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OVER LOCAL FIELDS

NICOLE BARDY-PANSE, STÉPHANE GAUSSENT AND GUY ROUSSEAU

We define the Iwahori–Hecke algebra IH for an almost split Kac–Moody
group G over a local nonarchimedean field. We use the hovel I associated
to this situation, which is the analogue of the Bruhat–Tits building for a
reductive group. The fixer K I of some chamber in the standard apartment
plays the role of the Iwahori subgroup. We can define IH as the algebra
of some K I -bi-invariant functions on G with support consisting of a finite
union of double classes. As two chambers in the hovel are not always in
a same apartment, this support has to be in some large subsemigroup G+

of G. In the split case, we prove that the structure constants of IH are
polynomials in the cardinality of the residue field, with integer coefficients
depending on the geometry of the standard apartment. We give a presen-
tation of this algebra , similar to the Bernstein–Lusztig presentation in the
reductive case, and embed it in a greater algebra BLH, algebraically defined
by the Bernstein–Lusztig presentation. In the affine case, this algebra BLH
contains the Cherednik’s double affine Hecke algebra. Actually, our results
apply to abstract “locally finite” hovels, so that we can define the Iwahori–
Hecke algebra with unequal parameters.
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Introduction

A bit of history. Iwahori–Hecke algebras were first introduced in number theory
by Erich Hecke [1937]. He defined an algebra, now called the Hecke algebra,
generated by some operators on modular forms. Then, based on an idea of André
Weil, Goro Shimura [1959] defined an algebra attached to a group containing a
subgroup (under some hypotheses) as the algebra spanned by some double cosets
and recovered Hecke’s algebra. Nagayoshi Iwahori [1964] showed that, in the case
of a Chevalley group over a finite field containing a Borel subgroup, Shimura’s
algebra can be defined in terms of bi-invariant functions on the group. He further
gave a presentation by generators and relations of this algebra. Examples of such
groups containing a suitable subgroup are given by BN-pairs and the theory of
buildings. Nagayoshi Iwahori and Hideya Matsumoto [1965] found a famous
instance in a Chevalley group over a p-adic field corresponding to the Bruhat–Tits
building associated to the situation. In fact, it is possible to define these algebras
only in terms of building theory; see, e.g., [Parkinson 2006] for a contemporary
treatment.

In a previous article, Gaussent and Rousseau [2008] introduced the analogue
of the Bruhat–Tits building in Kac–Moody theory, and called it, a hovel. Guy
Rousseau [2011] developed the notion further and gave an axiomatic definition,
applicable in a broader context.

In this paper, we first define, in terms of the hovel, the Iwahori–Hecke algebra
associated to a Kac–Moody group over a local field containing the equivalent of the
Iwahori subgroup. Then, we study the properties of this algebra, like the structure
constants of the product, some presentations by generators and relations, and an
interesting example where we recover the double affine Hecke algebras.

For the rest of the introduction, we give a more detailed account of our work.

The case of simple algebraic groups. To begin, we recall the situation in the finite
dimensional case. Let K be a local nonarchimedean field, with residue field Fq.
Suppose G is a split, simple and simply connected algebraic group over K and K
an open compact subgroup. The space HK of complex functions on G, bi-invariant
by K and with compact support, is an algebra for the natural convolution product.
Ichiro Satake [1963] studied such algebras to define the spherical functions and
proved, in particular, that HK is commutative for a good choice Ks of K, maximal
compact. The corresponding convolution algebra HKs =

sH(G) is now called the
spherical Hecke algebra. From [Iwahori and Matsumoto 1965], we know that there
exists an interesting open subgroup KI , so called the Iwahori subgroup, of Ks with
a Bruhat decomposition G = KI .W .KI , where W is an infinite Coxeter group.
The corresponding convolution algebra HKI =

IH(G), called the Iwahori–Hecke
algebra, may be described as the abstract Hecke algebra associated to this Coxeter
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group and the parameter q. There is another presentation of this Hecke algebra,
stated by Joseph Bernstein and proved in the most general case by George Lusztig
[1989]. This presentation emphasizes the role of the translations in W and uses
new relations, now often called the Bernstein–Lusztig relations. In the building-like
definition of these algebras, the group Ks (resp., KI ) is the fixer of a special vertex
(resp., a chamber) for the action of G on the Bruhat–Tits building I [Bruhat and
Tits 1972].

The Kac–Moody setting. Kac–Moody groups are interesting generalizations of
semisimple groups, hence it is natural to define the Iwahori–Hecke algebras also in
the Kac–Moody setting.

So, from now on, let G be a Kac–Moody group over K, assumed minimal or
“algebraic”, i.e., as studied by Jacques Tits [1987] in the split case and by Bertrand
Rémy [2002] in the almost split case. Unfortunately there is, up to now, no good
topology on G and no good compact subgroup, so the “convolution product” has
to be defined by other means. Alexander Braverman and David Kazhdan [2011]
succeeded in defining geometrically such a spherical Hecke algebra, when G is
split and untwisted affine; see also the survey [Braverman and Kazhdan 2013]. We
were able, in [Gaussent and Rousseau 2014], to generalize their construction to any
Kac–Moody group over K. Using results of [Garland 1995; Braverman et al. 2014],
Braverman, Kazhdan and Manish Patnaik [Braverman et al. 2016] constructed the
spherical Hecke algebra and the Iwahori–Hecke algebra by algebraic computations
in the Kac–Moody group, still assumed split and untwisted affine (and even simply
laced for some statements). Those algebras are convolution algebras of functions
on G bi-invariant under some analogue group Ks or KI (contained in Ks), but
there are two new features: the support has to be in a subsemigroup G+ of G and
the description of the Iwahori–Hecke algebra has to use Bernstein–Lusztig type
relations since W is no longer a Coxeter group.

Iwahori–Hecke algebras in the Kac–Moody setting. Similar to [Gaussent and
Rousseau 2014], our idea is to define the Iwahori–Hecke algebra using the hovel
associated to the almost split Kac–Moody group G that we built in [Gaussent and
Rousseau 2008; Rousseau 2011; 2010]. This hovel I is a set with an action of G
and a covering by subsets called apartments. They are in one-to-one correspondence
with the maximal split subtori, hence permuted transitively by G. Each apartment
A is a finite dimensional real affine space. Its stabilizer N in G acts on A via a
generalized affine Weyl group W =W vnY, where Y ⊂

−→

A is a discrete subgroup of
translations. The group W stabilizes a set M of affine hyperplanes called walls. So,
I looks much like the Bruhat–Tits building of a reductive group. But as the root
system 8 is infinite, the set of walls M is not locally finite. Further, two points in
I are not always in a same apartment. This is why I is called a hovel. However,
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there exists on I a G-invariant preorder ≤ which induces on each apartment A the
preorder given by the Tits cone T ⊂ −→

A.
Now, we consider the fixer KI in G of some (local) chamber C+0 in a chosen

standard apartment A; it is our Iwahori subgroup. Fix a ring R. The Iwahori–Hecke
algebra IHR will be defined as the space of some KI -bi-invariant functions on G
with values in R. In other words, it will be the space IHI

R of some G-invariant
functions on C+0 ×C+0 , where C+0 =G/KI is the orbit of C+0 in the set C of chambers
of I. The convolution product is easy to guess from this point of view:

(ϕ ∗ψ)(Cx ,Cy)=
∑

Cz∈C+0

ϕ(Cx ,Cz)ψ(Cz,Cy)

(if this sum means something). As for points, two chambers in I are not always in
a same apartment, i.e., the Bruhat–Iwahori decomposition fails: G 6= KI .N.KI . So,
we have to consider pairs of chambers (Cx ,Cy) ∈ C+0 ×≤ C

+

0 , i.e., Cx ∈ C+0 has x
for vertex, Cy ∈ C+0 has y for vertex, and x ≤ y. This implies that Cx ,Cy are in
a same apartment. For IHR, this means that the support of ϕ ∈ HR has to be in
KI\G+/KI where G+ = {g ∈ G | 0≤ g .0} is a semigroup. We suppose moreover
this support to be finite. In addition, KI\G+/KI is in bijective correspondence with
the subsemigroup W+ =W v n Y+ of W, where Y+ = Y ∩ T .

With this definition we are able to prove that IHR is really an algebra, which gen-
eralizes the known Iwahori–Hecke algebras in the semisimple case; see Section 2.

The structure constants. The structure constants of IHR are the nonnegative inte-
gers au

w,v, for w, v, u ∈W+, such that

Tw ∗ Tv =

∑
u∈W+

au
w,v Tu,

where Tw is the characteristic function of KI .w .KI and the sum is finite. Each cham-
ber in I has only a finite number of adjacent chambers along a given panel. These
numbers are called the parameters of I and form a finite set Q. In the split case, there
is only one parameter q: the number of elements of the residue field of K. We con-
jecture that each au

w,v is a polynomial in these parameters with integral coefficients
depending only on the geometry of the model apartment A and on W. We prove this
only partially: this is true if G is split or if we replace “polynomial” by “Laurent
polynomial” (see Section 6.7); this is also true for w, v “generic” (see Section 3.8).
Actually in the generic case, we give, in Section 3, an explicit formula for au

w,v.

Generators and relations. If the parameters in Q are invertible in the ring R, we
are able, in Section 4, to deduce from the geometry of I a set of generators and
some relations in IHR. The family (Tλ ∗ Tw)λ∈Y+,w∈W v is an R-basis of IHR. And
the subalgebra

∑
w∈W v R .Tw is the abstract Hecke algebra HR(W v) associated
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to the Coxeter group W v, generated by the Ti = Tri , where the ri are the funda-
mental reflections in W v. So, IHR is a free right HR(W v)-module. We get also
some commuting relations between the Tλ and the Tw, including some relations of
Bernstein–Lusztig type (see Theorem 4.8).

From all these relations, we deduce algebraically in Section 5 that there exists a
new basis (Xλ

∗ Tw)λ∈Y+,w∈W v of IHR, associated to some new elements Xλ
∈

IHR.
These elements satisfy Xλ

= Tλ for λ∈ Y++= Y ∩Cv
f , where Cv

f is the fundamental
Weyl chamber, and Xλ

∗ Xµ
= Xλ+µ

= Xµ
∗ Xλ for λ,µ ∈ Y+. As, for any

λ ∈ Y+, there is µ ∈ Y++with λ+µ ∈ Y++; these Xλ are some quotients of some
elements Tµ. The Bernstein–Lusztig type relations may be translated to this new
basis. When R contains sufficiently high roots of the parameters in Q (e.g., if
R ⊃ R), we may replace the Tw and Xλ by some R×-multiples Hw and Zλ. We get
a new basis (Zλ ∗ Hw)λ∈Y+l,w∈W v of IHR, satisfying a set of relations very close to
the Bernstein–Lusztig presentation in the semisimple case; see Section 5.7.

In Section 6, we define the Bernstein–Lusztig–Hecke algebra BLHR1 algebraically:
it is the free module with basis written (ZλHw)λ∈Y+,w∈W v over the algebra R1 =

Z[(σi
±1
, σ ′i
±1
)i∈I ], where σi , σ

′

i are indeterminates (with some identifications). The
product ∗ is given by the same relations as above for the Zλ ∗ Hw; one just extends
λ∈ Y+ to λ∈ Y and replaces

√
qi ,
√

q ′i by σi , σ
′

i. We prove then that, up to a change
of scalars, IHR may be identified to a subalgebra of BLHR1. This Bernstein–Lusztig
algebra may be considered as a ring of quotients of the Iwahori–Hecke algebra.

Ordered affine hovel. Actually, this article is written in a more general framework,
explained in Section 1: we work with I an abstract ordered affine hovel (as defined
in [Rousseau 2011]), and we take G to be a strongly transitive group of (positive,
“vectorially Weyl”) automorphisms. In Section 7, we drop the assumption that G
is vectorially Weyl to define extended versions IH̃ and BLH̃ of IH and BLH. In
the affine case, we prove that they are graded algebras and that the summand of
degree 0 of BLH̃ is very close to Cherednik’s double affine Hecke algebra.

1. General framework

1.1. Vectorial data. We consider a quadruple (V,W v, (αi )i∈I , (α
∨
i )i∈I ) where V is

a finite dimensional real vector space, W v a subgroup of GL(V ) (the vectorial Weyl
group), I a finite set, (α∨i )i∈I a family in V, and (αi )i∈I a family in the dual V ∗. We
suppose this family free, i.e., the set {αi | i ∈ I } linearly independent and ask these
data to satisfy the conditions of [Rousseau 2011, 1.1]. In particular, the formula
ri (v) = v− αi (v)α

∨
i defines a linear involution in V which is an element in W v

and (W v, {ri | i ∈ I }) is a Coxeter system.
To be more concrete, we consider the Kac–Moody case of [op. cit., 1.2]: the

matrix M = (αj (α
∨
i ))i, j∈I is a generalized Cartan matrix. Then W v is the Weyl
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group of the corresponding Kac–Moody Lie algebra gM and the associated real root
system is

8= {w(αi ) | w ∈W v, i ∈ I } ⊂ Q =
⊕
i∈I

Z .αi .

We set 8± =8∩ Q±, where Q± =±
(⊕

i∈I (Z≥0).αi
)
. Also,

Q∨ =
(⊕

i∈I

Z .α∨i

)
, and Q∨

±
=±

(⊕
i∈I

(Z≥0).α
∨

i

)
.

We have 8=8+ ∪8− and, for α = w(αi ) ∈8,

rα = w.ri .w
−1 and rα(v)= v−α(v)α∨,

where the coroot α∨ = w(α∨i ) depends only on α.
The set 8 is an (abstract, reduced) real root system in the sense of [Moody

and Pianzola 1989; 1995; Bardy 1996]. We shall sometimes also use the set
1=8∪1+im ∪1

−

im of all roots (with −1−im =1
+

im ⊂ Q+, W v-stable) defined in
[Kac 1990]. It is an (abstract, reduced) root system in the sense of [Bardy 1996].

The fundamental positive chamber is Cv
f = {v ∈ V | αi (v) > 0, for all i ∈ I }. Its

closure Cv
f is the disjoint union of the vectorial faces

Fv(J )= {v ∈ V | αi (v)= 0 for all i ∈ J, and αi (v) > 0 for all i ∈ I \ J }

for J ⊂ I . We set V0 = Fv(I ). The positive and negative vectorial faces are the
sets w.Fv(J ) and −w.Fv(J ), respectively, for w ∈ W v and J ⊂ I. The support
of such a face is the vector space it generates. The set J or the face w.Fv(J ) or an
element of this face is called spherical if the group W v(J ) generated by {ri | i ∈ J }
is finite. An element of a vectorial chamber ±w.Cv

f is called regular.
The Tits cone T is the (disjoint) union of the positive vectorial faces. Its interior

T ◦ consists of those faces that are also spherical. It is a W v-stable convex cone in V.
We say that Av

= (V,W v) is a vectorial apartment. A positive automorphism
of Av is a linear bijection ϕ : Av

→ Av stabilizing T and permuting the roots
and corresponding coroots; so it normalizes W v and permutes the vectorial walls
Mv(α)= Ker(α). As W v acts simply transitively on the positive (resp., negative)
vectorial chambers, any subgroup W̃ v of the group Aut+(Av) (of positive auto-
morphisms of Av) containing W v may be written W̃ v

=�n W v, where � is the
stabilizer in W̃ v of Cv

f (resp., −Cv
f ). This group � induces a group of permutations

of I (by ω(αi ) = αω(i) and ω(α∨i ) = α
∨
ω(i)); but it may be greater than the whole

group of permutations in general, even infinite if
⋂

Kerαi 6= {0}.

1.2. The model apartment. As in [Rousseau 2011, 1.4] the model apartment A

is V considered as an affine space and endowed with a family M of walls. These
walls are affine hyperplanes directed by Ker(α) for α ∈8.
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We ask this apartment to be semidiscrete and the origin 0 to be special. This
means that these walls are the hyperplanes defined as

M(α, k)= {v ∈ V | α(v)+ k = 0} for α ∈8 and k ∈3α,

with3α = kα .Z a nontrivial discrete subgroup of R. Using [Gaussent and Rousseau
2014, Lemma 1.3] (i.e., by replacing 8 by another system 81) we may (and shall)
assume that 3α = Z for all α ∈8.

For α=w(αi )∈8, k ∈Z, and M=M(α, k), the reflection rα,k=rM with respect
to M is the affine involution of A with fixed points the wall M and associated linear
involution rα . The affine Weyl group W a is the group generated by the reflections
rM for M ∈M; we assume that W a stabilizes M. We know that W a

=W v n Q∨

and we write W a
R =W v n V ; here Q∨ and V have to be understood as groups of

translations.
An automorphism of A is an affine bijection ϕ :A→A stabilizing the set of pairs

(M, α∨) of a wall M and the coroot associated with α ∈8 such that M = M(α, k),
k ∈ Z. We write −→ϕ : V → V the linear application associated to ϕ. The group
Aut(A) of these automorphisms contains W a and normalizes it. We consider also
the group AutW

R (A)= {ϕ ∈ Aut(A) | −→ϕ ∈W v
} = Aut(A)∩W a

R.
For α ∈ 8 and k ∈ R, D(α, k) = {v ∈ V | α(v)+ k ≥ 0} is an half-space; it is

called an half-apartment if k ∈ Z. We write D(α,∞)= A.
The Tits cone T and its interior T o are convex and W v-stable cones; therefore,

we can define two W v-invariant preorder relations on A:

x ≤ y ⇔ y− x ∈ T and x o
< y ⇔ y− x ∈ T o.

If W v has no fixed point in V \ {0} and no finite factor, then they are orders; but, in
general, they are not.

1.3. Faces, sectors, and chimneys. The faces in A are associated to the above
systems of walls and half-apartments. As in [Bruhat and Tits 1972], they are no
longer subsets of A, but filters of subsets of A. For the definition of that notion and
its properties, see [loc. cit.] or [Gaussent and Rousseau 2008].

If F is a subset of A containing an element x in its closure, the germ of F in
x is the filter germx(F) consisting of all subsets of A which contain intersections
of F and neighborhoods of x . In particular, if x 6= y ∈ A, we denote the germ in x
of the segment [x, y] by [x, y) and the germ in x of the segment ]x, y] by ]x, y).

Given F a filter of subsets of A, its enclosure clA(F) is the filter made of
the subsets of A containing an element of F of the shape

⋂
α∈1 D(α, kα), where

kα ∈ Z∪ {∞}. Its closure F is the filter made of the subsets of A containing the
closure S of some S ∈ F.
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A local face F in the apartment A is associated to its vertex, a point x ∈ A, and
its direction, a vectorial face Fv in V. It is defined as F = germx(x + Fv) and we
denote it by F = F`(x, Fv). Its closure is F`(x, Fv)= germx(x + Fv)

There is an order on the local faces: in fact, the three assertions F is a face of F ′,
F ′ covers F, and F ≤ F ′ are by definition equivalent to F ⊂ F ′. The dimension
of a local face F is the smallest dimension of an affine space generated by some
S ∈ F. The (unique) such affine space E of minimal dimension is the support of F ;
if F = F`(x, Fv), then supp(F)= x + supp(Fv).

A local face F = F`(x, Fv) is spherical if the direction of its support meets the
open Tits cone (i.e., when Fv is spherical), then its pointwise stabilizer WF in W a

is finite. We shall actually speak only of local faces here, and sometimes forget the
word local.

Any point x ∈ A is contained in a unique face F(x, V0) ⊂ clA({x}) which is
minimal of positive and negative direction (but seldom spherical). For any local
face F` = F`(x, Fv), there is a unique face F (as defined in [Rousseau 2011])
containing F`. Then F` ⊂ F = clA(F`) = clA(F) is also the enclosure of any
interval-germ ]x, y)= germx(]x, y]) included in F`.

A local chamber is a maximal local face, i.e., a local face F`(x,±w.Cv
f ) for

x ∈ A and w ∈W v. The fundamental local chamber is C+0 = germ0(C
v
f ).

A (local) panel is a spherical local face maximal among local faces which are not
chambers, or, equivalently, a spherical face of dimension n−1; its support is a wall.

A sector in A is a V-translate s= x +Cv of a vectorial chamber Cv
=±w.Cv

f ,
with w ∈W v. The point x is its base point and Cv its direction. Two sectors have
the same direction if and only if they are conjugate by V-translation, and if and
only if their intersection contains another sector.

The sector-germ of a sector s= x +Cv in A is the filter S of subsets of A con-
sisting of the sets containing a V-translate of s; it is well determined by the direction
Cv. So, the set of translation classes of sectors in A, the set of vectorial chambers
in V, and the set of sector-germs in A are in canonical bijection. We denote the
sector-germ associated to the negative fundamental vectorial chamber−Cv

f by S−∞.
A sector-face in A is a V-translate f= x+Fv of a vectorial face Fv=±w.Fv(J ).

The sector-face-germ of f is the filter F of subsets containing a translate f′ of f by an
element of Fv (i.e., f′ ⊂ f). If Fv is spherical, then f and F are also called spherical.
The sign of f and F is the sign of Fv.

A chimney in A is associated to a face F = F(x, Fv0 ), called its basis, and to a
vectorial face Fv, its direction; it is the filter

r(F, Fv)= clA(F + Fv).

A chimney r= r(F, Fv) is splayed if Fv is spherical; it is solid if its support (as a
filter, i.e., the smallest affine subspace containing r) has a finite pointwise stabilizer
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in W v. A splayed chimney is therefore solid. The enclosure of a sector-face
f= x + Fv is a chimney.

A ray δ with origin in x and containing y 6= x (or the interval ]x, y], the segment
[x, y]) is called preordered if x ≤ y or y ≤ x and generic if x o

< y or y o
< x . With

these new notions, a chimney can be defined as the enclosure of a preordered ray
and a preordered segment-germ sharing the same origin. The chimney is splayed if
and only if the ray is generic.

1.4. The hovel. In this section, we recall the definition and some properties of an
ordered affine hovel given by Rousseau [2011].

1.4.1. An apartment of type A is a set A endowed with a set IsomW(A, A) of
bijections (called Weyl-isomorphisms) such that, if f0 ∈ IsomW(A, A), then f ∈
IsomW(A, A) if and only if there exists w ∈ W a satisfying f = f0 ◦w. An iso-
morphism (resp., a Weyl-isomorphism, a vectorially Weyl isomorphism) between
two apartments ϕ : A → A′ is a bijection such that, for any f ∈ IsomW(A, A),
f ′ ∈ IsomW(A, A′), f ′−1

◦ϕ ◦ f is contained in Aut(A) (resp., in W a, in AutW
R(A));

the group of these isomorphisms is written Isom(A, A′) (resp., IsomW(A, A′),
IsomW

R(A, A′)). As the filters in A defined in Section 1.3 above (e.g., local faces,
sectors, walls, etc.) are permuted by Aut(A), they are well defined in any apartment
of type A and exchanged by any isomorphism.

Definition. An ordered affine hovel of type A (or, for short, a masure of type A) is
a set I endowed with a covering A of subsets called apartments such that:

(MA1) any A ∈A admits a structure of an apartment of type A;

(MA2) if F is a point, a germ of a preordered interval, a generic ray, or a solid
chimney in an apartment A, and if A′ is another apartment containing F,
then A ∩ A′ contains the enclosure clA(F) of F and there exists a Weyl-
isomorphism from A onto A′ fixing clA(F);

(MA3) if R is the germ of a splayed chimney and if F is a face or a germ of a
solid chimney, then there exists an apartment that contains R and F ;

(MA4) if two apartments A, A′ contain R and F as in (MA3), then their intersection
contains clA(R∪ F) and there exists a Weyl-isomorphism from A onto A′

fixing clA(R∪ F);

(MA5) if x, y are two points contained in two apartments A and A′, and if x ≤A y
then the two segments [x, y]A and [x, y]A′ are equal.

We ask here that I be thick of finite thickness: the number of local chambers
containing a given (local) panel has to be finite and at least 3. This number is the
same for any panel in a given wall M [Rousseau 2011, 2.9]; we denote it by 1+qM .



10 NICOLE BARDY-PANSE, STÉPHANE GAUSSENT AND GUY ROUSSEAU

An automorphism (resp., a Weyl-automorphism, a vectorially Weyl automor-
phism) of I is a bijection ϕ : I→ I such that A ∈ A⇐⇒ ϕ(A) ∈ A and then
ϕ|A : A→ ϕ(A) is an isomorphism (resp., a Weyl-isomorphism, a vectorially Weyl
isomorphism).

1.4.2. For x ∈ I, the set T +x I (resp. T −x I) of segment-germs [x, y) for y > x
(resp., y < x) may be considered as a building, the positive (resp., negative) tangent
building. The corresponding faces are the local faces of positive (resp., negative)
direction and of vertex x . The associated Weyl group is W v. If the W-distance
(calculated in T ±x I) of two local chambers is dW(Cx ,C ′x)=w ∈W v, to any reduced
decomposition w = ri1 · · · rin corresponds a unique minimal gallery from Cx to C ′x
of type (i1, . . . , in). We shall say, by abuse of notation, that this gallery is of type w.

The buildings T +x I and T −x I are actually twinned. The codistance d∗W(Cx , Dx)

of two opposite sign chambers Cx and Dx is the W-distance dW(Cx , op Dx), where
op Dx denotes the opposite chamber to Dx in an apartment containing Cx and Dx .
Similarly two segment-germs η ∈ T +x I and ζ ∈ T −x I are said opposite if they are
in a same apartment A and opposite in this apartment (i.e., in the same line, with
opposite directions).

Lemma [Rousseau 2011, 2.9]. Let D be a half-apartment in I and M = ∂D its
wall (i.e., its boundary). One considers a panel F in M and a local chamber C in
I covering F. Then there is an apartment containing D and C.

1.4.3. We assume that I has a strongly transitive group of automorphisms G, i.e.,
all isomorphisms involved in the above axioms are induced by elements of G;
see [Rousseau 2012, 4.10; Ciobotaru and Rousseau 2015]. We choose in I a
fundamental apartment which we identify with A. As G is strongly transitive, the
apartments of I are the sets g.A for g ∈ G. The stabilizer N of A in G induces
a group W = ν(N ) ⊂ Aut(A) of affine automorphisms of A which permutes the
walls, local faces, sectors, sector-faces, etc., and contains the affine Weyl group
W a
=W v n Q∨ [Rousseau 2012, 4.13.1].

We denote the stabilizer of 0 ∈ A in G by K and the pointwise stabilizer (or
fixer) of C+0 by KI ; this group KI is called the Iwahori subgroup.

1.4.4. We ask W = ν(N ) to be positive and vectorially Weyl for its action on the
vectorial faces. This means that the associated linear map −→w of any w ∈ ν(N ) is
in W v. As ν(N ) contains W a and stabilizes M, we have W = ν(N ) = W v n Y,
where W v fixes the origin 0 of A and Y is a group of translations such that:
Q∨ ⊂ Y ⊂ P∨ = {v ∈ V | α(v) ∈ Z,∀α ∈ 8}. An element w ∈ W will often be
written w = λ.w, with λ ∈ Y and w ∈W v.

We ask Y to be discrete in V. This is clearly satisfied if 8 generates V ∗, i.e.,
(αi )i∈I is a basis of V ∗.
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1.4.5. Note that there is only a finite number of constants qM as in the definition
of thickness. Indeed, we must have qwM = qM , ∀w ∈ ν(N ) and w.M(α, k) =
M(w(α), k),∀w ∈ W v. So now, fix i ∈ I , as αi (α

∨
i ) = 2 the translation by α∨i

permutes the walls M = M(αi , k) (for k ∈ Z) with two orbits. So, Q∨ ⊂W a has at
most two orbits in the set of the constants qM(αi ,k): one containing the qi = qM(αi ,0)

and the other containing the q ′i =qM(αi ,±1). Hence, the number of (possibly) different
qM is at most 2.|I |. We denote this set of parameters by Q= {qi , q ′i | i ∈ I }.

If αi (α
∨
j ) is odd for some j ∈ I , the translation by α∨j exchanges the two walls

M(αi , 0) and M(αi ,−αi (α
∨
j )); so qi =q ′i . More generally, we see that qi =q ′i when

αi (Y )=Z, i.e., αi (Y ) contains an odd integer. If αi (α
∨
j )=αj (α

∨
i )=−1, one knows

that the element rir jri of W v({i, j}) exchanges αi and −αj , so qi = q ′i = q j = q ′j .
Actually many of the following results (in sections 2, 3) are true without assuming

the existence of G: we have only to assume that the parameters qM satisfy the
above conditions.

1.4.6. The main examples of all the above situation are provided by the hovels of
almost split Kac–Moody groups over fields complete for a discrete valuation and
with a finite residue field, see Section 7.2 below.

1.4.7. Remarks. (a) In the following, we sometimes use results of [Gaussent and
Rousseau 2008] even though, in this paper we deal with split Kac–Moody groups
and residue fields containing C. But the cited results are easily generalizable to our
present framework, using the above references.

(b) All isomorphisms in [Rousseau 2011] are Weyl-isomorphisms, and, when G is
strongly transitive, all isomorphisms constructed in that reference are induced by
an element of G.

1.5. Type 0 vertices. The elements of Y, through the identification Y = N .0, are
called vertices of type 0 in A; they are special vertices. We note Y+ = Y ∩ T and
Y++ = Y ∩Cv

f . The type 0 vertices in I are the points on the orbit I0 of 0 by G.
This set I0 is often called the affine Grassmannian as it is equal to G/K, where
K = StabG({0}). But in general, G is not equal to K Y K = K N K [Gaussent and
Rousseau 2008, 6.10], i.e., I0 6= K .Y.

We know that I is endowed with a G-invariant preorder ≤ which induces the
known one on A. Moreover, if x≤ y, then x and y are in a same apartment [Rousseau
2011, 5.9]. We set I+={x ∈I | 0≤ x}, I+0 =I0∩I+, and G+={g ∈G | 0≤ g .0};
so I+0 = G+.0= G+/K. As ≤ is a G-invariant preorder, G+ is a semigroup.

If x ∈ I+0 there is an apartment A containing 0 and x (by definition of ≤) and
all apartments containing 0 are conjugated to A by K (see (MA2)); so x ∈ K .Y+

as I+0 ∩A = Y+. But ν(N ∩ K )=W v and Y+ =W v.Y++, with uniqueness of the
element in Y++. So I+0 = K .Y++, more precisely I+0 = G+/K is the union of the
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K yK/K for y ∈ Y++. This union is disjoint, for the above construction does not
depend on the choice of A; see Section 1.9(a).

Hence, we have proved that the map Y++→ K\G+/K is one-to-one and onto.

1.6. Vectorial distance and Q∨-order. For x in the Tits cone T , we denote by x++

the unique element in Cv
f conjugated by W v to x .

Let I×≤I= {(x, y) ∈ I×I | x ≤ y} be the set of increasing pairs in I. Such a
pair (x, y) is always in a same apartment g .A; so (g−1). y− (g−1).x ∈ T and we
define the vectorial distance dv(x, y) ∈ Cv

f by dv(x, y)= ((g−1). y− (g−1).x)++.
It does not depend on the choices we made (by Section 1.9.a below).

For (x, y) ∈ I0 ×≤ I0 = {(x, y) ∈ I0 × I0 | x ≤ y}, the vectorial distance
dv(x, y) takes values in Y++. Actually, as I0 = G .0, K is the stabilizer of 0 and
I+0 = K .Y++ (with uniqueness of the element in Y++), the map dv induces a
bijection between the set I0×≤ I0/G of G-orbits in I0×≤ I0 and Y++.

Further, dv gives the inverse of the map Y++→ K\G+/K, as any g ∈ G+ is in
K .dv(0, g .0).K.

For x, y ∈ A, we say that x ≤Q∨ y when y− x ∈ Q∨
+

, and x ≤Q∨R y when

y− x ∈ Q∨R+ =
∑
i∈I

R≥0 .α
∨

i .

We get thus a preorder which is an order at least when (α∨i )i∈I is free or R+-free,
i.e.,

∑
aiα
∨
i = 0, ai ≥ 0 implies ai = 0, for all i .

1.7. Paths. We consider piecewise linear continuous paths π : [0, 1] → A such
that each (existing) tangent vector π ′(t) belongs to an orbit W v.λ for some λ ∈ Cv

f .
Such a path is called a λ-path; it is increasing with respect to the preorder relation ≤
on A.

For any t 6= 0 (resp., t 6= 1), we let π ′
−
(t) (resp., π ′

+
(t)) denote the derivative

of π at t from the left (resp., from the right). Further, we define w±(t) ∈W v to be
the smallest element in its (W v)λ-class such that π ′

±
(t)= w±(t).λ, where (W v)λ

is the stabilizer in W v of λ.
Hecke paths of shape λ (with respect to the sector germ S−∞ = germ∞(−Cv

f ))
are λ-paths satisfying some further precise conditions, see [Kapovich and Millson
2008, 3.27] or [Gaussent and Rousseau 2014, 1.8]. For us their interest will appear
just below in Section 1.8.

But to give a formula for the structure constants of the forthcoming Iwahori–
Hecke algebra, we will need slightly different Hecke paths whose definition is
detailed in Section 3.3.

1.8. Retractions onto Y+. For all x ∈ I+ there is an apartment containing x and
C−0 = germ0(−Cv

f ) [Rousseau 2011, 5.1] and this apartment is conjugated to A by
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an element of K fixing C−0 ; see (MA2). So, by the usual arguments, as well as
[op. cit., 5.5] (see below Proposition 1.10(a)), we can define the retraction ρC−0 of
I+ into A with center C−0 ; its image is ρC−0 (I

+)= T =I+∩A and ρC−0 (I
+

0 )= Y+.
Using axioms (MA3) and (MA4) [Gaussent and Rousseau 2008, 4.4], we may

also define the retraction ρ−∞ of I onto A with center the sector-germ S−∞.
More generally, we may define the retraction ρ of I (resp., of the subset I≥z =

{y ∈I | y≥ z}, for a fixed z) onto an apartment A with center any sector germ (resp.,
any local chamber of negative direction with vertex z). For any such retraction ρ,
the image of any segment [x, y] with (x, y) ∈ I ×≤ I and dv(x, y) = λ ∈ Cv

f
(resp., and moreover x, y ∈ I≥z) is a λ-path [Gaussent and Rousseau 2008, 4.4]. In
particular, ρ(x)≤ ρ(y).

Actually, the image by ρ−∞ of any segment [x, y] with (x, y) ∈ I×≤ I and
dv(x, y) = λ ∈ Y++ is a Hecke path of shape λ with respect to S−∞ [Gaussent
and Rousseau 2008, th. 6.2], and we have the following lemma.

Lemma. (a) For λ ∈ Y++ and w ∈W v, we have w.λ ∈ λ− Q∨
+

, i.e., w.λ≤Q∨λ.

(b) Let π be a Hecke path of shape λ ∈ Y++ with respect to S−∞, from y0 ∈ Y to
y1 ∈ Y. Then, for 0≤ t < t ′ < 1,

λ= π ′
+
(t)++ = π ′

−
(t ′)++;

π ′
+
(t)≤Q∨ π

′

−
(t ′)≤Q∨ π

′

+
(t ′)≤Q∨ π

′

−
(1);

π ′
+
(0)≤Q∨ λ;

π ′
+
(0)≤Q∨R (y1− y0)≤Q∨R π

′

−
(1)≤Q∨ λ;

y1− y0 ≤Q∨ λ.

Moreover y1 − y0 is in the convex hull conv(W v.λ) of all w.λ for w ∈ W v,
more precisely in the convex hull conv(W v.λ,≥π ′

+
(0)) of all w′.λ for w′ ∈W v,

w′ ≤ w, where w is the element with minimal length such that π ′
+
(0)= w.λ.

(c) If , moreover, (α∨i )i∈I is free, we may replace above ≤Q∨R by ≤Q∨.

(d) If x ≤ z ≤ y in I0, then dv(x, y)≤Q∨ dv(x, z)+ dv(z, y).

N.B. In the following, we always assume (α∨i )i∈I free.

Proof. Everything is proved in [Gaussent and Rousseau 2014, 2.4], except the
second paragraph of (b). Actually we see in [loc. cit.] that y1− y0 is the integral
of the locally constant vector-valued function π ′

+
(t) = w+(t).λ, where w+(t) is

decreasing for the Bruhat order [op. cit., 5.4], hence the result. �

1.9. Chambers of type 0. Let C±0 be the set of all local chambers with vertices of
type 0 and positive or negative direction. A local chamber of vertex x ∈ I0 will
often be written Cx and its direction Cv

x . We consider C+0 ×≤ C+0 = {(Cx ,Cy) ∈

C+0 ×C+0 | x ≤ y}. We sometimes write Cx ≤ Cy when x ≤ y.
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Proposition [Rousseau 2011, 5.4 and 5.1]. Let x, y ∈ I with x ≤ y. We consider
two local faces Fx , Fy with respective vertices x, y.

(a) {x, y} is included in an apartment and two such apartments A, A′ are isomor-
phic by a Weyl-isomorphism in G, fixing clA({x, y})= clA′({x, y})⊃ [x, y].

(b) There is an apartment containing Fx and Fy , unless Fx and Fy are respectively
of positive and negative direction. In this case we have to assume moreover
x o
< y or x = y to get the same result.

Consequences. (1) We define W+ =W v n Y+ which is a subsemigroup of W.
If Cx ∈ C+0 , we know by (b) above, that there is an apartment A containing

C+0 and Cx . But all apartments containing C+0 are conjugated to A by KI (MA2),
so there is k ∈ KI with k−1.Cx ⊂ A. Now the vertex k−1.x of k−1.Cx satisfies
k−1.x ≥ 0, so there is w ∈W+ such that k−1.Cx = w .C+0 .

When g ∈ G+, we have g .C+0 ∈ C+0 and there are k ∈ KI , w ∈ W+ satisfying
g .C+0 = k .w .C+0 , i.e., g ∈ KI .W+.KI . We have proved the Bruhat decomposition
G+ = KI .W+.KI .

(2) Let x ∈ I0 and Cy ∈ C+0 with x ≤ y, x 6= y. We consider an apartment A
containing x and Cy (by (b) above) and write Cy = F(y,Cv

y ) in A. For y′ ∈ y+Cv
y

sufficiently close to y, α(y′− x) 6= 0 for any root α. So ]x, y′) is in a unique local
chamber prx(Cy) of vertex x ; this chamber satisfies [x, y)⊂ prx(Cy)⊂ clA({x, y′})
and does not depend on the choice of y′. Moreover, if A′ is another apartment
containing x and Cy , we may suppose y′ ∈ A∩ A′ and ]x, y′), clA({x, y′}), prx(Cy)

are the same in A′. The local chamber prx(Cy) is well determined by x and Cy; it
is the projection of Cy in T +x I.

The same things may be done changing accordingly + to − and ≤ to ≥ . But,
in the above situation, if Cx ∈C+0 , we have to assume x o

< y to define the analogous
pry(Cx) ∈ C+0 .

Proposition 1.10. In the setting of Section 1.9,

(a) If x o
< y or Fx and Fy are, respectively, of negative and positive direction,

any two apartments A and A′ containing Fx and Fy are isomorphic by a Weyl-
isomorphism in G fixing the convex hull of Fx and Fy (in A or A′).

(b) If x = y and the directions of Fx and Fy have the same sign, any two apartments
A and A′ containing Fx and Fy are isomorphic by a Weyl-isomorphism in G,
ϕ : A→ A′, fixing Fx and Fy . If moreover Fx is a local chamber, any minimal
gallery from Fx to Fy is fixed by ϕ (and in A∩ A′).

(c) If Fx and Fy are of positive directions and Fy is spherical, any two apartments
A and A′ containing Fx and Fy are isomorphic by a Weyl-isomorphism in G
fixing Fx and Fy .
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Remark. The conclusion in (c) above is less precise than in (a) or in Section 1.9(a).
We may actually improve it when the hovel is associated to a very good family
of parahorics, as defined in [Rousseau 2012] and already used in [Gaussent and
Rousseau 2008]. Then, using the notion of half-good fixers, we may assume that the
isomorphism in (c) above fixes some kind of enclosure of Fx and Fy (containing the
convex hull). This particular case includes the case of an almost split Kac–Moody
group over a local field.

Proof. The assertions (a) and (b) are Propositions 5.5 and 5.2 of [Rousseau 2011],
respectively. To prove (c) we improve a little the proof of 5.5 in that reference and
use the classical trick that says that it is enough to assume that either Fx or Fy is a
local chamber. We assume now that Fx = Cx is a local chamber; the other case is
analogous.

We consider an element �x (resp., �y) of the filter Cx (resp., Fy) contained in
A∩ A′. We have x ∈�x, y ∈�y, and one may suppose �x is open and �y is open
in the support of Fy . There is an isomorphism ϕ : A→ A′ fixing �x . Let y′ ∈�y ;
we want to prove that ϕ(y′)= y′. As Fy is spherical, x ≤ y o

< y′; hence, x o
< y′. So

x ′ ≤ y′ for any x ′ ∈�x (�x sufficiently small). Moreover [x ′, y′] ∩�x is an open
neighborhood of x ′ in [x ′, y′]. By the following lemma, we get ϕ(y′)= y′. �

Lemma. Let us consider two apartments A, A′ in I, a subset �⊂ A∩ A′, a point
z ∈ A∩ A′ and an isomorphism ϕ : A→ A′ fixing (pointwise) �. We assume that
there is z′ ∈� with z′ ≤ z or z′ ≥ z and [z′, z] ∩� open in [z′, z]. Then ϕ(z)= z.

N.B. This lemma asserts, in particular, that any isomorphism ϕ : A→ A′ fixing a
local facet F ⊂ A∩ A′ fixes F.

Proof. Note that ϕ|[z′,z] is an affine bijection of [z′, z] onto its image in A′, which is
the identity in a neighborhood of z′. But Section 1.9(a) shows that [z′, z] ⊂ A∩ A′

and the identity of [z′, z] is an affine bijection (for the affine structures induced by A
and A′). Hence ϕ|[z′,z] coincides with this affine bijection; in particular ϕ(z)= z. �

1.11. W-distance. Let (Cx ,Cy) ∈ C+0 ×≤ C+0 ; there is an apartment A containing
Cx and Cy . We identify (A,C+0 ) with (A,Cx), i.e., we consider the unique f ∈
IsomW

R (A, A) such that f (C+0 )= Cx . Then f −1(y)≥ 0 and there is w ∈W+ such
that f −1(Cy)= w .C+0 . By Proposition 1.10(c), w does not depend on the choice
of A.

We define the W-distance between the two local chambers Cx and Cy to be this
unique element: dW(Cx ,Cy)=w ∈W+ = Y+oW v. If w= λ.w, with λ ∈ Y+ and
w ∈W v, we write also dW(Cx , y)= λ. As ≤ is G-invariant, the W-distance is also
G-invariant. When x = y, this definition coincides with the one in Section 1.4.2.

If Cx ,Cy,Cz ∈C+0 , with x ≤ y ≤ z, are in a same apartment, we have the Chasles
relation: dW(Cx ,Cz)= dW(Cx ,Cy).dW(Cy,Cz).
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When Cx = C+0 and Cy = g .C+0 (with g ∈ G+), dW(Cx ,Cy) is the only w ∈

W+ such that g ∈ KI .w .KI . We have thus proved the uniqueness in the Bruhat
decomposition: G+ =

∐
w∈W+ KI .w .KI .

The W-distance classifies the orbits of KI on {Cy ∈ C+0 | y ≥ 0}, hence also the
orbits of G on C+0 ×≤ C+0 .

2. Iwahori–Hecke Algebras

Throughout this section, we assume that (α∨i )i∈I is free and we consider any
commutative ring with unity R. To each w ∈W+, we associate a function Tw from
C+0 ×≤ C+0 to R defined by

Tw(C,C ′)=
{

1 if dW(C,C ′)= w,

0 otherwise.

Now we consider the following free R-module

IHI
R =

{
ϕ =

∑
w∈W+

awTw

∣∣∣ aw ∈ R, aw = 0 except for a finite number of w

}
,

We endow this R-module with the convolution product:

(ϕ ∗ψ)(Cx ,Cy)=
∑
Cz

ϕ(Cx ,Cz)ψ(Cz,Cy).

where Cz ∈C+0 is such that x ≤ z ≤ y. It is clear that this product is associative and
R-bilinear. We prove below that this product is well defined.

As in [Gaussent and Rousseau 2014, 2.1], we see easily that IHI
R can be identified

with the natural convolution algebra of functions G+→ R, bi-invariant under KI

and with finite support.

Lemma 2.1. Let S−⊂ A be a sector-germ with negative direction in an apart-
ment A, let ρ− :I→A be the corresponding retraction, and let w∈W+. Then the set

P ={dW(ρ−(Cx), ρ−(Cy))∈W+ | for all (Cx ,Cy)∈C+0 ×≤C+0 , dW(Cx ,Cy)=w}

is finite and included in a finite subset P ′ of W+ depending only on w and on the
position of Cx with respect to S− (i.e., on the codistance wx ∈W v from Cx to the
local chamber C−x in x of direction S−).

Let us write w = λ.w for λ ∈ Y+ and w ∈ W v. If we assume Cx and S− are
opposite (i.e., wx = 1), then any v = µ.v ∈ P ′ satisfies λ ≤Q∨ µ ≤Q∨ λ

++ and µ
is in conv(W v.λ++). More precisely µ is in the convex hull conv(W v.λ++,≥ λ)

of all w′.λ++ for w′ ∈W v, w′ ≤ wλ, where wλ is the element with minimal length
such that λ= wλ .λ++.
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If moreover λ ∈ Y++, then µ = λ and v ≤ w. In particular, for w = λ ∈ Y++,
P = {w} = {λ}.

Proof. We consider an apartment A1 containing Cx and Cy . We set C ′y=Cx+(y−x)
in A1. By identifying (A,C+0 ) with (A1,Cx), we have y= x+λ, and by identifying
(A,C+0 ) with (A1,C ′y), we have Cy = wC ′y .

We have to prove that the possibilities for ρ−(Cy) vary in a finite set determined
by ρ−(Cx), w, and wx . We shall prove this by successively showing the same kind
of result for ρ−([x, y)), ρ−(y), and ρ−(C ′y). Up to isomorphism, one may suppose
that Cx ⊂ A.

(a) Fixing a reduced decomposition for wλ gives a minimal gallery between Cx

and [x, y). By retraction, we get a gallery with the same type from ρ−(Cx) to
ρ−([x, y)). The possible foldings of this gallery determine the possibilities for
ρ−([x, y)). More precisely, ρ−([x, y))= x +w′(λ++A )[0, 1) for w′ ≤ wλ and λ++A
the image in A of λ++ by the identification of (A,C+0 ) with (A,Cx).

(b) Now fix ρ−([x, y)). By Section 1.8(b), ρ−([x, y]) is a Hecke path π of shape
λ++ (with respect to S−). Its derivative π ′

+
(0) is well determined by ρ−([x, y)). We

identify A with A in such a way that S− has direction −Cv
f . Then λ++A =wx(λ

++)

and π ′
+
(0)= w′wx(λ

++), with w′ as above. By Section 1.8(b),

π ′
+
(0)≤Q∨ ρ−(y)− ρ−(x)≤Q∨ λ

++.

So there are a finite number of possibilities for ρ−(y).

(c) Now fix ρ−([x, y)) and ρ−(y), and investigate the possibilities for ρ−(C ′y). We
shall use a segment [x ′, y′] in A1 parallel to [x, y] and prove successively that there
are a finite number of possibilities for ρ−(x ′), ρ−([x ′, y′)), ρ−(y′), and ρ−(C ′y).
So we choose ξ ∈ Y++ and in the interior of the fundamental chamber Cv

f . In the
apartment A1, with (A1,Cx) identified with (A,C+0 ), we consider x ′ = x + ξ and
y′ = y+ ξ (hence, y′ = x ′+ λ).

As in (a) and (b) above, we get that there are a finite number of possibilities for
ρ−(x ′). So we fix ρ−(x ′).

(c1) On one side, we may also enlarge in A1 the segment [x, x ′] by considering the
segment [x ′, x ′′], where x ′′ = x ′+ εξ = x + (1+ ε)ξ , with ε > 0 small.

On the other side, [x, x ′] can be described as a path π1 : [0, 1] → A1, defined
by π1(t)= x + tξ . The retracted path π = ρ−(π1) satisfies

ρ−(x ′)− ρ−(x)≤Q∨ π
′

+
(1)≤Q∨ λ

++,

again by Section 1.8. So there are a finite number of possibilities for π ′
+
(1), i.e.,

for ρ−([x ′, x ′′)). But there exists (in A1) a minimal gallery of the type of a reduced
decomposition of wλ from the unique local chamber (Cx + ξ) containing [x ′, x ′′)
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to [x ′, y′). Hence, there exists a gallery of the same type between (a local chamber
containing) ρ−([x ′, x ′′)) and ρ−([x ′, y′)). Therefore, there is a finite number of
possibilities for ρ−([x ′, y′)).

As in (b), we deduce that there are a finite number of possibilities for ρ−(y′).

(c2) The path ρ−([y, y′]) is a Hecke path of shape ξ from ρ−(y) to ρ−(y′). By
[Gaussent and Rousseau 2008, Corollary 5.9], there exist a finite number of such
paths. In particular, there are a finite number of possibilities for the segment-germ
ρ−([y, y′)) and for ρ−(C ′y).

(d) Next, we fix ρ−(C ′y). Fixing a reduced decomposition for w gives a minimal
gallery between C ′y and Cy , hence a gallery of the same type between ρ−(C ′y) and
ρ−(Cy). So, the number of possible ρ−(Cy) is finite and dW(ρ−(C ′y), ρ−(Cy))≤w.

(e) Finally, let us consider the case wx = 1; hence, λ++A = λ++. So, in (b),
we get π ′

+
(0) = w′(λ++) with w′ ≤ wλ; hence, π ′

+
(0) ≥Q∨ wλ(λ

++) = λ and
λ ≤Q∨ π

′
+
(0) ≤Q∨ ρ−(y)− ρ−(x) = µ ≤Q∨ λ

++. If, moreover, λ is in Y++, then
λ = λ++ and µ = λ. The Hecke path ρ−([x, y]) is of shape λ and equal to the
segment [ρ−(x), ρ−(x)+λ]. Its dual dimension is 0 [op. cit., 5.7]. By [op. cit., 6.3],
there is one and only one segment in I with end y that retracts onto this Hecke path:
any apartment containing y and S− contains [x, y]. But Cx is in the enclosure
of x and C ′y = Cy (computation in A1). So, any apartment containing S− and C ′y
contains Cx . Therefore, we have λ= dW(Cx ,C ′y)= dW(ρ−(Cx), ρ−(C ′y)).

The end of the proof of the lemma follows then from (d) above. �

Proposition 2.2. Let Cx ,Cy,Cz ∈ C+0 be such that x ≤ z ≤ y and

dW(Cx ,Cz)= w ∈W+ and dW(Cz,Cy)= v ∈W+.

Then dW(Cx ,Cy) varies in a finite subset Pw,v of W+, depending only on w and v.
Let us write w = λ.w and v = µ.v for λ,µ ∈ Y+ and w, v ∈W v. If we assume

λ= λ++ and w = 1, then any w′ = ν .u ∈ Pw,v satisfies λ+µ≤Q∨ ν ≤Q∨ λ+µ
++

and ν− λ ∈ conv(W v.µ++,≥ µ)⊂ conv(W v.µ++).
If , moreover, µ = µ++ ∈ Y++, then ν = λ+µ and u ≤ v. In particular, for

w = λ and w′ = µ in Y++, we have Pw,v = {λ+µ}.

Proof. Consider any apartment A containing Cx , the sector-germ S− opposite Cx

and the retraction ρ− as in Lemma 2.1. Then ρ−(Cx) = Cx and dW(Cx , ρ−(Cz))

varies in a finite subset Px of W+ depending on w, by Lemma 2.1. If

dW(Cx , ρ−(Cz))= λ
′ .w′,

then the relative position wz ∈ W v of Cz and S− is equal to w′. Applying once
more Lemma 2.1 to Cz and Cy , we get that dW(ρ−(Cz), ρ−(Cy)) varies in a finite
subset Pw′ of W+ depending only on v and w′. Finally, dW(Cx , ρ−(Cy)) varies in
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the finite subset

Pw,v = {w
′ .v′ ∈W+ | w′ = λ′ .w′ ∈ Px and v′ ∈ Pw′}.

Taking now A containing Cx and Cy , we get dW(Cx ,Cy)= dW(Cx , ρ−(Cy)) ∈ Pw,v.
To finish, suppose λ=λ++ and w= 1. By Lemma 2.1, P1={λ}; so, w′=wz = 1.

By Lemma 2.1 again, every v′=µ′.v′ ∈ Pw′ satisfies µ≤Q∨ µ
′
≤Q∨ µ

++. Therefore,
any w′′ = ν .u in Pw,v is equal to (λ+µ′).v′ for µ′.v′ ∈ Pw′ = P1; hence

λ+µ≤Q∨ ν = λ+µ
′
≤Q∨ λ+µ

++.

If moreover µ ∈ Y++, then ν = λ+µ and u ≤ v. The last particular case is now
clear. �

Proposition 2.3. Let us fix two local chambers Cx and Cy in C+0 with x ≤ y and
dW(Cx ,Cy) = u ∈ W+. We consider w and v in W+. Then the number au

w,v of
Cz ∈ C+0 with x ≤ z ≤ y, dW(Cx ,Cz)= w and dW(Cz,Cy)= v is finite, i.e., in N.

If we assume w = λ, v = µ and u = ν, then au
w,v = aνλ,µ ≥ 1 (resp., aνλ,µ = 1)

when λ ∈ Y++, µ ∈ Y+ (resp., λ,µ ∈ Y++) and ν = λ+µ.

N.B. From the above conditions, we get dv(x, z) = λ++ and dv(z, y) = µ++.
By [Gaussent and Rousseau 2014, 2.5], the number of points z satisfying these
conditions is finite.

Proof. According to the above note, we may fix z and count now the possible Cz .
Let C ′z be the local chamber in z containing [z, y) and [z, y′) for y′ in a sufficiently

small element of the filter Cy . By convexity, C ′z is well determined by z and Cy .
But in an apartment containing Cy and Cz (hence also C ′z), we see that dW(C ′z,Cz)

is well determined by v. So there is a gallery (of a fixed type) from C ′z to Cz , thus
the number of possible Cz is finite.

Assume now that w=λ∈Y++, v=µ∈Y+, and u=λ+µ. Taking an apartment
A1 containing Cx and Cy , it is clear that the local chamber Cz in A1 such that
dW(Cx ,Cz)=λ satisfies also dW(Cz,Cy)=µ (as dW(Cx ,Cy)=λ+µ). So aλ+µλ,µ ≥1.
We consider now any Cz satisfying the conditions, with moreover µ ∈ Y++.

As in Proposition 2.2, we choose A containing Cx and S− opposite Cx . We
saw in Lemma 2.1(e) that any apartment containing Cz and S− contains Cx and
dW(Cx , ρ−(Cz))= λ. With the same lemma applied to Cz and Cy , we see that any
apartment containing Cz and S− contains Cy . In particular, there is an apartment
A1 containing Cx ,Cz,Cy ; so dW(Cx ,Cz)= λ, dW(Cz,Cy)=µ, and dW(Cx ,Cy)=

λ+ µ. But λ,µ ∈ Y++, so Cz is in the enclosure of Cx and Cy . Therefore, Cz

is unique: any other apartment A2 containing Cx and Cy also contains x, y (with
x ≤ y) and x ′ = x + ξ , y′ = y + ξ (with x ′ ≤ y′), for ξ ∈ Cv

x = Cv
y small; by

Section 1.9(a), A2 contains z ∈ clA1({x, y}) and z′ = z+ ξ ∈ clA1({x
′, y′}), hence

also Cz ⊂ clA1(]z, z′)). �
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Theorem 2.4. For any ring R, IHI
R is an algebra with identity Id= T1 such that

Tw ∗ Tv =

∑
u∈Pw,v

au
w,v Tu

and Tλ ∗ Tµ = Tλ+µ for λ,µ ∈ Y++.

Proof. It follows from Propositions 2.2 and 2.3, as the map Tw∗Tv :C
+
0 ×≤C+0 → R

is clearly G-invariant. �

Definition 2.5. The algebra IHI
R is the Iwahori–Hecke algebra associated to I with

coefficients in R.

The structure constants au
w,v are nonnegative integers. We conjecture that they

are polynomials in the parameters qi , q ′i with coefficients in Z and that these
polynomials depend only on A and W. We prove this in the following section for
w, v generic, see the precise hypothesis just below. We get also this conjecture for
some A,W when all qi , q ′i are equal; in the general case we get only that they are
Laurent polynomials, see Section 6.7.

Geometrically, it is possible to get more information about Tλ∗Tµ when λ∈ Y++

and µ ∈ Y+, but we shall obtain them algebraically; see Corollary 5.3.

3. Structure constants

In this section, we compute the structure constants au
w,v of the Iwahori–Hecke alge-

bra IHI
R , assuming that v=µ.v is regular and w=λ.w is spherical, i.e., µ is regular

and λ is spherical; see Section 1.1 for the definitions. We will adapt some results
obtained in the spherical case in [Gaussent and Rousseau 2014] to our situation.

These structure constants depend on the shape of the standard apartment A and
on the numbers qM of Section 1.4. Recall that the number of (possibly) different
parameters is at most 2|I |. We denote by Q= {q1, . . . , ql, q ′1 = ql+1, . . . , q ′l = q2l}

this set of parameters.

3.1. Centrifugally folded galleries of chambers. Let z be a point in the standard
apartment A. We have twinned buildings T +z I (resp., T −z I). We consider their
unrestricted structure, so the associated Weyl group is W v and the chambers (resp.,
closed chambers) are the local chambers C = germz(z+Cv) (resp., local closed
chambers C = germz(z +Cv)), where Cv is a vectorial chamber; see [Gaussent
and Rousseau 2008, 4.5] or [Rousseau 2011, §5]. The distances (resp., codistances)
between these chambers are written dW (resp., d∗W ). To A is associated a twin
system of apartments Az = (A

−
z ,A+z ).

Choose in A−z a negative (local) chamber C−z and denote by C+z its opposite in A+z .
Consider the system of positive roots 8+ associated to C+z . Actually, 8+ = w.8+f
if 8+f is the system 8+ defined in Section 1.1 and C+z = germz(z+w.C

v
f ). Denote
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by (αi )i∈I the corresponding basis of8 and by (ri )i∈I the corresponding generators
of W v. Note that this change of notation is limited to Section 3.

Fix a reduced decomposition of an element w ∈ W v, w = ri1 . . . rir , and let
i = (i1, . . . , ir ) be the type of the decomposition. Now consider galleries of (local)
chambers c= (C−z ,C1, . . . ,Cr ) in the apartment A−z starting at C−z and of type i .

The set of all these galleries is in bijection with 0(i)= {1, ri1} × · · · × {1, rir }

via the map
(c1, . . . , cr ) 7→ (C−z , c1C−z , . . . , c1 . . . cr C−z ).

Let βj = −c1 · · · cj (αij ); then βj is the root corresponding to the common limit
hyperplane Mj = M(βj ,−βj (z)) of type ij of

Cj−1 = c1 · · · cj−1C−z and Cj = c1 · · · cj C−z

and satisfying βj (Cj )≥ βj (z).

Definition. Let Q be a chamber in A+z . A gallery c= (C−z ,C1, . . . ,Cr ) ∈ 0(i) is
said to be centrifugally folded with respect to Q if Cj = Cj−1 implies that Mj is a
wall and separates Q from Cj = Cj−1. We denote this set of centrifugally folded
galleries by 0+Q(i).

3.2. Liftings of galleries. Next, let ρQ : TzI→ Az be the retraction centered at Q.
To a gallery of chambers c= (C−z ,C1, . . . ,Cr ) in 0(i), one can associate the set
of all galleries of type i starting at C−z in T −z I that retract onto c; we denote this
set by CQ(c). We denote the set of minimal galleries (i.e., Cj−1 6= Cj ) in CQ(c) by
Cm
Q(c). Recall from [Gaussent and Rousseau 2014, Proposition 4.4], that the set

Cm
Q(c) is nonempty if and only if the gallery c is centrifugally folded with respect

to Q. Recall also from [op. cit., Corollary 4.5], that if c ∈ 0+Q(i), then the number
of elements in Cm

Q(c) is

] Cm
Q(c)=

∏
j∈J1

(qj − 1)×
∏
j∈J2

qj

where q j = qMj ∈Q,
J1 = { j ∈ {1, . . . , r} | cj = 1}

and

J2 = { j ∈ {1, . . . , r} | cj = rij and Mj is a wall separating Q from Cj }.

3.3. Liftings of Hecke paths. The Hecke paths we consider here are slight modifi-
cations of those used in [Gaussent and Rousseau 2014]. Let us fix a local positive
chamber Cx ∈ C+0 ∩A. Actually, a Hecke path of shape µ++ with respect to Cx

in A is a µ++-path in A that we denote by π = [z′ = z0, z1, . . . , z`π , y] and that
satisfies the following assumptions.
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For all z = π(t), z 6= z0 = π(0), we ask that x o
< z. Then we choose the local

negative chamber C−z as C−z = prz(Cx). This means that C−z contains [z, x) and
[z, x ′) for x ′ in a sufficiently small element of the filter Cx . Then we assume
moreover that for all k ∈ {1, . . . , `π }, there exists a (W v

zk
,C−zk

)-chain from π ′
−
(tk) to

π ′
+
(tk), where zk = π(tk). More precisely, this means that, for all k ∈ {1, . . . , `π },

there exist finite sequences (ξ0 = π
′
−
(t), ξ1, . . . , ξs = π

′
+
(t)) of vectors in V and

(β1, . . . , βs) of real roots such that, for all j = 1, . . . , s:

(i) rβj (ξ j−1)= ξj ,

(ii) βj (ξ j−1) < 0,

(iii) rβj ∈W v
π(tk), i.e., βj (π(tk)) ∈ Z,

(iv) each βj is positive with respect to Cx , i.e., βj (zk −Cx) > 0.

The centrifugally folded galleries are related to the lifting of Hecke paths by the
following lemma that we proved in [Gaussent and Rousseau 2014, Lemma 4.6].

Suppose that z ∈ A with x o
< z. Let ξ and η be two segment-germs in A+z .

Let −η and −ξ be opposite, respectively, of η and ξ in A−z . Let i be the type of a
minimal gallery between C−z and C−ξ, where C−ξ is the negative (local) chamber
containing −ξ such that dW(C−z ,C−ξ ) is of minimal length. Let Q be a chamber
of A+z containing η. Suppose that ξ and η are conjugated by W v

z .

Lemma. The following conditions are equivalent:

(i) There exists an opposite ζ to η in T −z I such that ρ
Az,C−z

(ζ )=−ξ .

(ii) There exists a gallery c ∈ 0+Q(i) ending in −η.

(iii) There exists a (W v
z ,C−z )-chain from ξ to η.

Moreover the possible ζ are in one-to-one correspondence with the disjoint union
of the sets Cm

Q(c) for c in the set 0+Q(i,−η) of galleries in 0+Q(i) ending in −η.

For a Hecke path as above and for k ∈ {1, . . . , `π }, we define the segment-germs
ηk = π+(tk)= π(tk)+π ′+(tk).[0, 1) and −ξk = π−(tk)= π(tk)−π ′−(tk).[0, 1). As
above, ik is the type of a minimal gallery between C−zk and C−ξk, where C−ξk is the
negative (local) chamber such that −ξk ⊂ C−ξk and dW(C−zk ,C−ξk ) is of minimal
length. Let Qk be a fixed chamber in A+zk containing ηk and 0+Qk

(ik,−ηk) be the
set of all the galleries (C−zk ,C1, . . . ,Cr ) of type ik in A−zk , centrifugally folded with
respect to Qk and with −ηk ∈ Cr .

Let us denote the retraction ρA,Cx
:I≥x→A simply by ρ and recall that y=π(1).

Let SCx(π, y) be the set of all segments [z, y] such that ρ([z, y])= π , in particular,
ρ(z)= z′. The following two theorems are proved in the same way as Theorems 4.8
and 4.12 of [Gaussent and Rousseau 2014]; in particular, we lift the path π step by
step starting from the end of π .
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Theorem 3.4. The set SCx(π, y) is nonempty if and only if π is a Hecke path with
respect to Cx . Then, we have a bijection

SCx(π, y)'
`π∏

k=1

∐
c∈0+Qk

(ik ,−ηk)

Cm
Qk
(c).

In particular, the number of elements in this set is a polynomial in the numbers q ∈Q
with coefficients in Z depending only on A.

Theorem 3.5. Let λ,µ, ν ∈ Y++ with λ spherical. Then, the number mλ,µ(ν) of
points z in I with dv(0, z)= λ and dv(z, ν)= µ is equal to

(1) mλ,µ(ν)=
∑

w∈W v/(W v)λ

∑
π

`π∏
k=1

∑
c∈0+Qk

(ik ,−ηk)

]Cm
Qk
(c),

where π runs over the set of Hecke paths of shape µ with respect to Cx from w.λ

to ν and `π , 0+Qk
(ik,−ηk), and Cm

Qk
(c) are defined as above for each such π .

Remark. In Theorems 3.4 and 3.5 above and in [Gaussent and Rousseau 2014], it
is interesting to note that if t`π = 1, i.e., z`π = y, then, in the above formulas, −η`π
and Q`π are not well defined: π+(1) does not exist. We have to understand that∐

c∈0+Q`π
(i`π ,−η`π )

Cm
Q`π
(c)

is the set of all minimal galleries of type i`π starting from C−y , whose cardinality is∏r
j=1 qij if i`π = (i1, . . . , ir ).

3.6. The formula. Let us fix two local chambers Cx and Cy in C+0 with x ≤ y
and dW(Cx ,Cy)= u ∈ W+. We consider w and v in W+. Then we know that the
number au

w,v of Cz ∈ C+0 with x ≤ z ≤ y, dW(Cx ,Cz)= w, and dW(Cz,Cy)= v is
finite; see Proposition 2.3. In order to obtain a formula for that number, we first
use equivalent conditions on the W-distance between the chambers.

Lemma. (1) Assume λ is spherical. Let C−z = prz(Cx) and let w+λ be the longest
element such that w+λ .λ ∈ Cv

f . Then

dW(Cx ,Cz)= λ.w ⇐⇒

{
dW(Cx , z)= λ,
d∗W(C−z ,Cz)= w

+

λ w.

(2) Assume µ is regular. Let C+z = prz(Cy) and let wµ be the unique element such
that µ++ = wµ .µ ∈ Cv

f . Then

dW(Cz,Cy)= µ.v ⇐⇒

{
dW(Cz,C+z )= w−1

µ ,

dW(C+z ,Cy)= µ
++wµv.
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As we assume µ regular, C ′y = pry(Cz) is the unique local chamber in y
containing [y, z), and C+z =prz(Cy) is the unique local chamber in z containing
[z, y). Also,

dW(C+z ,Cy)= µ
++wµv ⇐⇒ dv(z, y)= µ++ and d∗W(C ′y,Cy)= wµv.

Proof. (1) By convexity, C−z is in any apartment containing Cx and Cz . Let us
fix such an apartment A and identify (A,Cx) with (A, germ0(C

v
f )). By definition,

we have dW(Cx , z) = dW(Cx , z + Cx). Then, of course, dW(Cx , z) = λ. Next
as λ is supposed spherical, the stabilizer (W v)λ is finite, so w+λ is well defined
and x o

< z, so C−z is well defined. Moreover, dW(opA C−z , z + Cx) = w
+

λ and
dW(z+Cx ,Cz)= w. Therefore, by Chasles, we get dW(opA C−z ,Cz)= w

+

λ w, but,
by definition, d∗W (C−z ,Cz)= dW(opA C−z , z+Cz).

(2) The first assertion is the Chasles’ relation, as Cz,Cy,C+z , (and C ′y) are in a
same apartment A′. The second comes from the fact that, if µ is regular, then
dW(C+z ,C+zy) = dv(z, y) ∈ Y++, where C+zy is opposite C ′y at y in A′. Moreover,
d∗W(C ′y,Cy)= dW(C+zy,Cy) ∈W v by definition, so we conclude by Chasles. �

Theorem 3.7. Assume µ is regular and λ is spherical. We choose the standard
apartment A containing Cx and Cy . Then

au
w,v =

∑
π,t`π=1

(
`π−1∏
k=1

∑
c∈0+Qk

(ik ,−ηk)

]Cm
Qk
(c)

)( ∑
d∈0+Cy(i`,C̃y)

]Cm
Cy
(d)

)( ∑
e∈0+C−z0

(i,C ′z0
)

]Cm
C−z0
(e)

)

+

∑
π,t`π<1

(
`π∏

k=1

∑
c∈0+Qk

(ik ,−ηk)

]Cm
Qk
(c)

)( ∑
e∈0+C−z0

(i,C ′z0
)

]Cm
C−z0
(e)

)
,

where the π in the first sum runs over the set of all Hecke paths in A with respect
to Cx of shape µ++ from x + λ = z0 to x + ν = y such that t`π = 1; whereas, in
the second sum, the paths have to satisfy t`π < 1 and d∗W(C−y ,Cy)= wµv, where
C−y = pry(Cx) is the local chamber in y containing [y, x) and [y, x ′) for x ′ in a
sufficiently small element of the filter Cx .

Moreover, i is a reduced decomposition ofwµ, C ′z0 is the local chamber at z0 in A

defined by d∗W(C−z0
,C ′z0

)=w+λ w, i` is the type of a minimal gallery from C−y to the
local chamber C∗y at y in A containing the segment-germ π−(y)= y−π ′

−
(1).[0, 1),

and C̃y is the unique local chamber at y in A such that d∗W(C̃y,Cy) = wµv. The
rest of the notation is as defined above.

Proof. Recall that in order to compute the structure constants, we use the retraction
ρ = ρA,Cx

:I→A, where Cx and Cy are fixed and in A. We have y= ρ(y)= x+ν,
and the condition dW(Cx , z) = λ is equivalent to ρ(z) = x + λ = z0. We want to
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prove a formula of the form

au
w,v =

∑
π

(
number of liftings of π

)
×
(
number of Cz

)
,

where π runs over some set of Hecke paths with respect to Cx of shape µ++ from
x + λ to x + ν. It is possible to calculate like that for, in the case of a regular µ++,
ρ(C+z ) is well determined by π . Hence, the number of Cz only depends on π and
not on the lifting of π .

The local chambers Cz satisfying d∗W(C−z ,Cz)= w
+

λ w and dW(Cz,C+z )= w−1
µ

are at the end of a minimal gallery starting at C+z of type i and retracting by
ρA′,C−z

onto the local chamber C ′z at z defined by d∗W (C−z ,C ′z) = w
+

λ w in a fixed
apartment A′ containing Cx and C+z . So their number is given by the number of
minimal galleries starting at C+z of type i and retracting on a centrifugally folded
gallery e of type i ending in C ′z . In other words, their number is given by the
cardinality of the set Cm

C−z
(e), for each e ∈ 0+C−z (i,C ′z). Using an isomorphism fixing

Cx and sending A′ to A, we may replace in this formula z,C−z ,C ′z , and C+z by
z0,C−z0 ,C ′z0 , and the unique local chamber C+z0

in A containing the segment-germ
π+(0)= z0+π

′
+
(0).[0, 1). Hence,

number of Cz =
∑

e∈0+C−z0
(i,C ′z0

)

]Cm
C−z0
(e).

Now, we compute the number of liftings of a Hecke path π starting from the
formula in Theorem 3.5 and according to the two conditions dW(Cx , z) = λ and
dW(C+z ,Cy) = µ

++wµv. The first one fixes one element in the set W v/(W v)λ,
namely the coset of w+λ , i.e., π(0)= x+λ. The second one is equivalent to the fact
that the segment [z, y] is of type µ++ and d∗W(C ′y,Cy)=wµv, as we have seen in
the lemma above.

Further, we have that t`π < 1 if and only if π−(y) ∈ C−y . If π−(y) ∈ C−y then
ρ(C ′y)=C ′y =C−y , whence, d∗W(C−y ,Cy)=wµv. Since we lift the Hecke path into
a segment backwards starting with its behavior at y = π(1), there is nothing more
to count.

If t`π = 1, then π−(y) ∈C∗y = ρ(C
′
y) 6=C−y . We want to lift the path but with the

condition that d∗W(C ′y,Cy) = wµv, which may be translated in ρ ′(C ′y) = C̃y , for
ρ ′ = ρA,Cy

. Since µ++ is regular, to find [y, z) it is enough to find C ′y , i.e., to lift
C̃y with respect to ρ ′. The liftings of C̃y are then given by the liftings of all the
centrifugally folded galleries in A with respect to Cy of type i` from C−y to C̃y to
minimal galleries. Therefore, their number is given by the cardinality of the set
Cm

Cy
(d), for each d ∈ 0+Cy

(i`, C̃y). The rest of the lifting procedure is the same as in
the proof of Theorem 4.12 in [Gaussent and Rousseau 2014]. �
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3.8. Consequence. The above explicit formula, together with the formula for
]Cm

Q(c) in Section 3.2, tell us that the structure constant au
w,v is a polynomial in the

parameters qi , q ′i ∈Q with coefficients in Z and that this polynomial depends only
on A, W, w, v, and u. So we have proved the conjecture following Definition 2.5
in this generic case: when λ is spherical and µ regular.

4. Relations

Here we study the Iwahori–Hecke algebra IHI
R as a module over HR(W v) and

we prove the first instance of the Bernstein–Lusztig relation. For short, we write
IHR =

IHI
R and Ti = Tri (when i ∈ I ).

Proposition 4.1. Let λ ∈ Y+, w ∈W v, and i ∈ I . Then:

(1) Tλ.w ∗ Ti = Tλ.wri if and only if either (w(αi ))(λ) < 0 or (w(αi ))(λ) = 0 and
`(wri ) > `(w). Otherwise Tλ.w ∗ Ti = (qi − 1)Tλ.w+ qi Tλ.wri.

(2) Ti∗Tλ.w=Tri(λ).riw if and only if either αi(λ)>0 or αi(λ)=0 and `(riw)>`(w).
Otherwise Ti ∗ Tλ.w = (qi − 1)Tλ.w+ qi Tri (λ).riw.

Proof. We consider local chambers Cx , Cz , Cy with x≤ z≤ y and dW(Cx ,Cz)=λ.w,
dW(Cz,Cy) = ri . So there is an apartment A containing Cx , Cz (but perhaps not
Cy) and, if we identify (A,Cx) to (A,C+0 ), we have Cz = (λ.w)(Cx)=w(Cx)+λ.

Moreover, y = z, Cz 6= Cy , and Cz , Cy share a panel Fi of type i . We write D
for the half-apartment of A containing Cx and with wall ∂D containing Fi .

Actually the equation of ∂D in A is (w(αi ))(x ′) = (w(αi ))(z). As αi > 0 on
Cx , we have (w(αi ))(Cz) > (w(αi ))(z). And so (w(αi ))(z) = (w(αi ))(λ) < 0 =
(w(αi ))(x) (resp., > 0= (w(αi ))(x)) if and only if Cz is strictly on the same side
(resp., the opposite side) of ∂D as x , hence as Cx ; i.e., Cz ⊂ D (resp., Cz 6⊂ D). If
now (w(αi ))(λ) = 0, we may argue as if λ = 0, i.e., Cz = w(Cx), then it is well
known that Cz ⊂ D if and only if `(wri ) > `(w). So,

Cz ⊂ D ⇐⇒
(
(w(αi ))(λ) < 0

)
or
(
(w(αi ))(λ)= 0 and `(wri ) > `(w)

)
.

Then, by Section 1.4.2, there exists an apartment A′ containing Cy and D, hence
also Cx , Cz , Cy . So dW(Cx ,Cy) = λ.wri . The panel Fi = F`(z, Fvi ) ⊂ A is a
spherical local face, so, for any p ∈ z+ Fvi ⊂ A, we have z o

< p, hence x o
< p. By

Proposition 1.10(a), any apartment A′′ containing Cx and Fi contains Cz; moreover
Cz is well determined by Fi and Cx . The number aλ.wri

λ.w,ri
of Proposition 2.3 is equal

to 1 and we have proved that Tλ.w ∗ Ti = Tλ.wri .
If Cz is not in D, we denote by C ′z the local chamber in D with panel Fi . By the

above argument, C ′z is well determined by Fi and Cx ; moreover dW(Cx ,C ′z)=λ.wri .
There are two cases: either Cy=C ′z or not. If Cy=C ′z , then dW(Cx ,Cy)=λ.wri , and
if Cx ,Cy are given, there are qi possibilities for Cz (all local chambers covering Fi
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and different from C ′z): aλ.wri
λ.w,ri

= qi . If Cy 6= C ′z , then dW(Cx ,Cy) = λ.w and, if
Cx ,Cy are given, there are qi−1 possibilities for Cz (all local chambers covering Fi

and different from C ′z,Cy): aλ.wλ.w,ri
= qi − 1.

We have proved (1) and we leave to the reader the similar proof of (2). �

4.2. The subalgebra HR(Wv). We consider the R-submodule HR(W v) of IHR

with basis (Tw)w∈W v . As dW(Cx ,Cy) ∈ W v if and only if x = y, it is clearly a
subalgebra of IHR . Actually HR(W v) is the Iwahori–Hecke algebra of the tangent
building T +x I for any x ∈ I.

By Proposition 4.1,{
Tw ∗ Ti = Twri if `(wri ) > `(w),

Tw ∗ Ti = (qi − 1)Tw + qi Twri otherwise,
and {

Ti ∗ Tw = Triw if `(riw) > `(w),

Ti ∗ Tw = (qi − 1)Tw + qi Triw otherwise.

In particular, T 2
i = (qi − 1)Ti + qi Id, and Tw = Ti1 · · · Tin for any reduced

decomposition w = ri1 · · · rin .
Therefore, the algebra HR(W v) is the well known Hecke algebra associated to

the Coxeter system (W v, {ri | i ∈ I }) with (in general unequal) parameters (qi )i∈I

and coefficients in the ring R. It is generated, as an R-algebra, by the Ti , for i ∈ I.
Suppose each qi is invertible in R. Then, as is well known,

T−1
i = q−1

i

(
Ti − (qi − 1) Id

)
∈HR(W v)

is the inverse of Ti . In particular any Tw is invertible: T−1
w = T−1

in
· · · T−1

i1
for any

reduced decomposition w = ri1 · · · rin.

Remark. Assuming that qi is invertible, it is easy to see from Proposition 4.1 that
either Tλ.wri = Tλ.w ∗ Ti or Tλ.wri = Tλ.w ∗ T−1

i , and either Tri (λ).riw = Ti ∗ Tλ.w or
Tri (λ).riw = T−1

i ∗ Tλ.w.

Corollary 4.3. Suppose each qi invertible in R and consider λ ∈ Y+. We may write
λ= w.λ++, with w ∈W v. Then Tλ = Tw ∗ T

λ++
∗ T−1

w .

Proof. Consider a reduced decomposition w = rin · · · ri1 and argue by induction
on n. So, for w′ = rin−1 · · · ri1 and λ′ = w′ .λ++, we have Tλ′ = Tw′ ∗ T

λ++
∗ T−1

w′ .
Now consider

Tw ∗ Tλ++ ∗ T−1
w = Tin

∗ Tλ′ ∗ T−1
in
.

But `(rinw
′)>`(w′) and λ++∈Y++⊂Cv

f , so αin (w
′.λ++)≥0, i.e., αin (λ

′)≥0. We
get Tin ∗Tλ′ = Trin(λ

′).rin
by Proposition 4.1(2), and then Tin

∗Tλ′ ∗T−1
in
= Trin(λ

′)= Tλ
by Proposition 4.1(1) (and the above remark). �
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Corollary 4.4. Let λ ∈ Y+ and w,w′ ∈W v. Then we may write

Tλ.w′ ∗ Tw =
∑
w′′≤w

aλ.w
′w′′

λ.w′,w Tλ.w′w′′,

where each aλ.w
′w′′

λ.w′,w is a polynomial in the qi with coefficients in Z, and, when
w′ = 1, aλ.wλ,w > 0 is a primitive monomial. This polynomial aλ.w

′w′′

λ.w′,w depends only
on A and on W.

Proof. Write w = ri1 · · · rin and argue by induction on n. The result is then clear
from Proposition 4.1(1). Actually, aλ.wλ,w is the product of certain qij , 1≤ j ≤ n. �

4.5. The Iwahori–Hecke algebra as a right HR(Wv)-module. We assume here
that each qi is invertible in R.

Given λ ∈ Y+, we can conclude from Corollary 4.4 that {Tλ ∗ Tw | w ∈W v
} and

{Tλ.w | w ∈W v
} are two bases of the same R-module. The base-change matrix is

triangular with respect to the Bruhat order on W v and the coefficients are Laurent
polynomials in the qi , with coefficients in Z (primitive Laurent monomials on the
diagonal). These polynomials depend only on A and W.

As {Tλ.w | λ ∈ Y+, w ∈ W v
} is an R-basis of IHR and {Tw | w ∈ W v

} is an
R-basis of HR(W v), in particular, IHR is a free right HR(W v)-module with basis
{Tλ | λ ∈ Y+}.

The R-algebra IHR is generated by the Ti (for i ∈ I ) and the Tλ (for λ ∈ Y+) and
even by the Ti (for i ∈ I ) and the Tλ (for λ ∈ Y++), as we see from Corollary 4.3.

