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A NOTE ON NONUNITAL ABSORBING EXTENSIONS

JAMES GABE

Elliott and Kucerovsky stated that a nonunital extension of separable
C∗-algebras with a stable ideal is nuclearly absorbing if and only if the
extension is purely large. However, their proof was flawed. We give a
counterexample to their theorem as stated, but establish an equivalent for-
mulation of nuclear absorption under a very mild additional assumption
to being purely large. In particular, if the quotient algebra is nonunital,
then we show that the original theorem applies. We also examine how this
affects results in classification theory.

1. Introduction and a counterexample

A (unital) extension of C∗-algebras 0→ B→ E→ A→ 0 is called (unitally)
weakly nuclear if there is a (unital) completely positive splitting σ : A→ E which
is weakly nuclear, i.e., for every b ∈ B the map bσ(−)b∗ : A→ B is nuclear.
Such an extension is called trivial if we may take the weakly nuclear splitting to
be a ∗-homomorphism. An extension is called (unitally) nuclearly absorbing if it
absorbs every trivial, (unitally) weakly nuclear extension, i.e., the Cuntz sum of our
given extension e with any trivial, (unitally) weakly nuclear extension is strongly
unitarily equivalent to e. A remarkable result of Elliott and Kucerovsky [2001]
shows that a unital, separable extension with a stable ideal is unitally nuclearly
absorbing if and only if the extension is purely large. Recall that an extension
0→B→ E→ A→ 0 of C∗-algebras with B stable is called purely large if for
any x ∈ E \B, the hereditary C∗-subalgebra xBx∗ of B contains a stable, σ -unital
C∗-subalgebra D which is full in B. Note that we have added the requirement that
D be σ -unital, since this was implicitly used in [op. cit., Lemma 7] and since this
is automatic in the separable case, which is our main concern.

In their paper, Elliott and Kucerovsky use the unital version above to obtain a
nonunital version of this result, i.e., that a nonunital extension is nuclearly absorbing
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if and only if it is purely large. Unfortunately this is not true. We provide a
counterexample below.

A stable C∗-algebra is said to have the corona factorisation property if all full
multiplier projections are Murray–von Neumann equivalent, or equivalently, all
norm-full multiplier projections are properly infinite. As is shown in [Kucerovsky
and Ng 2006a], any full extension by a σ -unital, stable C∗-algebra with the corona
factorisation property is purely large in the sense of [Elliott and Kucerovsky 2001].
Here full means that the Busby map is full, i.e., that it maps nonzero elements to
full elements in the corona algebra.

It is known that C∗-algebras which do not have the corona factorisation property
have rather exotic properties; see, e.g., [Kucerovsky and Ng 2006b]. It follows by
[Robert 2011, Corollary 1] that any σ -unital, stable C∗-algebra with finite nuclear
dimension, or, more generally, nuclear dimension less than ω, has the corona
factorisation property. Thus for classification purposes, the corona factorisation
property is not really any restriction.

After receiving an early version of this note, Efren Ruiz constructed a counterex-
ample to [Eilers et al. 2014, Theorem 4.9]. In fact, by using results from this note,
Ruiz has constructed two graphs such that the induced C∗-algebras have exactly
one nontrivial ideal, have isomorphic six-term exact sequences in K -theory with
order and scale, but for which the C∗-algebras are nonisomorphic. This implies
that we do not have a complete classification of graph C∗-algebras with exactly
one nontrivial ideal using the above K -theoretic invariant, as opposed to what was
previously believed. The counterexample is provided in Section 4. Fortunately, all
recent classification results of stable graph C∗-algebras are unaffected by the issues
addressed in this note, and hence stand as given.

As for general notation in this note we let π denote the quotient map from the
multiplier algebra of some C∗-algebra to its corona algebra, and we consider an
essential extension algebra as a C∗-subalgebra of the multiplier algebra of the ideal.
When referring to full elements in a multiplier algebra, we always mean with respect
to the norm topology, and not the strict topology.

A counterexample to [Elliott and Kucerovsky 2001, Corollary 16] could be as
follows.

