TRANSFERENCE OF CERTAIN MAXIMAL HILBERT TRANSFORMS ON THE TORUS

DASHAN FAN, HUOXIONG WU AND FAYOU ZHAO
Using transference techniques, we show that $L^p(\mathbb{R}^n)$ estimates for many operators may be transferred to the $L^p(\mathbb{T}^n)$ estimates on the $n$-torus $\mathbb{T}^n$ via measure-preserving actions of $\mathbb{R}^n$. These operators include the maximal bilinear Hilbert transform, the oscillation, and the variation and short variation operators of the Hilbert transform on the torus $\mathbb{T}$. As an extension, we study the (maximal) bilinear Riesz transforms on the $n$-torus $\mathbb{T}^n$.

1. Introduction

Let $\mathbb{C}$ be the complex plane and $\mathbb{R}_+^2$ the upper half plane

$$\mathbb{R}_+^2 = \{(x, y) = x + iy \in \mathbb{C} : y > 0\}.$$ 

The boundary of $\mathbb{R}_+^2$ is the real line $\mathbb{R}$. Consider the boundary condition $f \in L^p(\mathbb{R})$, where $f$ is real-valued and $1 \leq p < \infty$. It is well known that the Poisson integral

$$u(x, y) = P_y(f)(x) = \frac{1}{\pi} \int_{\mathbb{R}} f(t) \frac{y}{(x-t)^2 + y^2} dt$$

is the solution of the Dirichlet problem on $\mathbb{R}_+^2$. Precisely, $u$ is a harmonic function on $\mathbb{R}_+^2$ and $u(x, y)$ tends to $f(x)$ nontangentially for almost all $x \in \mathbb{R}$ as $y \to 0^+$. There is a (unique) harmonic function

$$v(x, y) = Q_y(f)(x) = \frac{1}{\pi} \int_{\mathbb{R}} f(t) \frac{x-t}{(x-t)^2 + y^2} dt$$

such that

$$F(z) = u(x, y) + iv(x, y)$$

is an analytic function on $\mathbb{R}_+^2$. This function $Q_y(f)(x)$ is called the conjugate Poisson integral of $f$. From [Stein and Weiss 1971, p. 186], we know that the

---

The research was supported by National Natural Science Foundation of China (Grant Nos. 11471288, 11471041, 11371295, 11201287), China Scholarship Council (No. 201406895019) and the FETU.

The corresponding author is Zhao.


Keywords: bilinear Hilbert transform, maximal operator, Riesz transform, oscillation, variation, torus, transference.
function $F(z)$, with $z = x + iy$, has the nontangential limit $f(x) + \frac{i}{\pi} Hf(x)$ for almost all $x \in \mathbb{R}$. Here $H$ is the Hilbert transform defined by

$$Hf(x) = \lim_{\varepsilon \to 0} H_{\varepsilon} f(x)$$

and

$$H_{\varepsilon} f(x) = \int_{|t| > \varepsilon} \frac{f(x-t)}{t} dt.$$

To study the pointwise convergence of $Hf(x)$, one then needs to study the truncated maximal Hilbert transform

$$H^* f(x) = \sup_{\varepsilon > 0} |H_{\varepsilon} f(x)|.$$

Let

$$D = \{ z = x + iy \in \mathbb{C} : |z| < 1 \}$$

be the unit disc. Its boundary $\mathbb{T} = \partial D$ is the one-dimensional torus. Without loss of generality, we may identify the torus $\mathbb{T}$ with its fundamental interval $[-\frac{1}{2}, \frac{1}{2})$. The Dirichlet problem on $D$ with the boundary condition $\tilde{f} \in L^p(\mathbb{T})$ similarly raises an analytic function $\tilde{F}(z) = \tilde{u}(x, y) + i \tilde{v}(x, y)$. The function $\tilde{F}(z)$, for $z = x + iy \in D$, has the nontangential limit $\tilde{f}(x) + \frac{i}{\pi} \tilde{H} \tilde{f}(x)$ for almost all points $x \in \mathbb{T}$. Here $\tilde{H}$ is the periodic version of the Hilbert transform defined by

$$\tilde{H} \tilde{f}(x) = \lim_{\varepsilon \to 0} \tilde{H}_{\varepsilon} \tilde{f}(x)$$

and

$$\tilde{H}_{\varepsilon} \tilde{f}(x) = \int_{\varepsilon < |t| < \frac{1}{2}} \tilde{f}(x-t) \cot(\pi t) dt.$$  

By computing the Fourier coefficients, one can see that $\tilde{H} \tilde{f}(x)$ has the Fourier series

$$\tilde{H} \tilde{f}(x) = \sum_{k=-\infty}^{\infty} i \text{sgn}(k) a_k e^{2\pi i k x}$$

for any

$$\tilde{f}(x) = \sum_{k=-\infty}^{\infty} a_k e^{2\pi i k x}$$

(see also [Edwards and Gaudry 1977]). It is known that $\sum_{k=-\infty}^{\infty} \text{sgn}(k) a_k e^{2\pi i k x}$ (up to a constant multiplier) is the conjugate Fourier series of $\tilde{f}$.

The bilinear Hilbert transform $\mathcal{H}(f, g)$ and the maximal bilinear Hilbert transform $\mathcal{H}^*(f, g)$ are defined respectively as

$$\mathcal{H}(f, g)(x) = \lim_{\varepsilon \to 0} \int_{|t| > \varepsilon} \frac{f(x-t)g(x+t)}{t} dt$$

and

$$\mathcal{H}^*(f, g)(x) = \sup_{\varepsilon > 0} \int_{|t| > \varepsilon} \frac{f(x-t)g(x+t)}{t} dt.$$
and

$$\mathcal{H}^*(f, g)(x) = \sup_{\varepsilon > 0} \left| \int_{|t| > \varepsilon} \frac{f(x-t)g(x+t)}{t} \, dt \right|.$$  

The operator $\mathcal{H}(f, g)$ is not merely a formal extension from the Hilbert transform. It has deep roots in the study of certain harmonic analysis and PDE problems. The study of the bilinear Hilbert transform $\mathcal{H}(f, g)$ was initiated by Calderón when he studied certain Cauchy integrals $C_\gamma(f)$ along the Lipschitz curves. In order to obtain the $L^2$ boundedness of $C_\gamma(f)$, Calderón introduced a commutator (now known as the first Calderón commutator) and raised a famous conjecture, which says that $\mathcal{H}$ is a bounded operator from $L^\infty \times L^2 \to L^2$; see [Jones 1994]. The conjecture was solved in a more general setting by Lacey and Thiele in their celebrated theorem:

**Theorem A1** [Lacey and Thiele 1997]. Let $1 < q, r \leq \infty$, and $\frac{2}{3} < p < \infty$. Then

$$\|\mathcal{H}(f, g)\|_{L^p(\mathbb{R})} \leq \|f\|_{L^q(\mathbb{R})} \|g\|_{L^r(\mathbb{R})},$$

provided $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$.

The notation $A \preceq B$ for $A, B > 0$ means that there exists a constant $c > 0$ independent of all essential variables such that $A \leq cB$. We also use the notation $A \simeq B$ when $A \preceq B$ and $B \preceq A$.

The proof of the theorem by Lacey and Thiele involves a very elegant method of time-frequency analysis. The essence of the matter lies in their formulation and proof of certain almost orthogonal results on the phase space. Maximal forms of these results must be proved. These maximal inequalities rely in an essential way on a novel maximal inequality of Bourgain [1989; 1990]. By refining these maximal bilinear estimates and Bourgain’s lemma, Lacey further obtained the following remarkable theorem:

**Theorem A2** [Lacey 2000]. Let $1 < q, r \leq \infty$ and $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. If $\frac{2}{3} < p < \infty$, then

$$\|\mathcal{H}^*(f, g)\|_{L^p(\mathbb{R})} \leq \|f\|_{L^q(\mathbb{R})} \|g\|_{L^r(\mathbb{R})}.$$  

Based on Theorems A1 and A2, it is natural to expect to establish analogous theorems for the periodic bilinear Hilbert transform on the torus. Here, the bilinear Hilbert transform and its maximal operator on the torus are defined, initially on $C^\infty(\mathbb{T})$, by

$$\tilde{\mathcal{H}}(\tilde{f}, \tilde{g})(x) = \text{p.v.} \int_{|t| < \frac{1}{2}} \tilde{f}(x-t)\tilde{g}(x+t) \cot(\pi t) \, dt$$

and

$$\tilde{\mathcal{H}}^*(\tilde{f}, \tilde{g})(x) = \sup_{\varepsilon > 0} \left| \int_{\varepsilon < |t| < \frac{1}{2}} \tilde{f}(x-t)\tilde{g}(x+t) \cot(\pi t) \, dt \right|.$$
However, it seems quite difficult to adopt the time-frequency method used in [Lacey and Thiele 1997]. Thus, in [Fan and Sato 2001], the authors used a “transference” method to reduce the boundedness of \( \tilde{H}(\tilde{f}, \tilde{g}) \) to the boundedness of \( H(f, g) \) by estimating an error term. The method of transference is a useful tool for obtaining norm estimates independent of the dimension for classical operators acting on \( L^p(\mathbb{R}^n) \) (see [Auscher and Carro 1994; Blasco and Gillespie 2009; Coifman and Weiss 1977; Gillespie and Torrea 2004; Rubio de Francia 1989]). Fan and Sato [2001] proved the de Leeuw-type theorems (see [de Leeuw 1965]) for the transference of multilinear operators on Lebesgue spaces from \( \mathbb{R}^n \) to the \( n \)-torus.