Lemma 4.6. Let C1,C2∈C+0 with vertices x1, x2 be such that dW(C1,C2)=λ∈Y++.
We consider i ∈ I , F i

1 (resp., F i
2) the panel of type i of C1 (resp., C2). In an apartment

A1 (resp., A2) containing C1 (resp., C2), we consider the sector panel f−1 (resp., f+2 )
with base point x1 (resp., x2) and direction opposite the direction of F i

1 (resp., equal
to the direction of F i

2).
Then there is an apartment A containing f−1 , f+2 , C1,C2 and, in this apartment A,

the directions of f−1 and f+2 , F i
2 and f−1 (resp., F i

1 and f+2 ) are opposite (resp., equal).

Proof. Choose λi ∈ Fv({i}) ∩ Y ⊂ Y++, and write F±j for the germ of f±j and
F±vj for its direction in Aj . In A1 (resp., A2) we consider the splayed chimney
r−1 = r(C1, F−v1 ) (resp., r+2 = r(C2, F+v2 )) containing f−1 (resp., f+2 ) and, for n ∈ N,
the chamber of type 0: C1(−n)=C1−nλi ⊂ r−1 (resp., C2(+n)=C2+nλi ⊂ r+2 );
actually we identify (A,C+0 ) with (A1,C1) (resp., (A2,C2)) to consider λi in

−→

A1

(resp.,
−→

A2).
Then dW(C1(−n),C1) = dW(C2,C2(+n)) = nλi and dW(C1,C2) = λ, both

in Y++. By (MA3) there is an apartment A containing the germs R−1 of r−1 and
R+2 of r+2 ; hence, C1(−n) and C2(+n) for n great. By Proposition 2.2 and the last
paragraph of the proof of Proposition 2.3, dW(C1(−n),C2(+n))= λ+2nλi ∈ Y++
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and A contains C1,C2. By (MA4) A contains also f−1 ⊂ r−1 ⊂ clA1(C1,R
−

1 ) and
f+2 ⊂ r+2 ⊂ clA2(C2,R

+

2 ). So all assertions of the lemma are satisfied. �

Proposition 4.7. Let C1,C2,C3,C4 ∈ C+0 be such that dW(C1,C2) = λ ∈ Y++,
dW(C2,C3)= ri , and dW(C3,C4)=µ∈ Y++. Then there is a direction of wall (i.e.,
a parallel class of walls) M∞i (see [Rousseau 2011, §4] or [Gaussent and Rousseau
2014, 5.5]), chosen according to C1,C2 (but independently from C3,C4), such that
C1,C2,C3,C4 are in the extended tree I(M∞i ).

Proof. We denote by x1, x2 = x3, x4 the three vertices of C1,C2,C3,C4 and by
F i

1, F i
2 = F i

3, F i
4 their panels of type i . We choose f−1 associated to C1 and F i

1
in an apartment A1 (resp., f+4 associated to C4 and F i

4 in an apartment A4), as in
Lemma 4.6. By this lemma, using C1 and C2, the direction of f−1 opposites that of
F i

2 = F i
3 in some apartment A2 and, using C3 and C4, the direction of f+4 is the same

as that of F i
2 = F i

3 in some apartment A3. In A3 (resp., A2) we consider the sector
face f+3 (resp., f−2 ) with base point x2 = x3 and same direction as f+4 or F i

2 = F i
3

(resp., same direction as f−1 and opposite F i
2 = F i

3).
We may use the lemma for C1,C2, f

−

1 , f
+

3 ; so the directions of f−1 (or f−2 ) and
f+3 (or f+4 ) are opposite and C1,C2 are in a same apartment A5 of I(M∞i ), if we
consider the direction of wall M∞i associated to the directions of f−1 and f+4 . Using
now the lemma for C3,C4, f

−

2 , f
+

4 , we see that these filters are in a same apartment
A6 of I(M∞i ). �

Theorem 4.8. Let λ,µ ∈ Y++ and i ∈ I , write N = inf(αi (λ), αi (µ)) ∈N, and, for
n ∈ N, q∗ni = qi q

′

i qi q
′

i · · · , with n terms in this product.

(a) If N = αi (µ)≤ αi (λ), then Tλ ∗ Ti ∗ Tµ = Tλ+µ ∗ Ti for N = 0 and, for N > 0,

Tλ ∗ Ti ∗ Tµ = q∗N
i Tλ+µ−Nα∨i ∗ Ti + (q∗N

i − q∗N−1
i )Tλ+µ−(N−1)α∨i

+ · · ·+ (q∗2i − qi )Tλ+µ−α∨i + (qi − 1)Tλ+µ.

(b) If N = αi (λ)≤ αi (µ), then Tλ ∗ Ti ∗ Tµ = Ti ∗ Tλ+µ for N = 0 and, for N > 0,

Tλ ∗ Ti ∗ Tµ = q∗N
i Ti ∗ Tλ+µ−Nα∨i + (q

∗N
i − q∗N−1

i )Tλ+µ−(N−1)α∨i

+ · · ·+ (q∗2i − qi )Tλ+µ−α∨i + (qi − 1)Tλ+µ.

Remarks. (1) The case (b) is less interesting for us, as we try to express any
element in the basis of Section 4.5 for IHR considered as a right HR(W v)-module.

(2) In the case (a) we have µ − Nα∨i = ri (µ) and λ + µ − Nα∨i ∈ Y++, as
αi (λ+µ−Nα∨i )= αi (λ)−N and αj (λ+µ−Nα∨i )≥ αj (λ)+αj (µ) for j 6= i . So
all ν such that Tν appears on the right of the formula are in the α∨i -chain between
λ+µ and λ+ ri (µ); in particular they are all in Y++.

(3) We call relation (a) or relation (b) the Bernstein–Lusztig relation for the Tλ,
(BLT) for short. We shall use it essentially when λ= µ.
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(4) When αi (λ) or αi (µ) is odd, we know that q ′i = qi ; see Section 1.4.5.

Proof. We consider C1, C2, C3, C4, and M∞i as in Proposition 4.7. When N = 0
the results come from Proposition 4.1. We concentrate on the case 0 < N =
αi (µ)≤ αi (λ); the other case is left to the reader. We have to evaluate dW(C1,C4)

and, given C1,C4 satisfying dW(C1,C4) = u, to count the number of possible
C2,C3. By Proposition 4.7 everything is in the extended tree I(M∞i ), which is
semihomogeneous with thicknesses 1+ qi , 1+ q ′i. By Proposition 4.1(2), C3 is
well determined by C2,C4 and lies in any apartment containing C2,C4; more-
over dW(C2,C4)= ri (µ).ri .

We consider an apartment A1 (resp., A2) of I(M∞i ) containing C1 and C2 (resp.,
C2 and C4, hence also C3), as illustrated in the figure:

0 C1

C3 ⊂ S−1
2

C2 ⊂ S0
2

A1

A2

C4rr

r r r r r r r

r r r
@

@
@

@
@

@
@

@

- @
@I

@
@I

-

We identify (A1,C1) and (A2,C2) with (A,C+0 ); we consider the retraction ρ1

(resp., ρ2) of I(M∞i ) onto A1 (resp., A2) with center C1 (resp., C2). The closed
chambers in an apartment of I(M∞i ) are stripes limited by walls of direction
M∞i . In A1 = A, these walls are M(αi , n), n ∈ Z and we write Sk

1 the stripe
Sk

1 = {x | k ≤ αi (x)≤ k+1}, in particular C1 ⊂ S0
1 and C2 ⊂ Sαi (λ)

1 . In A2 = A, we
get also stripes Sk

2 = {x | k ≤ αi (x)≤ k+ 1} such that C2 ⊂ S0
2 = Sαi (λ)

1 , C3 ⊂ S−1
2

and C4 ⊂ S−N−1
2 .

We have C2 =C1+λ in A1 and ρ2(C4)=C3+ri (µ) in A2. To find dW(C1,C4)

we have to determine the image of C4 under ρ1. It depends actually on the high-
est number j such that S− j

2 (hence also S0
2 , . . . , S− j+1

2 ) is in A1. A classical
result for affine buildings (clear for extended trees and generalized to hovels in
[Rousseau 2011, 2.9.2]) tells, then, that there is an apartment containing the stripes
S− j−1

2 , . . . , S−N−1
2 and the half-apartment

⋃
k≤αi (λ)− j−1 Sk

1 .
If j = 0, then S−1

2 or C3 is not in A1, so ρ1(C3) = C2 and, more generally,
ρ1(S−k

2 )= Sαi (λ)+k−1
1 , for k ≥ 1. This is the case illustrated in the figure above. We

get ρ1(C4)=C2+µ and dW(C1,C4)= λ+µ. When C1 and C4 are fixed with this
W-distance, we have to count the number of possible C2. But C3 ⊂ S−1

2 is in the
enclosure of C1 ⊂ S0

1 and C4 ⊂ S−N−1
2 : it is well determined by C1 and C4. Now
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C2 has to share its panel of type i with C3 and to be neither in S−1
2 nor in Sαi (λ)−1

1 ;
so there are qi − 1 possibilities.

If 1≤ j≤N−1, then A1 contains S0
2= Sαi (λ)

1 , S−1
2 = Sαi (λ)−1

1 , . . . , S− j
2 = Sαi (λ)− j

1 ,
but not S− j−1

2 , . . . , S−N−1
2 ; this is the case illustrated below:

0 C1 C3 ⊂ S−1
2 C2 ⊂ S0

2 = Sαi (λ)
1

A1

A2
C4

S− j−1
2r r r r r r rrr

@
@

@
@

- �

@
@I

-

So ρ1(S−k
2 )= Sαi (λ)−2 j+k

1 , for k ≥ j . As in the proof of Proposition 4.7, we write
x1, x2 = x3, x4 for the vertices of the local chambers C1,C2,C3,C4. The image of
the line segment [x2, x4] = [x2, x2+µ] under ρ1 is

ρ1([x2, x4])=

[
x2, x2+

j
N

ri (µ)

]
∪

[
x2+

j
N

ri (µ), x2+
j

N
ri (µ)+

N − j
N

µ

]
.

As N =αi (µ) and ri (µ)=µ−Nα∨i , this means that ρ1(C4)=C2+µ− jα∨i . When
C1 and C4 are fixed with this W-distance, we have to count the number of possible
C2. As S0

1 , . . . , Sαi (λ)− j−1
1 , S− j−1

2 , . . . , S−N−1
2 are well determined by C1,C4, we

have to count the possibilities for (Sαi (λ)− j
1 , . . . , Sαi (λ)

1 ). As above, there are qi − 1
possibilities for Sαi (λ)− j

1 (or q ′i − 1 if j is odd) and then q ′i (or qi ) possibilities
for Sαi (λ)− j+1

1 , etc. Finally the total number of possibilities is (qi − 1)q ′i qi q
′

i · · ·

or (q ′i − 1)qi q
′

i qi · · · (according to j being even or odd) with j + 1 terms in the
product. The last factor is necessarily qi , so this total number is (q∗ j+1

i − q∗ j
i ).

It is convenient to look at the cases j = N or j = N + 1 simultaneously. This
means that S−N

2 = Sαi (λ)−N
1 is in A1; in particular the panel F i

4 of type i of C4 is in
A1, in the wall {x | αi (x)= αi (λ)− N }. More precisely F i

4 is the panel of type i of
C ′4 = C1+ λ+ ri (µ)⊂ A1. This means that (Tλ+ri (µ) ∗ Ti )(C1,C4)≥ 1.

Conversely if C1,C4 are fixed satisfying this condition, we can find C2,C3

with the required W-distances. We have now to count the number of possibilities
for C2,C3, i.e., for C2 or for (Sαi (λ)−N

1 , . . . , Sαi (λ)
1 ). The number of possibilities

for Sαi (λ)−N
1 is exactly (Tλ+ri (µ) ∗ Ti )(C1,C4). Then the number of possibilities

for Sαi (λ)−N+1
1 , . . . , Sαi (λ)

1 is alternatively qi or q ′i . Finally the total number of
possibilities for C2 is q∗N

i (Tλ+ri (µ) ∗ Ti )(C1,C4) (as, when N is odd, qi = q ′i ). �

5. New basis

In this section, we prove that left multiplication by Tµ, for µ ∈ Y++, is injective.
That allows us to introduce a new basis of the Iwahori–Hecke algebra IHR in terms
of (Tw)w∈W v and (Xλ)λ∈Y+ . From now on the main arguments are algebraic.
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We suppose Z⊂ R and each qi , q ′i in R×, the set of invertible elements in R. As
we saw in Section 4.5, IHR is a free right HR(W v)-module with basis {Tλ | λ ∈ Y+}.

For λ ∈ Y++ and H ∈HR(W v), we say that Tλ ∗ H is of degree λ.
For i ∈ I and � a subset of the model apartment A, we write c(i)(�) the convex

hull of �∪ ri (�). For (i1, i2, . . . , ih) ∈ I h and (λ0, λ1, . . . , λh) ∈ (Y++)h+1, we
define: D(ih)(λh−1, λh)= λh−1+c(ih)(λh) and, by induction for k from h−1 to 1,
D(ik, . . . , ih)(λk−1, λk, . . . , λh)=λk−1+c(ik)(D(ik+1, . . . , ih)(λk, λk+1, . . . , λh)),
and of course, c(ih)(λh)= c(ih)({λh}).

Lemma 5.1. With notation as above:

(a) If λ′h−1 ∈ D(ih)(λh−1, λh), then

D(ik, . . . , ih−2, ih−1)(λk−1, λk, . . . , λh−2, λ
′

h−1)

⊂ D(ik, . . . , ih−1, ih)(λk−1, λk, . . . , λh−1, λh).

(b) If ri1ri2 · · · rih is a reduced word in W v and λ ∈ D(i1, . . . , ih)(λ0, λ1, . . . , λh),
then λ0+ ri1(λ1)+ ri1ri2(λ2)+ · · ·+ ri1ri2 · · · rih (λh)≤Q∨R λ.

Remark. If the expression ri1ri2 · · · rih is reduced, we get

D(i1, . . . , ih)(0, 0, . . . , 0, λh)= conv({w(λh) | w ≤B ri1ri2 · · · rih })

where ≤B denotes the Bruhat order.

Proof. The proof of (a) is easy.

(b) We have

D(i1, . . . , ih)(λ0, λ1, . . . , λh)

⊂ λ0+ c(i1)(λ1)+ c(i1, i2)(λ2)+ · · ·+ c(i1, i2, . . . , ih)(λh),

with
c(i1, i2, . . . , ik)(λk)= c(i1)

(
c(i2)

(
· · ·
(
c(ik)(λk)

)
· · ·
))

= conv({w(λk) | w ≤B ri1ri2 · · · rik }),

where 0 ≤ k ≤ h and ≤B denotes the Bruhat order. For w ≤B ri1ri2 · · · rik, there
is a sequence w = w0, w1, . . . , wr = ri1ri2 · · · rik such that, for each 1 ≤ i < r ,
there is a reduced decomposition wi+1 = rj1rj2 · · · rjp−1rjprjp+1 · · · rjq with wi =

rj1rj2 · · · rjp−1rjp+1 · · · rjq. Then

wi (λk)= wi+1(λk)+αjp

(
rjp+1 · · · rjq (λk)

)
rj1rj2 · · · rjp−1(α

∨

jp
)

and Q∨
+

contains the term
(
rjq · · · rjp+1(αjp)

)
(λk)rj1rj2 · · · rjp−1(α

∨

jp
) by minimality of

the expressions rj1rj2 · · · rjp−1rjp and rjq · · · rjp+1rjp . So by induction,

w(λk)≥Q∨ ri1ri2 · · · rik (λk) and w(µ)≥Q∨R
ri1ri2 · · · rik (λk)

for any µ ∈ c(i1, . . . , ik)(λk). The expected result is now clear. �
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Proposition 5.2. For any expression Hk=Tλ0∗Ti1∗Tλ1∗Ti2∗· · ·∗Tλk−1∗Tik∗Tλk∗H
with λi ∈ Y++, H ∈ HZ(W v), and any µ ∈ Y++ sufficiently great, the product
Tµ ∗ Hk may be written as an R-linear combination of elements Tν ∗ Hν with
ν ∈ µ+ D(i1, . . . , ik)(λ0, λ1, . . . , λk) and Hν ∈HR(W v).

Moreover, if ri1ri2 · · · rik is a reduced word and

ν0 = µ+ λ0+ ri1(λ1)+ ri1ri2(λ2)+ · · ·+ ri1ri2 · · · rik (λk),

then Hν0 ∈ R×Ti1 ∗ Ti2 ∗ · · · ∗ Tik ∗ H and, more precisely, the constant in R× is a
primitive monomial in the qi , q ′i . Further, Hν0 is the only Hν in

(R \ {0}).Ti1 ∗ Ti2 ∗ · · · ∗ Tik ∗ H.

N.B. So one may write Tµ ∗ Hk =
∑

ν,w aν,w Tν ∗ Tw, with aν,w ∈ R, ν running
in µ + D(i1, . . . , ik)(λ0, λ1, . . . , λk), and w in W v. Moreover we get from the
following proof, that each aν,w is a Laurent polynomial in the parameters qi , q ′i ,
with coefficients in Z; these polynomials depend only on the expression Hk , on A,
and on W.

Proof. The proof is easy in the following special case (I).

(I) We say that the expression of Hk is normalizable of length k when it satisfies
the following properties:

(i) λk−1− λk ∈ Y++,

(ii) For all h from k to 2, λh−2− D(ih, . . . , ik)(λh−1, λh, . . . , λk)⊂ Cv
f .

For such an expression, we write D(Hk)= D(i1, . . . , ik)(λ0, λ1, . . . , λk).
We will then prove that Tλ0 ∗ Ti1 ∗ Tλ1 ∗ Ti2 ∗ · · · ∗ Tλk−1 ∗ Tik ∗ Tλk ∗ H is a

Z[qi , q ′i ]-linear combination of normalizable elements H ′k−1 of length k− 1 such
that D(H ′k−1)⊂ D(Hk).

Using the fact λk−1−λk ∈ Y++ and Theorem 4.8, or (BLT), for Tλk−1 ∗ Tik ∗ Tλk,

(E) Hk = q∗(αik(λk))

ik
Tλ0 ∗ Ti1 ∗ Tλ1 ∗ · · · ∗ Tik−1 ∗ T

λ
(αik (λk ))
k−1

∗ (Tik ∗ H)

+

αik(λk)−1∑
h=0

(q∗(h+1)
i − q∗(h)i )Tλ0 ∗ Ti1 ∗ Tλ1 ∗ · · · ∗ Tik−1 ∗ Tλ(h)k−1

∗ H,

with λ(h)k−1 = λk−1 + λk − hα∨ik
, and in particular, λ(αik(λk))

k−1 = λk−1 + rik (λk). Let
us consider λ′i = λi for i ≤ k − 2 and λ′k−1 = λ

(h)
k−1 for each 0 ≤ h ≤ αik (λk).

Then (λ′0, . . . , λ
′

k−1) satisfies λ′k−2 − λ
′

k−1 ∈ Y++, by (ii) above for h = k and
λ′k−1 ∈ D(ik)(λk−1, λk), and, for all h from k− 1 to 2,

λ′h−2− D(ih, . . . , ik−1)(λ
′

h−1, . . . , λ
′

k−1)⊂ Cv
f .
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This last result comes from (ii) λ′h−2−D(ih, . . . , ik)(λh−1, λh, . . . , λk)⊂Cv
f and the

inclusion D(ih, . . . , ik−1)(λ
′

h−1, λ
′

h, . . . , λ
′

k−1)⊂ D(ih, . . . , ik)(λh−1, λh, . . . , λk),
coming from Lemma 5.1(a). Since Tik ∗ H ∈HR(W v), every term of the right hand
side of (E) is a normalizable element H ′k−1 of length k−1 with D(H ′k−1)⊂ D(Hk).

By induction on each term, after k steps, we obtain Hk as a Z[qi , q ′i ]-linear
combination of Tν ∗ Hν , with ν ∈ D(Hk) and Hν ∈HR(W v).

Moreover, if the decomposition ri1ri2 · · · rik is reduced, we take

ν0 = λ0+ ri1(λ1)+ ri1ri2(λ2)+ · · ·+ ri1ri2 · · · rik (λk)

and look more carefully at the decomposition (E). For 0 ≤ h < αik (λk), we have
ν0 /∈ D(Tλ0 ∗ Ti1 ∗ Tλ1 ∗ · · · ∗ T

λ
(h)
k−1
∗ H)⊂ D(Hk) by Lemma 5.1(b). Indeed, if

λ ∈ D(Tλ0 ∗ Ti1 ∗ Tλ1 ∗ · · · ∗ T
λ
(h)
k−1
∗ H),

then, by minimality of ri1ri2 · · · rik, we have ν0 ≤Q∨ ν
(h)
0 ≤Q∨ λ with

ν
(h)
0 = λ0+ ri1(λ1)+ ri1ri2(λ2)+ · · ·+ ri1ri2 · · · rik−1(λ

(h)
ik−1
) 6= ν0.

So the unique term of degree ν0 of the final decomposition comes from the term of
first kind (i.e., obtained like the first term of the right hand side of (E)) in every step
of the reduction and is also the only term containing all the Tij . And so, we prove
that, in front of the term Tν0 ∗ Ti1 ∗ Ti2 ∗ · · · ∗ Tik ∗ H obtained for ν0, the constant is
equal to the primitive monomial

C = q∗(αik(λk))
ik

q
∗(αik−1(λk−1+rik(λk)))

ik−1
· · · q∗(αi1(λ1+ri2(λ2)+···+ri2 ···rik(λk)))

i1
.

Let us consider now the general case but first prove the following result:

(II) If Hk = Tλ0 ∗ Ti1 ∗ Tλ1 ∗ Ti2 ∗ · · · ∗ Tλk−1 ∗ Tik ∗ Tλk ∗ H, with λi ∈ Y++ and
H ∈ HR(W v), we can choose µ0 ∈ Y++ such that Tµ0 ∗ Hk can be written as an
R-linear combination of normalizable expressions H ′k of length at most k and with
D(H ′k)⊂ µ0+ D(i1, . . . , ik)(λ0, λ1, . . . , λk).

We prove this result for Hk−h = Tλh ∗ Tih+1 ∗ Tλh+1 ∗ · · · ∗ Tλk−1 ∗ Tik ∗ Tλk ∗ H by
decreasing induction on 0≤h≤k−1. For h=k−1, we have H1=Tλk−1∗Tik∗Tλk∗H .
Choose µk−1 = λk ; then, Tµk−1 ∗ H1 is normalizable of length 1 and

D(Tµk−1 ∗ H1)⊂ µk−1+ D(ik)(λk−1, λk).

Let 0 ≤ h ≤ k − 2 and suppose that we can choose µh+1 ∈ Y++ such that
Tµh+1 ∗ Hk−(h+1) = Tµh+1 ∗ Tλh+1 ∗ Tih+2 ∗ · · · ∗ Tik ∗ Tλk ∗ H can be written as
an R-linear combination of normalizable expressions H ′k−(h+1) of length at most
k− (h+1) and with D(H ′k−(h+1))⊂µh+1+D(ih+2, . . . , ik)(λh+1, . . . , λk). Write
these normalizable expressions H ′k−(h+1) = Tλ′0 ∗Ti ′1 ∗Tλ′1 ∗Ti ′2 ∗ · · · ∗Ti ′k′ ∗Tλ′k′ ∗H ′,
where k ′ ≤ k− (h+1) and (λ′0, . . . , λ

′

k′) satisfies (i) and (ii). Consider µmin
h ∈ Y++
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such that µmin
h − D(i ′1, . . . , i ′k′)(λ

′

0, λ
′

1, . . . , λ
′

k′)⊂ Cv
f for all these expressions. We

take µh = µ
min
h + 2µh+1+ rih+1(µh+1). Then

Tµh ∗ Hk−h = Tµh ∗ Tλh ∗ Tih+1 ∗ Hk−(h+1)

= Tµmin
h +λh+µh+1

∗ Tµh+1+rih+1
(µh+1) ∗ Tih+1 ∗ Hk−(h+1).

By (BLT), we have:

(E′) q
∗(αih+1(µh+1))

ih+1
Tµh ∗ Hk−h

= Tµmin
h +λh+2µh+1

∗ Tih+1 ∗ Tµh+1 ∗ Hk−(h+1)

−

αih+1(µh+1)−1∑
j=0

(q∗( j+1)
ih+1

− q∗( j)
ih+1

)Tλh+µ
min
h +2µh+1− jα∨ih+1

∗ Tµh+1 ∗ Hk−(h+1).

The choice of µmin
h and the hypothesis on Tµh+1 ∗ Hk−(h+1) allow us to say that we

have written Tµh ∗ Hk−h as an R-linear combination of normalizable expressions
H ′k−h of length at most k− h with

D(H ′k−h)⊂ µ
min
h + 2µh+1+ D(ih+1, . . . , ik)(λh, λh+1+µh+1, . . . , λk)

for the first term and

D(H ′k−h)⊂ µ
min
h + 2µh+1− jα∨ih+1

+ D(ih+1, . . . , ik)(λh, λh+1+µh+1, . . . , λk)

for the others. We need to be more precise to prove

D(H ′k−h)⊂ µh + D(ih+1, . . . , ik)(λh, . . . , λk).

By part (I) of this proof and the hypothesis on Tµh+1 ∗ Hk−(h+1), we know
that this element can be written

∑
3 c3T3 ∗ H3 with 3 = µh+1 + 3

′, where
3′ ∈ D(ih+2, . . . , ik)(λh+1, . . . , λk)c3 ∈ R and H3

∈HR(W v). The first term of
the right hand side of (E′) becomes

Tµmin
h +λh+2µh+1

∗Tih+1
∗

(∑
3

c3T3∗H3

)
=Tλh+2µh+1

∗

(∑
3

c3Tµmin
h
∗Tih+1

∗T3∗H3

)
.

By the condition on µmin
h and (BLT), we write it

Tλh+2µh+1 ∗

(∑
3

c3

(
q
∗(αih+1(3))

ih+1
Tµmin

h +rih+1(3)
∗ Tih+1

∗ H3

))

+ Tλh+2µh+1
∗

(∑
3

c3

( αih+1(3)−1∑
j=0

(q∗( j+1)
ih+1

− q∗( j)
ih+1

)Tµmin
h +3− jα∨ih+1

∗ H3

))
.
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The first term of this sum will be∑
3

c3q
∗(αih+1 (3))

ih+1
Tλh+2µh+1+µ

min
h +rih+1(3)

∗ Tih+1 ∗ H3

and λh+2µh+1+µ
min
h +rih+1

(3)= λh+2µh+1+µ
min
h +rih+1

(µh+1)+rih+1
(3′)=

λh+µh+rih+1
(3′) is an element of λh+µh+rih+1(D(ih+2, . . . , ik)(λh+1, . . . , λk))

which is included, as expected, in µh + D(ih+1, ih+2, . . . , ik)(λh, λh+1, . . . , λk).
The second term is

∑
3

c3

( αih+1 (3)−1∑
j=0

(q∗( j+1)
ih+1

− q∗( j)
ih+1

)Tλh+2µh+1+µ
min
h +3− jα∨ih+1

∗ H3

)
.

And we see that in fact (E′) becomes (E′′):

(E′′) q
∗(αih+1(µh+1))

ih+1
Tµh ∗ Hk−h

=

∑
3

c3q
∗(αih+1(3))

ih+1
Tλh+µh+rih+1(3

′) ∗ Tih+1 ∗ H3

+

∑
3

c3

αih+1(3)−1∑
j=0

(q∗( j+1)
ih+1

− q∗( j)
ih+1

)Tλh+2µh+1+µ
min
h +3− jα∨ih+1

∗ H3

−

∑
3

c3

αih+1(µh+1)−1∑
j=0

(q∗( j+1)
ih+1

− q∗( j)
ih+1

)Tλh+µ
min
h +2µh+1− jα∨ih+1

∗ T3 ∗ H3

=

∑
3

c3q
∗(αih+1(3))

ih+1
Tλh+µh+rih+1(3

′) ∗ Tih+1 ∗ H3

+

∑
3

c3ε3
∑

j

(q∗( j+1)
ih+1

− q∗( j)
ih+1

)Tλh+2µh+1+µ
min
h +3− jα∨ih+1

∗ H3,

where αih+1(µh+1) ≤ j ≤ αih+1(3) − 1 and ε3 = +1 if αih+1(µh+1) ≤ αih+1(3)

(i.e., αih+1(3
′) ≥ 0), and where αih+1(3) ≤ j ≤ αih+1(µh+1) − 1 and ε3 = −1

if αih+1(µh+1) ≥ αih+1(3) (i.e., αih+1(3
′) ≤ 0). For these values of j , by using

3− jα∨ih+1
= rih+1

(µh+1)+ j ′α∨ih+1
+3′ with j ′ = αih+1(µh+1)− j, we have

λh + 2µh+1+µ
min
h +3− jα∨ih+1

= λh +µh + j ′α∨ih+1
+3′.

If αih+1(µh+1) ≤ αih+1(3), then αih+1(µh+1) − αih+1(3) + 1 ≤ j ′ ≤ 0; that is,
−αih+1(3

′) + 1 ≤ j ′ ≤ 0. On the other hand, if αih+1(µh+1) ≥ αih+1(3), then
αih+1(µh+1)−αih+1(3)≥ j ′≥ 1; that is−αih+1(3

′)≥ j ′≥ 1. In all cases, j ′α∨ih+1
+3′

is between 3′ and rih+1(3
′) and so, as expected,

λh + 2µh+1+µ
min
h +3− jα∨ih+1

∈ µh + D(ih+1, ih+2, . . . , ik)(λh, λh+1, . . . , λk).
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So we have proved that Tµ0 ∗ Hk can be written as an R-linear combination of
normalizable expressions H ′k of length at most k and with

D(H ′k)⊂ µ0+ D(i1, . . . , ik)(λ0, λ1, . . . , λk).

By (I) of the proof, we can write it as an R-linear combination of elements Tν ∗ Hν
with ν ∈ µ0+ D(i1, . . . , ik)(λ0, λ1, . . . , λk) and Hν ∈HR(W v).

As in (I), if the decomposition ri1ri2 · · · rik , moreover, is reduced, then only the
term ∑

3

c3q
∗(αih+1 (3))

ih+1
Tλh+2µh+1+µ

min
h +rih+1(3)

∗ Tih+1 ∗ H3

(which contains Tih+1) in (E′′) can give us a term of lowest degree

µh + λh + rih+1(λh+1)+ · · ·+ rih+1 · · · rik (λk).

More precisely, the term of lowest degree comes from the term with

30 = µh+1+ λh+1+ rih+2(λh+2)+ · · ·+ rih+2 · · · rik (λk)

for which we have αik+1(30) ≥ αik+1(µh+1). So, it’s easy to see by induction that
the coefficient of that term is a primitive monomial in the qi , q ′i . �

Corollary 5.3. (a) For λ ∈ Y+ and µ ∈ Y++ sufficiently great, we have Tµ ∗ Tλ =∑
λ≤Q∨ν≤Q∨λ

++ Tµ+ν ∗ H ν with H ν
∈HR(W v).

(b) More precisely, if H ν
6= 0 then µ + ν ∈ Y++ and ν is in the convex hull

conv(W v.λ++) of W v.λ++ or, better, in the convex hull conv(W v.λ++, ≥ λ)

of all w′.λ++ for w′ ≤B wλ, with wλ the smallest element of W v such that
λ= wλ .λ

++.

(c) For ν = λ, Hλ is a strictly positive integer aλ which may be written as a
primitive monomial in qi , q ′i , i ∈ I (depending only on A).

(d) In (a) above, we may write H ν
=
∑

w∈W v aν,wµ,λ Tw and, then each aν,wµ,λ is a
Laurent polynomial in the parameters qi , q ′i with coefficients in Z, depending
only on A and W.

Proof. Only the result (c) is new (see Propositions 2.2 and 2.3), and we already
saw that the constant term in Hλ is in Z>0. We have to prove that Hλ

∈HR(W v) is
actually a constant (for µ sufficiently great). Write λ=wλ(λ++) (with wλ minimal
in W v for this property), choose a minimal decomposition wλ = ri1ri2 · · · rik , by
Corollary 4.3 we have

Tλ = Ti1
∗ Ti2
∗ · · · ∗ Tik

∗ Tλ++ ∗ T−1
ik
∗ · · · ∗ T−1

i1
.

Then, by Proposition 5.2, for µ great, Tµ∗Tλ may be written as an R-linear combina-
tion of elements Tµ+ν∗(H

ν
1 ∗T−1

ik
∗· · ·∗T−1

i1
) with ν ∈ D(i1, . . . , ik)(0, . . . , 0, λ++)
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and H ν
1 ∈HR(W v) with term of lowest degree ν0 = λ. Moreover,

Hλ
= Hλ

1 ∗ T−1
ik
∗ · · · ∗ T−1

i1

is a primitive monomial in the qi , q ′i .
To prove (d), notice that T−1

ik
∗ · · · ∗ T−1

i1
may be written

∑
w∈W v awTw with

aw ∈ Z[(q±1
i )i∈I ], and apply Proposition 5.2 with H = Tw. �

Corollary 5.4. In IHR , for µ ∈ Y++ the left multiplication by Tµ is injective.

Proof. As Tµ1+µ2 = Tµ1 ∗ Tµ2 for µ1, µ2 ∈ Y++, we may assume µ sufficiently
great. Let H ∈ IHR \ {0}. We may write H =

∑
j∈J Tλj ∗ H j with λj ∈ Y+ and

0 6= H j
∈HR(W v). We choose λj0 minimal among the λj for ≤Q∨ . Then

Tµ ∗ H =
∑
j∈J

∑
µ+λj≤Q∨νj

Tνj ∗ H νj , j
∗ H j.

Hence νj0 = µ+ λj0 is minimal for ≤Q∨ and H νj0 , j0 is a monomial in qi , q ′i ; so
H ν j0 , j0 ∗ H j0 6= 0 and Tµ ∗ H 6= 0. �

Theorem 5.5. (1) For any λ ∈ Y+, there is a unique Xλ
∈

IHR such that for all
µ ∈ Y++ with λ+µ ∈ Y++, we have Tµ ∗ Xλ

= Tλ+µ.

(2) More precisely,
Xλ
= bλTλ+

∑
ν

Tν ∗ H ′ν,

where H ′ν ∈ HR(W v), ν ∈ conv(W v .λ++, ≥ λ) \ {λ} and bλ is a primitive
monomial in q−1

i , q ′i
−1.

(3) For λ ∈ Y++, we have Xλ
= Tλ, and for λ, λ′ ∈ Y+,

Xλ
∗ Xλ′

= Xλ+λ′
= Xλ′

∗ Xλ.

Remarks. (a) We have two bases for the free right HR(W v)-module IHR ,

{Tλ | λ ∈ Y+} and {Xλ
| λ ∈ Y+}.

The change of basis matrix is triangular (for the order ≥Q∨) with diagonal coef-
ficients primitive monomials in q−1

i , q ′i
−1. From Corollary 5.3(d), we get that all

coefficients of this matrix are Laurent polynomials in the parameters qi , q ′i, with
coefficients in Z, depending only on A and on W.

(b) By (1) above and Corollary 5.4, it is clear that the left multiplication by Xλ is
injective, for any λ ∈ Y+.

Proof. By Corollary 5.4, the uniqueness is clear and (3) follows from the relation
Tλ∗Tµ= Tλ+µ of the Theorem 2.4. We have just to prove (1) and (2) for a µ∈ Y++

(chosen sufficiently great).
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We argue by induction on the height ht(λ++ − λ) of λ++ − λ with respect to
the free family (α∨i ) in Q∨. When the height is 0, λ = λ++ and Xλ

= Tλ. By
Corollary 5.3, we write

Tµ ∗ Tλ = aλTµ+λ+
∑

λ≤Q∨ν≤Q∨λ
++

λ6=ν

Tµ+ν ∗ H ν

with H ν
∈ HR(W v) and ν ∈ conv(W v.λ++); hence, ν++ ∈ conv(W v.λ++) (in

particular, ν++ ≤Q∨ λ
++); see Section 1.8(a).

So ht(ν++ − ν) < ht(λ++ − λ). By induction and for µ sufficiently great, we
can consider the element Xν such that Tµ+ν = Tµ ∗ Xν ; we can write it

Xν
=

∑
ν≤Q∨ν

′≤Q∨ν
++

Tν′ ∗ H ν′,ν

and we may take

Xλ
= a−1

λ Tλ−
( ∑
λ≤Q∨ν≤Q∨λ

++

λ6=ν

Xν
∗ H ν

)

= a−1
λ Tλ−

( ∑
λ≤Q∨ν≤Q∨λ

++

λ6=ν

( ∑
ν≤Q∨ν

′≤Q∨ν
++

Tν′ ∗ H ν′,ν

)
∗ H ν

)
. �

Proposition 5.6. For λ ∈ Y+ and i ∈ I we have the following relations:

(a) If αi (λ)≥ 0, then

Ti ∗ Xλ
= q∗(αi (λ))

i X ri (λ) ∗ Ti +

αi (λ)−1∑
h=0

(
q∗(h+1)

i − q∗(h)i

)
Xλ−hα∨i .

(b) If αi (λ) < 0, then

Ti ∗ Xλ
=

1
q∗(−αi (λ))

i
X ri (λ) ∗ Ti

−
1

q∗(−αi (λ))
i

−1∑
h=αi (λ)

(
q∗(−αi (λ)+h+1)

i − q∗(−αi (λ)+h)
i

)
Xλ−hα∨i .

N.B. These are the Bernstein–Lusztig relations for the Xλ, (BLX) for short.

Proof. If λ∈ Y++, by Theorem 4.8(a), we know that Xλ
∗Ti ∗ Xλ

= Xλ+λ
∗Ti when

αi (λ)= 0 and, when αi (λ) > 0,

Xλ
∗ Ti ∗ Xλ

= q∗αi (λ)
i Xλ+ri (λ) ∗ Ti + (q

∗(αi (λ))
i − q∗(αi (λ)−1)

i )Xλ+λ−(αi (λ)−1)α∨i

+ · · ·+ (q∗2i − qi )X
λ+λ−α∨i + (qi − 1)Xλ+λ,
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so we have the result.
In the general case, λ ∈ Y+, we write λ = µ− ν with µ, ν chosen in Y++. By

Theorem 5.5, Xν
∗ Xλ
= Xµ. From (BLX) for Xµ and Xν,

Ti ∗ Xµ
= q∗(αi (λ+ν))

i X ri (λ+ν) ∗ Ti +

αi (λ+ν)−1∑
h=0

(
q∗(h+1)

i − q∗(h)i

)
Xν+λ−hα∨i

which can also be written

Ti ∗ Xν+λ
= (Ti ∗ Xν) ∗ Xλ

=

(
q∗(αi (ν))

i X ri (ν) ∗ Ti +

αi (ν)−1∑
h=0

(
q∗(h+1)

i − q∗(h)i

)
Xν−hα∨i

)
∗ Xλ

= q∗(αi (ν))
i X ri (ν) ∗ Ti ∗ Xλ

+

αi (ν)−1∑
h=0

(
q∗(h+1)

i − q∗(h)i

)
Xν+λ−hα∨i .

If αi (λ)≥ 0, then

q∗(αi (ν))
i X ri (ν) ∗Ti ∗ Xλ

= q∗(αi (λ+ν))
i X ri (µ) ∗Ti +

αi (λ+ν)−1∑
h=αi (ν)

(
q∗(h+1)

i −q∗(h)i

)
Xν+λ−hα∨i .

We take h′ = h−αi (ν), then

Xν+λ−hα∨i = Xν−αi (ν)α
∨
i +λ−h′α∨i = X ri (ν)+λ−h′α∨i

and q∗(αi (ν)+h′)
i = q∗αi (ν)

i q∗h
′

i (by qi = q ′i if αi (ν) is odd, and by an easy calculation
if αi (ν) is even). So,

q∗(αi (ν))
i X ri (ν) ∗ Ti ∗ Xλ

= q∗(αi (ν))
i X ri (ν) ∗

(
q∗(αi (λ))

i X ri (λ) ∗ Ti +

αi (λ)−1∑
h′=0

(
q∗(h

′
+1)

i − q∗(h
′)

i

)
Xλ−h′α∨i

)
.

And we are done, thanks to the injectivity of left multiplication by X ri (ν).
If αi (λ) < 0, we obtain

q∗(αi (ν))
i X ri (ν) ∗ Ti ∗ Xλ

= q∗(αi (λ+ν))
i X ri (λ+ν) ∗ Ti −

αi (ν)−1∑
h=αi (λ+ν)

(
q∗(h+1)

i − q∗(h)i

)
Xν+λ−hα∨i .
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We have q∗(αi (ν))
i = q∗(−αi (λ))

i q∗(αi (λ+ν))
i by an easy calculation if αi (ν) and αi (λ)

are even and because qi = q ′i whenever αi (ν) or αi (λ) is odd. So,

X ri (ν) ∗ Ti ∗ Xλ

=
1

q∗(−αi (λ))
i

X ri (λ+ν) ∗ Ti −
1

q∗(αi (ν))
i

αi (ν)−1∑
h=αi (λ+ν)

(
q∗(h+1)

i − q∗(h)i

)
Xν+λ−hα∨i

and we have (because of the injectivity of the left multiplication by X ri (ν))

Ti ∗ Xλ

=
1

q∗(−αi (λ))
i

X ri (λ) ∗ Ti

−
1

q∗(αi (ν))
i

αi (ν)−1∑
h=αi (λ+ν)

(
q∗(h+1)

i − q∗(h)i

)
Xλ+(αi (ν)−h)α∨i

=
1

q∗(−αi (λ))
i

X ri (λ) ∗ Ti

−
1

q∗(αi (ν))
i q∗(−αi (λ))

i

−1∑
h=αi (λ)

(
q∗(αi (ν)−αi (λ)+h+1)

i − q∗(αi (ν)−αi (λ)+h)
i

)
Xλ−hα∨i

=
1

q∗(−αi (λ))
i

X ri (λ) ∗ Ti

−
1

q∗(−αi (λ))
i

−1∑
h=αi (λ)

(
q∗(−αi (λ)+h+1)

i − q∗(−αi (λ)+h)
i

)
Xλ−hα∨i . �

5.7. The classical Bernstein–Lusztig relation. The module δ : Q∨→ R is defined
by

δ

(∑
i∈I

aiα
∨

i

)
=

∏
i∈I

(qi q
′

i )
ai

[Gaussent and Rousseau 2014, 5.3.2]. After replacing eventually R by a bigger ring
R′ containing some square roots

√
qi ,
√

q ′i of qi , q ′i (with
√

qi =
√

q ′i, if qi = q ′i ),
we assume moreover that there exists a homomorphism δ1/2

: Y → R×, such that
δ(λ) = (δ1/2(λ))2 for any λ ∈ Q∨ and δ1/2(α∨i ) =

√
qi .
√

q ′i . In particular
√

qi
±1

and
√

q ′i
±1 are well defined in R×. In the common example where R =R or R =C,

these expressions are chosen to be the classical ones: δ1/2(Y )⊂ R∗
+

.
We define Hi =

(√
qi
)
−1Ti and Zλ=δ−1/2(λ)Xλ for λ∈Y+. Whenw=ri1 · · · rin

is a reduced decomposition, we set Hw = Hi1 ∗ · · · ∗ Hin ; this does not depend on
the chosen decomposition of w.

We may translate the relations (BLX) for these elements.
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Proposition. For λ ∈ Y++, we have the relation

Hi ∗ Zλ = Z ri (λ) ∗ Hi +

b(αi (λ)−1)/2c∑
k=0

(√
qi −
√

qi
−1)Zλ−(2k)α∨i

+

bαi (λ)/2c−1∑
k=0

(√
q ′i −

√
q ′i
−1)Zλ−(2k+1)α∨i .

Remarks. (1) This is the Bernstein–Lusztig relation for the Zλ, (BLZ) for short.

(2) In the following section, we shall consider an algebra containing IHR and,
for any i ∈ I , an element Z−αi

∨

satisfying Zλ−hαi
∨

= Zλ ∗ (Z−αi
∨

)h for h ∈ N,
λ, λ− hα∨i ∈ Y+. In such an algebra the relation (BLZ) may be rewritten (using
that

√
qi =

√
q ′i if αi (λ) is odd) as the classical Bernstein–Lusztig relation (BL):

Hi ∗ Zλ = Z ri (λ) ∗ Hi +
(√

qi −
√

qi
−1) Zλ− Z ri (λ)

1− Z−2α∨i

+
(√

q ′i −
√

q ′i
−1) Zλ−α

∨
i − Z ri (λ)−α

∨
i

1− Z−2α∨i
,

i.e., Hi ∗ Zλ− Z ri (λ) ∗ Hi = b
(√

qi ,
√

q ′i ; Z−αi
∨)
(Zλ− Z ri (λ)), where

b(t, u; z)=
t − t−1

+ (u− u−1)z
1− z2 .

This is the same relation as in [Macdonald 2003, 4.2], up to the order; see (3).

(3) Actually this relation (BLZ) is still true when λ ∈ Y+ and αi (λ) ≥ 0 (same
proof as below). If αi (λ) < 0, we leave to the reader the proof of the relation

Ti ∗ Zλ

= Z ri (λ) ∗ Ti −

( ∑
2≤h≤−αi (λ)

h even

(qi − 1)Zλ+hα∨i +
∑

1≤h≤−αi (λ)
h odd

(√
qi .q ′i −

√
qi .q ′i
q ′i

)
Zλ+hα∨i

)
.

In the situation of (2) above, it may be rewritten

Hi ∗ Zλ− Z ri (λ) ∗ Hi

=
(√

qi −
√

qi
−1) Zλ− Z ri (λ)

1− Z−2α∨i
+
(√

q ′i −
√

q ′i
−1) Zλ−α

∨
i − Z ri (λ)−α

∨
i

1− Z−2α∨i

= b
(√

qi ,
√

q ′i ; Z−αi
∨)
(Zλ− Z ri (λ)).

It is the same relation (BLZ) as above. Moreover, it’s easy to see in the first
equality that Hi ∗ Zλ− Z ri (λ) ∗ Hi = Zλ ∗ Hi − Hi ∗ Z ri (λ). Actually we shall see in
Section 6 that this same relation is true for any λ∈ Y in a greater algebra containing
elements Zλ for λ ∈ Y.
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Proof. From Zλ = δ−1/2(λ)Xλ and δ1/2(α∨i )=
√

qi .q ′i , we get

Zλ−hα∨i = δ−1/2(λ− hα∨i )X
λ−hα∨i

= δ−1/2(λ)(δ1/2(α∨i ))
h Xλ−hα∨i

= δ−1/2(λ)
(√

qi .q ′i
)h Xλ−hα∨i .

By αi (λ)≥ 0 and (BLX),

Ti ∗ Zλ

= q∗(αi (λ))
i

(√
qi .q ′i

)
−αi (λ)Z ri (λ) ∗ Ti +

αi (λ)−1∑
h=0

(q∗(h+1)
i − q∗hi )

(√
qi .q ′i

)
(−h)Zλ−hα∨i .

Moreover, q∗hi = qi q
′
i qi · · · with h terms in the product, so q∗hi =

(√
qi .q ′i

)
h if h is

even and q∗hi = qi
(√

qi .q ′i
)
(h−1) if h is odd. So, if αi (λ) is even, then

Ti ∗ Zλ

= Z ri (λ) ∗ Ti +

(αi (λ)−2)/2∑
k=0

(qi − 1)Zλ−(2k)α∨i +

(αi (λ)−2)/2∑
k=0

(qi q
′

i − qi )
(√

qi q ′i
)
−1 Zλ−(2k+1)α∨i .

If αi (λ) is odd, then qi = q ′i and

Ti ∗ Zλ = Z ri (λ) ∗ Ti +

αi (λ)−1∑
h=0

(qi − 1)Zλ−hα∨i .

In both cases, by Hi = (
√

qi )
−1Ti ,

Hi ∗ Zλ = Z ri (λ) ∗ Hi +

b(αi (λ)−1)/2c∑
k=0

(√
qi −
√

qi
−1)Zλ−(2k)α∨i

+

bαi (λ)/2c−1∑
k=0

(√
q ′i −

√
q ′i
−1)Zλ−(2k+1)α∨i . �

6. Bernstein–Lusztig–Hecke Algebras

The aim of this section is to define, in a formal way, an associative algebra BLHR,
called the Bernstein–Lusztig–Hecke algebra. This construction by generators and
relations is motivated by the results obtained in the previous section (in particular
Proposition 5.6) and we will be able next to identify IHR and a subalgebra of BLHR

(up to some hypotheses on R).
We use the same notation as before, even if the objects are somewhat different.

This choice will be justified by the identification obtained at the end of this section.
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We consider A as in Section 1.2 and Aut(A) ⊃ W = W v n Y ⊃ W a, with Y a
discrete group of translations.

6.1. The module BLHR1 . We consider now the ring R1=Z[(σi
±1, σ ′i

±1)i∈I ]where
the indeterminates σi , σ

′
i satisfy the following relations (as qi and q ′i in Section 1.4.5

because in the further identification, σi , σ
′

i will play the role of
√

qi and
√

q ′i ).
If αi (Y )= Z, then σi = σ

′
i .

If ri and rj are conjugated (i.e., if αi (α
∨
j )=αj (α

∨
i )=−1), then σi =σj =σ

′
i =σ

′
j .

We denote by BLHR1 the free R1-module with basis (ZλHw)λ∈Y,w∈W v . For short,
we write Hi = Hri , Hw = Z0 Hw and Zλ = ZλHe, where e is the unit element in
W v (and He = Z0 will be the multiplicative unit element in BLHR1).

Theorem 6.2. There exists a unique multiplication ∗ on BLHR1 which makes it an
associative unitary R1-algebra with unity He and satisfies the following conditions:

(1) Zλ ∗ Hw = ZλHw for all λ ∈ Y, w ∈W v,

(2) Hi ∗Hw =
{

Hriw if `(riw) > `(w),

(σi − σ
−1
i )Hw + Hriw if `(riw) < `(w),

for all i ∈ I, w ∈W v,

(3) Zλ ∗ Zµ = Zλ+µ for all λ ∈ Y, µ ∈ Y,

(4) Hi ∗Zλ−Z ri (λ)∗Hi =b(σi , σ
′
i ; Z−α

∨
i )(Zλ−Z ri (λ)) for all λ∈Y, i ∈ I , where

b(t, u; z)=
(t − t−1)+ (u− u−1)z

1− z2 .

Remarks 6.3. (1) It is already known (see, e.g., [Humphreys 1990, Theorem 7.1] or
[Bourbaki 1968, IV §2, exercise 23]) that the free submodule with basis (Hw)w∈W v

can be equipped, in a unique way, with a multiplication ∗ that satisfies (2) and
gives it a structure of an associative unitary algebra called the “Hecke algebra of
the group W v over R1” and denoted by HR1(W

v).

(2) The submodule HR1(Y ) with basis (Zλ)λ∈Y will be a commutative subalgebra.

(3) When all σi , σ
′
i are equal, the existence of this algebra BLH is stated in [Garland

and Grojnowski 1995] and justified by an action on some Grothendieck group.

(4) This R1-algebra depends only on A and Y (i.e., A and W ). We call it the
Bernstein–Lusztig–Hecke algebra over R1 (associated to A and W ).

6.4. Proof of Theorem 6.2.

6.4.1. The uniqueness of the multiplication ∗ is clear: by associativity and dis-
tributivity, we have only to identify Hw ∗ Zµ. If w = ri1ri2 · · · rin is a reduced
decomposition, then, by (2), (4), and Remark 6.3(1),

Hw ∗ Zµ = Hi1 ∗ (Hi2 ∗ ( · · · ∗ (Hin ∗ Zµ) · · · ))
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has to be a well-defined linear combination of terms Z νHu : Hw∗Zµ=
∑

k ak Z νkHuk

with ak ∈ R1, νk ∈ Y, and uk ∈W v.

6.4.2. Construction of ∗. We define Hw ∗ Zµ as above and we have to prove that it
does not depend on the reduced decomposition w = ri1ri2 · · · rin .

(a) We define L i ∈ EndR1(
BLHR1) by

L i (ZµHw)= Hi ∗(ZµHw)= Z ri (µ)(Hi ∗Hw)+b(σi , σ
′

i ; Z−α
∨
i )(Zµ−Z ri (µ))∗Hw,

where

Hi ∗ Hw =
{

Hriw if `(riw) > `(w),

(σi − σi
−1)Hw + Hriw if `(riw) < `(w).

By Matsumoto’s theorem [Bourbaki 1968, IV §1.5, Proposition 5], the expected
independence will be a consequence of the braid relations, i.e.,

(∗) L i (L j (L i ( · · · (ZλHw) · · · )))= L j (L i (L j ( · · · (ZλHw) · · · )))

(with mi, j factors L on each side), whenever the order mi, j of rirj is finite.
As HR1(W

v) is known to be an algebra, it is enough to prove (∗) for w = 1. We
may also suppose αj (α

∨
i ) 6= 0 as otherwise L i and L j commute clearly.

We choose i, j ∈ I with mi, j finite; then ±αi ,±αj generate a finite root system
8i, j of rank 2 (or 1 if i = j ). Moreover, Y ′= ker(αi )∩ker(αj )∩Y is cotorsion free
in Y. Let Y ′′ be a supplementary module containing α∨i and α∨j ; Y ′′ is a lattice (of
rank 2 or 1) between the lattices Q∨i, j of coroots and P∨i, j of coweights, associated
to 8i, j .

Any λ ∈ Y may be written λ = λ′ + λ′′ with λ′ ∈ Y ′ and λ′′ ∈ Y ′′. By (4),
L i (Zλ

′

) = Zλ
′

Hi and L j (Zλ
′

) = Zλ
′

Hj . So we have to prove (∗) for λ = λ′′ ∈ Y ′′.
We shall do it by comparing with some Macdonald’s results.

(b) Macdonald [2003] builds affine Hecke algebras H(W (R, L ′)) over R, associated
to any finite irreducible root system R and any lattice L ′ between the lattices of
coroots and coweights; more precisely this algebra is associated to the extended
affine Weyl group W (R, L ′)=W (R)n L ′. It is defined by generators and relations,
but it is proven that it is endowed with a basis (Y λT (w))λ∈L ′,w∈W (R) [op. cit., 4.2.7]
and satisfies relations analogous to (1)–(4) as above. There are parameters (τi )i∈I

and τ0 which are reals (but may be algebraically independent over Q, so may be
considered as indeterminates) and satisfy τi = τj if αi (α

∨
j ) = αj (α

∨
i ) = −1. The

relation (4) is satisfied with σi = τi and σ ′i = τi when αi (L ′) = Z, σ ′i = τ0 when
αi (L ′)= 2Z.

(c) In the case R =8i, j , irreducible, L ′ = Y ′′, we may choose τi , τj , and τ0 such
that the relations (4) are the same, for us and Macdonald: either αi (α

∨
j )=−1 or

αj (α
∨
i ) = −1, so τ0 = σ

′
i or τ0 = σ

′
j . In particular R1 may be identified with a

subring of R. The operators L i and L j of both theories coincide on the elements
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ZλHv (identified with Y λT (v) in Macdonald’s work) for λ∈ L ′=Y ′′ and v∈〈ri , rj 〉.
So (∗) is satisfied as H(W (R, L ′)) is an associative algebra.

(d) So, if Hw ∗ Zµ =
∑

k ak Z νkHuk, with ak ∈ R1, νk ∈ Y, uk ∈ W v, we define the
product of ZλHw and ZµHv by

(ZλHw) ∗ (ZµHv)=
∑

k

ak Zλ+νk ∗ (Huk ∗ Hv).

We get a distributive multiplication on BLHR1 with unit He.

6.4.3. Associativity. (a) Using the associativity in HR1(Y ) and HR1(W
v) and the

formula in 6.4.2(d) above, it is clear that, for any λ∈ Y, w ∈W v, E1, E2 ∈
BLHR1 ,

(R1) Zλ ∗ (E1 ∗ E2)= (Zλ ∗ E1) ∗ E2,

(R2) E1 ∗ (E2 ∗ Hw)= (E1 ∗ E2) ∗ Hw.

We need also to prove (for λ1, λ2 ∈ Y, w,w1, w2 ∈W v, E ∈ BLHR1),

(A) Hw ∗ (Zλ1 ∗ Zλ2)= (Hw ∗ Zλ1) ∗ Zλ2,

(B) Hw1 ∗ (Hw2 ∗ E)= (Hw1 ∗ Hw2) ∗ E .

Then the general associativity will follow: using (R1), (R2), (A), (B), and the
formula in 6.4.2(d) for the product, it is not too difficult (and left to the reader) to
prove that

(Zλ1 Hw1) ∗
(
(Zλ2 Hw2) ∗ (Z

λ3 Hw3)
)
= Zλ1 ∗ (Hw1 ∗

(
(Zλ2 Hw2) ∗ Zλ3)

)
∗ Hw3

= Zλ1 ∗
(
(Hw1 ∗ Zλ2) ∗ (Hw2 ∗ Zλ3)

)
∗ Hw3

= Zλ1 ∗
(
(Hw1 ∗ (Z

λ2 Hw2)) ∗ Zλ3
)
∗ Hw3

=
(
(Zλ1 Hw1) ∗ (Z

λ2 Hw2)
)
∗ (Zλ3 Hw3).

(b) Proof of (B). This condition is equivalent to the fact that left multiplication by
HR1(W

v) on BLHR1 is an action. But the associative algebra HR1(W
v) is generated

by the Hi with relations consisting of the braid relations and H 2
i = (σi−σ

−1
i )Hi+He.

As L i is left multiplication by Hi , we have (B) if and only if these L i satisfy the
relation (∗) and

(∗∗) L i (L i (ZλHv))= (σi − σ
−1
i )L i (ZλHv)+ ZλHv.

As in 6.4.2(b), we reduce the verification of (∗∗) to the case v = 1 and λ ∈ Y ′′

(associated to i = j), i.e., λ ∈ Y ′′ = Qα∨i ∩ Y. Then we look at Macdonald’s
construction of H(W ({±αi }, Y ′′)) with τi = σi , τ0= σ

′
i . We conclude, as in 6.4.2(c)

that (∗∗) is satisfied.
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(c) The proof of (A) is by induction on `(w). If w = ri ,

(Hi ∗ Zλ1) ∗ Zλ2 = (Z ri (λ1)Hi ) ∗ Zλ2 +
(
b(σi , σ

′

i ; Z−α
∨
i )(Zλ1 − Z ri (λ1))

)
∗ Zλ2

= Z ri (λ1) ∗
(
Z ri (λ2)Hi + b(σi , σ

′

i ; Z−α
∨
i )(Zλ2 − Z ri (λ2))

)
+ b(σi , σ

′

i ; Z−α
∨
i )(Zλ1+λ2 − Z ri (λ1)+λ2)

= Z ri (λ1+λ2)Hi + b(σi , σ
′

i ; Z−α
∨
i )(Z ri (λ1)+λ2 − Z ri (λ1)+ri (λ2))

+ b(σi , σ
′

i ; Z−α
∨
i )(Zλ1+λ2 − Z ri (λ1)+λ2)

= Z ri (λ1+λ2)Hi + b(σi , σ
′

i ; Z−α
∨
i )(Zλ1+λ2 − Z ri (λ1+λ2))

= Hi ∗ (Zλ1 ∗ Zλ2)

If the result is known when `(w)= n, let us consider w=w′ri with `(w)= n+1
and `(w′)= n. Then

Hw ∗ (Zλ1 ∗ Zλ2)

= Hw′ ∗ (Hi ∗ Zλ1+λ2)

= Hw′ ∗
(
(Hi ∗ Zλ1) ∗ Zλ2

)
= Hw′ ∗

(
(Z ri (λ1)Hi ) ∗ Zλ2 +

(
b(σi , σ

′

i ; Z−α
∨
i )(Zλ1 − Z ri (λ1))

)
∗ Zλ2

)
,

where the first equality is because left multiplication by HR1(W
v) is an action, and

the second equality is the case `(w)= 1. On the other hand,

(Hw ∗ Zλ1) ∗ Zλ2

= (Hw′ ∗ (Hi ∗ Zλ1)) ∗ Zλ2

=
(
Hw′ ∗ (Z ri (λ1)Hi + b(σi , σ

′

i ; Z−α
∨
i )(Zλ1 − Z ri (λ1))

)
∗ Zλ2

= (Hw′ ∗ (Z ri (λ1)Hi )) ∗ Zλ2 +
(
Hw′ ∗ (b(σi , σ

′

i ; Z−α
∨
i )(Zλ1 − Z ri (λ1)))

)
∗ Zλ2 .

The second term of the right hand side is an R1-linear combination of

(Hw′ ∗ Zλ1+kα∨i ) ∗ Zλ2

and we see by induction that it is the same as

Hw′ ∗
(
(b(σi , σ

′

i ; Z−α
∨
i )(Zλ1 − Z ri (λ1))) ∗ Zλ2

)
in Hw ∗ (Zλ1 ∗ Zλ2).

In the first term, (Hw′ ∗ (Z ri (λ1)Hi ))∗ Zλ2 = ((Hw′ ∗ Z ri (λ1))∗Hi ))∗ Zλ2, we can
write

Hw′ ∗ Z ri (λ1) =

∑
k

ck ZλkHwk ,
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and we will use later in the same way

Hi ∗ Zλ2 =

∑
h

ah ZµhHvh

with ck, ah ∈ R1, λk, µh ∈ Y , and wk, vh ∈W v. So, we have((∑
k

ck ZλkHwk

)
∗ Hi

)
∗ Zλ2

=

(∑
k

ck(Zλk ∗ (Hwk ∗ Hi ))

)
∗ Zλ2 (by (R2))

=

∑
k

ck Zλk ∗ ((Hwk ∗ Hi ) ∗ Zλ2) (by 6.4.2(d))

=

∑
k

ck Zλk ∗ (Hwk ∗ (Hi ∗ Zλ2)) (by (B))

=

∑
k

ck(Zλk ∗ Hwk ) ∗ (Hi ∗ Zλ2) (by (R1))

=

∑
k

ck(Zλk ∗ Hwk ) ∗

(∑
h

ah Zµh Hvh

)
=

∑
k,h

ckah(Zλk ∗ Hwk ) ∗ (Z
µh ∗ Hvh )

=

∑
k,h

ckah(((Zλk ∗ Hwk ) ∗ Zµh ) ∗ Hvh ) (by (R2))

=

∑
h

ah(((Hw′ ∗ Z ri (λ1)) ∗ Zµh ) ∗ Hvh )

=

∑
h

ah((Hw′ ∗ (Z ri (λ1) ∗ Zµh )) ∗ Hvh ) (by induction)

=

∑
h

ah Hw′ ∗ ((Z ri (λ1) ∗ Zµh ) ∗ Hvh ) (by (R2))

= Hw′ ∗ (Z ri (λ1) ∗ (Hi ∗ Zλ2)). (by (R1))

This corresponds to the term Hw′ ∗ ((Z ri (λ1)Hi ) ∗ Zλ2) in Hw ∗ (Zλ1 ∗ Zλ2) so we
obtain the equality when `(w)= n+ 1.

6.5. Change of scalars.

6.5.1. Suppose that we are given a morphism ϕ from R1 to a ring R. Then we are
able to consider, by extension of scalars, BLHR = R⊗R1

BLHR1 as an R-associative
algebra. The family (ZλHw)λ∈Y, w∈W v is still a basis of the R-module BLHR .
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6.5.2. In order to consider elements similar to the Xλ of Section 4, we are going
to define a ring R3 containing R1 such that there exists a group homomorphism
δ1/2
: Y → R×3 with δ(λ)= δ1/2(λ)2 for any λ ∈ Q∨ and δ1/2(α∨i )= σi .σ

′
i .

Since Q∨ is a submodule of the free Z-module Y, by the elementary divisor
theorem, if we denote by m the biggest elementary divisor, then mµ ∈ Q∨ for any
µ ∈ Y ∩ (Q∨⊗ZR). Let us consider the ring R3 = Z[(τi

±1, τ ′i
±1)i∈I ] (with τi , τ

′
i

satisfying conditions similar to those of Section 6.1) and the identification of R1

as a subring of R3 given by τm
i = σi and τ ′i

m
= σ ′i . Then, for λ ∈ Y we have

mλ=
∑

i∈I aiα
∨
i + λ0 with the ai ∈ Z and λ0 /∈ Q∨⊗Z R, and we can define

δ1/2(λ)=
∏
i∈I

(τiτ
′

i )
ai

and obtain a group homomorphism from Y to R3, with the wanted properties.
In BLHR3 , let us consider Xλ

= δ1/2(λ)Zλ for λ ∈ Y and Ti = σi Hi = (τi )
m Hi .

It’s easy to see that Tw = Ti1 ∗Ti2 ∗· · ·∗Tin is independent of the choice of a reduced
decomposition ri1ri2 · · · rin of w. It is clear that the family (Xλ

∗ Tw)λ∈Y, w∈W v is a
new basis of the R3-module BLHR3 .

6.5.3. We can give new formulas to define ∗ in terms of these generators. The
relation (4) of the definition of BLHR3 can be written as previously:

If αi (λ)≥ 0, then

(BLZ+) Hi ∗ Zλ = Z ri (λ) ∗ Hi +
∑

0≤k≤αi (λ)−1
k even

(σi − σ
−1
i )Zλ−kα∨i

+

∑
0≤k≤αi (λ)−1

k odd

(σ ′i − σ
′

i
−1)Zλ−kα∨i .

If αi (λ) < 0, then

(BLZ−) Hi ∗ Zλ = Z ri (λ) ∗ Hi −
∑

2≤k≤−αi (λ)
k even

(σi − σ
−1
i )Zλ+kα∨i

−

∑
1≤k≤−αi (λ)

k odd

(σ ′i − σ
′

i
−1)Zλ+kα∨i .

With the same arguments as in Section 5.7, these relations (after changing vari-
ables and writing (σ 2

i )
∗n
= σ 2

i σ
′

i
2σ 2

i σ
′

i
2
· · · with n terms in this product) become:

If αi (λ)≥ 0, then

(BLX+) Ti ∗ Xλ
= (σ 2

i )
∗(αi (λ))X ri (λ) ∗ Ti +

αi (λ)−1∑
h=0

(
(σ 2

i )
∗(h+1)

− (σ 2
i )
∗(h))Xλ−hα∨i .
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If αi (λ) < 0, then

(BLX−) Ti ∗ Xλ
=

1
(σ 2

i )
∗(−αi (λ))

X ri (λ) ∗ Ti

−
1

(σ 2
i )
∗(−αi(λ))

−1∑
h=αi (λ)

(
(σ 2

i )
∗(−αi(λ)+h+1)

− (σ 2
i )
∗(−αi(λ)+h))Xλ−hα∨i.

The other formulas easily give:

(2′) Ti∗Tw=
{

Triw if `(riw) > `(w),

(σ 2
i − 1)Tw + σ 2

i Triw
if `(riw) < `(w),

for all i ∈ I, w∈W v,

(3′) Xλ
∗ Xµ

= Xλ+µ for all λ ∈ Y, µ ∈ Y.

In all these relations, we can see that the coefficients are in the subring R2 =

Z[(σi
±2, σ ′i

±2)i∈I ] of R1. So, if we consider BLXHR2 the R2-submodule with basis
(Xλ
∗ Tw)λ∈Y, w∈W v , the multiplication ∗ gives it a structure of associative unitary

algebra over R2.

6.6. The positive Bernstein–Lusztig–Hecke algebra. If we consider in BLXHR2,
the submodule with basis (Xλ

∗ Tw)λ∈Y+, w∈W v , it is stable by multiplication ∗ (in
(BLX+) and (BLX−) if λ ∈ Y+ all the λ±hα∨i written are also in Y+). We denote
by BLH+R2

this R2-subalgebra of BLXHR2 . Actually, we can define such positive
Hecke subalgebras inside all algebras in Section 6.5.

Like before, if we are given a morphism θ from R2 to a ring R, we are able
to consider, by extension of scalars, BLH+R = R ⊗R2

BLH+R2
. Let us consider the

ring R of the Section 4 (such that Z ⊂ R and all qi , q ′i are invertible in R); we
can construct a morphism θ from R2 to R by θ(σ 2

i )= qi and θ(σ ′i
2)= q ′i . So, we

obtain an algebra BLH+R with basis (Xλ
∗ Tw)λ∈Y+, w∈W v and the same relations as

in IHR . So:

Proposition. Over R, the Iwahori–Hecke algebra IHR and the positive Bernstein–
Lusztig–Hecke algebra BLH+R are isomorphic.

Remark. BLXHR is a ring of quotients of BLH+R '
IHR , as we added in it inverses

of the Xλ
= Tλ for λ ∈ Y++. Actually, from Proposition 5.2, Corollary 5.4, and

similar results, one may prove that S = {Tλ | λ ∈ Y++} satisfies the right and left
Ore condition and that the map from BLH+R to the corresponding quotient ring is
injective; see, e.g., [McConnell and Robson 2001, 2.1.6 and 2.1.12].

6.7. Structure constants. Using Section 6.6, the structure constants of the convo-
lution product ∗ of IHR , in the basis (Xλ

∗ Tw)λ∈Y+, w∈W v , are Laurent polynomials
in the parameters qi , q ′i , with coefficients in Z, depending only on A and W. By
Theorem 5.5(a), we get the same result for the structure constants in the basis
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(Tλ ∗Tw)λ∈Y+, w∈W v and then still the same result for the structure constants au
w,v in

the basis (Tw)w∈W+ (by Section 4.5).
This last result is not as precise as the one expected in the conjecture of Section 2.

But there is at least one case where we can prove it:

Remark. Suppose I is the hovel associated to a split Kac–Moody group G over a
local field K; see [Gaussent and Rousseau 2014, §3]. Then all parameters qi , q ′i
are equal to the cardinality q of the residue field; moreover, we know that each
au

w,v is an integer and a Laurent polynomial in q , with coefficients in Z, depending
only on A and W. But, as G is split, the same thing is true (without changing A

and W ) for all unramified extensions of the field K, hence for infinitely many q.
So the Laurent polynomial au

w,v is an integer for infinitely many integral values of
the variable q; hence, it has to be a true polynomial. This result was also obtained
independently by D. Muthiah [2015], when G is untwisted affine.

7. Extended affine cases and DAHAs

In this section, we define the extended Iwahori–Hecke algebras and explore their
relationship with the double affine Hecke algebras introduced by Cherednik.

7.1. Extended groups of automorphisms. We may consider a group G̃ containing
the group G of Section 1.4 and an extension to G̃ of the action of G on I. We
assume that G̃ permutes the apartments and induces isomorphisms between them,
hence G̃ is equal to G . Ñ , where Ñ ⊃ N is the stabilizer of A in G̃. This group Ñ
has almost the same properties as the group N described in Section 1.4.4. But we
assume now that W̃ = ν(Ñ )⊂Aut(A) is only positive for its action on the vectorial
faces; this means that the associated linear map −→w of any w ∈ W̃ is in Aut+(Av).
We assume moreover that W̃ may be written W̃ = W̃ v n Y, where W̃ v fixes the
origin 0 of A and Y is the same group of translations as for G; see Section 1.4.4.
In particular, W̃ v is isomorphic to the group {−→w | w ∈ W̃ } and may be written
W̃ v
=�n W v (see Section 1.1); moreover W̃ =�n W, where � is the stabilizer

of Cv
f in W̃. Finally, we assume that G contains the fixer Ker ν of A in G̃ so that

GC G̃ is the subgroup of all vectorially Weyl automorphisms in G̃ and G̃/G '�.
As W̃ is positive, G̃ preserves the preorder ≤ on I. So G̃+ = {g ∈ G̃ | 0≤ g .0}

is a semigroup with G̃+ ∩G = G+. And W̃+ =�n W+ = W̃ v n Y+ ⊂ W̃ is also
a semigroup, with W̃+ ∩W =W+.

7.2. Examples: Kac–Moody and loop groups.

7.2.1. One considers a field K, complete for a normalized, discrete valuation
with a finite residue field (of cardinality q). If G is an almost split Kac–Moody
group scheme over K, then the Kac–Moody group G = G(K) acts on an affine
ordered hovel I, with the properties described in Section 1.4. See [Rousseau 2010;
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Gaussent and Rousseau 2014, §3] in the split case (where all qi , q ′i are equal to q)
and [Charignon 2009; 2010; Rousseau 2012] in general.

7.2.2. Let G0 be a simply connected, almost simple, split, semisimple algebraic
group of rank r over K. Its fundamental maximal torus T0 is Q∨0 ⊗Z Mult, where
Q∨0 and P∨0 are the coroot lattice and coweight lattice, respectively, of the root
system 80 ⊂ V ∗0 with Weyl group W v

0 .
Some central extension of (a subgroup of) the loop group G0(K[t, t−1

])oK×

by K× (where x ∈ K× acts on G0(K[t, t−1
]) via t 7→ xt) is G = G(K) for the

most popular example G of an untwisted, affine, split, Kac–Moody group scheme
over K. Its fundamental, maximal torus T is Mult×T0×Mult= Y ⊗ZMult, with
cocharacter group Y = Zc⊕ Q∨0 ⊕ Zd, where c is the canonical central element
and d is the scaling element.

The set 8 of real roots is {α0+ nδ | α0 ∈80, n ∈ Z} in the dual V ∗ of

V = Y ⊗Z R= Rc⊕ V0⊕Rd,

where δ(ac+v0+bd)= b and α0(ac+v0+bd)= α0(v0). The corresponding Weyl
group W v is actually the affine Weyl group W a

0 =W v
0 n Q∨0 acting linearly on V ;

its action on the hyperplane d + V0 of V/Rc is affine: W v
0 acts linearly on V0 and

Q∨0 acts by translations. The group G is generated by T = T(K) and root groups
Uα ' K = Add(K) for α ∈8; if α = α0+ nδ, then Uα = Uα0(t

n.K).
The fundamental apartment A of the associated hovel is as described in Section 1.2

with W = W v n Y containing the affine Weyl group W a
= W v n Q∨, where

Q∨ = Zc⊕ Q∨0 .
This is the situation considered in [Braverman et al. 2016]. We saw in [Gaussent

and Rousseau 2014, Remark 3.4] that our group K is the same as the K of [Braver-
man et al. 2016]. It is clear that the Iwahori group I of [op. cit.] is included in
our group KI . But from Section 1.4.2 and [op. cit., 3.1.2], we get two Bruhat
decompositions K =

⊔
w∈W v KI .w.KI =

⊔
w∈W v I .w. I . So KI = I and, in this

case, our results are the same as those of [op. cit.].

7.2.3. Let us consider a central schematic quotient G00 of G0. It is determined
by the cocharacter group Y00 of its fundamental torus T00: Q∨0 ⊂ Y00 ⊂ P∨0 and
T00 = Y00⊗Z Mult. The root system 80 ⊂ V ∗0 and the Weyl group W v

0 ⊂ GL(V0)

are the same.
We get a more general untwisted, affine, split Kac–Moody scheme G1 by “amal-

gamating” G and the K-split torus T1 = Y1⊗Z Mult (with Y1 = Zc⊕ Y00⊕ Zd)
along T. A little more precisely, the Kac–Moody group G1=G1(K) is a quotient of
the free product of G and T00=T00(K)= Y00⊗ZK× by some relations; essentially,
T00 normalizes T and each Uα (hence also G) and one identifies both copies of T0;
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see [Rousseau 2010, 1.8]. The new fundamental torus is T1. We keep the same V,
8, W v, A, and I, but now W1 =W v n Y1 ⊃W ⊃W a.

7.2.4. We may consider a central extension by K× of (a subgroup of) the loop
group G00(K[t, t−1

])oK×. We get thus an extended Kac–Moody group G̃2 (not
among the Kac–Moody groups of [Tits 1987] or [Rousseau 2010]) which may
also be described by amalgamation: G̃ is a quotient of the free product of G and
Y00⊗Z K[t, t−1

]
∗ by relations similar to those above; in particular the conjugation

by λ⊗ xtn sends Uα0+pδ to Uα0+(p+nα(λ))δ . The group G̃2 contains G1 as a normal
subgroup; its fundamental torus is T1 = Y1⊗Z K×, with normalizer Ñ2 = NG̃2

(T1)

containing Y00⊗Z K[t, t−1
]
∗
⊃ Y00⊗Z tZ

=: tY00.
The group G̃2 is generated by tY00 and G1 (which contains N1=N2∩G1⊃ t Q∨0 ); in

particular G̃2/G1'Y00/Q∨0 . We keep the same V and8, but now the corresponding
vectorial Weyl group is W̃ v

2 = N2/T1 =W v
0 n Y00. As in Section 1.1, we may also

write W̃ v
2 = �2 n W v, where �2 is the stabilizer in W̃ v

2 of Cv
f . It is well known

that �2 is a finite group isomorphic to Y00/Q∨0 ; it is isomorphic to its image in the
permutation group of the affine Dynkin diagram of G00 or G0 (indexed by I ) and
acts simply transitively on the special vertices of this diagram.

It is not too difficult to extend to G̃2 the action of G1 on the hovel I. The group
Ñ2 is the stabilizer of A; it acts through W̃2 = W̃ v

2 nY1 ⊃W ⊃W a. We are exactly
in the situation of Section 7.1 with (G̃2,G1).

7.2.5. We may get new couples (G̃ j ,G j ) satisfying Section 7.1 for the same hovel I:
We may enlarge G̃2 and G1 by amalgamating them with T3 = Y3⊗Z K× along

T1 (or with T000 = Y000⊗Z K× along T00), where Y00 ⊂ Y000 ⊂ P∨0 and

Y3 = Z . 1
m .c⊕ Y000⊕Zd,

with m ∈ Z>0. Then W̃ v
3 = W̃ v

2 , �3 = �2, W̃3 = W̃ v
2 n Y3, and G3 is still a

Kac–Moody group with maximal torus T3.
We may keep G1 (or G3) and take a semidirect product of G̃2 (or G̃3) by a group

0 of automorphisms of the Dynkin diagram of G0, stabilizing Y00 (or Y00 and Y000).
Then W̃ v

4 = 0n W̃ v
2 , �4 = 0n�2, and W̃4 = W̃ v

4 n Y2 (or W̃4 = W̃ v
4 n Y3).

7.2.6. We may also add a split torus as direct factor to any of the preceding groups
G̃i or Gi , enlarge I by a trivial euclidean factor of the same dimension as the torus
and add to W̃ v and �, as a direct factor, any automorphism group (possibly infinite)
of this torus.

7.3. Marked chambers. We come back to the general situation of Section 7.1. We
want a set of “geometric objects” in I on which G̃ acts with the Iwahori subgroup
KI as one of the isotropy groups.
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7.3.1. A marked chamber in the hovel I is the equivalence class of an isomorphism
ϕ : A→ A ∈A sending the fundamental chamber C+0 to some local chamber Cx ,
modulo the equivalence

ϕ1 ' ϕ2 ⇐⇒ ∃S ∈ C+0 such that ϕ1|S = ϕ2|S.

It is simply written ϕ : C+0 → Cx ; this does not depend on A.
The group G̃ permutes the marked chambers; for g ∈ G̃ and ϕ as above, g .ϕ= ϕ

if and only if g fixes (pointwise) Cx . In particular, the isotropy group in G̃ of
C̃+0 = Id : C+0 → C+0 ⊂ A ⊂ I is KI ⊂ G.

A local chamber of type 0, Cx ∈ C+0 determines a unique marked chamber
C̃0

x :C
+
0 →Cx (called normalized) which is the restriction of some ϕ∈ IsomW

R (A, A);
see Section 1.11. These normalized marked chambers are permuted transitively
by G.

7.3.2. A marked chamber is said of type 0 if it is in the orbit under G̃ of any of
those C̃0

x . So the set C̃+0 of marked chambers of type 0 is G̃/KI .
By hypothesis G̃ may be written G.�̃, where �̃ = ν−1(�) ⊂ Ñ stabilizes C+0

(considered as in I) and induces� on it. So C̃+0 ={C̃x = C̃0
x ◦ω

−1
|Cx ∈C+0 , ω∈�}.

7.4. W̃-distance.

7.4.1. Let C̃x :C+0 →Cx , C̃y :C+0 →Cy be in C̃+0 with x ≤ y. There is an apartment
A containing Cx and Cy so C̃x , C̃y may be extended to ϕ,ψ ∈ Isom(A, A). We
“identify” (A,C+0 ) with (A,Cx) via ϕ. Then ϕ−1(y) ≥ 0 and, as C̃x , C̃y are in a
same orbit of G̃, there is w̃ ∈ W̃+ such that ψ = ϕ ◦ w̃. This w̃ does not depend on
the choice of A by Proposition 1.10(c).

We define the W̃-distance between the marked chambers C̃x and C̃y as this
unique element: dW(C̃x , C̃y)= w̃ ∈ W̃+. So we get a G̃-invariant map

dW
: C̃+0 ×≤ C̃+0 = {(C̃x , C̃y) ∈ C̃+0 × C̃+0 | x ≤ y} → W̃+.

7.4.2. For (Cx ,Cy) ∈ C+0 ×≤ C+0 , we have dW(C̃0
x , C̃0

y) = dW(Cx ,Cy) and, more
generally, for ωx , ωy ∈�, we have (C̃0

x ◦ω
−1
x , C̃0

y ◦ω
−1
y ) ∈ C̃+0 ×≤ C̃+0 and

dW(C̃0
x ◦ω

−1
x , C̃0

y ◦ω
−1
y )= ωx .dW(Cx ,Cy).ω

−1
y ∈ W̃+.

For (C̃x , C̃y) ∈ C̃+0 ×≤ C̃+0 and ωx , ωy ∈�, we have also

dW(C̃x ◦ω
−1
x , C̃y ◦ω

−1
y )= ωx .dW(C̃x , C̃y).ω

−1
y ∈ W̃+.

