from (6-9), then g>G· g∗ in Example 6.3 admits a pre-Lie structure ◦̃

x ◦̃y = x ∗ y, φ◦̃x = φ F x =−〈φ, r (2)〉[r (1), x], φ◦̃ψ =−〈φ, r (2)〉 ad∗r (1) ψ,

and thus determines a Poisson-compatible left-covariant flat preconnection on the
cotangent bundle g∗>G·G. Such a preconnection is bicovariant if ∗ is associative
and (6-11) holds, and in this case condition (6-9) vanishes. Recall that we cannot
take g semisimple here since it will not then admit a pre-Lie structure.

For a concrete example, we take g to again be the 2-dimensional Lie algebra
[x, t] = x as in Example 4.5 but with δx = 0 and δt = x ⊗ t − t ⊗ x as a triangular
Lie bialgebra with r = t ⊗ x − x ⊗ t . If {X, T } is the dual basis to {x, t} then the
pre-Lie algebra structure ◦ of g∗ determined by r is

T ◦ X =−T, X ◦ X =−X,

and otherwise zero, which is isomorphic to b2,1 listed in Example 4.5. On the other
hand, computation shows that among all the possible pre-Lie algebra structures
for g listed in Example 4.5, precisely b1,−1 and b2,1 satisfy condition (6-14), giving
us two pre-Lie algebra structures on g>G· g∗ by our construction, namely

t ∗ x =−x, t ∗ t =−t, T ◦ X =−T, X ◦ X =−X,(1)
X F x = x, T F t = x;

x ∗ t = x, t ∗ t = t, T ◦ x =−T, X ◦ X =−X,(2)
X F x = x, T F t = x .

These determine two Poisson-compatible left-covariant flat preconnections on the
cotangent bundle g∗>G·G. In case (1) this is also bicovariant as ∗ is associative and
satisfies (6-11), which can be checked directly.
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