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THE TURAEV AND THURSTON NORMS

STEFAN FRIEDL, DANIEL S. SILVER AND SUSAN G. WILLIAMS

In 1986, W. Thurston introduced a (possibly degenerate) norm on the first
cohomology group of a 3-manifold. Inspired by this definition, Turaev intro-
duced in 2002 an analogous norm on the first cohomology group of a finite
2-complex. We show that if N is the exterior of a link in a rational homology
sphere, then the Thurston norm agrees with a suitable variation of Turaev’s
norm defined on any 2-skeleton of N .

1. Introduction

W. Thurston [1986] introduced a seminorm for 3-manifolds N with empty or toroidal
boundary. It is a function xN : H 1(N ;Q)→Q≥0 which measures the complexity
of surfaces that are dual to cohomology classes. We adopt the custom of referring
to xN as the Thurston norm. It plays a central role in 3-manifold topology and
we recall its definition in Section 2A, where we will also review several of its key
properties.

Later, V. Turaev [2002] introduced an analogously defined seminorm for 2-
complexes. For any finite 2-complex X with suitably defined boundary ∂X , Turaev
defined tX : H 1(X, ∂X;Q)→ Q≥0 using complexities of dual 1-complexes. In-
spired by work of C. McMullen [2002], Turaev gave lower bounds for tX in terms
of the multivariable Alexander polynomial whenever the boundary of X is empty.
The precise definition of ∂X will be recalled in Section 2B. For the purpose of the
introduction it suffices to know that if N is a compact triangulated 3-manifold, then
the 2-skeleton N (2) is a finite 2-complex with empty boundary.

A homotopy equivalence induces a canonical isomorphism of homology and
cohomology groups which we use to identify the groups. Examples given in [Turaev
2002, p. 143] show that tX is not invariant under homotopy. We therefore introduce
the following variation: For any finite 2-complex X with empty boundary, we define
the Turaev complexity function as follows. If φ ∈ H 1(X;Q) = Hom(π1(X),Q),
then

t X (φ) := inf
{

tY (φ ◦ f )
∣∣∣∣ Y is a finite 2-complex with ∂Y =∅ and

f : π1(Y )→ π1(X) is an isomorphism

}
.
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Clearly t X depends only on the fundamental group of X . Since the minimum of
two norms need not satisfy the triangle inequality, the Turaev function is not a
seminorm, as we will see later in Proposition 4.2.

For any 3-manifold N , we further define

t N (φ) := t N (2)(φ),

where N (2) is the 2-skeleton of a triangulation of N . It is clear from the definition
of t that t N does not depend on the choice of a triangulation.

Given a 3-manifold N , it is natural to compare xN and t N on H 1(N ;Q). In
general, they do not agree. Indeed in Section 4A we will see that there exist
many examples of closed 3-manifolds N and classes φ ∈ H 1(N ;Z) such that
t N (φ) > xN (φ). The underlying reason is quite obvious: the Thurston norm is
defined using complexities of surfaces, whereas the Turaev function is defined using
complexities of graphs. However, the complexity of a closed surface is lower by at
least one than the complexity of any underlying 1-skeleton.

It is therefore reasonable to restrict ourselves to the class of 3-manifolds where
Thurston norm-minimizing surfaces can always be chosen to have no closed com-
ponent. In Lemma 4.5 we will see that if N =63

\ νL is the exterior of a of a link
L in a rational homology sphere 6, then N has this property. For simplicity of
exposition we henceforth restrict ourselves to this type of 3-manifolds.

Using explicit and elementary constructions of 2-complexes, we prove the fol-
lowing.

Theorem 1.1. Let N be the exterior of a link in a rational homology sphere. Then

t N (φ)≤ xN (φ) for any φ ∈ H 1(N ;Q).

It is natural to ask whether the extra freedom provided by working with 2-
complexes instead of 3-manifolds allows us to get lower complexities. Our main
theorem says that this is not the case, at least if we restrict ourselves to irreducible
link exteriors. (Note that it follows from the definitions and from Schönflies theorem
that the exterior of a link L in S3 is irreducible if and only if L is nonsplit.)

Theorem 1.2. Let N be the exterior of a link in a rational homology sphere. If N
is irreducible, then

t N (φ)= xN (φ) for any φ ∈ H 1(N ;Q).

We will prove the inequality t X (φ)≥ xN (φ) by studying the Alexander norms
of finite covers of X and N , and by applying the recent results of I. Agol [2008;
2013], D. Wise [2009; 2012b; 2012a], P. Przytycki and D. Wise [2014; 2012] and
Y. Liu [2013]. We do not know of an elementary proof of Theorem 1.2.
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Theorem 1.2 fits into a long sequence of results showing that minimal-genus
Seifert surfaces and Thurston norm-minimizing surfaces are “robust” in the sense
that they “stay minimal” even if one relaxes some conditions. Examples of this
phenomenon have been found by many authors, see, for example, [Gabai 1983;
1987; Kronheimer 1999; Friedl and Vidussi 2014; Nagel 2014; Friedl et al. 2015].