Example 1.1. Let A = C, B = K⊕K, and consider the trivial extension E with
splitting σ(1) = P ⊕ 1 ∈M(K)⊕M(K) ∼=M(B), where P is a full projection
in M(K) such that 1− P is also full. The extension E is clearly full, and since B

has the corona factorisation property, this implies that E is a nonunital, purely large
extension. However, it does not absorb the zero extension, i.e., the extension with
the zero Busby map. This is easily seen by projecting to the second coordinate in
the corona algebra π2 : Q(B) ∼= Q(K)⊕Q(K)→ Q(K), since π2(τ (1)) = 1 and
π2((τ ⊕ 0)(1)) is a nontrivial projection, where τ denotes the Busby map.
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The flaw in the original proof is the claim that a nonunital extension E is purely
large if and only if its unitisation E† is purely large. The sufficiency is trivial but
the necessity is incorrect.

Lemma 1.2. There exists a nonunital purely large extension such that the unitisation
is not purely large.

Proof. Let 0→ B→ E→ A→ 0 denote the extension of Example 1.1. The
unitisation E† has Busby map τ †

: C⊕C→Q(K)⊕Q(K) given by

τ †(1⊕ 0)= π(P)⊕ 1 and τ †(0⊕ 1)= π(1− P)⊕ 0.

Since π(1− P)⊕ 0 is not full in Q(K)⊕Q(K), τ † is not a full homomorphism
and thus the extension can not be purely large. �

2. Fixing the theorem

We will start by showing that the original theorem still holds, if we assume that the
quotient is nonunital.

Theorem 2.1. Let 0→B→E→A→ 0 be an extension of separable C∗-algebras
with B stable. Suppose that A is nonunital. Then the extension is nuclearly
absorbing if and only if it is purely large.

Proof. As in [Elliott and Kucerovsky 2001, Section 16] the extension is nuclearly
absorbing if and only if the unitised extension is unitally nuclearly absorbing, which
in turn is equivalent to the unitised extension being purely large. Thus it suffices
to show that this is equivalent to the nonunitised extension being purely large. We
use the same proof as in the original paper. Clearly the extension is purely large
if the unitisation is purely large. Assume that the nonunital extension is purely
large. Note, in particular, that the Busby map τ is injective. It suffices to show that
(1− x)B(1− x)∗ contains a stable C∗-subalgebra which is full in B for any x ∈ E.
Suppose that (1−x)E⊂B. Then π(x) is a unit for π(E)= τ(A)⊂Q(B). However,
this contradicts the fact that A is nonunital, since the Busby map τ is injective.
Hence we may find x ′ ∈ E such that (1− x)x ′ /∈B. Since

(1− x)x ′B((1− x)x ′)∗ ⊂ (1− x)B(1− x)∗

and since the nonunital extension is purely large, the former of these contains a
stable C∗-subalgebra which is full in B. �

To prove a stronger result, where the assumption that the quotient being unital is
removed, we will use the following lemma.

Lemma 2.2. Let B be a stable, separable C∗-algebra, and let P ∈M(B) be a full,
properly infinite projection. Then the trivial extension of C by B with splitting σ
given by σ(1)= P is purely large.
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Proof. If P = 1 then the extension is the canonical unitisation extension

0→ B→ B†
→ C→ 0,

which is clearly self-absorbing. It follows from [Elliott and Kucerovsky 2001] that
it is purely large.

It is well known, since B is stable, that P is full and properly infinite exactly
when it is Murray–von Neumann equivalent to 1. Let v be an isometry such that
vv∗ = P and let t1, t2 ∈M(B) be such that t1t∗1 + t2t∗2 = P = t∗1 t1 = t∗2 t2. Then
s1 := t1v and s2 := t2+ (1− P) are the canonical generators of a unital copy of O2

in M(B), for which P = s1s∗1 + s2 Ps∗2 . Hence,

π(σ(1))= π(s1)1π(s1)
∗
+π(s2)π(P)π(s2)

∗,

which implies that our extension is the Cuntz sum of the unitisation extension and
itself. It follows from [op. cit., Lemma 13] that our extension is purely large. �

Now for the stronger case where we allow the quotient to be unital.

Theorem 2.3. Let 0→B→E→A→ 0 be an extension of separable C∗-algebras
with B stable. The extension is nuclearly absorbing if and only if it is purely large
and there is a full, properly infinite projection P ∈M(B) such that PE⊂B.