In particular, they proved:

**Theorem B.** Let \( 1 < q, r \leq \infty \) and \( \frac{1}{p} = \frac{1}{q} + \frac{1}{r} \). If \( \frac{2}{3} < p < \infty \), then

\[
\| \tilde{H}(\tilde{f}, \tilde{g}) \|_{L^p(T)} \leq \| f \|_{L^q(T)} \| g \|_{L^r(T)}.
\]

Note that

\[
\tilde{H}(\tilde{f}, \tilde{g})(x) \simeq \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} \text{sgn}(k_1 - k_2)a_{k_1}a_{k_2}e^{2\pi i(k_1+k_2)x},
\]

where

\[
f(x) = \sum_{k_1 \in \mathbb{Z}} a_{k_1}e^{2\pi ik_1x} \quad \text{and} \quad g(x) = \sum_{k_2 \in \mathbb{Z}} a_{k_2}e^{2\pi ik_2x}.
\]

In [Fan and Sato 2001], the authors also studied the boundedness of the maximal multiplier operator

\[
\tilde{T}^{**}(\tilde{f}, \tilde{g})(x) = \sup_{\varepsilon > 0} \left| \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} m(\varepsilon k_1, \varepsilon k_2)a_{k_1}a_{k_2}e^{2\pi i(k_1+k_2)x} \right|,
\]

where \( m \) is a bounded and continuous function (see also [Berkson et al. 2006; 2007; Blasco et al. 2005; Grafakos and Honzík 2006] for transference methods on maximal bilinear operators). For the bilinear Hilbert transform, clearly we have

\[
\tilde{H}(\tilde{f}, \tilde{g})(x) = \tilde{H}^{**}(\tilde{f}, \tilde{g})(x),
\]

since

\[
\sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} \text{sgn}(\varepsilon k_1 - \varepsilon k_2)a_{k_1}a_{k_2}e^{2\pi i(k_1+k_2)x} = \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} \text{sgn}(k_1 - k_2)a_{k_1}a_{k_2}e^{2\pi i(k_1+k_2)x}.
\]

This observation indicates

\[
\tilde{H}^*(\tilde{f}, \tilde{g})(x) \neq \tilde{H}^{**}(\tilde{f}, \tilde{g})(x).
\]

Since the boundedness of \( \tilde{H}^*(\tilde{f}, \tilde{g}) \) still remains open, the first aim of this paper is to solve this problem by establishing the following analog of Lacey’s theorem.
Theorem 1.1. Let $1 < q, r \leq \infty$ and $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. If $\frac{2}{3} < p < \infty$, then
\[
\| \mathcal{H}^* (f, \tilde{g}) \|_{L^p(\mathbb{T})} \leq \| \tilde{f} \|_{L^q(\mathbb{T})} \| \tilde{g} \|_{L^r(\mathbb{T})}.
\]

We adopt the method in [Fan and Sato 2001] to prove the theorem, in which the main issue is to estimate error terms in order to reduce the boundedness of $L^q(\mathbb{T}) \times L^r(\mathbb{T}) \to L^p(\mathbb{T})$ to the known result for $L^q(\mathbb{R}) \times L^r(\mathbb{R}) \to L^p(\mathbb{R})$. This method additionally allows us to treat other operators related to the maximal Hilbert transform. Recall that the limits (1) and (3) mentioned above exist almost everywhere. Motivated by probability and ergodic theory [Bourgain 1989; Jones 1997; 1998], in order to obtain extra information on their convergence rate, as well as an estimate on the number of $\lambda$-jumps they can have, Campbell, Jones, Reinhold and Wierdl [Campbell et al. 2000] studied the oscillation and variation of the family $(H_\epsilon)$ as $\epsilon$ approaches 0 as follows.

For each fixed sequence $(t_k) \searrow 0$, define the oscillation and variation operators by
\[
\Theta (H_\epsilon f)(x) = \left( \sum_{k=1}^{\infty} \sup_{t_{k+1} \leq x < \epsilon_k \leq t_k} \left| H_{\epsilon_k} f (x) - H_{\epsilon_{k+1}} f (x) \right|^2 \right)^{\frac{1}{2}}, \tag{4}
\]
\[
\gamma^* (H_\epsilon f)(x) = \sup_{(\epsilon_j) \searrow 0} \left( \sum_{k=1}^{\infty} \left| H_{\epsilon_k} f (x) - H_{\epsilon_{k+1}} f (x) \right|^2 \right)^{\frac{1}{2}}, \tag{5}
\]
respectively. Also, define
\[
V_k (H_\epsilon f)(x) = \sup_{(\epsilon_j) \searrow 0} \left( \frac{1}{2} \sum_{\frac{1}{2} < \epsilon_{j+1} \leq \epsilon_j \leq \frac{1}{2}} \left| H_{\epsilon_j} f (x) - H_{\epsilon_{j+1}} f (x) \right|^2 \right)^{\frac{1}{2}},
\]
where the supremum is taken over all decreasing sequences $(\epsilon_j)$. Then the “short variation operator” is defined by
\[
S_V (H_\epsilon f)(x) = \left( \sum_{k=-\infty}^{\infty} V_k (H_\epsilon f)(x) \right)^{\frac{1}{2}}. \tag{6}
\]
For convenience, all the integrals are defined on the Schwartz class.

We recall the following results from [Campbell et al. 2000].

Theorem C. The oscillation operator $\Theta (H_\epsilon)$ satisfies
\[
\| \Theta (H_\epsilon f) \|_{L^p(\mathbb{R})} \leq c_p \| f \|_{L^p(\mathbb{R})}
\]
for $1 < p < \infty$ and $\{ x \in \mathbb{R} : \Theta (H_\epsilon f)(x) > \lambda \} \leq (c/\lambda) \| f \|_{L^1(\mathbb{R})}$.

Theorem D. If $\varrho > 2$, then the variation operator $\gamma^* (H_\epsilon)$ satisfies
\[
\| \gamma^* (H_\epsilon f) \|_{L^p(\mathbb{R})} \leq c (p, \varrho) \| f \|_{L^p(\mathbb{R})}
\]
for $1 < p < \infty$ and $\{ x \in \mathbb{R} : \gamma^* (H_\epsilon f)(x) > \lambda \} \leq (c(\varrho)/\lambda) \| f \|_{L^1(\mathbb{R})}$. 

Theorem E. The short variation operator $S_V(H_\ast)$ satisfies
\[ \|S_V(H_\ast f)\|_{L^p(\mathbb{R})} \leq c_p \|f\|_{L^p(\mathbb{R})} \]
for $1 < p < \infty$ and $\|\{x \in \mathbb{R} : S_V(H_\ast f)(x) > \lambda\}\| \leq (c/\lambda) \|f\|_{L^1(\mathbb{R})}$.

Our second aim is to use the transference method to study the analogs of these operators on the torus. For each fixed sequence $(t_k) \searrow 0$, define the oscillation and variation operators on the torus by
\[
\vartheta(\tilde{H}_\ast f)(x) = \left( \sum_{k=1}^{\infty} \sup_{t_{k+1} \leq \varepsilon_k \leq t_k} |\tilde{H}_{t_k} f(x) - \tilde{H}_{t_{k+1}} f(x)|^2 \right)^{1/2},
\]
\[
\gamma(\tilde{H}_\ast f)(x) = \sup_{(\varepsilon_j) \searrow 0} \left( \sum_{j=1}^{\infty} |\tilde{H}_{\varepsilon_j} f(x) - \tilde{H}_{\varepsilon_{j+1}} f(x)|^\varrho \right)^{1/\varrho},
\]
respectively. Also, define the operator $V_k(\tilde{H}_\ast)$ on the torus by
\[
V_k(\tilde{H}_\ast f)(x) = \sup_{(\varepsilon_j) \searrow 0} \left( \sum_{\frac{1}{2} \leq \varepsilon_{j+1} \leq \varepsilon_j \leq \frac{1}{2} - \frac{1}{2k} \varepsilon} |\tilde{H}_{\varepsilon_j} f(x) - \tilde{H}_{\varepsilon_{j+1}} f(x)|^2 \right)^{1/2},
\]
where the supremum is taken over all decreasing sequences $(\varepsilon_j)$. Then define the "short variation operator" on the torus by
\[
S_V(\tilde{H}_\ast f)(x) = \left( \sum_{k=-\infty}^{\infty} (V_k(\tilde{H}_\ast f(x))^2 \right)^{1/2}.
\]
For simplicity, we define these operators on the space $C^\infty(\mathbb{T})$.