The paper is organized as follows. In Section 2 we recall the definition of the
Thurston and Turaev norms, and we introduce the Turaev complexity function. In
Section 3 we discuss the Alexander norm for 3-manifolds and 2-complexes, and we
recall how they give lower bounds on the Thurston norm and Turaev complexity
function, respectively. In Section 4A, we first show that the Turaev complexity
function of the 2-skeleton can be greater than the corresponding Thurston norm. We
then show in Section 4B that the Thurston norm of any irreducible 3-manifold with
nontrivial toroidal boundary is detected by the Alexander norm of an appropriate
finite cover. Finally, in Section 4C we put everything together to prove Theorem 1.2.

Conventions. All 3-manifolds are compact, orientable and connected, and all 2-
complexes are connected, unless it says specifically otherwise.

2. The definition of the Thurston norm and the Turaev norm

2A. The Thurston norm and fibered classes. Let N be a 3-manifold with empty
or toroidal boundary. The Thurston norm of a class φ ∈ H 1(N ;Z) is defined as

xN (φ)=min{χ−(6) |6 ⊂ N properly embedded surface dual to φ}.

Here, χ−(6) is the complexity of a surface 6 with connected components

61, . . . , 6k,

given by

χ−(6)=

k∑
i=1

max{−χ(6i ), 0}.

Thurston [1986] showed that xN defines a (possibly degenerate) norm on H 1(N ;Z).
Note that any norm on H 1(N ;Z) extends uniquely to a norm on H 1(N ;Q), which
we denote by the same symbol.

We say that a class φ ∈ H 1(N ;Q) is fibered if there exists a fibration p : N→ S1

such that φ lies in the pull-back of H 1(S1
;Q) under p. By [Tischler 1970], a class

φ ∈ H 1(N ;Q) is fibered if and only if it can be represented by a nondegenerate
closed 1-form.

Thurston [1986] showed the Thurston norm ball

{φ ∈ H 1(N ;Q) | xN (φ)≤ 1}



368 STEFAN FRIEDL, DANIEL S. SILVER AND SUSAN G. WILLIAMS

is a polyhedron. This implies that if C is a cone on a face of the polyhedron, then
the restriction of xN to C is a linear function. To put differently, for any α, β ∈ C
and nonnegative r, s ∈ Q≥0, the linear combination rα + sβ also lies in C , and
xN (rα+ sβ)= r xN (α)+ sxN (β).

Thurston [1986] also showed that any fibered class lies in the open cone on a
top-dimensional face of the Thurston norm ball. Furthermore, any other class in
that open cone is also fibered. Consequently, the set of fibered classes is the union
of open cones on top-dimensional faces of the Thurston norm ball. We will refer to
these cones as the fibered cones of N. A class φ ∈ H 1(N ;Q) in the closure of a
fibered cone is quasifibered.

2B. The Turaev norm and the Turaev complexity function for 2–complexes. As
in [Turaev 2002], a finite 2–complex is the underlying topological space of a finite
connected 2-dimensional CW-complex such that each point has a neighborhood
homeomorphic to the cone over a finite graph. Examples of finite 2-complexes
are given by compact surfaces (see [Turaev 2002, p. 138]), 2-skeletons of finite
simplicial spaces, and the products of graphs with a closed interval.

The interior of X , denoted Int X , is the set of points in X that have neighborhoods
homeomorphic to R2. Finally the boundary ∂X of X is the closure in X of the set
of all points of X \ Int X that have open neighborhoods in X homeomorphic to R

or to R× R≥0. Note that ∂X is a graph contained in the 1-skeleton of the CW-
decomposition of X. For example, if X is a compact surface, then ∂X is precisely
the boundary of X in the usual sense.

Following [Turaev 2002], we say that a graph 0 in a finite 2-complex is regular
if 0 ⊂ X \ ∂X and if there exists a closed neighborhood in X \ ∂X homeomorphic
to 0 × [−1, 1] so that 0 = 0 × 0. A coorientation for a regular graph 0 with
components 01, . . . , 0k is the choice of a component of 0i ×[−1, 1] \0i , for each
i = 1, . . . , k. A cooriented regular graph 0 ⊂ X canonically defines an element
φ0 ∈ H 1(X, ∂X;Z). Given any φ ∈ H 1(X, ∂X;Z), there exists a cooriented regular
graph 0 with φ0 = φ. (We refer to [Turaev 2002] for details.)

Let X be a finite 2-complex with ∂X =∅, and let φ ∈ H 1(X;Z). The Turaev
norm of φ is

tX (φ) :=min{χ−(0) |0 ⊂ X cooriented regular graph with φ0 = φ},

where χ−(0) is the complexity of a graph 0 with connected components 01, . . . , 0k ,
given by

χ−(0) :=

k∑
i=1

max{−χ(0i ), 0}.
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Turaev [2002] showed that tX : H 1(X;Z)→ Z≥0 is a (possibly degenerate) norm,
and, as in the previous section, tX extends to a norm

tX : H 1(X;Q)→Q≥0.

