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A CLASSIFICATION OF SPHERICAL CONJUGACY CLASSES

MAURO COSTANTINI

Let G be a simple algebraic group over an algebraically closed field k. We
complete the classification of the spherical conjugacy classes of G begun by
Carnovale (Pacific J. Math. 245 (2010), 25–45) and the author (Trans. Amer.
Math. Soc. 364 (2012), 1997–2019).

1. Introduction

Let G be a simple algebraic group over an algebraically closed field k. In this paper
we complete the classification of the spherical conjugacy classes of G (recalling
that a conjugacy class O in G is called spherical if a Borel subgroup of G has a
dense orbit on O). There has been a lot of work related to this field, beginning
with the work of D. Panyushev [1994; 1999], who classified spherical nilpotent
orbits in the Lie algebra of G, when the base field is C. R. Fowler and G. Röhrle
[2008] classified spherical nilpotent orbits over an algebraically closed field of
good characteristic. Then G. Carnovale [2010], exploiting the characterizations of
spherical conjugacy classes in terms of the Weyl group given in [Cantarini et al.
2005; Carnovale 2008; 2009], classified the spherical conjugacy classes of G in
zero or good, odd characteristic. In [Costantini 2012], we obtained the classification
of spherical unipotent conjugacy classes when the characteristic of k is bad, and
for characteristic 2 in case An . In the present paper we complete the classification,
dealing with nonunipotent conjugacy classes when the characteristic of k is bad,
and when G is of type An and the characteristic is 2.

The second goal of this paper is the characterization of spherical conjugacy classes
in terms of the dimension formula: we prove in Theorem 4.1 that a conjugacy class
O of G is spherical if and only if dimO = `(wO)+ rk(1−wO), where wO is a
certain element of the Weyl group attached to O, as defined in the next section.
This characterization was obtained over C in [Cantarini et al. 2005] and in good,
odd characteristic in [Carnovale 2008]. An elegant proof was obtained in [Lu 2011]
in zero characteristic.

We finally deduce further consequences of the classification.
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2. Preliminaries

We denote by C the complex numbers, by R the reals, and by Z the integers.
Let G be a simple algebraic group of rank n over k, where k is an algebraically

closed field. We fix a maximal torus T of G, a Borel subgroup B containing T, the
unipotent radical U of B and the Borel subgroup B− opposite to B with unipotent
radical U−. Then 8 is the set of roots relative to T, and B determines the set
of positive roots 8+ and the simple roots 1 = {α1, . . . , αn}. We write sα for the
simple reflection associated to α ∈8. We use the numbering and the description
of the simple roots in terms of the canonical basis (e1, . . . , ek) of an appropriate
Rk as in [Bourbaki 1981, Planches I–IX]. For the exceptional groups, we write
β = (m1, . . . ,mn) for β = m1α1 + · · · +mnαn . We identify the Weyl group W
with N/T, where N is the normalizer of T. We denote by w0 the longest element
of W. The real space E = R8 is a Euclidean space, endowed with the W-invariant
scalar product (αi , αj ) = di ai j . Here {d1, . . . , dn} are relatively prime positive
integers such that if D is the diagonal matrix with entries d1, . . . , dn , then DA is
symmetric for A = (ai j ) the Cartan matrix.

We put 5= {1, . . . , n}, and let ϑ be the symmetry of 5 induced by −w0. We
denote by ` the usual length function on W, and by rk(1−w) the rank of 1−w in
the geometric representation of W.

We use the notation xα(ξ) and hα(z) as in [Steinberg 1968; Carter 1989], for
α ∈8, ξ ∈ k, and z ∈ k∗. For α ∈8 we put Xα = {xα(ξ) | ξ ∈ k}, the root-subgroup
corresponding to α, and Hα = {hα(z) | z ∈ k∗}. Given an element w ∈ W we
denote a representative of w in N by ẇ. We choose the xα so that, for all α ∈8,
nα = xα(1)x−α(−1)xα(1) lies in N and has image the reflection sα in W. Then

(2-1) xα(ξ)x−α(−ξ−1)xα(ξ)= hα(ξ)nα, n2
α = hα(−1)

nαxα(x)n−1
α = x−α(−x), hα(ξ)xβ(x)hα(ξ)−1

= xβ(ξ 〈β,α〉x)

for every ξ ∈ k∗, x ∈ k and α, β ∈ 8, where 〈β, α〉 = 2(β, α)/(α, α) [Springer
1998a, Proposition 11.2.1]. The family (xα)α∈8 is called a realization of 8 in G.