We deduce from this some interesting consequences:

7.4.3. If C̃x , C̃y, C̃z , with x ≤ y ≤ z, are in the same apartment, we have a Chasles
relation:

dW(C̃x , C̃z)= dW(C̃x , C̃y).dW(C̃y, C̃z).
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7.4.4. For (C̃x , C̃y)∈ C̃+0 ×≤ C̃+0 , if C̃x is normalized then dW(C̃x , C̃y)∈W+ if and
only if C̃y is normalized. The same is true with the roles of C̃x and C̃y reversed.

7.4.5. For (C̃x , C̃y) ∈ C̃+0 ×≤ C̃+0 ,

dW(C̃x , C̃y)= ω ∈� ⇐⇒ C̃y = C̃x ◦ω.

In particular, C̃y is uniquely determined by C̃x and ω; moreover, Cy = Cx .

7.4.6. If (Cx ,Cy) ∈ C+0 ×≤ C+0 and dW(Cx ,Cy) = ri ∈ W v (resp., λ ∈ Y+) and
ω ∈�, then dW(C̃0

x ◦ω
−1, C̃0

y ◦ω
−1)=ω.ri .ω

−1
= rω(i) (resp., ω(λ)∈ Y+), where

we consider the action of � on I (resp., Y ).

7.4.7. When C̃x = C̃+0 and C̃y = g .C̃+0 (with g ∈ G̃+), then dW(C̃x , C̃y) is the only
w̃ ∈ W̃+ such that g ∈ KI .w̃ .KI . There is a Bruhat decomposition

G̃+ =
⊔

w̃∈W̃+

KI .w̃ .KI .

The W̃-distance classifies the orbits of KI on {C̃y ∈ C̃+0 | y ≥ 0}, hence also the
orbits of G̃ on C̃+0 ×≤ C̃+0 .

7.5. The extended Iwahori–Hecke algebra.

7.5.1. We define this extended algebra for G̃ as we did in Section 2 for G:
To each w̃ ∈ W̃+, we associate a function Tw̃ : C̃

+

0 ×≤ C̃+0 → R, defined by

Tw̃(C̃, C̃ ′)=
{

1 if dW(C̃, C̃ ′)= w̃,

0 otherwise.

And we consider the following free R-module of functions C̃+0 ×≤ C̃+0 → R:

IH̃I
R =

{
ϕ =

∑
w̃∈W̃+

aw̃Tw̃

∣∣∣∣ aw̃ ∈ R, aw̃ = 0 except for a finite number
}
,

We endow this R-module with the convolution product given by

(ϕ ∗ψ)(C̃x , C̃y)=
∑
C̃z

ϕ(C̃x , C̃z)ψ(C̃z, C̃y).

where C̃z ∈ C̃+0 is such that x ≤ z ≤ y. This product is associative and R-bilinear.
We prove below that it is well defined.

As in Section 2, we see easily that IH̃I
R is the natural convolution algebra of the

functions G̃+→ R, bi-invariant under KI and with finite support.

7.5.2. For ω ∈ �, w̃ ∈ W̃+, the products Tω ∗ Tw̃ and Tw̃ ∗ Tω are well defined:
actually Tω ∗ Tw̃ = Tω.w̃ and Tw̃ ∗ Tω = Tw̃ .ω; see Sections 7.4.3 and 7.4.5.
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7.5.3. As the formula for ϕ ∗ψ is clearly G̃-invariant, we may fix C̃x normalized to
calculate ϕ ∗ψ . From Section 7.4.4, we deduce that, when w, v ∈W+, the product
Tw ∗ Tv may be computed using only normalized marked chambers. So it is well
defined and the same as in IHI

R .
From Section 7.5.2 we deduce now that the convolution product is well defined

in IH̃I
R :

Proposition. For any ring R, I H̃I
R is an algebra; it contains IHI

R as a subalgebra.

Definition. The algebra I H̃I
R is the extended Iwahori–Hecke algebra associated

to I and G̃ with coefficients in R.

7.6. Relations.

7.6.1. From Section 7.5 we see that IH̃I
R contains the algebra

R[�] =
⊕
ω∈�

R .Tω

of the group �. Moreover, as an R-module, IH̃I
R = R[�] ⊗R

IHI
R : we identify

Tω.w = Tω ∗ Tw and Tω⊗ Tw for ω ∈� and w ∈W+.
The multiplication in this tensor product is semidirect:

(Tω⊗ Tw).(Tω′ ⊗ Tv)= Tω ∗ Tw ∗ Tω′ ∗ Tv = Tω.w .ω′ ∗ Tv

= Tω.ω′.w′ ∗ Tv = Tω.ω′ ∗ Tw′ ∗ Tv = Tω.ω′ ⊗ (Tw′ ∗ Tv),

where w′ = ω′−1 .w .ω′ =: ω′−1(w) ∈W+.
In particular, we get the following relations among some elements:

7.6.2. For ω ∈� and w ∈W+,

Tω ∗ Tw ∗ Tω−1
= Tω(w).

If, moreover, w = ri ∈W v, then ω(ri )= rω(i) and

Tω ∗ Ti ∗ Tω−1
= Tω(i).

If now w = λ ∈ Y+, then

Tω ∗ Tλ ∗ Tω−1
= Tω(λ),

with ω(λ) ∈ Y+.

7.6.3. From Theorem 5.5(1) and (2) above, it is clear that Tω ∗ Xλ
∗ Tω−1

= Xω(λ)

if ω ∈� and λ ∈ Y+ (as � stabilizes Y++ = Y ∩Cv
f ).
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7.6.4. As the action of� on A is induced by automorphisms of I, we have qi =qω(i)
and q ′i = q ′ω(i) for ω ∈ � and i ∈ I . We may also choose the homomorphism
δ1/2
: Y → R∗ of Section 5.7 invariant by � (for R great enough). So, for ω ∈�,

w, ri ∈W v, and λ ∈ Y,

Tω ∗ Hw ∗ Tω−1
= Hω(w), Tω ∗ Hi ∗ Tω−1

= Hω(i), Tω ∗ Zλ ∗ Tω−1
= Zω(λ).

7.7. The extended Bernstein–Lusztig–Hecke algebra. Notation from Section 7.1
is still in use. But we no longer assume the existence of a group G̃ or G. The group
W =W v n Y C W̃ satisfies W̃ =�n W and the conditions of Section 6.

We consider the ring R̃ = Z[(σ̃±1
i , (σ̃ ′i )

±1)i∈I ], where the indeterminates σ̃i , σ̃
′
i

satisfy the same relations as σi , σ
′
i in Section 6.1 and the additional relation (see

Section 7.6.4 above)

σ̃i = σ̃j and σ̃ ′i = σ̃
′

j if ω(i)= j for some ω ∈�.

We denote by BLH̃R̃ the free R̃-module with basis (TωZλHw)ω∈�, λ∈Y, w∈W v and
write

Hw = T1 Z0 Hw, Hi = T1 Z0 Hi , Zλ = T1 ZλHe, and Tω = TωZ0 He.

Proposition. There exists a unique multiplication ∗ on BLH̃R̃ which makes it an
associative, unitary R̃-algebra with unity He = T1 = Z0 and satisfies the condi-
tions (1)–(4) of Theorem 6.2 plus

(5) Tω∗Tω′ = Tω.ω′ , Tω∗Ti ∗Tω−1
= Tω(i), and Tω∗Tλ∗Tω−1

= Tω(λ) for ω,ω′ ∈�,
i ∈ I , and λ ∈ Y.

Proof. As R̃-modules, BLH̃R̃ = R̃[�]⊗ BLHR̃ , where the homomorphism R1→ R̃
is given by σi 7→ σ̃i , σ ′i 7→ σ̃ ′i . Now the multiplication is classical on R̃[�], given
by Theorem 6.2 on BLHR̃ , and semidirect for general elements. �

Definition. This R̃-algebra BLH̃R̃ depends only on A, Y and � (i.e., on A and W̃ ).
We call it the extended Bernstein–Lusztig–Hecke algebra associated to A and W̃
with coefficients in R̃.

As in Section 6.6, we may identify, up to an extension of scalars, a subalgebra
BLH̃+R̃ of BLH̃R̃ with the extended Iwahori–Hecke algebra IH̃I

R .

7.8. The affine case.

7.8.1. We suppose now that (Av,W v) is affine. So there is a smallest positive
imaginary root δ =

∑
aiαi ∈1

+
im ⊂ Q+ satisfying δ(α∨i )= 0 for all i ∈ I , and a

canonical central element c=
∑

a∨i α
∨
i ∈ Q∨

+
satisfying αi (c)= 0 for all i ∈ I . In

particular, δ and c are fixed by W v and W̃ v.
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As δ ∈ Q+, it takes integral values on Y. For n ∈ Z, we define

Y n
= {λ ∈ Y | δ(λ)= n},

which is stable under W v and W̃ v. We have Y =
⊔

n∈Z Y n and Y+=
(⊔

n>0 Y n
)
tY 0

c ,

with Y 0
c = Y 0

∩Y+ = Y ∩Qc. We write λc =
1
m c a generator of Y 0

c (with m ∈ Z>0).
As δ(Q∨)= 0, we have δ(λ)= δ(µ) whenever µ≤Q∨λ or µ≤Q∨Rλ in Y.

7.8.2. Considering Proposition 2.2 and Theorem 5.5(2), the algebra is graded (for
a suitable R) by

IHI
R =

⊕
n≥0

IHIn
R ,

where IHIn
R has for R-basis {Tλ ∗ Tw | λ ∈ Y n, w ∈ W v

} if n > 0 and {Tλ ∗ Tw |
λ ∈ Y 0

c , w ∈ W v
} if n = 0. For some rings R, we may replace each Tλ ∗ Tw by

Xλ
∗ Tw or by Zλ ∗ Hw to find new bases. Also,

IH̃I
R =

⊕
n≥0

IH̃In
R ,

where IH̃In
R has for R-basis {Tω ∗ Tλ ∗ Tw | ω ∈�, λ ∈ Y n, w ∈W v

} if n > 0 and
{Tω ∗ Xλ

∗ Tw | ω ∈ �, λ ∈ Y 0
c , w ∈ W v

} if n = 0. For some rings R, we may
replace each Tω ∗ Tλ ∗ Tw by Tω ∗ Xλ

∗ Tw or by Tω ∗ Zλ ∗ Hw to find new bases.
Furthermore,

BLHR1
=

⊕
n∈Z

BLHn
R1
,

where BLHn
R1

has for R1-basis the ZλHw for λ ∈ Y n and w ∈W v, and

BLH̃R̃ =
⊕
n∈Z

BLH̃n
R̃,

where BLH̃n
R̃ has for R̃-basis the TωZλHw for ω ∈�, λ ∈ Y n, and w ∈W v.

These gradations are compatible with the identifications explained in Section 6.6
or Section 7.7.

7.8.3. For any C̃x ∈ C̃+0 and any λ ∈ Y 0
c = Zλc, there is a unique C̃y ∈ C̃+0 with

dW(C̃x , C̃y)= λ: the translation by λ in A stabilizes all enclosed sets and extends
to I as a translation in any apartment. From this we see that

Tλ ∗ Tµ = Tλ+µ = Tµ ∗ Tλ for µ ∈ Y+,
Tλ ∗ Xµ

= Xλ+µ
= Xµ

∗ Tλ for µ ∈ Y,
Tλ ∗ Tw = Tλ.w = Tw.λ = Tw ∗ Tλ for w ∈W v.

Such a Tλ is central and invertible in IHI
R , IH̃I

R , BLHR1
, or BLH̃R̃ .
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Actually IHI0
R is the tensor product R[Y 0

c ]⊗RHR(W v)with a direct multiplication
(factor by factor) and IH̃I0

R = R[Y 0
c ] ⊗R (R[�] ⊗R HR(W v)) with a semidirect

multiplication.

7.9. The double affine Hecke algebra. The subalgebra BLH̃0
R̃ is well known as

Cherednik’s double affine Hecke algebra (DAHA). More precisely, Cherednik [1992;
1995] considers an untwisted affine root system, as in [Kac 1990, Chapter 7]; but, as
he works with roots instead of coroots, we write 8∨ for this system. He considers
the case where W̃ v is the full extended Weyl group (W̃ v

=W v
0 nP∨0 with the notation

of Section 7.2), i.e., � ' P∨0 /Q∨0 acts on the extended Dynkin diagram, simply
transitively on its “special” vertices. His choice for Y 0 is Y 0

= Z · 1
m .c⊕ P∨0 ⊂ P∨

(and, e.g., Y = Y 0
⊕ Zd), where m ∈ Z≥1 is suitably chosen. He then defines

the DAHA as an algebra over a field of rational functions C(δ, (qν)ν∈νR ) with
generators (Ti )i∈I, (Xβ)β∈P∨0 and some relations. It is easy to see that this DAHA
is, up to scalar changes, a ring of quotients of our BLH̃0

R̃ (for A, W̃ as described
above): actually δ stands for our Zλc. Here is a partial dictionary to translate from
[Cherednik 1992; Cherednik 1995] to our article: roots ↔ coroots, Xβ 7→ Zβ ,
Ti 7→ Hi , qi 7→ σi , 5 7→�, πr 7→ Tω, δ 7→ Tλc and 1= δm

7→ Tc.
In [Cherednik 1992] there is another presentation of the same DAHA using the

Bernstein presentation of HR(W v). This is also the point of view of [Macdonald
2003], where the framework is more general.
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A CLASSIFICATION OF SPHERICAL CONJUGACY CLASSES

MAURO COSTANTINI

Let G be a simple algebraic group over an algebraically closed field k. We
complete the classification of the spherical conjugacy classes of G begun by
Carnovale (Pacific J. Math. 245 (2010), 25–45) and the author (Trans. Amer.
Math. Soc. 364 (2012), 1997–2019).

1. Introduction

Let G be a simple algebraic group over an algebraically closed field k. In this paper
we complete the classification of the spherical conjugacy classes of G (recalling
that a conjugacy class O in G is called spherical if a Borel subgroup of G has a
dense orbit on O). There has been a lot of work related to this field, beginning
with the work of D. Panyushev [1994; 1999], who classified spherical nilpotent
orbits in the Lie algebra of G, when the base field is C. R. Fowler and G. Röhrle
[2008] classified spherical nilpotent orbits over an algebraically closed field of
good characteristic. Then G. Carnovale [2010], exploiting the characterizations of
spherical conjugacy classes in terms of the Weyl group given in [Cantarini et al.
2005; Carnovale 2008; 2009], classified the spherical conjugacy classes of G in
zero or good, odd characteristic. In [Costantini 2012], we obtained the classification
of spherical unipotent conjugacy classes when the characteristic of k is bad, and
for characteristic 2 in case An . In the present paper we complete the classification,
dealing with nonunipotent conjugacy classes when the characteristic of k is bad,
and when G is of type An and the characteristic is 2.

The second goal of this paper is the characterization of spherical conjugacy classes
in terms of the dimension formula: we prove in Theorem 4.1 that a conjugacy class
O of G is spherical if and only if dimO = `(wO)+ rk(1−wO), where wO is a
certain element of the Weyl group attached to O, as defined in the next section.
This characterization was obtained over C in [Cantarini et al. 2005] and in good,
odd characteristic in [Carnovale 2008]. An elegant proof was obtained in [Lu 2011]
in zero characteristic.

We finally deduce further consequences of the classification.
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2. Preliminaries

We denote by C the complex numbers, by R the reals, and by Z the integers.
Let G be a simple algebraic group of rank n over k, where k is an algebraically

closed field. We fix a maximal torus T of G, a Borel subgroup B containing T, the
unipotent radical U of B and the Borel subgroup B− opposite to B with unipotent
radical U−. Then 8 is the set of roots relative to T, and B determines the set
of positive roots 8+ and the simple roots 1 = {α1, . . . , αn}. We write sα for the
simple reflection associated to α ∈8. We use the numbering and the description
of the simple roots in terms of the canonical basis (e1, . . . , ek) of an appropriate
Rk as in [Bourbaki 1981, Planches I–IX]. For the exceptional groups, we write
β = (m1, . . . ,mn) for β = m1α1 + · · · +mnαn . We identify the Weyl group W
with N/T, where N is the normalizer of T. We denote by w0 the longest element
of W. The real space E = R8 is a Euclidean space, endowed with the W-invariant
scalar product (αi , αj ) = di ai j . Here {d1, . . . , dn} are relatively prime positive
integers such that if D is the diagonal matrix with entries d1, . . . , dn , then DA is
symmetric for A = (ai j ) the Cartan matrix.

We put 5= {1, . . . , n}, and let ϑ be the symmetry of 5 induced by −w0. We
denote by ` the usual length function on W, and by rk(1−w) the rank of 1−w in
the geometric representation of W.

We use the notation xα(ξ) and hα(z) as in [Steinberg 1968; Carter 1989], for
α ∈8, ξ ∈ k, and z ∈ k∗. For α ∈8 we put Xα = {xα(ξ) | ξ ∈ k}, the root-subgroup
corresponding to α, and Hα = {hα(z) | z ∈ k∗}. Given an element w ∈ W we
denote a representative of w in N by ẇ. We choose the xα so that, for all α ∈8,
nα = xα(1)x−α(−1)xα(1) lies in N and has image the reflection sα in W. Then

(2-1) xα(ξ)x−α(−ξ−1)xα(ξ)= hα(ξ)nα, n2
α = hα(−1)

nαxα(x)n−1
α = x−α(−x), hα(ξ)xβ(x)hα(ξ)−1

= xβ(ξ 〈β,α〉x)

for every ξ ∈ k∗, x ∈ k and α, β ∈ 8, where 〈β, α〉 = 2(β, α)/(α, α) [Springer
1998a, Proposition 11.2.1]. The family (xα)α∈8 is called a realization of 8 in G.

We set Tw
={t ∈ T |wtw−1

= t} and T2={t ∈ T | t2
= 1}. In particular Tw

= T2

if w = w0 =−1. We also put Sw = {t ∈ T | wtw−1
= t−1

}.
For algebraic groups we use the notation in [Humphreys 1975; Carter 1985].

In particular, for J ⊆ 5, we have 1J = {α j | j ∈ J }, 8J is the corresponding
root system, WJ the Weyl group, PJ the standard parabolic subgroup of G, and
L J = T 〈Xα | α ∈ 8J 〉 the standard Levi subgroup of PJ . For z ∈ W we put
Uz = U ∩ z−1U−z. Then the unipotent radical Ru PJ of PJ is Uw0wJ

, where wJ
is the longest element of WJ . Moreover U ∩ L J = UwJ

is a maximal unipotent
subgroup of L J (of dimension `(wJ )), and TJ = T ∩ L ′J is a maximal torus of L ′J .
For unipotent classes in exceptional groups we use the notation in [Carter 1985;
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Spaltenstein 1982]. We use the description of centralizers of involutions as in
[Iwahori 1970].

If X is a G-variety and x ∈ X , we denote by G.x the G-orbit of x and by Gx

the isotropy subgroup of x in G. We say that X is spherical if a Borel subgroup
of G has a dense orbit on X . It is well known (see [Brion 1986; Vinberg 1986]
in characteristic 0, [Grosshans 1992; Knop 1995] in positive characteristic) that
X is spherical if and only if the set V of B-orbits in X is finite. If H is a closed
subgroup of G and the homogeneous space G/H is spherical, we say that H is a
spherical subgroup of G.

Let g be an element of G with Jordan decomposition g = su, for s semisimple
and u unipotent. Using a terminology slightly different from the usual, we say that
g is mixed if s 6∈ Z(G) and u 6= 1. For each conjugacy class O in G, w = wO is
the unique element of W such that BwB ∩O is open dense in O.

If x is an element of a group K and H ≤ K , we denote by C(x) the centralizer
of x in K , and by CH (x) the centralizer of x in H. If x , y ∈ K , then x ∼ y means
that x and y are conjugate in K .

If H is an algebraic group, we denote by B(H) a Borel subgroup of H. We
denote the identity matrix of order r by Ir . Finally, in the remainder of the paper
we denote by p the characteristic of k (hence p may be 0).

3. The classification

We recall that the bad primes for the individual types of simple groups are as
follows:

• none when G has type An;

• p = 2 when G has type Bn , Cn or Dn;

• p = 2 or 3 when G has type G2, F4, E6 or E7;

• p = 2, 3 or 5 when G has type E8.

For convenience we assume G simply connected, so that centralizers of semisimple
elements are connected [Carter 1985, Theorem 3.5.6]. However the classification
of spherical conjugacy classes in G is independent of the isogeny class. More
precisely, let D ≤ Z(G) and G = G/D. For the canonical projection π : G→ G
and g ∈ G, put ḡ = π(g). Then it is clear that the conjugacy class of ḡ in G is
spherical if and only if the conjugacy class of g in G is spherical; see also the
discussion at the beginning of [Costantini 2010, §6].

We put 5̃ = 5∪ {0} and 1̃ = 1∪ {α0}, where α0 = −β for the highest root
β of 8+. Thus 5̃ labels the vertices of the extended Dynkin diagram of the root
system 8. For J ⊂ 5̃, let 8J = Z{αi | i ∈ J } ∩8 and

L J = 〈T, Xα | α ∈8J 〉.
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This is called a pseudo-Levi subgroup of G (in the sense of [Sommers 1998]). Then
the following holds:

Proposition 3.1 [McNinch and Sommers 2003, Propositions 30 and 32]. Let t in
G be semisimple. Then C(t) is conjugate to a subgroup L J for some J ⊂ 5̃.

Suppose that the characteristic of k is good for G. Let J ⊂ 5̃. Then there is
t ∈ G such that L J = C(t). �

We recall some basic facts which have been proved for zero or good, odd
characteristic.

Theorem 3.2. Let p 6= 2, and let O be a spherical conjugacy class of a connected
reductive algebraic group. If O∩ BwB is nonempty, then w2

= 1.

Proof. If p is zero or good and odd then this is [Carnovale 2008, Theorem 2.7].
The same proof holds as long as p 6= 2; see also [Carnovale and Costantini 2013,
Theorem 2.1]. �

Remark 3.3. Let M(W ) denote the Richardson–Springer monoid, i.e., the monoid
generated by the symbols rα for α ∈1, subject to the braid relations and the relation
r2
α = rα for α ∈ 1. Given a spherical G-variety, there is an M(W )-action on the

set V of its B-orbits. Under additional conditions, one can also define an action of
W on V . These actions have been introduced in [Richardson and Springer 1990]
and [Knop 1995], respectively, and they have been further analyzed and applied in
[Brion 2001; Mars and Springer 1998, §4.1; Springer 1998b]. The actions of M(W )

and W have been used to prove [Carnovale 2008, Theorem 2.7]. By [Knop 1995,
Theorem 4.2(b)], a case in which the action of W is defined is when p 6= 2. This
allows one to extend the proof of [Carnovale 2008, Theorem 2.7] to the case p 6= 2,
as done in [Carnovale and Costantini 2013, Theorem 2.1]. We shall come back to
this point after the achievement of the classification of spherical conjugacy classes
in characteristic 2.

Let O be a conjugacy class of G and let V be the set of B-orbits in O. There is a
natural map φ : V→W associating to v ∈ V the element w in the Weyl group of G
for which v ⊆ BwB (equivalently, for which v ∩ BwB 6=∅).

Theorem 3.4. Let p 6= 2, and let O be a conjugacy class in a connected reductive
algebraic group. If Im(φ) contains only involutions in W, then O is spherical.

Proof. If p is zero, or good and odd this is [Carnovale 2009, Theorem 5.7]. The
same proof holds as long as p 6= 2, once it is noticed again that the action of W on
V is defined. �

Theorem 3.5 [Cantarini et al. 2005, Theorem 25; Carnovale 2008, Theorem 4.4].
A class O in a connected reductive algebraic group G over an algebraically closed
field of zero or good odd characteristic is spherical if and only if there exists v in V
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such that `(φ(v))+ rk(1−φ(v))= dimO. If this is the case, v is the dense B-orbit
in O and φ(v)= wO (and v =O∩ BwOB). �

For any conjugacy class O, the element wO of the Weyl group is an involution,
i.e., w2

O = 1, is the unique maximal element in its conjugacy class and is of the
form wO =w0wJ , for a certain ϑ-invariant subset J of 5 such that w0(α)=wJ (α)

for every α ∈1J [Carnovale 2008, Lemma 3.5; Chan et al. 2010, Corollary 2.11;
Perkins and Rowley 2002].

We indicate the strategy we followed to determine the classification. Let GC

be the corresponding group over C. We have shown in [Cantarini et al. 2005] that
for every spherical conjugacy class C of GC there exists an involution w = w(C)
in W such that dim C = `(w) + rk(1 − w), with C ∩ BwB 6= ∅ (in fact even
C ∩ BwB ∩ B− 6= ∅). For each group G we introduce a certain set O(G) of
semisimple or mixed conjugacy classes; this set is suggested by the classification
in characteristic zero. For each O ∈ O(G) there is a certain spherical conjugacy
class C in GC such that dimO = dim C. Let w = wC . Our aim is to show that
O∩ BwB 6=∅, so that O is in fact spherical by the following proposition. Finally
we show that any conjugacy class not in O(G) is not spherical.

For convenience of the reader we shall give tables for the nonunipotent spherical
conjugacy classes. In the tables we give a representative g of the spherical conjugacy
class O, the subset J of 5 for which wO = w0wJ , the decomposition of wO into
the product of orthogonal reflections, the type of C(g) when g is semisimple and
the dimension of O.

We recall the following result, proved in [Cantarini et al. 2005, Theorem 5]
over C, but which is valid with the same proof over any algebraically closed field.

Proposition 3.6. Suppose that O contains an element x ∈ BwB. Then

dim B.x ≥ `(w)+ rk(1−w).

In particular, dimO ≥ `(w)+ rk(1−w). If in addition dimO ≤ `(w)+ rk(1−w),
then O is spherical, w = wO and B.x is the dense B-orbit in O.

If g is in Z(G), then g ∈ T, Og = {g} and wO = 1. In the remainder of the paper
we consider only noncentral conjugacy classes.

We shall use the following result.

Lemma 3.7. Assume the positive roots β1, . . . , β` are such that [X±βi , X±β j ] = 1
for every 1 ≤ i < j ≤ `. Then, for g = nβ1 · · · nβ`xβ1(1) · · · xβ`(1) and h ∈ T such
that βi (h) 6= 1 for i = 1, . . . , `, we have

ghg−1
∈ BwB ∩ B−

where w = sβ1 · · · sβ` .
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Proof. By [Carter 1989, p. 106], for every positive root α and every t ∈ k∗ we have
x−α(t) = xα(t−1)nαxα(t−1)h′ for a certain h′ ∈ T, so that x−α(t) ∈ BsαB ∩ B−.
Hence, for every i = 1, . . . , `, by (2-1) we have

nβi xβi(1)h(nβi xβi(1))
−1
= nβi xβi(1)hxβi(−1)h−1hn−1

βi

= nβi xβi(1−βi (h))n−1
βi

nβi hn−1
βi

= x−βi(βi (h)− 1)hi

∈ Bsβi B ∩ B−,

where hi = nβi hn−1
βi
∈ T. Let t1, . . . , t` ∈ k∗. Then

(xβ1(t
−1
1 ) · · · xβ`(t

−1
` ))−1x−β1(t1) · · · x−β`(t`)(xβ1(t

−1
1 ) · · · xβ`(t

−1
` ))

lies in nβ1 Xβ1 · · · nβ` Xβ`T = nβ1 · · · nβ` Xβ1 · · · Xβ`T ⊆ wB. Therefore

ghg−1
= x−β1(β1(h)− 1) · · · x−β`(β`(h)− 1)h1 · · · h` ∈ BwB ∩ B−. �

The hypothesis of the lemma is satisfied for instance if β1, . . . , β` are pairwise
orthogonal and long, as in [Costantini 2010, Lemma 4.1]. In characteristic 2, we
have [Xγ , Xδ] = 1 for every pair (γ, δ) of orthogonal roots.

Let O be the conjugacy class of x ∈G. In general the orbit map π :G/C(x)→O
is a bijective morphism, which may not be separable (i.e., an isomorphism). Never-
theless, we have the following result:

Lemma 3.8 [Fowler and Röhrle 2008, Remark 2.14]. Let O be a G-orbit with
isotropy subgroup H. Then O is spherical if and only if G/H is spherical. �

Proposition 3.9. Let g ∈ G with Jordan decomposition g = su for s semisimple
and u unipotent. If Og is spherical then Os and Ou are spherical.

Proof. By Lemma 3.8, C(g)= C(s)∩C(u) is a spherical subgroup of G. Hence
both C(s) and C(u) are spherical subgroups of G and, by Lemma 3.8, Os and Ou

are spherical. �

For J ⊆5 we put TJ = T ∩ L ′J , a maximal torus of the derived subgroup L ′J of
the standard Levi subgroup L J , so that BJ = TJ UwJ

is a Borel subgroup of L ′J .

Lemma 3.10. Let O be a conjugacy class of G and F ⊆ O. Assume there exists
J ⊆5 such that F ⊆ L J and (BJ .x)x∈F is a family of pairwise distinct BJ -orbits.
Then the family (B.x)x∈F consists of pairwise distinct B-orbits.

Proof. Let x and y be elements of F , and assume B.x = B. y. Then there exists
b ∈ B such that bxb−1

= y, i.e., bx = yb. Since B = T UwJ
Uw0wJ

, where Uw0wJ
is

the unipotent radical of the standard parabolic subgroup PJ , we can write b= tu1u2

with t ∈ T, u1 ∈ UwJ
and u2 ∈ Uw0wJ

, so that tu1u2x = ytu1u2. Since Uw0wJ

is normal in PJ , from uniqueness of expression we get tu1x = ytu1. We may
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decompose T = TJ S where S =
(⋂

i∈J kerαi
)◦, and t = t1t2 with t1 ∈ TJ , t2 ∈ S.

Then S ≤ C(L J ), so that t1u1x = yt1u1. But t1u1 lies in BJ , and we conclude that
BJ .x = BJ . y. Therefore x = y and we are done. �

Lemma 3.11. Let x be a semisimple element of G with C(x)= L J , a pseudo-Levi
subgroup of G, and assume Ox is spherical. Let x̃ be a semisimple element in GC

such that C(x̃)= L J (in GC). Then Ox̃ is spherical.

Proof. First we note that such an x̃ exists, by Proposition 3.1. By Lemma 3.8
and [Brundan 1998, Theorem 2.2(i)], it follows that Ox̃ is a spherical semisimple
conjugacy class in GC. �

Type An, n ≥ 1. For every i = 1, . . . ,
[1

2(n+ 1)
]
, we denote the root ei − en+2−i

by βi .

Proposition 3.12. Let G = SL(2), any characteristic. Let O be a conjugacy class
of G. Then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.

Proof. We may work (and usually do) up to a central element, hence we may assume
O =Ox , x either unipotent or semisimple. If x is unipotent then the result follows
from [Cantarini et al. 2005, Proposition 11], whose proof is characteristic-free. If x
is semisimple, then either x is central, or x is regular. In the first case C(x)= G,
and in the second case we may assume C(x)= T. Now

x =
(

f 0
0 1/ f

)
for a certain f 6= ±1. Let

g =
(

0 1
−1 0

)(
1 1
0 1

)
.

Then gxg−1
∈O∩ BwB ∩ B− by Lemma 3.7, where w = w0, with dimO = 2=

`(w0)+ rk(1−w0). We conclude by Proposition 3.6. �

Lemma 3.13. Let H be connected and reductive, any characteristic. Then H has
a regular spherical conjugacy class if and only if the semisimple part of H is of
type Ar

1. In this case every conjugacy class is spherical.

Proof. Without loss of generality we may assume H = Z ×G1× · · ·×Gr , where
Z = Z(H)◦ and Gi is simple for each i = 1, . . . , r . Let ni = rk Gi and Ni the
number of positive roots of Gi for i = 1, . . . , r . Let x = (z, x1, . . . , xr ) be an
element of H and O = Ox . Then O is spherical if and only if each Gi .xi is
spherical in Gi , and x is regular if and only if each xi is regular in Gi . Moreover, a
spherical Gi -conjugacy class in Gi has dimension at most ni + Ni , while Gi .xi is
regular in Gi if and only if its dimension is 2Ni .
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If the semisimple part of H is of type Ar
1, then every conjugacy class of H is

spherical by Proposition 3.12.
Suppose there exists a regular spherical conjugacy class. Then 2Ni ≤ ni + Ni

for every i , which is possible if and only if Ni = ni = 1 for every i . Hence the
semisimple part of H is of type Ar

1. �

Lemma 3.14. Let H = GL(3), any characteristic, g a regular element of H. Then
there exists a subset F = {xm | m ∈ k∗} of Og such that (B(H).xm)m∈k∗ consists of
pairwise distinct B(H)-orbits.

Proof. For m, a, b, c ∈ k∗, let

xm = xm(a, b, c)=


0 0 abc

m

0 −m −(a+m)(b+m)(c+m)
m

1 1 a+ b+ c+m



=

 0 0 1
0 −1 0
1 0 0




1 0 0

0 m 0

0 0 abc
m




1 1 a+ b+ c+m

0 1 (a+m)(b+m)(c+m)
m2

0 0 1

 ∈ w0 B.

From the uniqueness of Bruhat decomposition, we have B.xm ∩ w0 B = T.xm ;
moreover, CT (xm) consists of scalar matrices, and

S =


 α 0 0

0 β 0
0 0 1

 ∣∣∣∣∣ α, β ∈ k∗


acts as  α 0 0

0 β 0
0 0 1

.xm =


0 0 α

abc
m

0 −m −β
(a+m)(b+m)(c+m)

m
α−1 β−1 a+ b+ c+m

 .
Hence

T.xm ∩F = {xm}.

The characteristic polynomial of xm(a, b, c) is (X − a)(X − b)(X − c). Moreover,
dim B.xm(a, b, c)= 5, so that dimOxm(a,b,c) = 6. We have shown that xm(a, b, c)
is regular for every choice of a, b, c ∈ k∗. Now let g be a regular element of GL(3).
Since Og is determined by the characteristic polynomial of g, there exist a, b, c∈ k∗

such that xm(a, b, c) ∈Og for every m ∈ k∗. We take xm = xm(a, b, c) for m ∈ k∗.
The set F = {xm | m ∈ k∗} is the required set. �
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Proposition 3.15. Let s be a semisimple element of SL(n + 1) with at most 2
eigenvalues, any characteristic, and O its conjugacy class. Then O∩ BwOB ∩ B−

is nonempty, and O is spherical.

Proof. We may assume s = diag(aIk, bIn+1−k) with a 6= b, 1≤ k ≤
[ 1

2(n+1)
]
. Let

g= nβ1 · · · nβk xβ1(1) · · · xβk(1). Then, by Lemma 3.7, gsg−1
∈O∩BwB∩B− with

w=wβ1 · · ·wβk . As dimO= `(w)+rk(1−w), we conclude by Proposition 3.6. �

Theorem 3.16. Let g be an element of SL(n+ 1), any characteristic, g = su its
Jordan decomposition and O its conjugacy class. Then O is spherical if and only if
one of the following holds:

(a) u = 1 and s has at most 2 eigenvalues.

(b) u 6= 1, s ∈ Z(G) and u has Jordan blocks of sizes at most 2.

Proof. Assume that O is spherical. Suppose that neither (a) nor (b) hold. Since by
[Knop 1995, Theorem 2.2] every conjugacy class contained in the closure of O is
spherical, without loss of generality we may assume

g = diag(R, S) for R ∈ GL(3), S ∈ GL(n− 2), S diagonal
with

R =

 a 1 0
0 a 1
0 0 a

 or

 a 1 0
0 a 0
0 0 b

 or

 a 0 0
0 b 0
0 0 c

 ,
a, b and c pairwise distinct. Hence R is regular in GL(3). Consider the elements

gm = diag(xm, S)

for m ∈ k∗, where xm is as defined in Lemma 3.14. We apply Lemma 3.10 with
J = {1, 2} and F = {gm | m ∈ k∗} ⊂ L J . The gm are all G-conjugate to g, and
pairwise not BJ -conjugate. By Lemma 3.10 the family (B.gm)m∈k∗ is an infinite
family of (distinct) B-orbits, a contradiction. Hence either (a) or (b) holds.

The remaining assertions follow by Proposition 3.15, and from the classification
of unipotent classes in zero or odd characteristic ([Carnovale 2010, Theorem 3.2]
and in characteristic 2, [Costantini 2012, Table 1]). �

O J wO C(g) dimO

diag(aIk, bIn+1−k)

k = 1, . . . ,
[1

2(n+ 1)
]

Jk sβ1 · · · sβk T1 Ak−1 An−k 2k(n+ 1− k)
a 6= b

Table 1. Spherical semisimple classes in An , where wO =w0wJ and
Jk = {k+1, . . . , n−k} for k = 1, . . . ,

[1
2(n+1)

]
−1, J[ 12 (n+1)] =∅.
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Type Cn (and Bn), p = 2, n ≥ 2. We put βi = 2ei for each i = 1, . . . , n and
γ` = e2`−1+ e2` for `= 1, . . . ,

[ 1
2 n
]
.

We describe G as the subgroup of GL(2n) of matrices preserving the bilinear
form associated with the matrix

( 0
−In

In
0

)
with respect to the canonical basis of k2n.

We observe that in characteristic 2 the groups of type Bn and Cn are isomorphic as
abstract groups, hence we deal only with type Cn .

Proposition 3.17. Let x be an element of Sp(2n), any characteristic, n ≥ 2, and O
its conjugacy class. If either

(a) x = aλ = diag(λIn, λ
−1 In) for λ 6= ±1, or

(b) x = cλ = diag(λ, In−1, λ
−1, In−1) for λ 6= ±1,

then O∩BwOB∩B− is nonempty, dimO= `(wO)+rk(1−wO) and O is spherical.

Proof. The proof uses the same method as the proof of Proposition 3.15, so we
omit it. �

Proposition 3.18. Let G = Sp(2n), p= 2, n ≥ 2. The spherical semisimple classes
are represented by

(a) aλ = diag(λIn, λ
−1 In) for λ 6= 1,

(b) cλ = diag(λ, In−1, λ
−1, In−1) for λ 6= 1.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or odd)
characteristic [Cantarini et al. 2005, Table 1; Carnovale 2010, Theorem 3.3], it
follows that L J is of type C`Cn−` for ` = 1, . . . ,

[ 1
2 n
]
, T1Cn−1 or T1 Ãn−1. But

Z(C`Cn−`)= 1, so that we are left with

aλ = diag(λIn, λ
−1 In)←→ T1 Ãn−1,

cλ = diag(λ, In−1, λ
−1, In−1)←→ T1Cn−1,

for λ 6= 1. We conclude by Proposition 3.17. �

We now deal with mixed conjugacy classes.

Lemma 3.19. Let H = Sp(4), any characteristic, and

g =


a 0 0 0
0 1 0 1
0 0 1

a 0
0 0 0 1

,
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a mixed regular element of H (so a 6= ±1). Then there is a subset F = {xm |m ∈ k∗}
of Og such that (B(H).xm)m∈k∗ consists of pairwise distinct B(H)-orbits.

Proof. For m ∈ k∗, we put

xm =



0 0 −
1
m

0

0 0 −1 1

m m a2
+m+1

a
m(−2a+m+1)

a

0 −1 −
1
a

2− m
a



=


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




m 0 0 0

0 −1 0 0

0 0 1
m

0

0 0 0 −1





1 1 a2
+m+1
am

−2a+m+1
a

0 1 1
a

m
a
− 2

0 0 1 0

0 0 −1 1


∈ w0 B.

The characteristic polynomial of xm is (X − 1)2(X − a)(X − 1/a), and the 1-
eigenspace has dimension 1. Hence xm is H -conjugate to g. Suppose xm , xm′ are
B-conjugate. Then xm , xm′ are T-conjugate and, from a direct calculation, it follows
that T.xm ∩F = {xm}, hence m = m′. �

Proposition 3.20. Let O be the conjugacy class of a mixed element g of Sp(2n),
p = 2. Then O is not spherical.

Proof. Let g = su, the Jordan decomposition. Assume, for a contradiction, that O
is spherical. Then both Os and Ou are spherical. By Proposition 3.18, H = C(s) is
of type T1Cn−1 or T1 Ãn−1. However dim T1 Ãn−1 = n2, and therefore CT1 Ãn−1

(u)
is not spherical in G. We are left with H of type T1Cn−1, and we may assume
s = ca = hβ1(a) for a certain a 6= 1.

Since every conjugacy class contained in the closure of O is spherical, it is
enough to deal with the minimal nontrivial spherical unipotent classes in T1Cn−1.
From the classification of spherical unipotent classes in characteristic 2 [Costantini
2012, Tables 1 and 2], we may assume

g = hβ1(a)xα2(1) if n = 2,

g = hβn−1(a)xαn(1) or g = hβ1(a)xα2(1) if n ≥ 3,

since hβn−1(a)= diag(In−2, a, 1, In−2, a−1, 1) is conjugate to hβ1(a).
Suppose g = hβn−1(a)xαn(1), n ≥ 2. We apply Lemma 3.10 with J = {n− 1, n}.

By considering the corresponding embedding of C2 into Cn , we may assume that
the family F = {xm | m ∈ k∗}, introduced in Lemma 3.19, is a subset of L J . The
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xm are all G-conjugate to g, and pairwise not BJ -conjugate. By Lemma 3.10,
the family (B.xm)m∈k∗ is an infinite family of (distinct) B-orbits, a contradiction.
Hence the class of g = hβn−1(a)xαn(1) is not spherical.

Suppose g = hβ1(a)xα2(1), n ≥ 3. Then

g =


A 0 0 0
0 In−3 0 0
0 0 tA−1 0
0 0 0 In−3

, A =

a 0 0
0 1 1
0 0 1

.
Let (xm)m∈k∗ be the family introduced in Lemma 3.14, such that xm is GL(3)-
conjugate to A for every m ∈ k∗. We put

gm =


xm 0 0 0
0 In−3 0 0
0 0 t x−1

m 0
0 0 0 In−3

.
The gm are all Sp(2n)-conjugate to g. By Lemma 3.10 with J = {1, 2}, the family
(B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a contradiction. Hence the
class of g = hβ1(a)xα2(1) is not spherical. �

Theorem 3.21. Let G = Sp(2n), p = 2, n ≥ 2. The spherical classes are either
semisimple or unipotent. The semisimple classes are represented in Table 2 and the
unipotent classes are represented in Table 2 of [Costantini 2012]. �

O J wO C(g) dimO

cλ = diag(λ, In−1, λ
−1, In−1) J2 sβ1sβ2 T1Cn−1 4n− 2

λ 6= 1

aλ = diag(λIn, λ
−1 In) ∅ w0 = sβ1 · · · sβn T1 Ãn−1 n2

+ n
λ 6= 1

Table 2. Spherical semisimple classes in Cn , n ≥ 2, p = 2. Here
wO = w0wJ , J2 =∅ if n = 2 and J2 = {3, . . . , n} if n ≥ 3.

Type Dn, p= 2, n≥ 4. Let r =
[ 1

2 n
]
. We put β`= e2`−1+e2` and δ`= e2`−1−e2`

for `= 1, . . . , r . Also, we set J1 = {3, . . . , n}, Kr = {1, 3, . . . , 2r − 1} and, if n is
even, K ′r = {1, 3, . . . , n− 3, n}.

In this section we deal with groups G of type Dn . We recall that we are assuming
G simply connected. Since p = 2, the covering map π : G → SO(2n) is an
isomorphism of abstract groups. We describe SO(2n) as the connected component
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of the subgroup of Sp(2n) of matrices preserving the quadratic form associated
with

( 0
In

In
0

)
with respect to the canonical basis of k2n [Carter 1989, §1.6].

Proposition 3.22. Let x be an element of G = Dn , any characteristic, n ≥ 4, and
O its conjugacy class. If one of

(a) x = cλ = hβ1(λ)hδ1(λ) for λ 6= ±1,

(b) x = aλ = hβ1(λ) · · · hβr (λ) for λ 6= ±1, or

(c) x = a′λ = hβ1(λ) · · · hβr−1(λ)hαn−1(λ) for λ 6= ±1, n even,

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.

Proof. Assume x = cλ with λ 6= ±1. Let g = nβ1nδ1 xβ1(1)xδ1(1). Then we have
gxg−1

∈O∩ BwB ∩ B−, with w = sβ1sδ1 and dimO = `(w)+ rk(1−w).
Similarly, assume x = aλ with λ 6=±1. Let g= nβ1 · · · nβr xβ1(1) · · · xβr(1). Then

gxg−1
∈O∩ BwB ∩ B−, with w = sβ1 · · · sβr and dimO = `(w)+ rk(1−w).

The case (c) follows from (b) by using the graph automorphism of G exchanging
n− 1 and n. We conclude by Proposition 3.6. �

Proposition 3.23. Let G = Dn , p = 2, n ≥ 4. The spherical semisimple classes are
represented by

(a) x = cλ = hβ1(λ)hδ1(λ) for λ 6= 1,

(b) x = aλ = hβ1(λ) · · · hβm (λ) for λ 6= 1,

(c) x = a′λ = hβ1(λ) · · · hβm−1(λ)hαn−1(λ) for λ 6= 1, n even.

Proof. The proof uses the same method as the proof of Proposition 3.18, so we
omit it. �

We now deal with mixed conjugacy classes.

Proposition 3.24. Let O be the conjugacy class of a mixed element g in Dn , p = 2.
Then O is not spherical.

Proof. We work with SO(2n) via π . Let g= su, the Jordan decomposition. Assume
that O is spherical. Then both Os and Ou are spherical, and we may assume, up to
conjugation and graph automorphism, that for a certain a 6= 1,

s = diag(aIn−1, a−1, a−1 In−1, a) or s = diag(In−3, a, I2, In−3, a−1, I2).

Assume s = diag(aIn−1, a−1, a−1 In−1, a) for a certain a 6= 1. Without loss of
generality we may assume u = xαn−2(a

−1), so that

g =


aIn−3 0 0 0

0 A 0 0
0 0 a−1 In−3 0
0 0 0 tA−1

, A =

a 1 0
0 a 0
0 0 a−1

.
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Let (xm)m∈k∗ be the family introduced in Lemma 3.14, such that xm is GL(3)-
conjugate to A for every m ∈ k∗ and (B(GL(3)).xm)m∈k∗ consists of pairwise
distinct B(GL(3))-orbits.

We put

gm =


aIn−3 0 0 0

0 xm 0 0
0 0 a−1 In−3 0
0 0 0 tx−1

m

.
The gm are all SO(2n)-conjugate to g. By Lemma 3.10 with J = {n− 1, n− 2},
the family (B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a contradiction.
This settles the cases when n is odd and C(s) is of type T1 An−1, and when n is
even and C(s) is of type (T1 An−1)

′. Upon application of the graph automorphism
exchanging n and n− 1, this also settles the case when n is even and C(s) is of
type T1 An−1.

Assume s = diag(a, In−1, a−1, In−1) for a certain a 6= 1. Without loss of gener-
ality we may assume u = xα2(1), so that

g =


A 0 0 0
0 In−3 0 0
0 0 tA−1 0
0 0 0 In−3

, A =

a 0 0
0 1 1
0 0 1

.
Let (xm)m∈k∗ be the family introduced in Lemma 3.14, such that xm is GL(3)-
conjugate to A for every m ∈ k∗ and (B(GL(3)).xm)m∈k∗ consists of pairwise
distinct B(GL(3))-orbits.

O J wO C(g) dimO

cλ = hβ1(λ)hδ1(λ)

λ 6= 1 J1 sβ1sδ1 T1 Dn−1 4(n− 1)
diag(λ2, In−1, λ

−2, In−1)

aλ = hβ1(λ) · · · hβr(λ)

λ 6= 1 Kr sβ1 · · · sβr T1 An−1 n2
− n

diag(λIn, λ
−1 In)

a′λ = hβ1(λ) · · · hβr−1(λ)hαn−1(λ)

λ 6= 1 K ′r sβ1 · · · sβr−1sαn−1 (T1 An−1)
′ n2

− n
diag(λIn−1, λ

−1, λ−1 In−1, λ)

Table 3. Spherical semisimple classes in Dn , p= 2, n≥ 4, n= 2r ,
where wO = w0wJ .
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O J wO C(g) dimO

cλ = hβ1(λ)hδ1(λ)

λ 6= 1 J1 sβ1sδ1 T1 Dn−1 4(n− 1)
diag(λ2, In−1, λ

−2, In−1)

aλ = hβ1(λ) · · · hβr(λ)

λ 6= 1 Kr sβ1 · · · sβr T1 An−1 n2
− n

diag(λIn, λ
−1 In)

Table 4. Spherical semisimple classes in Dn , p = 2, n ≥ 5,
n = 2r + 1, where wO = w0wJ .

Set

gm =


xm 0 0 0
0 In−3 0 0
0 0 tx−1

m 0
0 0 0 In−3

.
The gm are all SO(2n)-conjugate to g. By Lemma 3.10 with J = {1, 2}, the family
(B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a contradiction. This settles
the case when C(s) is of type T1 Dn−1, and we are done. �

Theorem 3.25. Let G = Dn , p = 2, n ≥ 4. The spherical classes are either
semisimple or unipotent. The semisimple classes are represented in Tables 3 and 4,
and the unipotent classes in Tables 3 and 4 of [Costantini 2012]. �

Type E6. We put

β1 = (1, 2, 2, 3, 2, 1), β2 = (1, 0, 1, 1, 1, 1),

β3 = (0, 0, 1, 1, 1, 0), β4 = (0, 0, 0, 1, 0, 0).

Proposition 3.26. Let x be an element of E6, any characteristic, and O its conju-
gacy class. If one of

(a) x = hα1(−1)hα4(−1)hα6(−1),

(b) x = h(z)= hα1(z
4)hα2(z

3)hα3(z
5)hα4(z

6)hα5(z
4)hα6(z

2) for z3
6= 1,

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO), and O is
spherical.

Proof. (a) If p = 2, then x = 1, and there is nothing to prove. So assume p 6= 2.
In G there are two classes of involutions: one has centralizer of type A1 A5 and
dimension 40, the other has centralizer of type D5T1 and has dimension 32. Let
y = nβ1 · · · nβ4 ∈ w0 B, w = sβ1 · · · sβ4 = w0. Then y2

= hβ1(−1) · · · hβ4(−1)= 1,
and dimOy ≥ 40 by Proposition 3.6. Since C(x) is of type A1 A5, we conclude
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that x ∼ y, so that O ∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0) and O
is spherical. It is a general fact that if t is semisimple and Ot ∩ BwB 6= ∅, then
Ot ∩ BwB ∩ B− 6=∅ [Cantarini et al. 2005, Lemma 14].

(b) In this case C(x) is of type D5T1 (note that C(x)= C(h(−1)) if p 6= 2). Let
g = nβ1nβ2 xβ1(1)xβ2(1). Then gxg−1

∈ O ∩ Bsβ1sβ2 B ∩ B−, with w = sβ1sβ2 and
dimO = `(w)+ rk(1−w). We conclude by Proposition 3.6. �

Proposition 3.27. Let G = E6. The spherical semisimple classes are represented
by

h(z)= hα1(z
4)hα2(z

3)hα3(z
5)hα4(z

6)hα5(z
4)hα6(z

2), z3
6= 1, for p = 2,

hα1(−1)hα4(−1)hα6(−1),

h(z)= hα1(z
4)hα2(z

3)hα3(z
5)hα4(z

6)hα5(z
4)hα6(z

2), z 6= 1,

}
for p = 3.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.6],
it follows that L J is of type A1 A5 or D5T1.

Let p = 2. Then Z(A1 A5) = Z(G) (of order 3), so that we are left with h(z),
for z3

6= 1.
Let p = 3. Then Z(G)= 1, and we conclude by Proposition 3.26. �

We have established the information in Tables 5 and 6, where wO = w0wJ .

Proposition 3.28. Let O be the conjugacy class of a mixed element g in E6, p = 2
or 3. Then O is not spherical.

Proof. Let g= su, the Jordan decomposition. Assume that O is spherical. Then both
Os and Ou are spherical, and therefore C(s) is of type A1 A5 or D5T1. A dimensional
argument rules out all the possibilities except the case that C(s) is of type A1 A5

and u is a nonidentical unipotent element in the component A1 of C(s) (hence
p = 3). Therefore, without loss of generality we may assume g = hα1(−1)xα1(1),
which is a regular element of the standard Levi subgroup L J , for J = {1, 2}. By
Lemma 3.14, there is an infinite family F = {gm | m ∈ k∗} ⊂ L J such that the gm

O J wO C(g) dimO

h(z)= hα3(z
5)hα4(z

6)hα5(z
4)hα6(z

2)
{3, 4, 5} sβ1sβ2 D5T1 32

z3
6= 1

Table 5. Spherical semisimple classes in E6, p = 2.



A CLASSIFICATION OF SPHERICAL CONJUGACY CLASSES 79

O J wO C(g) dimO
h(z)= hα1(z

4)hα2(z
3)hα3(z

5)

· hα4(z
6)hα5(z

4)hα6(z
2) {3, 4, 5} sβ1sβ2 D5T1 32

z 6= 1

hα1(−1)hα4(−1)hα6(−1)∼ hα1(−1) ∅ w0 A1 A5 40

Table 6. Spherical semisimple classes in E6, p = 3.

are all L J -conjugate (hence G-conjugate) to g, and pairwise not BJ -conjugate. By
Lemma 3.10 the family (B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a
contradiction. Hence O is not spherical. �

Theorem 3.29. Let G= E6, p= 2 or 3. The spherical classes are either semisimple
or unipotent, up to a central element if p=2. The semisimple classes are represented
in Tables 5 and 6, and the unipotent classes are represented in Tables 6 and 7 of
[Costantini 2012]. �

Type E7. Here Z(G)= 〈τ 〉, where τ = hα2(−1)hα5(−1)hα7(−1). We put

β1 = (2, 2, 3, 4, 3, 2, 1), β2 = (0, 1, 1, 2, 2, 2, 1), β3 = (0, 1, 1, 2, 1, 0, 0),

β4 = α7, β5 = α5, β6 = α3, β7 = α2.

Proposition 3.30. Let x be an element of E7, any characteristic, and O its conju-
gacy class. If one of

(a) x = hα2(−ζ )hα5(ζ )hα6(−1)hα7(−ζ ) for ζ 2
=−1, p 6= 2,

(b) x = hα1(−1) for p 6= 2,

(c) x = h(z)= hα1(z
2)hα2(z

3)hα3(z
4)hα4(z

6)hα5(z
5)hα6(z

4)hα7(z
3) for z 6= ±1,

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO), and O is
spherical.

Proof. (a) Let Y be the set of elements y of order 4 of T such that y2
= τ . Then Y

is the disjoint union of 2 W-classes Y1 and Y2: C(y) is of type A7 if y ∈ Y1, and
of type E6T1 if y ∈ Y2. A representative for Y1 is hα2(−ζ )hα5(ζ )hα6(−1)hα7(−ζ )

where ζ is a square root of −1.
Let y=nβ1 · · · nβ7∈w0 B,w=sβ1 · · · sβ7=w0. Then y2

=hβ1(−1) · · ·hβ7(−1)=τ,
and dimOy ≥ dim B by Proposition 3.6. Since C(x) is of type A7, we conclude
that x ∼ y, so that O∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0) and O is
spherical. As above, O∩ BwB ∩ B− 6=∅.

(b) The group G has 2 classes of noncentral involutions: Ohβ1(−1) and Ohβ1(−1)τ .
In fact there are 127 involutions in T, and τ is central. The remaining 126 fall in 2
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classes: {hα(−1) | α ∈8+} and {hα(−1)τ | α ∈8+}. Let y = nβ1nβ2nβ3nα3∈ wB,
where w = sβ1sβ2sβ3sα3 . Then y2

= hβ1(−1)hβ2(−1)hβ3(−1)hα3(−1)= 1, so that
y is a (noncentral) involution. We conclude that x ∼ y or x ∼ yτ , so that (in either
case) O ∩ BwB is nonempty, dimO = `(w)+ rk(1−w) and O is spherical. As
above, O∩ BwB ∩ B− 6=∅. (In fact we have nα∼ hα(ζ ) already in 〈Xα, X−α〉 for
every root α, hence nβ1nβ2nβ3nα3∼ hβ1(ζ )hβ2(ζ )hβ3(ζ )hα3(ζ ) = hγ (−1), where
γ = β1−α1. Therefore x ∼ y.)

(c) (any characteristic) We have C(x) of type E6T1. Let

g = nβ1nβ2nα7 xβ1(1)xβ2(1)xα7(1).

Then gxg−1
∈O∩ BwB∩ B−, with w= sβ1sβ2sα7 , and dimO= `(w)+ rk(1−w).

We conclude by Proposition 3.6. �

Proposition 3.31. Let G = E7. The spherical semisimple classes are represented
by

h(z)= hα1(z
2)hα2(z

3)hα3(z
4)hα4(z

6)hα5(z
5)hα6(z

4)hα7(z
3), z 6= 1, for p = 2,

hα2(−ζ )hα5(ζ )hα6(−1)hα7(−ζ ), ζ
2
=−1,

hα1(−1), hα1(−1)τ,

h(z)= hα1(z
2)hα2(z

3)hα3(z
4)hα4(z

6)hα5(z
5)hα6(z

4)hα7(z
3), z 6= ±1,

 for p = 3.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.7],
it follows that L J is of type E6T1, D6 A1 or A7.

Let p = 2. Then Z(G)= Z(D6 A1)= Z(A7)= 1, so that we are left with h(z),
for z 6= 1.

For p = 3, we conclude by Proposition 3.30. �

We have established the information in Tables 7 and 8, where wO = w0wJ .

O J wO C(g) dimO

h(z)= hα1(z
2)hα2(z

3)hα3(z
4)

· hα4(z
6)hα5(z

5)hα6(z
4)hα7(z

3) {2, 3, 4, 5} sβ1sβ2sα7 E6T1 54

z 6= 1

Table 7. Spherical semisimple classes in E7, p = 2.
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O J wO C(g) dimO

h(z)= hα1(z
2)hα2(z

3)hα3(z
4)

· hα4(z
6)hα5(z

5)hα6(z
4)hα7(z

3) {2, 3, 4, 5} sβ1sβ2sα7 E6T1 54

z 6= ±1

hα1(−1), hα1(−1)τ {2, 5, 7} sβ1sβ2sβ3sα3 D6 A1 64

hα2(−ζ )hα5(ζ )hα6(−1)hα7(−ζ ) ∅ w0 A7 70
ζ 2
=−1

Table 8. Spherical semisimple classes in E7, p = 3.

Proposition 3.32. Let O be the conjugacy class of a mixed element g in E7, p = 2
or 3. Then O is not spherical.

Proof. Let g = su, the Jordan decomposition. Assume that O is spherical. Then
both Os and Ou are spherical, and therefore C(s) is of type E6T1, D6 A1 or A7.
A dimensional argument rules out all the possibilities except the case that C(s)
is of type D6 A1 and u is a nonidentical unipotent element in the component A1

of C(s) (hence p = 3). Therefore, without loss of generality we may assume
g = hα7(−1)xα7(1), which is a regular element of the standard Levi subgroup L J ,
for J = {6, 7}. By Lemma 3.14, there is an infinite family F = {gm |m ∈ k∗} ⊂ L J

such that the gm are all L J -conjugate (hence G-conjugate) to g, and pairwise not
BJ -conjugate. By Lemma 3.10 the family (B.gm)m∈k∗ is an infinite family of
(distinct) B-orbits, a contradiction. Hence O is not spherical. �

Theorem 3.33. Let G= E7, p= 2 or 3. The spherical classes are either semisimple
or unipotent, up to a central element if p=3. The semisimple classes are represented
in Tables 7 and 8, and the unipotent classes are represented in Tables 8 and 9 of
[Costantini 2012]. �

Type E8. We put

β1 = (2, 3, 4, 6, 5, 4, 3, 2), β2 = (2, 2, 3, 4, 3, 2, 1, 0),

β3 = (0, 1, 1, 2, 2, 2, 1, 0), β4 = (0, 1, 1, 2, 1, 0, 0, 0),

β5 = α7, β6 = α5, β7 = α3, β8 = α2.

Proposition 3.34. Let x be an element of E8, p 6= 2, and O its conjugacy class. If
one of

(a) x = hα2(−1)hα3(−1),

(b) x = hα2(−1)hα5(−1)hα7(−1)∼ hα8(−1),

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.
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Proof. The group E8, for p 6= 2, has 2 classes of involutions.

(a) Let y = nβ1 · · · nβ8 ∈ w0 B, w = sβ1 · · · sβ8 = w0. Then

y2
= hβ1(−1) · · · hβ8(−1)= 1,

and dimOy ≥ dim B by Proposition 3.6. Since C(x) is of type D8, we conclude
that x ∼ y, so that O∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0) and O is
spherical. As above, O∩ BwB ∩ B− 6=∅.

(b) Let x = hα8(−1), so that C(x) is of type E7 A1. Let

g = nβ1nβ2nβ3nα7 xβ1(1)xβ2(1)xβ3(1)xα7(1).

Then gxg−1
∈O∩BwB∩B−, with w= sβ1sβ2sβ3sα7 and dimO= `(w)+rk(1−w).

We conclude by Proposition 3.6. �

Proposition 3.35. Let G = E8. The spherical (nontrivial) semisimple classes are
represented by

none, for p = 2,

hα2(−1)hα3(−1),

hα8(−1),

}
for p = 3 or 5.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.8],
it follows that L J is of type E7 A1 or D8.

Let p = 2. Then Z(E7 A1) = Z(D8) = 1, so there are no nontrivial spherical
semisimple classes.

For p = 3 or 5, we conclude by Proposition 3.34. �

We have established the information in Table 9, where wO = w0wJ .

Proposition 3.36. Let O be the conjugacy class of a mixed element g in E8, p = 2,
3 or 5. Then O is not spherical.

O J wO C(g) dimO

hα8(−1) {2, 3, 4, 5} sβ1sβ2sβ3sα7 E7 A1 112

hα2(−1)hα3(−1) ∅ w0 D8 128

Table 9. Spherical semisimple classes in E8, p = 3 or 5.
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Proof. Let g= su, the Jordan decomposition. Assume that O is spherical. Then both
Os and Ou are spherical, and therefore C(s) is of type E7 A1 or A7. A dimensional
argument rules out all the possibilities except the case that C(s) is of type E7 A1 and
u is a nonidentical unipotent element in the component A1 of C(s) (hence p = 3
or 5). Therefore, without loss of generality we may assume g = hα8(−1)xα8(1),
which is a regular element of the standard Levi subgroup L J , for J = {7, 8}. By
Lemma 3.14, there is an infinite family F = {gm | m ∈ k∗} ⊂ L J such that the gm

are all L J -conjugate (hence G-conjugate) to g, and pairwise not BJ -conjugate. By
Lemma 3.10 the family (B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a
contradiction. Hence O is not spherical. �

Theorem 3.37. Let G = E8, p = 2, 3 or 5. The spherical classes are either
semisimple or unipotent. The semisimple classes are represented in Table 9, and the
unipotent classes are represented in [Costantini 2012, Tables 10 and 11]. �

Type F4. We put

β1 = (2, 3, 4, 2), β2 = (0, 1, 2, 2), β3 = (0, 1, 2, 0), β4 = (0, 1, 0, 0).

Also, γ1 is the highest short root (1, 2, 3, 2).

Proposition 3.38. Let x be an element of F4, p 6= 2, and O its conjugacy class. If
one of

(a) x = hα2(−1)hα4(−1)∼ hα1(−1),

(b) x = hα4(−1),

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.

Proof. The group F4, for p 6= 2, has 2 classes of involutions.

(a) Let y = nβ1 · · · nβ4 ∈ w0 B, w = sβ1 · · · sβ4 = w0. Then

y2
= hβ1(−1) · · · hβ4(−1)= 1,

and dimOy ≥ dim B by Proposition 3.6. Since C(x) is of type A1C3, we conclude
that x ∼ y, so that O∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0) and O is
spherical. As above, O∩ BwB ∩ B− 6=∅.

(b) We have C(x) of type B4. Let g = nγ1 xγ1(1). Then gxg−1
∈ O ∩ BwB ∩ B−,

with w = sγ1 and dimO = `(w)+ rk(1−w). We conclude by Proposition 3.6. �

Proposition 3.39. Let G = F4. The spherical (nontrivial) semisimple classes are
represented by

none, for p = 2,

hα1(−1),

hα4(−1),

}
for p = 3.
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O J wO C(g) dimO

hα4(−1) {1, 2, 3} sγ1 B4 16

hα1(−1) ∅ w0 C3 A1 28

Table 10. Spherical semisimple classes in F4, p = 3.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.9],
it follows that L J is of type C3 A1 or B4.

Let p = 2. Then Z(C3 A1) = Z(B4) = 1, so there are no nontrivial spherical
semisimple classes.

For p = 3, we conclude by Proposition 3.38. �

We have established the information in Table 10, where wO = w0wJ .
We finally deal with mixed classes in F4. We recall that over the complex

numbers the principal model orbit is a mixed conjugacy class; see [Luna 2007,
3.3(6) and p. 300], and also [Costantini 2010, Table 24].

Proposition 3.40. Let x = hα4(−1)xα1(1) in F4, p 6= 2, and O its conjugacy class.
Then O∩BwOB∩B− is nonempty, dimO= `(wO)+rk(1−wO) and O is spherical.

Proof. This is the mixed class in F4 which is spherical in zero or good, odd
characteristic. We can deal with this class with the same method used in the proof
of [Cantarini et al. 2005, Theorem 23], and corrected in the proof of [Carnovale
2010, Theorem 3.9], to show that Bw0 B ∩O 6= ∅, so that wO = w0, dimO =
`(w0)+ rk(1−w0) and O is spherical. The (correct) argument at the end of the
proof of [Cantarini et al. 2005, Theorem 23] shows that O∩ Bw0 B ∩ B− 6=∅. �

Proposition 3.41. Let G = F4. The spherical mixed classes are represented by

none, for p = 2,

hα4(−1)xα1(1), for p = 3.

Proof. Let g = su, the Jordan decomposition of a mixed element g. Assume that
O =Og is spherical. Then both Os and Ou are spherical, and therefore C(s) is of
type C3 A1 or B4. A dimensional argument rules out all the possibilities except the
case that C(s) is of type B4 and u is in the minimal unipotent class of C(s) (hence
p = 3). Therefore, without loss of generality we may assume g = hα4(−1)xα1(1).
We conclude by Proposition 3.40. �
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O J wO dimO

hα4(−1)xα1(1) ∅ w0 28

Table 11. Spherical mixed classes in F4, p = 3.

Theorem 3.42. Let G = F4, p = 2 or 3. If p = 2, the spherical classes are
unipotent and are represented in Table 13 of [Costantini 2012]. If p = 3, the
spherical semisimple classes are represented in Table 10, the spherical unipotent
classes are represented in Table 12 of [Costantini 2012] and the spherical mixed
classes are represented in Table 11. �

Type G2. We put β1 = (3, 2) and β2 = α1. Also, γ1 is the highest short root (2, 1).

Proposition 3.43. Let x be an element of G2, any characteristic, and O its conju-
gacy class. If one of

(a) x = hα1(−1), p 6= 2,

(b) x = hα1(ζ ), ζ a primitive 3rd root of 1, p 6= 3,

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.

Proof. (a) For p 6= 2, the group G2 has 1 class of involutions. Let

y = nβ1nβ2 ∈ w0 B, w = sβ1sβ2 = w0.

Then y2
= hβ1(−1)hβ2(−1) = 1, and dimOy ≥ dim B by Proposition 3.6. We

conclude that x ∼ y, so that O∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0)

and O is spherical. As above, O∩ BwB ∩ B− 6=∅.

(b) For p 6= 3, let g = nγ1 xγ1(1). Then gxg−1
∈O∩ BwB ∩ B−, with w = sγ1 and

dimO = `(w)+ rk(1−w). We conclude by Proposition 3.6. �

Proposition 3.44. Let G = G2. The spherical semisimple classes are represented
by

hα1(−1), for p = 3,

hα1(ζ ), ζ a primitive 3rd root of 1, for p = 2.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.1],
it follows that L J is of type A1 Ã1 or A2. If p = 2, then Z(A1 Ã1) = 1. If p = 3,
then Z(A2)= 1 and we conclude by Proposition 3.43. �
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O J wO C(g) dimO

hα1(ζ ) {2} sγ1 A2 6
ζ a primitive 3rd root of 1

Table 12. Spherical semisimple classes in G2, p = 2.

O J wO C(g) dimO

hα1(−1) ∅ w0 A1 Ã1 8

Table 13. Spherical semisimple classes in G2, p = 3.

Theorem 3.45. Let G = G2, p = 2, 3. The spherical classes are either semisimple
or unipotent. The semisimple classes are represented in Tables 12 and 13, and the
unipotent classes are represented in Tables 14 and 15 of [Costantini 2012].

Proof. By the above discussion, we are left to show that no mixed class is spherical.
Let g = su, the Jordan decomposition. Assume that Og is spherical. Then both Os

and Ou are spherical, and therefore C(s) is of type A1 Ã1 or A2. A dimensional
argument rules out all the possibilities. �

4. Final remarks

Once we have achieved the classification of spherical conjugacy classes and proved
that for every spherical conjugacy class O we have dimO = `(wO)+ rk(1−wO),
we can extend to all characteristics the results obtained in [Carnovale 2008; 2009;
Cantarini et al. 2005; Lu 2011] for the zero and good odd characteristic cases. In
[Cantarini et al. 2005, Theorem 25] we established the characterization of spherical
conjugacy classes in terms of the dimension formula: a conjugacy class O in G is
spherical if and only if dimO = `(wO)+ rk(1−wO). This was obtained over the
complex numbers, and the same proof works over any algebraically closed field
of characteristic zero. Then the same characterization was given in zero, or good
odd characteristic in [Carnovale 2008, Theorem 4.4], without the classification of
spherical conjugacy classes. Lu gave a very neat proof of the dimension formula
(even for twisted conjugacy classes) in [Lu 2011, Theorem 1.1] in characteristic
zero. From the results obtained in the previous section, we may state:

Theorem 4.1. Let O be a conjugacy class of a simple algebraic group, any charac-
teristic. The following are equivalent:

(a) O is spherical;

(b) There exists w ∈W such that O∩ BwB 6=∅ and dimO ≤ `(w)+ rk(1−w);

(c) dimO = `(wO)+ rk(1−wO). �
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Corollary 4.2. Let O be a spherical class of G. Then dimO ≤ `(w0)+ rk(1−w0).

Proof. We have dimO = `(wO)+ rk(1−wO), and

`(w)+ rk(1−w)≤ `(w0)+ rk(1−w0)

for every w ∈W (cf. [Carnovale 2008, Remark 4.14]). �

Proposition 4.3. Let O be a spherical conjugacy class and w=wO =w0wJ . Then
(Tw)◦ ≤ CT (x) ≤ Tw, CU (x) = UwJ

and (Tw)◦UwJ
≤ CB(x) ≤ TwUwJ

for every
x ∈O∩wB.

Proof. We choose a representative ẇ of w in N such that x = ẇu for u ∈ U.
Let b = tu1u2 ∈ CB(x), where t ∈ T, u1 ∈ Uw and u2 ∈ UwJ

. From the Bruhat
decomposition, we get u1 = 1 and t ∈ Tw, so that CB(x) ≤ TwUwJ

. But the
dimension formula dimO = `(w)+ rk(1−w) implies

dim CB(x)= n− rk(1−w)+ `(wJ )= dim TwUwJ
.

Hence (CB(x))◦ = (Tw)◦UwJ
and CU (x)=UwJ

.
Now assume b= tu1∈CT Uw

(x), where t ∈T and u1∈Uw. Again from the Bruhat
decomposition, we get u1 = 1 and t ∈ Tw, so that CT Uw

(x) = CT (x) ≤ Tw. We
have B.x = T UwUwJ

.x = T Uw.x , hence dim CT Uw
(x)= n− rk(1−w)= dim Tw.

It follows that (Tw)◦ ≤ CT (x)≤ Tw. �

Theorem 4.4. Let O be a spherical conjugacy class of a simple algebraic group
and v = O∩ BwOB the dense B-orbit. Then CU (x) is connected and CB(x) is a
split extension of (CB(x))◦ by an elementary abelian 2-group for every x ∈ v. If
p = 2, then CU (x), CT (x) and CB(x) are connected for every x ∈O∩ BwOB.

Proof. Let w=wO. We may assume x ∈wB. From the discussion after [Costantini
2010, Corollary 3.22], we have T = (Tw)◦(Sw)◦, where Sw = {t ∈ T | tw = t−1

}.
Then Tw

= (Tw)◦(Tw
∩T2), where T2={t ∈ T | t2

= 1}, and CT (x)= (Tw)◦CT2(x)
by Proposition 4.3. There exists a subgroup R of T2 such that Tw

= (Tw)◦× R,
whence CT (x)= (Tw)◦×CR(x). In particular,

CB(x)= ((Tw)◦×CR(x))UwJ
= (CB(x))◦CR(x).

If p = 2, then T2 = {1}, Tw
= (Tw)◦ = CT (x) and CB(x)= (CB(x))◦. �

We recall, from Remark 3.3, that there is an action of W on the set V of B-orbits
in O when O is a spherical conjugacy class and p 6= 2. We are now in the position
to prove that this action is also defined for p = 2.

Corollary 4.5. Let O be a spherical conjugacy class of a simple algebraic group,
any characteristic. Then there is an action of the Weyl group W on the set of
B-orbits in O (as defined in [Knop 1995]).
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Proof. We have only to deal with p=2. By [Knop 1995, Theorem 4.2(c)], the action
of W is defined on the set of B-orbits in O as long as CU (x) is connected for every
x ∈O. By Theorem 4.4, CU (x) is connected for every x in the dense B-orbit; this
ensures that CU (x) is connected for every x ∈O by [Knop 1995, Corollary 3.4]. �

Once the W -action has been defined when p = 2, we can extend to this case the
results obtained by G. Carnovale in zero or good odd characteristic.

Theorem 4.6. Let O be a spherical conjugacy class of a simple algebraic group. If
O∩ BwB is nonempty, then w2

= 1.

Corollary 4.7. Let O be a spherical conjugacy class, and assume O∩ BwB 6=∅
for some w ∈W. Then O∩ BzB 6=∅ for every conjugate z of w in W.

Theorem 4.8. Let O be a conjugacy class in a simple algebraic group. If

{w ∈W |O∩ BwB 6=∅} ⊆ {w ∈W | w2
= 1},

then O is spherical.

Assume O is a spherical conjugacy class of a simple algebraic group (any
characteristic), and v the dense B-orbit in O. Set P = {g ∈ G | g.v = v}. Then P
is a parabolic subgroup of G containing B, and therefore P = PK , the standard
parabolic subgroup relative to a certain subset K of 5.

Theorem 4.9. Let O be a spherical conjugacy class of a simple algebraic group,
any characteristic, w = w0wJ be the unique element in W such that O∩ BwB is
dense in O, v = O ∩ BwB the dense B-orbit in O and PK = {g ∈ G | g.v = v}.
Then K = J . If x ∈ O ∩ wB, then L ′J and (Tw)◦ are contained in C(x) and
CB(x)◦ = (Tw)◦UwJ

.

Proof. We have already showed that CB(x)◦ = (Tw)◦UwJ
for every x ∈ O ∩wB.

Let S = {i, ϑ(i)} be a ϑ-orbit in 5 \ J consisting of 2 elements. We define
HS = {hαi(z)hαϑ(i)(z

−1) | z ∈ k∗}. Let S1 be the set of ϑ-orbits in 5 \ J consisting
of 2 elements. Then, by [Costantini 2010, Remark 3.10], 1J ∪ {αi −αϑ(i)}S1 is a
basis of ker(1−w) and

(4-1) (Tw)◦ =
∏
j∈J

Hα j ×

∏
S∈S1

HS.

We put 9J = {β ∈ 8 | w(β) = −β}. Then 9J is a root system in Im(1 − w)
[Springer 1982, Proposition 2], and w|Im(1−w) is −1. If K = C((Tw)◦)′, then K
is semisimple with root system 9J and maximal torus T ∩ K = (Sw)◦. Assume
x = ẇu ∈ v, with u ∈U . Then (Tw)◦ ≤C(x) implies x ∈C((Tw)◦), and moreover,
ẇ ∈ C(Tw), so that u ∈ K . Let u =

∏
α∈8+∩9J

xα(kα) be the expression of u for
any fixed total ordering on 8+. If kα 6= 0, then w(α) = −α, so that in particular
u ∈ Uw. Moreover, if β ∈ 8J , then (α, β) = (wα,wβ) = (−α, β), so that α ⊥ β.
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Finally, we have ϑα = −α, since wα = −α is equivalent to wJα = −w0α, and
wJα = α, since wJ ∈WJ and (α, α j )= 0 for every j ∈ J .

From the fact that UwJ
≤ C(x), it follows that UwJ

≤ C(ẇ), and therefore
UwJ
≤ C(u). From the Chevalley commutator formula, we deduce further that

wJ UwJ
w−1

J ≤ C(u), so that L ′J ≤ C(x). Then we may argue as in the proof of
[Carnovale 2008, Proposition 4.15] to conclude that K = J. �

Remark 4.10. Assume G is a connected reductive algebraic group over k. From
the classification of spherical conjugacy classes obtained in simple algebraic groups
(which is independent of the isogeny class), one gets the classification of spherical
conjugacy classes in G. In fact, if G = ZG1 · · ·Gr , where Z is the connected
component of the center of G, and G1, . . . ,Gr are the simple components of G,
then the conjugacy class O in G of x = zx1 · · · xr , with z ∈ Z and xi ∈ Gi for
i = 1, . . . , r , is spherical if and only if the conjugacy class Oi of xi in Gi is spherical
for every i = 1, . . . , r .

Remark 4.11. In order to show that a conjugacy class O is spherical, we showed
that dimO = `(wO)+ rk(1−wO). However, in each case we even showed that
O∩ BwOB ∩ B− 6=∅. The motivation for this was the proof of the De Concini–
Kac–Procesi conjecture for quantum groups at roots of one over spherical conjugacy
classes; see [Cantarini et al. 2005]. The fact that O∩ BwOB ∩ B− 6=∅ for every
spherical conjugacy class has been proved in characteristic zero in [Cantarini et al.
2005]. It is a general fact that if O is semisimple, then O ∩ BwB 6= ∅ implies
O∩BwB∩B− 6=∅ for anyw∈W [Cantarini et al. 2005, Lemma 14]. For unipotent
classes, we showed in [Costantini 2012] for p = 2 that O∩ BwOB ∩ B− 6=∅ by
exhibiting explicitly an element in O∩ BwOB ∩ B−. The argument in [Cantarini
et al. 2005, Lemma 10] allows one to prove that O∩ BwOB ∩ B− 6=∅ for every
spherical unipotent class in good characteristic. However, it is possible to adapt the
same proof to the remaining unipotent classes in bad characteristic, due to the fact
that we do have the classification, and so we just make a case by case consideration.
Assume O is a spherical mixed class. In all cases, apart from F4, we have an explicit
element in O∩ BwOB ∩ B−. We observed in Proposition 3.40 that the argument
used in [Cantarini et al. 2005] holds for every odd characteristic. We conclude that
in all characteristics, if O is a spherical conjugacy class, then O∩ BwOB∩ B− 6=∅.
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AFFINE WEAKLY REGULAR
TENSOR TRIANGULATED CATEGORIES

IVO DELL’AMBROGIO AND DONALD STANLEY

We prove that the Balmer spectrum of a tensor triangulated category is
homeomorphic to the Zariski spectrum of its graded central ring, provided
the triangulated category is generated by its tensor unit and the graded
central ring is noetherian and regular in a weak sense. There follows a clas-
sification of all thick subcategories, and the result extends to the compactly
generated setting to yield a classification of all localizing subcategories as
well as the analog of the telescope conjecture. This generalizes results of
Shamir for commutative ring spectra.

1. Introduction and results

Let K be an essentially small tensor triangulated category, with symmetric exact
tensor product ⊗ and tensor unit object 1. Balmer [2005] defined a topological
space, the spectrum SpcK, that allows for the development of a geometric theory
of K, similarly to how the Zariski spectrum captures the intrinsic geometry of
commutative rings; see the survey [Balmer 2010b]. Among other uses, Balmer’s
spectrum encodes the classification of the thick tensor ideals of K in terms of certain
subsets. It is therefore of interest to find an explicit description of the spectrum
in the examples, but this is usually a difficult problem requiring some in-depth
knowledge of each example at hand.

The goal of this note is to show that in some cases a concrete description of the
spectrum can be obtained easily and completely formally. Let us denote by

R := End∗K(1)=
⊕
i∈Z

HomK(1, 6i 1)

the graded endomorphism ring of the unit, where 6 : K→ K is the suspension
functor. In the terminology of [Balmer 2010a], this is the graded central ring
of K. It is a graded commutative ring and therefore we can consider its spectrum

Dell’Ambrogio was partially supported by the Labex CEMPI (ANR-11-LABX-0007-01) .
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of homogeneous prime ideals, Spec R, equipped with the Zariski topology. As
established in that paper, there is always a canonical continuous map

ρ : SpcK→ Spec R

comparing the two spectra. Under some mild hypotheses, e.g., when R is noetherian,
ρ can be shown to be surjective, but it is less frequently injective and, when it is,
the proof of injectivity is typically much harder.

Here is our main result:

Theorem 1.1. Assume that K satisfies the two following conditions:

(a) K is classically generated by 1, i.e., as a thick subcategory: Thick(1)= K.

(b) R is a (graded) noetherian ring concentrated in even degrees and, for every
homogeneous prime ideal p of R, the maximal ideal of the local ring Rp is
generated by a ( finite) regular sequence of homogeneous non-zero-divisors.

Then the comparison map ρ : SpcK −→∼ Spec R is a homeomorphism.