In Theorem 5.1 we will show that in general one has to allow disconnected graphs
0 to minimize the Turaev norm.

As we already mentioned in the introduction, Turaev [2002, p. 143] showed that
tX is in general not invariant under homotopy equivalence. (In fact Turaev showed
that tX is not even invariant under simple homotopy.) We therefore introduce a
variation of the Turaev norm: if X is a finite 2-complex with ∂X =∅, then given
φ ∈ H 1(X;Q)= Hom(π1(X),Q) the Turaev complexity function of φ is

t X (φ) := inf
{

t0(φ ◦ f )
∣∣∣∣0is a finite 2-complex with ∂0 =∅ and

f : π1(0)→ π1(X) is an isomorphism

}
.

We make the following observations:

(i) It is clear that t X is invariant under homotopy equivalence. In fact t X depends
only on the fundamental group of X .

(ii) Since t X is the infimum of continuous homogeneous functions (i.e., functions
with f (λx)= λ f (x) for λ> 0), t X is upper semicontinuous and homogeneous.

(iii) The complexity function t X is defined as the infimum of norms. Note that
the minimum of two norms is in general no longer a norm. For example, the
infimum of the two norms a(x, y) := |x | and b(x, y) := |y| on R2 is not a
norm. We will see in Proposition 4.2 that t X (φ) is, in general, not a norm.

(iv) From the definition, it follows immediately that

t X (φ)≤ tX (φ),

for any φ ∈ H 1(X;Q).

(v) For any finite 2-complex X , Turaev [2002, Section 1.6] shows that tX is
algorithmically computable. We do not know whether this is also the case for
the Turaev complexity function t X .

2C. An inequality between the Thurston norm and the Turaev complexity func-
tion. The goal of this section is to prove the following inequality between the
Thurston norm and the Turaev complexity function.

Proposition 2.1. Let N be a 3-manifold and let φ ∈ H 1(N ;Z). If φ is dual to a
properly embedded Thurston norm minimizing surface with r closed components,
then

t N (φ)≤ xN (φ)+ r.

Proof. Let φ ∈ H 1(N ;Z) and let 6 = 61 ∪ · · · ∪ 6s be a surface dual to φ
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of minimal complexity such that 61, . . . , 6r are closed and 6r+1, . . . , 6s have
nonempty boundary.

For i = 1, . . . , r we pick an embedded graph 0i ⊂6i with χ(0i )= χ(6i )− 1
and such that π1(0i ) surjects onto π1(6i ). Furthermore, for i = r + 1, . . . , s we
pick an embedded graph 0i ⊂6i with χ(0i )= χ(6i ) and such that π1(0i ) surjects
onto π1(6i ).

Next we select pairwise disjoint product neighborhoods

61×[−1, 1], . . . , 6s ×[−1, 1]

such that the product orientations match the orientation of N . We equip

M := N \
s⋃

i=1

6i × (−1, 1)

with a triangulation such that each 0i ×{±1} is a subspace of M (1). Consider

Y := M (2)
∪

s⋃
i=1

0i × (−1, 1).

It is straightforward to see that Y is a finite 2-complex with ∂Y = ∅, and the
inclusion map Y → N induces an isomorphism of fundamental groups. By slight
abuse of notation we denote the restriction of φ to Y again by φ.

For i = 1, . . . , s, we identify 0i with 0i ×0. It is clear that 0 := 01∪· · ·∪0s is
a regular graph on Y . Furthermore, with the obvious coorientation, we have φ0 = φ.
It follows that

t N (φ)≤ tY (φ)≤ χ−(0)=
r∑

i=1

max{−χ(0i ), 0}+
s∑

i=r+1

max{−χ(0i ), 0}

≤

r∑
i=1

max{−χ(6i )+ 1, 0}+
s∑

i=r+1

max{−χ(6i ), 0}

≤ χ−(6)+ r

= xN (φ)+ r. �

Theorem 1.1. Let N be the exterior of a link in a rational homology sphere. Then
for any φ ∈ H 1(N ;Q), we have

t N (φ)≤ xN (φ).

Proof. Let N be the exterior of a link in a rational homology sphere. We write
X=N (2). Since t and xN are homogeneous, it suffices to show that t X (φ)≤ xN (φ)

for every φ ∈ H 1(N ;Z). Assume that φ ∈ H 1(N ;Z). By Lemma 4.5 (see



THE TURAEV AND THURSTON NORMS 371

Section 4A) there exists a Thurston norm-minimizing surface dual to φ such
that each component has nonempty boundary. The desired inequality follows
immediately from Proposition 2.1. �

3. Lower bounds on the norms coming from Alexander polynomials

3A. The Alexander polynomial. Let X be a compact CW-complex, and let

ϕ : H1(X;Z)→ H

be a homomorphism onto a free abelian group. We denote by X̃ϕ the cover of
X corresponding to ϕ : π1(X) → H1(X;Z) → H . The group H is the deck
transformation group of X̃ϕ

→ X , and it acts on H1(X̃ϕ
;Z). Thus we can view

H1(X̃ϕ
;Z) as a Z[H ]-module. Since Z[H ] is a Noetherian ring, it follows that

H1(X̃ϕ
;Z) is a finitely presented Z[H ]-module. This means that there exists an

exact sequence

Z[H ]r
A
−→ Z[H ]s→ H1(X̃ϕ

;Z)→ 0.