Proof. Assume that the extension is nuclearly absorbing. Then it absorbs the zero
extension so we may assume that the Busby map is of the form τ ⊕ 0, where
the symbol ⊕ denotes a Cuntz sum. Let P = 0⊕ 1. Then PE ⊂B since π(P)
annihilates the image of the Busby map. Moreover, the extension absorbs some
purely large extension and is thus itself purely large by [loc. cit.].

Now suppose that the extension is purely large and that P is a full, properly
infinite projection such that PE ⊂B. As in the proof of Theorem 2.1 it suffices
to show that the unitised extension is purely large. It is enough to show that
(1− x)B(1− x)∗ contains a stable C∗-subalgebra which is full in B for any x ∈ E.
Observe that

(1− x)PBP(1− x)∗ ⊂ (1− x)B(1− x)∗.

Since (1− x)P = P − x P and x P ∈B, it suffices to show that the extension

0→B→B+CP→ C→ 0

is purely large. This follows from Lemma 2.2. �

Note that an extension must be nonunital in order to satisfy the equivalent
conditions in the above theorem. We immediately get the following corollary.

Corollary 2.4. Let 0→B→E→A→0 be an extension of separable C∗-algebras
with B stable. Then the extension is nuclearly absorbing if and only if it is purely
large and absorbs the zero extension.
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When we assume that the ideal has the corona factorisation property, then we get
a perhaps more hands-on way of checking if a full extension is nuclearly absorbing.
To exhibit this we introduce the following definition.

Definition 2.5. Let 0→B→E→A→ 0 be an extension of C∗-algebras. We say
that the extension is unitisably full if the unitised extension 0→B→E†

→A†
→ 0

is full.

It is clear that if an extension is unitisably full, then it is full and nonunital. If the
quotient algebra A is unital, then the extension is unitisably full if and only if the
extension is full and 1Q(B)− τ(1A) is full, where τ denotes the Busby map. Note
that this case is our main concern due to Theorem 2.1.

Theorem 2.6. Let 0→B→E→A→ 0 be an extension of separable C∗-algebras,
such that B is stable and has the corona factorisation property. Then the extension
is nuclearly absorbing if and only if the extension is unitisably full.

Proof. As in the proof of Theorem 2.1 the extension is nuclearly absorbing if and
only if the unitised extension is purely large. Since B has the corona factorisation
property, this is the case if and only if the extension is unitisably full. �

We will end this section by showing that, in the absence of the corona factorisation
property, there are purely large, unitisably full extensions which are not nuclearly
absorbing. We will need a converse of Lemma 2.2.

Proposition 2.7. Let B be a stable, separable C∗-algebra, and let P ∈M(B) be
a full projection. Then the trivial extension of C by B with splitting σ given by
σ(1)= P is purely large if and only if P is properly infinite.

Proof. One direction is Lemma 2.2. Suppose that the extension is purely large. It
suffices to show that the Cuntz sum P ⊕ 0 is properly infinite. The extension with
splitting σ ′(1)= P⊕0 is purely large and absorbs the zero extension, and thus it is
absorbing by Corollary 2.4. Since the extension with splitting σ0(1)= 1⊕ 0 is also
absorbing, there is a unitary U ∈M(B) such that U∗(P ⊕ 0)U − 1⊕ 0 ∈B. Pick
an isometry V ∈M(B) such that V ∗(1⊕ 0)V = 1. Then

V ∗(U∗(P ⊕ 0)U − 1⊕ 0)V = (U V )∗(P ⊕ 0)U V − 1 ∈B.

Since B is stable, we may find an isometry W such that

‖(U V W )∗(P ⊕ 0)U V W − 1‖ = ‖W ∗((U V )∗(P ⊕ 0)U V − 1)W‖< 1.

This implies that P ⊕ 0, and thus also P, is properly infinite. �

We can now extend our class of counterexamples to include purely large, unitis-
ably full extensions 0→B→E→A→0 which are not nuclearly absorbing. In fact,
such an extension can be made for any B without the corona factorisation property.



388 JAMES GABE

Proposition 2.8. Let B be a stable, separable C∗-algebra which does not have the
corona factorisation property. Then there is a purely large, unitisably full extension
of C by B which is not nuclearly absorbing.