As in the title, we may refer to a tensor triangulated category K satisfying
hypotheses (a) and (b) as being affine and weakly regular, respectively. Note that
R being noetherian implies that R0

= EndK(1) is a noetherian ring and that R is a
finitely generated R0-algebra, by [Goto and Yamagishi 1983].

The next result is an easy consequence of the theorem. Here SuppR H∗X denotes
the (big) Zariski support of the cohomology graded R-module H∗X :=Hom∗K(1, X).

Corollary 1.2. If K and R are as in the theorem, then there exists a canonical
inclusion-preserving bijection

{thick subcategories C of K} ∼
−−→
←−− {specialization closed subsets V of Spec R}

mapping a thick subcategory C to V =
⋃

X∈C SuppR H∗X and a specialization
closed subset V to C = {X ∈ K | SuppR H∗X ⊆ V }.

In many natural examples, K occurs as the subcategory T c of compact objects
in a compactly generated tensor triangulated category T . By the latter we mean a
compactly generated triangulated category T equipped with a symmetric monoidal
structure ⊗ which preserves coproducts and exact triangles in both variables, and
such that the compact objects form a tensor subcategory T c (that is, 1 is compact
and the tensor product of two compact objects is again compact).

In this case, the same hypotheses allow us to classify also the localizing subcate-
gories of T , thanks to the stratification theory of compactly generated categories due
to Benson, Iyengar and Krause [Benson et al. 2011]. The support suppR X ⊆Spec R
of an object X ∈ T is defined in [Benson et al. 2008], and can be described as the set

suppR X = {p ∈ Spec R | X ⊗ K (p) 6= 0},
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where the residue field object K (p) of a prime ideal p is an object whose cohomology
is the graded residue field of R at p; see Section 3.

Theorem 1.3. Let T be a compactly generated tensor triangulated category with
compact objects K :=T c and graded central ring R satisfying conditions (a) and (b).
Then we have the following canonical inclusion-preserving bijection:

{localizing subcategories L⊆ T } ∼
−−→
←−− {subsets S ⊆ Spec R}.

The correspondence sends a localizing subcategory L to S=
⋃

X∈L suppR X , and an
arbitrary subset S to L= {X ∈ T | suppR X ⊆ S}. Moreover, the bijection restricts
to localizing subcategories L=Loc(L∩K) which are generated by compact objects
on the left and to specialization closed subsets S =

⋃
p∈S V(p) on the right.

Note that here the affine condition (a) is equivalent to requiring that T is generated
by 1 as a localizing subcategory. As SuppR H∗X = suppR X for all compact objects
X ∈ K, one sees easily that in the compactly generated case Theorem 1.1 and
Corollary 1.2 are also a consequence of Theorem 1.3.

The next corollary is another byproduct of stratification. Recall that a localizing
subcategory L⊆ T is smashing if the inclusion functor L ↪→T admits a coproduct-
preserving right adjoint.

Corollary 1.4 (the telescope conjecture in the affine weakly regular case). In the
situation of Theorem 1.3, every smashing subcategory of T is generated by a set of
compact objects of T .

A few special cases of our formal results had already been observed, such as
when R is even periodic and of global dimension at most one; see [Dell’Ambrogio
and Tabuada 2012]. We now consider some more concrete examples.

∗ ∗ ∗

Example 1.5. Let A be a commutative dg algebra and D(A) its derived category
of dg modules. Then D(A) is an affine compactly generated tensor triangulated
category with respect to the standard tensor product ⊗ = ⊗L

A, and R = H∗A is
the cohomology algebra of A; thus if the latter satisfies (b) all our results apply
to D(A). Actually, in this example we can improve our results a little by eliminating
the hypothesis that R is even and that the elements of the regular sequences are
non-zero-divisors:

Theorem 1.6. Let A be a commutative dg algebra such that its graded cohomology
ring R = H∗A is noetherian and such that every local prime pRp is generated by a
finite regular sequence. Then all the conclusions of Theorems 1.1 and 1.3 and of
Corollaries 1.2 and 1.4 hold for T = D(A) and K = D(A)c.

We can apply this, for instance, to a graded polynomial algebra with any choice
of grading for the variables, seen as a strictly commutative formal dg algebra.
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Example 1.7. Let A be a commutative S-algebra (a.k.a. commutative highly struc-
tured ring spectrum), and let D(A) be its derived category. (This covers Example 1.5,
as commutative dga’s can be seen as commutative S-algebras.) Then D(A) is an
affine compactly generated tensor triangulated category, and R = π∗A is the stable
homotopy algebra of A; thus if the latter satisfies (b) all our results apply to D(A).
Shamir [2012] already treated this example under the additional hypothesis that
π∗A has finite Krull dimension. Working with∞-categories and E∞-rings, Mathew
[2015, Theorem 1.4] established the classification of thick subcategories as in
Corollary 1.2 for the case when π∗A is even periodic and π0 A regular noetherian.
Remarkably, in the special case of S-algebras defined over Q, Mathew was also able
to prove the classification of thick subcategories only assuming π∗A noetherian, i.e.,
without any regularity hypothesis; see [Mathew 2016, Theorem 1.4]. (Note however
that, thanks to [Mandell 2012], in order to apply our own results we really only need
an E4-structure on a ring spectrum rather than a fully commutative E∞-structure.)

The next two well-known examples show that neither hypothesis (a) nor (b) can
be weakened with impunity.

Example 1.8. The derived category T = D(P1
k) of the projective line over a field k

is an example where R = End∗(1)' k certainly satisfies (b) but (a) does not hold.
Indeed ρ can be identified with the structure map P1

k→ Spec k and is therefore far
from injective in this case; see [Balmer 2010a, Remark 8.2].

Example 1.9. If T = D(A) is the derived category of a commutative (ungraded)
ring A, Theorem 1.1 and the classification of thick subcategories always hold by a
result of Thomason [1997] (see [Balmer 2010a, Proposition 8.1]); the classification
of localizing subcategories and the telescope conjecture hold if A is noetherian by
[Neeman 1992a]. On the other hand, Keller [1994] found examples of nonnoetherian
rings A for which the two latter results fail.

In view of these examples, it would be interesting to know how far our weak
regularity hypothesis (b) can be weakened in general. Would noetherian suffice?

2. Preliminaries

Let K be an essentially small tensor triangulated category.
For any two objects X, Y ∈ K, consider the Z-graded group Hom∗K(X, Y ) =⊕
i∈Z HomK(X, 6i Y ). Recall that the symmetric tensor product of K canonically

induces on R := Hom∗K(1, 1) the structure of a graded commutative1 ring, and

1To be precise, graded commutativity means here that f g = ε| f ||g|g f for any two homogeneous
elements f ∈ HomK(1, 6| f |1) and g ∈ HomK(1, 6|g|1), where ε ∈ R0 is a constant with ε2

= 1
induced by the symmetry isomorphism 61⊗61−→∼ 61⊗61. In most cases we have ε =−1, e.g., if
K admits a symmetric monoidal model, but usually no extra difficulty arises by allowing the general
case. Of course, this is immaterial for R even.
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on each Hom∗K(X, Y ) the structure of a (left and right) graded R-module. The
composition of maps in K and the tensor functor −⊗− are (graded) bilinear for
this action. See [Balmer 2010a, §3] for details.

Since we are using cohomological gradings, we write H∗X for the R-module
Hom∗K(1, X) and call it the cohomology of X .

Supports for graded modules. We denote by Spec R the Zariski spectrum of all
homogeneous prime ideals in R. If M is an R-module (always understood to be
graded) and p ∈ Spec R, the graded localization of M at p is the R-module Mp

obtained by inverting the action of all the homogeneous elements in R rp. The big
support of M is the following subset of the spectrum:

SuppR M = {p ∈ Spec R | Mp 6= 0}.

Since our graded ring R is noetherian we also dispose of the small support, defined
in terms of the indecomposable injective R-modules E(R/p):

suppR M = {p | E(R/p) occurs in the minimal injective resolution of M}.

We recall from [Benson et al. 2008, §2] some well-known properties of supports.
In general we have suppR M ⊆ SuppR M . If M is finitely generated, these two
sets are equal and also coincide with the Zariski closed set V(AnnR M). For a
general M , SuppR M is always specialization closed: if it contains any point p
then it must contain its closure V(p)= {q | p⊆ q}. In fact SuppR M is equal to the
specialization closure of suppR M : SuppR M =

⋃
p∈suppR M V(p). The small support

plays a fundamental role in the Benson–Iyengar–Krause stratification theory, but in
this note it will only appear implicitly.

The next lemma follows by a standard induction on the length of the objects.

Lemma 2.1. If K = Thick(1) is affine and R is noetherian, the graded R-module
Hom∗K(X, Y ) is finitely generated for all X, Y ∈ K. �

The comparison map of spectra. Recall from [Balmer 2005] that, as a set, the
spectrum SpcK is defined to be the collection of all proper thick subcategories P(K
which are prime tensor ideals: X⊗Y ∈P ⇐⇒ X ∈P or Y ∈P . For every P ∈SpcK,
let ρK(P) denote the ideal of Spec R generated by the set of homogeneous elements
{ f : 1→6| f |1 | cone( f ) /∈ P}. By [Balmer 2010a, Theorem 5.3], the assignment
P 7→ρK(P) defines a continuous map ρK :SpcK→Spec R, natural in K. Moreover,
the two spaces SpcK and Spec R are spectral in the sense of Hochster [1969], and
ρK is a spectral map in that the preimage of a compact open set is again compact.

Lemma 2.2. If ρK is bijective then it is a homeomorphism.
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Proof. This is an immediate consequence of [Hochster 1969, Proposition 15],
which says that for a spectral map of spectral topological spaces to be a homeo-
morphism it suffices that it is an order isomorphism for the specialization order of
the two spaces. Recall that the specialization order is defined for the points of any
topological space by x ≥ y ⇐⇒ x ∈ {y}. Indeed ρ := ρK is inclusion reversing,
Q⊆ P ⇐⇒ ρ(Q)⊇ ρ(P), hence it maps the closure {P} = {Q |Q⊆ P} in SpcK
of any point P to the Zariski closure V(ρ(P)) = {q | q ⊇ ρ(P)} in Spec R of the
corresponding point. �

Central localization. For every prime ideal p of the graded central ring R of K,
there exists by [Balmer 2010a, Theorem 3.6] a tensor triangulated category Kp

having the same objects as K and such that its graded Hom modules are the
localizations

Hom∗Kp
(X, Y )= Hom∗K(X, Y )p.

In particular the graded central ring of Kp is the local ring Rp. There is a canonical
exact functor qp : K→ Kp, which is in fact the Verdier quotient by the thick tensor
ideal generated by {cone( f )∈K | f ∈ Rrp homogeneous}. For emphasis, we will
sometimes write Xp for X = qpX when considered as an object of Kp.

Clearly if K is generated by 1 then Kp is generated by 1p. Later we will use the
fact that if a tensor triangulated category is generated by its unit then every thick
subcategory is automatically a tensor ideal.

Let `p : R→ Rp denote the localization map between the graded central rings of
the two categories. By [Balmer 2010a, Theorem 5.4], we have a pullback square of
spaces

(2.3)

Spc(Kp)

ρKp

��

� � Spc(qp) // Spc(K)

ρK

��

Spec(Rp)
� � Spec(`p) // Spec(R)

where the horizontal maps are injective.

Koszul objects. We adapt some convenient notation from [Benson et al. 2008]. For
any object X ∈K and homogeneous element f ∈ R, let X// f := cone( f · X) be any
choice of mapping cone for the map f · X : 6−| f |X → X given by the R-action.
If f1, . . . , fn is a finite sequence of homogeneous elements, define recursively
X0 := X and X i := X//( f1, . . . , fi ) := (X//( f1, . . . , fi−1))// fi for i ∈ {1, . . . , n}.
Thus by construction we have exact triangles

(2.4) 6−| fi |X i−1
fi ·X i−1
−−−−→ X i−1 −→ X i −→6−| fi |+1 X i−1,
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and moreover, since the tensor product is exact, we have isomorphisms

X//( f1, . . . , fi )' X ⊗ 1// f1⊗ · · ·⊗ 1// fi

for all i ∈ {1, . . . , n}. In the following, we will perform this construction inside the
p-local category Kp.

We need the following triangular version of the Nakayama lemma, for K affine.

Lemma 2.5. If X ∈ Kp is any object and f1, . . . , fn is a set of homogeneous
generators for pRp, then in Kp we have X = 0 if and only if X//( f1, . . . , fn)= 0.

Proof. Since K and thus Kp are generated by their tensor unit, it suffices to show that
H∗Xp= 0 if and only if H∗(X//( f1, . . . , fn))p= 0, and the latter can be proved as in
[Benson et al. 2008, Lemma 5.11 (3)]. We give the easy argument for completeness.

With the above notation, by taking cohomology H∗ = Hom∗Kp
(1p,−) of the

triangle (2.4) of Kp we obtain the long exact sequence of Rp-modules

· · · −→ H∗−| fi |X i−1
fi
−→ H∗X i−1 −→ H∗X i −→ H∗−| fi |+1 X i−1 −→ · · · ,

where each module is finitely generated by Lemma 2.1. Since fi ∈ p, if H∗X i−1 6= 0
the first map in the sequence is not invertible by the Nakayama lemma, hence
H∗X i 6= 0. The evident recursion shows that H∗X 6= 0 implies H∗Xn 6= 0. The
very same exact sequences also show that if H∗X = 0 then H∗Xn = 0. �

3. Thick subcategories

Assume from now on that K satisfies conditions (a) and (b) of Theorem 1.1.

Residue field objects. By hypothesis, for every prime ideal p ∈ Spec R there exists
a regular sequence f1, . . . , fn of homogeneous non-zero-divisors of Rp which
generate the ideal pRp. Choose one such sequence once and for all, and construct
the associated Koszul object

K (p) := 1p//( f1, . . . , fn)' 1p// f1⊗ · · ·⊗ 1p// fn

in the p-local tensor triangulated category Kp.

Lemma 3.1. For every object X ∈Kp and every i ∈{1, . . . , n}, each element f of the
ideal ( f1, . . . , fi )⊂ Rp acts as zero on X//( f1, . . . , fi ), i.e., f · X//( f1, . . . , fi )= 0.

Proof. Recall that, as an immediate consequence of the Rp-bilinearity of the
composition in Kp, the elements of Rp acting as zero on an object Y form an
ideal (coinciding with the annihilator of the Rp-module Hom∗Kp

(Y, Y )). Thanks to
the isomorphism X//( f1, . . . , fi )' X⊗1p// f1⊗· · ·⊗1p// fi and the Rp-linearity of
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the tensor product, it will therefore suffice to prove that fi acts as zero on 1p// fi .
Consider the commutative diagram

6−| fi |1p
fi // 1p

g
//

fi

��
0

%%

1p// fi

fi

��

// 6−| fi |+11p

h
xx

6| fi |1p g
// 6| fi |1p// fi

where the top row is the exact triangle defining 1p// fi . Being the composite of two
consecutive maps in a triangle, g fi is zero. Up to a suspension, this is also the
diagonal map in the square. Hence fi · 1p// fi factors through a map h as pictured.
Since R is even by hypothesis, we have that Rp is even, and we claim that also

(3.2) H n(1p// fi )= 0 for all odd n.

This implies h = 0 and therefore fi · 1p// fi = 0, as required. To prove the claim,
note that the defining triangle of 1p// fi induces the exact sequence

Rn−| fi |
p

fi
−→ Rn

p −→ H n(1p// fi )−→ Rn−| fi |+1
p

fi
−→ Rn+1

p ,

where the first and last maps are injective by the hypothesis that fi is a non-zero-
divisor in Rp. Thus (3.2), and even H∗(1p// fi )' Rp/( fi ), follows immediately. �

Corollary 3.3. H∗(X ⊗ K (p)) is a graded k(p)-vector space for every X ∈ Kp.

Proof. By Lemma 3.1 together with the R-linearity of the tensor product, each
f ∈ pRp acts as zero on X⊗K (p) ' X⊗1p//( f1, . . . , fn). Therefore all such f
also act as zero on H∗(X ⊗ K (p)) by the R-linearity of composition. �

Lemma 3.4. There is an isomorphism H∗(1p//( f1, . . . , fi )) ' Rp/( f1, . . . , fi ) of
R-modules for all i ∈ {1, . . . , n}. In particular H∗K (p) is isomorphic to the residue
field k(p) := Rp/pRp.

Proof. Write C0 = 1p and Ci := 1p//( f1, . . . , fi ) for short. Then K (p) = Cn , and
for all i ∈ {1, . . . , n} we have exact triangles

6−| fi |Ci−1
fi ·Ci−1
−−−−→Ci−1 −→ Ci −→6−| fi |+1Ci−1.

The claim follows by recursion on i. Indeed H∗C0= Rp, and assume that H∗Ci−1'

Rp/( f1, . . . , fi−1). Then the above triangle induces an exact sequence

H∗−| fi |Ci−1
fi
−→ H∗Ci−1 −→ H∗Ci −→ H∗−| fi |+1Ci−1

fi
−→ H∗+1Ci−1,

where the first and last maps are injective because by hypothesis fi is a non-
zero-divisor in the ring Rp/( f1, . . . , fi−1). We thus obtain a short exact sequence
0→ fi Rp/( f1, . . . , fi−1)→ Rp/( f1, . . . , fi−1)→ H∗Ci → 0, proving the claim
for i. �



AFFINE WEAKLY REGULAR TENSOR TRIANGULATED CATEGORIES 101

Remark 3.5. Of the weak regularity hypothesis (b), the proof of Lemma 3.4 only
uses that f1, . . . , fn is a regular sequence, while the proof of Lemma 3.1 only uses
that the fi are non-zero-divisors in Rp and that the ring R is even. These are the
only places where we make use of these assumptions (the noetherian hypothesis,
on the other hand, will be needed on several occasions). Note that, although we
already know by Corollary 3.3 that H∗K (p) is a k(p)-vector space, for the next
proposition we also need it to be one-dimensional as per Lemma 3.4.

Proposition 3.6. For all p ∈ Spec R and X ∈ Kp, the tensor product X ⊗ K (p)
decomposes into a coproduct of shifted copies of the residue field object:∐

α

6nαK (p)−→∼ X ⊗ K (p).

Proof. By Corollary 3.3 we know that H∗(X⊗K (p)) is a graded k(p)-vector space.
Choose a graded basis {xα}α , corresponding to a morphism

∐
α 6

nα1p→ X⊗K (p).
We will show that this map extends nontrivially to the Koszul object(∐

α

6nα1p
)
//( f1, . . . , fn)=

∐
α

(
6nα1p//( f1, . . . , fn)

)
.

For this, it will suffice to extend each individual map xα :6nα1p→ X ⊗ K (p). As
before, we proceed recursively along the regular sequence f1, . . . , fn . Consider the
commutative diagram

6nα−| f1|1p
6−| f1|xα

��

f1 //

0
''

6nα1p //

xα
��

6nα1p// f1 //

x1
α

xx

6−| f1|X ⊗ K (p)
f1=0

// X ⊗ K (p)

where the top row is a rotation of the defining triangle for 1p// f1. The left-bottom
composite vanishes because f1 acts trivially on X ⊗ K (p) by Lemma 3.1. Hence
we obtain the map x1

α on the right. Note that x1
α 6= 0 because xα 6= 0. Now we

repeat the procedure for i = 2, . . . , n, using the triangle

6−| fi |1p//( f1, . . . , fi−1)
fi
−→ 1p//( f1, . . . , fi−1)−→ 1p//( f1, . . . , fi )−→

to extend x i−1
α to a nonzero map x i

α :6
nα1p//( f1, . . . , fi )→ X ⊗ K (p) hitting the

same element in cohomology. In particular we obtain the announced extension
xn
α :6

nα K (p)→ X ⊗ K (p). As a nonzero map on a one-dimensional k(p)-vector
space (Lemma 3.4), the induced map H∗(xn

α) must be injective. Hence, collectively,
the maps {xn

α}α yield an isomorphism as required. �

Proposition 3.7. For every p, the thick subcategory Thick(K (p)) of Kp is minimal,
meaning that it contains no proper nonzero thick subcategories.
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Proof. Note that for every nonzero object X of Kp we have X ⊗ K (p) 6= 0. Indeed
if X ⊗ K (p)= X//( f1, . . . , fn)= 0 then Xp = 0 by Lemma 2.5.

Let C be a thick subcategory of Thick(K (p)). Because C is a tensor ideal, if it
contains a nonzero object X then it also contains X⊗K (p), which is again nonzero
by the above observation. Therefore C must contain a shifted copy of K (p) by
Proposition 3.6, hence C = Thick(K (p)). �

Proof of Theorem 1.1. Now we show how to deduce our main result from the
minimality of the thick subcategories Thick(K (p)). By Lemma 2.2 it will suffice to
show that the map ρK : SpcK→ Spec R is bijective. Since R is graded noetherian,
ρK is surjective by [Balmer 2010a, Theorem 7.3]. It remains to prove it is injective.

Let p ∈ Spec R be any homogeneous prime. We must show that the fiber of the
comparison map ρK : SpcK→ Spec R over p consists of a single prime tensor
ideal. By the pullback square (2.3), every point of SpcK lying over p must belong
to SpcKp. Hence it will suffice to show that the fiber of ρ := ρKp over the maximal
ideal m := pRp of Rp consists of a single point. In fact a stronger statement is true:
if P ∈ SpcKp is such that ρ(P)=m, then P = {0}. Let us prove this.

By definition of the comparison map we have

ρ(P)= 〈{ f ∈ Rp | f is homogeneous and 1p// f /∈ P}〉,

and as ρ(P)⊆m always holds by the maximality of m, the hypothesis ρ(P)=m

precisely means that 1p// f /∈ P for all homogeneous elements f ∈m. In particular
1p// fi /∈P for the elements fi in the chosen regular sequence for m. As P is a tensor
prime, we deduce further that

(3.8) K (p)' 1p// f1⊗ · · ·⊗ 1p// fn /∈ P.

Now let X ∈ P and assume that X 6= 0. Then X ⊗ K (p) 6= 0 by Lemma 2.5, hence

(3.9) Thick(X ⊗ K (p))= Thick(K (p))

by the minimality of Thick(K (p)), Proposition 3.7. As P is a thick tensor ideal we
also have X ⊗ K (p) ∈ P and therefore K (p) ∈ P by (3.9), but this contradicts (3.8).
Therefore X = 0 and we conclude that P = {0}, proving the claim. This concludes
the proof of Theorem 1.1.

Proof of Corollary 1.2. To deduce Corollary 1.2 from the theorem, we must verify
that the homeomorphism ρK identifies SuppR H∗X ⊆ Spec R, the ring-theoretic
support of an object X ∈ K, with supp X := {P ∈ SpcK | X /∈ P}, the universal
support datum of X :

Lemma 3.10. We have SuppR H∗X = ρK(supp X) for all X ∈ K.
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Proof. Let p = ρK(P). It follows from (2.3) that X ∈ P if and only if Xp ∈ Pp,
where Pp denotes P seen as an element of SpcKp. We have just proved that
ρKp : SpcKp −→

∼ Rp is a bijection sending {0} to pRp, so we must have Pp = {0}.
Therefore

p ∈ SuppR H∗X ⇐⇒ H∗Xp 6= 0 ⇐⇒ Xp 6= 0 ⇐⇒ Xp /∈Pp ⇐⇒ P ∈ supp X. �

Now it suffices to appeal to the abstract classification theorem [Balmer 2005,
Theorem 4.10]. Indeed, since R is noetherian, the space Spec R is noetherian and
therefore its specialization closed subsets and its Thomason subsets coincide (cf.
[Balmer 2005, Remark 4.11]). Moreover, since K is generated by its tensor unit,
all its objects are dualizable (because dualizable objects form a thick subcategory
and 1 is dualizable) and therefore all its thick tensor ideals are radical (see [Balmer
2007, Proposition 2.4]). Hence by Theorem 1.1 and Lemma 3.10 the classification
of [Balmer 2005, Theorem 4.10] immediately translates into the classification
described in Corollary 1.2, as wished.

4. Localizing subcategories

Assume from now on that T is a compactly generated tensor triangulated category
such that its subcategory K := T c of compact objects satisfies hypotheses (a) and (b)
of Theorem 1.1. Thus in particular T is generated as a localizing subcategory by
the tensor unit: Loc(1) = T . It follows that every localizing subcategory of T is
automatically a tensor ideal.

Since T is compactly generated, the (Verdier) p-localization functor qp :K→Kp

we used so far can be extended to a finite (Bousfield) localization functor

(−)p : T → T .

We briefly recall its properties, referring for all proofs to [Benson et al. 2011, §2]
or [Dell’Ambrogio 2010, §2]. Let

L= Loc({cone( f ) | f ∈ R r p homogeneous}).

Then the Verdier quotient Q : T → T /L =: Tp has a fully faithful right adjoint,
I : Tp ↪→T , and the functor (−)p can be defined to be the composite (−)p := I ◦Q.
As L is generated by a tensor ideal of dualizable objects, we have Xp

∼= X ⊗ 1p
for all X ∈ T . Moreover, the unit X → Xp of the (Q, I )-adjunction induces a
natural map Hom∗T (Y, X)p→ Hom∗T (Y, Xp) which is an isomorphism whenever
Y ∈K (see [Benson et al. 2011, Proposition 2.3] or [Dell’Ambrogio 2010, Theorem
2.33 (h)]). In particular we have the identification

(H∗X)p −→∼ H∗(Xp)
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for all X ∈ T . It follows also that the restriction of Q to compact objects X, Y ∈ K
agrees with qp, so that we may identify Kp with the full subcategory I (Kp) of T
(and thereby eliminate the slight ambiguity of the notation “Xp”).

Recall the residue field objects K (p) defined in Section 3:

K (p) := 1p//( f1, . . . , fn)' 1p// f1⊗ · · ·⊗ 1p// fn ∈ T

(as before, f1, . . . , fn denotes the chosen regular sequence of non-zero-divisors
generating the prime p).

The main point of this section is that the crucial minimality result of Proposition 3.7
can be extended to localizing subcategories of T , as we verify next.

Lemma 4.1. For every object X ∈ T and every i ∈ {1, . . . , n}, each element f of
( f1, . . . , fi )⊂ R acts as zero on Xp//( f1, . . . , fi ), i.e., f · Xp//( f1, . . . , fi )= 0. In
particular, the R-module H∗(X ⊗ K (p)) is a graded k(p)-vector space.

Proof. Exactly the same as for Lemma 3.1 and Corollary 3.3. (Use that X⊗K (p)=
Xp⊗ K (p) to work inside the big p-local category Tp.) �

Proposition 4.2. For all p ∈ Spec R and X ∈ T , the tensor product X ⊗ K (p)
decomposes into a coproduct of shifted copies of the residue field object:∐

α

6nα K (p)−→∼ X ⊗ K (p).

Proof. Exactly the same as for Proposition 3.6, using Lemma 4.1. �

Proposition 4.3. For every p, the localizing subcategory Loc(K (p)) of T is mini-
mal, meaning that it contains no proper nonzero localizing subcategories.

Proof. This follows from Proposition 4.2 precisely as in the proof of Proposition 3.7,
except that we cannot use Lemma 2.5 to show that X⊗K (p) 6= 0 for every nonzero
object X ∈ Loc(K (p)). Instead, we may use the following argument.

First note that X⊗K (q)= 0 for all q∈ Spec Rr {p}. Indeed, this property holds
for X = K (p) by Lemma 4.1 (because if p 6= q then some homogeneous element
of R must act on K (p)⊗ K (q) both as zero and invertibly) and is stable under
taking coproducts and mapping cones (as the latter are preserved by −⊗K (p));
hence it must hold for all objects of Loc(K (p)), as wished. Now combine this with
Proposition 4.5 below. �

Lemma 4.4. Let M be any nonzero module, possibly infinitely generated, over a
noetherian Z-graded commutative ring S. Then there exists a minimal prime in
SuppS M := {p ∈ Spec S | Mp 6= 0}, the big Zariski support of M.

Proof. If M 6= 0 then Mp 6= 0 for some prime p, so the support is not empty.
Moreover, it suffices to prove the claim for the nonzero module Mp over Sp, because
a minimal prime of SuppSp Mp yields a minimal prime in SuppS M ; hence we may
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assume that S is local. By Zorn’s lemma it suffices to show that in SuppS M every
chain of primes admits a minimum. Indeed, each such chain must stabilize, because
a local commutative noetherian ring has finite Krull dimension. In the ungraded
case, the latter is a well-known corollary of Krull’s principal ideal theorem. A proof
of the analogous result for graded rings can be found in [Bruns and Herzog 1993,
Theorem 1.5.8] or [Park and Park 2011, Theorem 3.5]. �

Proposition 4.5. If an object X ∈ T is such that X ⊗ K (p)= 0 for all p ∈ Spec R
then X = 0.

Proof. We prove the contrapositive. Assume that X 6= 0. Then H∗X 6= 0, hence for
some p ∈ Spec R we must have H∗(Xp)= (H∗X)p 6= 0 and therefore Xp 6= 0. By
Lemma 4.4, we may choose a prime p which is minimal among the primes with
this property. Thus the big support of the R-module H∗Xp consists precisely of
the prime p. We are going to recursively show that X i := Xp//( f1, . . . , fi ) satisfies
SuppR H∗X i = {p} for all i ∈ {1, . . . , n}. Thus in particular X ⊗ K (p) = Xn 6= 0,
which proves the proposition. We already know SuppR H∗X0 = {p} for X0 := Xp,
and suppose we have shown that SuppR H∗X i−1 = {p}. The exact triangle

6−| fi |X i−1
fi
−→ X i−1 −→ X i −→6−| fi |+1 X i−1

implies that SuppR H∗X i ⊆ {p}. Hence X i 6= 0 is equivalent to SuppR H∗X i = {p}.
By the triangle again, if X i = 0 were the case fi would act invertibly on X i−1

and thus on H∗X i−1. This implies H∗X i−1 = (H∗X i−1)[ f −1
i ], and since fi ∈ p

we would conclude that p /∈ SuppR H∗X i−1, in contradiction with the induction
hypothesis. Therefore X i 6= 0, as claimed. �

Proof of Theorem 1.3. The result now follows easily from the machinery developed
by Benson, Iyengar and Krause [Benson et al. 2008; 2011]. Indeed, by [Benson et al.
2011, Theorem 4.2], to obtain the claimed classification of localizing subcategories
it suffices to verify that the action of R stratifies T . By definition, this means that
the following two axioms are satisfied:

• The local-global principle: For every object X ∈ T we have the equality

Loc(X)= Loc({0pX | p ∈ Spec R})

of localizing subcategories of T .

• Minimality: For every p ∈ Spec R the localizing subcategory 0pT of T is
minimal or zero.

The functors 0p : T → T are introduced in [Benson et al. 2008], but we don’t need
to know how they are defined. In our context, i.e., where T is a tensor category and
the action of R is the canonical one of the central ring, the local-global principle
always holds by [Benson et al. 2011, Theorem 7.2] (see also [Stevenson 2013,
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Theorem 6.8]). Moreover 0pX = X ⊗ 0p1 for all X ∈ T , which implies that
0pT = Loc(0p1) since T is generated by 1. Therefore the remaining minimality
condition follows from Proposition 4.3, because Loc(K (p))=Loc(0p1) by [Benson
et al. 2011, Lemma 3.8 (2)] (indeed, by construction K (p) is a particular instance
of the objects collectively denoted by 1(p) in [loc. cit.]). This establishes the first
bijection in Theorem 1.3.

The claimed identification of the Benson–Iyengar–Krause support, suppR X =
{p ∈ Spec R | X ⊗0p1 6= 0}, with the set {p ∈ Spec R | X ⊗ K (p) 6= 0} is an easy
consequence of the equality Loc(K (p))= Loc(0p1) mentioned above.

It remains to verify the moreover part of Theorem 1.3. Let us begin by noting
that, if X ∈ K is a compact object, we have

(4.6) suppR X = suppR H∗X = SuppR H∗X

by [Benson et al. 2008, Theorem 5.5 (1)] and Lemma 2.1. Now let L⊆ T be such
that L= Loc(L∩K). Then⋃

X∈L

suppR X =
⋃

X∈L∩K

suppR X =
⋃

X∈L∩K

SuppR H∗X

by (4.6), and the latter is a specialization closed subset of the spectrum. Conversely,
if S ⊆ Spec R is specialization closed the corresponding localizing subcategory
{X ∈ T | suppR X ⊆ S} is generated by compact objects by [Benson et al. 2008,
Theorem 6.4], hence L= Loc(L∩K). This concludes the proof of the theorem.

It is well known that the assignments C 7→ Loc(C) and L 7→ L∩K are mutually
inverse bijections between thick subcategories C ⊆ K and localizing subcategories
L⊆T which are generated by compact objects of T (see [Neeman 1992b]). Together
with (4.6), this shows how to deduce the classification of thick subcategories of
Corollary 1.2 from Theorem 1.3.

Finally, there are several ways to derive the telescope conjecture of Corollary 1.4
from the previous results. For instance, we may proceed as in [Benson et al. 2011,
§6.2].

Remark 4.7. Using the theory of coherent functors, Benson, Iyengar and Krause
have recently developed in [Benson et al. 2015] an analogue of their stratification
theory of compactly generated categories that can be applied to general essentially
small triangulated categories. Their theory, and more specifically [Benson et al.
2015, Theorem 7.4], provides an alternative way to derive Theorem 1.1 from
Proposition 3.7.

The case of commutative dg algebras. We still owe readers a proof of Theorem 1.6.
Let A be a commutative dg algebra and let D(A) be the derived category of (left,
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say) dg-A-modules. The following elementary fact was pointed out to us by the
referee.

Lemma 4.8. Every f ∈ H∗A acts as zero on its own mapping cone C( f ).

Proof. A (homogeneous) element f ∈ H∗A of degree | f | =−n is (represented by) a
morphism f :6n A→ A of left dg-A-modules. Let us write sa (a ∈ A) for a generic
element of degree |a| − 1 in the suspension sA := 6A; here we use the Koszul
sign convention and treat s as a symbol of degree −1. The cone C( f ) has elements
(a, sn+1b) (for a, b ∈ A). Then f acts on C( f ) by a morphism snC( f )→ C( f )
which, under the isomorphism snC( f )∼= C(sn f ), is written as follows:

g : C(sn f )→ C( f ), g(sna, s2n+1b)= ( f (sna), sn+1 f (snb))

(recall that the suspension sh : sB→ sC of a morphism h : B→ C is given by
(sh)(sb)= s(h(b))). With these notations, the map H :C(sn f )→C( f ) defined by
H(sna, s2n+1b) := (0, sn+1a) is easily seen to satisfy H(t x) = (−1)|t |t H(x) (for
t ∈ A, x ∈ C(sn f )) and d H + Hd =−g; in other words, H is a homotopy g ∼ 0
defined over A. �

As noted in Remark 3.5, Lemma 3.1 was the only place in all of our arguments
where we made use of the hypothesis that R is concentrated in even degrees and
that in the regular sequences we may choose the elements to be non-zero-divisors.
But if we consider the example K := D(A)c, T := D(A) and R := H∗A, we see
immediately that the conclusion of the lemma also follows from the above result
(Lemma 4.8). Hence in this case we can get rid of the extra hypotheses, while the
rest of our arguments go through unchanged. This proves Theorem 1.6.

Indeed, in general in condition (b) of Theorem 1.1 we could similarly renounce
the evenness of R if we substitute the requirement that all elements fi of the regular
sequences be non-zero-divisors with the requirement that fi · 1// fi = 0.
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Ma Virgilio n’avea lasciati scemi
di sé, Virgilio dolcissimo patre,
Virgilio a cui per mia salute die’ mi.

We classify a large class of small groups of finite Morley rank: N◦◦ -groups
which are the infinite analogues of Thompson’s N-groups. More precisely,
we constrain the 2-structure of groups of finite Morley rank containing a
definable, normal, nonsoluble, N◦◦ -subgroup.
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1. Introduction

This is the final item in the series [*DJ 2012; 2010; 2013], a collaboration interrupted
by the demise of Jaligot. The present article has a sad story but at least it has the
merit to exist: it was started in 2007 with hope and then never completed, started
again in 2013 as a brave last sally and then lost, and then started over again by the
first endorser alone.

So for the last time let us deal with N ◦
◦

-groups of finite Morley rank. And
although we have just used some phrases that our prospective reader may not know
we hope our work to be of interest to the experts in finite group theory as many
ideas and methods will seem familiar to them. Efforts were made in that direction
and that of self-containedness.

1.1. The context.

Groups of finite Morley rank. Let us first say a few words about groups of finite
Morley rank. We shall remain deliberately vague as we only hope to catch the
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reader’s attention (possibly through provocation). Should we succeed we can
suggest three books. The first monograph dealing with groups of finite Morley rank,
among other groups, was [Poi 1987]. An excellent and thorough reference textbook
is [BN 1994b] which has no pictures but many exercises instead. The more recent
[ABC 2008] quickly focuses on the specific topic of the classification of the infinite
simple groups of finite Morley rank of so-called even or mixed type, a technical
assumption. For the moment let us be quite unspecific.

Morley rank is a notion invented by model theorists for the purposes of pure
mathematical logic, and turned out to be an abstract form of the Zariski dimension
in algebraic geometry. It was then natural to investigate the relations between
groups of finite Morley rank and algebraic groups.

More precisely (we shall keep this facultative paragraph short and direct the
brave to [Poi 1987]), the rank introduced by Morley for his categoricity theorem
was quickly understood to be a central notion in mathematical logic, enabling a
more algebraic treatment of model-theoretic phenomena, and hopefully allowing
closer interactions with classical mathematics. This was confirmed when Zilber’s
“ladder” analysis of uncountably categorical theories revealed towers of atomic
pieces bound to each other by some definable groups, similar to differential Galois
groups in (Kolchin–)Picard–Vessiot theory, and therefore of utmost relevance even
as abstract groups. It is expected that understanding the structure of such groups
would shed further light on the nature of uncountably categorical theories, which
would please model theorists, and other mathematicians as well.

But because of their very nature, groups of finite Morley rank cannot be studied
with the techniques of algebraic geometry, and only elementary (in both the naive
and model-theoretic senses of the term) methods apply, which results in massive
technological smuggling from finite group theory to model theory.

To make a long story short: some abstract groups arose in one part of mathematics;
it would be good to classify the simple ones; logicians need finite group theorists.

Groups with a dimension. And now for the sake of the introduction we shall suggest
a completely different, anachronistic, and self-contained motivation.

The classification of the simple Lie groups, the classification of the simple
algebraic groups, and the classification of the finite simple groups are facets of a
single truth: in certain categories, simple groups are matrix groups in the classical
sense. The case of the finite simple groups reminds us that we are at the level of an
erroneous truth, but still there must be something common to Lie groups, algebraic
groups, and finite groups beyond the mere group structure that forces them to fall
into the same class.

In a sense, groups of finite Morley rank describe this phenomenon; Morley rank
is a form of common structural layer, or methodological least common denominator
to the Lie-theoretic, algebraic geometric, and finite group-theoretic worlds. Our
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groups are equipped with a dimension function on subsets enabling the most basic
computations; the expert in finite group theory will be delighted to read that matching
involutions against cosets, for instance, is possible. On the other hand, no analysis,
no geometry, and no number theory are available. But the existence of a rudimentary
dimension function is a common though thin structural layer extending the pure
group structure.

It remains to say which sets are subject to having a dimension. These sets
are called the definable sets; the definable class is the model-theoretic analogue
of the constructible class in algebraic geometry. In a group G with no extra
structure, one would consider the collection of subsets of the various Gn obtained
by allowing group equations, (finite) boolean combinations, projections, and then
by also allowing quotients by equivalence relations of the same form. This setting
is a little too tight in general and model theorists enlarge the basic case of group
equations by allowing other primary relations, that is, by working in an abstract
structure extending the group structure. In particular, the natural structure on an
affine algebraic group is richer than its pure group structure.

A group of finite Morley rank is such an extended group structure with an
integer-valued dimension function on its definable sets. As for the properties of the
dimension function itself, they are so natural they do not need to be described.

Although we have given no definition we hope to have motivated the Cherlin–
Zilber conjecture, which surmises that infinite simple groups of finite Morley rank
are groups of points of algebraic groups. The conjecture goes back to the seventies.

Relations with finite group theory. A consequence of the classification of the simple,
periodic, linear groups [Thomas 1983] (also [Bender 1984; Hartley and Shute 1984])
is the locally finite version of the Cherlin–Zilber conjecture: infinite simple locally
finite groups of finite Morley rank are algebraic. The fact that [Thomas 1983] heavily
relies on the classification of the finite simple groups means that conventional group
theory can help elucidate problems in model theory.

A proof of the classification of the simple, periodic, linear groups in odd char-
acteristic without using the classification of the finite simple groups but some of
its methods, such as component analysis and signaliser functors, is in [Borovik
1984]. Similar techniques carried to the model-theoretic context provide the locally
finite version of the Cherlin–Zilber conjecture under an assumption standing for
characteristic oddness [Bor 1995], still without using the classification of the finite
simple groups. Let us now forget about local finiteness. All this suggests to ask
whether conversely to the above, model theory may shed light on conventional
group theory, and whether finite group theorists can learn something from logicians.

Altinel, Borovik, and Cherlin [ABC 2008] give a positive answer by proving
the Cherlin–Zilber conjecture in even or mixed type, viz., when there is an infinite
subgroup of exponent 2, thus obtaining an ideal sketch of a decent fragment of
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the classification of the finite simple groups. Apart from this case one should not
expect the conjecture to be proved in full generality. There is no evidence for
a model-theoretic analogue of the Feit–Thompson “odd order” theorem. Simple
groups of finite Morley rank with no involutions cause major technical difficulties
since most methods in the area heavily rely on 2-local analysis. Actually the experts
do not regard the existence of the most dramatic (potential) counterexamples to
the conjecture called bad groups as entirely unlikely. But after all, not all finite
simple groups are groups of Lie type, so refuting the Cherlin–Zilber conjecture
would certainly not show that it is not interesting.

The present work deals with a certain class of small groups of finite Morley rank:
N ◦
◦

-groups, defined in Section 2 by a condition borrowed from the classification of
the finite simple groups. The former were called ∗-locally◦

◦
soluble groups in [*DJ

2012; 2010; 2013]; we now change terminology to conform more closely to the
standards of finite group theory.

Two notions of smallness. So let us push the analogy with finite group theory
further. The classical N - property was introduced in [Thompson 1968] where the
full classification of the finite, nonsoluble N -groups was given, and then proved
in a series of subsequent papers: an N -group is a group G all of whose so-called
local subgroups are soluble, which in the finite case amounts to requiring that
NG(A) be soluble for every abelian subgroup 1 6= A ≤ G. The decorations in N ◦

◦

indicate that we shall focus on connected components, making our condition less
restrictive than proper N -ness. According to the Cherlin–Zilber conjecture, every
connected, nonsoluble N ◦

◦
-group should be isomorphic to PSL2(K) or SL2(K) with

K an algebraically closed field. We cannot prove this, and our results will look
partial when compared to [Thompson 1968].

Another, more restrictive notion of smallness in [Thompson 1968] was minimal
simplicity: a minimal simple group is a simple group all of whose proper subgroups
are soluble. The full classification of the finite, minimal simple groups is given in
[Thompson 1968] as a corollary to that of the finite N -groups. The finite Morley rank
analogue is named minimal connected simplicity and defined naturally in Section 2.
According again to the Cherlin–Zilber conjecture, every minimal connected simple
group should be isomorphic to PSL2(K) with K an algebraically closed field; even
under the assumption that the group contains involutions, this is an open question.

Minimal connected simple groups of finite Morley rank have already been studied
at length as recalled in Sections 1.2 and 1.3. These groups obviously are N ◦

◦
-groups

but it is not clear whether one should hope for a converse statement. So transferring
the partial, current knowledge from the minimal connected simple to the N ◦

◦
setting

was a nontrivial task, undertaken in [*DJ 2012; 2010; 2013].
This extension will hopefully fit into a revised strategy for the classification of

simple groups of finite Morley rank with involutions. The last written account of a
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master plan was in Burdges’ thesis [Bur 2004b, Appendix A] and would need to
be updated because of major advances in the general structural theory of groups
of finite Morley rank, notably through results on torsion briefly touched upon in
Section 2.2. But interestingly enough the theory of N ◦

◦
-groups has already been

used and will be used again in another topic: permutation groups of finite Morley
rank [Del 2009a; BD 2015].

The present work completes the transition from the minimal connected simple
to the N ◦

◦
setting, and does more. We cannot provide a full classification of N ◦

◦
-

groups, but we delineate major cases and give strong restrictions on their groups of
automorphisms.

1.2. The result and its proof. The ideal goal would have been to show that the
only nonsoluble N ◦

◦
-groups of finite Morley rank are PSL2(K) and SL2(K). Under

the assumption that there is an infinite elementary abelian 2-subgroup, this is a
straightforward corollary or subcase of [ABC 2008]; see [*DJ 2010, Theorem 4]. In
general the question is delicate and one should only hope to identify PSL2(K) and
SL2(K) among such groups. This we do, and more, by giving restrictive information
on the structure of potential counterexamples. In particular we show that such
counterexamples would admit no infinite dihedral groups of automorphisms, which
is likely to be of use in a prospective inductive setting.

As a matter of fact, the focus on outer involutive automorphisms, as opposed
to inner involutions, became so prominent over the years (see Section 1.3) that
we could take involutions out of the configurations, viz., our extra assumptions
are not on the structure of the “inner” Sylow 2-subgroup of the N ◦

◦
-group under

consideration but on the structure of that of an acting group; incidentally, the inner
2-structure is fairly well understood. Taking involutions out is a pleasant advance,
but makes results slightly more complex to state.

Our theorem below thus reads as follows: if a connected, nonsoluble N ◦
◦

-group
G is a definable subgroup of some larger group of finite Morley rank (possibly
equal to G) with a few assumptions on the action of outer involutions on G, then G
is either algebraic or one of four mutually exclusive configurations with common
features; in any case the structure of the outer Sylow 2-subgroup is well understood
too. The existence of the four said configurations is a presumably difficult open
question. But we do not need involutions inside G to run the argument, and we are
confident this will allow some form of induction.

The notation used below is all explained in Section 2. The reader will find some
informal remarks on methods at the end of the current subsection, and a discussion
of the general structure of the proof at the beginning of Section 4.

Theorem. Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ be a
definable, connected, nonsoluble N ◦

◦
-subgroup. Then the Sylow 2-subgroup of G
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has one of the following structures: isomorphic to that of PSL2(C), isomorphic to
that of SL2(C), or a 2-torus of Prüfer 2-rank at most 2.

Suppose in addition that for all involutions ι ∈ I (Ĝ), the group C◦G(ι) is soluble.
Then m2(Ĝ) ≤ 2, one of G or Ĝ/G is 2⊥, and involutions are conjugate in Ĝ.
Moreover, one of the following cases occurs:

• PSL2: G ' PSL2(K) in characteristic not 2; Ĝ/G is 2⊥.

•CiBo∅: G is 2⊥; m2(Ĝ)≤ 1; for ι∈ I (Ĝ), CG(ι)=C◦G(ι) is a self-normalising
Borel subgroup of G.

•CiBo1: m2(G)=m2(Ĝ)=1; Ĝ/G is 2⊥; for i ∈ I (Ĝ)= I (G), CG(i)=C◦G(i)
is a self-normalising Borel subgroup of G.

•CiBo2: Pr2(G)=1 and m2(G)=m2(Ĝ)=2; Ĝ/G is 2⊥; for i ∈ I (Ĝ)= I (G),
C◦G(i) is an abelian Borel subgroup of G inverted by any involution in CG(i)\{i}
and satisfies rk G = 3 rk C◦G(i).

• CiBo3: Pr2(G) = m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I (Ĝ) = I (G),
CG(i) = C◦G(i) is a self-normalising Borel subgroup of G; if i 6= j are two
involutions of G then CG(i) 6= CG( j).

There is at present no hope to kill any of the nonalgebraic configurations of
type CiBo (“Centralisers of involutions are Borel subgroups”; unlike the cardinal
of the same name, these configurations are far from innocent). Three of these
configurations were first and very precisely described in [*CJ 2004] under much
stronger assumptions of both a group-theoretic and a model-theoretic nature, and
the goal of [*BCJ 2007; *Del 2007a; 2007b; 2008] merely was to carry the same
analysis with no model-theoretic restrictions. Despite progress in technology,
nothing new could be added on the CiBo configurations since their appearance in
[*CJ 2004]. So it is likely these potential monstrosities will linger for a while; in
any case their consistency is not desirable.

Beyond porting the description of nonalgebraic configurations from the minimal
connected simple setting [*Del 2007a] to the broader N ◦

◦
context, our theorem

gives strong limitations on how these potential counterexamples would embed into
bigger groups. This line of thought goes back to Delahan and Nesin’s proof that
so-called simple bad groups have no involutive automorphisms [DN 1993; BN
1994b, Proposition 13.4]. The question of involutive automorphisms of minimal
connected simple groups has already been addressed in [*BCD 2009; Fré 2010]; we
insist that a significant part of our results was not previously known in the minimal
connected setting. This is the reason why we believe that our theorem, however
partial and technical it may look, will prove relevant to the classification project.

The present result therefore replaces a number of earlier (pre)publications: [*BCJ
2007; *Del 2007a; 2007b; 2008; *DJ 2008; *BCD 2009], the contents of which are
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described in Section 1.3. (We cannot dismiss Frécon’s analysis [Fré 2010, Theorem
3.1] as it heavily uses the solubility of centralisers of p-elements, a property which
might fail in the N ◦

◦
case.)

And now we wish to say a few words about the proof. One cannot adapt
[Thompson 1968] and subsequent papers. The expert in finite group theory will
appreciate here how little structure there is on a group of finite Morley rank. A
finite analogue of CiBo1, for instance, has a cyclic Sylow 2-subgroup; for a variety
of classical reasons it has a normal 2-complement; if an N -group, it is soluble. We
would be delighted to see quick arguments removing finite analogues of CiBo2

and CiBo3. In any case, however elementary they may seem, such methods are
not available in our context. Character theory, remarkably absent from [Thompson
1968], cannot be used either. Even Sylow theory (see Sections 2.1 and 2.2) is
rudimentary. From finite group theory there remains of course 2-local analysis, but
we are dealing with small cases where one cannot apply the standard machinery,
otherwise well acclimatised to the finite Morley rank setting.

The main group-theoretic method is then matching involutions against cosets,
in the spirit of Bender as quoted in the beginning of Section 4.2. At times our
arguments in this line are rather classical and Proposition 3, for instance, may have a
known counterpart in finite group theory, while at other times they are unorthodoxly
convoluted as in Proposition 6. But this is our main method mostly because we lack
a better option. We also use a variant of local analysis [Bender 1970] developed
by Burdges for groups of finite Morley rank (Sections 2.3 and 2.4). This will not
surprise the expert.

As for model-theoretic methods, we see two main lines. First, we tend to focus on
generic elements of groups, with the effect of smoothing phenomena. The general
theory of genericity in model-theoretic contexts owes much to Cherlin and Poizat
so one could refer the reader to [Poi 1987], but thanks to the rank function it is
a rather obvious notion here. In the same vein we often resort to connectedness
arguments which from the point of view of algebraic group theory will always be
straightforward. Typical of connectedness methods is Zilber’s indecomposability
theorem [BN 1994b, Theorem 5.26]. The use of fields is the second essential feature;
although Zilber’s field theorem [BN 1994b, Theorem 9.1] nominally appears only
in the proofs of Propositions 3 and 5, it underlies our knowledge of soluble groups,
in particular the unipotence theory of Section 2.3 which is fundamental for the
whole analysis.

The structure of the proof itself is described in Section 4.

1.3. Version history. The current subsection will be of little interest to a reader
not familiar with the community of groups of finite Morley rank; we include it
mostly because the present article marks the voyage’s end.
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The project of classifying N ◦
◦

-groups with involutions started as early as 2007
under the suggestion of Borovik and yet is only the last chapter of an older story:
the identification of PSL2(K) among small groups of odd type.

• We could go back to Cherlin’s seminal article on groups of small Morley rank
[Che 1979] which identified PSL2(K), considered bad groups, and formulated the
algebraicity conjecture. Other important results on PSL2(K) in the finite Morley
rank context were found by Hrushovski [Hru 1989] and by Nesin et Ali(i) [Nes
1990a; BDN 1994; DN 1995]. But we shall not go this far.

• Jaligot was the first to do something specifically in so-called odd type [*Jal
2000], adapting computations from [BDN 1994] (we say a bit more in Sections 4.2
and 4.3).

• Another preprint by Jaligot [*Jal 2002], then at Rutgers University, deals with
tame minimal connected simple groups of Prüfer rank 1. (Tameness is a model-
theoretic assumption on fields arising in a group, already used for instance in [DN
1995].) In this context, either the group is isomorphic to PSL2(K), or centralisers◦

of involutions are Borel subgroups.
Quite interestingly the tameness assumption, viz., “no bad fields”, appears there

in small capitals and bold font each time it is used; it seems clear that Jaligot already
thought about removing it.

• Jaligot’s time at Rutgers resulted in a monumental article with Cherlin [*CJ
2004] where tame minimal connected simple groups were thoroughly studied and
potential nonalgebraic configurations carefully described. The very structure of our
theorem reflects the result of [*CJ 2004].

• A collaboration between Burdges, Cherlin, and Jaligot [*BCJ 2007] was signifi-
cant progress towards removing tameness: minimal connected simple groups have
Prüfer rank at most 2.

• Using major advances by Burdges (described in Sections 2.3 and 2.4), the author
was able to entirely remove the tameness assumption from [*CJ 2004] and reach
essentially the same conclusions. This was the subject of his dissertation [*Del
2007a] under the supervision of Jaligot, published as [*Del 2007b; 2008].

• A few months before the completion of the author’s Ph.D., the present project
of classifying N ◦

◦
-groups of finite Morley rank was suggested by Borovik, a task

the author and Jaligot undertook with great enthusiasm and which over the years
resulted in the series [*DJ 2012; 2010; 2013].

A 2008 preprint [*DJ 2008] was close to fully porting [*Del 2007a] to the
N ◦
◦

context. Involutions remained confined inside the group. (This amounts to
supposing Ĝ = G in the theorem.)



INVOLUTIVE AUTOMORPHISMS OF N◦◦ -GROUPS OF FINITE MORLEY RANK 119

• While a postdoc at Rutgers University, the author, in an unpublished joint work
with Burdges and Cherlin [*BCD 2009], went back to the minimal connected
simple case but with outer involutory automorphisms. (This amounts to supposing
G minimal connected simple and 2⊥ in the theorem.)

• Delays and shifts in interests postponed both [*DJ 2008] and [*BCD 2009]. In
the spring of 2013 the author tried to convince Jaligot that time had come to redo
[*DJ 2008] in full generality, that is, with outer involutions. The present theorem
was an ideal statement we vaguely dreamt of but we never discussed nor even
mentioned to each other anything beyond as it looked distant enough. In March
and April of that year we were trying to fix earlier proofs with all possible repair
patches, and mixed success.

The author recalls how Jaligot would transcribe those meetings in a small red
“Rutgers” notebook when visiting Paris. He did not recover these notes after Jaligot’s
untimely death.

And this is how a project started with great enthusiasm was completed in grief
and sorrow, yet completed. The author feels he is now repaying his debt for the
care he received as a student, for an auspicious dissertation topic, and for all the
friendly confidence his adviser trusted him with.

In short I hope that the present work is the kind of monument Éric’s shadow
begs for. I dare print that the article is much better than last envisioned in the spring
of 2013. Offended reader, understand that there precisely lies my tribute to him.

Such a reconstruction would never have been even imaginable without the
hospitality of the Mathematics Institute of NYU Shanghai during the fall of 2013.
The good climate and supportive staff made it happen. At various later stages the
comments of Gregory Cherlin proved invaluable, as always. Last but not least, and
despite the author’s lack of taste for mixing genres, Lola’s immense patience is
most thankfully acknowledged.

2. Prerequisites and facts

We have tried to make the article as self-contained as possible, an uneasy task since
the theory of groups of finite Morley rank combines a variety of methods. Reading
the prior articles in the series [*DJ 2012; 2010; 2013] is not necessary to understand
this one. In the introduction we already mentioned three general references [Poi
1987; BN 1994b; ABC 2008]. Yet we highly recommend the preliminaries of a
recent research article, [ABF 2013, §2]; the reader may wish to first look there
before picking a book from the shelves.

We denote by d(X) the definable hull of X , i.e., the smallest definable group
containing X . If H is a definable group, we denote by H◦ its connected component.
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If H fails to be definable we then set H◦= H ∩d◦(H). These constructions behave
as expected.

One more word on general terminology: the author supports linguistic minorities.

Definition [*DJ 2012, Definition 3.1(4)]. A group G of finite Morley rank is an
N ◦
◦

-group if N ◦G(A) is soluble for every nontrivial, definable, abelian, connected
subgroup A ≤ G.

Remarks. • The property was named ∗-local◦
◦

solubility in [*DJ 2012; 2010;
2013]; the ∗- prefix was a mere warning to the eye in order to distinguish from
local conditions in the usual sense, the lower ◦ was supposed to stand for the
connectedness assumption on A, and the upper ◦ symbolised the conclusion only
being on the connected component N ◦G(A).

We preferred to adapt Thompson’s N - terminology from [Thompson 1968] by
simply adding connectedness symbols.

• We do require full N ◦
◦

-ness in our proofs and apparently cannot restrict to a
certain class of local subgroups. For instance, Thompson’s classification of the
nonsoluble, finite N -groups was extended by [Gorenstein and Lyons 1976] to the
nonsoluble, finite groups where only 2-local subgroups are supposed to be soluble
(i.e., when A above must in addition be a 2-group).

Such a generalisation looks impossible in our setting as will become obvious
during the proof, simply because we must take too many normalisers.

• Many results in the present work will be stated for N ◦
◦

-groups of finite Morley
rank. With our definition this is redundant but as other contexts, model-theoretic in
particular, give rise to a notion of a connected component, this also is safer.

Remark (and Definition). An extreme case of an N ◦
◦

-group G is that in which
all definable, connected, proper subgroups of G are soluble; G is then said to be
minimal connected simple. As opposed to past work (see Sections 1.2 and 1.3) the
present article does not rely on minimal connected simplicity.

As we said in the introduction, there is no hope to prove that N ◦
◦

-groups are close
to being minimal connected simple. One could expect many more configurations
[*DJ 2012, §3.3].

As one imagines, involutions will play a major role. We denote by I (G) the set
of involutions in G; i, j, k, ` will stand for some of them. We also use ι, κ, λ for
involutions of the bigger, ambient group Ĝ. When a group has no involutions, we
call it a 2⊥ group. We shall refer to the following as “commutation principles”.

Fact 1. Suppose that there exists some involutive automorphism ι of a semidirect
product H o K , where K is 2-divisible, and that ι centralises or inverts H , and
inverts K . Then [H, K ] = 1.
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2.1. Semisimplicity. In what follows, p stands for a prime number.

Fact 2 (torsion lifting [BN 1994b, Exercise 11 p. 98]). Let G be a group of finite
Morley rank, H E G be a normal, definable subgroup and x ∈ G be such that x H
is a p-element in G/H. Then d(x)∩ x H contains a p-element of G.

Apart from the above principle, most of our knowledge of torsion relies either on
the assumption that p = 2, on some solubility assumption, or on a U⊥p assumption
explained below.

• To emphasise the case where p= 2, recall that in groups of finite Morley rank the
maximal 2-subgroups, also known as Sylow 2-subgroups, are conjugate ([BN 1994b,
Theorem 10.11], originating in [Bor 1984]). As a matter of fact, their structure is
known [BN 1994b, Corollary 6.22]. If S is a Sylow 2-subgroup then S◦ = T ∗U2,
where T is a 2-torus and U2 a 2-unipotent group. Let us explain the terminology:

– T is a sum of finitely many copies of the Prüfer 2-group, T ' Zd
2∞ , and d is

called the Prüfer 2-rank of T , which we denote by Pr2(T )= d . By conjugacy,
Pr2(G)= Pr2(T ) is well-defined. Interestingly enough, N ◦G(T )= C◦G(T ) [BN
1994b, Theorem 6.16, “rigidity of tori”]; the latter actually holds for any prime.

– U2 in turn has bounded exponent. We shall mostly deal with groups having no
infinite such subgroups, and we call them U⊥2 groups.

The 2-rank m2(G) is the maximal rank (in the finite group-theoretic sense) of an
elementary abelian 2-subgroup of G; again this is well-defined by conjugacy. A
U⊥2 assumption implies finiteness of m2(G); one always has Pr2(G)≤ m2(G); see
[Del 2012] for a reverse inequality.

• Actually the same holds for any prime p provided that the ambient group of finite
Morley rank is soluble ([BN 1994b, Theorem 6.19 and Corollary 6.20], originating
in [BP 1990]). In case the ambient group is also connected, then the Sylow p-
subgroups are connected [BN 1994b, Theorem 9.29]. We call this fact the structure
of torsion in definable, connected, soluble groups.

• Consistently generalising the case p = 2, a group of finite Morley rank is said to
be U⊥p (also, of p⊥-type) if it contains no infinite, elementary abelian p-group. A
word on Sylow p-subgroups of U⊥p groups is said in Section 2.2.

We often rely either on some specific assumption on involutions, or on solubility,
as in the following.

Fact 3 (bigeneration, [BC 2008, special case of Theorem 2.1]). Let Ĝ be a U⊥p group
of finite Morley rank. Suppose that Ĝ contains a nontrivial, definable, connected,
normal subgroup G E Ĝ and an elementary abelian p-group V̂ ≤ Ĝ of p-rank 2. If
G is soluble, or if p = 2 and G has no involutions, then G = 〈C◦G(v) : v ∈ V̂ \ {1}〉.

We finish with a property of repeated use.
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Fact 4 (Steinberg’s torsion theorem, [Del 2009b]). Let G be a connected, U⊥p
group of finite Morley rank, and ζ ∈ G be a p-element such that ζ pn

∈ Z(G). Then
CG(ζ )/C◦G(ζ ) has exponent dividing pn .

As the argument essentially relies on the connectedness of centralisers of inner
tori obtained by Altınel and Burdges [AB 2008, Theorem 1], one should not expect
anything similar for outer automorphisms of order p, not even for outer toral
automorphisms.

2.2. Sylow theory. By definition, a Sylow p-subgroup of a group of finite Morley
rank is a maximal, soluble p-subgroup. It turns out that for a p-subgroup of a group
of finite Morley rank, solubility is equivalent to local solubility (in the usual sense
of finitely generated subgroups being soluble) [BN 1994b, Theorem 6.19], so every
soluble p-subgroup is contained in some Sylow p-subgroup. But the solubility
requirement is not for free: even if a group of finite Morley rank G is assumed to
be U⊥p , it is not known whether every p-subgroup of G is soluble; actually it is
still not known whether bad groups of exponent p exist or not. In short, a Sylow
p-subgroup is not necessarily a maximal p-subgroup, even in the U⊥p case. We
now focus on Sylow p-subgroups.

As suggested above, Sylow p-subgroups of a U⊥p group of finite Morley rank
are toral-by-finite [BN 1994b, Corollary 6.20]. There is more.

Fact 5 [BC 2009, Theorem 4]. Let G be a U⊥p group of finite Morley rank. Then
Sylow p-subgroups of G are conjugate.

Remarks. Let Ĝ be a U⊥p group of finite Morley rank and G E Ĝ be a definable,
normal subgroup.

• The Sylow p-subgroups of G are exactly the traces of the Sylow p-subgroups
of Ĝ. A Sylow p-subgroup of G is obviously the trace of some Sylow p-subgroup
of Ĝ. The converse is immediate by conjugacy of the Sylow p-subgroups in the
U⊥p group Ĝ.

• The Sylow p-subgroups of Ĝ/G are exactly the images of the Sylow p-subgroups
of Ĝ. The following argument was suggested by Gregory Cherlin.

Let ϕ be the projection modulo G. Suppose that Ŝ is a Sylow p-subgroup of Ĝ
but ϕ(Ŝ) is not a Sylow p-subgroup of Ĝ/G. Then by the normaliser condition [BN
1994b, Corollary 6.20] there is a p-element α ∈ NĜ/G(ϕ(Ŝ))\ϕ(Ŝ), which we lift to
a p-element a ∈ Ĝ. Note α ∈ NĜ/G(ϕ(Ŝ

◦)), so ϕ([a, Ŝ◦G])=[α, ϕ(Ŝ◦)]≤ϕ(Ŝ◦G)
and a ∈ NĜ(Ŝ

◦G).
Now N = NĜ(Ŝ

◦G) is definable since it is the inverse image of NĜ/G(ϕ(Ŝ
◦)),

which is definable as the normaliser of a p-torus by the rigidity of tori. In
particular, N conjugates its Sylow p-subgroups, and a Frattini argument yields
N ≤ Ŝ◦G · NĜ(Ŝ) ≤ G NĜ(Ŝ). Write a = gn with g ∈ G and n ∈ NĜ(Ŝ); n is
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a p-element modulo G, so lifting torsion there is a p-element m ∈ d(n) ∩ nG.
Then m ∈ NĜ(Ŝ) and therefore m ∈ Ŝ. Hence a = gn ∈ nG = mG ⊆ ŜG and
α = ϕ(a) ∈ ϕ(Ŝ), a contradiction.

As a consequence the image of any Sylow p-subgroup of Ĝ is a Sylow p-
subgroup of Ĝ/G. The converse is now immediate, conjugating in Ĝ/G.

• Without the U⊥p assumption this remains quite obscure. The reader will find in
[PW 1993; 2000] a model-theoretic discussion.

We shall refer to the many consequences of the following fact as “torality
principles”.

Fact 6 [BC 2009, Corollary 3.1]. Let p be a set of primes. Let G be a connected
group of finite Morley rank with a p-element x such that C(x) is U⊥p . Then x
belongs to any maximal p-torus of C(x).

And now for some unrelated remarks involving notions from [Che 2005]. A
decent torus is a definable, divisible, abelian subgroup which equals the definable
hull of its torsion subgroup. Goodness is the hereditary version of decency: a good
torus is a definable, connected subgroup all definable, connected subgroups of
which are decent tori.

Remarks. • Let Ĝ be a connected, U⊥p group of finite Morley rank and G E Ĝ
be a definable, connected subgroup. If T̂ ≤ Ĝ is a maximal p-torus of Ĝ, then
T = T̂ ∩G is a maximal p-torus of G.

Let Ŝ ≥ T̂ be a Sylow p-subgroup of Ĝ. Then S = Ŝ∩G is a Sylow p-subgroup
of G. So T = G ∩ T̂ ≤ G ∩ Ŝ◦ ≤ CS(S◦) = S◦ by torality principles. Hence
T ≤ S◦ ≤ Ŝ◦ ∩G = T̂ ∩G = T .

• This is not true for an arbitrary p-torus τ̂ ≤ Ĝ: take two copies T1, T2 of Z2∞

with respective involutions i and j ; now let Ĝ = (T1×T2)/〈i j〉 and G be the image
of T1. Then the intersection of (the image of) T2 with G is 〈ī〉.

• This is not true if Ĝ is not U⊥p . Take for instance two Prüfer p-groups T ' T ′ '
Zp∞ , an infinite elementary abelian p-group A, and a central product K = T ′ ∗ A
with T ′∩ A= 〈a〉 6= {1}. Set G = T × A and Ĝ = T ×K . One will find T̂ = T ×T ′,
but T̂ ∩G = T ×〈a〉 is not connected.

• Similarly, if 2̂ is a good torus of Ĝ then (2̂∩G)◦ is one of G, but connectedness
of 2 = 2̂∩G is not granted even when 2̂ is maximal; of course connectedness
holds if G is U⊥p for every prime number p.

• As for maximal decent tori, their connected intersections with subgroups need
not be decent tori; in the language of the next subsection, (0, 0)-groups need not be
homogeneous.

All this begs for a notion of reductivity, which however is not our present goal.
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2.3. Unipotence. Developing a suitable theory of unipotence in the context of
abstract groups of finite Morley rank took some time. One needs to describe
a geometric phenomenon in group-theoretic terms. The positive characteristic
notion may look straightforward to the hasty reader: when p is a prime number,
a p-unipotent subgroup is a definable, connected, nilpotent p-group of bounded
exponent. Yet the definition is naive only in appearance. First, nilpotence is perhaps
not for free, as indicated in Section 2.2. Second, Baudisch has constructed a
nonabelian p-unipotent group not interpreting a field [Bau 1996]: as a consequence,
the Baudisch group does not belong to algebraic geometry (for more on field
interpretation, see [GH 1993]). Despite these technical complications, the notion of
unipotence in positive characteristic remains rather intuitive.

Matters are considerably worse in characteristic zero as there is no intrinsic way
to distinguish, say, some torsion-free subgroup of C× from the additive group of
some other field. Unpublished work by Altseimer and Berkman dated 1998 on
so-called “pseudounipotent” and “quasiunipotent” subgroups, two notions which
we shall not define, therefore required tameness assumptions on fields arising in
the structure (see Section 1.3).

Burdges found a satisfactory unipotence theory; the point (and also the difficulty)
is that one has a multiplicity of notions in characteristic zero. We do not wish
to describe his construction. For a complete exposition of Burdges’ unipotence
theory, see Burdges’ dissertation [Bur 2004b, Chapter 2], its first formally published
expositions [Bur 2004a; 2006], or the first article in the present series [*DJ 2012].

A unipotence parameter is a pair of the form (p,∞) where p is a prime, or
(0, d) where d is a nonnegative integer. The case (0, 0) describes decent tori. We
shall denote unipotence parameters by ρ, σ, τ . For every parameter ρ, there is a
notion of a ρ-group, and of the ρ-generated subgroup Uρ(G) of a group G. Bear
in mind that by definition, a ρ-group is always definable, connected, and nilpotent;
the latter need not hold of the ρ-generated subgroup even if the ambient group is
soluble.

Notation. We order unipotence parameters as follows:

(2,∞)� (3,∞)� · · · � (p,∞)� · · · � (0, rk(G))� · · · � (0, 0)

Notation. • For any group of finite Morley rank H , ρH will denote the greatest
unipotence parameter it admits, i.e., with UρH (H) 6= 1; we simply call it the
parameter of H . (Any infinite group of finite Morley rank admits a parameter,
possibly (0, 0); see [Bur 2004b, Theorem 2.19], [Bur 2004a, Theorem 2.15], or
[*DJ 2012, Lemma 2.6].)

Be careful to note that the parameter of a group equal to its ρ-generated subgroup
can be greater than ρ: take a decent torus which is not good and ρ = (0, 0). (More
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generally, a definable, connected, soluble group H has parameter (0, 0) if and only if
it is a good torus, but H =U(0,0)(H) if and only if H is generated by its decent tori.)

• For ι a definable involutive automorphism of some group of finite Morley rank,
let ρι = ρC◦(ι).

With this notation at hand let us review a few classical properties. The reader
should be familiar with the following before venturing further.

Fact 7. (i) If N is a connected, nilpotent group of finite Morley rank, then N =
∗ρ Uρ(N ) (central product) where ρ ranges over all unipotent parameters (Burdges’
decomposition of nilpotent groups [Bur 2004b, Theorem 2.31; 2006, Corollary 3.6;
*DJ 2012, Fact 2.3]).

(ii) If H is a connected, soluble group of finite Morley rank, one has UρH (H) ≤
F◦(H) ([Bur 2004b, Theorem 2.21; 2004a, Theorem 2.16; *DJ 2012, Fact 2.8];
incidentally, the connected component of the Fitting subgroup F◦(H) is defined
and studied in [BN 1994b, §7.2]; one has H ′ ≤ F◦(H) [BN 1994b, Corollary 9.9]).

(iii) If H is as above then UρH (Z(F
◦(H))) 6= 1 [Bur 2004b, Lemma 2.26; 2006,

Lemma 2.3].

(iv) A σ -group Vσ normalises a ρ-group Vρ with ρ 4 σ then VρVσ is nilpotent [Bur
2004b, Lemma 4.10; 2006, Proposition 4.1; *DJ 2012, Fact 2.7].

(v) The image and preimage of a ρ-group under a definable homomorphism
are ρ-groups (push-forward and pull-back: [Bur 2004b, Lemma 2.12; 2004a,
Lemma 2.11]).

(vi) If G is a soluble group of finite Morley rank, S⊆G is any subset, and H EG is
a ρ-subgroup, then [H, S] is a ρ-group [Bur 2004b, Lemma 2.32; 2006, Corollary
3.7].

(vii) Generalising the latter, Frécon obtained a remarkable homogeneity result we
shall not use:

if G is a connected group of finite Morley rank acting definably on a
ρ-group, then [G, H ] is a homogeneous ρ-group, i.e., all its definable,
connected subgroups are ρ-groups [Fré 2006, Theorem 4.11; *DJ 2012,
Fact 2.1].

(The last phenomenon was deemed essential in all earlier versions of the present
work, but to our great surprise one actually does not need it. Frécon has developed
in [Fré 2006] even subtler notions of unipotence with respect to isomorphism types
instead of unipotence parameters.)

By definition, a Sylow ρ-subgroup is a maximal ρ-subgroup. Recall from
Burdges’ decidedly inspiring thesis ([Bur 2004b, §4.3], oddly published only in
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[FJ 2008, §3.2]) that if π denotes a set of unipotence parameters, then a Carter π -
subgroup of some ambient group G is a definable, connected, nilpotent subgroup L
which is Uπ -self-normalising, i.e., with Uπ (N ◦G(L))= L (the π -generated subgroup
is defined naturally and always definable and connected). Carter subgroups, i.e.,
definable, connected, nilpotent, almost-self-normalising subgroups are examples
of the latter where π is the set of all unipotence parameters. All this is very
well-understood in a soluble context [Wag 1994; Fré 2000a].

2.4. Borel subgroups and intersections.

Definition. A Borel subgroup of a group of finite Morley rank is a definable,
connected, soluble subgroup which is maximal as such.

We shall refer to the following as “uniqueness principles”.

Fact 8 [*DJ 2012, from Corollary 4.3]. Let G be an N ◦
◦

-group of finite Morley
rank and B be a Borel subgroup of G. Let U ≤ B be a ρB-subgroup of B with
ρC◦G(U ) 4 ρB . Then UρB(B) is the only Sylow ρB-subgroup of G containing U.
Furthermore, B is the only Borel subgroup of G with parameter ρB containing U.

Remarks. • Because of our ordering on unipotence parameters and our definition
of ρB , the result does hold when ρB = (0, 0), i.e., for B a good torus (cf. [*DJ 2012,
Remark (3) after Theorem 4.1]). It would actually suffice to preorder parameters
by (0, k+ 1)� (0, k), and (p,∞)� (0, 0) for any prime number p.

• In particular, if G E Ĝ where Ĝ is another (not necessarily N ◦
◦

-) group of finite
Morley rank, then NĜ(U )≤ NĜ(B).

• If 1 < U E B is a nontrivial, normal ρB-subgroup of B the result applies. We
shall often use this with U =UρB (Z(F

◦(B))); see Fact 7(iii).

For reference we list below the facts from Burdges’ monumental rewriting [Bur
2004b, §9; 2007] of Bender’s method [Bender 1970] that we shall use. The method
was devised to study intersections of Borel subgroups; it is quite technical. It will
play an important role throughout the proof of our main maximality proposition
(Proposition 6). As a matter of fact it does not appear elsewhere in the present
article apart from Step 1 of Proposition 3.

It must be noted that the Bender method does not finish any job; it merely helps
treat nonabelian cases on the same footing as the abelian case. This will be clear
during Step 4 of Proposition 6. So the reader who feels lost here must keep in mind
the following:

• nonabelian intersections of Borel subgroups complicate the details but do not
alter in the least the skeleton of the proof of Proposition 6;

• the utter technicality is, in Burdges’ own words [Bur 2004b], “motivated by
desperation”;
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• such nonabelian intersections are not supposed to exist in the first place.

Since Burdges’ original work was in the context of minimal connected simple
groups we need to quote [*DJ 2012], which merely reproduced Burdges’ work in
the N ◦

◦
case.

Fact 9 [*DJ 2012, 4.46(2)]. Let G be an N ◦
◦

-group of finite Morley rank. Then
any nilpotent, definable, connected subgroup of G contained in two distinct Borel
subgroups is abelian.

Yet past the nilpotent case it is not always possible to prove abelianity of inter-
sections of Borel subgroups. The purpose of the Bender method is then to extract
as much information as possible from nonabelian intersections. Unfortunately
“as much as possible” means much more than reasonable. This is the analysis of
so-called maximal pairs [*DJ 2012, Definition 4.12], a terminology we shall avoid.

Fact 10 (from [*DJ 2012, 4.50]). Let G be an N ◦
◦

-group of finite Morley rank.
Let B 6= C be two distinct Borel subgroups of G. Suppose that H = (B ∩C)◦ is
nonabelian. Then the following are equivalent:

[*DJ 2012, 4.50(1)]: B and C are the only Borel subgroups of G containing H.

[*DJ 2012, 4.50(2)]: H is maximal among connected components of intersections
of distinct Borel subgroups.

[*DJ 2012, 4.50(3)]: H is maximal among intersections of the form (B ∩ D)◦,
where D 6= B is another Borel subgroup.

[*DJ 2012, 4.50(6)]: ρB 6= ρC .

In the following, subscripts ` and h stand for light and heavy, respectively.

Fact 11 (from [*DJ 2012, 4.52]). Let G, B`, Bh, H be as in the assumptions and
conclusions of Fact 10. For brevity let ρ ′ = ρH ′ , ρ` = ρB` , ρh = ρBh ; suppose
ρ` ≺ ρh . Then the following hold:

[*DJ 2012, 4.52(2)]: Any Carter subgroup of H is a Carter subgroup of Bh .

[*DJ 2012, 4.38, 4.51(3) and 4.52(3)]: Uρ′(F(Bh)) = (F(Bh) ∩ F(B`))◦ is ρ ′-
homogeneous; ρ ′ is the least unipotence parameter in F(Bh).

[*DJ 2012, 4.52(6)]: Uρ′(H)≤ F◦(B`) and N ◦G(Uρ′(H))≤ B`.

[*DJ 2012, 4.52(7)]: Uσ (F(B`))≤ Z(H) for σ 6= ρ ′.

[*DJ 2012, 4.52(8)]: Any Sylow ρ ′-subgroup of G containing Uρ′(H) is contained
in B`.

We finish with an addendum.
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Lemma A. Let Ĝ be a connected group of finite Morley rank and G E Ĝ be a
definable, connected, nonsoluble, N ◦

◦
-subgroup. Let B1 6= B2 be two distinct Borel

subgroups of G such that H = (B1∩ B2)
◦ is maximal among connected components

of intersections of distinct Borel subgroups and nonabelian. Let Q ≤ H be a Carter
subgroup of H. Then:

• NĜ(H)= NĜ(B1)∩ NĜ(B2);

• NĜ(Q)≤ NĜ(B1)∪ NĜ(B2).

Proof. By [*DJ 2012, 4.50(1), (2) and (6)], B1 and B2 are the only Borel subgroups
of G containing H , and they have distinct unipotence parameters. This proves
the first item. Let ρ ′ be the parameter of H ′ and Qρ′ = Uρ′(Q). Then NĜ(Q) ≤
NĜ(Qρ′)≤ NĜ(N

◦

G(Qρ′)) and three cases can occur, following [*DJ 2012, 4.51]:

• In case (4a), NĜ(Q)≤ NĜ(H)= NĜ(B1)∩ NĜ(B2); we are done.

• In case (4b), B1 is the only Borel subgroup of G containing N ◦G(Qρ′), so that
NĜ(Q)≤ NĜ(B1).

• Case (4c) is similar to case (4b) and yields NĜ(Q)≤ NĜ(B2). �

3. Requisites (general lemmas)

Our theorem requires extending some well-known facts, so let us revisit a few
classics. All lemmas below go beyond the N ◦

◦
setting.

3.1. Normalisation principles. The results in the present subsection are folklore;
it turns out that none was formally published. They originate either in [*Del 2007a,
Chapitre 2] or in [Bur 2009]. We shall use them with no reference, merely invoking
“normalisation principles”.

Lemma B (cf. [*Del 2007a, Lemmes 2.1.1 and 2.1.2; 2007b, §3.4]). Let Ĝ be a
group of finite Morley rank, G ≤ Ĝ be a definable subgroup, P ≤ G be a Sylow
p-subgroup of G, and Ŝ≤ NĜ(G) be a soluble p-subgroup normalising G. If p 6= 2,
suppose that Ĝ is U⊥p . Then some G-conjugate of Ŝ normalises P.

Proof. Since G is definable, d(Ŝ)≤ NĜ(G), so we may assume Ĝ = G · d(Ŝ) and
G E Ĝ. We may assume that Ŝ is a Sylow p-subgroup of Ĝ. Recall that S = Ŝ∩G
is then a Sylow p-subgroup of G (see for instance Section 2.2). Since G is definable
and U⊥p if p 6= 2, it conjugates its Sylow p-subgroups; there is g ∈ G with P = Sg.
Hence Ŝg normalises Ŝg

∩G = Sg
= P . �

Remarks. The argument is slightly subtler than it looks.

• The original version [*Del 2007a, Lemmes 2.1.1 and 2.1.2] made the unnecessary
assumption that Ŝ, there denoted K , be definable. Its proof used only conjugacy
in Ĝ; but when K ĝ

≤ NĜ(P) for some ĝ ∈ Ĝ, why should K ĝ be a G-conjugate
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of K ? Then [*Del 2007a] used definability of K to continue: we may assume
Ĝ = G · K ≤ G · NĜ(K ), so K ĝ is actually a G-conjugate of K . Alas it is false
in general that d(Ŝ) ≤ NĜ(Ŝ) (consider the Sylow 2-subgroup of PSL2(C)). So
without definability of Ŝ one is forced to use conjugacy inside G as we do here.