We establish the following theorems.

Theorem 1.2. The oscillation operator $\vartheta(\tilde{H}_\ast)$ satisfies
\[ \|\vartheta(\tilde{H}_\ast f)\|_{L^p(\mathbb{T})} \leq c_p \|\tilde{f}\|_{L^p(\mathbb{T})} \]
for $1 < p < \infty$ and $\|\{x \in \mathbb{T} : \vartheta(\tilde{H}_\ast f)(x) > \lambda\}\| \leq (c/\lambda) \|\tilde{f}\|_{L^1(\mathbb{T})}$.

Theorem 1.3. If $\varrho > 2$, then the variation operator $\gamma(\tilde{H}_\ast)$ satisfies
\[ \|\gamma(\tilde{H}_\ast f)\|_{L^p(\mathbb{T})} \leq c(p, \varrho) \|\tilde{f}\|_{L^p(\mathbb{T})} \]
for $1 < p < \infty$ and $\|\{x \in \mathbb{T} : \gamma(\tilde{H}_\ast f)(x) > \lambda\}\| \leq (c(\varrho)/\lambda) \|\tilde{f}\|_{L^1(\mathbb{T})}$.

Theorem 1.4. The short variation operator $S_V(\tilde{H}_\ast)$ satisfies
\[ \|S_V(\tilde{H}_\ast f)\|_{L^p(\mathbb{T})} \leq c_p \|\tilde{f}\|_{L^p(\mathbb{T})} \]
for $1 < p < \infty$ and $\|\{x \in \mathbb{T} : S_V(\tilde{H}_\ast f)(x) > \lambda\}\| \leq (c/\lambda) \|\tilde{f}\|_{L^1(\mathbb{T})}$.
As we mentioned, the method in [Fan and Sato 2001] shows that $L^p(\mathbb{R}^n)$ estimates for many linear operators may be transferred to their corresponding $L^p$ estimates on the torus via measure-preserving actions of $\mathbb{R}^n$. As a further application and extension, we consider the bilinear Riesz transform on the $n$-torus. Recall that the bilinear singular integral with rough kernel on $\mathbb{R}^n$ is defined by

\begin{equation}
T_\Omega(f, g)(x) = \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} f(x - y)g(x + y) \frac{\Omega(y')}{|y|^n} \, dy',
\end{equation}

where $\Omega(y')$ is a function defined on the unit sphere $S^{n-1}$ in Euclidean space $\mathbb{R}^n$ and whose integral over $S^{n-1}$ is zero. One then obtains the bilinear Riesz transform by taking $\left(\frac{x}{|x|}\right)$, where $x_j$ is the $j$-th component of $x$. Using the same transference method, we also can transfer the $L^p$-boundedness of the maximal bilinear Riesz transform from $\mathbb{R}^n$ to $\mathbb{T}^n$. This fact is discussed in the last two sections.

Throughout this article, we use the letter $c$ to denote a positive constant, which is independent of the main parameters and not necessarily the same at each occurrence.

2. Proof of Theorems 1.1–1.4

In this section we give the proof of Theorems 1.1–1.4. As is well known, Euler discovered two remarkable expressions for circular functions, one as an infinite product and the other as an infinite series. For the sine function he established the formula

$$\sin(\pi x) = \pi x \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{k^2}\right) = \pi x \prod_{k \in \mathbb{Z} \setminus \{0\}} \left(1 + \frac{x}{k}\right)$$

(see [Varadarajan 2007]). By logarithmic differentiation one obtains

\begin{equation}
\cot(\pi x) = \text{p.v.} \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \left( \frac{1}{x + k} \right),
\end{equation}

where p.v. means the Cauchy principal value, that is, that the sum has to be interpreted as the limit

\begin{equation}
\lim_{N \to +\infty} \sum_{k=-N}^{N} \frac{1}{x+k} = \frac{1}{x} + \sum_{k=1}^{\infty} \left( \frac{1}{x+k} - \frac{1}{x-k} \right), \quad N \in \mathbb{Z}^+.
\end{equation}

Let $\chi_A(t)$ be the characteristic function of the set $A = \{ t \in \mathbb{R} : |t| > 1 \}$. To prove Theorem 1.1, we need the following lemma.

**Lemma 2.1.** For $\varepsilon < |t| \leq \frac{1}{2}$, we have

$$\cot(\pi t) \chi_A \left( \frac{t}{\varepsilon} \right) = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{1}{t+k} \chi_A \left( \frac{t+k}{\varepsilon} \right) - \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k} \chi_A c \left( \frac{t}{\varepsilon} \right)$$
and the estimate
\[ \left| \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k} \chi_{A^c} \left( \frac{t}{\varepsilon} \right) \right| \leq |t| \chi_{A^c} \left( \frac{t}{\varepsilon} \right), \]

where \( A^c \) is the complement of the set \( A \).

\textbf{Proof.} Using (8), we write the term \( \cot(\pi t) \chi_A \left( \frac{t}{\varepsilon} \right) \) as
\[
\cot(\pi t) \chi_A \left( \frac{t}{\varepsilon} \right) = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{1}{t+k} \chi_A \left( \frac{t}{\varepsilon} \right) = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k} \chi_A \left( \frac{t}{\varepsilon} \right) + \frac{1}{\pi} \chi_A \left( \frac{t}{\varepsilon} \right).
\]

Since \( \chi_A \) is the characteristic function of the set \( \{ t \in \mathbb{R} : |t| > 1 \} \), it is easy to see that for \( \varepsilon < |t| \leq \frac{1}{2} \) and \( k \in \mathbb{Z} \setminus \{0\} \), we have
\[
\chi_A \left( \frac{t+k}{\varepsilon} \right) = 1.
\]

The fact above leads to
\[
\frac{1}{\pi t} \chi_A \left( \frac{t}{\varepsilon} \right) = \frac{1}{\pi t} \chi_A \left( \frac{t}{\varepsilon} \right) + \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k} \chi_A \left( \frac{t+k}{\varepsilon} \right) - \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k}.
\]

Hence we have
\[
\cot(\pi t) \chi_A \left( \frac{t}{\varepsilon} \right) = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{1}{t+k} \chi_A \left( \frac{t+k}{\varepsilon} \right) - \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k} \chi_{A^c} \left( \frac{t}{\varepsilon} \right).
\]

It now remains to estimate
\[
\sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k} \chi_{A^c} \left( \frac{t}{\varepsilon} \right).
\]

From (9), we know
\[
\sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k} \chi_{A^c} \left( \frac{t}{\varepsilon} \right) = \sum_{k=1}^{\infty} \left( \frac{1}{t+k} + \frac{1}{t-k} \right) \chi_{A^c} \left( \frac{t}{\varepsilon} \right) = 2t \sum_{k=1}^{\infty} \frac{1}{t^2-k^2} \chi_{A^c} \left( \frac{t}{\varepsilon} \right).
\]

Using this yields
\[
\left| \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k} \chi_{A^c} \left( \frac{t}{\varepsilon} \right) \right| \leq |t| \chi_{A^c} \left( \frac{t}{\varepsilon} \right),
\]

which completes the proof. \( \square \)
Proof of Theorem 1.1. For simplicity, we introduce some notation. Denote by
\begin{equation}
\mathcal{R}(t) = \chi_A(t), \quad \mathcal{R}_\varepsilon(t) = \frac{1}{\varepsilon} \mathcal{R}\left(\frac{t}{\varepsilon}\right),
\end{equation}
\begin{equation}
\tilde{\mathcal{R}}_\varepsilon(t) = \frac{1}{\varepsilon} \sum_{k \in \mathbb{Z}} \mathcal{R}\left(\frac{t+k}{\varepsilon}\right), \quad r_\varepsilon(t) = \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{t+k} \chi_A(t)\left(\frac{1}{\varepsilon}\right).
\end{equation}

Then we have
\[ \mathcal{H}_\varepsilon(f, g)(x) = \int_{\mathbb{R}} f(x-t)g(x+t)\mathcal{R}_\varepsilon(t)\,dt.\]
Let
\[ \tilde{\mathcal{H}}_\varepsilon(\tilde{f}, \tilde{g})(x) = \int_{|t| < \frac{1}{2}} \tilde{f}(x-t)\tilde{g}(x+t)\tilde{\mathcal{R}}_\varepsilon(t)\,dt.\]