After possibly adding columns of zeros, we can assume that r ≥ s. Define the
Alexander polynomial of (X, ϕ) to be

1X,ϕ := gcd of all s× s-minors of A.

We refer to [Fox 1954; Turaev 2001; Hillman 2012] for the proof of the classical
fact that 1X,ϕ is well-defined up to multiplication by a unit in Z[H ], i.e., up to
multiplication by an element of the form εh, where ε ∈ {−1, 1} and h ∈ H .

If ϕ : H1(X;Z) → H := H1(X;Z)/torsion is the canonical projection, then
we write 1X := 1X,ϕ , and we refer to it as the Alexander polynomial 1X of X .
Furthermore, if φ ∈ H 1(X;Z)= Hom(π1(X),Z), then we view the corresponding
Alexander polynomial 1X,ϕ as an element in Z[t±1

] under the canonical identifica-
tion of the group ring Z[Z] with the Laurent polynomial ring Z[t±1

].

3B. The one-variable Alexander polynomials. In this section we relate the de-
grees of one-variable Alexander polynomials to the Thurston norm and to the
Turaev complexity function.

In the following, given a nonzero polynomial p(t)=
∑s

i=r ai t i with ar 6= 0 and
as 6= 0, we write

deg(p(t))= s− r.

Note that the degree of a nonzero one-variable Alexander polynomial is well-defined.
The following proposition is well known, see, for example, [Friedl and Kim

2006] for a proof.
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Proposition 3.1. Let N be a closed 3-manifold and let φ ∈ H 1(N ;Z) be primitive.
If 1N ,φ 6= 0, then

xN (φ)≥ deg(1N ,φ)− 2.

Furthermore, equality holds if φ is a fibered class and if N 6= S1
× S2.

We prove the following.

Proposition 3.2. Let X be a finite 2-complex with ∂X =∅, and let be φ∈H 1(N ;Z)
primitive. If 1X,φ 6= 0, then

t X (φ)≥ deg(1X,φ)− 1.

Proof. Let Y be a finite 2-complex with ∂Y =∅, and let ψ ∈ H 1(Y ;Z) be primitive.
If 1Y,φ 6= 0, then it follows from Claim 2 of [Turaev 2002, p. 152] that

tY (ψ)≥ deg(1Y,ψ)− 1.

The desired inequality
t X (φ)≥ deg(1X,φ)− 1

is an immediate consequence of this fact and the observation that the Alexander
polynomial depends only on the fundamental group of X . �

3C. The Alexander norm. Let X be a compact connected CW-complex. We write
H := H1(X;Z)/torsion and also 1X =

∑
h∈H ahh. Let

φ ∈ H 1(X;Q)= Hom(π1(X),Q)= Hom(H,Q).

Following [McMullen 2002], we define the Alexander norm of φ by

aX (φ) :=max{φ(h)−φ(g) | ag 6= 0 and ah 6= 0}.

It is straightforward to see that aX is indeed a norm on H 1(X;Q). As in the proof
of Proposition 3.2, we use that fact that the Alexander polynomial and thus the
Alexander norm depend only on the fundamental group of X . More precisely,
if f : Y → X is a map of compact connected CW-complexes that induces an
isomorphism of fundamental groups, then

f∗(1Y )=1X ∈ Z[H1(X;Z)/torsion],

and thus, for any f ∈ H 1(X;Q)= Hom(π1(X),Q), we have

(1) aY (φ ◦ f ∗)= aX (φ).

We begin with the following theorem due to McMullen [2002].
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Theorem 3.3. Let N be a 3-manifold with empty or toroidal boundary and with
b1(N )≥ 2. Then

aN (φ)≤ xN (φ) for any φ ∈ H 1(N ;Q).

Furthermore, equality holds for quasifibered classes.

Proof. Let N be a 3-manifold with empty or toroidal boundary and with b1(N )≥ 2.
McMullen [2002, Theorem 1.1] showed that

aN (φ)≤ xN (φ) for any φ ∈ H 1(N ;Q)

and that equality holds for all integral fibered classes. Since aN and xN are homo-
geneous, it follows immediately that equality also holds for all fibered classes and,
in fact, for all quasifibered classes. �

The following analogous theorem, which says that the Alexander norm also gives
lower bounds on the Thurston norm and the Turaev complexity function, is due to
Turaev [2002].

Theorem 3.4. Let X be a finite 2-complex with b1(X)≥ 2 and such that ∂X =∅.
Then

aX (φ)≤ t X (φ)≤ tX (φ) for any φ ∈ H 1(X;Q).