• In particular, if G is not supposed to be definable (and one then needs to assume
G E Ĝ to save the beginning of the proof), the statement is not clear at all since
an arbitrary subgroup of a U⊥p group of finite Morley rank need not conjugate
its Sylow p-subgroups; take PSL2(Z[

√
3]) ≤ PSL2(C) for instance. But for a

normal subgroup, we do not know. This could even depend on the Cherlin–Zilber
conjecture.

Recall in the following that if π consists of a single parameter ρ, then a Carter
π -subgroup is exactly a Sylow ρ-subgroup.

Lemma C [*Del 2007a, Corollaires 2.1.5 and 2.1.6]. Let Ĝ be a group of finite
Morley rank, H ≤ Ĝ be a soluble, definable subgroup, π be a set of unipotence
parameters, L ≤ H be a Carter π-subgroup of H , and Ŝ ≤ NĜ(H) be a soluble
p-subgroup normalising H. Suppose that H is U⊥p . Then some H-conjugate of Ŝ
normalises L.

Proof. We first deal with the case where L = Q is a Carter subgroup of H ; the last
paragraph will handle the general case. We may suppose that H is connected; we
may suppose that Ĝ = H · d(Ŝ) is soluble and that H E Ĝ; we may suppose that Ŝ
is a Sylow p-subgroup of Ĝ. Since H is soluble it conjugates its Carter subgroups,
so Ĝ = H · NĜ(Q).

First assume that H is p⊥. Let R̂ ≤ NĜ(Q) be a Sylow p-subgroup of NĜ(Q)
and R̂2 ≤ Ĝ a Sylow p-subgroup of Ĝ containing R̂. Now R̂H/H and R̂2 H/H
are both Sylow p-subgroups of NĜ(Q)H/H = Ĝ/H ; therefore R̂H = R̂2 H . But
H is p⊥, hence R̂ = R̂2 is a Sylow p-subgroup of Ĝ, and it normalises Q.

If we no longer assume that H is p⊥, then since H is U⊥p the structure of torsion
in definable, connected, soluble groups implies that Sylow p-subgroups of H are
tori. By Lemma B, Ŝ normalises a Sylow p-subgroup P of H , so it normalises
d(P) as well. Up to conjugacy in H , Q contains P and therefore centralises P and
d(P) as well. So we may work in NĜ(d(P)) and factor out d(P), which reduces
to the first case. Then Ŝ normalises some Carter subgroup C of H/d(P), and
normalises its preimage ϕ−1(C)≤ H which is of the form C = Cd(P)/d(P) for
some Carter subgroup C of H [Fré 2000a, Corollaire 5.20]. Hence Ŝ normalises C
modulo d(P)≤ C , that is, Ŝ normalises C .

The reader has observed that for the moment, Ŝ normalises some Carter subgroup
of H . But by conjugacy of such groups in H , there is an H -conjugate of Ŝ
normalising Q.
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We now go back to the general case of a Carter π-subgroup L of H (see
Section 2.3 for the definition). By [FJ 2008, Corollary 5.9] there is a Carter
subgroup Q of H with Uπ (Q)≤ L ≤Uπ (Q) ·Uπ (H ′); by what we just proved and
up to conjugating over H we may suppose that Q is Ŝ-invariant. So we consider the
generalised centraliser E = EH (Uπ (Q)) [Fré 2000a, Définition 5.15], a definable,
connected, and Ŝ-invariant subgroup of H satisfying Uπ (Q)≤ F◦(E) [Fré 2000a,
Corollaire 5.17]; by construction of E and nilpotence, 〈L , Q〉 ≤ E . If E < H then
noting that L is a Carter π -subgroup of E we apply induction. So we may suppose
E = H . But in this case Uπ (Q)≤ F◦(H), so actually L ≤Uπ (F◦(H)) and equality
holds as the former is a Carter π -subgroup of H . It is therefore Ŝ-invariant. �

The following lemma is entirely due to Burdges who cleverly adapted the Frécon–
Jaligot construction of Carter subgroups [FJ 2005]. We reproduce it here with
Burdges’ kind permission. The lemma is not used anywhere in the present article
but included for possible future reference.

Lemma D [Bur 2009]. Let Ĝ be a U⊥2 group of finite Morley rank, G ≤ Ĝ be a
definable subgroup, and Ŝ ≤ NĜ(G) be a 2-subgroup. Then G has an Ŝ-invariant
Carter subgroup.

Proof. We may assume that every definable, Ŝ-invariant subquotient of G of smaller
rank has an Ŝ-invariant Carter subgroup; we may assume that C Ŝ(G)= 1; we may
assume that G is connected.

We first find an infinite, definable, abelian, Ŝ-invariant subgroup. Let ι ∈ Z(Ŝ)
be a central involution; then C◦G(ι) < G. If C◦G(ι)= 1 then G is abelian and there is
nothing to prove. So we may suppose that C◦G(ι) is infinite and find some Ŝ-invariant
Carter subgroup of C◦G(ι) by induction; it contains an infinite, definable, abelian,
Ŝ-invariant subgroup.

Let ρ be the minimal unipotence parameter such that there exists a nontrivial
Ŝ-invariant ρ-subgroup of G (possibly ρ = (0, 0)); this makes sense since there
exists an infinite, definable, abelian, Ŝ-invariant subgroup. Let P ≤G be a maximal
Ŝ-invariant ρ-subgroup; hence P 6= 1. Let N = N ◦G(P).

If N <G then induction applies: N has an Ŝ-invariant Carter subgroup Q. So far
PQ is soluble; moreover, for any parameter σ , Uσ (Q) is Ŝ-invariant as well. So by
definition of ρ and [*DJ 2012, Fact 2.7], PQ is actually nilpotent; hence PQ = Q,
P ≤ Q and P ≤Uρ(Q). By maximality of P , P =Uρ(Q) is characteristic in Q so
N ◦G(Q)≤ N ◦N (Q)= Q and Q is a Carter subgroup of G.

Now suppose that N = G, that is, P is normal in G. By induction, G = G/P
has an Ŝ-invariant Carter subgroup C . Let H be the preimage of C in G; note H
is soluble. By Lemma C, H has an Ŝ-invariant Carter subgroup Q. Here again
PQ is soluble and even nilpotent, so P ≤ Q. Since H is soluble, Q/P = PQ/P
is a Carter subgroup of H/P = C [Fré 2000a, Corollaire 5.20], so Q/P = C and
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Q = H . Finally N ◦G(Q)/P ≤ N ◦
G
(C) = C = Q/P , so N ◦G(Q) = Q and Q is a

Carter subgroup of G. �

Remarks. • Burdges left the highly necessary assumption that Ĝ be U⊥2 implicit
from the title of his prepublication, and the original statement must therefore be
taken with care: the Sylow 2-subgroup of (F2)+o(F2)

× certainly does not normalise
any Carter subgroup.

• The assumption that p = 2 is used only to find an infinite, definable, abelian
Ŝ-invariant subgroup. It is not known whether all connected groups of finite Morley
rank having a definable automorphism of order p 6= 2 with finitely may fixed points
are soluble, although this is a classical property of algebraic groups.

3.2. Involutive automorphisms. The need for the present subsection is the follow-
ing. In order to provide a decomposition for a connected, soluble group of odd type
under an inner involutive automorphism, [*DJ 2010, Section 5] collected various
well-known facts. But in the present article we shall consider the case of outer auto-
morphisms, more precisely the action of abstract 2-tori on our groups. So the basic
discussion of [*DJ 2010] must take place in a broader setting; this is what we do here.

Notation. If α is an involutive automorphism of some group G, we let

G+ = CG(α)= {g ∈ G : gα = g},

G− = {g ∈ G : gα = g−1
}.

We also let {G, α} = {[g, α] : g ∈ G} (in context there is no risk of confusion with
the usual notation for unordered pairs).

If G and α are definable, so are G+, G−, and {G, α}; in general only the first
need be a group. However, {G, α} is stable under inversion, since [gα, α]= [g, α]−1.
Observe that {G, α} ⊆G− but equality may fail to hold: for instance if α centralises
G and G contains an involution i , then i ∈ G+ ∩G− but i /∈ {G, α} = {1}. Notice
further that G = G+ ·G− if and only if {G, α} ⊆ (G−)∧2, and G = G+ · {G, α} if
and only if {G, α} ⊆ {G, α}∧2, where X∧2 denotes the set of squares of X . Finally,
we remark that deg{G, α} = degαGα = degαG

≤ deg G.

Lemma E (cf. [*DJ 2010, Theorem 19]). Let G be a group of finite Morley
rank with Sylow 2-subgroup a (possibly trivial) central 2-torus S, and α be a
definable involutive automorphism of G. Then G = G+ · {G, α} where the fibres
of the associated product map are in bijection with I ({G, α})∪ {1} = �2([S, α]).
Furthermore one has G = (G+)◦ · {G, α} whenever G is connected.

Proof. The proof follows that of [*DJ 2010, Theorem 19] closely and for some
parts a minor adjustment would suffice, but we prefer to give a complete proof
instead. Bear in mind that if ab

= a−1 for two elements of our present group G,
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then a has order at most 2 (this is [*DJ 2010, Lemma 20], an easy consequence of
torsion lifting). Also remember from [*DJ 2010, Lemma 18] that G is 2-divisible,
essentially because 2-torsion is divisible and central.

Step 1. S ∩ {G, α} = [S, α].

Proof of Step 1. This is the argument from [*DJ 2010, Theorem 19, Step 1] with
one more remark. One inclusion is trivial. Now let ζ ∈ S ∩ {G, α}, and write
ζ = [g, α]. Since G is 2-divisible we let h ∈ H satisfy h2

= g. Let n = 2k be the
order of ζ . Then [h2, α] = [h, α]h[h, α] = ζ ∈ Z(G) so [h, α] and [h, α]h commute.
Hence 1= ζ n

= [h, α]n[h, α]nh . It follows that h inverts [h, α]n which must have
order at most 2; so ξ = [h, α]−1 is a 2-element inverted by α, and since it is central
it commutes with h. Finally [ξ, α] = ξ−2

= [h, α]2 = [h2, α] = ζ . �

It follows that I ({G, α})∪ {1} =�2([S, α]), the group generated by involutions
of [S, α].

Step 2. {G, α} is 2-divisible and G = G+ · {G, α}.

Proof of Step 2. Here again this is the argument from [*DJ 2010, Theorem 19,
Step 2]; 2-divisibility of {G, α} was announced but not explicitly proved.

Let x = [g, α] ∈ {G, α}. Like in [*DJ 2010, Theorem 19, Step 2], write the
definable hull of x as d(x)= δ⊕〈γ 〉, where δ is connected and γ has finite order;
rewrite γ = εζ , where ε has odd order and ζ is a 2-element; let 1= δ⊕〈ε〉, so that
d(x)=1⊕〈ζ 〉, where 1 is 2-divisible and inverted by α. Now let y ∈1 satisfy
y4
= xζ−1. Then [gy2, α] = [g, α]y

2
[y2, α] = xy−4

= ζ ∈ S ∩ {G, α} = [S, α]
by Step 1, so there is ξ ∈ S with [ξ 2, α] = ζ . Now [y−1ξ, α] = [y−1, α]ξ [ξ, α] =

y2
[ξ, α] squares to y4

[ξ, α]2 = xζ−1
[ξ 2, α] = x . The set {G, α} is therefore 2-

divisible; as observed this implies G = G+ · {G, α}. �

Step 3. Fibres in Step 2 are in bijection with �2([S, α]).

Proof of Step 3. Let k = [s, α] have order at most 2, where s ∈ S. Fix any
decomposition γ = a · [g, α] with a ∈ G+ and g ∈ G. Since α inverts (hence
centralises) k, one has ka ∈ G+. Moreover,

[sg, α] = [s, α]g[g, α] = kg
[g, α] = k[g, α] ∈ {G, α}.

So a[g, α] = (ka) · (k[g, α]) is yet another decomposition for γ .
Conversely, work as in [*DJ 2010, Theorem 19, Step 3]: suppose that ax = by

are two decompositions, with a, b ∈ G+ and x = [g, α], y = [h, α] ∈ {G, α}. Then
(a−1b)y

= (xy−1)y
= y−1x = (yx−1)α = (b−1a)α = b−1a = (a−1b)−1, so a−1b

has order at most 2, say k = a−1b. More precisely, k = xy−1
= [g, α][h, α]−1

=

[g, α]h−αh is central, so k = h[g, α]h−α = [gh−1, α] ∈ {G, α}; it follows from
Step 1 that k ∈�2([S, α]). �
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Step 4. Left G+-translates of the set (G+)◦ · {G, α} are disjoint or equal.

Proof of Step 4. As in [*DJ 2010, Theorem 19, Step 4], suppose that for a, b ∈G+,
the sets a(G+)◦ · {G, α} and b(G+)◦ · {G, α} meet, in say ag+[g, α] = bh+[h, α]
with natural notations. By the proof of Step 3, k = (ag+)−1(bh+) is in �2([S, α]),
therefore central in G and inverted (hence centralised) by α. So k= (bh+)(ag+)−1

=

(ag+)(bh+)−1. Hence for any bγ+[γ, α] ∈ b(G+)◦ · {G, α}, one finds

bγ+[γ, α] = k2bγ+[γ, α] = a(g+h−1
+
γ+)([γ, α]k).

Since k ∈ �2([S, α]), there is s ∈ S with k = [s, α]. So [γ s, α] = [γ, α]s[s, α] =
[γ, α]k ∈ {G, α}; hence bγ+[γ, α] ∈ a(G+)◦ · {G, α}. This shows b(G+)◦{G, α} ⊆
a(G+)◦{G, α} and the converse inclusion holds too. �

Step 5. At most deg G left G+-translates of (G+)◦ · {G, α} cover G. In particular,
if G is connected, then G = (G+)◦ · {G, α}.

Proof of Step 5. Consider such left translates. They all have rank rk G by Step 3.
As they are disjoint or equal by Step 4, at most deg G of them suffice to cover G. �

This completes the proof of Lemma E. �

Remarks. • Notice the flaw in [*DJ 2010, Theorem 19, Step 5], where “at most”
is erroneously replaced by “exactly”. The reason is that the degree of αG need not
be 1 in general; all one knows is degαG

≤ deg G. For instance, let α invert Z/3Z.
Then deg G = 3 but (G+)◦ ·G− = G.

• If G is a connected group of finite Morley rank of odd type whose Sylow 2-
subgroup S is central, then S is a 2-torus as S = CS(S◦)= S◦ by torality principles.

• The lemma fails if S is not 2-divisible, even at the abelian level: let α invert
Z/4Z.

As a consequence we deduce another useful decomposition which will be used
repeatedly.

Lemma F (cf. [*DJ 2010, Lemma 24]). Let H be a U⊥2 , connected, soluble group
of finite Morley rank, and α be a definable involutive automorphism of H. Suppose
that {H, α} ⊆ F◦(H). Then H = (H+)◦ · {H, α} with finite fibres.

Proof. By normalisation principles, H admits an α-invariant Carter subgroup Q;
by the theory of Carter subgroups of soluble groups, H = Q · F◦(H) [Fré 2000a,
Corollaire 5.20]. Now both Q and F◦(H) are definable, connected, nilpotent, and
U⊥2 , so Lemma E applies to them. Hence Q = (Q+)◦ · {Q, α} ⊆ (H+)◦ · F◦(H),
and

H = Q · F◦(H)⊆ (H+)◦ · F◦(H)

⊆ (H+)◦ · (F◦(H)+)◦ · {F◦(H), α} ⊆ (H+)◦ · {H, α}.
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The fibres are finite: this works as in [*DJ 2010, Lemma 24] since if c1b1= c2b2

with ci ∈ H+, bi ∈ {H, α}, then c−1
2 c1 = b2b−1

1 ∈ H+ so b2b−1
1 = b−1

2 b1 and
b2

1 = b2
2, but by assumption bi ∈ {H, α} ⊆ F◦(H) so b1 and b2 differ by an element

of �2(F◦(H)) (in case of hyperbolic doubt read the next remark). Unlike in
Lemma E we cannot be too precise about the cardinality of the fibre. �

Remarks. • We can show {H, α} ⊆ �2(F◦(H)) · {F◦(H), α}. Indeed, letting
h ∈ H , we then have [h, α] ∈ {H, α} ⊆ F◦(H). Applying Lemma E in F◦(H), we
write [h, α]= f+[ f, α] with f+ ∈ F◦(H)+ and f ∈ F◦(H). Taking the commutator
with α we find [h, α]2 = [ f, α]2. But in F◦(H), the equation x2

= y2 results in

x−1
· x−1 y · x = y−1x = (x−1 y)−1

and by the first observation in the proof of Lemma E, x−1 y has order at most 2.
Hence, [h, α] = k[ f, α] for some k ∈�2(F◦(H)).

• Without the crucial assumption that {H, α} ⊆ F◦(H), one still has

H = {H, α} · (H+)◦ · {H, α},

and therefore H = H− · H+ · H−, but one can hardly say more.
Consider two copies A1 = {a1 : a ∈ C}, A2 = {a2 : a ∈ C} of C+ and let

Q = {t : t ∈ C×} ' C× act on A1 by at
1 = (t

2a)1 and on A2 by at
2 = (t

−2a)2. Form
the group H = (A1⊕ A2)o Q. Let α be the definable, involutive automorphism of
H given by

(a1b2t)α = b1a2t−1,

that is, “α swaps the ±2 weight spaces while inverting the torus”. The reader may
check that α is an automorphism of H , and perform the following computations:

• [a1b2t, α] = (t2b− t2a)1(t−2a− t−2b)2t−2 (so {H, α} 6⊆ F◦(H));

• H+ = {a1a2 · ±1 : a ∈ C+} (incidentally (H+)◦ ≤ F◦(H));

• H− = {a1(−t2a)2t : a ∈ C+, t ∈ C×} (incidentally H− = {H, α});

• H+ · H− = {(a + b)1(a − t2b)2 · ±t : a, b ∈ C+, t ∈ C×} does not contain
01a2 · i for a 6= 0 (here i is a complex root of −1).

• Rewriting [*DJ 2010, Theorem 19] is necessary for the argument; one cannot
simply use the idea of Lemma F together with the original decomposition.

Let Q=C× act on A=C+ by at
= (t2

·a) and form H = AoQ. Consider α the
involutive automorphism doing (at)α = (−a)t (α inverts the Fitting subgroup while
centralising the Carter subgroup). The reader will check that H+= Q, H−= A ·±1,
{H, α} = A, and of course H = H+ · H−.

Running the argument in Lemma F using the (naive) G=G+·G− decomposition
of [*DJ 2010, Theorem 19], one finds Q = (Q+)◦ · Q−, but Q− ' Z/2Z is not in
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F◦(H). One could then wish to apply the decomposition to F(H) instead, but the
Sylow 2-subgroup of the latter is not a 2-torus.

Extending [*DJ 2010, Theorem 19] into Lemma E was therefore needed for
Lemma F.

3.3. U⊥p actions and centralisers. The need for the present subsection is Lemma J
below but we shall digress a bit for completeness and future reference. Let p denote
a set of prime numbers. The class of U⊥p groups is defined naturally. We slightly
refine the analysis of [ABC 2008, §I.9.5], which deals with two dual settings:

• soluble, p⊥ groups acting on definable, connected, soluble, Up groups;

• p-groups acting on definable, connected, soluble, p⊥ groups.

Notation. If A and B are two subgroups of some ambient abelian group, we write
A (+) B to denote the quasidirect sum, i.e., in order to mean that A∩ B is finite.

Lemma G. In a universe of finite Morley rank, let A be a definable, abelian group
and R be a group acting on A by definable automorphisms. Let A0 ≤ A be a
definable, R-invariant subgroup. Suppose one of the following:

(i) A is a p⊥ group and R is a finite, soluble p-group;

(ii) A is a connected, p⊥ group, A0 is connected, and R is a soluble p-group;

(iii) A is a connected, U⊥p group, A0 is connected, and R is a soluble p-group;

(iv) A is a Up-group and R is a definable, soluble, p⊥ group;

(v) A is a connected Up-group and R ≤ S where S is a definable, soluble, p⊥

group acting on A.

Then CR(A)=CR(A0, A/A0). In cases (i), (ii), (iv), and (v): A= [A, R]⊕CA(R),
[A, R] ∩ A0 = [A0, R], and CA(R) covers CA/A0(R). In case (iii), the properties
hold provided that connected components are added (where not redundant), and ⊕
is replaced by (+). In case (ii), CA(R) and CA/A0(R) are connected.

Proof. (i) This is an extension of [ABC 2008, Corollary I.9.14] taking A0 into
account.

We prove that A= [A, R]+CA(R) by induction on the order of R. By solubility,
there exist a proper subgroup S G R and an element r ∈ R with R = 〈S, r〉. By
induction, A = [A, S]+CA(S). But r normalises C = CA(S) which is a definable
p⊥-group. Consider the definable homomorphisms adr : C→ C and Trr : C→ C ,
respectively given by

adr (a)= [a, r ] and Trr (a)=
∑

r i∈〈r〉

ar i
.
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Since adr ◦Trr = Trr ◦ adr = 0, one has im adr ≤ ker Trr and im Trr ≤ ker adr . But
since ker Trr ∩ ker adr consists of elements of order dividing |r |, it is trivial by
assumption. In particular, im adr ∩ ker adr = 0 so

C = im adr + ker adr = [C, r ] +CC(r)≤ [A, R] +CA(R).

Let us show that [A, R]∩CA(R) is trivial. Consider the definable homomorphism
TrR : A→ A given by

TrR(a)=
∑
r∈R

ar .

Since TrR vanishes on any subgroup of the form [A, r ], it vanishes on [A, R]; notice
that it coincides with multiplication by |R| on CA(R). It follows that [A, R]∩CA(R)
consists of elements of order dividing |R|, so by assumption it is trivial.

We can say a bit more: ker TrR = [A, R] and im TrR = CA(R). Indeed, A =
[A, R] + CA(R) and [A, R] ≤ ker TrR , so ker TrR ≤ [A, R] + Cker TrR (R). But
Cker TrR (R) consists of elements of order dividing |R|, therefore it is trivial. It
follows that ker TrR = [A, R]. Again im TrR ∩ ker TrR ≤ Cker TrR (R) = 0, so as
above A = im TrR + ker TrR , proving CA(R)≤ im TrR +Cker TrR (R)= im TrR .

We turn our attention to the definable, R-invariant subgroup A0 ≤ A. One sees
that

[A, R] ∩ A0 = ker TrR ∩A0 = ker(TrR)|A0 = [A0, R]

and, letting ϕ stand for projection modulo A0,

ϕ(CA(R))= ϕ ◦TrR(A)= TrR ◦ϕ(A)= TrR(A/A0)= CA/A0(R).

Finally, let S = CR(A0, A/A0). We apply our results to the action of S on A and
find A ≤ [A, S] +CA(S)≤ CA(S), so S = CR(A).

(ii) We reduce to case (i) with the following claim.
In a universe of finite Morley rank, if G is a definable, connected group and R

is a locally finite group acting on G, then there is a finite subgroup R0 ≤ R with
CG(R0)= CG(R) and [G, R0] = [G, R].

The first equality is by the descending chain condition on centralisers: there is
a finite subset X ⊆ R with CG(X) = CG(R). Now by connectedness of G and
Zilber’s indecomposability theorem, [G, r ] is definable and connected for any r ∈ R.
By the ascending chain condition on definable, connected subgroups, there is a
finite subset Y ⊆ R such that [G, Y ] = [G, R]. Take R0=〈X∪Y 〉, a finite subgroup
of R.

So taking both actions on A and on A0 into account we may suppose R to be
finite; apply case (i) and see that A = [A, R] ⊕CA(R) implies connectedness of
the latter.
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(iii) Here again we may suppose R to be finite. Now read the proof of case (i) again,
replacing “trivial” by “finite” and adding connected components where necessary.

(iv) This is essentially [CD 2012, Facts 1.15 and 1.16]; also see [ABC 2008,
Corollary I.9.11].

Let H = A o R, a definable, soluble group with A ≤ F(H). Then for q /∈ p,
Uq(R)≤ F(H)≤ CH (A), and likewise, U(0,k)(R)≤ CH (A) for k > 0. So R◦ acts
as a good torus which we may replace with a finite, normal subgroup of R; then
we may suppose that R itself is finite.

Considering the complement of p in the set of primes, we may apply case (i).

(v) We reduce to case (iv) with the following claim.
In a universe of finite Morley rank, if G is a definable, connected group and S is a

definable group acting on G, then any subgroup R≤ S satisfies CG(R)=CG(d(R))
and [G, R] = [G, d(R)].

The first equality is by definability of centralisers. The second is as in [CD 2012,
Lemma 1.14]: let X = {s ∈ d(R) : [G, s] ≤ [G, R]}. Since [G, R] is definable by
connectedness of G and Zilber’s indecomposability theorem, so is its normaliser
in d(R). Hence d(R) normalises [G, R]; the definable set X is actually a subgroup
of d(R). So d(R)≤ d(X) and [G, d(R)] = [G, R]. �

Remark. The lemma fails for U⊥p , nonconnected A since it fails at the finite level:
let R = Z/2Z act by inversion on A = Z/4Z; one has CA(R)= 2A = [A, R].

After obtaining the following lemma the author realised it was already proved
by Burdges and Cherlin using a different argument.

Lemma H (cf. [ABC 2008, Proposition I.9.12]; also [BC 2008, Lemma 2.5]). In a
universe of finite Morley rank, let G be a definable group, R be a soluble p-group
acting on G by definable automorphisms, and H E G be a definable, connected,
soluble, U⊥p , R-invariant subgroup. Then C◦G/H (R)= C◦G(R)H/H.

Proof. As in Lemma G, using chain conditions and local finiteness, we may assume
that R is finite. Let L = ϕ−1(C◦G/H (R)), where ϕ denotes projection modulo H .
Since ϕ is surjective, ϕ(L)= C◦G/H (R), which is connected and a finite extension
of ϕ(L◦); so ϕ(L)= ϕ(L◦) and L = L◦H = L◦ by connectedness of H . Hence L
itself is connected. We now proceed by induction on the solubility class of H .

First suppose that H is abelian; we proceed by induction on the solubility class
of R.

• First suppose that R= 〈r〉. Be careful to note that the definable map Trr :G→G
given by

Trr (g)=
|r |−1∏
i=0

gr i

is not a group homomorphism, but (Trr )|H is one.
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Since [L , r ] ≤ H ∩Tr−1
r (0)= ker(Trr )|H , one has by connectedness and Zilber’s

indecomposability theorem [L , r ] ≤ ker◦(Trr )|H = [H, r ] by the proof of Lemma G.
Bear in mind that H is abelian; it follows that L ≤ HCG(r), so by connectedness
L ≤ HC◦G(r), as desired.

• Now suppose R = 〈S, r〉 with S G R. By induction, L ≤ HC◦G(S) and since
H ≤ L , one has L ≤ HC◦L(S). Let GS = C◦G(S) and HS = C◦H (S); also let ϕS be
the projection GS→GS/HS , and L S = ϕ

−1
S (C◦GS/HS

(r)).
By the cyclic case, L S ≤ HSC◦GS

(r)≤ HC◦G(R). But [C◦L(S), r ] ≤ H∩C◦G(S) so
by connectedness [C◦L(S), r ]≤C◦H (S)=HS . It follows that C◦L(S)≤ L S≤HC◦G(R)
and L ≤ HC◦L(S)≤ HC◦G(R).

We now let K =H ′, which is a definable, connected, R-invariant subgroup normal
in G. Let ϕK : G→ G/K and ψ : G/K → G/H be the standard projections, so
that ϕ = ψϕK . By induction, ϕK (C◦G(R)) = C◦ϕK (G)(R). But ϕK (H) E ϕK (G)
and ϕK (H) is abelian, so by the abelian case we just covered, ψ(C◦ϕK (G)(R)) =
C◦ψϕK (G)(R). Therefore,

ϕ(C◦G(R))= ψ(ϕK (C◦G(R)))= ψ(C
◦

ϕK (G)(R))= C◦ψϕK (G)(R)= C◦ϕ(G)(R). �

The following inductive consequence will not be used in the present work.

Lemma I (cf. [ABC 2008, Proposition I.9.13]). In a universe of finite Morley rank,
let H be a definable, connected, soluble, U⊥p group and R be a soluble p-group
acting on H by definable automorphisms. Then H = [H, R]C◦H (R).

Now let ρ denote a unipotence parameter. We wish to generalise [Bur 2004a,
Lemma 3.6], relaxing the p⊥ assumption to U⊥p . This will considerably simplify
some arguments; in particular we shall no longer care whether Burdges’ unipotent
radicals of Borel subgroups contain involutions or not when taking centralisers. This
will spare us the contortions of [*Del 2007a, Lemmes 5.2.33, 5.2.39, 5.3.20, 5.3.23].

Lemma J (cf. [Bur 2004a, Lemma 3.6]). In a universe of finite Morley rank, let U
be a definable, U⊥p , ρ-group and R be a soluble p-group acting on U by definable
automorphisms. Then C◦U (R) is a ρ-group.

Proof. The proof is by induction on the nilpotence class of U . First suppose that
U is abelian. Then by Lemma G one has U = [U, R] (+)C◦U (R). Let K stand for
the finite intersection. Then C◦U (R)/K 'U/[U, R], which by push-forward [Bur
2004a, Lemma 2.11] is a ρ-group. It follows that C◦U (R) itself is a ρ-group. (Since
we could not locate a proof of this trivial fact in the literature, here it goes: Let
V =C◦U (R) and ϕ : V→ V/K be the standard projection. By pull-back [Bur 2004a,
Lemma 2.11], ϕ(Uρ(V ))= V/K =ϕ(V ), and since kerϕ is finite, rk Uρ(V )= rk V .
By connectedness, V =Uρ(V ).)
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Now let 1< A G U be an abelian, definable, connected, characteristic subgroup.
By induction, C◦A(R) and C◦U/A(R) are ρ-groups. Now by Lemma H,

C◦U/A(R)' C◦U (R)A/A

' C◦U (R)/(A∩C◦U (R))

'
(
C◦U (R)/C◦A(R)

)
/
(
(A∩C◦U (R))/C◦A(R)

)
=
(
C◦U (R)/C◦A(R)

)
/L ,

where L = (A ∩ C◦U (R))/C◦A(R) is finite. Since C◦U/A(R) is a ρ-group, so is
C◦U (R)/C◦A(R). But C◦A(R) is a ρ-group, so by pull-back, so is C◦U (R). �

One could of course do the same with a set of unipotence parameters instead of
a single parameter ρ.

Remark. As opposed to the usual setting of p⊥ groups [Bur 2004a, Lemma 3.6],
connectedness of CU (R) is not granted in the U⊥p case: think of an involutive
automorphism inverting a ρ-group which contains a nontrivial 2-torus.

As a consequence, if inside a group of odd type some involution i acts on a
σ -group H with ρC(i)≺σ , then i inverts H . We shall use this fact with no reference.

3.4. Carter π -subgroups. Section 2.3 recalled the maybe not-so-familiar notion
of a Carter π -subgroup. Bear in mind that by definition, π -groups are nilpotent.

Lemma K. Let H be a connected, soluble group of finite Morley rank, π be a set
of parameters such that Uπ (H ′)= 1, and L ≤ H be a maximal π-subgroup. Then
there is a Carter subgroup Q ≤ H of H with L =Uπ (Q).

Proof. It suffices to show that for any π -subgroup L ≤ H there is a Carter subgroup
Q of H with L ≤ Q.

If |π | = 1 then we are actually dealing with a single unipotence parameter ρ, and
the result follows from the theory of Sylow ρ-subgroups [Bur 2004b, Lemma 4.19;
2006, Theorem 5.7]. If |π | > 1, write Burdges’ decomposition of L = Lρ ∗ M ,
where ρ is any unipotence parameter occurring in L , Lρ = Uρ(L), and M is a
(π \ {ρ})-group. By induction there is a Carter subgroup Q of H with Lρ ≤ Q.

Now consider the generalised centraliser (a tool we already used in the proof of
Lemma C) E = EH (Lρ) ≥ 〈Q,M〉. If E < H , then by induction on the Morley
rank, L is contained in some Carter subgroup of E . Since Q ≤ E , the former also
is a Carter subgroup of H .

So we may assume E = H , and therefore Lρ ≤ F◦(H) [Fré 2000a, Corol-
laire 5.17]. Actually we may assume this for any parameter ρ, meaning L ≤ F◦(H).
Now Q acts on Uπ (F◦(H)) so

[Q,Uπ (F◦(H))] ≤Uπ (H ′)= 1 and L ≤Uπ (F◦(H))≤ NH (Q)= Q. �
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3.5. W⊥p groups. Weyl groups of minimal connected simple groups have been
abundantly discussed [AB 2008; BC 2009; BD 2010; Fré 2010]. We do not feel
utterly interested now; as a consequence we shall not even define Weyl groups.
Instead we shall develop a more limited view which will suffice for our purposes.
This line is very much in the spirit of [BP 1990], the influence of which on later
work should not be concealed.

Notation. Let G be a U⊥p group of finite Morley rank. Let Wp(G) = S/S◦ for
any Sylow p-subgroup S of G (these are conjugate by [BC 2009, Theorem 4], our
Fact 5, so this is well-defined).

Lemma L. Let G be a U⊥p group of finite Morley rank.

(i) If H ≤ G is a definable, connected subgroup, then Wp(H) ↪→Wp(G).

(ii) If H E G is a definable, normal subgroup, then Wp(G)�Wp(G/H).

(iii) If H E G is a definable, connected, normal subgroup, then

Wp(G/H)'Wp(G)/Wp(H).

(iv) If G is connected and H ≤ Z(G) is a central subgroup, then

Wp(G/H)'Wp(G).

Proof. (i) Let SH be a Sylow p-subgroup of H and extend it to a Sylow p-subgroup
SG of G. To w ∈ Wp(H) associate hS◦G ∈ Wp(G), where h ∈ SH is such that
hS◦H = w. This is a well-defined group homomorphism as S◦H ≤ S◦G . It is injective
since if h∈ SH∩S◦G , then h∈CSH (S

◦

H )= S◦H by torality principles and connectedness
of H .

(ii) Let SH ≤ SG be as above and denote projection modulo H by ; we know
that 6 = SG ' SG/SH is a Sylow p-subgroup of G/H . To w ∈Wp(G) associate
ḡ6◦ ∈Wp(G/H), where g ∈ SG is such that gS◦G =w. This is a well-defined group
homomorphism as S◦G =6

◦. It is clearly surjective.

(iii) Suppose in addition that H is connected. With notation as in the argument
for claim (ii), if w is in the kernel then g ∈ S◦G H , and we may suppose g ∈ H
(the converse is obvious). Hence the kernel coincides with the image of Wp(H) in
Wp(G) given by claim (i).

(iv) By claim (ii) the map Wp(G)→ Wp(G/H) is a surjective group homomor-
phism; now if gS◦G ∈ Wp(G) lies in the kernel, since H is central in G one finds
g ∈ SG ∩ (HS◦G) ≤ CSG (S

◦

G) = S◦G by torality principles and connectedness of G.
So the map is injective and Wp(G)'Wp(G/H). �

Remarks. • In claims (i) and (iii), connectedness of H is necessary: consider
Z/2Z inside Z2∞ , then inside SL2(C).
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• As a consequence, if G is connected and H E G is a definable, normal subgroup,
then Wp(G/H)'Wp((G/H◦)/(H/H◦))'Wp(G/H◦)'Wp(G)/Wp(H◦).

• Lemma L could be used as a qualifying test for tentative notions of the Weyl
group.

We wish to suggest a bit of terminology.

Definition. A U⊥p group of finite Morley rank is W⊥p if its Sylow p-subgroups are
connected.

As a consequence of Lemma L, when H E G, where both are definable and
connected, if H and G/H are W⊥p then so is G. We aim at saying a bit more about
extending tori. The following result is not used anywhere in the present article.

Lemma M. Let Ĝ be a connected, U⊥p group of finite Morley rank and G E Ĝ be
a definable, connected subgroup. Suppose that Ĝ/G is W⊥p . Let Ŝ ≤ Ĝ be a Sylow
p-subgroup and S = Ŝ ∩G. Then there exist

• a p-torus T̂ ≤ Ĝ with Ŝ = S o T̂ (semidirect product);

• a p-torus 2̂≤ Ĝ with Ŝ = S (×) 2̂ (central product over a finite intersection).

Proof. We know that S is a Sylow p-subgroup of G and that Ŝ/S ' ŜG/G is
a Sylow p-subgroup of Ĝ/G; as the latter is W⊥p it is a p-torus. In particular,
Ŝ = Ŝ◦S. Note that S∩ Ŝ◦ ≤ CS(S◦)= S◦ by torality principles and connectedness
of G.

Bear in mind that p-tori are injective as Z-modules. Inside Ŝ◦, take a direct
complement T̂ of S◦, so that Ŝ◦ = S◦ ⊕ T̂ . Then Ŝ = SŜ◦ = ST̂ , but S ∩ T̂ ≤
S ∩ Ŝ◦ ∩ T̂ ≤ S◦ ∩ T̂ = 1. Hence Ŝ = S o T̂ .

We now consider the action of Ŝ on Ŝ◦; observe that Ŝ as a pure group has finite
Morley rank, so Lemma G applies and yields Ŝ◦ = [Ŝ◦, Ŝ] (+)C◦

Ŝ◦
(Ŝ). Since Ŝ/S

is a p-torus, it is abelian, so [Ŝ◦, Ŝ] ≤ Ŝ′ ≤ S, and by Zilber’s indecomposability
theorem [Ŝ◦, Ŝ] ≤ S◦. Inside C◦

Ŝ◦
(Ŝ) take a direct complement 2̂ of C◦S◦(Ŝ), so that

C◦
Ŝ◦
(Ŝ)=C◦S◦(Ŝ)⊕2̂. Then Ŝ= SŜ◦= SC◦

Ŝ◦
(Ŝ)= S2̂, and 2̂≤C◦

Ŝ◦
(Ŝ) commutes

with S. Moreover (S ∩ 2̂)◦ ≤ (CS(Ŝ)∩ 2̂)◦ ≤ C◦S◦(Ŝ)∩ 2̂= 1 by construction, so
Ŝ = S (×) 2̂. �

Remark. One may not demand that Ŝ = S× T̂ (direct product). Indeed, consider
the two groups SL2(C) with involution i and C× with involution j . Let Ĝ =
(SL2(C)×C×)/〈i j〉 and let ϕ : SL2(C)×C×→ Ĝ be the standard projection. Let
G = ϕ(SL2(C)) ' SL2(C) and 2̂ = ϕ(C×) ' C×. Fix any Sylow 2-subgroup Ŝ
of Ĝ. Then with S = Ŝ ∩G one has S2̂= S (×) 2̂= Ŝ, and S ∩ 2̂= 〈ϕ(i)〉.

If one asks for a semidirect complement T̂ , the latter must contain its own involu-
tion, which will be ϕ(ab) (or possibly ϕ(iab), a similar case), where a ∈ ϕ−1(S)≤
SL2(C) satisfies a2

= i and b2
= j in C×. Remember that inside a fixed Sylow
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2-subgroup of SL2(C), every element of order four (be it toral inside the fixed Sylow
2-subgroup or not) is inverted by another element of order four. So let ζ ∈ ϕ−1(S)
invert a. Then

ϕ(ζ ab)= ϕ(ζ a)= ϕ(iζ ) 6= ϕ(ζ ),

so the action of T̂ on S is always nontrivial.
One may not demand Ŝ = S× T̂ , and in any case nothing can apparently prevent

d(T̂ ) from intersecting G nontrivially, so the question is rather pointless.

3.6. A counting lemma. The following quite elementary lemma was devised in
Cappadocia in 2007 as an explanation of [*Del 2007a, Corollaire 5.1.7] (or [*Del
2008, Corollaire 4.7]). It will be used only once.

Lemma N (Göreme). Let G be a connected, U⊥2 , W⊥2 group of finite Morley rank.
Then the number of conjugacy classes of involutions is odd (or zero).

Proof. By torality principles, every class is represented in a fixed Sylow 2-subgroup
S = S◦. We group involutions of S◦ by classes γk , and assume we find an even
number of these: I (S◦)=

⊔2m
k=1 γk . Since the number of involutions in S◦ is however

odd, some class, say γ , has an even number of involutions. Now N = NG(S) acts
on γ ; by definition of a conjugacy class and by a classical fusion control argument
[BN 1994b, Lemma 10.22], N acts transitively on γ . Hence [N : CN (γ )] = |γ | is
even. Lifting torsion, there is a nontrivial 2-element ζ in N \CN (γ ). Since S E N ,
one has ζ ∈ S = S◦ ≤ CN (γ ), a contradiction. �

The author hoped to be able to use this lemma without any form of bound on
the Prüfer 2-rank. He failed as one shall see in Step 6 of the theorem. The general
statement remains as a relic of happier times past.

4. The proof — before the maximality proposition

Theorem. Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ be a
definable, connected, nonsoluble N ◦

◦
-subgroup. Then the Sylow 2-subgroup of G

has one of the following structures: isomorphic to that of PSL2(C), isomorphic to
that of SL2(C), or a 2-torus of Prüfer 2-rank at most 2.

Suppose in addition that for all involutions ι ∈ I (Ĝ), the group C◦G(ι) is soluble.
Then m2(Ĝ) ≤ 2, one of G or Ĝ/G is 2⊥, and involutions are conjugate in Ĝ.
Moreover, one of the following cases occurs:

• PSL2: G ' PSL2(K) in characteristic not 2; Ĝ/G is 2⊥.

• CiBo∅: G is 2⊥; m2(Ĝ)≤ 1; for ι∈ I (Ĝ), CG(ι)=C◦G(ι) is a self-normalising
Borel subgroup of G.

•CiBo1: m2(G)=m2(Ĝ)= 1; Ĝ/G is 2⊥; for i ∈ I (Ĝ)= I (G), CG(i)=C◦G(i)
is a self-normalising Borel subgroup of G.
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• CiBo2: Pr2(G) = 1 and m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I (Ĝ) =
I (G), C◦G(i) is an abelian Borel subgroup of G inverted by any involution in
CG(i) \ {i} and satisfies rk G = 3 rk C◦G(i).

• CiBo3: Pr2(G) = m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I (Ĝ) = I (G),
CG(i) = C◦G(i) is a self-normalising Borel subgroup of G; if i 6= j are two
involutions of G then CG(i) 6= CG( j).

The proof requires eight propositions all strongly relying on the N ◦
◦

assumption,
the deepest of which will be Proposition 6. Let us briefly describe the global outline.
More detailed information will be found before each proposition.

In Proposition 1 (Section 4.1) we determine the 2-structure of N ◦
◦

-groups by
elementary methods. Proposition 2 (Section 4.2) is a classical rank computation
required both by Proposition 3 (Section 4.3) which identifies PSL2(K) through
reconstruction of its BN-pair, and by Proposition 6 which shows that in nonalgebraic
configurations centralisers◦ of involutions are Borel subgroups. The proof may
be of interest to experts in finite group theory; perhaps they will find something
unexpected there. Proposition 6 will take all of Section 5 but actually requires
two more technical preliminaries: Propositions 4 (Section 4.4) and 5 (Section 4.5),
which deal with actions of involutions and torsion, respectively. After Proposition 6
things go faster. We study the action of an infinite dihedral group in Proposition 7
(Section 6.1) and a strong embedding configuration in Proposition 8 (Section 6.2).
Both are rather classical, methodologically speaking; Proposition 7 is more involved
than Proposition 8; they can be read in any order but both rely on maximality. The
final assembling takes place in Section 6.3 where all preliminary Propositions 1, 2,
4 and 5 reappear as independent themes.

The resulting architecture surprised the author. In the original minimal connected
simple setting one proceeded by first bounding the Prüfer 2-rank [*BCJ 2007]
and then studying the remaining cases [*Del 2007b; 2008]. There maximality
propositions had to be proved three times in order to complete the analysis. The
reason for such a clumsy treatment, with one part of the proof being repeated over
and over again, was that torsion arguments were systematically based on some
control on involutions.

Here we do the opposite. By providing careful torsion control in Proposition 5
and relaxing our expectations on conjugacy classes of involutions we shall be able
to run maximality without prior knowledge of the Prüfer 2-rank. This seems to be
the right level both of elegance and generality. Bounding the Prüfer 2-rank then
follows by adapting a small part of [*BCJ 2007].

Before the curtain opens one should note that bounding the Prüfer 2-rank of Ĝ
a priori is possible if one assumes G to be 2⊥, as Burdges noted for [*BCD 2009].
We do not follow this line.
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4.1. The 2-structure proposition. Proposition 1 hereafter comes directly from
[*Del 2007a, Chapitre 4 and Addendum], published as [*Del 2008, §2]. It is
the most elementary of our propositions, and, together with Proposition 8, one of
the two not requiring almost-solubility of centralisers of involutions.

Proposition 1 (2-Structure). Let G be a connected, U⊥2 , N ◦
◦

-group of finite Morley
rank. Then the Sylow 2-subgroup of G has the following form:

• connected, i.e., a possibly trivial 2-torus;

• isomorphic to that of PSL2(C);

• isomorphic to that of SL2(C), in which case C◦G(i) is nonsoluble for any
involution i of G.

Proof. If the Prüfer rank is 0 this is a consequence of the analysis of degenerate
type groups [BBC 2007]. If it is 1, this is well-known; see for reference [*DJ 2010,
Proposition 27]. Notice that if the Sylow 2-subgroup is as in SL2(C) and i is any
involution, then by torality principles (our Fact 6) all Sylow 2-subgroups of CG(i)
are in C◦G(i), but none is connected: this, and the structure of torsion in connected,
soluble groups of finite Morley rank, prevents C◦G(i) from being soluble.

So we suppose that the Prüfer 2-rank is at least 2 and show that a Sylow
2-subgroup S of G is connected. Let G be a minimal counterexample to this
statement. Then G is nonsoluble. Since G is an N ◦

◦
-group, Z(G) is finite, but we

actually may suppose that G is centreless. For if the result holds of G/Z(G), then
SZ(G)/Z(G) is a Sylow 2-subgroup of G/Z(G), and therefore connected, so that
S ≤ S◦Z(G)∩ S ≤CS(S◦)= S◦ by torality principles. Since G/Z(G) is centreless
we may therefore assume Z(G)= 1.

Still assuming that the Prüfer 2-rank is at least 2 we let ζ ∈ S \ S◦ have minimal
order, so that ζ 2

∈ S◦. Let 21 = C◦S◦(ζ ). If 21 6= 1 then 〈S◦, ζ 〉 ≤ CG(21),
which is connected by [AB 2008, Theorem 1] and soluble since G is an N ◦

◦
-

group. The structure of torsion in such groups yields ζ ∈ S◦, a contradiction.
So 21 = C◦S◦(ζ ) = 1 and ζ therefore inverts S◦. In particular ζ centralises the
group � = �2(S◦) generated by involutions of S◦, and � normalises C◦G(ζ ). By
normalisation principles � normalises a maximal 2-torus T of C◦G(ζ ); by torality
principles, ζ ∈ T and hence T has the same Prüfer 2-rank as S. Now |�| ≥ 4 so
there is i ∈� such that 22 = C◦T (i) is nontrivial. Then 〈T, i〉 ≤ CG(22), which is
soluble and connected as above, implying i ∈ T . This is not a contradiction yet,
but now ζ ∈ T ≤ C◦G(i) and of course S◦ ≤ C◦G(i). Hence C◦G(i) < G is a smaller
counterexample, a contradiction. Connectedness is proved. �

Remark. One can show that if α ∈ G is a 2-element with α2
6= 1, then CG(α) is

connected.
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Let α ∈ G have order 2k with k > 1. By Steinberg’s torsion theorem (our Fact 4),
CG(α)/C◦G(α) has exponent dividing 2k . Using torality principles, fix a maximal
2-torus T of G containing α. If the Sylow 2-subgroup of G is connected, then
T is a Sylow 2-subgroup of G included in C◦G(α); hence CG(α)= C◦G(α). If the
Sylow 2-subgroup of G is isomorphic to that of PSL2(C) or to that of SL2(C), then
any 2-element ζ ∈ CG(α) normalising T centralises α of order at least 4, so it also
centralises T . It follows from torality principles that ζ ∈ T ≤ C◦G(α), and CG(α) is
connected again.

We shall not use this remark.

4.2. The genericity proposition.

Considerations concerning the distribution of involutions in the cosets of
a given subgroup are often useful in the study of groups of even order.

So wrote Bender in the beginning of [Bender 1974a]. The first instance of this
method in the finite Morley rank context seems to be [BDN 1994, after Lemma 7]
which with [BN 1994a] aimed at identifying SL2(K) in characteristic 2. Jaligot
brought it to the odd type setting [*Jal 2000]. The present subsection is the cor-
nerstone of Propositions 3 and 6 and is used again when conjugating involutions
in Step 5 of the final argument. We introduce subsets of a group H describing the
distribution of involutions in the translates of H .

Notation. For κ an involutive automorphism and H a subgroup of some ambient
group, we let TH (κ)= {h ∈ H : hκ = h−1

}. (This set is definable as soon as κ and
H are.)

The following is completely classical; the proof will not surprise the experts and
is included for the sake of self-containedness. It will be applied only when H is a
Borel subgroup of G.

Proposition 2 (genericity). Let Ĝ be a connected, U⊥2 group of finite Morley rank
and G E Ĝ be a definable, connected, nonsoluble N ◦

◦
-subgroup. Suppose that

Ĝ = G · d(Ŝ◦) for some maximal 2-torus Ŝ◦ of Ĝ. Let ι ∈ I (Ĝ) and H ≤ G be a
definable, infinite, soluble subgroup of G. Then

K H =
{
κ ∈ ιĜ \ NĜ(H) : rk TH (κ)≥ rk H − rk CG(ι)

}
is generic in ιĜ .

Proof. This is vacuous for central ι. Now the statement is invariant under conjugating
Ŝ◦ so by torality principles we may assume ι ∈ Ŝ◦; in particular ιĜ = ιG . We shall
first show that ιĜ \ NĜ(H) is generic in ιĜ . Lemmas 2.16 and 3.33 of [*DJ 2012]
were supposed to do this, but they only apply when ι ∈ G. Minor work must be
added.
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Suppose that ιĜ \ NĜ(H) is not generic in ιĜ . Then by a degree argument,
ιĜ ∩NĜ(H) is generic in ιĜ . Inside Ĝ apply [*DJ 2012, Lemma 2.16] with X = ιĜ

and M = NĜ(H): X ∩ M contains a definable, Ĝ-invariant subset X1 which is
generic in X . Note that X is infinite as otherwise ι inverts Ĝ, so X1 is infinite as well;
since X has degree 1 by connectedness of Ĝ, so does X1. We cannot directly apply
[*DJ 2012, Lemma 3.33] as Ĝ itself need not be N ◦

◦
. So let X2 = {κλ : κ, λ ∈ X1},

which is an infinite, Ĝ-invariant subset of NĜ(H). Since

X1 ⊆ ι
Ĝ
= ιG ⊆ ιG = Gι,

X2 is actually a subset of G. Hence X2 ⊆ NG(H). The latter need not be soluble
but is a finite extension of N ◦G(H), which is. Since X2 is infinite and has degree
1 like X1, there is a generic subset X3 of X2 which is contained in some translate
nN ◦G(H) of N ◦G(H), where n ∈ NG(H). Then X3 ⊆ N ◦G(H) · 〈n〉 which is a
definable, soluble group we denote by M2; X3 itself may fail to be G-invariant. But
X2 is a G-invariant subset such that X3 ⊆ X2∩M2 is generic in X2. By [*DJ 2012,
Lemma 3.33] applied in G = G◦ to X2 and M2, G is soluble: a contradiction.

The end of the proof is rather worn-out. We consider the definable function
ϕ : ιĜ \ NĜ(H)→ G · 〈ι〉/H which maps κ to κH . The domain has rank rk ιĜ =
rk ιG = rk G − rk CG(ι). The image set has rank at most rk G − rk H . So the
generic fibre has rank at least rk H− rk CG(ι). But if κ, λ lie in the same fibre, then
κH = λH and κλ ∈ TH (κ). Hence, for generic κ ,

rk TH (κ)≥ rkϕ−1(ϕ(κ))≥ rk H − rk CG(ι). �

As it turns out, the algebraic properties of TH (κ) are not always as good as one
may wish, and one then focuses on the following sets instead.

Notation. For κ an involutive automorphism and H a subgroup of some ambient
group, we let TH (κ)= {h2

∈ H : hκ = h−1
} ⊆ TH (κ). (This set is definable as soon

as κ and H are.)

There is no a priori estimate on rk TH (κ), and Proposition 5 will remedy this.
The T sets were denoted τ in [*Del 2007a]; interestingly enough, they were already
used in [*BCJ 2007, Notation 7.4].

4.3. The algebraicity proposition. We now return to the historical core of the
subject.

Identifying SL2(K) is a classical topic in finite group theory. Proposition 3
may be seen as a very weak form of the Brauer–Suzuki–Wall theorem [Brauer
et al. 1958] in odd characteristic. However [Brauer et al. 1958] heavily relied on
character theory, a tool not available in and perhaps not compatible in spirit with
the context of groups of finite Morley rank. (One may even interpret the expected
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failure of the Feit–Thompson theorem in our context as evidence for this thesis.) A
character-free proof of outstanding elegance was found by Goldschmidt. Yet his
article [Goldschmidt 1974] dealt only with the characteristic 2 case, and ended on
the conclusive remark:

Finally, some analogues of Theorem 2 [Goldschmidt’s version of BSW]
may hold for odd primes but [ . . . ] this problem seems to be very difficult.

Bender’s investigations in odd characteristic [Bender 1974b; 1981] both require
some character theory. We do not know of a general yet elementary identification
theorem for PSL(2, q) with odd q, and hope that the present paper will help ask
the question.

In the finite Morley rank context various results identifying PSL2(K) exist,
starting with Cherlin’s very first article in the field [Che 1979] and Hrushovski’s
generalisation [Hru 1989]. For groups of even type, [BDN 1994; BN 1994a] provide
identification using heavy rank computations. In a different spirit, the reworking of
Zassenhaus’ classic [Zassenhaus 1935] by Nesin [Nes 1990a] and its extension [DN
1995] identify PSL2(K) among 3-transitive groups; the latter gives a very handy
statement.

Most of the ideas in the proof below are in [*Del 2007b] and in many other
articles before. Only two points need be commented on.

• First, we shift from the tradition as in [*CJ 2004; *Del 2007b] of invoking the
results on permutation groups Nesin had ported to the finite Morley rank context
([DN 1995], see above).

We decided to use final identification arguments based on the theory of Moufang
sets instead. At that point of the analysis the difference may seem essentially
cosmetic but the Moufang setting is in our opinion more appropriate as it focuses
on the BN-pair. We now rely on recent work by Wiscons [Wis 2011].

(Incidentally, Nesin had started thinking about BN-pairs in prison [Nes 1990b]
but was released before reaching an identification theorem for PSL2(K) in this
context; not returning to gaol he apparently never returned to the topic.)

• Second, we refrained from using Frécon homogeneity. This makes the proof only
marginally longer in Step 3. The reasons for doing so were consistency with not
using it in Proposition 6, and the mere challenge as it was thought a few years ago
to be unavoidable.

Proposition 3 (algebraicity). Let Ĝ be a connected, U⊥2 group of finite Morley
rank and G E Ĝ be a definable, connected, nonsoluble N ◦

◦
-subgroup. Suppose

that C◦G(ι) is soluble for all ι ∈ I (Ĝ). Suppose that there exists ι ∈ I (Ĝ) such that
C◦G(ι) is contained in two distinct Borel subgroups. Then G has the same Sylow
2-subgroup as PSL2(K). If in addition ι ∈ G, then G ' PSL2(K), where K is an
algebraically closed field of characteristic not 2.
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Proof. Since Ĝ is connected, every involution ι is toral: say ι ∈ Ŝ◦ a 2-torus. We
may therefore assume that Ĝ = G · d(Ŝ◦), so that the standard rank computations
of Proposition 2 apply. Moreover, Ĝ/G is connected and abelian, hence W⊥2 .

Notation. • Let B ≥ C◦G(ι) be a Borel subgroup of G maximising ρB ; let ρ = ρB .

• Let K B = {κ ∈ ι
Ĝ
\ NĜ(B) : rk TB(κ)≥ rk B− rk C◦G(ι)}; by Proposition 2, K B

is generic in ιĜ .

• Let κ ∈ K B .

Note that it is not clear at this point whether ι normalises B.

Step 1. Uρ(C◦G(ι)) = 1. If U ≤ B is a nontrivial ρ-group, H ≤ G is a defin-
able, connected subgroup of G containing U , and λ ∈ ιĜ normalises H , then λ
normalises B.

Proof of Step 1. Throughout this proof, letting YB =Uρ(Z(F◦(B))) will spare a
few parentheses; by Fact 7(iii), YB 6= 1.

Suppose Uρ(C◦G(ι)) 6= 1. Let D 6= B be a Borel subgroup of G containing
C◦G(ι) and maximising H = (B ∩ D)◦; such a Borel subgroup exists by assumption
on C◦G(ι). By construction ρD < ρι = ρB < ρD , so all are equal. If H is not abelian
then by [*DJ 2012, 4.50(3) and (6) (our Fact 10)] ρB 6= ρD , a contradiction. Hence
H is abelian, and in particular C◦G(ι)≤ H ≤ C◦G(Uρ(H)) which is a soluble group;
by definition of B, the parameter of C◦G(Uρ(H)) is ρ. It follows from uniqueness
principles (Fact 8) that Uρ(H) is contained in a unique Sylow ρ-subgroup of G.
This must be Uρ(B)=Uρ(D), so B = D: a contradiction.

We just proved ρι ≺ ρ. It follows from Lemma J that for any σ < ρ, any ι-
invariant σ -group is inverted by ι. Now let U , H , and λ be as in the statement.
There is a Sylow ρ-subgroup V of H containing U . By normalisation principles λ
has an H -conjugate µ normalising V , so µ inverts V ≥U .

Let C = C◦G(U ), a definable, connected, soluble group. Since U ≤Uρ(B), one
has YB ≤ C . So there is a Sylow ρ-subgroup W of C containing YB . As µ inverts
U it normalises C ; by normalisation principles µ has a C-conjugate ν normalising
W , so ν inverts W ≥ YB . Now ν also inverts UρC (C), and commutation principles
(our Fact 1) yield [UρC (C), YB] = 1, whence UρC (C)≤ C◦G(YB)≤ B. At this point
it is clear that ρC = ρ and Uρ(B) is the only Sylow ρ-subgroup of G containing U
by uniqueness principles.

On the other hand µ inverts UρH (H) and U , so by commutation principles
[UρH (H),U ] = 1 and UρH (H) ≤ C , meaning that ρH = ρ as well. Hence λ
inverts UρH (H)=Uρ(H) ≥U . Since Uρ(B) is the only Sylow ρ-subgroup of G
containing U , it follows that λ normalises B. �

Notation. Let Lκ = B ∩ Bκ and 2κ = {` ∈ Lκ : ``κ ∈ L ′κ}.
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Step 2. Lκ and 2κ are infinite, definable, κ-invariant, abelian-by-finite groups.
Moreover, 2◦κ ⊆ TB(κ)⊆2κ .

Proof of Step 2. L ′κ is finite since we otherwise let H =C◦G(L
′
κ)≥Uρ(Z(F◦(B))),

which is definable, connected, and soluble since G is an N ◦
◦

-group; Step 1 shows
that κ normalises B, contradicting its choice in the notation preceding Step 1. It
follows that L◦κ is abelian and Lκ is abelian-by-finite. 2κ is clearly a definable,
κ-invariant subgroup of Lκ , so it is abelian-by-finite as well. By construction
TB(κ)⊆2κ , and 2κ is therefore infinite.

We now consider the action of κ on 2◦κ and find according to Lemma G a decom-
position 2◦κ = C◦2◦κ (κ) (+) [2

◦
κ , κ]. Now the definable function ϕ : C◦2◦κ (κ)→ L ′κ

which maps t to t tκ = t2 is a group homomorphism, so by connectedness and
since L ′κ is finite, C◦2◦κ (κ) has exponent 2: it is trivial. So κ inverts 2◦κ , meaning
2◦κ ⊆ TB(κ). �

Notation. Let U ≤ [Uρ(Z(F◦(B))),2◦κ ] be a nontrivial, 2◦κ -invariant ρ-subgroup
minimal with these properties.

Step 3. U exists and C◦U (ι)= 1; C2◦κ (U ) is finite and there exists an algebraically
closed field structure K with U ' K+ and 2◦κ/C2◦κ (U ) ' K×. Moreover, G has
the same Sylow 2-subgroup as PSL2(K).

Proof of Step 3. Here again we let YB =Uρ(Z(F◦(B))) 6= 1.
If 2◦κ centralises YB then the κ-invariant, definable, connected, soluble group

C◦G(2
◦
κ) contains YB and Step 1 forces κ to normalise B, against its choice in the

notation preceding Step 1. Hence [YB,2
◦
κ ] 6= 1; it is a ρ-group (Fact 7(vi); no need

for Frécon homogeneity here).
We show that C◦U (ι) = 1; be careful to note that ι need not normalise U nor

even B. Yet if C◦U (ι) is infinite then Step 1 applied to C◦G(C
◦

U (ι))≥ YB forces ι to
normalise B, and then ι inverts Uρ(B)≥U ≥ C◦U (ι): a contradiction.

Suppose that C2◦κ (U ) is infinite; Step 1 applied to C◦G(C2◦κ (U ))≥U forces κ to
normalise B: a contradiction. We now wish to apply Zilber’s field theorem. It may
look like we fall short of 2◦κ -minimality but fear not. Follow for instance the proof
in [BN 1994b, Theorem 9.1]. It suffices to check that any nonzero r in the subring
of End(U ) generated by 2◦κ is actually an automorphism. But by push-forward
[Bur 2004a, Lemma 2.11], im r 'U/ ker r is a nontrivial, 2◦κ -invariant ρ-subgroup.
By minimality of U as such, r is surjective. In particular ker r is finite. Suppose it is
nontrivial and form, like in [BN 1994b, Theorem 9.1], the chain (ker rn). Each term
is 2◦κ -central by connectedness, so C◦U (2

◦
κ) contains an infinite torsion subgroup A.

If there is some torsion unipotence then A=U by minimality as a ρ-group, and 2◦κ
centralises U : a contradiction. So A contains a nontrivial q-torus for some prime
number q. This means that there is a q-torus in [YB,2

◦
κ ] ≤ B ′ which contradicts,

for instance, [Fré 2000b, Proposition 3.26]. Hence every r ∈ 〈2◦κ〉End(U ) is actually
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an automorphism of U ; field interpretation applies (it also follows, a posteriori, that
U is 2◦κ -minimal all right).

A priori 2◦κ/C2◦κ (U ) simply embeds into K×. But one has, by Step 2 and the
definition of κ ,

rk2◦κ/C2◦κ (U )= rk2◦κ = rk TB(κ)≥ rk B− rk C◦G(ι)= rk B− rk C◦B(ι)= rk ιB

≥ rk ιU = rk U − rk CU (ι)= rk U = rk K+.

It follows that 2◦κ/C2◦κ (U )' K×. At this point 2◦κ contains a nontrivial 2-torus.
By the 2-structure Proposition 1 and in view of the assumption on centralisers of
involutions, the Sylow 2-subgroup of G is either connected or isomorphic to that of
PSL2(K). Suppose it is connected. Then G is W⊥2 ; since Ĝ/G is as well, so is Ĝ
by Lemma L. This contradicts the fact that κ inverts the 2-torus of 2◦κ . �

For the rest of the proof we now suppose that ι lies in G. So we may assume
Ĝ = G. Bear in mind that since the Prüfer 2-rank is 1 by Step 3, all involutions are
conjugate.

Notation. • For consistency of notation, let i = ι ∈ G and k = κ ∈ G. (By torality
principles, i ∈ C◦G(i)≤ B.)

• Let jk be the involution in 2◦k .

Since i, jk are in B they are B-conjugate. In particular C◦G( jk)≤ B.

Step 4. 2◦k = C◦G( jk). Moreover, rk U = rk C◦G(i) = rk2k , rk B ≤ 2 rk U , and
rk G ≤ rk B+ rk U.

Proof of Step 4. One inclusion is clear by abelianity of 2◦k obtained in Step 2.
Now let N = N ◦G(C

◦

G(k, jk)). Since L◦k is abelian by Step 2, so are C◦G( jk) ≤ L◦k
and its conjugate C◦G(k). Hence 2◦k ≤ C◦G( jk)≤ N and by torality k ∈ C◦G(k)≤ N .
So N contains a nontrivial 2-torus and an involution inverting it; by the structure
of torsion in definable, connected, soluble groups, N is not soluble. Since G is an
N ◦
◦

-group, one has C◦G(k, jk)= 1, so k inverts C◦G( jk). Hence C◦G( jk)≤2◦k .
We now compute ranks. By Steps 3 and 4, rk C◦G(i)= rk2◦k = rk K× = rk K+ =

rk U . By definition of k ∈ K B and Step 2, rk2◦k = rk TB(k)≥ rk B− rk CB(i), so
rk B ≤ 2 rk U .

Now remember that k varies in a set K B generic in i G. Let f : K B→ i B be the
definable function mapping k to jk . If jk = j` then ` ∈ CG( jk), and the latter has
the same rank as CG(i) so we control fibres. Hence,

rk G− rk CG(i)= rk i G
= rk K B ≤ rk i B

+ rk CG(i)= rk i B
+ rk CB(i)= rk B,

that is, rk G ≤ rk B+ rk CG(i). �

For the end of the proof k will stay fixed; conjugating again in B we may therefore
suppose that jk = i .
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Notation. Let N = CG(i) and H = B ∩ N .

Step 5. (B, N ,U ) forms a split BN-pair of rank 1 (see [Wis 2011] if necessary).

Proof of Step 5. We must check the following:

• G = 〈B, N 〉;

• [N : H ] = 2;

• for any ω ∈ N \ H , one has H = B ∩ Bω, G = B t BωB, and Bω 6= B;

• B =U o H .

First, H = B∩N =CB(i)=C◦B(i) by Steinberg’s torsion theorem and the structure
of torsion in B. By the structure of the Sylow 2-subgroup obtained in Step 3,
H < N , so using Steinberg’s torsion theorem again [N : H ] = 2. Hence for any
ω ∈ N \ H = Hk one has Bω = Bk

≥ H k
= H and H ≤ B ∩ Bk . Now by the

structure of torsion in B, the intersection B ∩ Bk centralises the 2-torus in the
abelian group (B ∩ Bk)◦ = L◦k so B ∩ Bk

≤ CB(i)= H .
Recall that the action of H = C◦G(i) = 2

◦

k on U induces a field structure; in
particular H ∩U ≤ CU (2

◦

k) = 1. So U · H = U o H has rank 2 rk U ≥ rk B by
Step 4, and therefore B =U o H .

It remains to obtain the Bruhat decomposition. But first note that if CNG(B)(i) >
CB(i) then CNG(B)(i) = N contains k, which contradicts k /∈ NG(B) from the
notation preceding Step 1. So CNG(B)(i) = CB(i) and since B conjugates its
involutions, a Frattini argument yields NG(B)⊆ B ·CNG(B)(i)= B.

Finally let g ∈ G \ B; g does not normalise B. Let X = (U ∩ Bg)◦ and suppose
X 6= 1. In characteristic p this contradicts uniqueness principles. In characteristic 0,
U ' K+ is minimal [Poi 1987, Corollaire 3.3], so X = U ; at this point U =
Uρ(Bg) = U g, a contradiction again. In any case X = 1. In particular UgB has
rank rk U + rk B = rk G by Step 4 and UgB is generic in G. This also holds of
Uk B so g ∈ Bk B and G = Bt Bk B = Bt BωB for any ω ∈ N \H . This certainly
implies G = 〈B, N 〉. �

We finish the proof with [Wis 2011, Theorem 1.2] or [DMT 2008, Theorem 2.1],
depending on the characteristic. If U has exponent p, then Up(H)= 1 as H 'K×,
so [Wis 2011, Theorem 1.2] applies. If not, then U is torsion-free; we use [DMT
2008, Theorem 2.1] instead. In any case, G/

⋂
g∈G Bg

' PSL2(K) for some field
structure K which a priori need not be the same as in Step 3, but could easily be
proved to be. Since

⋂
g∈G Bg is a normal, soluble subgroup, it is finite as G is an

N ◦
◦

-group, and therefore central by connectedness. But central extensions of finite
Morley rank of quasisimple algebraic groups are known [AC 1999, Corollary 1],
so G ' SL2(K) or PSL2(K), and the first is impossible by assumption on the
centralisers of involutions. �
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Remark. In order to prove nonconnectedness of the Sylow 2-subgroup of G, one
only needs solubility of C◦G(ι) regardless of how centralisers of involutions in other
classes may behave. But in order to continue one needs much more.

• One cannot work with jκ as all our rank computations rely on the equality
rk CG( jκ) = rk CG(ι), for which there is no better reason than conjugacy with ι.
This certainly implies ι ∈ G to start with.

• One cannot entirely drop ι and focus on jκ , since there is no reason why C◦G( jκ)
should be soluble.

4.4. The Devil’s Ladder. Proposition 4 comes from [*Del 2007a, Proposition 5.4.9]
and was realised (somewhere in Turkey, in 2007) to be more general; the name was
given after a Ligeti study. The first lucid uses were in [*DJ 2008; *BCD 2009].
Both the statement and the proof have undergone considerable change since: in
2013 the argument still took three pages.

We shall climb the Ladder three times: in order to control torsion, which is
the very purpose of Proposition 5; at a rather convoluted moment in Step 5 of
Proposition 6; and in order to conjugate involutions in the very end of the proof
of our theorem, Step 5. It may be viewed as an extreme form of Proposition 3,
Step 1; the effective contents of the argument are not perfectly intuitive but for a
contradiction proof it suffices to stand firm longer than the group.

Proposition 4 (The Devil’s Ladder). Let Ĝ be a connected, U⊥2 , W⊥2 group of
finite Morley rank and G E Ĝ be a definable, connected, nonsoluble N ◦

◦
-subgroup.

Suppose C◦G(ι) is soluble for all ι ∈ I (Ĝ).
Let κ, λ ∈ I (Ĝ) be two involutions. Suppose that C◦G(µ) is a Borel subgroup of

G for all µ ∈ I (Ĝ) such that ρµ � ρκ .
Let B ≥ C◦G(κ) be a Borel subgroup of G and 1 6= X ≤ F◦(B) be a definable,

connected subgroup which is centralised by κ and inverted by λ.
Then C◦G(X) ≤ B and B is the only Borel subgroup of G of parameter ρB

containing C◦G(X); in particular κ and λ normalise B.

Proof. First observe that κ ∈ CĜ(X) which is λ-invariant, so by normalisation
principles λ has a CĜ(X)-conjugate λ′ which normalises some Sylow 2-subgroup
of CĜ(X) containing κ . By the W⊥2 assumption the Sylow 2-subgroup of Ĝ is
abelian, so [κ, λ′] = 1; also observe that λ′ inverts X . Let C = C◦G(X), a definable,
connected, and soluble group since G is an N ◦

◦
-group.

First suppose ρC � ρκ . Then κ inverts UρC (C), which is therefore abelian. Since
the four-group 〈κ, λ′〉 normalises UρC (C), one of the two involutions λ′ or κλ′, call
it µ, satisfies Y = C◦UρC (C)

(µ) 6= 1. Note that Y is a ρC -group by Lemma J. Let
D = C◦G(Y )≥UρC (C); it is a definable, connected, soluble, κ-invariant subgroup.
Since ρD<ρC �ρκ , it follows that κ inverts UρD (D). On the other hand, Y ≤C◦G(µ)
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so ρµ � ρκ and by assumption, C◦G(µ) is a Borel subgroup of G, say Bµ. Since
κ and µ commute, κ normalises Bµ and since ρµ � ρκ , κ inverts Uρµ(Bµ)E Bµ.
It also inverts Y ≤ Bµ, so by commutation principles, [Uρµ(Bµ), Y ] = 1 and
Uρµ(Bµ)≤ C◦G(Y )= D.

We are still assuming ρC � ρκ . The involution κ inverts both UρD (D) E D
and Uρµ(Bµ) ≤ D; so by commutation principles, [Uρµ(Bµ),UρD (D)] = 1 and
UρD (D)≤ N ◦G(Uρµ(Bµ))= Bµ. At this stage it is clear that ρD=ρµ and Uρµ(Bµ)=
UρD (D). In particular D ≤ N ◦G(Uρµ(Bµ))= Bµ. As a conclusion,

X ≤ C◦G(UρC (C))≤ C◦G(Y )= D ≤ Bµ = C◦G(µ),

against the fact that µ inverts X .
This contradiction shows that ρC 4 ρκ . Now X ≤ F◦(B), so UρB (Z(F

◦(B)))≤
C◦G(X)= C ; hence ρB 4 ρC 4 ρκ 4 ρB and equality holds. Since by uniqueness
principles UρB (B) is the only Sylow ρB-subgroup of G containing UρB (Z(F

◦(B))),
it also is unique as such containing UρC (C). Hence NĜ(C)≤ NĜ(UρC (C))≤ NĜ(B).
Therefore κ and λ normalise B. �

4.5. Inductive torsion control. It will be necessary to control torsion in the TB(κ)-
sets. In [*Del 2007a] this was redone for each conjugacy class of involutions by ad
hoc arguments which could, in high Prüfer rank, get involved (the “birthday lemmas”
[*Del 2007a, Lemmes 5.3.9 and 5.3.10] published as [*Del 2008, Lemmes 6.9 and
6.10]). We proceed more uniformly, although some juggling is required. Like in
[*Del 2008] the argument will be applied twice: to start the proof of Proposition 6,
and later to conjugate involutions in Step 5 of the final argument. This accounts for
the disjunction in the statement.

There was nothing equally technical in [*BCD 2009], as controlling involutions
there was trivial. An inner version of the argument was found in Yanartas, in the
spring of 2007 and added to [*DJ 2008]. Externalising involutions is no major
issue.

Proposition 5 (inductive torsion control). Let Ĝ be a connected, U⊥2 , W⊥2 group of
finite Morley rank and G E Ĝ be a definable, connected, nonsoluble N ◦

◦
-subgroup.

Suppose that C◦G(ι) is soluble for all ι ∈ I (Ĝ).
Let ι ∈ I (Ĝ) and B ≥C◦G(ι) be a Borel subgroup. Suppose that C◦G(µ) is a Borel

subgroup of G for all µ ∈ I (Ĝ) such that ρµ � ρι. Let κ ∈ I (Ĝ) \ NĜ(B) be such
that TB(κ) is infinite.

Suppose either that B = C◦G(ι) or that ι and κ are Ĝ-conjugate. Then TB(κ) has
the same rank as TB(κ), and contains no torsion elements.

Proof. First remember that since Ĝ is W⊥2 , if some involution ω ∈ I (Ĝ) inverts a
toral element t ∈ Ĝ, then t2

= 1. One may indeed take a maximal decent torus T̂ of
Ĝ containing t ; then ω normalises C◦

Ĝ
(t) which contains T̂ and its 2-torus T̂2, so by
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normalisation principles ω has a C◦
Ĝ
(t)-conjugate ω′ normalising T̂2. By the W⊥2

assumption, the latter already is a Sylow 2-subgroup of Ĝ, whence ω′ ∈ T̂2 ≤C◦
Ĝ
(t).

It follows that ω centralises t ; it also inverts it by assumption, so t2
= 1.

The proof starts here.
We first show that B has no torsion unipotence. The argument is a refinement

of Step 2 of Proposition 3. Suppose that there is a prime number p with Up(B) 6=
1. Let Lκ = B ∩ Bκ (be careful to note that we do not consider the connected
component). Since C◦G(L

′
κ) contains both Up(Z(F◦(B))) and Up(Z(F◦(Bκ))),

uniqueness principles imply that L ′κ is finite. Unfortunately Lκ need not be abelian,
so let us introduce

2κ = {` ∈ Lκ : ``κ ∈ L ′κ},

which is a definable, κ-invariant subgroup of B containing TB(κ); in particular it is
infinite. Also note that2◦κ is abelian. Now let A≤Up(B) be a2◦κ -minimal subgroup.
2◦κ cannot centralise A since otherwise C◦G(2

◦
κ) ≥ 〈A, Aκ〉, against uniqueness

principles. So by Zilber’s field theorem the action induces an algebraically closed
field of characteristic p structure. By Wagner’s theorem on fields [Wag 2001,
consequence of Corollary 9], 2◦κ contains a q-torus Tq for some q 6= p. Up to
taking the maximal q-torus of 2◦κ we may assume that κ normalises Tq . Write if
necessary Tq as the sum of a κ-centralised and a κ-inverted subgroup; by the first
paragraph of the proof, κ centralises Tq . So for any t ∈ Tq one has t tκ = t2

∈ L ′κ ;
therefore Tq ≤ L ′κ against finiteness of the latter.

We have disposed of torsion unipotence inside B, and every element of prime
order in B is toral by the structure of torsion in definable, connected, soluble groups.
By the first paragraph of the proof, no element of finite order 6= 2 of B is inverted
by any involution (this will be used in the next paragraph with an involution distinct
from κ). In particular d(t2) is torsion-free for any t ∈ TB(κ); hence the definable
hull of any element of TB(κ) is torsion-free.

We now show that TB(κ) can contain but finitely many involutions (possibly
none). Suppose that it contains infinitely many. Since B has only finitely many
conjugacy classes of involutions, there are i, j ∈ TB(κ) which are B-conjugate.
Now i ∈ B so {B, i} ⊆ F◦(B); by Lemma F (although [*DJ 2010, Lemma 24]
would do here) B = B+i · {B, i}, so there is x ∈ {B, i} ⊆ (F◦(B))−i with j = i x .
Since i inverts x , d(x2) is torsion-free. Also, 1 6= i j = i i x

= x2
∈ F◦(B). Let

X = d(x2), which is an abelian, definable, connected, infinite subgroup; like i j it
is centralised by κ and inverted by i . There are two cases.

• If B =C◦G(ι) then ι centralises X whereas κi inverts it (yes, κ and i do commute).
Since X ≤ F◦(B) with C◦G(ι)≤ B, The Devil’s Ladder, Proposition 4, applied to
the pair (ι, κi), leads to κi ∈ NĜ(B) and κ ∈ NĜ(B): a contradiction.
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• If κ is Ĝ-conjugate to ι, say κ = ιγ for some γ ∈ Ĝ, we work in Bγ ≥ C◦G(κ).
Since κ centralises X , we have X ≤ Bγ. Since i ∈ CĜ(κ)∩ B ≤ CG(κ), and by
connectedness of the Sylow 2-subgroup of Ĝ, one has i ∈ C◦G(κ) ≤ Bγ. Since i
inverts X , we have X ≤ F◦(Bγ ). Finally, by conjugacy ρκ = ρι, so climbing The
Devil’s Ladder for the pair (κ, i) we find C◦G(X)≤ Bγ = Bγ κ. Since X ≤ F◦(B)
this implies UρB (Z(F

◦(B))) ≤ C◦G(X) ≤ Bγ. Uniqueness principles now yield
B = Bγ. Hence κ ∈ NĜ(B): a contradiction.

We conclude to rank equality. Let i1, . . . , in be the finitely many involutions in
TB(κ) (possibly n= 0) and set i0= 1. If t ∈ TB(κ) then the torsion subgroup of d(t)
is some 〈im〉, so d(im t) is 2-divisible, and im t ∈TB(κ). Hence TB(κ)⊆

⋃
imTB(κ),

which proves rk TB(κ)= rk TB(κ). �

Remarks. • One needs TB(κ) to be infinite only to show Up(B)= 1; if one were
to assume the latter, the rest of the argument would still work with finite TB(κ),
and yield TB(κ)= {1}.

• The fact that Up(B)= 1 is a strong indication of the moral inconsistency of the
configuration.

5. The proof — the maximality proposition

Proposition 6 is the technical core of the present article; we would be delighted
to learn of a finite group-theoretic analogue. It was first devised in the context
of minimal connected simple groups of odd type [*Del 2007a], then ported to
N ◦
◦

-groups of odd type [*DJ 2008], and to actions on minimal connected simple
groups of degenerate type [*BCD 2009]. The main idea and the final contradiction
have not changed but every generalisation has required new technical arguments.
So neither of the above mentioned adaptations was routine; nor was combining
them. We can finally state a general form.

Proposition 6 (maximality). Let Ĝ be a connected, U⊥2 group of finite Morley rank
and G E Ĝ be a definable, connected, W⊥2 , nonsoluble N ◦

◦
-subgroup. Suppose

C◦G(ι) is soluble for all ι ∈ I (Ĝ). Then C◦G(ι) is a Borel subgroup of G for all
ι ∈ I (Ĝ).

Proof. The proof is longer and more demanding than others in the article, but one
should be careful to distinguish two levels.

• At a superficial level, all arguments resorting to local analysis in G and to the
Bender method (Steps 3 and 4) would be much shorter and more intuitive if one
knew that Borel subgroups of G have abelian intersections. There is no hope to
prove such a thing but it may be a good idea to have a quick look at the structure of
the proof in this ideally behaved case.
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• At a deeper level, assuming abelianity of intersections does not make the statement
of the proposition obvious and the reader is invited to think about it. Even with
abelian intersections of Borel subgroups there would still be something to prove;
this certainly uses the TB(κ) sets and rank computations of Section 4.2 as nothing
else is available. As a matter of fact, even under abelian assumptions, we cannot
think of a better strategy than the following.