Because of Lemma 2.1, one has
\[ \tilde{H}^*(\tilde{f}, \tilde{g})(x) \leq \frac{1}{\pi} \sup_{\varepsilon > 0} \left| \tilde{\mathcal{H}}_\varepsilon(\tilde{f}, \tilde{g})(x) \right| + \frac{1}{\pi} M(\tilde{f}, \tilde{g})(x),\]
where
\[ M(\tilde{f}, \tilde{g})(x) = \sup_{\varepsilon > 0} \left| \int_{|t| < \frac{1}{2}} \tilde{f}(x-t)\tilde{g}(x+t)r_\varepsilon(t)\,dt \right|.\]

By Lemma 2.1, the Minkowski integral inequality and Hölder’s inequality, we see that, for \( p \geq 1, \)
\[ \| M(\tilde{f}, \tilde{g}) \|_{L^p(\mathbb{T})} \leq \int_{-\frac{1}{2}}^{\frac{1}{2}} \| f(x-t)\tilde{g}(x+t) \|_{L^p(\mathbb{T}, dx)} |t| \, dt \]
\[ \leq \| \tilde{f} \|_{L^q(\mathbb{T})} \| \tilde{g} \|_{L^r(\mathbb{T})}.\]

On the other hand, using Hölder’s inequality, we have
\[ \left\| \int_{-\frac{1}{2}}^{\frac{1}{2}} \tilde{f}(x-t)\tilde{g}(x+t)r_\varepsilon(t)\,dt \right\|_{L^{1/2}(\mathbb{T})} \leq \left\| \int_{-\frac{1}{2}}^{\frac{1}{2}} |\tilde{f}(x-t)\tilde{g}(x+t)r_\varepsilon(t)|\,dt \right\|_{L^1(\mathbb{T})},\]
\[ \leq \| \tilde{f} \|_{L^q(\mathbb{T})} \| \tilde{g} \|_{L^r(\mathbb{T})}.\]

Then an interpolation yields that, for all \( \frac{1}{2} \leq p < \infty, \)
\[ \| M(\tilde{f}, \tilde{g}) \|_{L^p(\mathbb{T})} \leq \| \tilde{f} \|_{L^q(\mathbb{T})} \| \tilde{g} \|_{L^r(\mathbb{T})}.\]

Thus, to prove the theorem, we only need to show that
\[ \| \sup_{\varepsilon > 0} |\tilde{\mathcal{H}}_\varepsilon(\tilde{f}, \tilde{g})| \|_{L^p(\mathbb{T})} \leq \| \tilde{f} \|_{L^q(\mathbb{T})} \| \tilde{g} \|_{L^r(\mathbb{T})}.\]
It is easy to compute that the Fourier coefficients of \( \widehat{\mathcal{N}}_{\varepsilon}(t) \) are

\[
\begin{align*}
c_{m,\varepsilon} &= \int_{\mathbb{R}} \frac{1}{2} \left[ \sum_{k \in \mathbb{Z}} \frac{1}{\varepsilon} \mathcal{R}(\frac{t+k}{\varepsilon}) e^{-i2\pi mt} \right] dt \\
&= \int_{\mathbb{R}} \mathcal{R}(t) e^{-i2\pi m\varepsilon t} dt = -i \int_{|t|>1} \frac{\sin(2\pi m\varepsilon t)}{t} dt \\
&= -\pi i \text{sgn}(\varepsilon m) + i \int_{|t|\leq 2\pi} \frac{\sin(\varepsilon mt)}{t} dt.
\end{align*}
\]

Clearly, \( c_{m,\varepsilon} \) is uniformly bounded on \( \varepsilon > 0 \) and \( m \in \mathbb{Z} \). On the other hand, it is not difficult to check that

\[
\int_{|t|<\frac{1}{2}} \tilde{f}(x-t) \tilde{g}(x+t) \widehat{\mathcal{N}}_{\varepsilon}(t) dt = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_m b_n c_{m-n,\varepsilon} e^{2\pi i(n+m)x},
\]

where

\[
\tilde{f}(x) = \sum_{m=-\infty}^{\infty} a_m e^{2\pi imx} \quad \text{and} \quad \tilde{g}(x) = \sum_{n=-\infty}^{\infty} b_n e^{2\pi inx}.
\]

Now pick \( \Psi \in \mathscr{S}(\mathbb{R}) \) satisfying \( \Psi(x) = 1 \) on \( [-\frac{1}{2}, \frac{1}{2}] \), \( \text{supp}(\Psi) \subset [-\frac{3}{4}, \frac{3}{4}] \) and \( 0 \leq \Psi(x) \leq 1 \). For any positive \( N \), denote the function \( \Psi^{N} \) by

\[
\Psi^{N}(x) = \Psi(x/N).
\]

Consider the error term given by

\[
E_{N,\varepsilon}(\tilde{f}, \tilde{g})(x) = \Psi(x/N)^2 \widehat{\mathcal{N}}_{\varepsilon}(\tilde{f}, \tilde{g})(x) - \mathcal{H}_{\varepsilon}(\Psi^{N}\tilde{f}, \Psi^{N}\tilde{g})(x).
\]

The error term \( E_{N,\varepsilon}(\tilde{f}, \tilde{g})(x) \) roughly gives the difference of \( \mathcal{H}_{\varepsilon} \) on \( \mathbb{R} \) and \( \widehat{\mathcal{H}}_{\varepsilon} \) on the torus. By checking the Fourier transform, we have

\[
\mathcal{H}_{\varepsilon}(\Psi^{N}\tilde{f}, \Psi^{N}\tilde{g})(x) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_m b_n e^{2\pi i(n+m)x} \\
\quad \times \int_{\mathbb{R}} \mathcal{R}_{\varepsilon}(t) \Psi\left(\frac{x+t}{N}\right) \Psi\left(\frac{x-t}{N}\right) e^{2\pi i(n-m)t} dt.
\]

The definition of the inverse Fourier transform on the space of Schwartz functions shows that

\[
\begin{align*}
\int_{\mathbb{R}} \mathcal{R}_{\varepsilon}(t) \Psi\left(\frac{x+t}{N}\right) \Psi\left(\frac{x-t}{N}\right) e^{2\pi i(n-m)t} dt \\
&= \int_{\mathbb{R}} \mathcal{R}_{\varepsilon}(t) \int_{\mathbb{R}} \int_{\mathbb{R}} \widehat{\Psi}(u) \widehat{\Psi}(v) e^{2\pi iv(x+v)/N} e^{2\pi iv(x-v)/N} du dv e^{2\pi i(n-m)t} dt \\
&= \int_{\mathbb{R}} \int_{\mathbb{R}} \widehat{\Psi}(u) \widehat{\Psi}(v) e^{2\pi iv(u+v)/N} \left( \int_{\mathbb{R}} \mathcal{R}_{\varepsilon}(t) e^{2\pi i(n-m)t} dt \right) du dv.
\end{align*}
\]
Therefore, we obtain that
\[ E_{N,\varepsilon}(\tilde{f}, \tilde{g})(x) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_m b_n e^{2\pi i (n+m)x} \times \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{\Psi}(u) \hat{\Psi}(v) (c_{m-n,\varepsilon} - c_{m-n+(v-u)/N,\varepsilon}) e^{2\pi i x (u+v)/N} du dv. \]

If \(m = n\), then
\[
\begin{aligned}
&\int_{\mathbb{R}} \int_{\mathbb{R}} \hat{\Psi}(u) \hat{\Psi}(v) (c_{m-n,\varepsilon} - c_{m-n+(v-u)/N,\varepsilon}) e^{2\pi i x (u+v)/N} du dv \\
=& i \int_{\mathbb{R}} \int_{u>v} \hat{\Psi}(u) \hat{\Psi}(v) \left( \int_{|t|>1} \frac{\sin 2\pi t (v-u)/N}{t} \frac{dt}{t} \right) e^{2\pi i x (u+v)/N} du dv \\
&- i \int_{\mathbb{R}} \int_{v>u} \hat{\Psi}(u) \hat{\Psi}(v) \left( \int_{|t|>1} \frac{\sin 2\pi t (u-v)/N}{t} \frac{dt}{t} \right) e^{2\pi i x (u+v)/N} du dv \\
= 0.
\end{aligned}
\]

If \(m \neq n\), for any sufficiently small \(\delta > 0\), we choose an \(L > 0\) such that
\[
\left| \int_{u^2+v^2 > L} \hat{\Psi}(u) \hat{\Psi}(v) (c_{m-n,\varepsilon} - c_{m-n+(v-u)/N,\varepsilon}) e^{2\pi i x (u+v)/N} du dv \right| < \delta.
\]

Now we let \(N\) be sufficiently large so that, for \(u^2 + v^2 \leq L\),
\[
\text{sgn}(m-n) = \text{sgn}(m-n+(v-u)/N).
\]