Proof. Let Q be a full multiplier projection which is not properly infinite, but where
P := 1− Q is properly infinite and full. Such a projection can be obtained by
taking any full multiplier projection Q′ which is not properly infinite, and letting
Q = Q′⊕ 0 be a Cuntz sum. In fact, P = 1− Q will be properly infinite since it
majorises the properly infinite, full projection 0⊕ 1. Consider the trivial extension
E of C by B with splitting σ(1) = P . The unitised extension has a splitting
σ1 : C⊕C→M(B) given by σ1(1⊕ 0) = P and σ1(0⊕ 1) = Q. Since both P
and Q are full and orthogonal, the unitised extension is full.

By Proposition 2.7 the extension is purely large. Such an extension is nuclearly
absorbing exactly when its unitisation is purely large [Elliott and Kucerovsky 2001].
If the unitisation was purely large, then (Q− b)B(Q− b)∗ would contain a stable
C∗-subalgebra full in B, for every b ∈ B. However, this would imply that the
extension of C by B with splitting σ0(1) = Q is purely large, which it is not by
Proposition 2.7. Hence the extension is not nuclearly absorbing. �

3. How this affects classification results

In the classification of nonsimple C∗-algebras, a popular result has been a result
of Kucerovsky and Ng, which says that under the mild condition of the corona
factorisation property on a stable, separable C∗-algebra B, KK 1(A,B) is the group
of unitary equivalence classes of full extensions E of A by B for any nuclear
separable C∗-algebra A. This is unfortunately not the case. The theorem only
remains true if one adds the condition that the extensions are unitisably full as in
Definition 2.5. See Theorem 3.2 below.

A counterexample of the original result could be as follows.

Example 3.1. Let 0→B→ E→A→ 0 be the extension from Example 1.1 with
Busby map τ . Then B has the corona factorisation property and the extension is
full. As seen in Example 1.1, τ and τ ⊕ 0 are both nonunital and are not unitarily
equivalent. However, they define the same element in KK 1(A,B).

The closest we get to fixing the theorem would be the following.

Theorem 3.2. Let B be a separable, stable C∗-algebra. Then the following are
equivalent:

(i) B has the corona factorisation property.

(ii) For any separable C∗-algebra A, KK 1
nuc(A,B) is the group of strong unitary

equivalence classes of all full, weakly nuclear extensions of A by B which
absorb the zero extension.
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(iii) For any separable C∗-algebra A, KK 1
nuc(A,B) is the group of strong unitary

equivalence classes of all full, weakly nuclear extensions E of A by B, for
which there is a full projection P ∈M(B) such that PE⊂B.

(iv) For any separable C∗-algebra A, KK 1
nuc(A,B) is the group of strong unitary

equivalence classes of all unitisably full, weakly nuclear extensions E of A

by B.

Proof. It is well-known that KK 1
nuc(A,B) is (isomorphic to) the group of strong

unitary equivalence classes of weakly nuclear extensions of A by B which are
nuclearly absorbing. This is proved in [Kirchberg 2000, Sections 3 and 4], though
in a much more general setting. Alternatively, one can prove this exactly as one
proves that KK 1(A, B)∼= Ext−1(A, B), and then note that the latter can be viewed
as strong unitary equivalence classes of semisplit extensions of A by B which are
absorbing. Note that weakly nuclear extensions are automatically semisplit. Thus
(i)⇒ (iv) by Theorem 2.6, and (iv)⇒ (i) follows from Proposition 2.8.

If B has the corona factorisation property, then any full extension by B is purely
large. Thus (i)⇒ (iii) follows from Theorem 2.3.

Clearly (iii) is equivalent to the condition that for any C∗-algebra A, any full,
weakly nuclear extension E of A by B, for which there is a full projection P ∈M(B)

such that PE⊂B, is nuclearly absorbing. If the extension E has Busby map τ ⊕0,
then (0⊕ 1)E⊂B, and thus (iii)⇒ (ii).