The long-run goal (Step 6) is to collapse the configuration by showing that
G-conjugates of some subgroup of G generically lie inside B. This form of contra-
diction was suggested by Jaligot to the author, then his Ph.D. student, for [*Del
2007b]. It is typical of Jaligot’s early work in odd type [*Jal 2000, Lemme 2.13].
(The author’s original argument based on the distribution of involutions was both
doubtful and less elegant; even recently he could feel the collapse in terms of
involutions, but failed to write it down properly.)

Controlling generic G-conjugates of an arbitrary subgroup is not an easy task.
The surprise (Step 5) is that the TB(κ) sets, or more precisely the TB(κ) sets,
form the desired family. Seeing this requires a thorough analysis of TB(κ), and
embedding it into some abelian subgroup of B with pathological rigidity properties
(Step 4). The crux of the argument involves some intersection of Borel subgroups.
Interestingly enough, abelian intersections could be removed from [*Del 2007a;
2007b; 2008; *DJ 2008] by a somehow artificial observation on torsion; abelian
intersections started playing a nontrivial role in [*BCD 2009] but as a result the
global proof then divided into two parallel lines. We could find a more uniform
treatment, although the proof of Step 4 still divides into two along the line of
abelianity.

The beginning of the argument (Steps 3, 2, 1) simply prepares for the analysis,
showing that TB(κ) behaves like a semisimple group. Of course controlling torsion
with Proposition 5 is essential in the first place; studying torsion separately, thus
allowing inductive treatment, was the main success of [*DJ 2008]. The proof starts
here.

5.1. The reactor. Since Ĝ is connected, by torality principles every involution has
a conjugate in some fixed 2-torus Ŝ◦. We may therefore assume that Ĝ =G · d(Ŝ◦),
so that the standard rank computations of Proposition 2 apply. Moreover, Ĝ/G is
connected and abelian, hence W⊥2 . Since G is W⊥2 as well, so is Ĝ by Lemma L.

We then proceed by descending induction on ρι and fix some involution ι0 ∈ I (Ĝ)
such that for any µ ∈ I (Ĝ) with ρµ � ρι0 , C◦G(µ) is a Borel subgroup. Notice that
induction will not be used as such in the current proof but merely in order to apply
Propositions 4 and 5.

Be warned that there will be some running ambiguity on ι0 starting from
Section 5.2 onwards, the resolution being in the proof of Step 5.
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Notation. • Let B ≥ C◦G(ι0) be a Borel subgroup of G and suppose B > C◦G(ι0);
let ρ = ρB .

• Let K B = {κ ∈ ι
Ĝ
0 \ NĜ(B) : rk TB(κ)≥ rk B− rk C◦G(ι0)}; by Proposition 2, K B

is generic in ιĜ0 .

• Let κ ∈ K B .

• For the moment we simply write T = TB(κ).

By inductive torsion control (Proposition 5), one has rk T ≥ rk B − rk C◦G(ι0),
and T contains no torsion elements.

Step 1 (uniqueness). (i) B is the only Borel subgroup of G containing C◦G(ι0).

(ii) NĜ(B) contains a Sylow 2-subgroup Ŝ0 of Ĝ.

(iii) If λ ∈ I (Ĝ) ∩ NĜ(B), then [B, λ] ≤ F◦(B) and B = B+λ · (F◦(B))−λ with
finite fibres.

(iv) (NG(B))−λ ⊆ B.

Proof of Step 1. Since G is W⊥2 , by Proposition 3 there is a unique Borel subgroup
of G containing C◦G(ι0); in particular CĜ(ι0) normalises B. By torality principles,
NĜ(B) contains a full Sylow 2-subgroup Ŝ0 of Ĝ, which is a 2-torus as Ĝ is W⊥2 .
Now let λ ∈ I (Ĝ)∩ NĜ(B). Conjugating in NĜ(B) we may suppose λ ∈ Ŝ0. Then
B̂ = B · d(Ŝ0) is a definable, connected, soluble group, so B̂ ′ ≤ F◦(B̂). Using
Zilber’s indecomposability theorem, [B, λ] ≤ [B, Ŝ0] ≤ (B ∩ F◦(B̂))◦ ≤ F◦(B).
So Lemma F yields B = (B+)◦ · {B, λ}. Of course {B, λ} ⊆ (F◦(B))−λ .

It remains to prove (iv). The 2-torus Ŝ0 also acts on NG(B), so it centralises
the finite set NG(B)/B. It follows that if n ∈ (NG(B))−λ , then nB = nλB = n−1 B,
that is, n2

∈ B. If G has no involutions then neither does NG(B)/B by torsion
lifting. But if G does have involutions, then by torality principles B ≥ C◦G(ι0)
already contains a maximal 2-torus of G, which is a Sylow 2-subgroup of G; hence
in that case again, NG(B)/B has no involutions. In any case n ∈ B, which proves
(NG(B))−λ ⊆ B. �

The most important claims for the moment are (i) and (iii). Claim (iv) will play
its role in the sole final step but was more conveniently proved here.

5.2. The fuel. Controlling ιG0 ∩ NĜ(B) was claimed to be essential in [*Del 2008,
after Corollaire 5.37]. We can actually do without but this will result in some
counterpoint of involutions with a final chord at the very end of the proof of Step 5.

Notation. Let IB = {ι ∈ ι
Ĝ
0 : C

◦

G(ι)≤ B}.

Remarks. IB = ι
NG(B)
0 and any maximal 2-torus Ŝ ≤ NĜ(B) intersects IB , two

facts we shall use with no reference. A proof and an observation follow.
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• If ι ∈ IB then there is x ∈ Ĝ = G · d(Ŝ0) with ι = ιx0 , where Ŝ0 is a 2-torus
containing ι0; one may clearly assume x ∈ G. Now by uniqueness (Step 1(i)) and
definition of IB , Bx is the only Borel subgroup of G containing C◦G(ι)≤ B, whence
x ∈ NG(B) and IB ⊆ ι

NG(B)
0 . The converse inclusion is obvious.

By Step 1(ii), NĜ(B) contains a Sylow 2-subgroup of Ĝ, so any maximal 2-torus
Ŝ ≤ NĜ(B) is in fact a Sylow 2-subgroup of NĜ(B), and contains an NĜ(B)-
conjugate ι of ι0; then ι ∈ Ŝ ∩ IB .

• On the other hand it is not clear at all whether equality holds in IB ⊆ ι
G
0 ∩NĜ(B).

As a matter of fact we cannot show that B is self-normalising in G; this is easy
when G is 2⊥ but not in general. At this point, using C◦G(ι) < B, there is a lovely
little argument showing that CG(ι) is connected (which is not obvious if G < Ĝ as
Steinberg’s torsion theorem no longer applies), but one cannot go further. Moreover,
self-normalisation techniques à la [ABF 2013] do not work in the N ◦

◦
context.

The first claim below will remedy this.

Step 2 (action). (i) If λ ∈ ιG0 ∩ NĜ(B) but λ /∈ IB , then λ inverts Uρ(Z(F◦(B))).

(ii) [Uρ(Z(F◦(B))),T] 6= 1.

Proof of Step 2. Throughout this proof, letting YB =Uρ(Z(F◦(B))) will spare a
few parentheses.

Let λ be as in the statement and suppose that X = C◦YB
(λ) is nontrivial. Then

X is a ρ-group by Lemma J. By Step 1(iii), B = B+λ · (F◦(B))−λ ; obviously both
terms normalise X so X E B. It follows from uniqueness principles that Uρ(B) is
the only Sylow ρ-subgroup of G containing X . Since X ≤ C◦G(λ) is contained in
some conjugate Bx of B, we have Uρ(Bx)=Uρ(B) so C◦G(λ)≤ B and λ ∈ IB : a
contradiction.

We move to the second claim. Suppose that T centralises YB . Let C = C◦G(T), a
definable, connected, soluble, κ-invariant subgroup; let U be a Sylow ρ-subgroup of
C containing YB . By normalisation principles κ has a C-conjugate λ normalising U
and inverting T. Since Uρ(B) is the only Sylow ρ-subgroup of G containing YB , λ
normalises B. Hence λ ∈ ιĜ0 ∩ NĜ(B)= ι

G
0 ∩ NĜ(B). We see two cases.

First suppose λ /∈ IB . Then by claim (i), λ inverts YB . If ρC = ρ, then apply
uniqueness principles: Uρ(B) is the only Sylow ρ-subgroup of G containing YB ,
so it also is the only Sylow ρ-subgroup of G containing Uρ(C). As the latter
is κ-invariant, so is B: a contradiction. Therefore ρC � ρ. It follows that λ
inverts UρC (C), whence [UρC (C), YB] = 1 by commutation principles. This forces
UρC (C)≤ C◦G(YB)≤ B, against ρC � ρ.

So λ ∈ IB , i.e., C◦G(λ) ≤ B. But by Step 1(iii), T ⊆ (F◦(B))−λ , and therefore
T ⊆ F◦(B)∩ F◦(B)κ . Since all elements in T are torsion-free by Proposition 5,
one even has T ⊆ (F◦(B)∩ F◦(B)κ)◦. The latter is abelian by [*DJ 2012, 4.46(2)
(our Fact 10)], and T is therefore a definable, connected, abelian subgroup. Now
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always by the torsion control and genericity propositions (Propositions 5 and 2),
and by the decomposition of B obtained in Step 1(iii), one has

rk T = rk TB(κ)≥ rk B− rk C◦G(ι0)= rk B− rk C◦G(λ)

= rk B− rk C◦B(λ)= rk(F◦(B))−λ.

A definable set contains at most one definable, connected, generic subgroup, so
T is the only definable, connected, generic group included in (F◦(B))−λ; hence
NĜ((F

◦(B))−λ) ≤ NĜ(T) and B+λ normalises T. Moreover T ∩ B+λ = 1 since
λ inverts T and T contains no torsion elements. So T · B+λ = T o B+λ is a
definable subgroup of rank ≥ rk(F◦(Bλ))−λ + rk B+λ = rk B by Step 1(iii). Hence
B = To B+λ normalises T, and B = N ◦G(T) since G is an N ◦

◦
-group. In particular

κ normalises B: a contradiction. �

Claim (i) will be used only once more, in the next step.

5.3. The fuel, refined.

Step 3 (abelianity). (i) If ι ∈ IB then T∩CG(ι)= 1.

(ii) There is no definable, connected, soluble, κ-invariant group containing both
Uρ(Z(F◦(B))) and T.

(iii) T is a definable, abelian, torsion-free group.

Proof of Step 3. The first claim is easy. Let ι∈ IB and t ∈T\{1} be such that t ι= t .
Then ι ∈ CĜ(t), which is κ-invariant; by normalisation principles and abelianity of
the Sylow 2-subgroup, κ has a CĜ(t)-conjugate λ commuting with ι. By Step 1(i)
(uniqueness), B is the only Borel subgroup of G containing C◦G(ι), so λ normalises
B. Recall from inductive torsion control (Proposition 5) that d(t) is torsion-free.
By Step 1(iii), tλ = tκ = t−1 forces t2

= [t−1, λ] ∈ F◦(B) and t ∈ F◦(B). We then
apply The Devil’s Ladder (Proposition 4) to the action of 〈ι, κ〉 on d(t) and find
that κ normalises B: a contradiction.

As the proof of the second claim is a little involved let us first see how it entails the
third one. Suppose that X = (F◦(B)∩ F◦(B)κ)◦ is nontrivial and let H = N ◦G(X);
then G being an N ◦

◦
-group and the second claim yield a contradiction. Hence X = 1

which proves abelianity of (B ∩ Bκ)◦. Then, since elements of T⊆ B ∩ Bκ contain
no torsion in their definable hulls by Proposition 5, one has T ⊆ (B ∩ Bκ)◦ and
T is therefore an abelian group, obviously definable and torsion-free. So we now
proceed to proving the second claim. Here again we let YB =Uρ(Z(F◦(B))).

Let L be a definable, connected, soluble, κ-invariant group containing YB and
T. We shall show that YB and T commute, which will contradict Step 2(ii). To
do this we proceed piecewise in the following sense. Bear in mind that for t ∈ T,
d(t) is torsion-free by Proposition 5, so one may take Burdges’ decomposition of
the definable, connected, abelian group d(t). As a result, the set T is a union of
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products of various abelian τ -groups for various parameters τ . We shall show that
each of them centralises YB , which will be the contradiction.

So we let τ be a parameter and 2 be an abelian τ -group included in the set T. If
τ = ρ then we are done as 2≤Uρ(B). So suppose τ ≺ ρ and prepare to use the
Bender method (Section 2.4). Since L ≥ 〈YB,T〉, L is not abelian by Step 2(ii).

Let C ≤ G be a Borel subgroup of G containing N ◦G(L
′)≥ L and maximising

ρC . Notice that

UρC (Z(F
◦(C)))≤ C◦G(F

◦(C))≤ C◦G(C
′)≤ C◦G(L

′)≤ N ◦G(L
′),

so by uniqueness principles and definition of C , we find that C is actually the only
Borel subgroup of G containing N ◦G(L

′). As the latter is κ-invariant, so is C ; in
particular C 6= B. Moreover, YB ≤ C , so uniqueness principles force ρC � ρ, and
H = (B∩C)◦ ≥ 〈YB,T〉 is nonabelian. So we are under the assumptions of Fact 11
with B` = B and Bh = C .

We determine the linking parameter ρ ′, i.e., the only parameter of the homo-
geneous group H ′ [*DJ 2012, 4.51(3) (our Fact 11)]. By Fact 7(vi) (no need for
Frécon homogeneity here), the commutator subgroup [YB,T] is a ρ-subgroup of H ′.
But by Step 2(ii), it is nontrivial. Hence ρ ′ = ρ.

We now construct a most remarkable involution. Let Vρ ≤ C be a Sylow ρ-
subgroup of C containing YB . Since κ normalises C , it has by normalisation
principles a C-conjugate λ normalising Vρ . By uniqueness principles, Uρ(B) is
the only Sylow ρ-subgroup of G containing YB , so λ normalises B. If λ /∈ IB

then by Step 2(i), λ inverts YB ; since ρC � ρ it certainly inverts UρC (C) as well,
whence by commutation principles [YB,UρC (C)] = 1 and UρC (C)≤ C◦G(YB)≤ B,
contradicting ρC � ρ. Hence λ ∈ IB ; it normalises B and C (hence H ).

We return to our abelian τ -group2 included in the set T, with τ ≺ρ. Let Vτ ≤ H
be a Sylow τ -subgroup of H containing 2. By normalisation principles λ has an
H -conjugate µ normalising Vτ . We shall prove that µ actually centralises Vτ ; little
work will remain after that. Observe that Vτ is a definable, connected, nilpotent
group contained in two different Borel subgroups of G, so by [*DJ 2012, 4.46(2)
(our Fact 9)] it is abelian. By the commutator argument of Fact 7(vi) or the simpler
push-forward argument of Fact 7(v) (no need for Frécon homogeneity here), [Vτ , µ]
is a τ -group inverted by µ.

Now note that µ, like λ, is in IB , and normalises B and C . Moreover, by
Step 1(iii), [Vτ , µ]≤ F◦(B). We shall prove that [Vτ , µ]≤ F◦(C) as well by making
it commute with all of F◦(C), checking it on each term of Burdges’ decomposition
of F◦(C). Keep Fact 11 in mind.

First, by [*DJ 2012, 4.38], ρ ′ = ρ is the least parameter in F◦(C); we handle
it as follows. Recall that [Vτ , µ] ≤ F◦(B) is a τ -group, so [Vτ , µ] ≤Uτ (F◦(B)).
By [*DJ 2012, 4.52(7)] and since ρ ′ = ρ 6= τ , the latter is in Z(H). But by [*DJ
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2012, 4.52(3)], Uρ(F◦(C)) = Uρ′(F◦(C)) = (F◦(B)∩ F◦(C))◦ ≤ H , so [Vτ , µ]
does commute with Uρ(F◦(C)). Now let σ � ρ be another parameter. Remember
that µ normalises C ; since µ ∈ ιĜ0 , σ � ρµ and µ inverts Uσ (F◦(C)). It inverts
[Vτ , µ] as well so commutation principles force [Vτ , µ] to centralise Uσ (F◦(C)).

As a consequence [Vτ , µ] ≤C centralises F◦(C). Unfortunately this is not quite
enough to apply the Fitting subgroup theorem as literally stated in [BN 1994b,
Proposition 7.4] due to connectedness issues. The first option is to note that with
exactly the same proof as in [BN 1994b, Proposition 7.4]: in any connected, soluble
group K of finite Morley rank one has C◦K (F

◦(K )) ≤ F◦(K ). Another option
is to observe that by [*DJ 2012, 4.52(1)], F◦(C) has no torsion unipotence: in
particular, the torsion in F(C) is central in C [*DJ 2012, 2.14]. Altogether [Vτ , µ]
commutes with F(C) and we then use the Fitting subgroup theorem stated in
[BN 1994b, Proposition 7.4] to conclude [Vτ , µ] ≤ F(C). Either way we find
[Vτ , µ] ≤ F◦(C), and we already knew [Vτ , µ] ≤ F◦(B). By connectedness
[Vτ , µ] ≤ (F◦(B) ∩ F◦(C))◦. But the latter as we know [*DJ 2012, 4.51(3)] is
ρ ′ = ρ-homogeneous; since ρ � τ , this shows [Vτ , µ] = 1.

In particular µ ∈ IB centralises 2 ≤ Vτ . By claim (i), 2 = 1 which certainly
commutes with YB . This contradiction finishes the proof of claim (ii). �

Remark. It is possible to avoid using the devil’s ladder in the proof of claim (i).
Postpone and finish the proof of claim (ii) as follows:

In particular µ∈ IB centralises2, so µ∈CĜ(2) which is κ-invariant. By
normalisation principles and abelianity of the Sylow 2-subgroup, κ has
a CĜ(2)-conjugate ν commuting with µ. Since µ ∈ IB , by uniqueness
(Step 1(i)), ν normalises B. By Step 1(iii),2=[2, ν]≤ F◦(B) commutes
with YB . Hence all of T commutes with YB , against Step 2(ii).

Then prove claim (i):

Now let t ∈T\{1} be centralised by ι∈ IB . Like in the previous paragraph,
t ∈ F◦(B); t has infinite order and is inverted by κ . But we proved in the
third claim that (F◦(B)∩ F◦(B)κ)◦ = 1, a contradiction.

Both claims (i) and (iii) are crucial. Claim (ii) is a gadget used in the proof of
claim (iii) and in the next step.

5.4. The core.

Notation. • Let π be the set of parameters occurring in T.

• Let Jκ =Uπ (C◦B(T)) (one has T ≤ Jκ by Step 3(iii)).

We feel extremely uncomfortable with the next step. The question of why to
maximise over C◦B(T) is a mystery and always was. Nine years before writing
these lines, the author, then a Ph.D. student, produced an incorrect study of some
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similar maximal intersection configuration, and after noticing a well-hidden flaw
had to reassemble his proof by trying all possible maximisations. Exactly the same
happened to him again. We feel like one piece of the puzzle is still missing, or
more confusingly that we are playing with incomplete sets of pieces from distinct
puzzles. There are many ways to get it wrong and the step works by miracle.

Step 4 (rigidity). Jκ is an abelian Carter π-subgroup of B. There is a maximal
2-torus Ŝ of Ĝ contained in NĜ(B) ∩ NĜ(Jκ), and for any ι ∈ IB ∩ Ŝ, one has
C◦Uπ (N ◦G(Jκ ))

(ι)≤ C◦G(T).

Proof of Step 4. First of all, observe that by torality principles there is a maximal
2-torus Ŝ0 of Ĝ containing ι0; by uniqueness (Step 1(i)) Ŝ0 normalises B. Bear in
mind that any maximal 2-torus in NĜ(B) contains an involution in IB .

We need more structure now, so let C 6= B be a Borel subgroup of G containing
C◦B(T) and maximising H = (B∩C)◦. There is such a Borel subgroup indeed since
C◦G(T) is κ-invariant whereas B is not. As one expects there are two cases and we
first deal with the abelian one. The other will be more involved technically, but
there will be no more complications of this kind when we are done.

Suppose that H is abelian. Since H ≥ C◦B(T) ≥ T by abelianity of the latter,
Step 3(iii), and since H is supposed to be abelian as well, H = C◦B(T)≤ N ◦G(Jκ).
We now consider N ◦G(Jκ). It is not clear at all whether B contains N ◦G(Jκ) but one
may ask.

If (H is abelian and) B happens to be the only Borel subgroup of G containing
N ◦G(Jκ), then

Uπ

(
N ◦C◦G(T)(Jκ)

)
≤Uπ

(
N ◦C◦B(T)(Jκ)

)
=Uπ (C◦B(T))= Jκ

and Jκ ≤ C◦G(T) is a Carter π-subgroup of C◦G(T). As the latter is κ-invariant, by
normalisation principles κ has a C◦G(T)-conjugate λ normalising Jκ . But our current
assumption that B is the only Borel subgroup of G containing N ◦G(Jκ) forces λ to
normalise B as well. By Step 1(iii) and since λ, like κ , inverts the 2-divisible group
T, we find T = [T, λ] ≤ F◦(B), which contradicts Step 2(ii).

So (provided H is abelian) B is not the only Borel subgroup of G containing
N ◦G(Jκ): let D 6= B be one such. Then C◦B(T) = H ≤ N ◦B(Jκ) ≤ (B ∩ D)◦ so by
maximality of H , H = (B ∩ D)◦ = N ◦B(Jκ) and Jκ = Uπ (C◦B(T)) = Uπ (H) is a
Carter π-subgroup of B. By normalisation principles there is a B-conjugate Ŝ of
Ŝ0 normalising Jκ . For ι ∈ Ŝ ∩ IB one has C◦G(ι)≤ B and

C◦Uπ (N ◦G(Jκ ))
(ι)≤ N ◦B(Jκ)= H ≤ C◦G(T).

It is not easy to say more as N ◦G(Jκ) need not be nilpotent, but we are done with
the proof in the abelian case.
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We now suppose that H is not abelian. However H ≥ C◦B(T) so if D 6= B is a
Borel subgroup of G containing H , one has by definition of the latter H = (B∩D)◦.
By [*DJ 2012, 4.50(3) and (6) (our Fact 10)], we are under the assumptions of
Fact 11. Keep it at hand. Let Q ≤ H be a Carter subgroup of H . Let ρ ′ denote
the parameter of the homogeneous group H ′. Studying Jκ certainly means asking
about ρ ′ and π .

Here is a useful principle: if σ is a set of parameters not containing ρ ′, Vσ ≤ H
is a σ -subgroup of H , and Ŝ ≤ NĜ(B) ∩ NĜ(Vσ ) ∩ NĜ(C) is a 2-torus, then Ŝ
centralises Vσ . It is easily proved: First, Vσ being nilpotent by definition of a
σ -group and contained in two distinct Borel subgroups, is abelian by Fact 9. Now
let B̂ = B · d(Ŝ), a definable, connected, soluble subgroup of Ĝ. Then by Zilber’s
indecomposability theorem, [B, Ŝ] ≤ (F◦(B̂)∩ B)◦ ≤ F◦(B) and likewise in C .
Hence [Vσ , Ŝ] ≤ (F◦(B)∩F◦(C))◦, which is ρ ′-homogeneous [*DJ 2012, 4.52(3)].
As ρ ′ /∈ σ , we have [Vσ , Ŝ] = 1 by (Fact 7(v) or (vi)), and Ŝ centralises Vσ .

The argument really starts here. First, ρ ′ ∈ π . Otherwise, by Lemma K, T is
included in a Carter subgroup of H ; we may assume T ≤ Q, and in particular, by
abelianity of Q (Fact 9), Q ≤ C◦G(T). By Lemma A, NĜ(Q) ≤ NĜ(B)∪ NĜ(C).
So there are two cases (yes, this does work for groups).

• First suppose that (ρ ′ /∈ π and) NĜ(Q) ≤ NĜ(C). In particular N ◦B(Q) ≤
N ◦H (Q) = Q and Q is a Carter subgroup of B. By normalisation principles, Ŝ0

has a B-conjugate Ŝ in NĜ(B)∩ NĜ(Q)≤ NĜ(B)∩ NĜ(Uπ (Q))∩ NĜ(C). As we
noted Ŝ must centralise Uπ (Q)≥ T. But there is an involution ι ∈ Ŝ ∩ IB , and this
contradicts Step 3(i).

• Hence (still assuming ρ ′ /∈ π ) one has NĜ(Q)≤ NĜ(B). Then

N ◦C◦G(T)(Q)≤ N ◦C◦B(T)(Q)≤ N ◦H (Q)= Q,

and Q ≤ C◦G(T) is a Carter subgroup of C◦G(T). As the latter is κ-invariant, by
normalisation principles κ has a C◦G(T)-conjugate λ normalising Q. Now since
NĜ(Q)≤ NĜ(B), λ normalises B. Then T is inverted by λ and 2-divisible, whence
T = [T, λ] ≤ [B, λ] ≤ F◦(B) by Step 1(iii), contradicting Step 2(ii).

So we have proved ρ ′∈π . On the other hand ρB=ρ /∈π , as otherwise C◦G(Uρ(T))
would contradict Step 3(ii). Suppose for a second that ρC � ρB ; then since ρ 6= ρ ′,
one has Uρ(Z(F◦(B)))≤ Z(H)≤ C◦G(T) [*DJ 2012, 4.52(7)], against Step 2(ii).
Since parameters differ [*DJ 2012, 4.50(6)] one has ρB � ρC . In particular [*DJ
2012, 4.52(2)], Q is a Carter subgroup of B.

We now show that T is ρ ′-homogeneous, i.e., π ={ρ ′}. Let σ =π\{ρ ′}. Since H ′

is ρ ′-homogeneous, by Lemma K we may assume that Uσ (T)≤ Q. Now Uρ′(H)=
Uρ′(F◦(H)) is a Sylow ρ ′-subgroup of B [*DJ 2012, implicit but clear in 4.52(6)].
By normalisation principles Ŝ0 has a B-conjugate Ŝ in NĜ(B)∩ NĜ(Uρ′(H)) ≤
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NĜ(B)∩ NĜ(C) [*DJ 2012, 4.52(6)]. Hence Ŝ normalises H . But Q is a Carter
subgroup of H so by normalisation principles over H , Ŝ has an H -conjugate Ŝ1 in
NĜ(B)∩ NĜ(C)∩ NĜ(Q). By our initial principle, Ŝ1 centralises Uσ (Q)≥Uσ (T).
Since Ŝ1 contains an involution in IB , we find Uσ (T)= 1 by Step 3(i), as desired.
Hence T is ρ ′-homogeneous.

As a conclusion π = {ρ ′} and Jκ = Uρ′(C◦B(T)) ≤ Uρ′(H). The latter is an
abelian Sylow ρ ′-subgroup of B [*DJ 2012, implicit but clear in 4.52(6) and noted
above]. Also, T ≤Uρ′(H)≤ C◦B(T) and Jκ =Uρ′(H). We constructed a maximal
2-torus Ŝ ≤ NĜ(B)∩ NĜ(Jκ) a minute ago.

Finally fix ι ∈ Ŝ ∩ IB . We aim to show that C◦Uρ′ (N ◦G(Jκ ))(ι)≤ C◦G(T). Recall that
Ŝ normalises C . By normalisation principles Ŝ normalises some Sylow ρ ′-subgroup
Vρ′ of C . Then with Lemma E under the action of ι, Vρ′ = (V+ρ′ )

◦
· {Vρ′, ι}. Now

(V+ρ′ )
◦ is a ρ ′-subgroup of (B ∩ C)◦ = H , so (V+ρ′ )

◦
≤ Jκ ≤ F◦(C) [*DJ 2012,

4.52(6)]. Letting Ĉ =C ·d(Ŝ) one easily sees as we often did that {Vρ′, ι} ⊆ F◦(C).
So Vρ′ ≤ F◦(C) and Vρ′ ≤ Uρ′(F◦(C)). Conjugating Sylow ρ ′-subgroups in C ,
this means that Uρ′(F◦(C)) is actually the only Sylow ρ ′-subgroup of C . But by
[*DJ 2012, 4.52(8)] any Sylow ρ ′-subgroup of G containing Uρ′(H) is contained
in C . This means that Uρ′(F◦(C)) is the only Sylow ρ ′-subgroup of G containing
Uρ′(H)= Jκ .

As a conclusion, any Sylow ρ ′-subgroup of N ◦G(Jκ) lies in Uρ′(F◦(C)). Hence,
paying attention to the fact that ι normalises the nilpotent ρ ′-group Uρ′(F◦(C)),

C◦Uπ (N ◦G(Jκ ))
(ι)≤ C◦Uρ′ (F◦(C))(ι)≤Uρ′(H)= Jκ ≤ C◦G(T). �

We shall use the Bender method no more.

5.5. The reaction.

Notation. • We now write Tκ for TB(κ), as the involution κ will vary in K B .

• Let Y = {B, ι0}.

Step 5 (conjugacy). (i) Y is a normal subgroup of B.

(ii) rk B = rk CG(ι0)+ rk Y .

(iii) Any element of Y \ {1} lies in finitely many G-conjugates of Y .

(iv) Tκ and Y are G-conjugate.

Proof of Step 5. As a matter of fact, we let Yι = {B, ι} for any ι ∈ IB . Since
IB = ι

NG(B)
0 , such sets are NG(B)-conjugate to Yι0 = Y .

Let ι ∈ Ŝ ∩ IB ; do not forget that there is such an involution. Under the action of
ι we may write Jκ = J+κ (+) [Jκ , ι]. By Step 3(i), Tκ ∩ J+κ = 1. So using the very
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definition of κ ∈ K B this yields the rank estimate

rk[Jκ , ι] = rk Jκ − rk J+κ ≥ rk Tκ ≥ rk B− rk C◦G(ι0)

= rk B− rk C◦B(ι)= rk ιB ≥ rk ιJκ = rk[Jκ , ι].

Equality follows. In particular, [Jκ , ι] ⊆ Yι is generic in Yι. Since a definable set
of degree 1 contains at most one definable, generic subgroup, one has CB(ι) ≤

NB(Yι)≤ NB([Jκ , ι]). On the other hand, since Ĝ is W⊥2 , [Jκ , ι] has no involutions;
it is disjoint from CB(ι). Hence [Jκ , ι]·CB(ι)=[Jκ , ι]oCB(ι) is a generic subgroup
of B. It follows B = [Jκ , ι]oCB(ι). At this stage it is clear that Yι = [Jκ , ι] is a
normal subgroup of B contained in F◦(B), and the same holds of Y by NG(B)-
conjugacy. Moreover rk Yι = rk Tκ ; we are not done.

Consider the definable function f : Tκ → Yι which maps t to [t, ι]; as Jκ is
abelian, it is a group homomorphism. Bearing in mind that Tκ ∩ CJκ (ι) = 1 by
Step 3(i) and in view of the equality of ranks, f is actually a group isomorphism;
we are not done.

Let us show that any nontrivial element of Y = Yι0 lies in finitely many G-
conjugates. Indeed, if a ∈ Y \{1} then by the isomorphism Tκ ' Y and inductive tor-
sion control (Proposition 5), a has infinite order; C =C◦G(a)≥ 〈Uρ(Z(F

◦(B))), Y 〉
is therefore soluble and ι0-invariant. If ρC � ρB then ι0 inverts both UρC (C) and Y ,
and commutation principles yield [UρC (C), Y ] = 1, whence UρC (C)≤ N ◦G(Y )= B,
a contradiction. Hence ρC 4 ρB and equality follows. Now uniqueness principles
show that Uρ(B) is the only Sylow ρ-subgroup of G containing Uρ(C). If a ∈ Y g

with g ∈ G then Uρ(Bg) is the only Sylow ρ-subgroup of G containing Uρ(C)
likewise, so g ∈ NG(B). Since B ≤ NG(Y ) ≤ NG(B), this can happen only for a
finite number of conjugates of Y ; we are not done.

It remains to conjugate Tκ to Y . We claim that Jκ ≤ C◦G(Tκ) is a Carter π-
subgroup of C◦G(Tκ), where π is as in the notation of Section 5.4. Indeed, let
N =Uπ (N ◦G(Jκ)) and N1 =Uπ (N ∩C◦G(Tκ)). We wish to decompose, under the
action of ι, the involution we fixed at the beginning of the proof. Be very careful
to note, however, that ι need not normalise N1. But since Ŝ normalises Jκ it also
normalises N . Then N̂ = N ·d(Ŝ) is yet another definable, connected, soluble group,
so {N , ι} ⊆ (N̂ ′∩N )◦ ≤ F◦(N ), and Lemma F applies to N . Now take n1 ∈ N1 and
write its decomposition n1 = pn inside N , with p ∈ (N+)◦ and n ∈ {N , ι}. Then
p ∈ C◦Uπ (N ◦G(Jκ ))

(ι) ≤ C◦G(Tκ) by Step 4. So n ∈ C◦G(Tκ). On the other hand, for
any t ∈ Tκ one has, using a famous identity,

1= [[ι, n−1
], t]n · [[n, t−1

], ι]t · [[t, ι], n]ι

= [n−2, t]n · [[t, ι], n]ι

= [[t, ι], n]ι.



166 ADRIEN DELORO AND ÉRIC JALIGOT

Hence n commutes with [Tκ , ι] = Yι and n ∈ NG(N ◦G(Yι)) = NG(B). Because
p ∈ C◦G(ι) ≤ B, one has n1 = pn ∈ NG(B), meaning N1 ≤ N ◦G(B) = B. Now
N1 ≤Uπ (N ◦B(Jκ)) and since Jκ is a Carter π-subgroup of B, N1 ≤ Jκ . Therefore
Jκ is a Carter π -subgroup of C◦G(Tκ).

Stretto. This extra rigidity has devastating consequences. By normalisation
principles, κ has a C◦G(Tκ)-conjugate λ normalising Jκ . If λ normalises B then
Tκ ≤ [Jκ , λ] ≤ F◦(B) by Step 1(iii), which contradicts [Uρ(Z(F◦(B))),Tκ ] 6= 1
from Step 2(ii). So λ does not normalise B. On the other hand Tλ(B) contains Tκ

so λ ∈ K B . In particular, everything we said so far of κ holds of λ; by rank equality,
Tλ = Tκ .

By conjugacy of Sylow 2-subgroups, λ has an NĜ(Jκ)-conjugate µ in Ŝ. Re-
member that we took Ĝ = G · d(Ŝ◦), so NĜ(Jκ)= NG(Jκ) · d(Ŝ) and µ= λn for
some n ∈ NG(Jκ). Moreover µ ∈ Ŝ commutes with the involution ι we fixed earlier
in the proof. Let X = C◦Yι(µ)≤ F◦(B).

• Suppose X = 1. Then µ inverts Yι, so

Yι ≤ [Jκ , µ] = [Jκ , λn
] = [Jκ , λ]n ≤ Tn

λ = Tn
κ

and equality follows from the equality of ranks.

• Suppose X 6=1. We apply The Devil’s Ladder (Proposition 4) to the action of 〈µ, ι〉
on X inside Bµ, the only Borel subgroup of G containing C◦G(µ) by uniqueness
(Step 1(i)). We find Bµ ≥ C◦G(X)≥Uρ(Z(F◦(B))). Uniqueness principles force
Uρ(Bµ) = Uρ(B), which means µ ∈ IB ∩ Ŝ. In particular, everything we said in
this proof of ι holds of µ, so

Yµ = [Jκ , µ] = [Jκ , λn
] = [Jκ , λ]n ≤ Tn

λ = Tn
κ

and equality follows from the equality of ranks.

In any case, Tκ is G-conjugate to Y ; we are done. �

Notations and steps from Sections 5.2 to 5.4 may be forgotten.

5.6. Critical mass.

Step 6 (the collapse).

We first estimate rk{Tκ : κ ∈ K B}. The set under consideration is definable as a
subset of {Y g

: g ∈ G} = G/NG(Y ) by Step 5(iv). If Tκ = Tλ then there is g ∈ G
with Tκ = Y g. In particular, κ and λ lie in NĜ(N

◦

G(Y
g)) = NĜ(B

g) by Step 5(i).
Since κ and λ are G-conjugate, κλ ∈ NG(Bg). Now κ inverts κλ so by Step 1(iv),
κλ ∈ Bg, and λ ∈ κTBg (κ). The latter has the same rank as Y by Proposition 5 and
Step 5(iv). It follows that rk{Tκ : κ ∈ K B} ≥ rk K B− rk Y = rk G− rk CG(ι)− rk Y .
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We move to something else. Let F be a definable family of conjugates of Y .
Since an element in Y lies in only finitely many conjugates by Step 5(iii), rk

⋃
F =

rkF + rk Y . We first apply this to F1 = {Tκ : κ ∈ K B}, finding

rk
⋃
F1 = rk

⋃
κ∈K B

Tκ ≥ rk G− rk CG(ι0)− rk Y + rk Y = rk G− rk CG(ι0).

We now apply it to F2 = {Y g
: g ∈ G/NG(Y )}, finding

rk
⋃
F2 = rk Y G

= rk G− rk NG(B)+ rk Y = rk G− rk B+ rk Y.

Both agree by Step 5(ii), so
⋃

F1 is generic in
⋃

F2. However,
⋃

F1⊆
(⋃

F2∩B
)
,

which contradicts [*DJ 2012, Lemma 3.33].
This concludes the proof of Proposition 6. �

6. The proof — after the maximality proposition

6.1. The dihedral case. The following is a combination of two different lines
of thought: the study of a pathological “W = 2” configuration in [*Del 2007a,
Chapitre 4] (published as [*Del 2008, §3]) and the final argument in [*BCD 2009].
Since we can quickly focus on the 2⊥ case only a few details need be adapted in
order to move from minimal connected simple groups to N ◦

◦
-groups, so we feel that

the resulting proposition owes much to Burdges and Cherlin. The final contradiction
is by constructing two disjoint generic subsets of some definable subset of G.

Proposition 7 (dihedral case). Let Ĝ be a connected, U⊥2 group of finite Morley
rank and G E Ĝ be a definable, connected, nonsoluble N ◦

◦
-subgroup. Suppose that

C◦G(ι) is soluble for all ι ∈ I (Ĝ).
Suppose that the Sylow 2-subgroup of Ĝ is isomorphic to that of PSL2(C).

Suppose in addition that for ι ∈ I (Ĝ), the group C◦G(ι) is contained in a unique
Borel subgroup of G.

Then Ĝ/G is 2⊥ and Bι = C◦G(ι) is a Borel subgroup of G inverted by any
involution ω ∈ CG(ι) \ {ι}.

Proof. First observe that by torality principles, all involutions in Ĝ are conjugate.
If one is in Ĝ \ G then all are, and G is 2⊥. If one is in G then Pr2(G) = 1
and Pr2(Ĝ/G)= 0; Ĝ/G is 2⊥ by the degenerate type analysis [BBC 2007] and
connectedness.

Notation. • Let V = {1, ι, ω, ιω} ≤ Ĝ be a four-group.

• Let T̂ι be a 2-torus containing ι and inverted by ω, and T̂ω likewise.

• Let Bι be the only Borel subgroup of G containing C◦G(ι), and Bω likewise
(observe that by uniqueness of Bι over C◦G(ι), V normalises Bι and Bω).

• Let ρ = ρBι .
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Here is a small unipotence principle we shall use with no reference: if L ≤ G is
a definable, connected, soluble, V -invariant subgroup, then ρL 4 ρ. This is obvious
as otherwise all involutions in V invert UρL (L). Bigeneration (Fact 3) will also play
a growing role in the subsequent pages.

Step 1. Bι 6= Bω.

Proof of Step 1. Suppose not. If G is 2⊥, then it is W⊥2 : by Proposition 6, Bι is a
Borel subgroup of G. Hence C◦G(ι)= Bι= Bω=C◦G(ω), and therefore Bι=C◦G(ιω)
as well. Yet bigeneration, Fact 3, applies to the action of V on the 2⊥ group G: a
contradiction.

If G is not 2⊥ then bigeneration might fail. But now all involutions are in G; by
torality principles ι ∈ C◦G(ι)≤ Bι = Bω so Bω contains T̂ωo 〈ι〉, which contradicts
the structure of torsion in connected, soluble groups. �

Notation. Let H = (Bι ∩ Bω)◦.

Since ω normalises Bι and vice-versa, H is V -invariant.

Step 2. H is abelian and 2⊥. Moreover, ι centralises Uρ(Bι) and ω inverts it; V
centralises H and N ◦G(H)= C◦G(H).

Proof of Step 2. If H = 1 then C◦Bι(ω) = 1 and ω inverts Bι; since ω inverts T̂ι
which normalises Bι, commutation principles yield [T̂ι, Bι] = 1 and Bι ≤C◦G(ι). So
Bι = C◦G(ι) is an abelian Borel subgroup inverted by ω and by ιω. Hence all our
claims hold if H = 1. We now suppose H 6= 1.

Suppose that H is not abelian and let L = N ◦G(H
′), a definable, connected,

soluble, V -invariant group. Then ρL 4 ρ but since L contains Uρ(Z(F◦(Bι))) and
Uρ(Z(F◦(Bω))), equality holds. Hence Uρ(Z(F◦(Bι))) ≤ Uρ(L); by uniqueness
principles Uρ(Bι) is the only Sylow ρ-subgroup of G containing Uρ(L). The same
holds of Uρ(Bω), proving equality and Bι = Bω, against Step 1. So H is abelian.

Now suppose that Uρ(H) 6= 1 and let L = N ◦G(Uρ(H)). The same causes having
the same effects, we reach a contradiction again. Hence Uρ(H)= 1, and it follows
that ω inverts Uρ(Bι). The same argument works for ιω, so ι centralises Uρ(Bι).

We now claim that V centralises H . Let K = [H, ι]; since H is abelian, using
Zilber’s indecomposability theorem we see that K is a definable, connected, abelian
group inverted by ι; in particular it is 2-divisible. Since ι centralises Uρ(Bι) and
inverts Uρ(Bω), commutation principles yield 〈Uρ(Bι),Uρ(Bω)〉 ≤ C◦G(K ) and the
latter is V -invariant. Uniqueness principles and Step 1 forbid solubility of C◦G(K );
this means K = 1, and ι centralises H . The same holds of ω.

Suppose that H has involutions. Since it is V -invariant, so is its Sylow 2-
subgroup T (no need for normalisation principles here). If ι ∈ T , then ι ∈ H ≤ Bι
and ω ∈ Bω by conjugacy; hence Bω contains T̂ω o 〈ι〉, against the structure of
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torsion in connected, soluble groups. So ι /∈ T , and by assumption on the structure of
the Sylow 2-subgroup of Ĝ, ι inverts T ; the same holds of ω and ιω, a contradiction.

It remains to show that N ◦G(H)= C◦G(H). Let N = N ◦G(H). First assume that
G is 2⊥. Then using Lemma E under the action of ι we write N = (N+ι)◦ · {N , ι},
where {N , ι} is 2-divisible. Since ι centralises H , commutation principles applied
pointwise force {N , ι} ⊆ CG(H). We turn to the action of ω on N1 = (N+ι)◦; with
Lemma E again N1 = (N

+ω

1 )◦ · {N1, ω}, and here again {N1, ω} ⊆ CG(H). Finally,
(N+ω1 )◦ ≤ C◦G(ι, ω)≤ H ≤ CG(H) by abelianity, so N ≤ CG(H) and we conclude
by connectedness of N .

Now suppose that Ĝ/G is 2⊥; as a consequence, V ≤ G. It is not quite clear
whether N has involutions and whether {N , ι} is 2-divisible, so we argue as follows.
By normalisation principles, there is a V -invariant Carter subgroup Q of N . The
previous argument applies to Q, so Q ≤ C◦G(H); it also applies to F◦(N ), so
F◦(N )≤ C◦G(H), and N = F◦(N ) · Q ≤ C◦G(N ). �

Step 3. We may suppose that G is 2⊥.

Proof of Step 3. Suppose that G contains involutions, i.e., V ≤ G. We shall prove
that H = 1. So suppose in addition that H 6= 1. For the consistency of notations,
let i = ι ∈ G, w = ω ∈ G, and Ti = T̂i , Tw = T̂w.

We claim that w does not invert F◦(Bi ). If it does, then w inverts Ti ≤ Bi and
F◦(Bi ), so by commutation principles [Ti , F◦(Bi )] = 1. Let Q ≤ Bi be a Carter
subgroup of Bi containing Ti ; then Bi = F◦(Bi ) ·Q centralises Ti , and Tw ≤ Z(Bw)
by conjugacy. Hence,

Ti o 〈w〉 ≤ 〈Ti , Tw〉 ≤ C◦G(H),

against the structure of torsion in connected, soluble groups and G being N ◦
◦

.
Hence Yi =C◦F◦(Bi )

(w) 6=1. Since Uρ(Bi ) is abelian by Step 2, Uρ(Bi )≤C◦G(Yi );
since Yi is V -invariant, our small unipotence principle and general uniqueness
principles force C◦G(Yi )≤ Bi . Hence, by Step 2,

N ◦Bw(H)= C◦Bw(H)≤ C◦Bw(Yi )≤ H,

which proves that H is a Carter subgroup of Bw. It therefore contains involutions,
against Step 2.

This contradiction shows that if G has involutions then H = 1. Hence, as in
the beginning of Step 2, w inverts Bi = C◦G(i) and so does any other involution in
CG(i) \ {i}; if G has involutions, Proposition 7 is proved. �

From now on, we suppose that G is 2⊥; we are after a contradiction. Since G
is W⊥2 , Proposition 6 applies and C◦G(ι)= Bι is a Borel subgroup of G. Moreover,
since G is 2⊥, it admits a decomposition G = G+ι · G−ι by Lemma E, and the
fibres are trivial. From the connectedness of G we deduce that CG(ι) = G+ is
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connected. Finally, since the 2-torus T̂ι normalises Bι, it centralises the finite
quotient NG(Bι)/Bι, and so does ι. Now N = NG(Bι) admits a decomposition
N = N+ ·{N , ι} as well; we just proved N+≤ B and {N , ι}⊆ B. Hence Bι=CG(ι)

is a self-normalising Borel subgroup of G, which will be used with no reference.

Step 4. For any involution λ ∈ CĜ(ι) \ {ι}, B−λι = F◦(Bι).

Proof of Step 4. The claim is actually obvious if H =1, an extreme case in which the
below argument remains however valid. Let X ι = C◦F◦(Bι)(ω) and Xω = C◦F◦(Bω)(ι).

Suppose that X ι 6= 1 and Xω 6= 1. By abelianity of Uρ(Bι) from Step 2,
Uρ(Bι) ≤ C◦G(X ι). As the latter is V -invariant, it has parameter exactly ρ, so
C◦G(X ι)≤N ◦G(Uρ(Bι))= Bι; by uniqueness principles, Bι is the only Borel subgroup
of G with parameter ρ containing C◦G(X ι), and likewise for Bω over C◦G(Xω). It
follows that C◦Bω(H) ≤ (Bι ∩ Bω)◦ = H and H is a Carter subgroup of Bω. The
latter is T̂ωo 〈ι〉-invariant, so by normalisation principles NĜ(H) contains a Sylow
2-subgroup Ŝ of Ĝ. Since V ≤ CĜ(H) by Step 2, we may assume V ≤ Ŝ.

Still assuming that X ι 6= 1 and Xω 6= 1, we denote by µ the involution of V which
lies in Ŝ◦= T̂µ and fix ν ∈V \〈µ〉. Then by assumption on the structure of the Sylow
2-subgroup of Ĝ, ν inverts T̂µ; it also centralises H , so by commutation principles
T̂µo〈ν〉= Ŝ centralises H ≥〈X ι, Xω〉. Since Bι is the only Borel subgroup of G with
parameter ρ containing C◦G(X ι) (and likewise for ω), Ŝ normalises both Bι and Bω.
Remember that V =〈ι, ω〉=〈µ, ν〉; so up to taking νµ instead of ν, we may suppose
that Ŝ normalises Bν . Now ν inverts T̂µ and centralises Bν , so by commutation
principles [T̂µ, Bν] = 1 and Bν ≤ C◦G(µ)= Bµ: a contradiction to Step 1.

All this shows that X ι=1 or Xω=1; we suppose the first. Then ω inverts F◦(Bι).
Using Lemma E we write Bι= B+ωι ·{Bι, ω}. Notice that since Bι is 2⊥, B−ι ={Bι, ω}
(the sign − refers to the action of ω throughout the present paragraph). Since ω
inverts the 2-divisible subgroup F◦(Bι), one has F◦(Bι)⊆ B−ι . Since the set B−ι
is 2-divisible, commutation principles applied pointwise show F◦(Bι) ⊆ B−ι ⊆
CBι(F

◦(Bι)). Hence B−ι turns out to be a union of translates of F◦(Bι). Now
CBι(F

◦(Bι)) is normal in Bι and nilpotent, so by definition of the Fitting subgroup,
CBι(F

◦(Bι))≤ F(Bι). As a consequence B−ι ⊆ F(Bι) is a union of finitely many
translates of F◦(Bι). But deg B−ι = deg{Bι, ω} = degωBι = 1, so F◦(Bι)= B−ι .

The previous paragraph shows that if X ι = 1, then our desired conclusion holds
of λ = ω; it then also holds of λ = ιω. Now any involution λ ∈ CĜ(ι) \ {ι} is a
CĜ(ι)-conjugate of ω or ιω, say λ=ωn with n ∈CĜ(ι)≤ NĜ(Bι)≤ NĜ(F

◦(Bι)), so

B−λι = B−ωn
ι = (B−ωι )n = (F◦(Bι))n = F◦(Bι).

Similarly, if Xω = 1, then B−λω = F◦(Bω) for any λ∈CĜ(ω)\{ω}. We conjugate
ω to ι and see that in this case we are done as well. �

Step 5. rk G−ι ≤ 2 rk F◦(Bι).
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Proof of Step 5. Let κ = ιω and Ǧ = G o V . Observe that in Ǧ the involutions
ι, ω, κ are not conjugate; one has exactly three conjugacy classes, which also are
G-classes. So for (ω1, κ1) ∈ ω

G
× κG, the definable closure d(ω1κ1) contains a

unique involution which must be a conjugate ι1 of ι.
Now consider the definable function from ωG

× κG to ιG which maps (ω1, κ1)

to ι1; we shall compute its fibres. If (ω2, κ2) also maps to ι1 thenω1ω2∈CG(ι1)= Bι1 .
Hence ω1ω2 ∈ B

−ω1
ι1 = F◦(Bι1) by Step 4, and fibres have rank at most 2 rk F◦(Bι).

As the map is obviously onto, one has 2 rk F◦(Bι)≥ rk Ǧ− rk B = rk G−ι . �

Step 6. (F◦(Bω))F◦(Bι) and (F◦(Bιω))F◦(Bι) are generic subsets of G−ι .

Proof of Step 6. Recall from Step 4 that ι inverts F◦(Bω) and centralises Bι. In
particular since G is 2⊥, one has F◦(Bω)∩Bι= 1; moreover (F◦(Bω))F◦(Bι)⊆G−ι .
We now compute the rank. Consider the definable function from F◦(Bι)× F◦(Bω)
to G which maps (a, x) to xa. Let us prove that it has finite fibres.

Suppose xa
= yb with b ∈ F◦(Bι) and y ∈ F◦(Bω); then xab−1

= y, and applying
ω one finds

y = yω = xab−1ω
= xωa−1b

= xa−1b
= yba−2b.

Since F◦(Bι) is abelian and G is 2⊥, this results in a−1b ∈ CG(y) and x = y. We
now estimate the size of CF◦(Bι)(x). Suppose Y = C◦F◦(Bι)(x) is infinite. Since Y is
V -invariant, so is C◦G(Y ), a definable, connected, soluble group containing F◦(Bι).
As we know, C◦G(Y ) has unipotence parameter at most ρ, so C◦G(Y ) normalises
Uρ(Bι) and C◦G(Y ) ≤ Bι; as a matter of fact, by uniqueness principles Bι is the
only Borel subgroup of G with parameter ρ containing C◦G(Y ). It follows that
x ∈ NG(Bι). Hence x ∈ NG(Bι)∩ F◦(Bω)= CG(ι)∩ F◦(Bω)= 1.

Thus, fibres are finite; it follows that rk(F◦(Bω))F◦(Bι) = 2 rk F◦(Bι)≥ rk G−ι

by Step 5; inclusion forces equality. The same holds of (F◦(Bιω))F◦(Bι). �

We now finish the proof of Proposition 7. By Step 6, both the sets (F◦(Bω))F◦(Bι)

and (F◦(Bιω))F◦(Bι) are generic in G−ι . So there is t ∈ F◦(Bω)∩ F◦(Bιω) f
\ {1}

for some f ∈ F◦(Bι). Then the involution (ιω) f
= f −1ιω f = f ωιω f = ιω f 2

centralises t , whereas ιω inverts it. So f 2
∈ G inverts t . This creates an involution

in G, against Step 3. �

6.2. Strong embedding. Strong embedding is a classical topic in finite group theory
[Bender 1971]. Recall that a proper subgroup M of a group G is said to be
strongly embedded if M contains an involution but M ∩ Mg does not for any
g /∈ M . The reader should also keep in mind a few basic facts about strongly
embedded configurations [BN 1994b, Theorem 10.19] (checking the apparently
missing assumptions would be almost immediate here):

• involutions in M are M-conjugate;
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• a Sylow 2-subgroup of M is a Sylow 2-subgroup of G;

• M contains the centraliser of any of its involutions.

We need no more. The study of a minimal connected simple group with a strongly
embedded subgroup was carried out in [*BCJ 2007, Theorem 1].

Proposition 8 (strong embedding). Let G be a connected, U⊥2 , nonsoluble N ◦
◦

-
group of finite Morley rank. If G has a definable, soluble, strongly embedded
subgroup, then Pr2(G)≤ 1.

Our proof will be considerably shorter than [*BCJ 2007]; thanks to Proposition 6
we need only handle the case of central involutions [*BCJ 2007, §4]. Apart from
this, our argument is a subset of the one in [*BCJ 2007, §4]: we construct two
disjoint generic sets. We only hope to have helped clarify matters in Step 4 below.

(Incidentally, an alternate proof of the noncentral case of [*BCJ 2007, Theorem 1]
was suggested using state-of-the-art genericity arguments in minimal connected
simple groups [ABF 2013, Theorem 6.1]. Yet this new proof reproduces the central
case [*BCJ 2007, §4] and affects only the configuration we need not consider by
maximality.)

Proof. We let G be a minimal counterexample, i.e., G satisfies the assumptions but
Pr2(G)≥ 2. By Proposition 1, the Sylow 2-subgroups of G are connected.

Notation. Let M < G be a definable, soluble, strongly embedded subgroup. Let
S ≤ M be a Sylow 2-subgroup of G and A = �2(S◦) be the group generated by
the involutions of S◦.

Step 1. C◦G(i) is soluble for all i ∈ I (G).

Proof of Step 1. First observe that Z(G) has no involutions by strong embedding,
as they would lie in S ≤ M and in any conjugate.

Suppose that there is i ∈ A \ {1} with nonsoluble C◦G(i). Fix some 2-torus τi ≤ S
of Prüfer rank 1 containing i ; since C◦G(τi ) is soluble because G is an N ◦

◦
-group,

there exists by the descending chain condition some α ∈ τi with C◦G(α) soluble. We
take α with minimal order; then C◦G(α

2) is not soluble, and α2
6= 1 since α 6= i .

Let H = C◦G(α
2) and N = M ∩ H . Since α2

6= 1 and Z(G) has no 2-elements,
H <G. Observe how α ∈ τi ≤ S ≤ N . Let H = H/〈α2

〉 and N = N/〈α2
〉. Then N

is definable, soluble, and strongly embedded in H , which still has Prüfer rank ≥ 2,
against minimality of G as a counterexample. �

Notation. Let B = M◦.

Step 2. B is a Borel subgroup of G and A ≤ Z(B); the group M/B is nontrivial
and has odd order. Moreover, the following hold.

(i) Strongly real elements of G which lie in B actually lie in A.
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(ii) If i ∈ I (B) inverts n ∈ NG(B) then n ∈ B.

(iii) BgI (G) is generic in G for any g ∈ G.

(iv) (B ∩ Bg)◦ = 1 for g /∈ NG(B).

Proof of Step 2. By Step 1, connectedness of the Sylow 2-subgroup, and the
maximality proposition (Proposition 6), C◦G(i) is a Borel subgroup of G for any
i ∈ I (G). But for i ∈ A \ {1}, CG(i) ≤ M by strong embedding of the latter, so
C◦G(i)≤ B and equality follows. In particular, A ≤ Z(B).

By structure of the Sylow 2-subgroup, NG(B)/B has odd order, and so has its
subgroup M/B. But M , being strongly embedded, conjugates its (more than one)
involutions, which are central in B. This shows B < M .

If b ∈ B is inverted by some k ∈ I (G) then k normalises CG(b) ≥ A; by
normalisation principles and structure of the Sylow 2-subgroup, one has k ∈ CG(b),
so b has order at most 2; this is claim (i). If i ∈ I (B) inverts n ∈ NG(B) then
computing modulo B, we get n−1 B = ni B = nB and n2

∈ B. Since NG(B)/B has
odd order, n ∈ B, proving (ii).

We move to (iii). Consider the definable function B× I (G) which maps (b, k)
to bk. If b1k1 = b2k2 with the obvious notation, then b−1

2 b1 is a strongly real
element of G lying in B, and hence has order at most 2 by claim (i). This happens
only finitely many times, so fibres are finite and rk(B · I (G))= rk B+ rk I (G)=
rk B+ rk G− rk B = rk G. Then for any g ∈ G,

rk(BgI (G))= rk(gBg I (G)g)= rk(g(B I (G))g)= rk(B I (G))= rk G.

It remains to control intersections of conjugates of B, claim (iv). Suppose that
H= (B∩Bg)◦ is infinite. Let Q≤H be a Carter subgroup of H ; since Ag centralises
Bg
≥ H ≥ Q, it normalises the definable, connected, soluble group N ◦G(Q). By

bigeneration (Fact 3), N ◦G(Q)≤〈C
◦

G(a
g) :a ∈ A\{1}〉= Bg, so N ◦B(Q)≤ N ◦H (Q)=

Q and Q is actually a Carter subgroup of B. Hence, Q contains a Sylow 2-subgroup
of B. Thus A ≤ Q ≤ Bg, and strong embedding guarantees g ∈ NG(B). �

Notation. Let w ∈ M \ B (denoted σ in [*BCJ 2007, Notation 4.1(2)]).

Step 3. We may assume that w is strongly real, in which case the following hold.

(i) CG(w) has no involutions.

(ii) If some involution k ∈ I (G) inverts w, then k inverts C◦G(w).

(iii) C◦B(w)= 1.

Proof of Step 3. By Step 2(iii), both B I (G) and Bw I (G) are generic in G, so they
intersect. Hence up to translating by an element of B, we may suppose that w is a
strongly real element.
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Suppose that there is an involution ` ∈ CG(w). Then w ∈ CG(`) = C◦G(`) by
Steinberg’s torsion theorem and connectedness of the Sylow 2-subgroup; C◦G(`) is
a conjugate of B (Sylow theory suffices here; no need to invoke strong embedding).
But w is strongly real, so by Step 2(i) it is an involution, against the fact that M/B
has odd order.

We prove (ii): Let k be an involution inverting w. Then C◦G(k) is a conjugate Bk

of B, and k∈ Bk . Observe howw /∈NG(Bk) by Step 2(ii). So C◦G(k, w)≤ (Bk∩Bwk )
◦

is trivial by Step 2(iv), and k inverts C◦G(w).
Finally, let H = C◦B(w) and suppose H 6= 1. Bear in mind that A centralises H ,

so it normalises the definable, soluble group N ◦G(H). By bigeneration (Fact 3),
N ◦G(H)≤ B. But k inverts H , so it normalises N ◦G(H) as well. Hence N ◦G(H)≤
B ∩ Bk , and Step 2(iv) forces k ∈ NG(B). Now k ∈ B inverts w ∈ NG(B) \ B, a
contradiction to Step 2(ii). This shows that C◦B(w)= 1. �

Notation. Let Č = C◦G(w) \ NG(B).

Č is obviously generic in C◦G(w), as C◦NG(B)(w)≤ C◦B(w)= 1 by Step 3(iii).

Step 4. BČB is generic in G.

Proof of Step 4. This is the only part where we slightly rewrite the argument given
in [*BCJ 2007]. Let F = {(m, `) ∈ Bw× I (G) : m`

= m−1
}.

Let m ∈ Bw. If m is inverted by some involution in G, then by Step 3(iii),
C◦B(m) = 1 and m B

⊆ Bm is generic in Bm. So is wB, and m is therefore B-
conjugate with w. So let us count involutions inverting w. First, there is such an
involution k by Step 3. If ` is another such, then k` ∈ CG(w) and ` ∈ kCG(w).
Conversely, since k inverts C◦G(w) by Step 3(ii), any element in kC◦G(w) is an
involution inverting w. This together shows

rkF = rkwB
+ rk C◦G(w)= rk B+ rk C◦G(w).

On the other hand, since Bw I (G) and B I (G) are generic in G by Step 2(iii), a
generic `∈ I (G) inverts some element in Bw. Hence rkF ≥ rk I (G)= rk G−rk B.

Finally consider the definable function which maps (b1, c, b2) ∈ B × Č × B
to b1cb2. We claim that all fibres are finite. Since the fibre over b1c0b2 has the
same rank as the fibre over c0, we compute the latter. Suppose b1cb2 = c0 with the
obvious notation. Then, applying w,

c0 = cw0 = bw1 cbw2 = [w, b−1
1 ]b1cb2[b2, w] = [w, b−1

1 ]c0[b2, w].

In particular, [w, b−1
1 ]

c0 = [b2, w]
−1
∈ B ∩ Bc0 , which is finite by Step 2(iv). Since

C◦B(w)= 1 by Step 3(iii), there are finitely many possibilities for b1 and b2, and c
is then determined. So the function has finite fibres, and therefore,

rk(BČB)= 2 rk B+ rk C◦G(w)= rkF + rk B ≥ rk G. �
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We now finish the proof of Proposition 8. By Steps 2(iii) and 4, both B I (G) and
BČB are generic in G. So they intersect; there is an involution k = b1cb2 ∈ BČB.
Conjugating by b1, there is an involution `= cb ∈ ČB. Now, applying w, one finds

`w = cbw = cb[b, w] = `[b, w],

which means that [b, w] ∈ B is a strongly real element. There are two possibilities.
If [b, w] 6= 1 then by Step 2(i), [b, w] ∈ A \ {1} and ` ∈ CG([b, w]), so ` and c
lie in B: a contradiction. If [b, w] = 1 then w centralises b and cb = `, against
Step 3(i). �

6.3. November.

Theorem. Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ be a
definable, connected, nonsoluble N ◦

◦
-subgroup. Then the Sylow 2-subgroup of G

has one of the following structures: isomorphic to that of PSL2(C), isomorphic to
that of SL2(C), or a 2-torus of Prüfer 2-rank at most 2.

Suppose in addition that for all involutions ι ∈ I (Ĝ), the group C◦G(ι) is soluble.
Then m2(Ĝ) ≤ 2, one of G or Ĝ/G is 2⊥, and involutions are conjugate in Ĝ.
Moreover, one of the following cases occurs:

• PSL2: G ' PSL2(K) in characteristic not 2; Ĝ/G is 2⊥.

• CiBo∅: G is 2⊥; m2(Ĝ)≤ 1; for ι∈ I (Ĝ), CG(ι)=C◦G(ι) is a self-normalising
Borel subgroup of G.

•CiBo1: m2(G)=m2(Ĝ)=1; Ĝ/G is 2⊥; for i ∈ I (Ĝ)= I (G), CG(i)=C◦G(i)
is a self-normalising Borel subgroup of G.

•CiBo2: Pr2(G)=1 and m2(G)=m2(Ĝ)=2; Ĝ/G is 2⊥; for i ∈ I (Ĝ)= I (G),
C◦G(i) is an abelian Borel subgroup of G inverted by any involution in CG(i)\{i}
and satisfies rk G = 3 rk C◦G(i).

• CiBo3: Pr2(G) = m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I (Ĝ) = I (G),
CG(i) = C◦G(i) is a self-normalising Borel subgroup of G; if i 6= j are two
involutions of G then CG(i) 6= CG( j).

Proof.

Step 1. We may suppose that C◦G(ι) is soluble for all ι ∈ I (Ĝ).

Proof of Step 1. By Proposition 1, the Sylow 2-subgroup of G is isomorphic to
that of PSL2(C) or to that of SL2(C), or is connected. Our dividing line is based
on the Prüfer 2-rank.

If Pr2(G) ≤ 2 then we are done with the first part of the theorem; since the
second and longer part is precisely under the assumption that C◦G(ι) is soluble for
all ι ∈ I (Ĝ), we may proceed if Pr2(G)≤ 2.
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So, suppose not; we shall prove a contradiction in Step 3 below. We may assume
that G is minimal with Pr2(G)≥ 3, and that Ĝ = G. First note that G/Z(G) has
Prüfer rank at least 3 but is centreless. So we may suppose Z(G)= 1. In this setting
we actually prove that C◦G(ι) is soluble for all ι ∈ I (Ĝ).

Suppose that there is some involution i ∈ G = Ĝ with C◦G(i) nonsoluble. Then
as in Step 1 of Proposition 8, we take a 2-torus of rank 1, τi containing i , and
α ∈ τi of minimal order with C◦G(α) soluble; note α2

6= 1. Let H = C◦G(α
2). By

torality principles, it has the same Prüfer 2-rank as G; hence, by minimality of G
as a counterexample, H = G and α2

∈ Z(G): a contradiction.
So, if G is minimal with Pr2(G)≥3, then C◦G(ι) is soluble for all ι∈ I (Ĝ)= I (G).

We proceed under the assumption. �

Step 2. We may suppose that G is W⊥2 .

Proof of Step 2. Suppose G is not. By Proposition 1 and since centralisers◦ in
G of involutions are soluble, the Sylow 2-subgroup of G is isomorphic to that of
PSL2(C), that is, Pr2(G)= 1 and m2(G)= 2. Fix i ∈ I (G).

If C◦G(i) is contained in at least two Borel subgroups of G, then by Proposition 3,
G ' PSL2(K) for some algebraically closed field of characteristic not 2. The latter
has no outer automorphisms [BN 1994b, Theorem 8.4]; by the assumption on
centralisers of involutions, Ĝ/G is 2⊥ and we are in case PSL2.

So we may assume that C◦G(i) is contained in a unique Borel subgroup of G.
We then apply Proposition 7 inside Ǧ = G to find that C◦G(i) is an abelian Borel
subgroup of G inverted by any involution in CG(i) \ {i}. By torality principles
in G there exist Sylow 2-subgroups of G, say Si = S◦i o 〈w〉 with i ∈ S◦i , and
Sw = S◦w o 〈i〉 likewise. In order to reach case CiBo2, one first shows that Ĝ/G
is 2⊥; only the rank estimate will remain to prove.

If Ĝ/G is not 2⊥ then Si is no Sylow 2-subgroup of Ĝ. Let Ŝ ≤ Ĝ be a Sylow
2-subgroup containing Si properly; it is folklore that Pr2(Ŝ) ≥ 2. Since Ŝ◦ is
2-divisible and invariant under ω ∈ Ŝ, we may apply Maschke’s theorem (see
for instance [Del 2012, Fact 2]) to find a quasicomplement, i.e., a w-invariant
2-torus T̂ with Ŝ◦ = S◦i (+) T̂ . Then using Zilber’s indecomposability theorem,
[T̂ , w] ≤ (T̂ ∩G)◦ = 1, that is, w centralises T̂ . It follows that T̂ normalises both
C◦G(i) and C◦G(w); by the rigidity of tori, it therefore centralises both S◦i and S◦w.
Hence, S◦i o 〈w〉 ≤ 〈S

◦

i , S◦w〉 ≤ C◦G(T̂ ), so by the structure of torsion in connected,
soluble groups, C◦G(T̂ ) may not be soluble. As T̂ 6≤ G this does not contradict G
being N ◦

◦
, but this is against the fact that T̂ 6= 1 contains an involution of Ĝ, which

has soluble centraliser◦ by assumption.
Hence Ĝ/G is 2⊥; we finally show rk G= 3 rk C◦G(i). This exactly follows [*Del

2007a, Proposition 4.1.30 and Corollaire 4.1.31] or [*Del 2008, Proposition 3.26
and Corollaire 3.27]: since CG(i) is not connected for i ∈ I (G), using the map
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from [BBC 2007, §5] (some day we shall return to this) one sees that generic,
independent j, k ∈ I (G) are such that d( jk) is not 2-divisible, and we let ` be the
only involution in d( jk). Then ( j, k) 7→ ` is a (generically) well-defined, definable
function; obvious rank computations yield rk G = 3 rk C◦G(i). �

Notation. For ι ∈ I (Ĝ), let Bι = C◦G(ι).

By Steps 1 and 2 and Proposition 6, Bι is a Borel subgroup of G.

Step 3. Pr2(Ĝ)≤ 2.

Proof of Step 3. Suppose Pr2(Ĝ)≥ 3. We may assume that Ĝ = G · d(Ŝ) for some
maximal 2-torus Ŝ of Ĝ. In particular Ĝ/G is W⊥2 . But so is G by Step 2; by
Lemma L, so is Ĝ, i.e., Ŝ is actually a Sylow 2-subgroup of Ĝ. Let A =�2(Ŝ) be
the group generated by the involutions of Ŝ; then A ≤ Ĝ is an elementary abelian
2-group with 2-rank Pr2(Ĝ)≥ 3. Let ρ =max{ρBι : ι ∈ A \ {1}} and ι ∈ A \ {1} be
such that ρBι = ρ.

We show that Bλ = Bι for any involution λ ∈ A \ {1}. Let κ ∈ A \ 〈ι〉 be
such that X = C◦Uρ(Z(F◦(Bι)))(κ) 6= 1; this exists as A has rank at least 3. Then
X ≤ C◦G(κ) = Bκ , so ρκ = ρ and X ≤ Uρ(Bκ). Let as always B̂ι = Bι · d(Ŝ);
one has {Bι, κ} ⊆ (B̂ ′ι ∩ B)◦ ≤ F◦(Bι) so we may apply Lemma F and write
Bι = B+κι · {Bι, κ} ⊆ B+ι · F

◦(Bι). Now both B+ι and F◦(Bι) normalise X , hence
X is normal in Bι. Uniqueness principles imply that Uρ(Bι) is the only Sylow
ρ-subgroup of G containing X . In particular Uρ(Bι) = Uρ(Bκ). Hence C◦G(ι) =
Bι = Bκ = C◦G(κ) = C◦G(ικ). Turning to an arbitrary λ ∈ A \ {1}, we apply
bigeneration (Fact 3) to the action of V = 〈ι, κ〉 on the soluble group Bλ, and find
Bλ ≤ 〈C◦Bλ(µ) : µ ∈ V \ {1}〉 ≤ Bι. So Bλ = Bι for any λ ∈ A \ {1}.

We claim that Pr2(G)= 1. First, if G is 2⊥ then bigeneration applies and we find
G = 〈C◦G(µ) : µ ∈ V \ {1}〉 = Bι, a contradiction. Therefore G has involutions. In
order to bound its Prüfer 2-rank we use Proposition 8. We argue that M = NG(Bι)
is strongly embedded in G. Let j be an involution in S = Ŝ ∩G, which is a Sylow
2-subgroup of G; then j ∈ NG(Bι). But G is W⊥2 and Bι contains a maximal
2-torus of G, so j ∈ Bι. Let V = 〈ι, κ〉; recall that V centralises Bι. In particular
V centralises j , and normalises B j . As the latter is soluble we apply bigeneration
(Fact 3) and find B j = 〈C◦B j

(λ) : λ ∈ V \ {1}〉 ≤ Bι. Now if j ∈ M x with x ∈ G,
then we argue likewise: j ∈ Bx

ι , so V x centralises j , hence V x normalises B j , and
B j = Bx

ι . Therefore x ∈ NG(Bι), and M = NG(Bι) is strongly embedded in G. By
Proposition 8, Pr2(G)= 1, as desired.

Observe that any two commuting involutions of Ĝ centralise the same Borel
subgroup of G: if 〈µ, ν〉 is a four-subgroup of Ĝ then up to conjugacy, 〈µ, ν〉≤ A, so
Bµ= Bν . Now any two nonconjugate involutions of Ĝ commute to a third involution,
so they centralise the same Borel subgroup of G. But there are at least two conjugacy
classes of involutions in Ĝ, since Pr2(G)= 1 and Pr2(Ĝ)≥ 3. So actually any two
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involutions of Ĝ centralise the same Borel subgroup of G. This means that Bg
ι = Bι

for any g ∈ G; Bι is normal in G, which contradicts G being N ◦
◦

. �

Step 4. Let ι ∈ I (Ĝ). If ι ∈ G or G is 2⊥, then Bι is self-normalising in G.

Proof of Step 4. First suppose i = ι ∈ I (G). We claim that i is the only involution
in Z(Bi ). If Pr2(G)= 1 this is clear by the structure of torsion in connected, soluble
groups. If Pr2(G)≥ 2 (and one has equality by Step 3), then let k ∈ I (Bi ) \ {i}; if
k ∈ Z(Bi ) then Bk = Bi = Bik is clearly strongly embedded, against Proposition 8.
In particular, NG(Bi ) ≤ Bi ·CG(i) ≤ CG(i) = C◦G(i) = Bi by Steinberg’s torsion
theorem and connectedness of the Sylow 2-subgroup of G (Step 2).

Now suppose that G is 2⊥ (this case was already covered in Proposition 7,
between Steps 3 and 4). Since N = NG(Bι)≤ G is 2⊥, it admits a decomposition
N = N+ι · N−ι under the action of ι. But on the one hand so does G; hence
G = CG(ι) ·G−ι with trivial fibres, and by a degree argument CG(ι) is connected,
so N+ ≤ Bι. And on the other hand, by torality principles there exists a 2-torus Ŝ◦

of Ĝ containing ι; Ŝ◦ normalises Bι and NG(Bι). By connectedness, Ŝ◦ centralises
the finite group NG(Bι)/Bι, and so does ι. So N− ⊆ Bι and therefore N = Bι. �

Notation. For κ, λ ∈ I (Ĝ), let Tκ(λ)= TBκ (λ).

Before reading the following be very careful to note that Proposition 5 requires
Ĝ to be W⊥2 ; for the moment only G need be by Step 2.

Step 5 (Antalya). If Ĝ is W⊥2 and λ /∈ NĜ(Bκ) then Tκ(λ) is finite. If in addition
Ĝ = G · d(Ŝ◦) for some maximal 2-torus Ŝ◦ ≤ Ĝ, then rk C◦

Ĝ
(κ) = rk C◦

Ĝ
(λ) and

the generic left translate ĝC◦
Ĝ
(λ) contains a conjugate of κ .

Proof of Step 5. Suppose that Ĝ is W⊥2 and Tκ(λ) is infinite. Then by inductive
torsion control (Proposition 5), Tκ(λ) is infinite and contains no torsion elements.
Then λ inverts Tκ(λ) pointwise, and normalises CĜ(Tκ(λ)); the latter contains κ .
By the structure of the Sylow 2-subgroup of Ĝ and normalisation principles, λ
has a CĜ(Tκ(λ))-conjugate µ commuting with κ . Now µ inverts Tκ(λ) and nor-
malises Bκ . Since NĜ(Bκ) already contains a Sylow 2-subgroup of Ĝ which is a
2-torus, µ is toral in NĜ(Bκ) by torality principles. Hence Tκ(λ)⊆{B, µ}⊆ F◦(B).
We now take any t ∈ Tκ(λ) \ {1} and X = d(t), and we climb The Devil’s Ladder
(Proposition 4): Bκ is the only Borel subgroup of G containing C◦G(X). In particular,
λ normalises Bκ , a contradiction.

For the rest of the argument we assume in addition that Ĝ = G · d(Ŝ◦) for some
maximal 2-torus Ŝ◦ ≤ Ĝ; in particular Ĝ is W⊥2 by Step 2 and Lemma L, but also
Ĝ/G is abelian.
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Let us introduce the definable maps

πκ,λ : κ
Ĝ
\ NĜ(Bλ) → Ĝ/C◦

Ĝ
(λ),

κ1 7→ κ1C◦
Ĝ
(λ).

We shall compute fibres.
Suppose that πκ,λ(κ1)= πκ,λ(κ2). Then by the assumption that Ĝ = G · d(Ŝ◦),

G controls Ĝ-conjugacy of involutions. Hence κ1κ2 ∈ C◦
Ĝ
(λ)∩ G ≤ CG(λ). Be

very careful to note that we do not a priori have connectedness of the latter, insofar
as there is no outer version of Steinberg’s torsion theorem; as a matter of fact,
connectedness is immediate only when G is 2⊥ or λ ∈ G, not in general.

But if c ∈ CG(λ) is inverted by κ , then κ normalises CĜ(c), which contains λ;
since Ĝ is W⊥2 and by normalisation principles, κ has a CĜ(c)-conjugate µ com-
muting with λ. Now µ ∈ NĜ(CG(λ)), which contains a maximal 2-torus by torality
principles; torality principles again provide some maximal 2-torus Tµ≤ NĜ(CG(λ))

containingµ. Then by Zilber’s indecomposability theorem, [c, µ]∈[c, Tµ]≤C◦G(λ),
that is, c2

∈C◦G(λ). If G is 2⊥ the conclusion comes easily; if G contains involutions,
then by torality principles C◦G(λ) contains a maximal 2-torus of G which is a Sylow
2-subgroup of G by Step 2, so c ∈ C◦G(λ).

Turning back to our fibre computation, we have κ1κ2 ∈C◦G(λ), and κ1κ2 ∈ Tλ(κ).
The latter is finite as first proved. Hence πκ,λ has finite fibres; it follows, keeping
Proposition 2 in mind, that

rk κ Ĝ
≤ rk Ĝ− rk C◦

Ĝ
(λ);

that is, rk C◦
Ĝ
(λ) ≤ rk C◦

Ĝ
(κ), and vice-versa. So equality holds. By a degree

argument, πκ,λ is now generically onto. �

Step 6. We may suppose that Pr2(Ĝ)= 1.

Proof of Step 6. Suppose that Pr2(Ĝ) ≥ 2; equality follows from Step 3 and we
aim at finding case CiBo3. There seem to be three cases depending on the values
of Pr2(G) and Pr2(Ĝ/G) = 2− Pr2(G). We give a common argument. Notice,
however, that we rely on Step 3, to the author’s great aesthetic discontentment.

Let Ŝ◦ ≤ Ĝ be a maximal 2-torus of Ĝ and Ǧ = G · d(Ŝ◦). Bear in mind that Ǧ
is W⊥2 by Step 2 and Lemma L. In particular, Ŝ◦ is a Sylow 2-subgroup of Ĝ. Let
κ, λ, µ be the three involutions in Ŝ◦.

If κ , λ, and µ are not pairwise G-conjugate, then they are not Ǧ-conjugate
either. So Ǧ has at least (hence exactly) three conjugacy classes of involutions by
Lemma N: κ , λ, and µ are pairwise not G-conjugate. We apply Step 5 in Ǧ. The
generic left-translate ǧC◦

Ǧ
(λ) contains both a conjugate κ1 of κ and a conjugate

µ1 of µ. Now κ1 and µ1 are not Ǧ-conjugate so d(κ1µ1) contains an involution ν.
By the structure of the Sylow 2-subgroup of Ǧ, ν must be a conjugate λ1 of λ.
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Of course λ1 ∈ d(κ1µ1) ≤ C◦
Ǧ
(λ). By the structure of the Sylow 2-subgroup of

Ǧ again, λ is the only conjugate of λ in its centraliser. Hence λ1 = λ. It follows
that κ1, µ1 ∈ CǦ(λ), and ǧ ∈ CǦ(λ): a contradiction to genericity of ǧC◦

Ǧ
(λ)

in Ǧ/C◦
Ǧ
(λ).

So involutions in Ǧ are G-conjugate. This certainly rules out the case where
Pr2(G)= 1= Pr2(Ǧ/G). Actually this also eliminates the case where Pr2(G)= 0
and Pr2(Ǧ/G) = 2. Indeed, in that case κ, λ, µ remain distinct in the quotient
Ǧ/G, so G cannot conjugate them in Ǧ.

Hence Pr2(G)= 2 and by Step 3, Ĝ/G is 2⊥. We have proved that G conjugates
its involutions; by Step 4 their centralisers◦ in G are self-normalising Borel sub-
groups. Notice that if i 6= j are two involutions of G with Bi = B j then i ∈ C◦G( j),
so i and j commute; now Bi = B j = Bi j is strongly embedded in G, against
Proposition 8. We recognise case CiBo3. �

This is the end. If G has involutions then by Steps 2 and 6,

m2(G)= Pr2(G)= 1,

m2(Ĝ/G)= Pr2(Ĝ/G)= 0;

with a look at Step 4 this is case CiBo1. So we may suppose that G is 2⊥.
Since Pr2(Ĝ) = 1, Proposition 7 yields m2(Ĝ) = 1. With a look at Step 4 this is
case CiBo∅. IN MEMORIAM
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SCHUR–WEYL DUALITY FOR DELIGNE CATEGORIES
II: THE LIMIT CASE

INNA ENTOVA AIZENBUD

This paper is a continuation of a previous paper by the author (Int. Math.
Res. Not. 2015:18 (2015), 8959–9060), which gave an analogue to the classi-
cal Schur–Weyl duality in the setting of Deligne categories.

Given a finite-dimensional unital vector space V (a vector space V with
a chosen nonzero vector 1), we constructed in that paper a complex ten-
sor power of V : an Ind-object of the Deligne category Rep(Sν) which is a
Harish-Chandra module for the pair (gl(V ),P1), where P1 ⊂ GL(V ) is
the mirabolic subgroup preserving the vector 1.