By this choice, for all \(0 < \varepsilon < \frac{1}{2}\), we have
\[
\left| \int_{u^2+v^2 \leq L} \hat{\Psi}(u) \hat{\Psi}(v) (c_{m-n,\varepsilon} - c_{m-n+(v-u)/N,\varepsilon}) e^{2\pi i x (u+v)/N} du dv \right| \leq \int_{u^2+v^2 \leq L} \left| \hat{\Psi}(u) \hat{\Psi}(v) \int_{|t|<2\pi} \frac{\sin(\varepsilon t (m-n)) - \sin(\varepsilon t (m-n+(v-u)/N))}{t} \frac{dt}{t} \right| du dv
\]
\[
= o(1) \quad \text{as} \quad N \to \infty.
\]

Since \((a_n)\) and \((b_m)\) are rapidly decreasing sequences, it is easy to see that
\[
\lim_{N \to \infty} \sup_{0 < \varepsilon < 1/2} |E_{N,\varepsilon}(\tilde{f}, \tilde{g})(x)| = 0.
\]

Applying that
\[
\sup_{0 < \varepsilon < 1/2} \left| \hat{\Psi}_{\varepsilon}(\tilde{f}, \tilde{g})(x) \right|
\]
is a periodic function, together with Theorem A2, we now have, as \(N \to \infty\),
Thus we get the desired result by letting $N \to \infty$. \hfill \square

We again will use the transference method to prove Theorems 1.2–1.4. To this end, we need a key lemma in order to estimate error terms.

**Lemma 2.2.** Let $\mathcal{R}_\varepsilon$, $\tilde{\mathcal{R}}_\varepsilon$ and $\Psi$ be as defined in (10), (11) and (13), respectively. For $k \in \mathbb{Z}^+$, set

$$\tilde{H}_{k,k+1}(\tilde{f})(x) = (\tilde{\mathcal{R}}_{\varepsilon_k} - \tilde{\mathcal{R}}_{\varepsilon_{k+1}}) \ast \tilde{f}(x),$$

$$H_{k,k+1}(f)(x) = (\mathcal{R}_{\varepsilon_k} - \mathcal{R}_{\varepsilon_{k+1}}) \ast f(x).$$

For fixed $N \in \mathbb{Z}^+$, define the error term

$$E_{N,\varepsilon_k,\varepsilon_{k+1}}(\tilde{f})(x) = \Psi^N(x) \tilde{H}_{k,k+1}(\tilde{f})(x) - H_{k,k+1}(\Psi^N \tilde{f})(x).$$

Let $1 \leq p < \infty$. As $N \to \infty$, we have:

(i) For each fixed sequence $(\varepsilon_k) \searrow 0$,

$$\left\| \left( \sum_{k=1}^{\infty} \sup_{t_k+1 \leq \varepsilon_{k+1} < \varepsilon_k \leq t_k} |E_{N,\varepsilon_k,\varepsilon_{k+1}}(\tilde{f})(x)|^2 \right)^{1/2} \right\|_{L^p(T)} = o(1).$$

(ii) If $\frac{1}{2\pi} \leq \varepsilon_{k+1} < \varepsilon_k \leq \frac{1}{2\pi - \ell}$, then for $q > 2$,

$$\left\| \sup_{(\varepsilon_k)} \left( \sum_{k=1}^{\infty} |E_{N,\varepsilon_k,\varepsilon_{k+1}}(\tilde{f})(x)|^q \right)^{1/q} \right\|_{L^p(T)} = o(1).$$

**Proof.** By the previous calculation (12), we know that the Fourier coefficients of $\tilde{\mathcal{R}}_\varepsilon(t)$ are

$$c_{l,\varepsilon} = \int_{\mathbb{R}} \mathcal{R}(t)e^{-i\varepsilon 2\pi \ell t} dt = -i \int_{|t| > 1} \frac{\sin(\varepsilon 2\pi \ell t)}{t} dt, \quad \ell \in \mathbb{Z}. \quad (14)$$
Note that
\[
\int_{|t| < \frac{1}{2}} \tilde{R}_{\varepsilon_k}(t) \tilde{f}(x - t) \, dt = \sum_{m = -\infty}^{\infty} a_m c_{m, \varepsilon_k} e^{2\pi imx}.
\]

For fixed \(N \in \mathbb{Z}^+\), we have
\[
\Psi(x/N) \tilde{H}_{\varepsilon_k, \varepsilon_{k+1}}(\tilde{f})(x) = \sum_{m = -\infty}^{\infty} a_m e^{2\pi imx} \int_{\mathbb{R}} \tilde{\Psi}(u)(c_{m, \varepsilon_k} - c_{m, \varepsilon_{k+1}}) e^{2\pi iux/N} \, du.
\]

Also, by a similar estimate as in Theorem 1.1, we obtain
\[
H_{\varepsilon_k, \varepsilon_{k+1}}(\Psi^N \tilde{f})(x) = \sum_{m = -\infty}^{\infty} a_m e^{2\pi imx} \int_{\mathbb{R}} \tilde{\Psi}(u)(c_{m+u/N, \varepsilon_k} - c_{m+u/N, \varepsilon_{k+1}}) e^{2\pi iux/N} \, du.
\]

Consequently,
\[
E_{N, \varepsilon_k, \varepsilon_{k+1}}(\tilde{f})(x) = \sum_{m = -\infty}^{\infty} a_m e^{2\pi imx}
\times \int_{\mathbb{R}} \tilde{\Psi}(u)((c_{m, \varepsilon_k} - c_{m, \varepsilon_{k+1}}) - (c_{m+u/N, \varepsilon_k} - c_{m+u/N, \varepsilon_{k+1}})) e^{2\pi iux/N} \, du.
\]

In order to simplify the notation, we denote by \(C_N(u)\) the term
\[
(c_{m, \varepsilon_k} - c_{m, \varepsilon_{k+1}}) - (c_{m+u/N, \varepsilon_k} - c_{m+u/N, \varepsilon_{k+1}}).
\]

To evaluate the inner integral above, we first deal with the term \(C_N(u)\). From the second expression of (14),
\[
C_N(u) = 2i \int_{\varepsilon_{k+1}}^{\varepsilon_k} \frac{\sin(2\pi mt) - \sin(2\pi(m + u/N)t)}{t} \, dt.
\]

We consider two cases: \(m = 0\) and \(m \neq 0\).

If \(m = 0\), one has
\[
|C_N(u)| = \left| -2i \int_{\varepsilon_{k+1}}^{\varepsilon_k} \frac{\sin(2\pi tu/N)}{t} \, dt \right| \leq 4\pi |u| \frac{1}{N} (\varepsilon_k - \varepsilon_{k+1}).
\]

If \(m \neq 0\), it follows from trigonometric identities that
\[
|C_N(u)| \leq 2 \int_{\varepsilon_{k+1}}^{\varepsilon_k} \frac{\sin(\pi tu/N)}{t} \, dt \leq 2\pi |u| \frac{1}{N} (\varepsilon_k - \varepsilon_{k+1}).
\]
Applying the above estimates, we have
\[
\left\| \left( \sum_{k=1}^{\infty} \sup_{t_{k+1} \leq \varepsilon_{k+1} < \varepsilon_k \leq t_k} \left| E_{N, \varepsilon_k, \varepsilon_{k+1}} (\tilde{f}) (x) \right|^2 \right) \right\|_{L^p (\mathbb{T})} \leq \frac{1}{N} \left\| \left( \sum_{k=1}^{\infty} (t_k - t_{k+1})^2 \right) \right\|_{L^p (\mathbb{T})} \leq \frac{1}{N}.
\]

Therefore we obtain that, as \( N \to \infty \),
\[
\left\| \left( \sum_{k=1}^{\infty} \sup_{t_{k+1} \leq \varepsilon_{k+1} < \varepsilon_k \leq t_k} \left| E_{N, \varepsilon_k, \varepsilon_{k+1}} (\tilde{f}) (x) \right|^2 \right) \right\|_{L^p (\mathbb{T})} = o(1).\]

Similarly, we have for \( \varrho > 2 \),
\[
\left\| \sup_{(\varepsilon_k) \searrow 0} \left( \sum_{k=1}^{\infty} |E_{N, \varepsilon_k, \varepsilon_{k+1}} (\tilde{f}) (x)|^\varrho \right)^{\frac{1}{\varrho}} \right\|_{L^p (\mathbb{T})} \leq \frac{1}{N} \left\| \sup_{(\varepsilon_k) \searrow 0} \left( \sum_{k=1}^{\infty} (\varepsilon_k - \varepsilon_{k+1}) \right)^{\frac{1}{\varrho}} \right\|_{L^p (\mathbb{T})} \leq \frac{1}{N} \left\| \sup_{(\varepsilon_k) \searrow 0} \left( \sum_{k=1}^{\infty} (\varepsilon_k - \varepsilon_{k+1}) \right) \right\|_{L^p (\mathbb{T})} \leq \frac{1}{N}.
\]