It remains to show (ii)⇒ (i). Let P ∈M(B) be a full projection, and let P ⊕ 0
be the Cuntz sum. Note that Q ∼ Q⊕0 for any projection Q. By (ii), the extension
with the Busby map τ :C→Q(B) given by τ(1)=π(P⊕0) is nuclearly absorbing.
In particular, it absorbs the unitisation extension of B. Consider the lift ρ(1)= P⊕0
of τ and the canonical lift of the unitisation extension of B. We may find a unitary
u ∈M(B) such that u∗(P ⊕ 0⊕ 0)u − 0⊕ 0⊕ 1 ∈B. If v is an isometry such
that vv∗ = 0⊕ 0⊕ 1, then (uv)∗(P ⊕ 0⊕ 0)uv − 1 ∈ B. Thus we may pick an
isometry w such that

‖w∗((uv)∗(P ⊕ 0⊕ 0)uv− 1)w‖ = ‖s∗(P ⊕ 0⊕ 0)s− 1‖< 1,

where s is the isometry uvw. Hence P is Murray–von Neumann equivalent
to s∗(P ⊕ 0⊕ 0)s, which is equivalent to 1. �

Remark 3.3. It clearly follows from the proof above that we could restrict our
attention only to nuclear C∗-algebras A if desired. In this case we can remove the
weakly nuclear condition, since all extensions of a separable, nuclear C∗-algebra
are weakly nuclear by the lifting theorem of Choi and Effros [1976], and also we
would have KK 1

nuc(A,B)= KK 1(A,B).

We still get some nice results for classification. This follows from the above
theorem and Theorem 2.1.
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Corollary 3.4. Let B be a separable, stable C∗-algebra with the corona factorisa-
tion property and let A be a nonunital, separable C∗-algebra. Then KK 1

nuc(A,B) is
the group of strong unitary equivalence classes of all full, weakly nuclear extensions
of A by B.

Corollary 3.5. Let B be a separable, stable C∗-algebra with the corona factorisa-
tion property and let A be a separable C∗-algebra. Let Ei be full, weakly nuclear
extensions of A by B, with Busby maps τi , for i=1, 2. If [τ1]=[τ2]∈KK 1

nuc(A,B),
then E1⊗K ∼= E2⊗K.

Proof. Given a Busby map τ : A→Q(B), let τ s be the composition

A⊗K
τ⊗id
−−→Q(B)⊗K ↪→Q(B⊗K).

It is well known that the map KK 1
nuc(A,B)→ KK 1

nuc(A⊗K,B⊗K) given by
[τ ] 7→ [τ s

], is an isomorphism (the proof is identical to the similar result in classical
KK-theory). Thus τ s

1 and τ s
2 are strongly unitarily equivalent by Corollary 3.4, and

since their corresponding extension algebras are E1⊗K and E2⊗K respectively, it
follows that E1⊗K ∼= E2⊗K. �

Remark 3.6. Every result in this note holds with the ideal B being σ -unital instead
of separable. The quotient A should still be separable. This is a special case of a
much more general result in [Gabe and Ruiz 2015].

4. The counterexample of Ruiz

Definition 4.1. Let E = (E0, E1, r, s) be a (countable, directed) graph. The graph
C∗-algebra C∗(E) is the universal C∗-algebra generated by mutually orthogonal
projections pv for v ∈ E0, and isometries se for e ∈ E1, which satisfy the relations

• s∗e sf = δe f pr(e) for all e, f ∈ E1,

• se s∗e ≤ ps(e) for all e ∈ E1,

• pv =
∑

e∈s−1({v}) se s∗e for all v ∈ E0 satisfying 0< |s−1({v})|<∞.

Example 4.2 (the counterexample). Theorem 4.9 of [Eilers et al. 2014] states
that if C∗(E) and C∗(F) are nonunital and both have exactly one nontrivial, two-
sided, closed ideal, and the induced six-term exact sequences in K-theory are
isomorphic, such that the isomorphisms on all K0-groups preserve order and scale,
then C∗(E)∼= C∗(F). We will provide a counterexample to this result.

Let E and F be the respective graphs

v
yy%%

��

w
xx&&

��
v0

2 // v1
2 // v2

2 // · · · · · · // w−1 // w0
2 // w1

2 // w2
2 // · · ·
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Both C∗(E) and C∗(F) are nonunital, full extensions of the Cuntz algebra O2 by
the stabilisation of the CAR algebra M2∞ ⊗K. The six-term exact sequences of
the induced extensions, where we write the K0-groups with order and scale as
(K0(A), K0(A)

+, 6K0(A)), are both isomorphic to

(
Z
[ 1

2

]
,Z
[ 1

2

]
+
,Z
[ 1

2

]
+

) (id,ι,ι) // (Z[1
2

]
,Z
[1

2

]
,Z
[1

2

])
// (0, 0, 0)