Proof. Let Y be a finite 2-complex with b1(Y )≥ 2 and such that ∂Y =∅. Then by
[Turaev 2002, Theorem 3.1], we have

aY (ψ)≤ tY (ψ) for any ψ ∈ H 1(Y ;Q).

The theorem now follows immediately from combining this result with the definition
of t X (φ) and (1). �

4. Proofs

4A. The Thurston norm and the Turaev complexity function for closed 3-mani-
folds. The combination of Propositions 3.1, 3.2 and 2.1 gives us the following
theorem showing that the Thurston norm of a closed 3-manifold need not agree
with Turaev complexity function of its 2-skeleton.

Theorem 4.1. Let N 6= S1
× S2 be a closed 3-manifold and let φ ∈ H 1(N ;Z) be a

primitive fibered class. Then

t N (φ)= xN (φ)+ 1.

We also prove:

Proposition 4.2. There exists a finite 2-complex X with ∂X =∅ such that t X does
not satisfy the triangle inequality, i.e., t X is not a norm.
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Proof. Let N be a fibered 3-manifold with b1(N )= 2. We write X = N (2) for some
triangulation of N . As we mentioned in Section 2A, by [Thurston 1986] there exists
an open 2-dimensional cone C ⊂ H 1(N ;Q) such that all classes in C are fibered
and such that xN is a linear function on C .

Given φ ∈ H 1(N ;Z) we denote by

div(φ) :=max{k ∈ N | there exists ψ ∈ H 1(N ;Z) with φ = kψ}

the divisibility of φ. It follows from Theorem 4.1 and the homogeneity of the
Thurston norm and the Turaev complexity function that

(2) t X (φ)= xN (φ)+ div(φ) for anyφ ∈ H 1(N ;Z)∩C.

We prove the following claim.

Claim. There exist α, β ∈ C with div(α)+ div(β) < div(α+β).

Pick two primitive vectors φ,ψ ∈ C which are not collinear. Since φ and ψ lie
in the cone C , it follows that any nonnegative linear combination of φ and ψ also
lies in C .

Select a coordinate system for H 1(N ;Z), that is, choose an identification of
H 1(N ;Z) with Z2. Since φ is primitive, we can assume that φ = (1, 0). Since ψ is
also primitive, we know that ψ = (x, y) for some coprime x and y. Since φ and ψ
are not collinear, y 6= 0. Choose a prime p > 1+ |y|. We consider α = (1, 0) and
β = (px + (p− 1), py). Note that p can not divide px + p− 1= p(x + 1)− 1. It
follows that div(β)= gcd(px + (p− 1), py)≤ |y|. Evidently div(α)= 1. Now

div(α+β)= div(px+ p, py)= gcd(px+ p, py)≥ p> 1+|y| ≥ div(α)+div(β).

This concludes the proof of the claim.
If we combine the claim and the linearity of xN on C with equality (2), then we

obtain that

t X (α+β)= xN (α+β)+ div(α+β)= xN (α)+ xN (β)+ div(α+β)

> xN (α)+ div(α)+ xN (β)+ div(β)

= t X (α)+ t X (β).

We have shown that t X does not satisfy the triangle inequality. �

4B. The Alexander norm of finite covers of 3-manifolds. We begin with the fol-
lowing theorem. We state it in slightly greater generality than we actually need,
since the result has independent interest.

Theorem 4.3. Let N 6= S1
×D2 be an aspherical 3-manifold with empty or toroidal

boundary. If N is neither a Nil-manifold nor a Sol-manifold, there exists a finite
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cover p : Ñ → N such that b1(Ñ )≥ 2 and such that

aÑ (p
∗φ)= x Ñ (p

∗φ) for any φ ∈ H 1(N ;Q).

The proof of the theorem will require the remainder of Section 4B. The theorem
was proved for graph manifolds by Nagel [2014]. We will therefore restrict ourselves
to the case of manifolds that are not (closed) graph manifolds. The main ingredient
in our proof of Theorem 4.3 will be the following theorem, a consequence of the
seminal work of Agol [2008; 2013], Wise [2009; 2012b; 2012a], Przytycki and
Wise [2014; 2012] and Liu [2013]. We summarize the main points of the proof for
the convenience of the reader.

Theorem 4.4. Let N be an irreducible 3-manifold with empty or toroidal boundary
that is not a closed graph manifold. Then there exists a finite cover p : Ñ→ N such
that, for any φ ∈ H 1(N ;Q), the pull-back p∗φ is quasifibered.

Proof. Let N be an irreducible 3-manifold that is not a closed graph manifold. It
follows from [Agol 2013; Wise 2009; 2012b; 2012a; Przytycki and Wise 2014; 2012;
Liu 2013] that π1(N ) is virtually RFRS, i.e., π1(N ) admits a finite index subgroup
which is RFRS (residually finite rationally solvable). The precise definition of
RFRS, references for which can be found in [Aschenbrenner et al. 2015], is not of
concern to us. What matters is that Agol [2008, Theorem 5.1] (see also [Friedl and
Kitayama 2014, Theorem 5.1]) showed that if ψ lies in H 1(N ;Q) and if N is an
irreducible 3-manifold such that π1(N ) is virtually RFRS, then there exists a finite
cover p : N̂ → N such that p∗ψ lies in the closure of a fibered cone of N̂ .