We set Tw
={t ∈ T |wtw−1

= t} and T2={t ∈ T | t2
= 1}. In particular Tw

= T2

if w = w0 =−1. We also put Sw = {t ∈ T | wtw−1
= t−1

}.
For algebraic groups we use the notation in [Humphreys 1975; Carter 1985].

In particular, for J ⊆ 5, we have 1J = {α j | j ∈ J }, 8J is the corresponding
root system, WJ the Weyl group, PJ the standard parabolic subgroup of G, and
L J = T 〈Xα | α ∈ 8J 〉 the standard Levi subgroup of PJ . For z ∈ W we put
Uz = U ∩ z−1U−z. Then the unipotent radical Ru PJ of PJ is Uw0wJ

, where wJ
is the longest element of WJ . Moreover U ∩ L J = UwJ

is a maximal unipotent
subgroup of L J (of dimension `(wJ )), and TJ = T ∩ L ′J is a maximal torus of L ′J .
For unipotent classes in exceptional groups we use the notation in [Carter 1985;
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Spaltenstein 1982]. We use the description of centralizers of involutions as in
[Iwahori 1970].

If X is a G-variety and x ∈ X , we denote by G.x the G-orbit of x and by Gx

the isotropy subgroup of x in G. We say that X is spherical if a Borel subgroup
of G has a dense orbit on X . It is well known (see [Brion 1986; Vinberg 1986]
in characteristic 0, [Grosshans 1992; Knop 1995] in positive characteristic) that
X is spherical if and only if the set V of B-orbits in X is finite. If H is a closed
subgroup of G and the homogeneous space G/H is spherical, we say that H is a
spherical subgroup of G.

Let g be an element of G with Jordan decomposition g = su, for s semisimple
and u unipotent. Using a terminology slightly different from the usual, we say that
g is mixed if s 6∈ Z(G) and u 6= 1. For each conjugacy class O in G, w = wO is
the unique element of W such that BwB ∩O is open dense in O.

If x is an element of a group K and H ≤ K , we denote by C(x) the centralizer
of x in K , and by CH (x) the centralizer of x in H. If x , y ∈ K , then x ∼ y means
that x and y are conjugate in K .

If H is an algebraic group, we denote by B(H) a Borel subgroup of H. We
denote the identity matrix of order r by Ir . Finally, in the remainder of the paper
we denote by p the characteristic of k (hence p may be 0).

3. The classification

We recall that the bad primes for the individual types of simple groups are as
follows:

• none when G has type An;

• p = 2 when G has type Bn , Cn or Dn;

• p = 2 or 3 when G has type G2, F4, E6 or E7;

• p = 2, 3 or 5 when G has type E8.

For convenience we assume G simply connected, so that centralizers of semisimple
elements are connected [Carter 1985, Theorem 3.5.6]. However the classification
of spherical conjugacy classes in G is independent of the isogeny class. More
precisely, let D ≤ Z(G) and G = G/D. For the canonical projection π : G→ G
and g ∈ G, put ḡ = π(g). Then it is clear that the conjugacy class of ḡ in G is
spherical if and only if the conjugacy class of g in G is spherical; see also the
discussion at the beginning of [Costantini 2010, §6].

We put 5̃ = 5∪ {0} and 1̃ = 1∪ {α0}, where α0 = −β for the highest root
β of 8+. Thus 5̃ labels the vertices of the extended Dynkin diagram of the root
system 8. For J ⊂ 5̃, let 8J = Z{αi | i ∈ J } ∩8 and

L J = 〈T, Xα | α ∈8J 〉.



66 MAURO COSTANTINI

This is called a pseudo-Levi subgroup of G (in the sense of [Sommers 1998]). Then
the following holds:

Proposition 3.1 [McNinch and Sommers 2003, Propositions 30 and 32]. Let t in
G be semisimple. Then C(t) is conjugate to a subgroup L J for some J ⊂ 5̃.

Suppose that the characteristic of k is good for G. Let J ⊂ 5̃. Then there is
t ∈ G such that L J = C(t). �

We recall some basic facts which have been proved for zero or good, odd
characteristic.

Theorem 3.2. Let p 6= 2, and let O be a spherical conjugacy class of a connected
reductive algebraic group. If O∩ BwB is nonempty, then w2

= 1.