This construction allowed us to obtain an exact contravariant functor
ŜWν,V from the category Repab(Sν) (the abelian envelope of the category
Rep(Sν)) to a certain localization of the parabolic category O associated
with the pair (gl(V ),P1).

In this paper, we consider the case when V =C∞. We define the appropri-
ate version of the parabolic category O and its localization, and show that
the latter is equivalent to a “restricted” inverse limit of categories Ôp

ν,CN

with N tending to infinity. The Schur–Weyl functors ŜWν,CN then give an
antiequivalence between this category and the category Repab(Sν).

This duality provides an unexpected tensor structure on the category
Ôp∞
ν,C∞ .

1. Introduction

1.1. The Karoubian rigid symmetric monoidal categories Rep(Sν), ν ∈ C, were
defined by P. Deligne [2007] as a polynomial family of categories interpolating the
categories of finite-dimensional representations of the symmetric groups; namely, at
points n = ν ∈ Z+ the category Rep(Sν=n) allows an essentially surjective additive
symmetric monoidal functor onto the standard category Rep(Sn). The categories
Rep(Sν) were subsequently studied by Deligne and others (e.g., J. Comes and
V. Ostrik [2011; 2014]).

In [Entova Aizenbud 2015a], we gave an analogue to the classical Schur–Weyl
duality in the setting of Deligne categories. To do that, we defined the “complex
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tensor power” of a finite-dimensional unital complex vector space (i.e., a vector
space V with a distinguished nonzero vector 1). This complex tensor power of V ,
denoted by V⊗ν , is an Ind-object in the category Rep(Sν), and comes with an action
of gl(V ) on it; moreover, this Ind-object is a Harish-Chandra module for the pair
(gl(V ),P1), where P1⊂GL(V ) is the mirabolic subgroup preserving the vector 1.

The “ν-th tensor power” of V is defined for any ν ∈C; for n= ν ∈Z+, the functor
Rep(Sν=n)→Rep(Sn) takes this Ind-object of Rep(Sν=n) to the usual tensor power
V⊗n in Rep(Sn). Moreover, the action of gl(V ) on the former object corresponds
to the action of gl(V ) on V⊗n .

This let us define an additive contravariant functor, called the Schur–Weyl functor:

SWν,V : Repab(Sν)→ Op
V , SWν,V := HomRepab(Sν)( · , V⊗ν).

Here Repab(Sν) is the abelian envelope of the category Rep(Sν) (this envelope was
described in [Comes and Ostrik 2014; Deligne 2007, Chapter 8]). The category Op

V
is a version of the parabolic category O for gl(V ) associated with the pair (V,1),
which is defined as follows.

We define Op
V to be the category of Harish-Chandra modules for the pair

(gl(V ),P1) on which the group GL(V/C1) acts by polynomial maps, and which
satisfy some additional finiteness conditions (similar to the ones in the definition of
the usual BGG category O).

We now consider the localization of Op
V obtained by taking the full subcategory

of Op
V consisting of modules of degree ν (i.e., modules on which IdV ∈ End(V )

acts by the scalar ν), and localizing by the Serre subcategory of gl(V )-polynomial
modules. This quotient is denoted by Ôp

ν,V . It turns out that for any unital finite-
dimensional space (V,1) and any ν ∈ C, the contravariant functor ŜWν,V makes
Ôp
ν,V a Serre quotient of Repab(Sν)op.
In this paper, we will consider the categories ÔpN

ν,CN for N ∈ Z+ and for N =∞.
Defining appropriate restriction functors

R̂esn−1,n : Ô
pn
ν,Cn → Ôpn−1

ν,Cn−1

allows us to consider the inverse limit of the system ((Ôpn
ν,Cn )n≥0, (R̂esn−1,n)n≥1).

Inside this inverse limit we consider a full subcategory which is equivalent to Ôp∞
ν,C∞ ;

this subcategory is the “restricted inverse limit” of ((Ôpn
ν,Cn )n≥0, (R̂esn−1,n)n≥1) and

will be denoted by lim
←−−n≥1, restr Ôpn

ν,Cn . This category has an intrinsic description,
which we give in this paper (intuitively, this is the inverse limit among finite-length
categories).

Similarly to [Entova Aizenbud 2015a], we define the complex tensor power of the
unital vector space (C∞,1 := e1), and the corresponding Schur–Weyl contravariant
functor SWν,C∞ . As in the finite-dimensional case, this functor induces an exact
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contravariant functor ŜWν,C∞ , and we have the following commutative diagram:

Repab(Sν)op
ŜWν,lim

//

ŜWν,C∞
))

lim
←−−n≥1, restr Ôpn

ν,Cn

Ôp∞
ν,C∞

OO

The contravariant functors ŜWν,C∞ and ŜWν,lim turn out to be antiequivalences
induced by the Schur–Weyl functors SWν,Cn . The antiequivalences ŜWν,C∞ and
ŜWν,lim induce an unexpected rigid symmetric monoidal category structure on

Ôp∞
ν,C∞
∼= lim

←−−
n≥1, restr

Ôpn
ν,Cn .

We obtain an interesting corollary: the duality in this category given by the tensor
structure will coincide with the one arising from the usual notion of duality in BGG
category O .

1.2. Notation. The base field throughout the paper will be C. The notation and
definitions used in this paper can be found in [Entova Aizenbud 2015a, Section 2].
In particular, lowercase Greek letters will denote Young diagrams, and `(λ) will
denote the number of rows in λ, while |λ| will denote the number of boxes in λ.

We will use the definition of a finite-length abelian category given below.

Definition 1.2.1. Let C be an abelian category, and C be an object of C. A Jordan–
Hölder filtration for C is a finite sequence of subobjects of C

0= C0 ⊂ C1 ⊂ · · · ⊂ Cn = C

such that each subquotient Ci+1/Ci is simple.

The Jordan–Hölder filtration might not be unique, but the simple factors Ci+1/Ci

are unique (up to reordering and isomorphisms). Consider the multiset of the simple
factors: each simple factor is considered as an isomorphism class of simple objects,
and its multiplicity is the multiplicity of its isomorphism class in the Jordan–Hölder
filtration of C . This multiset is denoted by JH(C), and its elements are called the
Jordan–Hölder components of C . The length of the object C , denoted by `C(C), is
defined to be the size of the finite multiset JH(C).

Definition 1.2.2. An abelian category C is called a finite-length category if every
object admits a Jordan–Hölder filtration.

1.3. Structure of the paper. Sections 2 and 3 contain preliminaries on the Deligne
category Rep(Sν), the categories of polynomial representations of glN (where
N ∈ Z+ ∪ {∞}) and the parabolic category O for glN . These sections are based on
[Entova Aizenbud 2015a; 2015b; Sam and Snowden 2015].
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In Section 4, we define the version of the parabolic category O for glN which
we will consider (including the case when N =∞; see Section 4.2), and recall the
necessary information about this category.

In Section 5, we give a description of the parabolic category O for gl∞ as a
restricted inverse limit of the parabolic categories O for gln as n tends to infinity.

In Sections 6 and 7, we recall the definition of the complex tensor power (CN )⊗ν,
and define the functors SWν,V :Repab(Sν)op

→ Op
ν,V , ŜWν,V :Repab(Sν)op

→ Ôp
ν,V

for a unital vector space (V,1) (finite- or infinite-dimensional). In Section 7.2, we
recall the finite-dimensional case (studied in [Entova Aizenbud 2015a]).

Section 8 discusses the restricted inverse limit construction in the case of the
classical Schur–Weyl duality, which motivates our construction for the Deligne
categories. Sections 9 and 10 prove the main results of the paper. Section 11
discusses the relation between the rigidity (duality) in Repab(Sν) and the duality in
the parabolic category O for gl∞.

2. Deligne category Rep(Sν)

A detailed description of the Deligne category Rep(Sν) and its abelian envelope
can be found in [Comes and Ostrik 2011; 2014; Deligne 2007; Etingof 2014;
Entova Aizenbud 2015a].

2.1. General description. For any ν ∈ C, the category Rep(Sν) is generated, as a
C-linear Karoubian tensor category, by one object, denoted h. This object is the
analogue of the permutation representation of Sn , and any object in Rep(Sν) is a
direct summand in a direct sum of tensor powers of h.

For ν /∈ Z+, Rep(Sν) is a semisimple abelian category.
For ν ∈ Z+, the category Rep(Sν) has a tensor ideal Iν , called the ideal of

negligible morphisms (this is the ideal of morphisms f : X→Y such that tr( f u)= 0
for any morphism u : Y → X ). In that case, the classical category Rep(Sn) of finite-
dimensional representations of the symmetric group for n := ν is equivalent to
Rep(Sν=n)/Iν (equivalent as Karoubian rigid symmetric monoidal categories). The
full, essentially surjective functor Rep(Sν=n)→ Rep(Sn) defining this equivalence
will be denoted by Sn . Note that Sn sends h to the permutation representation
of Sn .

The indecomposable objects of Rep(Sν), regardless of the value of ν, are
parametrized (up to isomorphism) by all Young diagrams (of arbitrary size). We
will denote the indecomposable object in Rep(Sν) corresponding to the Young
diagram τ by Xτ .

For ν =: n ∈ Z+, the partitions λ for which Xλ has a nonzero image in the
quotient Rep(Sν=n)/Iν=n ∼= Rep(Sn) are exactly the λ for which λ1+ |λ| ≤ n. If
λ1+ |λ| ≤ n, then the image of λ in Rep(Sn) is the irreducible representation of Sn
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corresponding to the Young diagram λ̃(n): the Young diagram obtained by adding
a row of length n− |λ| on top of λ.

For each ν, we define an equivalence relation ν
∼ on the set of all Young diagrams:

we say that λ ν
∼ λ′ if the sequence (ν−|λ|, λ1−1, λ2−2, . . . ) can be obtained from

the sequence (ν−|λ′|, λ′1−1, λ′2−2, . . . ) by permuting a finite number of entries.
The equivalence classes thus obtained are in one-to-one correspondence with the
blocks of the category Rep(Sν) (see [Comes and Ostrik 2011]).

We say that a block is trivial if the corresponding equivalence class is trivial, i.e.,
has only one element (in that case, the block is a semisimple category).

The nontrivial equivalence classes (respectively, blocks) are parametrized by all
Young diagrams of size ν; in particular, this happens only if ν ∈ Z+. These classes
are always of the form {λ(i)}i , with

λ(0) ⊂ λ(1) ⊂ λ(2) ⊂ · · ·

(each λ(i) can be explicitly described based on the Young diagram of size ν corre-
sponding to this class).

2.2. Abelian envelope. As was mentioned before, the category Rep(Sν) is defined
as a Karoubian category. For ν /∈ Z+, it is semisimple and thus abelian, but for
ν ∈ Z+, it is not abelian. Fortunately, it has been shown that Rep(Sν) possesses an
“abelian envelope”, that is, it can be embedded (as a full monoidal subcategory)
into an abelian rigid symmetric monoidal category, and this abelian envelope has a
universal mapping property (see [Comes and Ostrik 2014, Theorem 1.2; Deligne
2007, Conjecture 8.21.2]). We will denote the abelian envelope of the Deligne
category Rep(Sν) by Repab(Sν) (with Repab(Sν) := Rep(Sν) for ν /∈ Z+).

An explicit construction of the category Repab(Sν=n) is given in [Comes and
Ostrik 2014], and a detailed description of its structure can be found in [En-
tova Aizenbud 2015a]. It turns out that the category Repab(Sν) is a highest weight
category (with infinitely many weights) corresponding to the partially ordered set
({Young diagrams},≥), where

λ≥ µ ⇐⇒ λ
ν
∼ µ, λ⊂ µ

(namely, in a nontrivial ν
∼-class, λ(i) ≥ λ( j) if i ≤ j).

Thus the isomorphism classes of simple objects in Repab(Sν) are parametrized
by the set of Young diagrams of arbitrary sizes. We will denote the simple object
corresponding to λ by L(λ).

We will also use the fact that blocks of the category Repab(Sν), just like the blocks
of Rep(Sν), are parametrized by ν

∼-equivalence classes. For each ν
∼-equivalence

class, the corresponding block of Rep(Sν) is the full subcategory of tilting objects in
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the corresponding block of Repab(Sν) (see [Comes and Ostrik 2014, Proposition 2.9,
Section 4]).

3. gl∞ and the restricted inverse limit of representations of gln

In this section, we discuss the category of polynomial representations of the Lie
algebra gl∞ and its relation to the categories of polynomial representations of gln for
n ≥ 0. The representations of the Lie algebra gl∞ are discussed in detail in [Penkov
and Styrkas 2011; Dan-Cohen et al. 2016; Sam and Snowden 2015, Section 3].
Most of the constructions and the proofs of the statements appearing in this section
can be found in [Entova Aizenbud 2015b, Section 7].

3.1. The Lie algebra gl∞. Let C∞ be a complex vector space with a countable
basis e1, e2, e3, . . . . Consider the Lie algebra gl∞ of infinite matrices A= (ai j )i, j≥1

with finitely many nonzero entries. We have a natural action of gl∞ on C∞ and
on the restricted dual C∞

∗
= spanC(e

∗

1, e∗2, e∗3, . . . ) (here e∗i is the linear functional
dual to ei : e∗i (e j )= δi j ).

Let N ∈Z+∪{∞}, and let m ≥ 1. We will consider the Lie subalgebra glm ⊂ glN
which consists of matrices A = (ai j )1≤i, j≤N for which ai j = 0 whenever i > m or
j >m. We will also denote by gl⊥m the Lie subalgebra of glN consisting of matrices
A = (ai j )1≤i, j≤N for which ai j = 0 whenever i ≤ m or j ≤ m.

Remark 3.1.1. Note that gl⊥m ∼= glN−m for any m ≤ N .

3.2. Categories of polynomial representations of glN . In this subsection, we take
N ∈ Z+ ∪ {∞}. The notation CN

∗
will stand for (CN )∗ whenever N ∈ Z+, and for

C∞
∗

when N =∞.
Consider the category Rep(glN )poly of polynomial representations of glN : this is

the category of the representations of glN which can be obtained as summands of a
direct sum of tensor powers of the tautological representation CN of glN .

It is easy to see that this is a semisimple abelian category, whose simple objects
are parametrized (up to isomorphism) by all Young diagrams of arbitrary sizes
whose length does not exceed N : the simple object corresponding to λ is SλCN.

Remark 3.2.1. Note that Rep(gl∞)poly is the free abelian symmetric monoidal
category generated by one object (see [Sam and Snowden 2015, Section 2.2.11]).
It has an equivalent definition as the category of polynomial functors of bounded
degree, which can be found in [Hong and Yacobi 2013; Sam and Snowden 2015].

Next, we define a natural Z+-grading on objects in Ind-Rep(glN )poly (cf. [Sam
and Snowden 2015, Section 2.2.2]):

Definition 3.2.2. The objects in Ind-Rep(glN )poly have a natural Z+-grading. Given
M ∈ Ind-Rep(glN )poly, we consider the decomposition M=

⊕
λ SλCN

⊗multλ (here
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multλ is the multiplicity space of SλCN in M), and we define

grk(M) :=
⊕
λ:|λ|=k

SλCN
⊗multλ.

Of course, the morphisms in Ind-Rep(glN )poly respect this grading.

3.3. Specialization and restriction functors. We now define specialization func-
tors from the category of representations of gl∞ to the categories of representations
of gln (cf. [Sam and Snowden 2015, Section 3]):

Definition 3.3.1. We have

0n : Rep(gl∞)poly→ Rep(gln)poly, 0n := ( · )
gl⊥n.

One can easily check (cf. [Entova Aizenbud 2015b, Section 7]) that the functor 0n

is well defined.

Lemma 3.3.2 [Penkov and Styrkas 2011; Sam and Snowden 2015, Section 3].
The functors 0n are additive symmetric monoidal functors between semisimple
symmetric monoidal categories. Their effect on the simple objects is described as
follows: for any Young diagram λ, we have 0n(SλC∞)∼= SλCn.

Definition 3.3.3. Let n ≥ 1. We define the functors

Resn−1,n : Rep(gln)poly→ Rep(gln−1)poly, Resn−1,n := ( · )
gl⊥n−1.

Again, one can easily show that these functors are well defined.

Remark 3.3.4. There is an alternative definition of the functors Resn−1,n . One can
think of the functor Resn−1,n acting on a gln-module M as taking the restriction
of M to gln−1 and then considering only the vectors corresponding to “appropriate”
central characters.

More specifically, we say that a gln-module M is of degree d if IdCn ∈ gln acts
by d IdM on M. Also, given any gln-module M, we may consider the maximal
submodule of M of degree d , and denote it by degd(M). This defines an endofunctor
degd of Rep(gln)poly. Note that a simple module SλCn is of degree |λ|.

The notion of degree gives a decomposition

Rep(gln)poly ∼=
⊕
d∈Z+

Rep(gln)poly,d ,

where Rep(gln)poly,d is the full subcategory of Rep(gln)poly consisting of all poly-
nomial gln-modules of degree d. Then

Resn−1,n =
⊕
d∈Z+

Resd,n−1,n : Rep(gln)poly→ Rep(gln−1)poly,
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with

Resd,n−1,n : Rep(gln)poly,d → Rep(gln−1)poly,d , Resd,n−1,n := degd ◦Resglngln−1
,

where Resglngln−1
is the usual restriction functor for the pair gln−1 ⊂ gln .

Once again, the functors Resn−1,n are additive functors between semisimple
categories.

Lemma 3.3.5. Resn−1,n(SλCn) ∼= SλCn−1 for any Young diagram λ (recall that
SλCn−1

= 0 if `(λ) > n− 1).

Moreover, these functors are compatible with the functors 0n defined before.

Lemma 3.3.6. For any n ≥ 1, we have a commutative diagram:

Rep(gl∞)poly
0n
//

0n−1 ((

Rep(gln)poly

Resn−1,n

��

Rep(gln−1)poly

That is, there is a natural isomorphism 0n−1 ∼=Resn−1,n ◦0n .

Corollary 3.3.7. The functors Resn−1,n : Rep(gln)poly→ Rep(gln−1)poly are sym-
metric monoidal functors.

3.4. Restricted inverse limit of categories Rep(gln)poly. This subsection gives a
description of the category Rep(gl∞)poly as a “restricted” inverse limit of categories
Rep(gln)poly (see the Appendix and [Entova Aizenbud 2015b] for definitions and
details).

We will use the framework developed in [Entova Aizenbud 2015b] for the inverse
limits of categories with Z+-filtrations on objects, and the restricted inverse limits
of finite-length categories (abelian categories in which every object admits a Jordan–
Hölder filtration). The necessary definitions (such as Z+-filtered functors and
shortening functors) can be found in the Appendix.

We define a Z+-filtration on the objects of Rep(gln)poly for each n ∈ Z+:

Notation 3.4.1. For each k ∈ Z+, let Filk(Rep(gln)poly) be the full additive subcat-
egory of Rep(gln)poly generated by SλCn such that `(λ)≤ k.

Clearly the subcategories Filk(Rep(gln)poly) give us a Z+-filtration on the objects
of the category Rep(gln)poly. Furthermore, by Lemma 3.3.5, the functors Resn−1,n

are Z+-filtered functors, i.e., they induce functors

Resk
n−1,n : Filk(Rep(gln)poly)→ Filk(Rep(gln−1)poly).
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This allows us to consider the inverse limit

lim
←−−

n∈Z+,Z+-filtr
Rep(gln)poly ∼= lim

−−→
k∈Z+

lim
←−−

n∈Z+

Filk(Rep(gln)poly).

This is an abelian category (with a natural Z+-filtration on objects).
By Lemma 3.3.5, the functors Resn−1,n are shortening functors; furthermore,

the system ((Rep(gln)poly)n∈Z+, (Resn−1,n)n≥1) satisfies the conditions listed in
Proposition A.5.1, and therefore the category lim

←−−n∈Z+,Z+-filtr Rep(gln)poly is also
equivalent to the restricted inverse limit of this system, lim

←−−n∈Z+, restr Rep(gln)poly.

Remark 3.4.2. The functors Resn−1,n are symmetric monoidal functors, so the
category lim

←−−n∈Z+, restr Rep(gln)poly is a symmetric monoidal category.

The following proposition is relatively straightforward. Its detailed proof can be
found in [Entova Aizenbud 2015b].

Proposition 3.4.3. We have an equivalence of symmetric monoidal Karoubian
categories

0lim : Rep(gl∞)poly→ lim
←−−

n∈Z+, restr
Rep(gln)poly

induced by the symmetric monoidal functors

0n = ( · )
gl⊥n : Rep(gl∞)poly→ Rep(gln)poly.

4. Parabolic category O

In this section, we describe a version of the parabolic category O for glN which we
are going to work with. We give a definition which describes the relevant category
for both gln and gl∞.

4.1. For the benefit of the reader, we will start by giving a definition for glN
when N is a positive integer; this definition is analogous to the usual definition of
the category O . The generic definition will then be just a slight modification of the
first to accommodate the case N =∞. This version of the parabolic category O is
attached to a pair: a vector space V and a fixed nonzero vector 1 in it. Such a pair
is called a unital vector space. In our case, we will just consider V = CN , with the
standard basis e1, e2, . . . , and the chosen vector 1 := e1. Fix N ∈ Z with N ≥ 1.

Notation 4.1.1. The following notation will be used throughout the paper:

• We denote by pN ⊂ glN the parabolic Lie subalgebra which consists of all the
endomorphisms φ : CN

→ CN for which φ(1) ∈ C1. In terms of matrices this
is span{E1,1, Ei, j | j > 1}.

• u+pN
⊂ pN denotes the algebra of endomorphisms φ : CN

→ CN for which
Imφ ⊂ C1⊂ Kerφ. In terms of matrices, u+pN

= span{E1, j | j > 1}.
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Denote UN := span{e2, e3, . . . , eN }. We have a splitting glN ∼= pN ⊕u−pN
, where

u−pN
∼= UN = span{Ei,1 | i > 1}). This gives us an analogue of the triangular

decomposition:
glN ∼= C IdCN ⊕ u−pN

⊕ u+pN
⊕ gl(UN ).

We can now give a precise definition of the parabolic category O we will use:

Definition 4.1.2. We define the category OpN
CN to be the full subcategory of ModU(glN )

whose objects M satisfy the following conditions:

• Viewed as a U(gl(UN ))-module, M is a direct sum of polynomial U(gl(UN ))-
modules (that is, M belongs to Ind-Rep(gl(UN ))poly).

• M is locally finite over u+pN
.

• M is a finitely generated U(glN )-module.

Remark 4.1.3. One can replace the requirement that u+pN
act locally finitely on M

by the requirement that U(u+pN
) act locally nilpotently on M .

Remark 4.1.4. One can, in fact, give an equivalent definition of the category Op
V

corresponding to a finite-dimensional unital vector (V,1) without choosing a split-
ting (cf. [Entova Aizenbud 2015a, Section 5] and the Introduction).

Definition 4.1.5. A module M over the Lie algebra glN will be said to be of degree
K ∈ C if IdCN ∈ glN acts by K IdM on M.

We will denote by OpN
ν,CN the full subcategory of OpN

CN whose objects are modules
of degree ν. To say a module M of OpN

CN is of degree ν is the same as to require
that E1,1 acts on each subspace SλUN of M by the scalar ν− |λ|.

Definition 4.1.6. Let ν ∈ C. Define the functor degν :ModU(glN )→ModU(glN ) by
letting degν(E) be the maximal submodule of E of degree ν (see Definition 4.1.5).
For a morphism f : E→ E ′ of glN -modules, we put degν( f ) := f |degν(E).

Let E ∈ModU(glN ). The maximal submodule of E of degree ν is well defined: it
is the subspace of E consisting of all vectors on which IdCN acts by the scalar ν,
and it is a glN -submodule since IdCN lies in the center of glN .

One can show that the functor degν : ModU(glN ) → ModU(glN ) is left-exact.
Moreover, it is easy to show that the category OpN

ν,CN is a direct summand of OpN
CN ,

and the functor degν : O
pN
CN → OpN

ν,CN is exact.

4.2. Parabolic category O for glN . We now give a definition of the parabolic
category O which for glN . Again, we let N ∈ Z≥1 ∪ {∞}.

Consider a unital vector space (CN ,1), where 1 := e1. Put

UN := spanC(e2, e3, . . . )⊂ CN,



SCHUR–WEYL DUALITY FOR DELIGNE CATEGORIES, II 195

so that we have a splitting CN
=Ce1⊕UN . We also denote UN ,∗ := span(e∗2, e∗3, . . . )

(so UN ,∗ =U∗N whenever N ∈ Z). We have a decomposition

glN ∼= gl(UN )⊕ gl1⊕ u+pN
⊕ u−pN

.

Of course, for any N , we have u−pN
∼=UN ; moreover, u+pN

∼=UN ,∗. We will also use
the isomorphisms gl(UN )∼= gl⊥1

∼= glN−1.

Definition 4.2.1.

• Define the category ModglN ,gl(UN )-poly to be the category of glN -modules whose
restriction to gl(UN ) lies in Ind-Rep(glUN

)poly; that is, glN -modules whose re-
striction to gl(UN ) is a (perhaps infinite) direct sum of Schur functors applied
to UN . The morphisms would be glN -equivariant maps.

• We say that an object M ∈ModglN ,gl(UN )-poly is of degree ν (ν ∈ C) if on every
summand SλUN ⊂ M , the element E1,1 ∈ glN acts by (ν− |λ|) IdSλUN .

• Let M ∈ModglN ,gl(UN )-poly. We have a commutative algebra Sym(UN )∼=U(u−pN
)

(the enveloping algebra of u−pN
⊂ glN ). The action of glN on M gives M a

Sym(UN )-module structure. We say that M is finitely generated over Sym(UN )

if M is a quotient of a “free finitely generated Sym(UN )-module”; that is, as a
Sym(UN )-module, M is a quotient (in Ind-Rep(glN )poly) of Sym(UN )⊗ E for
some E ∈ Rep(gl(UN ))poly.

• Let M ∈ModglN ,gl(UN )-poly. We have a commutative algebra Sym(UN ,∗)∼=U(u+pN
)

(the enveloping algebra of u+pN
⊂ glN ). The action of glN on M gives M a

Sym(UN ,∗)-module structure. We say that M is locally nilpotent over the algebra
U(u+pN

) if for any v ∈ M , there exists m ≥ 0 such that for any A ∈ Symm(UN ,∗)

we have A.v = 0.

Recall the natural Z+-grading on the object of Ind-Rep(glN )poly. For each
M ∈ModglN ,gl(UN )-poly, the above definition implies that gl(UN ) acts by operators
of degree zero, and that UN ,∗ acts by operators of degree 1. We now define the
parabolic category O for glN which we will use throughout the paper:

Definition 4.2.2. We define the category OpN
ν,CN to be the full subcategory of

ModglN ,gl(UN )-poly whose objects M satisfy the following requirements:

• M is of degree ν.

• M is finitely generated over Sym(UN ).

• M is locally nilpotent over the algebra U(u+pN
).

Of course, for a positive integer N , this is just the category OpN
ν,CN we defined in

the beginning of this section.
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We will also consider the localization of the category OpN
ν,CN by its Serre subcat-

egory of polynomial glN -modules of degree ν; such modules exist if and only if
ν ∈ Z+. This localization will be denoted by

π̂N : O
pN
ν,CN → ÔpN

ν,CN

and will play an important role when we consider the Schur–Weyl duality in complex
rank.

4.3. Duality in category O. Let n ∈ Z+. Recall that in the category O for gln we
have the notion of a duality (cf. [Humphreys 2008, Section 3.2]): namely, given a
gln-module M with finite-dimensional weight spaces, we can consider the twisted
action of gln on the dual space M∗, given by A. f := f ◦ AT , where AT means the
transpose of A ∈ gln . This makes M∗ a gln-module. We then take M∨ to be the
maximal submodule of M∗ lying in category O .

More explicitly, considering M as a direct sum of its finite-dimensional weight
spaces

M =
⊕
λ

Mλ

we can consider the restricted twisted dual

M∨ :=
⊕
λ

M∗λ

(that is, we take the dual to each weight space separately). The action of gln is
given by A. f := f ◦ AT for any A ∈ gln . The module M∨ is called the dual of M ,
and we get an exact functor ( · )∨ : Oop

→ O .

Proposition 4.3.1. The category Opn
Cn is closed under taking duals, and the duality

functor ( · )∨ : (Opn
Cn )

op
→ Opn

Cn is an equivalence of categories.

In fact, a similar construction can be made for Op∞
ν,C∞ . All modules M in Op∞

ν,C∞

are weight modules with respect to the subalgebra of diagonal matrices in gl∞, and
the weight spaces are finite-dimensional (due to the polynomiality condition in the
definition of Op∞

ν,C∞). This allows one to construct the restricted twisted dual M∨ in
the same way as before, and obtain an exact functor

( · )∨ : (Op∞
ν,C∞)

op
→ Op∞

ν,C∞ .

Remark 4.3.2. It is obvious that for n ∈ Z+, the functor ( · )∨ : (Opn
Cn )

op
→ Opn

Cn

takes finite-dimensional (polynomial) modules to finite-dimensional (polynomial)
modules. In fact, one can easily check that the functor ( · )∨ : (Op∞

ν,C∞)
op
→ Op∞

ν,C∞

takes polynomial modules to polynomial modules as well.
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4.4. Structure of the category Opn
ν,Cn . In this subsection, we present some facts

about the category Opn
ν,Cn which will be used later on. The material of this section

is discussed in more detail in [Entova Aizenbud 2015a, Section 5] and is mostly
based on [Humphreys 2008, Chapter 9].

Fix ν ∈ C, and fix n ∈ Z+. We denote by e1, e2, . . . , en the standard basis of Cn ,
and put 1 := e1 and Un := span{e2, e3, . . . , en}. We will consider the category Opn

Cn

for the unital vector space (Cn,1) and the splitting Cn
= C1⊕Un .

Proposition 4.4.1. The categories Opn
Cn and Ind-Opn

Cn are closed under taking duals,
direct sums, submodules, quotients and extensions in Ogln , as well as tensoring with
finite-dimensional gln-modules.

The category Opn
ν,Cn decomposes into blocks (each of the blocks is an abelian

category in its own right). To each ν
∼-class of Young diagrams corresponds a block

of Op
ν,Cn . If all Young diagrams λ in this ν

∼-class have length at least n, then the
corresponding block is zero. To each nonzero block of Op

ν,Cn corresponds a unique
ν
∼-class.

Moreover, the blocks corresponding to trivial ν
∼-classes are either semisimple

(i.e., equivalent to the category VectC) or zero.
We now discuss standard objects in Opn

Cn .

Definition 4.4.2. Let λ be a Young diagram. The generalized Verma module
Mpn (ν− |λ|, λ) is defined to be the gln-module

U(gln)⊗U(pn) SλUn,

where gl(Un) acts naturally on SλUn , IdCn ∈ pn acts on SλUn by scalar ν, and u+pn

acts on SλUn by zero. Thus Mpn(ν − |λ|, λ) is the parabolic Verma module for
(gln, pn) with highest weight (ν − |λ|, λ) if and only if n − 1 ≥ `(λ), and zero
otherwise.

Definition 4.4.3. L(ν − |λ|, λ) is defined to be zero if n ≥ `(λ), or the simple
module for gln of highest weight (ν− |λ|, λ) otherwise.

The following basic lemma will be very helpful.

Lemma 4.4.4. Let λ be a Young diagram such that `(λ) < n. We then have an
isomorphism of gl(Un)-modules:

Mpn (ν− |λ|, λ)
∼= Sym(Un)⊗ SλUn.

We will also use the following lemma.

Lemma 4.4.5. Let {λ(i)}i be a nontrivial ν∼-class, and i ≥ 0 be such that `(λ(i))< n.
Then there is a short exact sequence

0→ L(ν− |λ(i+1)
|, λ(i+1))→ Mpn (ν− |λ

(i)
|, λ(i))→ L(ν− |λ(i)|, λ(i))→ 0.
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Corollary 4.4.6. The isomorphism classes of the generalized Verma modules and
the simple polynomial modules in Opn

ν,Cn form a basis for the Grothendieck group
of Opn

ν,Cn .

5. Stable inverse limit of parabolic categories O

5.1. Restriction functors.

Definition 5.1.1. Let n ≥ 1. Define the functor

Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1, Resn−1,n := ( · )
gl⊥n−1.

Again, the subalgebras gln−1, gl
⊥

n−1 ⊂ gln commute, and therefore the subspace
of gl⊥n−1-invariants of a gln-module automatically carries an action of gln−1.

We need to check that this functor is well defined. In order to do so, consider the
functor Resn−1,n : O

pn
ν,Cn →ModU(gln−1). This functor is well defined, and we will

show that the objects in the image lie in the full subcategory Opn−1
ν,Cn−1 of ModU(gln−1).

The functor Resn−1,n can alternatively be defined as follows: for a module M in
Opn
ν,Cn , we restrict the action of gln to gln−1, and then only take the vectors in M

attached to specific central characters. More specifically, we have:

Lemma 5.1.2. The functor Resn−1,n is naturally isomorphic to the composition
degν ◦Resglngln−1

(the functor degν was defined in Definition 4.1.6).

Proof. Let M ∈ Opn
ν,Cn . For any vector m ∈ M , we know that

IdCn .m = (E1,1+ E2,2+ · · ·+ En,n).m = νm.

Then the requirement that

IdCn−1 .m = (E1,1+ E2,2+ · · ·+ En−1,n−1).m = νm

is equivalent to the requirement that En,n.m = 0, namely that m ∈ Mgl⊥n−1 . �

We will now use this information to prove the following result:

Lemma 5.1.3. The functor Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1 is well defined.

Proof. Let M ∈ Opn
ν,Cn , and consider the gln−1-module Resn−1,n(M). By definition,

this is a module of degree ν. We will show that it lies in Opn−1
ν,Cn−1 .

First of all, consider the inclusion gl(Un−1)
⊥
⊕gl(Un−1)⊂gl(Un). This inclusion

gives us the restriction functor (see Definition 3.3.3)

ResUn−1,Un : Rep(gl(Un))poly→ Rep(gl(Un−1))poly, ResUn−1,Un := ( · )
gl(Un−1)

⊥

.

The latter is an additive functor between semisimple categories, and takes polyno-
mial representations of gl(Un) to polynomial representations of gl(Un−1).

Now, the restriction to gl(Un−1) of the gln−1-module Resn−1,n(M) is isomorphic
to ResUn−1,Un (M |gl(Un)), and thus is a polynomial representation of gl(Un−1).
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Secondly, Resn−1,n(M) is locally nilpotent over U(u+pn−1
), since M is locally

nilpotent over U(u+pn
) and U(u+pn−1

)⊂ U(u+pn
).

It remains to check that given M ∈ Opn
ν,Cn , the module Resn−1,n(M) is finitely

generated over Sym(Un−1). Indeed, we know that there exists a polynomial gl(Un)-
module E and a surjective gl(Un)-equivariant morphism of Sym(Un)-modules
Sym(Un)⊗E � M . Taking the gl(Un−1)

⊥-invariants and using Corollary 3.3.7, we
conclude that there is a surjective gl(Un−1)-equivariant morphism of Sym(Un−1)-
modules

Sym(Un−1)⊗ Egl(Un−1)
⊥

�Resn−1,n(M).

Thus Resn−1,n(M) is finitely generated over Sym(Un−1). �

Lemma 5.1.4. The functor Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1 is exact.

Proof. We use Lemma 5.1.2. The functor degν : O
pn−1
Cn−1 → Opn−1

ν,Cn−1 is exact, so the
functor Resn−1,n is obviously exact as well. �

Lemma 5.1.5. The functor Resn−1,n takes parabolic Verma modules either to
parabolic Verma modules or to zero:

Resn−1,n(Mpn (ν− |λ|, λ))
∼= Mpn−1(ν− |λ|, λ).

(Recall that the latter is a parabolic Verma module for gln−1 if and only if `(λ)≤
n− 2, and zero otherwise).

Proof. Consider the parabolic Verma module Mpn (ν − |λ|, λ), where the Young
diagram λ has length at most n− 1. By definition, we have

Mpn (ν− |λ|, λ)= U(gln)⊗U(pn) SλUn.

The branching rule for gl(Un−1)⊂ gl(Un) tells us that

(SλUn)|gl(Un−1)
∼=

⊕
λ′

Sλ
′

Un−1,

where the sum is taken over the set of all Young diagrams obtained from λ by
removing several boxes, no two in the same column. So

Resglngln−1
(Mpn (ν− |λ|, λ))

∼=

(⊕
λ′⊂λ

Mpn−1(ν− |λ|, λ
′)

)
⊗ U

(
u−pn
/u−pn−1

)
.

Here:

• Mpn−1(ν − |λ|, λ
′) is either a parabolic Verma module for gln−1 of highest

weight (ν− |λ|, λ′) (note that it is of degree ν− |λ| + |λ′|) or zero.

• gl(Un−1) acts trivially on the space U
(
u−pn
/u−pn−1

)
. This space is isomorphic,

as a Z+-graded vector space, to C[t] (ν standing for En,1 ∈ gln) and E1,1 acts
on it by derivations −t d

dt .
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Thus IdCn−1 ∈ gln acts on the subspace Mpn−1(ν−|λ|, λ
′)⊗ tk

⊂ Mpn (ν−|λ|, λ) by
the scalar ν− |λ| + |λ′| − k.

We now apply the functor degν to the module Resglngln−1
(Mpn (ν − |λ|, λ)). To

see which subspaces Mpn−1(ν− |λ
′
|, λ′)⊗ tk of Mpn (ν− |λ|, λ) will survive after

applying degν , we require that |λ| − |λ′| + k = 0. But we are only considering
Young diagrams λ′ such that λ′⊂ λ, and k ∈Z+, which means that the only relevant
case is λ′ = λ, k = 0. We conclude that

Resn−1,n(MpN (ν− |λ|, λ))
∼= Mpn−1(ν− |λ|, λ). �

Lemma 5.1.6. Given a simple gln-module Ln(ν− |λ|, λ),

Resn−1,n(Ln(ν− |λ|, λ))∼= Ln−1(ν− |λ|, λ).

(Recall that the latter is a simple gln−1-module if and only if `(λ)≤ n−2, and zero
otherwise).

Proof. The statement follows immediately from Lemma 5.1.5 when λ lies in a
trivial ν

∼-class; for a nontrivial ν
∼-class {λ(i)}i , we have short exact sequences (see

Lemma 4.4.5):

0→ Ln(ν− |λ
(i+1)
|, λ(i+1))→ Mpn (ν− |λ

(i)
|, λ(i))→ Ln(ν− |λ

(i)
|, λ(i))→ 0.

Using the exactness of Resn−1,n , we can prove the required statement for
Ln(ν − |λ

(i)
|, λ(i)) by induction on i , provided the statement is true for i = 0.

So it remains to check that

Resn−1,n(Ln(ν− |λ|, λ))∼= Ln−1(ν− |λ|, λ)

for the minimal Young diagram λ in any nontrivial ν
∼-class. Recall that in that case,

Ln(ν− |λ|, λ)= Sλ̃(ν)Cn is a finite-dimensional simple representation of gln . The
branching rule for gln, gln−1 implies that

Resglngln−1
(Sλ̃(ν)Cn)∼=

⊕
µ

SµCn−1,

where the sum is taken over the set of all Young diagrams obtained from λ̃(ν)

by removing several boxes, no two in the same column. Considering only the
summands of degree ν, we see that

Resn−1,n(Ln(ν− |λ|, λ))∼= Sλ̃(ν)Cn−1 ∼= Ln−1(ν− |λ|, λ). �

The functor Resn−1,n : Opn
ν,Cn → Opn−1

ν,Cn−1 clearly takes polynomial modules to
polynomial modules; together with Lemma 5.1.4, this means that Resn−1,n factors
through an exact functor

R̂esn−1,n : Ô
pn
ν,Cn → Ôpn−1

ν,Cn−1,
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i.e., we have a commutative diagram

Opn
ν,Cn

Resn−1,n
//

π̂n

��

Opn−1
ν,Cn−1

π̂n−1

��

Ôpn
ν,Cn

R̂esn−1,n
// Ôpn−1

ν,Cn−1

(see Section 4.2 for the definition of the localizations π̂n).

5.2. Specialization functors.

Definition 5.2.1. Let n ≥ 1. Define the functor

0n : O
p∞
ν,C∞→ Opn

ν,Cn , 0n := ( · )
gl⊥n .

As before, the subalgebras gln, gl
⊥

n ⊂ gl∞ commute, and therefore the subspace
of gl⊥n -invariants of a gl∞-module automatically carries an action of gln .

Lemma 5.2.2. The functor 0n : O
p∞
ν,C∞→ Opn

ν,Cn is well defined.

Proof. The proof is essentially the same as that in Lemma 5.1.3. �

Lemma 5.2.3. The functor 0n : O
p∞
ν,C∞→ Opn

ν,Cn is exact.

Proof. The definition of 0n immediately implies that this functor is left-exact.
Consider the inclusion gl(Un)⊕gl(Un)

⊥
⊂ gl(U∞). We then have an isomorphism

of gl(Un)-modules
(M |gl(U∞))

gl(Un)
⊥
∼= (Mgl⊥n )|gl(Un)

.

The exactness of 0n then follows from the additivity of the functor

( · )gl(Un)
⊥

: Rep(gl(U∞))poly→ Rep(gl(Un))poly,

which is an additive functor between semisimple categories. �

The functor 0n : Op∞
ν,C∞ → Opn

ν,Cn clearly takes polynomial gl∞-modules to
polynomial gln-modules; together with Lemma 5.2.3, this means that 0n factors
through an exact functor

0̂n : Ô
p∞
ν,C∞→ Ôpn

ν,Cn ,

i.e., we have a commutative diagram

Op∞
ν,C∞

0n
//

π̂∞
��

Opn
ν,Cn

π̂n
��

Ôp∞
ν,C∞

0̂n
// Ôpn

ν,Cn
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5.3. Stable inverse limit of categories Opn
ν,Cn and the category Op∞

ν,C∞
. The restric-

tion functors

Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1, Resn−1,n := ( · )
gl⊥n−1

described in Section 5.1 allow us to consider the inverse limit of the system
((Opn

ν,Cn )n≥1, (Resn−1,n)n≥2), and similarly for ((Ôpn
ν,Cn )n≥1, (R̂esn−1,n)n≥2). Let

n ≥ 1.

Notation 5.3.1. For each k ∈ Z+, let Filk(O
pn
ν,Cn ) (resp., Filk(Ô

pn
ν,Cn )) be the Serre

subcategory of Opn
ν,Cn (resp., Ôpn

ν,Cn ) generated by simple modules Ln(ν − |λ|, λ)

(respectively, π̂n(Ln(ν− |λ|, λ))), with `(λ)≤ k.

This defines Z+-filtrations on the objects of Opn
ν,Cn and Ôpn

ν,Cn , i.e.,

Opn
ν,Cn
∼= lim
−−→

k∈Z+

Filk(O
pn
ν,Cn ), Ôpn

ν,Cn
∼= lim
−−→

k∈Z+

Filk(Ô
pn
ν,Cn ).

Lemma 5.3.2. The functors

Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1

and
R̂esn−1,n : Ô

pn
ν,Cn → Ôpn−1

ν,Cn−1

are both shortening and Z+-filtered functors between finite-length categories with
Z+-filtrations on objects (see the Appendix for the relevant definitions). Moreover,
the systems (Opn

ν,Cn ,Resn−1,n) and (Ôpn
ν,Cn , R̂esn−1,n) satisfy the conditions appear-

ing in Section A.5, and thus for each of these, their restricted inverse limit coincides
with their inverse limit as Z+-graded categories.

Proof. These statements follow directly from Lemma 5.1.6, which tells us that
Resn−1,n(Ln(ν− |λ|, λ))∼= Ln−1(ν− |λ|, λ), and the fact that Ln(ν− |λ|, λ)= 0
whenever `(λ) > n− 1. �

We can now consider the inverse limits of the Z+-filtered systems

((Opn
ν,Cn )n≥1, (Resn−1,n)n≥2), ((Ôpn

ν,Cn )n≥1, (R̂esn−1,n)n≥2).

By Proposition A.5.1, these limits are equivalent to the respective restricted inverse
limits

lim
←−−

n≥1, restr
Opn
ν,Cn , lim

←−−
n≥1, restr

Ôpn
ν,Cn .

The functors 0n described above induce exact functors

0lim : O
p∞
ν,C∞→ lim

←−−
n≥1

Opn
ν,Cn
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and
0̂lim : Ô

p∞
ν,C∞→ lim

←−−
n≥1

Ôpn
ν,Cn .

Proposition 5.3.3. The functors 0n induce an equivalence

0lim : O
p∞
ν,C∞→ lim

←−−
n≥1, restr

Opn
ν,Cn .

Proof. First of all, we need to check that this functor is well defined. Namely, we
need to show that for any M ∈Op∞

ν,C∞ , the sequence {`U(gln+1)(0n+1(M))}n stabilizes.
In fact, it is enough to show that this sequence is bounded (since it is obviously
increasing).

Recall that we have a surjective map of Sym(u−p∞)-modules Sym(u−p∞)⊗E � M
for some E ∈ Rep(gl(U∞))poly. Since 0n+1 is exact, it gives us a surjective map
Sym(u−pn+1

)⊗0n+1(E)�0n+1(M) for any n≥0, with 0n+1(E) being a polynomial
gl(Un+1)-module.

Now,

`U(gln+1)(0n+1(M))≤ `U(u−pn+1 )
(0n+1(M))≤ `U(gl(Un+1))(0n+1(E)).

The sequence {`U(gl(Un+1))(0n+1(E))}n≥0 is bounded by Proposition 3.4.3, and thus
the sequence {`U(gln+1)(0n+1(M))}n is bounded as well.

We now show that 0lim is an equivalence. A construction similar to the one
appearing in [Entova Aizenbud 2015b, Section 7.5] gives a left adjoint to the functor
0lim; that is, we will define a functor

0∗lim : lim
←−−

n≥1, restr
Opn
ν,Cn → Op∞

ν,C∞ .

Let ((Mn)n≥1, (φn−1,n)n≥2) be an object of lim
←−−n≥1, restr Opn

ν,Cn . The isomorphisms
φn−1,n :Resn−1,n(Mn)−→

∼ Mn−1 define gln−1-equivariant inclusions Mn−1 ↪→ Mn .
Consider the vector space

M :=
⋃
n≥1

Mn,

which has a natural action of gl∞ on it. It is easy to see that the obtained gl∞-module
M is a direct sum of polynomial gl(U∞)-modules, and is locally nilpotent over the
algebra

U(u+p∞)
∼= Sym(U∞,∗)∼=

⋃
n≥1

Sym(U∗n ).

Sublemma 5.3.4. Let ((Mn)n≥1, (φn−1,n)n≥2) be an object of lim
←−−n≥1, restr Opn

ν,Cn .
Then M :=

⋃
n≥1 Mn is a finitely generated module over

Sym(U∞)∼= U(u−p∞).
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Proof. In Proposition A.2.2, we show that all the objects in the abelian category
lim
←−−n≥1, restr Opn

ν,Cn have finite length, and that the simple objects in this category
are exactly those of the form ((Ln(ν− |λ|, λ))n≥1, (φn−1,n)n≥2) for a fixed Young
diagram λ. So we only need to check that applying the above construction to these
simple objects gives rise to finitely generated modules over Sym(U∞)∼= U(u−p∞).

Using Corollary 4.4.6 we now reduce the proof of the sublemma to proving the
following two statements:

• Let λ be a fixed Young diagram and ((Ln(ν−|λ|, λ))n≥1, (φn−1,n)n≥2) be a simple
object in lim

←−−n≥1, restr Opn
ν,Cn in which Ln(ν − |λ|, λ) is polynomial for every n

(i.e., λ is minimal in its nontrivial ν
∼-class). Then L :=

⋃
n≥1 Ln(ν − |λ|, λ)

is a polynomial gl∞-module (in particular, a finitely generated module over
Sym(U∞)∼= U(u−p∞)).

• Let λ be a fixed Young diagram and let ((Mpn (ν−|λ|, λ))n≥1, (φn−1,n)n≥2) be an
object of lim

←−−n≥1, restr Opn
ν,Cn (this is a sequence of “compatible” parabolic Verma

modules). Then
M :=

⋃
n

Mpn (ν− |λ|, λ)

is a finitely generated module over Sym(U∞)∼= U(u−p∞).

The first statement follows immediately from Proposition 3.4.3. To prove the
second statement, recall from Lemma 4.4.4 that

Mpn (ν− |λ|, λ)
∼= Sym(Un)⊗ SλUn.

So

M :=
⋃

n

Mpn (ν− |λ|, λ)
∼=

⋃
n

Sym(Un)⊗ SλUn ∼= Sym(U∞)⊗ SλU∞,

which is clearly a finitely generated module over Sym(U∞)∼= U(u−p∞). �

This allows us to define the functor 0∗lim by setting

0∗lim((Mn)n≥1, (φn−1,n)n≥2) :=
⋃
n≥1

Mn

and requiring that it act on morphisms accordingly. The definition of 0∗lim gives us
a natural transformation

0∗lim ◦0lim −→
∼ IdOp∞

ν,C∞
.

Restricting the action of gl∞ to gl(U∞) and using Proposition 3.4.3, we conclude
that this natural transformation is an isomorphism.

Notice that the definition of 0∗lim implies that this functor is faithful. Thus we
conclude that the functor 0∗lim is an equivalence of categories, and so is 0lim. �



SCHUR–WEYL DUALITY FOR DELIGNE CATEGORIES, II 205

Proposition 5.3.5. The functors 0̂n induce an equivalence

0̂lim : Ô
p∞
ν,C∞→ lim

←−−
n≥1, restr

Ôpn
ν,Cn .

Proof. Let M ∈ Op∞
ν,C∞ . First of all, we need to check that the functor 0̂lim is

well defined; that is, we need to show that the sequence {`Ôpn
ν,Cn
(π̂n(0n(M)))}n≥1 is

bounded from above.
Indeed,

`Ôpn
ν,Cn
(π̂n(0n(M)))≤ `Opn

ν,Cn
(0n(M)).

But the sequence {`Opn
ν,Cn
(0n(M))}n≥1 is bounded from above by Proposition 5.3.3,

so the original sequence is bound from above as well.
Thus we obtain a commutative diagram

Rep(gl∞)poly,ν //

0lim

��

Op∞
ν,C∞

π̂∞
//

0lim
��

Ôp∞
ν,C∞

0̂lim
��

lim
←−−n≥1, restr Rep(gln)poly,ν // lim

←−−n≥1, restr Opn
ν,Cn

π̂lim=lim
←−n π̂n

// lim
←−−n≥1, restr Ôpn

ν,Cn

where Rep(glN )poly,ν is the Serre subcategory of ÔpN
ν,CN consisting of all polynomial

modules of degree ν. The rows of this commutative diagram are “exact” (in the sense
that Ôp∞

ν,C∞ is the Serre quotient of the category Op∞
ν,C∞ by the Serre subcategory

Rep(gl∞)poly,ν , and similarly for the bottom row).
The functors

0lim : Rep(gl∞)poly,ν→ lim
←−−

n≥1, restr
Rep(gln)poly,ν

and
0lim : O

p∞
ν,C∞→ lim

←−−
n≥1, restr

Opn
ν,Cn

are equivalences of categories (by Propositions 3.4.3 and 5.3.3), and thus the functor
0̂lim is an equivalence as well. �

6. Complex tensor powers of a unital vector space

In this section we describe the construction of a complex tensor power of the
unital vector space CN with the chosen vector 1 := e1 (again, N ∈ Z+ ∪ {∞}). A
general construction of the complex tensor power of a unital vector space is given
in [Entova Aizenbud 2015a, Section 6].

Again, we denote UN := span{e2, e3, . . . }, and UN∗ := span{e∗2, e∗3, . . . } ⊂ CN
∗

.
As before, we have a decomposition:

glN ∼= C IdCN ⊕ u−pN
⊕ u+pN

⊕ gl(UN )
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such that UN ∼= u−pN
, UN∗ ∼= u+pN

, and if N is finite, we have U∗N ∼=UN∗.
Fix ν ∈ C. Recall from [Entova Aizenbud 2015a, Section 4] that for any ν ∈ C,

in the Deligne category Rep(Sν) we have the objects 1k (k ∈ Z+). These objects
interpolate the representations C Inj({1, . . . , k}, {1, . . . , n}) ∼= IndSn×Sk

Sn−k×Sk×Sk
C of

the symmetric groups Sn; in fact, for any n ∈ Z+ we have

Sn(1k)∼= C Inj({1, . . . , k}, {1, . . . , n}),

where Sn : Rep(Sν=n)→ Rep(Sn) is the monoidal functor discussed in Section 2.1.

Definition 6.0.1 (complex tensor power). Define the object (CN )⊗ν of the category
Ind-

(
Repab(Sν)� OpN

ν,CN

)
by setting

(CN )⊗ν :=
⊕
k≥0

(U⊗k
N ⊗1k)

Sk.

The action of glN on (CN )⊗ν is given as follows:

1

UN

$$

UN ⊗11

UN

%%

UN∗

dd

gl(UN )

WW
(U⊗2

N ⊗12)
S2

UN

%%

UN∗

ff

gl(UN )

UU
(U⊗3

N ⊗13)
S3

UN

$$

UN∗

gg

gl(UN )

TT
· · ·

UN∗

ee

• E1,1 ∈ glN acts by scalar ν− k on each summand (U⊗k
N ⊗1k)

Sk.

• A ∈ gl(UN )⊂ glN acts on (U⊗k
N ⊗1k)

Sk by∑
1≤i≤k

A(i)|U⊗k
N
⊗ Id1k : (U

⊗k
N ⊗1k)

Sk → (U⊗k
N ⊗1k)

Sk.

• u ∈ UN ∼= u−pN
acts by morphisms of degree 1, which are given explicitly in

[Entova Aizenbud 2015a, Section 6.2].

• f ∈UN∗ ∼= u+pN
acts by morphisms of degree −1, which are given explicitly

in [Entova Aizenbud 2015a, Section 6.2].

Remark 6.0.2. The actions of the elements of u+pN
and u−pN

, though not written here
explicitly, are in fact uniquely determined by the actions of E1,1 and gl(UN ).

To see this, note that the ideal in the Lie algebra glN generated by the Lie
subalgebra CE1,1⊕ gl(UN ) is the entire glN . Given two glN -modules M1,M2 and
an isomorphism M1→ M2 which is equivariant with respect to the Lie subalgebra
CE1,1⊕gl(UN ), the above fact implies that this isomorphism is also glN -equivariant.

In other words, if there exists a way to define an action of glN whose restriction
to the Lie subalgebra CE1,1⊕ gl(UN ) is given by the formulas above, then such an
action of glN is unique.



SCHUR–WEYL DUALITY FOR DELIGNE CATEGORIES, II 207

Remark 6.0.3. The proof that the object (CN )⊗ν lies in Ind-
(
Rep(Sν)� OpN

ν,CN

)
is an easy check, and can be found in [Entova Aizenbud 2015a]. In particular, it
means that the action of the mirabolic subalgebra LieP1 on the complex tensor
power (CN )⊗ν integrates to an action of the mirabolic subgroup P1, thus making
(CN )⊗ν a Harish-Chandra module in Ind-Repab(Sν) for the pair (glN ,P1).

The definition of the complex tensor power is compatible with the usual notion
of a tensor power of a unital vector space (see [Entova Aizenbud 2015a, Section 6]):

Proposition 6.0.4. Let d ∈ Z+. Consider the functor

Ŝd : Ind-
(
Rep(Sν=d)� OpN

d,CN

)
→ Ind-

(
Rep(Sd)� OpN

d,CN

)
induced by the functor

Sd : Rep(Sν=d)→ Rep(Sn)

described in Section 2.1. Then Ŝd((C
N )⊗d)∼= (CN )⊗d.

The construction of the complex tensor power is also compatible with the functors
Resn,n+1 and 0n defined in Definitions 5.1.1 and 5.2.1. These properties can be
seen as special cases of the following statement (when N = n + 1 and N = ∞,
respectively):

Proposition 6.0.5. Let n ≥ 1, and let N ≥ n, N ∈ Z≥1 ∪ {∞}. Recall that we have
an inclusion gln ⊕ gl⊥n ⊂ glN , and consider the functor

( · )gl
⊥
n : Ind-

(
Repab(Sν)� OpN

ν,CN

)
→ Ind-

(
Repab(Sν)� Opn

ν,Cn

)
induced by the functor ( · )gl

⊥
n : OpN

ν,CN → Opn
ν,Cn . The functor ( · )gl

⊥
n then takes

(CN )⊗ν to (Cn)⊗ν.

Proof. The functor ( · )gl
⊥
n :OpN

ν,CN→Opn
ν,Cn induces an endofunctor of Ind-Repab(Sν).

We would like to say that we have an isomorphism of Ind-Repab(Sν)-objects

((CN )⊗ν)gl
⊥
n

?
∼= (C

n)⊗ν

and that the action of gln ⊂ glN on ((CN )⊗ν) corresponds to the action of gln on
(Cn)⊗ν. In order to do this, we first consider (CN )⊗ν as an object in Ind-Repab(Sν)
with an action of gl(UN ):

(CN )⊗ν ∼=
⊕
k≥0

(1k ⊗U⊗k
N )Sk.

If we consider only the actions of gl(UN ), gl(Un), the functor 0n is induced by the
additive monoidal functor ( · )gl(Un)

⊥

: Ind-Rep(gl(UN ))poly→ Ind-Rep(gl(UN ))poly.
This shows that we have an isomorphism of Ind-Repab(Sν)-objects

((CN )⊗ν)gl
⊥
n ∼=

⊕
k≥0

(1k ⊗U⊗k
n )Sk ∼= (C

n)⊗ν
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and the actions of gl(Un) on both sides are compatible. From the definition of the
complex tensor power (Definition 6.0.1) one immediately sees that the actions of
E1,1 on both sides are compatible as well. Remark 6.0.2 now completes the proof. �

7. Schur–Weyl duality in complex rank:
the Schur–Weyl functor and the finite-dimensional case

We fix ν ∈ C and N ∈ Z+ ∪ {∞}. Again, we consider the unital vector space CN

with the chosen vector 1 := e1 and the complement UN := span{e2, e3, . . . }.

7.1. Schur–Weyl functor.

Definition 7.1.1. Define the Schur–Weyl contravariant functor

SWν : Repab(Sν)→ModU(glN )

by
SWν := HomRepab(Sν)( · , (C

N )⊗ν).

Remark 7.1.2. The functor SWν : Repab(Sν) → ModU(glN ) is a contravariant
C-linear additive left-exact functor.

It turns out that the image of the functor SWν : Repab(Sν)→ModU(glN ) lies in
OpN
ν,CN (cf. Remark 6.0.3).
We can now define another Schur–Weyl functor which we will consider: the

contravariant functor ŜWν,CN : Repab(Sν)→ ÔpN
ν,CN . Recall from Section 4.2 that

π̂N : O
pN
ν,CN → ÔpN

ν,CN := OpN
ν,CN /Rep(glN )poly,ν

is the Serre quotient of OpN
ν,CN by the Serre subcategory of polynomial glN -modules

of degree ν. We then define

ŜWν,CN := π̂N ◦SWν,CN .

7.2. The finite-dimensional case. Let n∈Z+. We then have the following theorem,
which can be found in [Entova Aizenbud 2015a, Section 7]:

Theorem 7.2.1. The contravariant functor ŜWν,Cn : Repab(Sν)→ Ôpn
ν,Cn is exact

and essentially surjective. Moreover, the induced contravariant functor

Repab(Sν)/Ker(ŜWν,Cn )→ Ôpn
ν,Cn

is an antiequivalence of abelian categories, thus making Ôpn
ν,Cn a Serre quotient of

Repab(Sν)op.

We will show that a similar result holds in the infinite-dimensional case, when
the contravariant functor ŜWν,C∞ is in fact an antiequivalence of categories.
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In the proof of Theorem 7.2.1 we established the following fact (see [En-
tova Aizenbud 2015a, Theorem 7.2.3]):

Lemma 7.2.2. The functor ŜWν,Cn takes a simple object to either a simple object,
or zero. More specifically:

• Let λ be a Young diagram lying in a trivial ν
∼-class. Then

ŜWν,Cn (L(λ))∼= π̂(Lpn (ν− |λ|, λ)).

• Consider a nontrivial ν
∼-class {λ(i)}i≥0. Then

ŜWν,Cn (L(λ(i)))∼= π̂(Lpn (ν− |λ
(i+1)
|, λ(i+1)))

whenever i ≥ 0.

Remark 7.2.3. Recall that Lpn (ν− |λ|, λ) is zero if `(λ)≥ n.

8. Classical Schur–Weyl duality and the restricted inverse limit

8.1. A short overview of the classical Schur–Weyl duality. Let V be a vector
space over C, and let d ∈ Z+. The symmetric group Sd acts on V⊗d by permuting
the factors of the tensor product (the action is semisimple, by Maschke’s theorem):

σ.(v1⊗ v2⊗ · · ·⊗ vd) := vσ−1(1)⊗ vσ−1(2)⊗ · · ·⊗ vσ−1(d).

The actions of gl(V ) and Sd on V⊗d commute, which allows us to consider a
contravariant functor

SWd,V : Rep(Sd)→ Rep(gl(V ))poly, SWd,V := HomSd ( · , V⊗d).

The contravariant functor SWd,V is C-linear and additive, and sends a simple repre-
sentation λ of Sd to the gl(V )-module SλV.

Next, consider the contravariant functor

SWV :
⊕
d∈Z+

Rep(Sd)→ Rep(gl(V ))poly, SWV :=
⊕

d

SWd,V .

This functor SWV is clearly essentially surjective and full (this is easy to see,
since Rep(gl(V ))poly is a semisimple category with simple objects SλV ∼= SW(λ)).
The kernel of the functor SWV is the full additive subcategory (direct factor) of⊕

d∈Z+
Rep(Sd) generated by simple objects λ such that `(λ) > dim V.

8.2. Classical Schur–Weyl duality: inverse limit. In this subsection, we prove that
the classical Schur–Weyl functors SWCn make the category

⊕
d∈Z+

Rep(Sd) dual
(antiequivalent) to the category

Rep(gl∞)poly ∼= lim
←−−

n∈Z+, restr
Rep(gln)poly.
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The contravariant functor SWCN sends the Young diagram λ to the glN -module SλCN.
Let n ∈ Z+. We start by noticing that the functors Resn,n+1 and the functors 0n

(defined in Section 3) are compatible with the classical Schur–Weyl functors SWCn :

Lemma 8.2.1. We have natural isomorphisms

Resn,n+1 ◦ SWCn+1 ∼= SWCn

and
0n ◦ SWC∞

∼= SWCn

for any n ≥ 0.

Proof. It is enough to check this on simple objects in
⊕

d∈Z+
Rep(Sd), in which

case the statement follows directly from the definitions of Resn,n+1 and 0n together
with the fact that SWCN (λ)∼= SλCN for any N ∈ Z+ ∪ {∞}. �

The above lemma implies that we have a commutative diagram

Rep(gln)poly

⊕
d∈Z+

Rep(Sd)
op

SWlim

//

SWCn
44

SWC∞
**

lim
←−−n≥1, restr Rep(gln)poly

Prn

OO

Rep(gl∞)poly

0lim

OO
0n

hh

with the functor 0lim being an equivalence of categories (by Proposition 3.4.3), and
Prn being the canonical projection functor.

Proposition 8.2.2. The contravariant functors

SW∞ :
⊕
d∈Z+

Rep(Sd)→ Rep(gl∞)poly

and
SWlim :

⊕
d∈Z+

Rep(Sd)→ lim
←−−

n∈Z+, restr
Rep(gln)poly

are antiequivalences of semisimple categories.

Proof. As was said in Section 8.1, the functor SWN is full and essentially surjective
for any N . In this case, the functor SW∞ is also faithful, since the simple object λ in⊕

d∈Z+
Rep(Sd) is taken by the functor SW∞ to the simple object SλC∞ 6= 0. This

proves that the contravariant functor SW∞ is an antiequivalence of categories. The
commutative diagram above then implies that the contravariant functor SWlim is an
antiequivalence as well. �
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9. Repab(Sν) and the inverse limit of categories ÔpN
ν,CN

9.1. In this section we prove that the Schur–Weyl functors defined in Section 7.1
give us an equivalence of categories between Repab(Sν) and the restricted inverse
limit lim

←−−N∈Z+, restr ÔpN
ν,CN . We fix ν ∈ C.

Proposition 9.1.1. The functor Resn−1,n satisfies Resn−1,n ◦SWν,Cn ∼= SWν,Cn−1 ;
i.e., there exists a natural isomorphism ηn :Resn−1,n ◦SWν,Cn → SWν,Cn−1 .

Proof. This follows directly from Proposition 6.0.5. �

Corollary 9.1.2. R̂esn−1,n ◦ ŜWν,Cn ∼= ŜWν,Cn−1 ; i.e., there exists a natural isomor-
phism η̂n : R̂esn−1,n ◦ ŜWν,Cn → ŜWν,Cn−1 .

Proof. By the definitions of R̂esn−1,n and ŜWν,Cn , together with Proposition 9.1.1,
we have a commutative diagram

Repab(Sν)op

SWν,Cn

//

SW
ν,Cn−1

++

ŜWν,Cn

""

Opn
ν,Cn

π̂n

��

Resn−1,n

// Opn−1
ν,Cn−1

π̂n−1

��

Ôpn
ν,Cn

R̂esn−1,n

// Ôpn−1
ν,Cn−1

Since π̂n−1 ◦SWν,Cn−1 =: ŜWν,Cn−1 , we get R̂esn−1,n ◦ ŜWν,Cn ∼= ŜWν,Cn−1 . �

Notation 9.1.3. For each k ∈ Z+, Filk(Repab(Sν)) is defined to be the Serre sub-
category of Repab(Sν) generated by the simple objects L(λ) such that the Young
diagram λ satisfies either of the following conditions:

• λ belongs to a trivial ν
∼-class, and `(λ)≤ k.

• λ belongs to a nontrivial ν
∼-class {λ(i)}i≥0, λ= λ(i), and `(λ(i+1))≤ k.

This defines a Z+-filtration on the objects of the category Repab(Sν). That is,

Repab(Sν)∼= lim
−−→

k∈Z+

Filk(Repab(Sν)).

Lemma 9.1.4. The functors ŜWν,Cn are Z+-filtered shortening functors (see the
Appendix for the relevant definitions).

Proof. This result follows from the fact that the ŜWν,Cn are exact, together with
Lemma 7.2.2. �
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This lemma, together with Corollary 9.1.2, implies that there is a canonical
contravariant (Z+-filtered shortening) functor

ŜWν,lim : Repab(Sν)→ lim
←−−

n≥1, restr
Ôpn
ν,Cn ,

X 7→
(
{ŜWν,Cn (X)}n≥1, {η̂n(X)}n≥2

)
,

( f : X→ Y ) 7→ {ŜWν,Cn ( f ) : ŜWν,Cn (Y )→ ŜWν,Cn (X)}n≥1.

This functor is given by the universal property of the restricted inverse limit described
in Proposition A.2.71 and makes the diagram below commutative:

Ôpn
ν,Cn

Repab(Sν)op
ŜWν,lim

//

ŜWν,Cn

55

lim
←−−n≥1, restr Ôpn

ν,Cn

Prn

OO

(here Prn is the canonical projection functor).
We show there is an equivalence of categories Repab(Sν)op and lim

←−−n≥1, restr Ôpn
ν,Cn .

Theorem 9.1.5. The Schur–Weyl contravariant functors ŜWν,Cn induce an anti-
equivalence of abelian categories, given by the (exact) contravariant functor

ŜWν,lim : Repab(Sν)→ lim
←−−

n≥1, restr
Ôpn
ν,Cn .

Proof. The functors ŜWν,Cn are exact for each n ≥ 1, which means that the functor
ŜWν,lim is exact as well.

To see that it is an antiequivalence, we will use Proposition A.4.2. All we need to
check is that the functors ŜWν,Cn satisfy the stabilization condition (Condition A.4.1):
that is, for each k ∈ Z+, there exists nk ∈ Z+ such that

ŜWν,Cn : Filk(Repab(Sν))→ Filk(Ô
pn
ν,Cn )

is an antiequivalence of categories for any n ≥ nk .
Indeed, let k ∈ Z+, and let n ≥ k+1. The category Filk(Repab(Sν)) decomposes

into blocks (corresponding to the blocks of Repab(Sν)), and the category Filk(Ô
pn
ν,Cn )

decomposes into blocks corresponding to the blocks of Ôpn
ν,Cn .

The requirement n ≥ k + 1 together with Lemma 7.2.2 means that for any
semisimple block of Filk(Repab(Sν)), the simple object L(λ) corresponding to
this block is not sent to zero under ŜWν,Cn . This, in turn, implies that ŜWν,Cn

1Alternatively, one can use Proposition A.3.3, since we already stated that in our setting the two
notions of inverse limit coincide.
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induces an antiequivalence between each semisimple block of Filk(Repab(Sν)) and
the corresponding semisimple block of Filk(Ô

pn
ν,Cn ).

Fix a nonsemisimple block Bλ of Repab(Sν), and denote by Filk(Bλ) the corre-
sponding nonsemisimple block of Filk(Repab(Sν)). We denote by Bλ,n the cor-
responding block in Opn

ν,Cn . The corresponding block of Filk(Ô
pn
ν,Cn ) will then be

π̂(Filk(Bλ,n)).
We now check that the contravariant functor

ŜWν,Cn |Filk(Bλ) : Filk(Bλ)→ π̂(Filk(Bλ,n))

is an antiequivalence of categories when n ≥ k+ 1.
Since n ≥ k+1, the Serre subcategories Filk(Bλ) and Ker(ŜWν,Cn ) of Repab(Sν)

have trivial intersection (see Lemma 7.2.2), which means that the restriction of
ŜWν,Cn to the Serre subcategory Filk(Bλ) is both faithful and full (the latter follows
from Theorem 7.2.1).

It remains to establish that the functor ŜWν,Cn |Filk(Bλ) is essentially surjective
when n ≥ k+ 1. This can be done by checking that this functor induces a bijection
between the sets of isomorphism classes of indecomposable projective objects
in Filk(Bλ), π̂(Filk(Bλ,n)) respectively (see [Entova Aizenbud 2015a, proof of
Theorem 7.2.7], where we use a similar technique). The latter fact follows from the
proof of [Entova Aizenbud 2015a, Theorem 7.2.7].

Thus ŜWν,Cn : Filk(Bλ)→ Filk(π̂(Bλ,n)) is an antiequivalence of categories for
n ≥ k+ 1, and

ŜWν,Cn : Filk(Repab(Sν))→ Filk(Ô
pn
ν,Cn )

is an antiequivalence of categories for n ≥ k+ 1. �

10. Schur–Weyl duality for Repab(Sν) and gl∞

10.1. Let C∞ be a complex vector space with a countable basis e1, e2, e3, . . . . Fix
1 := e1 and U∞ := spanC(e2, e3, . . . ).

Lemma 10.1.1. We have a commutative diagram

Repab(Sν)op
ŜWν,lim

//

ŜWν,C∞
))

lim
←−−n≥1, restr Ôpn

ν,Cn

Ôp∞
ν,C∞

0̂lim

OO

Namely, there is a natural isomorphism η̂ : 0̂lim ◦ ŜWν,C∞→ ŜWν,lim.

Proof. To prove this statement, we will show that for any n ≥ 1, the following
diagram is commutative:
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Repab(Sν)op SWν,Cn
//

SWν,C∞

((

ŜWν,Cn

((

ŜWν,C∞

44

Opn
ν,Cn

π̂n

// Ôpn
ν,Cn

Op∞
ν,C∞

π̂∞
//

0n

OO

Ôp∞
ν,C∞

0̂n

OO

The commutativity of this diagram follows from the existence of a natural isomor-
phism 0n◦SWν,C∞−→

∼ SWν,Cn (due to Proposition 6.0.5) and a natural isomorphism
0̂n ◦ π̂∞ ∼= π̂n ◦0n (see proof of Proposition 5.3.5). �

Thus we obtain a commutative diagram

Ôpn
ν,Cn

Repab(Sν)op
ŜWν,lim

//

ŜWν,Cn

55

ŜWν,C∞
))

lim
←−−n≥1, restr Ôpn

ν,Cn

Prn

OO

Ôp∞
ν,C∞

0̂lim

OO
0̂n

gg

Theorem 10.1.2. The contravariant functor ŜWν,C∞ : Repab(Sν)→ Ôp∞
ν,C∞ is an

antiequivalence of abelian categories.

Proof. The functor 0̂lim is an equivalence of categories (see Proposition 5.3.5), and
the functor ŜWν,lim is an antiequivalence of categories (see Theorem 9.1.5). The
commutative diagram above implies that the contravariant functor ŜWν,C∞ is an
antiequivalence of categories as well. �

11. Schur–Weyl functors and duality structures

11.1. Let n ∈Z+. Recall the contravariant duality functor ( · )∨n : (O
pn
ν,Cn )

op
→ Opn

ν,Cn

discussed in Section 4.3. This functor takes polynomial modules to polynomial
modules, and therefore descends to a duality functor (̂ · )

∨

n : (Ô
pn
ν,Cn )

op
→ Ôpn

ν,Cn .
Next, the definition of duality functor in Opn

ν,Cn implies that the duality functors
commute with the restriction functors Resn−1,n , namely, that for any n ≥ 2,

( · )∨n−1 ◦Res
op
n−1,n

∼=Res
op
n−1,n ◦ ( · )

∨

n .
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This allows us to define duality functors

( · )∨lim :

(
lim
←−−

n≥1, restr
Opn
ν,Cn

)op

→ lim
←−−

n≥1, restr
Opn
ν,Cn

and

(̂ · )
∨

lim :

(
lim
←−−

n≥1, restr
Ôpn
ν,Cn

)op

→ lim
←−−

n≥1, restr
Ôpn
ν,Cn .

Under the equivalence Op∞
ν,C∞
∼= lim
←−−n≥1, restr Opn

ν,Cn established in Section 5.3,
the functor ( · )∨lim corresponds to the duality functor ( · )∨

∞
: (Op∞

ν,C∞)
op
→ Op∞

ν,C∞

discussed in Section 4.3. Again, this functor descends to a contravariant duality
functor (̂ · )

∨

∞
: (Ôp∞

ν,C∞)
op
→ Ôp∞

ν,C∞ .
As a corollary of Theorem 7.2.1, a connection was established between the no-

tions of duality in the Deligne category Repab(Sν) and duality in the category ÔpN
ν,CN

for N ∈ Z+ (see [Entova Aizenbud 2015a, Section 7.3]). The above construction
allows us to extend this connection to the case when N =∞. Namely, Theorems
9.1.5 and 10.1.2, together with [Entova Aizenbud 2015a, Section 7.3], imply the
next result.

Proposition 11.1.1. Let N ∈ Z+ ∪ {∞} and ν ∈ C. There is an isomorphism of
(covariant) functors

ŜWν,CN ◦ ( · )∗→ (̂ · )
∨

N ◦SWν,CN .

Appendix: Restricted inverse limit of categories

We describe the main elements of the framework for the notion of a restricted
inverse limit of categories. A detailed description of this framework has been given
in the note [Entova Aizenbud 2015b]; this appendix contains the results which are
necessary for understanding the Schur–Weyl duality in complex rank. In particular,
[Entova Aizenbud 2015b] provides some motivation behind the definitions given
below.

Given a system of categories Ci (with i running through the set Z+) and functors
Fi−1,i : Ci → Ci−1 for each i ≥ 1, we define the inverse limit category lim

←−−i∈Z+
Ci to

be the following category:

• The objects are pairs ({Ci }i∈Z+, {φi−1,i }i≥1) where Ci ∈ Ci for each i ∈ Z+

and φi−1,i : Fi−1,i (Ci )−→
∼ Ci−1 for any i ≥ 1.

• A morphism f between objects ({Ci }i∈Z+, {φi−1,i }i≥1), ({Di }i∈Z+, {ψi−1,i }i≥1)

is a set of arrows { fi : Ci → Di }i∈Z+ satisfying some obvious compatibility
conditions.

This category is an inverse limit of the system ((Ci )i∈Z+, (Fi−1,i )i≥1) in the
(2, 1)-category of categories with functors and natural isomorphisms. We will
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denote by Pri the projection functors lim
←−−i∈Z+

Ci → Ci (and similarly the projection
functors from other inverse limits defined below).

A.1. Restricted inverse limit of finite-length categories. To define the restricted
inverse limit, we work with categories Ci which are finite-length categories, namely,
abelian categories where each object has a (finite) Jordan–Hölder filtration. We
require that the functors Fi−1,i be shortening in the following sense:

Definition A.1.1. A functor F : C → D between two finite-length categories is
shortening if it is exact and given an object C ∈ C, we have

`D(F(C))≤ `C(C).

Since F is exact, this is equivalent to requiring that for any simple object L ∈A1,
the object F(L) is either simple or zero.

Example A.1.2. The functors

Resn−1,n :Rep(gln)poly→Rep(gln−1)poly and 0n :Rep(gl∞)poly→Rep(gln)poly

(see Section 3.1 for definitions) are examples of shortening functors.

Given a system ((Ci )i∈Z+, (Fi−1,i )i≥1) of finite-length categories and shortening
functors, it makes sense to consider the full subcategory of lim

←−−i∈Z+
Ci whose objects

are of the form ({Ci }i∈Z+, {φi−1,i }i≥1), with {`Cn (Cn)}n≥0 being a bounded sequence
(the condition on the functors implies that this sequence is weakly increasing).

This subcategory will be called the restricted inverse limit of categories Ci and
will be denoted by lim

←−−i∈Z+, restr Ci . It is the inverse limit of the categories Ci in the
(2, 1)-category of finite-length categories and shortening functors.

Example A.1.3. Consider the restricted inverse limit of the system(
(Rep(gln)poly)n≥0, (Resn−1,n)n≥1

)
.

We obtain a functor

0lim : Rep(gl∞)poly→ lim
←−−

n≥0, restr
Rep(gln)poly.

It is easy to see that 0lim is an equivalence.

A.2. Properties of the restricted inverse limit. The category C := lim
←−−i∈Z+, restr Ci

is an abelian category. In fact, it is a finite-length category, and one can describe its
simple objects. We start by introducing some notation.

Notation A.2.1. Denote by Irr(Ci ) the set of isomorphism classes of irreducible
objects in Ci , and define the pointed set

Irr∗(Ci ) := Irr(Ci )t {0}.
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The shortening functors Fi−1,i then define maps of pointed sets

fi−1,i : Irr∗(Ci )→ Irr∗(Ci−1).

Similarly, we define Irr
(
lim
←−−i∈Z+, restr Ci

)
to be the set of isomorphism classes of

irreducible objects in C, and define the pointed set

Irr∗(C) := Irr(C)t {0}.

Denote by lim
←−−i∈Z+

Irr∗(Ci ) the inverse limit of the system ({Irr∗(Ci }i≥0, { fi−1,i }i≥1).
We will also denote by pr j : lim←−−i∈Z+

Irr∗(Ci )→ Irr∗(C j ) the projection maps.

The elements of the set lim
←−−i∈Z+

Irr∗(Ci ) are just sequences (L i )i≥0 such that
L i ∈ Irr∗(Ci ), and fi−1,i (L i )∼= L i−1.

Proposition A.2.2. Let ((Ci )i∈Z+, (Fi−1,i )i≥1) be a system of finite-length cate-
gories and shortening functors. The category C := lim

←−−i∈Z+, restr Ci is a Serre subcate-
gory of lim

←−−i∈Z+
Ci , and its objects have finite length. The set of isomorphism classes

of simple objects in lim
←−−i∈Z+, restr Ci is in bijection with the set

(
lim
←−−i∈Z+

Irr∗(Ci )
)
\ {0}.

That is, we have a natural bijection

Irr∗(C)∼= lim
←−−
i∈Z+

Irr∗(Ci ).

Proof. Let
C := ({C j } j∈Z+, {φ j−1, j } j≥1),

C ′ := ({C ′j } j∈Z+, {φ
′

j−1, j } j≥1),

C ′′ := ({C ′′j } j∈Z+, {φ
′′

j−1, j } j≥1)

be objects in lim
←−−i∈Z+

Ci , together with morphisms f :C ′→C and g :C→C ′′, such
that the sequence

0−→ C ′ f
−→C g

−→C ′′ −→ 0

is exact.
If C lies in the subcategory C, then the sequence {`Ci (Ci )}i≥0 is bounded from

above, and stabilizes. Denote its maximum by N . For each i , the sequence

0−→ C ′i
fi
−→Ci

g
−→C ′′i −→ 0

is exact. Therefore, `Ci (C
′

i ), `Ci (C
′′

i )≤ N for each i , and so C ′,C ′′ lie in C as well.
Vice versa, assuming C ′,C ′′ lie in C, denote by N ′, N ′′ the maximums of the

sequences {`Ci (C
′

i )}i , {`Ci (C
′′

i )}i , respectively. Then `Ci (Ci ) ≤ N ′ + N ′′ for any
i ≥ 0, and so C lies in the subcategory C as well.

Thus C is a Serre subcategory of lim
←−−i∈Z+

Ci .
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Sublemma A.2.3. Given an object C := ({Ci }i∈Z+, {φi−1,i }i≥1) in C, we have

`C(C)≤max{`Ci (Ci ) | i ≥ 0}.