By picking one class in each cone of the Thurston norm ball of N and iteratively
applying Agol’s theorem, one can easily show that there exists a finite cover
p : Ñ → N such that for any φ ∈ H 1(N ;Q) the pull-back p∗φ lies in the closure
of a fibered cone of Ñ . We refer to [Friedl and Vidussi 2015, Corollary 5.2] for
details. �

If N is a graph manifold with nonempty boundary, then the conclusion of
Theorem 4.4 also follows from facts that are more classical. This argument is not
used anywhere else in the paper, but since it is perhaps of independent interest we
give a very quick sketch of the argument.

Proof of Theorem 4.4 if N is a graph manifold. Let N be a graph manifold with
boundary. It follows from [Wang and Yu 1997, Theorem 0.1] and classical arguments
(see e.g., [Aschenbrenner and Friedl 2013, Section 4.3.4.3] and [Hempel 1987]) that
there exists a finite cover Ñ of N that is fibered and such that if {Nv}v∈V denotes
the set of JSJ components of Ñ , then each Nv is of the form S1

×6v for some
surface 6v. (For the meaning of JSJ components, see [Aschenbrenner et al. 2015,
Section 1.6].)
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For each v ∈ V we write tv = S1
× Pv , where Pv ∈6v is a point. It follows from

[Eisenbud and Neumann 1985, Theorem 4.2] that a class φ ∈ H 1(Ñ ;Q) is fibered
if and only if φ(tv) 6= 0 for all v ∈ V . Since Ñ is fibered it now follows that all
classes in H 1(Ñ ;Q) outside of finitely many hyperplanes are fibered. Hence all
classes in H 1(Ñ ;Q) are quasifibered. �

We can now move on to the proof of Theorem 4.3. Note that arguments similar
to the proof of Theorem 4.3 were also used in [Friedl and Vidussi 2014; 2015].

Proof of Theorem 4.3. Let N 6= S1
× D2 be an irreducible 3-manifold with empty

or toroidal boundary that is not a closed graph manifold. Since we assumed that
N 6= S1

× D2, it now follows from Agol’s theorem [2013] and classical 3-manifold
topology that N has a finite cover with b1 at least two. (We refer to [Aschenbrenner
et al. 2015] for details.) We can therefore assume that we already have b1(N )≥ 2.

By Theorem 4.4 there exists a finite cover p : Ñ → N such that for any φ
in H 1(N ;Q), the pull-back p∗φ is quasifibered. Note that Betti numbers never
decrease by going to finite covers, i.e., we have b1(Ñ ) ≥ b1(N ) ≥ 2. It follows
from Theorem 3.3 that

aÑ (p
∗φ)= x Ñ (p

∗φ) for any φ ∈ H 1(N ;Q).

This concludes the proof of the theorem. �

4C. Proof of Theorem 1.2. Before we turn to the proof of Theorem 1.2 we prove
the following well-known lemma.

Lemma 4.5. If N is the exterior of a link in a rational homology sphere, then any
class φ ∈ H 1(N ;Z) is dual to a surface 6 of minimal complexity such that all
components of 6 have nonempty boundary.

Proof. Let N be the exterior of a link in a rational homology sphere. It follows
from a Mayer–Vietoris argument that the map H1(∂N ;Q)→ H1(N ;Q) is sur-
jective. It follows from Poincaré duality and the Universal Coefficient Theorem
that the boundary map ∂ : H2(N , ∂N ;Z)→ H1(∂N ;Z) has finite kernel. Since
H2(N , ∂N ;Z)∼= H 1(N ;Z)∼=Hom(H1(N ;Z),Z) is torsion-free it follows that the
boundary map ∂ : H2(N , ∂N ;Z)→ H1(∂N ;Z) is in fact injective. In particular
this implies that closed surfaces represent the trivial homology class in (N , ∂N ).
Now let φ ∈ H 1(N ;Z), and let 6 be a properly embedded minimal-complexity
surface dual to φ. By the above observation, the closed components of 6 are
null-homologous. It follows that the union of the components of 6 with nontrivial
boundary represents the same homology as 6. Since removing components can
never increase the complexity, we have shown that φ is dual to a surface 6 of
minimal complexity such that all components of 6 have nonempty boundary. �
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In the previous sections we collected all the tools that now allow us to finally
complete the proof of Theorem 1.2.

Theorem 1.2. Let N be the exterior of a link in a rational homology sphere. If N
is irreducible, then for any φ ∈ H 1(N ;Q) we have

t N (φ)= xN (φ).