Thus we obtain that, as \( N \to \infty \),
\[
\left\| \sup_{(\varepsilon_k) \searrow 0} \left( \sum_{k=1}^{\infty} |E_{N, \varepsilon_k, \varepsilon_{k+1}} (\tilde{f}) (x)|^\varrho \right)^{\frac{1}{\varrho}} \right\|_{L^p (\mathbb{T})} = o(1). \tag*{□}
\]

**Proof of Theorem 1.2.** With the previous notation, by the definition of \( \tilde{H}_\varepsilon (\tilde{f}) \) in (2), we rewrite \( \tilde{H}_\varepsilon (\tilde{f}) - \tilde{H}_{\varepsilon_{k+1}} (\tilde{f}) \) as
\[
\tilde{H}_\varepsilon (\tilde{f}) (x) - \tilde{H}_{\varepsilon_{k+1}} (\tilde{f}) (x) = \frac{1}{\pi} \int_{|t| < \frac{1}{2}} \tilde{f} (x - t) \left( \tilde{R}_{\varepsilon_k} (t) - \tilde{R}_{\varepsilon_{k+1}} (t) \right) dt \quad + \frac{1}{\pi} \int_{|t| > \frac{1}{2}} \tilde{f} (x - t) \left( r_{\varepsilon_{k+1}} (t) - r_{\varepsilon_k} (t) \right) dt,
\]
with the help of Lemma 2.1.

Recall again that \( \chi_A \) is the characteristic function of the set \(|t| > 1\). It is easy to see that for \( \varepsilon_{k+1} < \varepsilon_k < |t| \leq \frac{1}{2} \), we have that for all \( j \in \mathbb{Z} \setminus \{0\}, \)
\[
\chi_A \left( \frac{t + j}{\varepsilon_{k+1}} \right) = \chi_A \left( \frac{t + j}{\varepsilon_k} \right) = 1.
\]

This leads to
\[
r_{\varepsilon_{k+1}} (t) - r_{\varepsilon_k} (t) = 0.
\]
It now suffices to consider
\[
\mathcal{O}(\tilde{H}_n \tilde{f})(x) = \left( \sum_{k=1}^{\infty} \sup_{t_{k+1} \leq t_k \leq t_k} \left| \int_{|t| \leq \frac{1}{2}} \tilde{f}(x-t)(\tilde{H}_{\varepsilon_k}(t) - \tilde{H}_{\varepsilon_{k+1}}(t)) dt \right|^2 \right)^{\frac{1}{2}}.
\]
By (i) of Lemma 2.2, the basic properties of operators on the torus and Theorem C, we conclude that as \(N \to \infty\),
\[
\|\mathcal{O}(\tilde{H}_n \tilde{f})\|_{L^p(\mathbb{T})} = \frac{1}{N} \int_{-\frac{N}{2}}^{\frac{N}{2}} \left( \sum_{k=1}^{\infty} \sup_{t_{k+1} \leq t_k \leq t_k} \left| \psi \left( \frac{x}{N} \right) \tilde{H}_{\varepsilon_k, \varepsilon_{k+1}}(\tilde{f})(x) \right|^2 \right)^{\frac{p}{2}} dx
\leq o(1) + \frac{1}{N} \int_{-\frac{N}{2}}^{\frac{N}{2}} \left( \sum_{k=1}^{\infty} \sup_{t_{k+1} \leq t_k \leq t_k} \left| H_{\varepsilon_k, \varepsilon_{k+1}}(\psi^N \tilde{f})(x) \right|^2 \right)^{\frac{p}{2}} dx
\leq o(1) + \frac{1}{N} \int_{\mathbb{R}} \left| \psi \left( \frac{x}{N} \right) \tilde{f}(x) \right|^p dx \leq \|\tilde{f}\|_{L^p(\mathbb{T})} + o(1).
\]
We next show that the oscillation operator \(\mathcal{O}(\tilde{H}_n)\) is of weak type \((1, 1)\), that is, for any \(\lambda > 0\),
\[
|\{x \in \mathbb{T} : |\mathcal{O}(\tilde{H}_n \tilde{f})(x)| > \lambda\}| \leq \frac{c}{\lambda} \|	ilde{f}\|_{L^1(\mathbb{T})}.
\]
By the basic properties of operators on the torus, we find that for \(N \in \mathbb{Z}^+\),
\[
|\{x \in [-\frac{1}{2}, \frac{1}{2}) : |\mathcal{O}(\tilde{H}_n \tilde{f})(x)| > \lambda\}| = N^{-1} \|\mathcal{O}(\tilde{H}_n \tilde{f})(x)| > \lambda\| = N^{-1} \|\{x \leq \frac{N}{2} : |\psi \left( \frac{x}{N} \right) \tilde{H}_n \tilde{f}(x)| > \lambda\}||.
\]
As in the proofs of (15) and (16), we know that \(E_{N, \varepsilon_k, \varepsilon_{k+1}}(\tilde{f})(x) \to 0\) uniformly in \(x\) as \(N \to \infty\). For any \(\lambda_1\) such that \(0 < \lambda_1 < \lambda\), choose \(N\) large enough that
\[
|\{x \in [-\frac{1}{2}, \frac{1}{2}) : |\mathcal{O}(\tilde{H}_n \tilde{f})(x)| > \lambda\}| \leq N^{-1} |\{x \in \mathbb{R} : |\mathcal{O}(\tilde{H}_n (\psi^N \tilde{f}))(x)| > \lambda - \lambda_1\}||.
\]
Theorem C implies that the last term above can be controlled by
\[
\frac{c N^{-1}}{\lambda - \lambda_1} \|\psi^N \tilde{f}\|_{L^1(\mathbb{R})} = \frac{c N^{-1} N}{\lambda - \lambda_1} \|\tilde{f}\|_{L^1(\mathbb{T})} = \frac{c}{\lambda - \lambda_1} \|\tilde{f}\|_{L^1(\mathbb{T})}.
\]
Since \(\lambda_1 > 0\) is arbitrary, we get the desired result. This completes the proof of Theorem 1.2. \(\square\)

**Proof of Theorem 1.3.** Using the same argument as in Theorem 1.2, it is enough to study
\[
\mathcal{V}_G(\tilde{H}_n \tilde{f})(x) = \sup_{(\varepsilon_k) \not\equiv 0} \left( \sum_{k=1}^{\infty} \left| \int_{|t| \leq \frac{1}{2}} \tilde{f}(x-t)(\tilde{R}_{\varepsilon_k}(t) - \tilde{R}_{\varepsilon_{k+1}}(t)) dt \right|^2 \right)^{\frac{1}{2}}.
\]
Now by checking the proof for the oscillation operator \(\mathcal{O}(\tilde{H}_n)\), it suffices to show
\[
\|\mathcal{V}_G(\tilde{H}_n \tilde{f})\|_{L^p(\mathbb{T})} \leq \|\tilde{f}\|_{L^p(\mathbb{T})}.
\]
Write
\[
H_{\varepsilon_k,\varepsilon_k+1}(f)(x) = H_{\varepsilon_k} f(x) - H_{\varepsilon_k+1} f(x),
\]
\[
\tilde{H}_{\varepsilon_k,\varepsilon_k+1}(\tilde{f})(x) = (\tilde{\mathcal{R}}_{\varepsilon_k} - \tilde{\mathcal{R}}_{\varepsilon_k+1}) \ast \tilde{f}(x).
\]

For any large integer \(N\), we define the error term
\[
E_{N,\varepsilon_k,\varepsilon_k+1}(\tilde{f})(x) = \Psi(x/N) \tilde{H}_{\varepsilon_k,\varepsilon_k+1}(\tilde{f}) - H_{\varepsilon_k,\varepsilon_k+1}(\Psi N \tilde{f})(x).
\]

Using (ii) of Lemma 2.2, we obtain that as \(N \to \infty\),
\[
\sup_{(\varepsilon_k)} \left( \sum_{k=1}^{\infty} |E_{N,\varepsilon_k,\varepsilon_k+1}(\tilde{f})(x)|^\vartheta \right)^{\frac{1}{\vartheta}} \to o(1).
\]

Finally, applying Theorem D, analogously to the proof of Theorem 1.2 we obtain
\[
\| \mathcal{V}_\varrho (\tilde{H}_\varrho \tilde{f}) \|_{L^p(T)} = \frac{1}{N} \int_{\mathbb{R}} \sup_{(\varepsilon_k)} \left( \sum_{k=1}^{\infty} |\Psi\left(\frac{x}{N}\right) \tilde{H}_{\varepsilon_k,\varepsilon_k+1}(\tilde{f})(x)|^\vartheta \right)^{\frac{1}{\vartheta}} \ dx
\]
\[
\leq o(1) + \frac{1}{N} \int_{\mathbb{R}} \left( \sum_{k=1}^{\infty} |H_{\varepsilon_k,\varepsilon_k+1}(\Psi N \tilde{f})(x)|^\vartheta \right)^{\frac{1}{\vartheta}} \ dx
\]
\[
\leq o(1) + \frac{1}{N} \int_{\mathbb{R}} \left| \Psi\left(\frac{x}{N}\right) \tilde{f}(x) \right|^p \ dx \leq \| \tilde{f} \|_{L^p(T)} + o(1).
\]

Letting \(N \to \infty\), we conclude that the variation operator \(\varphi_{\varrho}(\tilde{H}_\varrho)\) is of strong type \((p, p)\) for \(1 < p < \infty\).