Proof. Let C lie in C. We would like to say that C has finite length. Denote by N
the maximum of the sequence {`Ci (Ci )}i≥0. It is easy to see that C has length at
most N ; indeed, if {C ′,C ′′, . . . ,C (n)

} is a subset of JHC(C), then for some i � 0,
we have Pri (C (k)) 6= 0 for any k = 1, 2, . . . , n. The objects Pri (C (k)) are distinct
Jordan–Hölder components of Ci , so n ≤ `Ci (Ci )≤ N . In particular, we see that

`C(C)≤ N =max{`Ci (Ci ) | i ≥ 0}. �

Now, let C := ({C j } j∈Z+, {φ j−1, j } j≥1) be an object in C. We denote by JH(C j )

the multiset of the Jordan–Hölder components of C j , and let

JH∗(C j ) := JH(C j )t {0}.

The corresponding set lies in Irr∗(C j ), and we have maps of (pointed) multisets

f j−1, j : JH∗(C j )→ JH∗(C j−1).

Sublemma A.2.4. Let C := ({C j } j∈Z+, {φ j−1, j } j≥1) be in C := lim
←−−i∈Z+, restr Ci .

Then
C ∈ Irr∗(C) ⇐⇒ Pr j (C)= C j ∈ Irr∗(C j ) ∀ j.

In other words, C is a simple object (that is, C has exactly two distinct subobjects:
zero and itself ) if and only if C 6= 0, and for any j ≥ 0, the component C j is either
a simple object in C j , or zero.

Proof. The direction⇐ is obvious, so we will only prove the direction⇒.
Let n0 be a position in which the maximum of the weakly increasing integer

sequence {`Ci (Ci )}i≥0 is obtained. By definition of n0, for j > n0, the functors
F j−1, j do not kill any Jordan–Hölder components of C j .

Now, consider the socles of the objects C j for j ≥ n0. For any j > 0, we have

F j−1, j (socle(C j ))
φ j−1, j
↪−−−→ socle(C j−1),

and thus for j > n0, we have

`C j (socle(C j ))= `C j−1(F j−1, j (socle(C j )))≤ `C j−1(socle(C j−1)).

Thus the sequence {`C j (socle(C j ))} j≥n0 is a weakly decreasing sequence and stabi-
lizes. Denote its stable value by N. We conclude that there exists n1 ≥ n0 such that

F j−1, j (socle(C j ))
φ j−1, j
−−−→ socle(C j−1)

is an isomorphism for every j > n1.
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Now, set

D j :=

{
F j,n1(socle(Cn1)) if j < n1,

socle(C j ) if j ≥ n1

(here F j,n1 : Cn1→ C j are our shortening functors, with n1 fixed and j varying). We
put D := ((D j ) j≥0, (φ j−1, j ) j≥1) (this is a subobject of C in the category lim

←−−i∈Z+
Ci ).

Of course, `C j (D j ) ≤ N for any j , so D is an object in the full subcategory C of
lim
←−−i∈Z+

Ci . Furthermore, since C 6= 0, we have that for j � 0, socle(C j ) 6= 0,
and thus 0 6= D ⊂ C . Thus D is a semisimple object C, with simple summands
corresponding to the elements of the inverse limit of the multisets lim

←−− j∈Z+
JH∗(D j ).

We conclude that D = C , and that socle(C j ) = C j has length at most one for
any j ≥ 0. �

Remark A.2.5. The latter multiset is equivalent to the inverse limit of multisets
JH∗(socle(C j )), so D is, in fact, the socle of C .

This completes the proof of Proposition A.2.2. �

In particular, given an object C := ({C j } j∈Z+, {φ j−1, j } j≥1) in lim
←−−i∈Z+, restr Ci , we

have JH∗(C)= lim
←−−i∈Z+

JH∗(Ci ) (an inverse limit of the system of multisets JH∗(C j )

and maps f j−1, j ).
It is now obvious that the projection functors Pri : C→ Ci are shortening as well,

and induce the maps pri : Irr∗(C)→ Irr∗(Ci ).

Corollary A.2.6. Given an object C := ({Ci }i∈Z+, {φi−1,i }i≥1) in C, we have

`C(C)=max{`Ci (Ci ) | i ≥ 0}.

It is now easy to see that the restricted inverse limit has the following universal
property:

Proposition A.2.7. Let A be a finite-length category, together with a set of shorten-
ing functors Gi :A→ Ci with the property that for any i ≥ 1, there exists a natural
isomorphism

ηi−1,i : Fi−1,i ◦Gi → Gi−1.

Then lim
←−−i∈Z+, restr Ci is universal among such categories; that is, we have a shorten-

ing functor
G :A→ lim

←−−
i∈Z+, restr

Ci ,

A 7→ ({Gi (A)}i∈Z+, {ηi−1,i }i≥1),

f : A1→ A2 7→ { fi := Gi ( f )}i∈Z+

and Gi ∼= Pri ◦G for every i ∈ Z+.
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Proof. Consider the functor G : A→ lim
←−−i∈Z+

Ci induced by the functors Gi . We
would like to say that for any A ∈ A, the object G(A) lies in the subcategory
lim
←−−i∈Z+, restr Ci , i.e., that the sequence {`Ci (Gi (A))}i is bounded from above.

Indeed, since Gi are shortening functors, we have `Ci (Gi (A))≤ `A(A). Thus the
sequence {`Ci (Gi (A))}i is bounded from above by `A(A).

Now, using Corollary A.2.6, we obtain

`C(G(A))=max
i≥0
{`Ci (Gi (A))} ≤ `A(A)

and we conclude that G is a shortening functor. �

A.3. Inverse limit of categories with filtration. We now define the inverse limit
of categories in a different setting, a priori not related to the restricted inverse limit
defined above. The new inverse limit is defined in the setting of categories with
filtrations, and is sometimes more convenient to use. We will later give a sufficient
condition for the two notions of inverse limit to coincide.

Fix a directed partially ordered set (K ,≤), where “directed” means that for any
k1, k2 ∈ K , there exists k ∈ K such that k1, k2 ≤ k.

Definition A.3.1 (categories with K-filtrations). We say that a category A has
a K-filtration if for each k ∈ K we have a full subcategory Ak of A, and these
subcategories satisfy the following conditions:

(1) Ak
⊂Al whenever k ≤ l.

(2) A is the union of Ak, k ∈ K : that is, for any A ∈ A, there exists k ∈ K such
that A ∈Ak.

A functor F :A1→A2 between categories with K-filtrations A1,A2 is called a
K-filtered functor if for any k ∈ K , F(Ak

1) is a subcategory of Ak
2.

Note that if we consider abelian categories and exact functors, we should require
that the subcategories be Serre subcategories in order for the constructions to work
nicely.

Consider a system ((Ci )i∈Z+, (Fi−1,i )i≥1) of categories with K-filtrations and
K-filtered functors between them. We can define a full subcategory lim

←−−i∈Z+,K-filtr Ci

of lim
←−−i∈Z+

Ci whose objects are of the form ({Ci }i∈Z+, {φi−1,i }i≥1) such that there
exists k ∈ K for which Ci ∈ Filk(Ci ) for any i ≥ 0. The category lim

←−−i∈Z+,K-filtr Ci is
automatically a category with a K-filtration on objects. It is the inverse limit of the
categories Ci in the (2, 1)-category of categories with K-filtrations on objects, and
functors respecting these filtrations:

Example A.3.2. Consider the Z+-filtration on the objects of Rep(glN )poly where
SλCN lies in the component |λ| of the filtration. The functors Resn−1,n respect this
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filtration, and we obtain a functor

0lim : Rep(gl∞)poly→ lim
←−−

n≥0,Z+-filtr
Rep(gln)poly.

One can show that this is an equivalence.

We have the following universal property, whose proof is straightforward:

Proposition A.3.3. Let ((Ci )i∈Z+, (Fi−1,i )i≥1) be a system with a K-filtration as
above, and let A be a category with a K-filtration, together with a set of K-filtered
functors Gi :A→ Ci such that for any i ≥ 1 there exists a natural isomorphism

ηi−1,i : Fi−1,i ◦Gi → Gi−1.

Then lim
←−−i∈Z+,K-filtr Ci is universal among such categories; that is, we have a functor

G :A→ lim
←−−

i∈Z+,K-filtr
Ci ,

A 7→ ({Gi (A)}i∈Z+, {ηi−1,i }i≥1),

f : A1→ A2 7→ { fi := Gi ( f )}i∈Z+

which is obviously K-filtered and satisfies Gi ∼= Pri ◦G for every i ∈ Z+.

A.4. Stabilizing inverse limit. Working in the setting of categories with K-filtrations
and K-filtered functors, we consider the case when A, {Gi }i∈Z+ satisfy the following
stabilization condition (this is the case in Theorem 9.1.5):

Condition A.4.1. For every k ∈ K , there exists ik ∈ Z+ such that G j :Ak
→ Ck

j is
an equivalence of categories for any j ≥ ik .

In this setting, the following proposition holds:

Proposition A.4.2. The functor G : A → lim
←−−i∈Z+,K-filtr Ci is an equivalence of

categories with K-filtrations.

Proof. To prove that G is an equivalence of categories with K-filtrations, we need
to show that

G :Ak
→ Filk

(
lim
←−−i∈Z+,K-filtr Ci

)
is an equivalence of categories for any k ∈ K . Recall that

Filk
(
lim
←−−i∈Z+,K-filtr Ci

)
∼= lim
←−−i∈Z+

Ck
i .
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By Condition A.4.1, for any i > ik we have a commutative diagram where all arrows
are equivalences:

Ak
Gi
//

Gik
��

Ck
i

Fi−1,i~~

Ck
i−1

Since for any fixed k, Fi−1,i : Ck
i → Ck

i−1 is an equivalence for i > ik , it is
obvious that Pri : lim←−−i∈Z+

Ck
i → Ck

i is an equivalence of categories for any i > ik .
Thus G :Ak

→ Filk
(
lim
←−−i∈Z+,K-filtr Ci

)
is an equivalence of categories. �

A.5. Equivalence of inverse limits. Finally, we provide a sufficient condition for
the two notions of “special” inverse limit to coincide. This is the case in the setting
of Theorem 9.1.5.

Let ((Ci )i∈Z+, (Fi−1,i )i≥1) be a system of finite-length categories with K-filtrations
and shortening K-filtered functors, whose filtration components are Serre subcate-
gories. We would like to give a sufficient condition on the K-filtration for the inverse
limit of a system of categories with K-filtrations to coincide with the restricted
inverse limit of these categories.

Recall that since the functors Fi−1,i are shortening, we have maps

fi−1,i : Irr∗(Ci )→ Irr∗(Ci−1)

and we can consider the inverse limit lim
←−−i∈Z+

Irr∗(Ci ) of the sequence of sets Irr∗(Ci )

and maps fi−1,i ; we will denote by pr j : lim←−−i∈Z+
Irr∗(Ci )→ Irr∗(C j ) the projection

maps.
Notice that the sets Irr∗(Ci ) have natural K-filtrations, and the maps fi−1,i respect

these filtrations.

Proposition A.5.1. Assume the following conditions hold:

(1) There exists a K-filtration on the set lim
←−−i∈Z+

Irr∗(Ci ). That is, we require that
for each L in lim

←−−i∈Z+
Irr∗(Ci ), there exists k ∈ K so that pri (L) ∈ Filk(Irr∗(Ci ))

for any i ≥ 0. We would then say that such an object L belongs in the k-th
filtration component of lim

←−−i∈Z+
Irr∗(Ci ).

(2) Stabilization condition: For any k ∈ K , there exists Nk ≥ 0 such that the map
fi−1,i : Filk(Irr∗(Ci ))→ Filk(Irr∗(Ci−1)) is an injection for any i ≥ Nk . That
is, for any k ∈ K there exists Nk ∈ Z+ such that the (exact) functor Fi−1,i is
faithful for any i ≥ Nk .

Then the two full subcategories lim
←−−i∈Z+, restr Ci and lim

←−−i∈Z+,K-filtr Ci of lim
←−−i∈Z+

Ci

coincide.
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Proof. Let C := ({C j } j∈Z+, {φ j−1, j } j≥1) be an object in lim
←−−i∈Z+, restr Ci . As before,

we denote by JH(C j ) the multiset of Jordan–Hölder components of C j , and let
JH∗(C j ) := JH(C j )t {0}.

The first condition is natural: giving a K-filtration on the objects of lim
←−−i∈Z+, restr Ci

is equivalent to giving a K-filtration on the simple objects of lim
←−−i∈Z+, restr Ci , i.e.,

on the set lim
←−−i∈Z+

Irr∗(Ci ).
Assume C ∈ lim

←−−i∈Z+, restr Ci . Let n0 ≥ 0 be such that `C j (C j ) is constant for
j ≥ n0. Recall that we have

JH∗(C)= lim
←−−
i∈Z+

JH∗(C j ).

Choose k such that all the elements of JH∗(C) lie in the k-th filtration component
of lim
←−−i∈Z+

Irr∗(Ci ). This is possible due to the first condition.
Then for any L j ∈ JH(C j ), we have that L j = pr j (L) for some L ∈ JH∗(C), and

thus L j ∈ Filk(Irr∗(C j )). We conclude that C ∈ Filk(lim←−−i∈Z+,K-filtr Ci ).
Thus the first condition of the theorem holds if and only if lim

←−−i∈Z+, restr Ci is a
full subcategory of lim

←−−i∈Z+,K-filtr Ci .
Now, let C ∈ lim

←−−i∈Z+,K-filtr Ci , and let k∈K be such that C ∈Filk(lim←−−i∈Z+,K-filtr Ci ).
We would like to show that `Ci (Ci ) is constant starting from some i . Indeed, the
second condition of the theorem tells us that there exists Nk ≥ 0 such that the map

fi−1,i : Filk(Irr∗(Ci ))→ Filk(Irr∗(Ci−1))

is an injection for any i ≥ Nk . We claim that for i ≥ Nk , `Ci (Ci ) is constant. Indeed,
if it weren’t, then there would be some i ≥ Nk + 1 and some L i ∈ JH(Ci ) such that
fi−1,i (L i )= 0. But this is impossible, due to the requirement above. �
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A GENERALIZATION OF THE GREENE–KRANTZ THEOREM
FOR THE SEMICONTINUITY PROPERTY

OF AUTOMORPHISM GROUPS

JAE-CHEON JOO

We give a CR version of the Greene–Krantz theorem (Math. Ann. 261:4 (1982),
425–446) for the semicontinuity of complex automorphism groups. This is
not only a generalization but also an intrinsic interpretation of the Greene–
Krantz theorem.

1. Introduction

By upper semicontinuity, or simply semicontinuity, in geometry, we mean the
property that the set of symmetries of a geometric structure should not decrease
at a limit of a sequence of the structures. For instance, a sequence of ellipses in
the Euclidean plane can converge to a circle, while a sequence of circles cannot
converge to a noncircular ellipse. This property seems as natural as the second law
of thermodynamics in physics, but we still need to make it clear in mathematical
terminology. A symmetry for a geometric structure is described as a transformation
on a space with the geometric structure. The set of transformations becomes a
group with respect to the composition operator. Therefore, semicontinuity can
be understood as a nondecreasing property of the transformation group at the
limit of a sequence of geometric structures. One of the strongest descriptions of
semicontinuity was obtained by Ebin for the Riemannian structures on compact
manifolds in terms of conjugations by diffeomorphisms.

Theorem 1.1 [Ebin 1970]. Let M be a C∞-smooth compact manifold and let
{gj : j = 1, 2, . . . } be a sequence of C∞-smooth Riemannian structures which
converges to a Riemannian metric g0 in the C∞ sense. Then for each sufficiently
large j , there exists a diffeomorphism φ j : M → M such that φ j ◦ Ij ◦ φ

−1
j is a

Lie subgroup of I0, where Ij and I0 represent the isometry groups for gj and g0,
respectively.

The group of holomorphic automorphisms on a complex manifold plays the role
of the group of symmetries with respect to the complex structure. By Cartan’s
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theorem (cf. [Greene et al. 2011]), the automorphism group of a bounded domain
in the complex Euclidean space turns out to be a Lie group with the compact-open
topology on the domain. Greene and Krantz proved the following theorem for the
semicontinuity property of automorphism groups of bounded strongly pseudoconvex
domains.

Theorem 1.2 [Greene and Krantz 1982]. Let � j ( j = 1, 2, . . .) and�0 be bounded
strongly pseudoconvex domains in Cn with C∞-smooth boundary. Suppose that � j

converges to �0 in the C∞ sense, that is, there exists a diffeomorphism ψj defined
on a neighborhood of �0 into Cn such that ψj (�0)=� j and ψj → Id in the C∞

sense on �0. Then for every sufficiently large j , there exists a diffeomorphism
φ j :� j →�0 such that φ j ◦Aut(� j ) ◦φ

−1
j is a Lie subgroup of Aut(�0).

Unlike the isometry group of a compact Riemannian manifold, the holomorphic
automorphism group on a bounded strongly pseudoconvex domain can be non-
compact, so the proof of Theorem 1.2 is divided into two cases: either Aut(�0) is
compact or it is not. It turns out that the latter case is relatively simple, which is
the case of deformations of the unit ball by the Wong–Rosay theorem [Rosay 1979;
Wong 1977]. The main part of the proof of Theorem 1.2 is thus devoted to the case
when Aut(�0) is compact. Greene and Krantz proved this case by constructing a
compact Riemannian manifold (M, gj ) which includes � j as a relatively compact
subset and whose isometry group contains the automorphism group of � j . Then
Ebin’s theorem yields the conclusion. The Riemannian manifold (M, gj ) is called
a metric double of � j .

The idea of this proof is applicable to more general cases. One reasonable gener-
alization is to prove the semicontinuity property for a more general class of domains.
In a recent paper [Greene et al. 2013], the authors generalized Theorem 1.2 to finitely
differentiable cases. Greene and Kim [2014] proved that a partial generalization
is also possible even for some classes of nonstrongly pseudoconvex domains. See
also [Krantz 2010] for this line of generalization.

The aim of the present paper is to obtain another generalization of Theorem 1.2.
According to Hamilton’s theorem [1977; 1979], deformations of a bounded strongly
pseudoconvex domain with C∞-smooth boundary coincide with deformations of a
complex structure on a given domain and they give rise to deformations of the CR
structure of the boundary. Fefferman’s extension theorem [1974] shows that every
holomorphic automorphism on a bounded strongly pseudoconvex domain with C∞-
smooth boundary extends to a diffeomorphism up to the boundary and hence gives
rise to a CR automorphism on the boundary. Conversely, a CR automorphism on the
boundary extends to a holomorphic automorphism on the domain by the Bochner–
Hartogs extension theorem. It is also known that the compact-open topology of
the automorphism group of the domain coincides with the C∞-topology of the



SEMICONTINUITY PROPERTY OF AUTOMORPHISM GROUPS 227

CR automorphism group of the boundary (cf. [Bell 1987]) if the holomorphic
automorphism group of the domain is compact. In this observation, it is natural
to think of the semicontinuity property for abstract strongly pseudoconvex CR
manifolds under deformations of CR structures as a generalization of Theorem 1.2.
We prove the following theorem for CR automorphism groups when the limit
structure has a compact CR automorphism group.

Theorem 1.3. Let {Jk : k = 1, 2, . . . } be a sequence of C∞-smooth strongly pseu-
doconvex CR structures on a compact differentiable manifold M of dimension 2n+1
which converges to a C∞-smooth strongly pseudoconvex CR structure J0 on M in
the C∞ sense. Suppose that the CR automorphism group AutCR(M, J0) is compact.
Then there exists N > 0 and a diffeomorphism φk : M→ M for each k > N such
that φk ◦AutCR(M, Jk) ◦φ

−1
k is a Lie subgroup of AutCR(M, J0).

According to Schoen’s theorem [1995], AutCR(M, J0) is compact if and only if
(M, J0) is not CR equivalent to the sphere S2n+1 with the standard CR structure.
One should notice that this condition is not necessary if 2n + 1 ≥ 5. Boutet de
Monvel [1975] showed that a CR structure on M which is sufficiently close to the
standard structure on S2n+1 is also embeddable in Cn+1 if 2n+1≥5, in contrast with
the 3-dimensional case (see [Burns and Epstein 1990; Lempert 1992; Nirenberg
1974; Rosay 1979]). Therefore, if AutCR(M, J0) is noncompact and 2n+ 1 ≥ 5,
then the situation is reduced to the case of deformations of the unit ball and follows
immediately from Theorem 1.2.

The rest of this paper will be devoted to proving Theorem 1.3. Since we are
thinking about abstract CR manifolds, we need to develop an intrinsic way of proving
this. Therefore, the main interest of Theorem 1.3 is not only in the generalization
but also in the intrinsic verification of the Greene–Krantz theorem. The main tool
of the proof is the solution for the CR Yamabe problem about the construction
of pseudohermitian structures with constant Webster scalar curvature, which is
intensively studied in, for instance, [Cheng et al. 2014; Gamara 2001; Gamara
and Yacoub 2001; Jerison and Lee 1987; 1989]. The subellipticity of the CR
Yamabe equation turned out quite useful in obtaining estimates of derivatives of
CR automorphisms in [Schoen 1995]. We make use of various solutions for the
CR Yamabe problem — minimal solutions, local scalar flattening solutions and the
blowing-up solutions given by the Green functions — developed in [Fischer-Colbrie
and Schoen 1980; Jerison and Lee 1987; 1989; Schoen 1995].

2. Strongly pseudoconvex CR manifolds

In this section, we summarize fundamental facts on strongly pseudoconvex CR
manifolds and pseudohermitian structures. The summation convention is always
assumed.
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CR and pseudohermitian structures. Let M be a smooth manifold of dimension
2n + 1 for some positive integer n. A CR structure on M is a smooth complex
structure J on a subbundle H of the rank 2n of the tangent bundle TM which satisfies
the integrability condition. More precisely, the restriction of J on a fiber Hp for a
point p ∈ M is an endomorphism Jp : Hp→ Hp which satisfies Jp ◦ Jp =−IdHp ,
varying smoothly as p varies, and the bundle of i-eigenspace H 1,0 of J in the
complexification C⊗ H satisfies the Frobenius integrability condition

[0(H 1,0), 0(H 1,0)] ⊂ 0(H 1,0).

The subbundle H is called the CR distribution of J. A CR automorphism on M is a
smooth diffeomorphism F from M onto itself such that F∗H 1,0

= H 1,0. We denote
by AutCR(M) the group of all CR automorphisms on M. A CR structure is said to
be strongly pseudoconvex if its CR distribution H is a contact distribution and for a
contact form θ , the Levi form Lθ defined by

Lθ (Z ,W ) := −i dθ(Z ,W )

for Z ,W ∈ H 1,0 is positive definite. It is known that the C0-topology of AutCR(M)
coincides with the C∞-topology for a compact strongly pseudoconvex CR man-
ifold M if AutCR(M) is compact with respect to the C0-topology. See [Schoen
1995] for the proof.

We call a fixed contact form for the CR distribution of a strongly pseudoconvex
CR structure a pseudohermitian structure. Let {Wα : α= 1, . . . , n} be a local frame;
that is, the Wα are sections of H 1,0 which form a pointwise basis for H1,0. We call
a collection of 1-forms {θα} the admissible coframe of {Wα} if they are sections of
(H 1,0)∗ and satisfy

θα(Wβ)= δ
α
β , θα(T )= 0,

where T is the vector field uniquely determined by

θ(T )= 1, T y dθ = 0,

which is called the characteristic vector field for θ. Let gαβ̄ = Lθ (Wα,Wβ̄). Then

dθ = 2igαβ̄ θ
α
∧ θ β̄,

where {θα} is the admissible coframe for {Wα}.

Theorem 2.1 [Webster 1978]. There exist a local 1-form ω = (ωβ
α) and local

functions Aαβ uniquely determined by

dθα = θβ∧ωβα + Aαβ̄ θ∧ θ
β̄,

dgαβ̄ = ωαβ̄ +ωβ̄α, Aαβ = Aβα.
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Here and in the sequel, we lower or raise an index by (gαβ̄) and (gαβ̄)= (gαβ̄)
−1.

A connection ∇ defined by

∇Wα = ωα
β
⊗Wβ, ∇T = 0

is called the pseudohermitian connection or the Webster connection for θ. The
functions Aαβ are called the coefficients of the torsion tensor T. Let

dωαβ −ωαγ∧ωγ β ≡ Rαβγ σ̄ θ
γ
∧ θ σ̄ mod θ, θγ∧ θσ, θ γ̄∧ θ σ̄.

We call Rαβγ σ̄ the coefficients of the Webster curvature tensor R. Contracting
indices, we obtain the coefficients Rαβ̄ of the Webster Ricci curvature Ric and the
Webster scalar curvature S:

Rαβ̄ = Rγ γαβ̄, S = Rαβ̄ gαβ̄.

The norm of the Webster curvature |R|θ is defined by

|R|2θ =
∑

α,β,γ,σ

|Rαβγ σ̄ |
2,

where the frame is chosen so that gαβ̄ = δαβ̄ . We similarly define the norm of the
torsion tensor |T |θ .

A pseudohermitian structure defines a sub-Riemannian structure. The distance
function induced by a sub-Riemannian metric is called the Carnot–Carathéodory
distance (cf. [Strichartz 1986]). We denote by Bθ (x, r) the Carnot–Carathéodory
ball with respect to the pseudohermitian structure θ of radius r > 0 centered at
x ∈ M.

The Heisenberg group Hn is a strongly pseudoconvex CR manifold Cn
×R with

the CR structure whose H 1,0 bundle is spanned by

(2-1) Zα =
∂

∂zα
+ i zᾱ

∂

∂t
, α = 1, . . . , n,

where (z, t)= (z1, . . . , zn, t) is the standard coordinate system of Cn
×R. It is well

known that Hn is CR equivalent to the sphere in Cn+1 minus a single point. If we put

(2-2) ϑ0 = dt − i zᾱ dzα+ i zα dzᾱ,

then it turns out the curvature and torsion tensors vanish identically. The converse
also follows from the solution of the Cartan equivalence problem.

Proposition 2.2. If the curvature and the torsion tensors of a pseudohermitian man-
ifold (M, θ) vanish identically, then the pseudohermitian structure of M is locally
equivalent to that of (Hn, ϑ0). If we further assume that M is simply connected and
complete in the sense that every Carnot–Carathéodory ball is relatively compact
in M, then (M, θ) is globally equivalent to (Hn, ϑ0),
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For a given pseudohermitian manifold (M, θ), we can extend the CR structure J
to a smooth section of endomorphism Ĵ on TM by putting Ĵ (T ) = 0, where T
is the characteristic vector field of θ. Let Jk , k = 1, 2, . . . , and J0 be strongly
pseudoconvex CR structures on M with CR distributions Hk and H0, respectively.
We say that Jk converges to J0 in the C l sense (l = 0, 1, 2, . . . ,∞), if there exist
pseudohermitian structures θk and θ0 for (M, Jk) and (M, J0) such that θk → θ0

and Ĵk→ Ĵ0 in the C l sense as tensors on M.

Pseudoconformal change of structures and the CR Yamabe equation. Let (M, θ)
be a (2n+1)-dimensional pseudohermitian manifold and let θ̃ = e2 f θ be a pseu-
doconformal change, where f is a smooth real-valued function. Let {θα} be an
admissible coframe for θ satisfying dθ = 2igαβ̄ θ

α
∧ θ β̄. Then it turns out

θ̃α = e f (θα + i f αθ), α = 1, . . . , n,

form an admissible coframe for θ̃ which satisfies

d θ̃ = 2igαβ̄ θ̃
α
∧ θ̃ β̄.

Let Rαβγ σ̄ and R̃αβγ σ̄ be coefficients of the Webster curvatures for θ and θ̃ evaluated
in the coframes {θα} and {θ̃α}, respectively. Then they are related as

(2-3) R̃αβγ σ̄ = e−2 f {Rαβγ σ̄ − δα
β( fγ σ̄ + fσ̄ γ )− 2gασ̄ f βγ − 2 fασ̄ δβγ

−( f βα + fαβ)gγ σ̄ − 4(δαβgγ σ̄ + gασ̄ δβγ ) f λ fλ
}
,

where fαβ̄ , fαβ and f βα are components of the second covariant derivatives of f of
the pseudohermitian manifold (M, θ) (cf. Proposition 4.14 in [Joo and Lee 2015] for
the more general case). Contracting indices, we obtain the following transformation
formula for the Webster scalar curvatures:

(2-4) S̃ = e−2 f {S+ 2(n+ 1)1θ f − 4n(n+ 1) f λ fλ
}
,

where 1θ f =−( fαα + fᾱ ᾱ). The operator 1θ is called the sublaplacian for θ.
Let u be a positive smooth function on M defined by u p−2

= e2 f , where p =
2+ 2/n. Then (2-4) changes into the following nonlinear equation for u:

(2-5) Lθu := (bn1θ + S)u = S̃ u p−1,

where bn = 2+ 2/n (see [Jerison and Lee 1987; 1989; Lee 1986]). Equation (2-5)
is called the CR Yamabe equation and the subelliptic linear operator Lθ is called the
CR Laplacian for θ. The CR Yamabe problem is to find a positive smooth function u
which makes S̃ constant.
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Let Aαβ̄ and Ãαβ̄ be the coefficients of the torsion tensors for θ and θ̃ in the
coframes {θα} and {θ̃α}, respectively. Then in turns out that

(2-6) Ãαβ̄ = e−2 f (Aαβ̄ − i f αβ̄ + 2i f α fβ̄
)
.

See [Lee 1986] for details.

Folland–Stein spaces and subelliptic estimates. Roughly speaking, a normal coor-
dinate system of a pseudohermitian manifold (M, θ) of dimension 2n+1 is a local
approximation by the standard pseudohermitian structure on the Heisenberg group
(Hn, θ0). For p ∈M, let W1, . . . ,Wn be a local frame defined on a neighborhood V
of p such that the coefficients of the Levi form for θ are given by gαβ̄ = δαβ̄ . Such
a frame is called a unitary frame. We denote by T the characteristic vector field
for θ. Let (z, t) be the standard coordinates of Hn and let |(z, t)| = (|z|4+ t2)1/4

be the Heisenberg group norm. We define Zα and θ0 on Hn as (2-1) and (2-2).

Theorem 2.3 [Folland and Stein 1974]. There is a neighborhood of the diagonal
�⊂ V × V and a C∞-smooth mapping 2 :�→Hn satisfying:

(a) We have 2(ξ, η)=−2(η, ξ)=2(η, ξ)−1. (In particular, 2(ξ, ξ)= 0.)

(b) Let 2ξ (η)=2(ξ, η). Then 2ξ is a diffeomorphism of a neighborhood �ξ of
ξ onto a neighborhood of the origin in Hn. Denote by y = (z, t) = 2(ξ, η)
the coordinates of Hn. Denote by Ok (k = 1, 2, . . . ) a C∞ function f of ξ
and y such that for each compact set K ⊂ V , there is a constant CK with
f (ξ, y)≤ CK |y|k (Heisenberg norm) for ξ ∈ K . Then we have the following
approximation formula:

(2−1
ξ )
∗θ = θ0+ O1dt +

n∑
α=1

(O2dzα + O2dzᾱ),

(2−1
ξ )
∗(θ ∧ dθn)= (1+ O1)θ0 ∧ dθn

0 ,

2ξ∗Wα = Zα + O1E(∂z)+ O2E(∂t),

2ξ∗T = ∂/∂t + O1E(∂z, ∂t),

2ξ∗1θ =1θ0 + E(∂z)+ O1E(∂t , ∂
2
z )+ O2E(∂z∂t)+ O3E(∂2

t ).

Here OkE indicates an operator involving linear combinations of the indicated
derivatives with smooth coefficients in Ok, and we have used ∂z to denote any of the
derivatives ∂/∂zα, ∂/∂zᾱ.

The smooth map2ξ is called the Folland–Stein normal coordinates centered at ξ
with respect to the frame {Wα}. (This coordinate system depends on the choice of
local unitary frame. Another construction of pseudohermitian normal coordinates
which does not depend on local frames is given in [Jerison and Lee 1989].) Here
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and in the sequel, we use the term frame constants to mean bounds on finitely many
derivatives of the coefficients in the OkE terms in Theorem 2.3.

Let V be an open neighborhood of a point p ∈ M with a fixed local unitary
frame W1, . . . ,Wn and let U be a relatively compact open neighborhood of p
in V such that �ξ in Theorem 2.3 contains U for every ξ ∈ U. Let Xα = Re Wα

and Xα+n = Im Wα for α = 1, . . . , n. For a multi-index A = (α1, . . . , αk), with
1 ≤ αj ≤ 2n, j = 1, . . . , k, we denote k by `(A) and write X A f = Xα1 · · · Xαk f
for a smooth function f on U. The S p

k (U )-norm of a smooth function f on U is

‖ f ‖S p
k (U )
= sup
`(A)≤k

‖X A f ‖L p(U ),

where ‖g‖L p(U )=
(∫

U |g|
p θ∧dθn

)1/p is the L p-norm of g on U with respect to the
volume element induced by θ. The completion of C∞0 (U ) with respect to ‖ · ‖S p

k (U )
is denoted by S p

k (U ).
Hölder type spaces suited to 1θ are defined as follows. For x, y ∈ U, let

ρ(x, y)= |2(x, y)| (Heisenberg norm). For a positive real number 0< s < 1,

0s(U )= { f ∈ C0(U ) : | f (x)− f (y)| ≤ Cρ(x, y)s for some constant C > 0}.

If s is a positive nonintegral real number such that k < s < k+ 1 for some integer
k ≥ 1, then

0s(U )= { f ∈ C0(U ) : X A f ∈ 0s−k(U ), `(A)≤ k}.

Then the 0s(U )-norm for f ∈ 0s(U ) is defined by

‖ f ‖0s(U ) = sup
x∈U
| f (x)|+ sup

{
|X A f (x)− X A f (y)|

ρ(x, y)s−k : x, y ∈U, x 6= y, `(A)≤ k
}
.

The function spaces S p
k (U ) and 0s(U ) are called the Folland–Stein spaces on U. We

denote by3s(U ) the Euclidean Hölder space when we regard U as a subset of R2n+1.

Theorem 2.4 [Folland and Stein 1974]. For each positive real number s which is
not an integer, each 1 < r <∞ and each integer k ≥ 1, there exists a constant
C > 0 such that for every f ∈ C∞0 (U ),

(a) ‖ f ‖0s(U ) ≤ C‖ f ‖Sr
k (U ), where 1/r = (k− s)/(2n+ 2),

(b) ‖ f ‖3s/2(U ) ≤ C‖ f ‖0s(U ),

(c) ‖ f ‖Sr
2(U ) ≤ C(‖1θ f ‖Lr (U )+‖ f ‖Lr (U )),

(d) ‖ f ‖0s+2(U ) ≤ C(‖1θ f ‖0s(U )+‖ f ‖0s(U )).

Moreover the constant C depends only on frame constants.

One should notice that the constants C in the theorem above depend on frame
constants rather than the pseudohermitian structure itself. Therefore, if U is a small
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neighborhood (J0, θ0) in the C∞-topology, then we can choose constants C in
Theorem 2.4 which are independent of the choice of (J, θ) ∈ U.

If M is compact, we can choose a finite open covering U1, . . . ,Um , each of
which is contained in a normal coordinate. Let φ1, . . . , φm be a partition of unity
subordinate to this covering. Then the spaces of S p

k (M) and 0s(M) are defined as
spaces of a function u such that φ j u ∈ S p

k (Uj ) or φ j u ∈ 0s(Uj ), respectively, for
every j = 1, . . . ,m.

3. Proof of Theorem 1.3

The proof of Theorem 1.3 is based on the following fundamental fact about the
semicontinuity property of compact group actions proved by Ebin [1970] for
Theorem 1.1. We denote by Diff(M) the group of C∞-smooth diffeomorphisms.
Recall that the C∞-topology on Diff(M) is metrizable. We denote a metric inducing
the C∞-topology by d.

Theorem 3.1 ([Ebin 1970]; cf. [Greene et al. 2011; 2013; Grove and Karcher 1973;
Kim 1987]). Let M be a compact C∞-smooth manifold and let Gk (k = 1, 2, . . . )
and G0 be compact subgroups of Diff(M). Suppose G j → G0 in the C∞-topology
as j→∞; that is, for every ε > 0, there exists an integer N such that d( f,G0) :=

infg∈G0 d( f, g) < ε for every f ∈ G j , whenever j > N. Then G j is isomorphic to a
subgroup of G0 for every sufficiently large j . Moreover, the isomorphism can be
obtained by the conjugation by a diffeomorphism φ j of M which converges to the
identity map in the C∞ sense.

Therefore, it suffices to prove the following proposition for the conclusion of
Theorem 1.3.

Proposition 3.2. Let {Jk : k = 1, 2, . . . } be a sequence of strongly pseudoconvex
CR structures on a compact manifold M which tends to a strongly pseudoconvex
CR structure J0 as in Theorem 1.3. Suppose that AutCR(M, J0) is compact. Then
AutCR(M, Jk) is also compact for every sufficiently large k. Furthermore, every
sequence {Fk ∈ AutCR(M, Jk) : k = 1, 2, . . . } admits a subsequence converging to
an element F ∈ AutCR(M, J0) in the C∞ sense.

We will make use of the solutions of the CR Yamabe problem for the proof
of Proposition 3.2. According to the variational approach introduced by Jerison
and Lee [1987; 1989], it is very natural to consider the sign of the CR Yamabe
invariant defined as follows: Let (M, θ) be a compact pseudohermitian manifold.
For a C∞-smooth real-valued function u, let

A(θ; u) :=
∫

M
u Lθu θ ∧ dθn

=

∫
M
(bn|du|2θ + R u2) θ ∧ dθn
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and

B(θ; u) :=
∫

M
|u|p θ ∧ dθn.

Then the CR Yamabe invariant Y (M) is defined by

Y (M) := inf{A(θ; u) : u ∈ C∞(M), B(θ; u)= 1}.

It is well known that Y (M) does not depend on the choice of contact form θ. Let Jk

be a sequence of strongly pseudoconvex CR structures on M tending to a strongly
pseudoconvex CR structure J0 as k→∞. We denote by Yk the CR Yamabe invariant
of (M, Jk). For the proof, we may assume either that Yk ≤ 0 for every k or that
Yk > 0 for every k.

Case Yk ≤ 0. In this case, we use the minimal solution of the Yamabe problem.

Theorem 3.3 [Jerison and Lee 1987]. Let M be a compact strongly pseudoconvex
CR manifold of dimension 2n+ 1.

(i) Y (S2n+1) > 0, where Y (S2n+1) is the CR Yamabe invariant for the sphere
S2n+1 with the standard structure.

(ii) Y (M)≤ Y (S2n+1).

(iii) If Y (M) < Y (S2n+1), then there exists a positive C∞-smooth function u which
satisfies B(θ; u)= 1 and A(θ; u)= Y (M) for a given pseudohermitian struc-
ture θ. This function u satisfies

Lθu = Y (M)u p−1.

That is, the pseudohermitian structure θ̃ =u p−2θ has a constant Webster scalar
curvature R̃ = Y (M).

It is known from [Jerison and Lee 1989] that Y (M) < Y (S2n+1) if M is not
locally spherical and 2n+ 1≥ 5. The cases that 2n+ 1= 3 or that M is spherical
are dealt with in [Gamara 2001; Gamara and Yacoub 2001].

Proposition 3.4 [Jerison and Lee 1987, Theorem 7.1]. If Y (M)≤ 0, then a pseudo-
hermitian structure with constant Webster scalar curvature is unique up to constant
multiples. As a consequence, there is a unique pseudohermitian structure with
constant Webster scalar curvature under the unit volume condition, if Y (M)≤ 0.

Proposition 3.5 [Jerison and Lee 1987, Theorem 5.15]. Let M be a compact
strongly pseudoconvex CR manifold of dimension 2n + 1 and let θ be a pseu-
dohermitian structure. Suppose that f, g ∈ C∞(M), u ≥ 0, u ∈ Lr for some
r > p = 2+ 2/n and

1θu+ gu = f uq−1
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in the distribution sense for some 2≤ q ≤ p. Then u ∈C∞(M), u> 0. Furthermore,
‖u‖Ck depends only on ‖u‖Lr , ‖ f ‖Ck , ‖g‖Ck and frame constants, but not on q.

Indeed, a local version of the above lemma is stated in [Jerison and Lee 1987].
But it is obvious it holds globally by taking a partition of unity subordinate to a
chart of normal coordinates.

Proposition 3.6 [Jerison and Lee 1987, Proposition 5.5, case k = 1, r = 2 and
s = p]. For a compact pseudohermitian manifold (M, θ) of dimension 2n+1, there
exists a constant C > 0 such that∫

M
|v|p θ ∧ dθn

≤ C
∫

M
(|dv|2θ + |v|

2) θ ∧ dθn

for every C∞-smooth function v on M.

Since we are considering CR structures converging to the target structure J0,
we can choose also a sequence {θk} of contact forms which tends to a target
pseudohermitian structure θ0 in the C∞ sense. Without loss of generality, we
always assume that

∫
M θk∧ dθn

k = 1 for every k.

Lemma 3.7. Suppose that Yk ≤ 0 for every k. Let uk > 0 be the (unique) solution
as in Theorem 3.3(iii) with respect to (Jk, θk). Then for each nonnegative integer l,
there exists a constant C such that ‖uk‖C l ≤ C for every k.

Proof. Since uk satisfies

(3-1) bn1θk uk + Rkuk = Yku p−1
k ,

where Rk is the Webster scalar curvature for θk , we have∫
M

1
2(p− 1)bnu p−2

k |duk |θk θk∧ dθn
k ≤

∫
M
|Rku p

k | θk∧ dθn
k

by integrating after multiplying by u p−1
k on both sides of (3-1), since Yk ≤ 0.

Therefore, the function wk := u p/2
k satisfies∫

M
|dwk |

2
θk
θk∧ dθn

k ≤ C
∫

M
w2

k θk∧ dθn
k = C

∫
M

u p
k θk∧ dθn

k = C,

since Rk is bounded uniformly for k. Moreover since (Jk, θk)→ (J0, θ0) in the C∞

sense, Proposition 3.6 implies that there exists a constant C > 0 independent of k
such that ∫

M
w

p
k θk∧ dθn

k ≤ C
∫

M
(|dwk |

2
θk
+w2

k ) θk∧ dθn
k ,

which is uniformly bounded for every k. This implies that ‖uk‖Lr is uniformly
bounded as (Jk, θk)→ (J0, θ0), where r = 1

2 p2 > p. Then the conclusion follows
from Proposition 3.5, since frame constants for (Jk, θk) are also uniformly bounded
as (Jk, θk)→ (J0, θ0) in the C∞ sense. �
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If Yk ≤ 0 for every k ≥ 1, then by taking a subsequence, we may assume the
sequence {uk} of solutions of the Yamabe problem with respect to (Jk, θk) converges
to u0, the solution of the Yamabe problem with respect to (J0, θ0) in the C∞ sense
by Lemma 3.7. Replacing θk by u p−2

k θk , then we may assume the Webster scalar cur-
vature of θk is a nonpositive constant for every k. In this case, it is known that the CR
automorphism group of (M, Jk) coincides with the pseudohermitian automorphism
group for (M, Jk, θk). Let gk be the Riemannian metric on M defined by

gk = θk ⊗ θk + dθk( · , Jk · )

for each k. Then we see that gk → g0 = θ0⊗ θ0+ dθ0( · , J0 · ) in the C∞ sense,
and the CR automorphism groups AutCR(M, Jk) and AutCR(M, J0) are subgroups
of the isometry groups of gk and g0, respectively. Then the conclusion follows from
the proof of Theorem 1.1.

Case Yk >0. We will show that if a sequence {Fk ∈AutCR(M, Jk)} is divergent, then
it generates a single “bubble” which is CR equivalent to (M, J0). This case should
be excluded by proving the CR structure of the bubble is the same as that of the
standard sphere, which contradicts the hypothesis that AutCR(M, J0) is compact. An
essential ingredient for analyzing the bubbling phenomenon is the reparametrization
of the pseudohermitian structure by the Green function of the CR Laplacian. The
existence of the Green function is guaranteed by the hypothesis Yk > 0 (see, for
instance, [Cheng et al. 2014; Gamara 2001]). We discuss the bubbling after the
following fundamental lemma on the convergence of CR automorphisms.

Lemma 3.8. Suppose for a sequence {Fk ∈AutCR(M, Jk)}, Fk→ F and F−1
k →G

in the C0 sense for some continuous mappings F and G. Then F ∈ AutCR(M, J0),
G = F−1 and Fk→ F in the C∞ sense.

Proof. This lemma is a sequential version of Proposition 1.1′ in [Schoen 1995]. Let
θk and θ0 be pseudohermitian structures for Jk and J0, respectively, and suppose
θk→ θ0 in the C∞ sense. For a given point p ∈ M, let qk = Fk(p) and q = F(p).
Let q ∈ Ũ b Ṽ b W̃ be relatively compact neighborhoods of q . Since qk→ q , we
can assume that qk ∈ Ũ for every k. The fact that Yk > 0 implies that the principal
eigenvalue of Lθk on M , and hence the Dirichlet principal eigenvalue of Lθk on W̃ ,
is also positive for every k. Then by the local scalar flattening argument of Fischer-
Colbrie and Schoen [1980; 1995], we have a positive C∞-smooth function uk on
W̃ such that Lθk uk = 0 on W̃ for every k. Multiplying by a positive constant, we
may assume that uk(q)= 1 for every k. Then the subelliptic theory in Theorem 2.3
for the sublaplacian and the Harnack principle (cf. Proposition 5.12 in [Jerison
and Lee 1987]) imply that {uk} has a convergent subsequence which tends to a
positive function u0 on the closure of Ṽ in the C∞ sense. We denote the convergent
subsequence by {uk} again. Then θ̃k = u p−2

k θk and θ̃0 = u p−2
0 θ0 have the trivial
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Webster scalar curvatures on Ṽ. From the equicontinuity of the sequence {Fk}, we
can choose a neighborhood W of p such that Fk(W ) ∈ Ũ for every k. Let vk be a
positive smooth function on V defined by F∗k θ̃k=v

p−2
k θk . Then for every k, we have

(3-2) Lθkvk = 0 on W.

We denote by Volθ̃k
(Ũ ) the volume of Ũ with respect to the volume form θ̃k∧ d θ̃n

k .
Since θ̃k converges to θ̃0 in the C∞ sense in Ṽ, there exists a uniform bound C of
Volθ̃k

(Ũ ). Therefore, it turns out that∫
W
v

p
k θk∧ dθn

k =

∫
W

F∗k (θ̃k∧ d θ̃k)= Volθ̃k
(Fk(W ))≤ Volθ̃k

(Ũ )≤ C

for every k. Fix a neighborhood V b W of p. Then the subelliptic mean-value
inequality for (3-2) implies that there exists a constant C such that vk(x)≤ C for
every x ∈ V. We can also choose this C independently on k by the convergence
of structures. Then for a given neighborhood U b V of p and for each positive
integer l, there exists a constant Cl which is independent of k such that

‖vk‖C l (U ) ≤ Cl

for every k, by Theorem 2.3. Since each Fk is pseudoconformal, the C l-norm of
Fk on U is completely determined by that of vk and is uniformly bounded on U.
This yields that every subsequence of {Fk} contains a subsequence converging in
the C l sense, for every positive integer l. Since Fk converges to F in the C0 sense
on M and since M is compact, we conclude that Fk converges to F in the C∞

sense. By the same reasoning, F−1
k → G in the C∞ sense. It follows immediately

that F ∈ AutCR(M, J0) and G = F−1. �

For a CR diffeomorphism F : (M, θ)→ (M̃, θ̃ ) between two pseudohermitian
manifolds, we denote by |F ′|θ,θ̃ the pseudoconformal factor of F, that is, F∗θ̃ =
|F ′|θ,θ̃ θ. We abbreviate it to |F ′|θ in case (M, θ)= (M̃, θ̃ ).

Lemma 3.9. Let (M, θ) and (M̃, θ̃ ) be pseudohermitian manifolds of the same
dimension. Let K be a relatively compact subset of M and suppose that the Webster
scalar curvature for θ̃ vanishes on M̃. Then there exist constants r0 > 0 and C > 0
such that for every CR diffeomorphism F on a Carnot–Carathéodory ball Bθ (x, r)
into M,

Bθ̃ (F(x),C−1λr)⊂ F(Bθ (x, r))⊂ Bθ̃ (F(x),Cλr)

whenever x ∈ K and r ≤ 1
2r0, where λ= |F ′|θ,θ̃ (x). The constant C depends only

on r0, K and uniform bounds of finite-order derivatives of the CR and pseudohermi-
tian structures of (M, θ).

This lemma is a restatement of Proposition 2.1′(i) in [Schoen 1995], which is a
consequence of the subelliptic Harnack principle.
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To prove Proposition 3.2, assume the contrary. Then there exists a sequence
{Fk ∈ AutCR(M, Jk)} such that supx∈M |F

′

k |θk (x) → ∞ as k → ∞, thanks to
Lemma 3.8. Let xk ∈ M be a point of M with |F ′k |θk (xk) = supx∈M |F

′

k |θk (x).
Extracting a subsequence, we assume that xk → x0 ∈ M and Fk(xk) → z0 as
k → ∞. Choose r > 0 small enough that the Carnot–Carathéodory balls sat-
isfy Bθk (xk, r) b Bθk (xk, 2r) b U for each k, where U is a relatively compact
neighborhood of x0 in M, and 2r < r0 for r0 given in Lemma 3.9.

Lemma 3.10. There exists a subsequence {Fk j : j = 1, 2, . . . } of {Fk : k= 1, 2, . . . }
which admits a point y0 ∈ M such that for every compact subset K in M \ {y0},
there exists N > 0 such that K ⊂ Fk j (Bθk j

(xk j , 2r)) if k j > N. Moreover, for the
subsequence, one can choose the point y0 independently of r > 0 as r→ 0.

Proof. Suppose for every r > 0, there exists no sequence {yk ∈M \Fk(Bθk (xk, 2r))}
such that d(yk, Fk(xk)) > ε for any given ε > 0, where d is the sub-Riemannian dis-
tance induced from θ0. Then it turns out every sequence {yk ∈ M \ Fk(Bθk (xk, 2r))}
converges to z0. In this case, we just need to put y0 = z0.

Now suppose for some r > 0, there exists a sequence {yk ∈ M \ Fk(Bθk (xk, 2r))}
such that d(yk, Fk(xk)) > ε for infinitely many k for some ε > 0. Extracting
a subsequence, we may assume that yk → y0 ∈ M and d(yk, Fk(xk)) > ε for
every k so that the sequence {Fk(xk)} is relatively compact in M \ {y0}. Let Gk

be the Green function for Lθk with pole at yk . We normalize Gk by the condition
minM\{yk} Gk = 1. Since each Gk > 0 and Lθk Gk = 0 on M \ {yk}, we may assume
{Gk : k = 1, 2, . . . } converges to a positive function G0 on M \ {y0} in the local
C∞ sense, by extracting a subsequence if necessary. Let θ̃k = G p−2

k θk . Then θ̃k is
a pseudohermitian structure on M \ {yk} which is Webster scalar flat. Therefore, if
we denote λk = |F ′k |θk ,θ̃k

(xk), then Lemma 3.9 implies that there exists a constant C
independent of k such that

Bθ̃k
(Fk(xk),C−1λkr)⊂ Fk(Bθk (xk, r))⊂ Bθ̃k

(Fk(xk),Cλkr).

Since Gk ≥ 1 and |F ′k |θk (xk)→∞, λk also tends to infinity as k→∞. Therefore,
a relatively compact subset K in M \ {y0} should be included in Fk(Bθk (xk, r)) for
every sufficiently large k, since Fk(xk) lies on a fixed relatively compact subset of
M \ {y0} and θ̃k→ θ̃0 = G p−2

0 θ0 in the local C∞-smooth sense on M \ {y0}. Note
that the choice of the sequence {yk} and y0 still works for every r ′ ≤ r . This yields
the independence of y0 on r as r→ 0. �

As a consequence of Lemma 3.10, it turns out that M \ {y0} is simply connected
and complete with respect to the sub-Riemannian distance induced by θ̃0. In fact,
any loop in M\{y0} is contained in Fk(Bθk (xk, 2r)) for some large k by Lemma 3.10.
Since Bθk (xk, 2r) is simply connected if r > 0 is small enough and since Fk is a
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diffeomorphism, Fk(Bθk (xk, 2r)) is simply connected as well. Therefore, the given
loop should be contractible. This shows that M \ {y0} is simply connected.

Extracting a subsequence, we assume that Lemma 3.10 holds for the entire
sequence {Fk}. Choose yk ∈ M \ Fk(Bθk (xk, 2r)) which tends to y0. Let vk and fk

be real-valued functions on Bθk (xk, 2r) defined by

v
p−2
k = |F ′k |θk ,θ̃k

= e2 fk,

where Gk is the normalized Green function for Lθk with pole at yk which converges
to a positive function G0 in the local C∞-smooth sense on M \ {y0} as k→∞, and
θ̃k = G p−2

k θk . Since Lθkvk = 0, we see that there exists a constant C independent
of k such that |F ′k |θk ,θ̃k

≥ Cλk on Bθk (xk, r) by the Harnack principle, where λk =

|F ′k |θk ,θ̃k
(xk). Let {Zk ∈ 0(H

1,0
k )} be a sequence of vector fields on U which tends

to Z0 ∈ 0(H
1,0
0 ) as k→∞, where H 1,0

k represents the (1, 0)-bundle with respect
to Jk . Since fk = (1/n) log vk , we have

Zk fk =
Zkvk

nvk

for every k. Since Lθkvk = 0 on Bθk (xk, 2r), the subelliptic estimates in Theorem 2.4
imply that Zk fk is uniformly bounded on Bθk (xk, r) for every k. So is Z k fk , and if
Wk is another sequence of vector fields, then Zk Wk fk and Zk Wk fk are all uniformly
bounded on Bθk (xk, r) as k→∞. Therefore, if we denote by Rk and R̃k the Webster
curvature tensors for θk and θ̃k , respectively, then (2-3) implies that

|R̃k |
2
θ̃k
(Fk(x))≤ Cλ−2

k

{
|Rk |

2
θk
(x)+ Ak |Rk |θk (x)+ Bk

}
for every x ∈ Bθk (xk, r), where Ak and Bk are some functions of the first and second
covariant derivatives of fk with respect to the pseudohermitian structure θk which
are uniformly bounded on Bθk (xk, r) as k →∞. Since λk →∞ and |Rk |θk is
uniformly bounded on Bθk (xk, r) for every k, it turns out that |R̃k |θ̃k

→ 0 uniformly
on every compact subset of M \ {y0} by Lemma 3.10. Therefore, we see that the
pseudohermitian manifold (M \ {y0}, θ̃0) has trivial Webster curvature. A similar
argument using (2-6) implies that the torsion tensor of θ̃0 is also trivial. Therefore,
we can conclude that (M \ {y0}, θ̃0) is equivalent to the standard pseudohermitian
structure of the Heisenberg group and therefore, (M, J0) is CR equivalent to the
sphere by the removable singularity theorem. This contradicts the hypothesis that
AutCR(M, J0) is compact and hence yields the conclusion of Proposition 3.2.
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GRADIENT ESTIMATES
FOR A NONLINEAR LICHNEROWICZ EQUATION

UNDER GENERAL GEOMETRIC FLOW
ON COMPLETE NONCOMPACT MANIFOLDS

LIANG ZHAO AND SHOUWEN FANG

We study gradient estimates for positive solutions to the nonlinear parabolic
equation

@u

@t
D�u C cu�˛

under general geometric flow on complete noncompact manifolds, where
˛; c are two real constants and ˛ > 0. As an application, we give the corre-
sponding Harnack inequality.

1. Introduction

Recently, there has been active interest in the study of gradient estimates for partial
differential equations on noncompact manifolds. Wu [2010] gave a local Li–Yau
type gradient estimate for positive solutions to a general nonlinear parabolic equation

ut D�u�r'ru� au log u� qu

in M � Œ0; � �, where a 2 R, ' is a C 2-smooth function and q D q.x; t/ is a
function, which generalizes many previous well-known gradient estimates. Zhu
[2011] investigated the fast diffusion equation

(1-1) ut D�u˛ .0< ˛ < 1/:

Theorem 1.1 [Zhu 2011]. Let M be a Riemannian manifold of dimension n � 2

with Ric M � �k for some k � 0. Suppose that v D �.˛=.˛ � 1//u˛�1 is any
positive solution to (1-1) in QR;T � B.x0;R/ � Œt0 � T; t0� � M � .�1;1/.
Suppose also that v� zM in QR;T . Then there exists a constant C DC.˛;M / such
that

jrvj

v1=2
� C zM 1=2

�
1

R
C

1
p

T
C
p

k

�
in QR

2
;T

2
.
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Later, Huang and Li [2014] studied the generalized equation

ut D�f u˛ .˛ > 0/

on Riemannian manifolds and got some interesting gradient estimates, where f is
a smooth function and �f is defined by

�f D��rf � r:

For the elliptic case, Zhang and Ma [2011] considered the equation

(1-2) �f uC cu�˛ D 0 .˛ > 0/

on complete noncompact manifolds when the constant N is finite and the N-
Bakry–Émery Ricci tensor is bounded from below, obtaining the following gradient
estimate.

Theorem 1.2 [Zhang and Ma 2011]. Suppose .M;g/ is a complete noncompact
n-dimensional Riemannian manifold with N-Bakry–Émery Ricci tensor bounded
from below by the constant �K DW �K.2R/, where R> 0 and K.2R/ > 0 in the
metric ball B2R.p/ around p 2M. Let u be a positive solution of (1-2). Then

(1) if c > 0, we have

jruj2

u2
C cu�.˛C1/

�
.N C n/.N C nC 2/c2

1

R2
C
.N C n/

�
.N C n� 1/c1C c2

�
R2

C
.N C n/

p
.N C n/Kc1

R
C 2.N C n/K;

(2) if c < 0, we have

jruj2

u2
Ccu�.˛C1/

�
�
AC
p

A
�
jcj
�

inf
Bp.2R/

u
��˛�1

C
.N C n/

�
.N C n� 1/c1C c2

�
R2

C
.N C n/c2

1

R2

�
nCN C 2C

nCN

2
p

A

�

C
.N C n/

p
.N C n/Kc1

R
C

�
2C

1
p

A

�
.nCN /K;

where AD .N C n/.˛C 1/.˛C 2/ and c1; c2 are absolute positive constants.

For interesting gradient estimates on manifolds with fixed metric, see [Chen and
Chen 2009; 2010; Li 2005; Ma 2006; 2010; Zhao 2013; 2014].

However, in the above works, the authors considered gradient estimates for
positive solutions to nonlinear equations on complete noncompact manifolds with
fixed metric, so it is natural to ask how gradient estimates vary if the metric on
a manifold evolves with time. In Perelman’s breakthrough work [2002] on the
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Poincaré conjecture, the author showed the gradient estimate for the fundamental
solution of the conjugate heat equation

�u�RuC @tuD 0

under Ricci flow on a closed Riemannian manifold M, where R is the scalar
curvature. Since then, a large amount work has been done to study gradient
estimates along geometric flow for the solution of the nonlinear equation. Kuang
and Zhang [2008] established the corresponding pointwise gradient estimate. For
the heat equation under Ricci flow, Liu [2009] got first-order gradient estimates for
its positive solutions and derived Harnack inequalities and second-order gradient
estimates. Later, Sun [2011] extended it to general geometric flow.

Since gradient estimates often lead to Liouville type theorems and Harnack
inequalities, which played an important role in the proof of the Poincaré conjecture,
for nonlinear heat equations on manifolds, to get good control of suitable Harnack
quantities (depending on nonlinear terms), one may need the key lower bound
assumption about Ricci curvature. The results of Theorem 1.2 are about gradient
estimates for the elliptic equation (1-2). In this paper, we will extend these results
to the parabolic variant of the problem. Thus, we consider the equation

(1-3)
@u

@t
D�uC cu�˛

on complete noncompact manifolds M with evolving metric, where ˛; c are two
real constants and ˛ > 0. The motivation for this paper is that (1-3) can be viewed as
a simple parabolic Lichnerowicz equation. It is well known that the Lichnerowicz
equation arises from the Hamiltonian constraint equation for the Einstein-scalar
field. Since (1-3) contains a negative power nonlinearity, it is interesting to discuss
gradient estimates for it.

We state our main results about (1-3) as follows.

Theorem 1.3. Let .M;g.t// be a smooth one-parameter family of complete Rie-
mannian manifolds evolving by

(1-4)
@

@t
g D 2h

for t in some time interval Œ0;T �. Let M be complete under the initial metric g.0/.
Given x0 2M and R> 0, let u be a positive solution to the nonlinear equation

@u

@t
D�uC cu�˛

in the cube Q2R;T WD f.x; t/ j d.x;x0; t/ � 2R; 0 � t � T g. Suppose that there
exist constants K1;K2;K3;K4 � 0 such that

Ric� �K1g; �K2g � h�K3g; jrhj �K4
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on Q2R;T . Then for .x; t/ 2QR;T and positive constants c1; c2,

(1) if c<0 and for a positive constant zM , u�.˛C1/� zM for all .x; t/2M�Œ0;T �,
we have

ˇ
jruj2

u2
C cu�.˛C1/

�
ut

u
�H1CH2C

n

ˇ

1

t
;

where

H1D
n

ˇ

�
.n�1/

�
1C
p

K1R
�
c2

1
Cc2C2c2

1

R2
C
p

c3K2�c.˛C1/ zMC
nc2

1

2ˇ.1�ˇ/R2

�
;

H2D

�
n2

4ˇ2.1�ˇ/2

�
2ˇK1C2.1�ˇ/K3�c.ˇC˛/.˛C1/ zMC 3

2
K4

�2
C

n2

ˇ

�
.K2CK3/

2
C

3
2
K4

��1
2

;

(2) if c > 0, we have

ˇ
jruj2

u2
C cu�.˛C1/

�
ut

u
� zH1C

zH2C
n

ˇ

1

t
;

where

zH1 D
n

ˇ

�
.n�1/

�
1C
p

K1R
�
c2

1
Cc2C2c2

1

R2
C
p

c3K2C
nc2

2ˇ.1�ˇ/R2

�
;

zH2 D

�
n2

4ˇ2.1�ˇ/2

�
2ˇK1C2.1�ˇ/K3C

3
2
K4

�2
C

n2

ˇ

�
.K2CK3/

2
C

3
2
K4

��1
2

:

Here 0< ˇ < 1, c1, c2, c3 are positive constants.

Remark. In fact, our result is the parabolic version of Theorem 1.2 under the
evolving metric.

Letting R ! 1, we can get the following global gradient estimate for the
nonlinear parabolic equation (1-3).

Corollary 1.4. Let .M;g.0// be a complete noncompact Riemannian manifold
without boundary, and suppose g.t/ evolves by (1-4) for t 2 Œ0;T � and satisfies

Ric� �K1g; �K2g � h�K3g; jrhj �K4:

If u is a positive solution to (1-3), then for .x; t/ 2M � Œ0;T �,

(1) if c < 0 and u�.˛C1/ � zM for all .x; t/ 2M � Œ0;T �, we have

ˇ
jruj2

u2
C cu�.˛C1/

�
ut

u
�H1CH2C

n

ˇ

1

t
;

where
H1 D

p
c3K2�

n

ˇ
c.˛C 1/ zM;
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(2) if c > 0, we have

ˇ
jruj2

u2
C cu�.˛C1/

�
ut

u
� yH1C

zH2C
n

ˇ

1

t
;

where yH1 D
p

c3K2 and H2; zH2 are the same as in Theorem 1.3.

As an application, we get the following Harnack inequality.

Theorem 1.5. Let .M;g.0// be a complete noncompact Riemannian manifold
without boundary, and suppose g.t/ evolves by (1-4) for t 2 Œ0;T � and satisfies

Ric� �K1g; �K2g � h�K3g; jrhj �K4:

Let u be a positive solution to (1-3) with u�.˛C1/ � zM for all .x; t/ 2M � .0;T �.
Then for any points .x1; t1/ and .x2; t2/ on M � .0;T � with 0 < t1 < t2, we have
the following Harnack inequality:

(1) if c < 0, we have

u.x1; t1/� u.x2; t2/

�
t2

t1

�n=ˇ

e'.x1;x2;t1;t2/C.H1CH2/.t2�t1/;

(2) if c > 0, we have

u.x1; t1/� u.x2; t2/

�
t2

t1

�n=ˇ

e'.x1;x2;t1;t2/C.c zMC yH1C zH2/.t2�t1/;

where '.x1;x2; t1; t2/ D inf

R t2

t1

1
4ˇ
j P
 j2 dt and 
 is any spacetime path joining

.x1; t2/ and .x2; t2/.

2. Proof of Theorem 1.3

Let u be a positive solution to (1-3). Set w D log u; then w satisfies

(2-1) wt D�wCjrwj
2
C ce�w.˛C1/:

Lemma 2.1 [Sun 2011]. Suppose the metric evolves by (1-4). Then, for any smooth
function w, we have

@

@t
jrwj2 D�2h.rw;rw/C 2rwrwt

and
@

@t
�w D�

@

@t
w� 2hr2w� 2rw

�
div h� 1

2
r.trg h/

�
;

where div h is the divergence of h.
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Lemma 2.2. Assume .M;g.t// satisfies the hypotheses of Theorem 1.3. We have�
��

@

@t

�
F � �2rwrFCt

�
ˇ

n

�
jrwj2Cc.˛C1/e�w.˛C1/

�wt

�2
C
�
.ˇC˛/c.˛C1/e�w.˛C1/

C2.ˇ�1/K3�2ˇK1�
3
2
K4

�
jrwj2

�n
�

1

ˇ
.K2CK3/

2
C

3
2
K4

��
Cc.˛C1/e�w.˛C1/F�

F

t
;

where F D t
�
ˇjrwj2C ce�w.˛C1/�wt

�
and 0< ˇ < 1.

Proof. Define F D t
�
ˇjrwj2 C ce�w.˛C1/ �wt

�
: It is well known that for the

Ricci tensor, we have the Bochner formula:

�jrwj2 � 2jr2wj2C 2rwr.�w/� 2K1jrwj
2:

Noting that

�wt D .�w/tC2hr2wC2rw
�
div h�1

2
r.trg h/

�
D�.jrwj2/tCc.˛C1/e�w.˛C1/wtCwt tC2hr2wC2rw

�
divh�1

2
r.trg h/

�
D 2h.rw;rw/�2rwrwtCc.˛C1/e�w.˛C1/wt

Cwt tC2hr2wC2rw
�
div h�1

2
r.trg h/

�
;

�wD�jrwj2�ce�w.˛C1/
Cwt D

�
1�

1

ˇ

�
.�ce�w.˛C1/

Cwt /�
F

ˇt
;

we have

�F D t
�
ˇ�jrwj2C c�e�w.˛C1/

��wt

�
D t.ˇ�jrwj2/C tc

�
.˛C1/2e�w.˛C1/

jrwj2� .˛C1/e�w.˛C1/�w
�
� t�wt

� t

�
2ˇjr2wj2C 2ˇrwr.�w/� 2K1ˇjrwj

2
C c.˛C 1/2e�w.˛C1/

jrwj2

� c.˛C 1/e�w.˛C1/
��

1�
1

ˇ

�
.�ce�w.˛C1/

Cwt /�
F

ˇt

�
C .jrwj2/t

�c.˛C 1/e�w.˛C1/wt �wt t � 2hr2w� 2rw
�
div h� 1

2
r.trg h/

��
D t

�
2ˇjr2wj2�

2

t
rwrF C 2ˇrwrwt � 2h.rw;rw/

C
�
.2ˇC˛� 1/c.˛C 1/e�w.˛C1/

� 2K1ˇ
�
jrwj2

C c2.˛C1/
ˇ�1

ˇ
e�2w.˛C1/

C c
�

1

ˇ
� 2

�
.˛C1/e�w.˛C1/wt �wt t

� 2hr2w� 2rw
�
div h� 1

2
r.trg h/

�
C c.˛C 1/e�w.˛C1/ F

ˇt

�
;
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and by Lemma 2.1, we get

Ft D
�
ˇjrwj2C ce�w.˛C1/

�wt

�
C t
�
ˇ.jrwj2/t � c.˛C 1/e�w.˛C1/wt �wt t

�
D

F

t
C t
�
2ˇrwrwt � 2ˇh.rw;rw/� c.˛C 1/e�w.˛C1/wt �wt t

�
:

Therefore, it follows that�
��

@

@t

�
F

��2rwrFC t

�
2ˇjr2wj2C

�
.2ˇC˛�1/c.˛C1/e�w.˛C1/

�
jrwj2

Cc2.˛C1/
ˇ�1

ˇ
e�2w.˛C1/

�
ˇ�1

ˇ
c.˛C1/e�w.˛C1/wt

�2hr2wC2.ˇ�1/K3jrwj
2

�2K1ˇjrwj
2
�2rw

�
div h� 1

2
r.trg h/

��
Cc.˛C1/e�w.˛C1/F

ˇ
�

F

t

D�2rwrFC t

�
2ˇjr2wj2

C
�
.ˇ�1/c.˛C1/e�w.˛C1/

��
jrwj2C

ce�w.˛C1/

ˇ
�

1

ˇ
wt

�
C.ˇC˛/c.˛C1/e�w.˛C1/

jrwj2C2.ˇ�1/K3jrwj
2

�2K1ˇjrwj
2
�2hr2w�2rw

�
div h� 1

2
r.trg h/

��
Cc.˛C1/e�w.˛C1/F

ˇ
�

F

t

D�2rwrFC t

�
2ˇjr2wj2C.ˇC˛/c.˛C1/e�w.˛C1/

jrwj2

C.ˇ�1/c.˛C1/e�w.˛C1/ F

ˇt
C2.ˇ�1/K3jrwj

2

�2K1ˇjrwj
2
�2hr2w�2rw

�
div h� 1

2
r.trg h/

��
Cc.˛C1/e�w.˛C1/F

ˇ
�

F

t

D�2rwrFC t

�
2ˇjr2wj2C.ˇC˛/c.˛C1/e�w.˛C1/

jrwj2

C2.ˇ�1/K3jrwj
2
�2K1ˇjrwj

2

�2hr2w�2rw
�
div h� 1

2
r.trg h/

��
Cc.˛C1/e�w.˛C1/F �

F

t
:
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By our assumption, we have

�.K2CK3/g � h� .K2CK3/g;

which implies that

jhj2 � .K2CK3/
2
jgj2 D n.K2CK3/

2:

Applying those bounds and Young’s inequality yields

jhr2wj �
ˇ

2
jr

2wj2C
1

2ˇ
jhj2 �

ˇ

2
jr

2wj2C
n

2ˇ
.K2CK3/

2:

On the other hand,

jdiv h� 1
2
r.trg h/j D jgij

rihjl �
1
2
gij
rlhij j �

3
2
jgjjrhj � 3

2

p
nK4:

Finally, with the help of the inequality

jr
2wj2 �

1

n
.trr2w/2 D

1

n
.�w/2 D

1

n

�
jrwj2C c.˛C 1/e�w.˛C1/

�wt

�2
;

we get�
��

@

@t

�
F

��2rwrFCt

�
ˇ

n
j�wj2C.ˇC˛/c.˛C1/e�w.˛C1/

jrwj2C2.ˇ�1/K3jrwj
2

� 2K1ˇjrwj
2
�

n

ˇ
.K2CK3/

2
� 3
p

nK4jrwj

�
C c.˛C 1/e�w.˛C1/F �

F

t
:

Since
3
p

nK4jrwj � 3K4

�
1
2
nC 1

2
jrwj2

�
;

we have�
��

@

@t

�
F

� �2rwrFCt

�
ˇ

n

�
jrwj2Cc.˛C1/e�w.˛C1/

�wt

�2
C
�
.ˇC˛/c.˛C1/e�w.˛C1/

C2.ˇ�1/K3�2ˇK1�
3
2
K4

�
jrwj2

�n
�

1

ˇ
.K2CK3/

2
C

3
2
K4

��
Cc.˛C1/e�w.˛C1/F�

F

t
:

This completes the proof of Lemma 2.2. �
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Remark. If the general geometric flow is Ricci flow, that is, if hD const �Ric g,
the term div h� 1

2
r.trg h/ in the above proof will vanish.

We take a C 2 cutoff function Q' defined on Œ0;1/ such that Q'.r/D 1 for r 2 Œ0; 1�,
Q'.r/D 0 for r 2 Œ2;1/, and 0� Q'.r/� 1. Furthermore Q' satisfies

�
Q'0.r/

Q'1=2.r/
� c1

and
Q'00.r/� �c2

for two constants c1; c2 > 0. Set

'.x; t/D Q'

�
r.x; t/

R

�
;

where r.x; t/D d.x;x0; t/. Using an argument of Calabi [1958], we can assume
'.x; t/ 2C 2.M / with support in Q2R;T . Direct calculation shows that on Q2R;T

(2-2)
jr'j2

'
�

c2
1

R2
:

By the Laplacian comparison theorem in [Aubin 1982],

(2-3) �' � �
.n� 1/

�
1C
p

K1R
�
c2

1
C c2

R2
:

For any 0< T1 < T , let .x0; t0/ be a point in the cube Q2R;T1
at which 'F attains

its maximum value. We can assume that this value is positive (otherwise the proof
is trivial). At the point .x0; t0/, we have

r.'F /D 0; �.'F /� 0; .'F /t � 0:

It follows that

0�

�
��

@

@t

�
.'F /D .�'/F �'tF C'

�
��

@

@t

�
F C 2r'rF:

By [Sun 2011, p. 494], we know there exists a positive constant c3 such that

�'tF � �
p

c3K2F:

So we obtain

'

�
��

@

@t

�
F CF�' �'tF � 2F'�1

jr'j2 � 0:

This inequality, together with the inequalities (2-2) and (2-3), yields

'

�
��

@

@t

�
F �AF;
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where

AD

�
.n� 1/

�
1C
p

K1R
��

c2
1
C c2C 2c2

1

R2
C
p

c3K2:

At .x0; t0/, by Lemma 2.2, we have

0� '

�
��

@

@t

�
F�AF

� �AFC'

�
�

F

t0
Cc.˛C1/e�w.˛C1/FC

ˇt0

n

�
jrwj2Cc.˛C1/e�w.˛C1/

�wt

�2
�2rwrF

C
�
.ˇC˛/c.˛C1/e�w.˛C1/

C2.ˇ�1/K3�2ˇK1�
3
2
K4

�
jrwj2t0

�n
�

1

ˇ
.K2CK3/

2
C

3
2
K4

�
t0

�
:

(1) If c < 0 and u�.˛C1/ � zM for all .x; t/ 2M � Œ0;T �, we have

0� �AF �'
F

t0
C'

ˇt0

n

�
jrwj2C c.˛C 1/e�w.˛C1/

�wt

�2
� 2'rwrF

Cc zM .˛C1/'FC
�
.ˇC˛/c.˛C1/ zMC2.ˇ�1/K3�2ˇK1�

3
2
K4

�
jrwj2't0

�

�
1

ˇ
.K2CK3/

2
C

3
2
K4

�
n't0:

Set
zC1 D�.ˇC˛/c.˛C 1/ zM C 2.1�ˇ/K3C 2ˇK1C

3
2
K4

and
zC2 D

1

ˇ
.K2CK3/

2
C

3
2
K4:

Multiplying by 't0 on both sides of the above inequality, we get

0� �A't0F �'F C 2t0F'rwr'C c zM .˛C 1/'Ft0

� zC1jrwj
2'2t2

0 �
zC2n'2t2

0 C'
2t2

0

ˇt0

n

�
jrwj2C c.˛C 1/e�w.˛C1/

�wt

�2
� 'F

�
�At0� 1C c zM .˛C 1/t0

�
�

2c1

R
t0F'3=2

jrwj

C
ˇt2

0

n

�
'2
�
jrwj2C c.˛C 1/e�w.˛C1/

�wt

�2
�

n

ˇ
zC1'

2
jrwj2

�
� zC2nt2

0 ;

where the last inequality used

�2'rwrF D 2Frwr' � �2F jrwjjr'j � �
2c1

R
'1=2F jrwj:
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Assume that y D 'jrwj2 and z D '.�ce�w.˛C1/Cwt /. We have

0� 'F
�
�At0� 1C c zM .˛C 1/t0

�
C
ˇt2

0

n

�
.y � z/2�

n

ˇ
zC1y � 2

nc1

R
y1=2

�
y �

z

ˇ

��
� zC2nt2

0 :

Using the inequality ax2� bx � �b2=.4a/, valid for a; b > 0, one obtains

ˇt2
0

n

�
.y�z/2�

n

ˇ
zC1y�2

nc1

R
y1=2

�
y�

z

ˇ

��
D
ˇt2

0

n

�
ˇ2

�
y�

z

ˇ

�2

C.1�ˇ/2y2
�

n

ˇ
zC1yC

�
2.ˇ�ˇ2/y�2

nc1

R
y1=2

��
y�

z

ˇ

��
�
ˇt2

0

n

�
ˇ2

�
y�

z

ˇ

�2

�
n2 zC 2

1

4ˇ2.1�ˇ/2
�

n2c2
1

2R2.ˇ�ˇ2/

�
y�

z

ˇ

��
D
ˇ

n
.'F /2�

n zC 2
1

t2
0

4ˇ.1�ˇ/2
�

nc2
1
t0

2R2.ˇ�ˇ2/
.'F /:

Hence,

ˇ

n
.'F /2C

�
�At0� 1C c zM .˛C 1/t0�

nc2
1
t0

2R2.ˇ�ˇ2/

�
.'F /

�
n zC 2

1
t2
0

4ˇ.1�ˇ/2
� zC2nt2

0 � 0:

From the inequality Ax2� 2Bx � C , we have x � 2B=AC
p

C=A. We can get

'F �
n

ˇ

�
At0C1�c zM .˛C1/t0C

nc2
1
t0

2R2.ˇ�ˇ2/

�
C

�
n

ˇ

�
n zC 2

1

4ˇ.1�ˇ/2
C zC2n

��1
2

t0:

If d.x;x0;T1/ <R, we have '.x;T1/D 1. Then

F.x;T1/

D T1

�
ˇjrwj2Cce�w.˛C1/

�wt

�
� 'F.x0; t0/

�
n

ˇ

�
At0C1�c zM .˛C1/t0C

nc2
1
t0

2R2.ˇ�ˇ2/

�
C

�
n

ˇ

�
n zC 2

1

4ˇ.1�ˇ/2
C zC2n

��1
2

t0:

As T1 is arbitrary, we can get case (1) of Theorem 1.3.
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(2) If c > 0, we have

0� �AFC'

�
�

F

t0
C
ˇt0

n

�
jrwj2Cc.˛C1/e�w.˛C1/

�wt

�2
�2rwrF

C
�
2.ˇ�1/K3�2ˇK1�

3
2
K4

�
jrwj2t0�n

�
1

ˇ
.K2CK3/

2
C

3
2
K4

�
t0

�
:

Therefore,

0� �AF �'
F

t0
C'

ˇt0

n

�
jrwj2Cc.˛C1/e�w.˛C1/

�wt

�2
�2'rwrF

C
�
2.ˇ�1/K3�2ˇK1�

3
2
K4

�
jrwj2't0�

�
1

ˇ
.K2CK3/

2
C

3
2
K4

�
n't0:

Similarly, we can get case (2) of Theorem 1.3. This completes the proof of
Theorem 1.3. �

Proof of Theorem 1.5. For any points .x1; t1/ and .x2; t2/ on M � .0;T � with
0 < t1 < t2, we take a curve 
 .t/ parametrized with 
 .t1/ D x1 and 
 .t2/ D x2.
One gets from Corollary 1.4:

(1) If c < 0, we have

log u.x2; t2/� log u.x1; t1/

D

Z t2

t1

�
.log u/tChr log u; P
 i

�
dt

�

Z t2

t1

�
ˇjr log uj2�

n

ˇt
�cu�.˛C1/

�H1�H2�jr log ujj P
 j

�
dt

� �

Z t2

t1

�
1

4ˇ
j P
 j2C

n

ˇt
CH1CH2

�
dt

D�

�Z t2

t1

1

4ˇ
j P
 j2 dtC log

�
t2

t1

�n=ˇ

C.H1CH2/.t2� t1/

�
;

which means that

log
u.x1; t1/

u.x2; t2/
�

Z t2

t1

1

4ˇ
j P
 j2 dt C log

�
t2

t1

�n=ˇ

C .H1CH2/.t2� t1/:

Therefore,

u.x1; t1/� u.x2; t2/

�
t2

t1

�n=ˇ

e'.x1;x2;t1;t2/C.H1CH2/.t2�t1/;

where '.x1;x2; t1; t2/D inf

R t2

t1

1
4ˇ
j P
 j2 dt.
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(2) If c > 0, we have

log u.x2; t2/� log u.x1; t1/

D

Z t2

t1

�
.log u/tChr log u; P
 i

�
dt

�

Z t2

t1

�
ˇjr log uj2�

n

ˇt
�cu�.˛C1/

� yH1�
zH2�jr log ujj P
 j

�
dt

� �

Z t2

t1

�
1

4ˇ
j P
 j2C

n

ˇt
Cc zM C yH1C

zH2

�
dt

D�

�Z t2

t1

1

4ˇ
j P
 j2 dtC log

�
t2

t1

�n=ˇ

C.c zM C yH1C
zH2/.t2� t1/

�
;

which means that

log
u.x1; t1/

u.x2; t2/
�

Z t2

t1

1

4ˇ
j P
 j2 dt C log

�
t2

t1

�n=ˇ

C .c zM C yH1C
zH2/.t2� t1/:

Therefore,

u.x1; t1/� u.x2; t2/

�
t2

t1

�n=ˇ

e'.x1;x2;t1;t2/C.c zMC yH1C zH2/.t2�t1/;

where '.x1;x2; t1; t2/D inf

R t2

t1

1
4ˇ
j P
 j2 dt. �
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