Proof. It remains to prove that t N (φ)≥ xN (φ). Let N be the exterior of a link in a
rational homology sphere. Suppose that N is irreducible. Let φ ∈ H 1(N ;Q). It suf-
fices to show that if Y is a finite 2-complex Y with ∂Y =∅ and if f : π1(Y )→π1(N )
is an isomorphism, then

tY (φ ◦ f )≥ xN (φ).

So let Y and f be as above. By a slight abuse of notation we denote φ◦ f : π1(Y )→Q

by φ as well.
By Theorem 4.3 there exists a finite cover p : Ñ → N such that b1(Ñ )≥ 2 and

such that
aÑ (p

∗φ)= x Ñ (p
∗φ).

We write π = π1(N ) and π̃ := π1(Ñ ), and we denote by p : Ỹ → Y the finite cover
corresponding to f −1(π̃). Note that Ỹ is also a finite 2-complex with ∂Ỹ =∅. It
follows immediately from the definitions that

x Ñ (p
∗φ)≤ [π : π̃ ] · xN (φ) and tỸ (p

∗φ)≤ [π : π̃ ] · tY (φ).

In fact, Gabai [1983, Corollary 6.13] showed that the above is an equality for the
Thurston norm, i.e., we have the equality:

x Ñ (p
∗φ)= [π : π̃ ] · xN (φ).

Combining the above results with Theorem 3.4, we see that

[π : π̃ ] · tY (φ)≥ tỸ (p
∗φ)≥ aÑ (p

∗φ)= x Ñ (p
∗φ)= [π : π̃ ] · xN (φ).

This concludes the proof the theorem. �

4D. Fundamental group complexity. Let X be a finite 2-complex with ∂X =∅,
and φ ∈ H 1(X;Z)=Hom(π1(X),Z). Turaev [2002] describes a method by which
we can compute tX (φ) using cocycles. We start by orienting edges (i.e., open
1-cells) of X , and then select a Z-valued cellular cocycle k on X representing φ.
We let

|k| =
∑

e

(ne/2− 1)|k(e)|,

where e ranges over all edges in X , k(e) ∈ Z is the value of k on e, and ne is the
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number of 2-cells adjacent to e, counted with multiplicity. (Note that ne ≥ 2 since
∂X =∅.) Turaev [2002, Section 1.6] proves that tX (φ) is the minimum value of
|k| as k ranges over all cellular cocycles representing φ.

When the 0-skeleton of X consists of a single vertex, the 2-complex determines
a group presentation P for π1(X), and hence |k| can be defined on the level of
presentations.

Given a finite presentation P=〈x1, . . . , xm |r1, . . . , rn〉, following [Turaev 2002],
we denote by #(xi ) the number of appearances of x±1

i in the words r1, . . . , rn .
We say that P is a good presentation if each #(xi ) ≥ 2. We are interested in
good presentations, since it is straightforward to see that the canonical 2-complex
corresponding to a good presentation has empty boundary. Also note that any
finitely presented group admits a good presentation. Indeed, if #(xi )= 1, then we
can eliminate xi using a Tietze move. If #(xi )= 0, then we can add a trivial relator
xi x−1

i .
Now let P = 〈x1, . . . , xm | r1, . . . , rn〉 be a good presentation for a group π , and

let φ be a homomorphism φ : π→ Z. We define

tP(φ)=
∑

i

(#(xi )/2− 1) |φ(xi )|.

Furthermore we define t̄π (φ) to be the minimum of tP(φ) as P ranges over all
good presentations of π . We extend the definition in the usual way for rational
cohomology classes φ ∈ H 1(X;Q).

Lemma 4.6. Let X be a finite 2-complex with ∂X = ∅ and φ ∈ H 1(X;Q). We
write π = π1(X). Then

t X (φ)≤ t̄π (φ).

Proof. Given a good presentation P for π , we construct the canonical finite 2-
complex Y with π1(Y ) ∼= π . Let k be the unique 1-cocycle representing φ. A
straightforward argument shows that t X (φ)≤ |k| = tP(φ); see also [Turaev 2002,
Section 1.8]. Since this is true for any good presentation of π1(X), we have
t X (φ)≤ tπ (φ). �

Example 4.7. Let π the fundamental group of the exterior of a knot K in the
3-sphere. Let φ be the abelianization homomorphism, mapping a meridian to 1.
If P is a Wirtinger presentation corresponding to a diagram for K , then one sees
easily that tP(φ) is the number of crossings of the diagram.

It is usually possible to find presentations yielding a smaller value tP(φ). Let 6
be a Seifert surface for K having minimal genus g. By splitting π along π1(6),
we obtain an HNN-decomposition for π of the form

〈A, x | µ(b)= xbx−1 for all b ∈ π1(6)〉,
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where A is the fundamental group of the knot exterior split along 6, and

µ : π1(6)→ A

is injective. For such a presentation P , we have tP(φ)= 2g− 1. It follows by the
next result that this value is the smallest possible; i.e., tπ (φ)= 2g− 1.