��
0

OO

0oo 0oo

where Z
[ 1

2

]
+
=Z

[ 1
2

]
∩[0,∞) and ι :Z

[1
2

]
+
↪→Z

[ 1
2

]
is the canonical inclusion. To

compute the order and scale of K0(C∗(E)) and K0(C∗(F)) we simply use that both
C∗(E) and C∗(F) contain full, properly infinite projections, pv and pw, respectively,
and apply [Rørdam 2002, Proposition 4.1.4]. That pv and pw are properly infinite
follows since v and w both support two loops, so it follows easily from the defining
relations that they are properly infinite. Thus if [Eilers et al. 2014, Theorem 4.9]
were true, it should follow that C∗(E)∼= C∗(F). We will show that this is not the
case, by showing that one extension with C∗(F) is nuclearly absorbing, but that
the extension with C∗(E) is not.

The extension with C∗(F) is nuclearly absorbing. Recall that F∗ denotes the
set of paths in F, and that if α = e1 · · · en ∈ F∗ then sα := se1 · · · sen , and that
r(α)= r(en) and s(α)= s(e1). Let IF denote the unique nontrivial ideal in C∗(F),
which is isomorphic to M2∞ ⊗K. By [Ruiz and Tomforde 2014], we may describe
IF as

IF = span{sαs∗β : α, β ∈ F∗, r(α)= r(β)= wn for some n ∈ Z}.

Let P=
∑
∞

n=1w−n which is easily seen to converge strictly in the multiplier algebra
of IF . We clearly have that PC∗(F) ⊂ IF . Thus, if P is a full, properly infinite
projection in M(IF ), then it follows from Theorem 2.3 that the extension with
C∗(F) is nuclearly absorbing. Since IF has the corona factorisation property, it
suffices to show that P is full.

Note that M2∞ ∼= pw0 IF pw0 . Let ρ denote the unique tracial state on pw0 IF pw0 ,
and ρ∞ denote the induced trace function on M(IF )+. It follows from [Rørdam
1991, Theorem 4.4] that P is full if and only if ρ∞(P)=∞. Since pw−n for n > 0
is Murray–von Neumann equivalent to pv0 , it follows that ρ(pw−n )= ρ(pv0)= 1
and thus ρ∞(P)=

∑
∞

n=1 ρ(pw−n )=∞. Thus the extension

0→ IF → C∗(F)→ C∗(F)/IF → 0

is nuclearly absorbing.
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The extension with C∗(E) is not nuclearly absorbing. Let IE denote the unique
nontrivial ideal in C∗(E), which is isomorphic to M2∞ ⊗K. As above, we may
describe IE as

IE = span{sα s∗β : α, β ∈ E∗ and r(α)= r(β)= vn for some n ≥ 0}.

To show that the extension e :0→IE→C∗(E)→O2→0 is not nuclearly absorbing,
it suffices to show that the unitised extension e†

: 0→ IE→C∗(E)†→O2⊕C→ 0
is not full. Let σ : C∗(E)→M(IE) be the canonical ∗-homomorphism. Then
C∗(E)† ∼= σ(C∗(E))+C1M(IE ). Note that 1− σ(pv) is a lift of (0, 1) ∈ O2⊕C

(under the obvious identifications), so if e† is full, we should have that 1−σ(pv)+IE

is full in Q(IE) by [Kucerovsky and Ng 2006a, Proposition 3.3]. Since IE is stable,
fullness of 1− σ(pv)+ IE is equivalent to fullness of 1− σ(pv) in M(IE).

The corner in IE generated by 1− σ(pv) is easily seen to be

span{sα s∗β : s(α) 6= v 6= s(β)},

which has an approximate unit
(∑k

n=0 pvn

)∞
k=1. Thus 1− σ(pv)=

∑
∞

n=0 pvn . As
above, M2∞ ∼= pv0 IE pv0 , so let ρ be the unique tracial state and ρ∞ be the induced
trace function on M(IE)+. We have that ρ(pvn )= 2−n so

ρ∞(1− σ(pv))=
∞∑

n=0

2−n <∞.

It follows that 1− σ(pv) is not full, and thus e is not nuclearly absorbing.
In particular, C∗(E)� C∗(F).
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