The same argument as in the proof of Theorem 1.2 works for the weak type \((1, 1)\) for the variation operator \(\varphi_{\varrho}(\tilde{H}_\varrho)\). We omit the details. \(\square\)

Proof of Theorem 1.4. The proof of Theorem 1.4 is similar to that of Theorem 1.3. The only change is to consider two different cases: \(p' > 2\) and \(p' \leq 2\) in place of the symmetric differentiation operator used above. We leave the details to the interested reader. \(\square\)

3. Extension to Riesz transforms

In this section we study the (maximal) bilinear Riesz transforms as \(n\)-dimensional extensions.

We start with the maximal bilinear singular integral with rough kernel
\[
T_{\Omega}(f, g)(x) = \sup_{\varepsilon > 0} |T_{\Omega,\varepsilon}(f, g)(x)|,
\]
where \(T_{\Omega,\varepsilon}\) is the truncated bilinear operator defined by
\[
T_{\Omega,\varepsilon}(f, g)(x) = \int_{|y| > \varepsilon} \frac{f(x - y)g(x + y)}{|y|^n} \Omega(y') \ dy \quad \text{for} \ \varepsilon > 0.
\]
Following the standard rotation method by Calderón and Zygmund (see also [Fan and Zhao 2016; Grafakos and Torres 2002]), we have the following result on $\mathbb{R}^n$.

**Theorem 3.1.** Let $1 < q, r \leq \infty$, $1 \leq p < \infty$ and $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. If $\Omega \in L^\infty(S^{n-1})$ is an odd function, then

$$\|T^*_\Omega(f, g)\|_{L^p(\mathbb{R}^n)} \leq \|f\|_{L^q(\mathbb{R}^n)} \|g\|_{L^r(\mathbb{R}^n)}.$$  

If $\Omega(x) = x_j/|x|$, $j = 1, 2, \ldots, n$, then (7) and (17) are reduced to the bilinear Riesz transforms and their maximal operators in Euclidean space $\mathbb{R}^n$:

$$R_j(f, g)(x) = C_n \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} f(x - y)g(x + y) \frac{y_j}{|y|^{n+1}} dy,$$

$$R^*_j(f, g)(x) = C_n \sup_{\varepsilon > 0} \left| \int_{|y| > \varepsilon} f(x - y)g(x + y) \frac{y_j}{|y|^{n+1}} dy \right|, \quad 1 \leq j \leq n,$$

where $y_j$ is the $j$-th component of $y$ and $C_n = \Gamma((n + 1)/2)\pi^{-(n+1)/2}$.  

**Corollary 3.2.** Let $1 < q, r \leq \infty$, $1 \leq p < \infty$ and $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. Then

$$\|R^*_j(f, g)\|_{L^p(\mathbb{R}^n)} \leq \|f\|_{L^q(\mathbb{R}^n)} \|g\|_{L^r(\mathbb{R}^n)}.$$  

As an application, we consider analogous operators on the $n$-dimensional torus $\mathbb{T}^n = \left[-\frac{1}{2}, \frac{1}{2}\right]^n$.

For $C^\infty(\mathbb{T}^n)$ functions $\tilde{f}, \tilde{g}$, write their Fourier series

$$\tilde{f}(x) = \sum_{k_1 \in \mathbb{Z}^n} a_{k_1} e^{2\pi i \langle k_1, x \rangle}, \quad \tilde{g}(x) = \sum_{k_2 \in \mathbb{Z}^n} b_{k_2} e^{2\pi i \langle k_2, x \rangle},$$

where $\langle \cdot, \cdot \rangle$ denotes the dot product.

Let

$$Q = \{x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : -\frac{1}{2} \leq x_j < \frac{1}{2} \text{ for } j = 1, 2, \ldots, n\}$$

be the fundamental cube on which

$$\int_{\mathbb{T}^n} \tilde{f}(x) \, dx = \int_Q \tilde{f}(x) \, dx$$

for all functions $\tilde{f}$ on the torus $\mathbb{T}^n$. For $N \in \mathbb{Z}^+$, let $NQ$ denote a cube with the same center as $Q$ and side length $N$ times the side length of $Q$. Denote by $Q_\varepsilon$ the set given by

$$Q_\varepsilon = \{x \in Q : |x| > \varepsilon\} \quad \text{for } 0 < \varepsilon < \frac{1}{2}.$$  

Let

$$E = \{x \in \mathbb{R}^n : |x| > 1\}$$
and \( \chi_E(x) \) be the characteristic function of \( E \). For \( 1 \leq i \leq n \), let \( x_i \) and \( m_i \) be the \( i \)-th components of \( x = (x_1, \ldots, x_n) \) and \( m = (m_1, \ldots, m_n) \), respectively. For any \( x \neq 0 \), the kernel of the \( j \)-th Riesz transform on \( \mathbb{R}^n \) is

\[
K_j(x) = \frac{x_j}{|x|^{n+1}}.
\]

Then the kernel of the \( j \)-th Riesz transform on the torus is defined, in the sense of Cauchy principle value, by

\[
(18) \quad \tilde{K}_j(x) = \sum_{m \in \mathbb{Z}^n} \frac{x_j + m_j}{|x + m|^{n+1}}.
\]

We now define the bilinear Riesz transform \( \tilde{R}_j \) and its maximal operator \( \tilde{R}_j^* \) on the torus \( \mathbb{T}^n \), for \( \tilde{f}, \tilde{g} \in C^\infty(\mathbb{T}^n) \), by

\[
\tilde{R}_j(\tilde{f}, \tilde{g})(x) = \lim_{\varepsilon \to 0} \tilde{R}_{j,\varepsilon}(\tilde{f}, \tilde{g})(x),
\]

\[
\tilde{R}_j^*(\tilde{f}, \tilde{g})(x) = \sup_{0<\varepsilon<1/2} |\tilde{R}_{j,\varepsilon}(\tilde{f}, \tilde{g})(x)|,
\]

where \( \tilde{R}_{j,\varepsilon} \) is defined by

\[
\tilde{R}_{j,\varepsilon}(\tilde{f}, \tilde{g})(x) = \int_{Q \varepsilon} \tilde{K}_j(y) \tilde{f}(x - y) \tilde{g}(x + y) dy
\]

\[
= \int_{Q} \tilde{K}_j(y) \chi_E \left( \frac{y}{\varepsilon} \right) \tilde{f}(x - y) \tilde{g}(x + y) dy.
\]

Our result can be stated as follows:

**Theorem 3.3.** Let \( 1 < q, r \leq \infty \), \( 1 \leq p < \infty \) and \( \frac{1}{p} = \frac{1}{q} + \frac{1}{r} \). Then

\[
\| \tilde{R}_j^*(\tilde{f}, \tilde{g}) \|_{L^p(\mathbb{T}^n)} \leq \| \tilde{f} \|_{L^q(\mathbb{T}^n)} \| \tilde{g} \|_{L^r(\mathbb{T}^n)}.
\]

By checking the proof of Theorem 1.1, it suffices to show an easy lemma to obtain Theorem 3.3.