Theorem 4.8. Let N be the exterior of a link in a rational homology sphere with
group π . If N is irreducible, then for any φ ∈ H 1(N ;Q) such that 1N ,φ 6= 0, we
have

t N (φ)= tπ (φ)= xN (φ).

Remark. Turaev [2002] gives several examples of knot groups and presentations
of minimal complexity. He states that it would be interesting to find other examples.
Theorem 4.8 shows how to construct presentations of minimal complexity for any
knot in a rational homology sphere.

Proof. By Lemma 4.6 and Theorem 1.2, it suffices to prove that t̄π (φ)≤ xN (φ), for
any φ ∈ H 1(N ;Q). By the homogeneity of the Turaev function and the Thurston
norm we may assume that φ is an integral primitive cohomology class.

Consider a Thurston norm-minimizing surface6⊂ N for φ. Our assumption that
1N ,φ is not identically zero ensures that the first Betti number of Ker(φ) is finite. By
a short argument in the beginning of the proof of McMullen [2002, Proposition 6.1],
the surface 6 is connected. Its boundary is nonempty by Lemma 4.5. Splitting π
along π1(6), as above, we obtain a presentation P with complexity 2g− 1, where
g is the genus of 6. Since tN (φ)= 2g− 1, we are done. �

We conclude this section with the following conjecture:

Conjecture 4.9. Let X be a finite 2-complex with ∂X =∅. Then

t X (φ)= t̄π1(X)(φ) for any φ ∈ H 1(X;Q).

Note that an affirmative answer to this question together with Theorems 1.1
and 1.2 would show that the conclusion of Theorem 4.8 holds for any irreducible
link complement N , without any assumptions on φ.

5. Disconnected minimal dual graphs

It is natural to ask whether one can always realize the Turaev norm of a primitive
cohomology class by a connected graph. In this final section of the paper we will
see that this is not the case. More precisely, we have the following theorem.

Theorem 5.1. Given any n there exists a 2-complex X with ∂X =∅ and a primitive
class φ ∈ H 1(π;Z) such that for any 2-complex Y with π1(Y ) = π1(X) and with
∂Y =∅ the following holds: any graph 0 in Y that represents φ with t X (φ)=χ−(0)

has at least n components.
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Proof. We consider the good presentation

P = 〈a1, . . . , an, x1, . . . , xn | [xi , ai ], i = 1, . . . , n〉,

and we denote by X the corresponding 2-complex, which is just the join of n tori
T1, . . . , Tn . Clearly ∂X =∅.

We write π = π1(X). The group π is the free product of n free abelian groups
〈ai , xi | [ai , xi ]〉, i = 1, . . . , n of rank two. We consider the epimorphism φ : π→Z

that is defined by φ(ai )= 0, i = 1, . . . , n and φ(xi )= 1, i = 1, . . . , n. It is clear
that on each torus Ti there exists a circle, disjoint from the gluing point, such that
the union of these circles is dual to φ. We thus see that t X (φ)= 0.

Now let Y be a 2-complex with π1(Y )= π and with ∂Y =∅. Let 0 be a graph
on Y which is dual to φ with χ−(0) = 0. We will show that 0 has at least n
components. Note that χ−(0)= 0 implies that any component of 0 is either a point
or a circle. We denote by m the number of components of 0 that are circles. We
will see that m ≥ n.

Claim. The module H1(Y ;Q[t±1
]) is isomorphic to

Q[t±1
]
n−1
⊕

n⊕
i=1

Q[t±1
]/(t − 1).

We first note that H1(Y ;Q[t±1
])=H1(X;Q[t±1

]). A straightforward application
of Fox calculus (see [Fox 1953]) shows that

H1(X;Q[t±1
])∼=Q[t±1

]
n−1
⊕

n⊕
i=1

Q[t±1
]/(t − 1).

This concludes the proof of the claim.

Now we write W = Y \0× (−1, 1). The usual Meyer–Vietoris sequence with
Q[t±1

]-coefficients corresponding to Y =W ∪0×[−1, 1] gives rise to the exact
sequence

· · · → H1(0;Q[t±1
])

ι−−tι+
−−−−→ H1(W ;Q[t±1

])→

H1(Y ;Q[t±1
])→ H0(0;Q[t±1

])→ · · ·

Note that φ vanishes on0 and W . It follows that H∗(0;Q[t±1
]) and H∗(W ;Q[t±1

])

are free Q[t±1
]-modules. Furthermore, by the above discussion of 0 we know

that H1(0;Q[t±1
]) ∼= Q[t±1

]
m . It follows immediately from the above exact

sequence and the classification of modules over PIDs that the torsion submodule of
H1(Y ;Q[t±1

]) is generated by m elements.
On the other hand, we had just seen that the torsion submodule of H1(Y ;Q[t±1

])

is isomorphic to ⊕n
i=1Q[t±1

]/(t − 1). It follows from the classification of modules
over the PID Q[t±1

] that the minimal number of generators of the torsion submodule
of H1(Y ;Q[t±1

]) is n. Putting everything together we deduce that m ≥ n. �
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