**Lemma 3.4.** For \( 0 < \varepsilon < \frac{1}{2} \) and \( y \in Q \), we have the estimate

\[
\tilde{K}_j(y) \chi_E \left( \frac{y}{\varepsilon} \right) = \frac{1}{\varepsilon^n} \sum_{m \in \mathbb{Z}^n} K_j(y + m \varepsilon) \chi_E \left( \frac{y + m \varepsilon}{\varepsilon} \right) - \sum_{m \in \mathbb{Z}^n \setminus \{0\}} K_j(y + m) \chi_{E^c} \left( \frac{y}{\varepsilon} \right)
\]

and

\[
\left| \sum_{m \in \mathbb{Z}^n \setminus \{0\}} K_j(y + m) \chi_{E^c} \left( \frac{y}{\varepsilon} \right) \right| \leq |y| \chi_{E^c} \left( \frac{y}{\varepsilon} \right),
\]

where \( E^c \) is the complement of the set \( E \).
Proof. The first equality above follows the method of Lemma 2.1. Now we estimate the second inequality. Write

\[ D_j^+ = \{ m \in \mathbb{Z}^n \setminus \{0\} : m_j > 0 \}, \quad D_j^0 = \{ m \in \mathbb{Z}^n \setminus \{0\} : m_j = 0 \}, \]

and

\[ y^* = (y_1, y_2, \ldots, y_{j-1}, -y_j, y_{j+1}, \ldots, y_n). \]

Then we have

\[
\sum_{m \in \mathbb{Z}^n \setminus \{0\}} \frac{y_j + m_j}{|y + m|^{n+1}} \chi_{EC}(\frac{y}{\varepsilon})
\]

\[
= \chi_{EC}(\frac{y}{\varepsilon}) \sum_{m \in D_j^+} \left( \frac{y_j + m_j}{|y + m|^{n+1}} + \frac{y_j - m_j}{|y^* + m|^{n+1}} \right) + \chi_{EC}(\frac{y}{\varepsilon}) \sum_{m \in D_j^0} \frac{y_j}{|y + m|^{n+1}}
\]

\[
= \chi_{EC}(\frac{y}{\varepsilon}) y_j \sum_{m \in D_j^+} \left( \frac{1}{|y + m|^{n+1}} + \frac{1}{|y^* + m|^{n+1}} \right)
\]

\[
+ \chi_{EC}(\frac{y}{\varepsilon}) y_j \sum_{m \in D_j^0} \left( \frac{1}{|y + m|^{n+1}} - \frac{1}{|y^* + m|^{n+1}} \right)
\]

It is trivial to get that

\[
\left| \chi_{EC}(\frac{y}{\varepsilon}) \sum_{m \in D_j^0} \frac{y_j}{|y + m|^{n+1}} \right| \leq \chi_{EC}(\frac{y}{\varepsilon}) |y_j|
\]

and

\[
\left| \chi_{EC}(\frac{y}{\varepsilon}) y_j \sum_{m \in D_j^0} \left( \frac{1}{|y + m|^{n+1}} + \frac{1}{|y^* + m|^{n+1}} \right) \right| \leq \chi_{EC}(\frac{y}{\varepsilon}) |y_j|.
\]

Using the mean value theorem,

\[
|f(x) - f(y)| \leq \max_{z \in I} |\nabla f(z)||x - y|,
\]

where \( I \) is the line segment between \( x \) and \( y \). This leads to

\[
\left| \chi_{EC}(\frac{y}{\varepsilon}) \sum_{m \in D_j^0} m_j \left( \frac{1}{|y + m|^{n+1}} - \frac{1}{|y^* + m|^{n+1}} \right) \right| \leq \chi_{EC}(\frac{y}{\varepsilon}) |y_j|,
\]

completing the proof. \( \square \)

From the theorem, we obtain the following corollary.
Corollary 3.5. Let $1 < q, r \leq \infty$, $1 \leq p < \infty$ and $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. Then

$$\| \tilde{R}_j(\tilde{f}, \tilde{g}) \|_{L^p(T^n)} \leq \| \tilde{f} \|_{L^q(T^n)} \| \tilde{g} \|_{L^r(T^n)}.$$ 

This corollary corresponds to a result by Blasco and Gillespie [2009, Theorem 1.12] which says that the bilinear Riesz transform $R_j$ is bounded from $L^q(\mathbb{R}^n) \times L^r(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$, provided $1 < q, r \leq \infty$, $1 \leq p < \infty$ and $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$.

4. Final remarks

We want to further illustrate that our method works for many operators. In this section, we provide another example. For $\varepsilon > 0$, define

$$R_{j,\varepsilon}(f)(x) = C_n \int_{|y| > \varepsilon} f(x - y) \frac{y_j}{|y|^{n+1}} dy \quad \text{for } j = 1, 2, \ldots, n.$$ 

Gillespie and Torrea [2004] introduced the oscillation, variation and short variation operators of the Riesz transform $R_j$ in $\mathbb{R}^n$. The definitions of these three operators can be expressed in forms similar to (4), (5) and (6) with $H_\varepsilon$ replaced by $R_{j,\varepsilon}$ in place of the symmetric differentiation operator used above. Gillespie and Torrea also established the $L^p(\mathbb{R}^n)$-boundedness of these operators for $1 < p < \infty$. For $C^\infty(T^n)$ functions $\tilde{f}$, write their Fourier series

$$\hat{f}(x) = \sum_{k \in \mathbb{Z}^n} a_k e^{2\pi i \langle k, x \rangle}.$$ 

We define the periodic version of $\tilde{R}_{j,\varepsilon}$ by

$$\tilde{R}_{j,\varepsilon}(\tilde{f})(x) = \int_{Q_\varepsilon} \tilde{K}_j(y) \hat{f}(x - y) dy,$$

where $\tilde{K}_j$ is defined as in (18).

We now define the oscillation operator $\mathcal{O}(\tilde{R}_j)$ on the torus by

$$\mathcal{O}(\tilde{R}_j \hat{f})(x) = \left( \sum_{k=1}^{\infty} \sup_{t_k+1 \leq \varepsilon_k \leq t_k} \left| \tilde{R}_{j,\varepsilon_k} \hat{f}(x) - \tilde{R}_{j,\varepsilon_k+1} \hat{f}(x) \right|^2 \right)^{\frac{1}{2}}$$

and the variation operator $\mathcal{V}_\varrho(\tilde{R}_j)$ on the torus by

$$\mathcal{V}_\varrho(\tilde{R}_j \hat{f})(x) = \sup_{(\varepsilon_k)_{k=1}^{\infty} \setminus \{0\}} \left( \sum_{k=1}^{\infty} \left| \tilde{R}_{j,\varepsilon_k} \hat{f}(x) - \tilde{R}_{j,\varepsilon_k+1} \hat{f}(x) \right|^\varrho \right)^{\frac{1}{\varrho}}.$$ 

Define the operator $V_k(\tilde{R}_j)$ on the torus by

$$V_k(\tilde{R}_j \hat{f})(x) = \sup_{(\varepsilon_j)_{j=1}^{k} \setminus \{0\}} \left( \sum_{\frac{1}{2} < \varepsilon_j+1 < \varepsilon_j \leq \frac{1}{2}} \left| \tilde{R}_{j,\varepsilon_k} \hat{f}(x) - \tilde{R}_{j,\varepsilon_k+1} \hat{f}(x) \right|^2 \right)^{\frac{1}{2}},$$
where the supremum is taken over all decreasing sequences \((\varepsilon_j)\). Define the “short variation operator” on the torus by

\[
S_V(\tilde{R}_j \tilde{f})(x) = \left( \sum_{k=-\infty}^{\infty} \left( V_k(\tilde{R}_j \tilde{f}(x)) \right)^2 \right)^{\frac{1}{2}}.
\]

Applying the same techniques as in the proof of Theorem 1.2, we can easily transfer those results in [Gillespie and Torrea 2004] from \(\mathbb{R}^n\) to the torus \(\mathbb{T}^n\).

Acknowledgements

The authors are indebted to the anonymous referees for valuable comments that improved the paper significantly.

References


Received January 25, 2015.

DASHAN FAN  
DEPARTMENT OF MATHEMATICAL SCIENCES  
UNIVERSITY OF WISCONSIN–MILWAUKEE  
MILWAUKEE, WI 53201  
UNITED STATES  
fan@uwm.edu

HUOXIONG WU  
SCHOOL OF MATHEMATICAL SCIENCES  
XIAMEN UNIVERSITY  
361005 FUJIAN  
CHINA  
huoxwu@xmu.edu.cn

FAYOU ZHAO  
DEPARTMENT OF MATHEMATICS  
SHANGHAI UNIVERSITY  
200444 SHANGHAI  
CHINA  
fyzhao@shu.edu.cn
Spherical CR Dehn surgeries
MIGUEL ACOSTA

Degenerate flag varieties and Schubert varieties: a characteristic free approach
GIOVANNI CERULLI IRELLI, MARTINA LANINI and PETER LITTELMANN

Solitons for the inverse mean curvature flow
GREGORY DRUGAN, HOJOO LEE and GLEN WHEELER

Bergman theory of certain generalized Hartogs triangles
LUKE D. EDHOLM

Transference of certain maximal Hilbert transforms on the torus
DASHAN FAN, HUOXIONG WU and FAYOU ZHAO

The Turaev and Thurston norms
STEFAN FRIEDL, DANIEL S. SILVER and SUSAN G. WILLIAMS

A note on nonunital absorbing extensions
JAMES GABE

On nonradial singular solutions of supercritical biharmonic equations
ZONGMING GUO, JUNCHENG WEI and WEN YANG

Natural commuting of vanishing cycles and the Verdier dual
DAVID B. MASSEY

The nef cones of and minimal-degree curves in the Hilbert schemes of points on certain surfaces
ZHENBO QIN and YUPING TU

Smooth approximation of conic Kähler metric with lower Ricci curvature bound
LIANGMING SHEN

Maps from the enveloping algebra of the positive Witt algebra to regular algebras
SUSAN J. SIERRA and CHELSEA WALTON