Proof. If p is zero or good and odd then this is [Carnovale 2008, Theorem 2.7].
The same proof holds as long as p 6= 2; see also [Carnovale and Costantini 2013,
Theorem 2.1]. �

Remark 3.3. Let M(W ) denote the Richardson–Springer monoid, i.e., the monoid
generated by the symbols rα for α ∈1, subject to the braid relations and the relation
r2
α = rα for α ∈ 1. Given a spherical G-variety, there is an M(W )-action on the

set V of its B-orbits. Under additional conditions, one can also define an action of
W on V . These actions have been introduced in [Richardson and Springer 1990]
and [Knop 1995], respectively, and they have been further analyzed and applied in
[Brion 2001; Mars and Springer 1998, §4.1; Springer 1998b]. The actions of M(W )

and W have been used to prove [Carnovale 2008, Theorem 2.7]. By [Knop 1995,
Theorem 4.2(b)], a case in which the action of W is defined is when p 6= 2. This
allows one to extend the proof of [Carnovale 2008, Theorem 2.7] to the case p 6= 2,
as done in [Carnovale and Costantini 2013, Theorem 2.1]. We shall come back to
this point after the achievement of the classification of spherical conjugacy classes
in characteristic 2.

Let O be a conjugacy class of G and let V be the set of B-orbits in O. There is a
natural map φ : V→W associating to v ∈ V the element w in the Weyl group of G
for which v ⊆ BwB (equivalently, for which v ∩ BwB 6=∅).

Theorem 3.4. Let p 6= 2, and let O be a conjugacy class in a connected reductive
algebraic group. If Im(φ) contains only involutions in W, then O is spherical.

Proof. If p is zero, or good and odd this is [Carnovale 2009, Theorem 5.7]. The
same proof holds as long as p 6= 2, once it is noticed again that the action of W on
V is defined. �

Theorem 3.5 [Cantarini et al. 2005, Theorem 25; Carnovale 2008, Theorem 4.4].
A class O in a connected reductive algebraic group G over an algebraically closed
field of zero or good odd characteristic is spherical if and only if there exists v in V
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such that `(φ(v))+ rk(1−φ(v))= dimO. If this is the case, v is the dense B-orbit
in O and φ(v)= wO (and v =O∩ BwOB). �

For any conjugacy class O, the element wO of the Weyl group is an involution,
i.e., w2

O = 1, is the unique maximal element in its conjugacy class and is of the
form wO =w0wJ , for a certain ϑ-invariant subset J of 5 such that w0(α)=wJ (α)

for every α ∈1J [Carnovale 2008, Lemma 3.5; Chan et al. 2010, Corollary 2.11;
Perkins and Rowley 2002].

We indicate the strategy we followed to determine the classification. Let GC

be the corresponding group over C. We have shown in [Cantarini et al. 2005] that
for every spherical conjugacy class C of GC there exists an involution w = w(C)
in W such that dim C = `(w) + rk(1 − w), with C ∩ BwB 6= ∅ (in fact even
C ∩ BwB ∩ B− 6= ∅). For each group G we introduce a certain set O(G) of
semisimple or mixed conjugacy classes; this set is suggested by the classification
in characteristic zero. For each O ∈ O(G) there is a certain spherical conjugacy
class C in GC such that dimO = dim C. Let w = wC . Our aim is to show that
O∩ BwB 6=∅, so that O is in fact spherical by the following proposition. Finally
we show that any conjugacy class not in O(G) is not spherical.

For convenience of the reader we shall give tables for the nonunipotent spherical
conjugacy classes. In the tables we give a representative g of the spherical conjugacy
class O, the subset J of 5 for which wO = w0wJ , the decomposition of wO into
the product of orthogonal reflections, the type of C(g) when g is semisimple and
the dimension of O.

We recall the following result, proved in [Cantarini et al. 2005, Theorem 5]
over C, but which is valid with the same proof over any algebraically closed field.

Proposition 3.6. Suppose that O contains an element x ∈ BwB. Then

dim B.x ≥ `(w)+ rk(1−w).

In particular, dimO ≥ `(w)+ rk(1−w). If in addition dimO ≤ `(w)+ rk(1−w),
then O is spherical, w = wO and B.x is the dense B-orbit in O.

If g is in Z(G), then g ∈ T, Og = {g} and wO = 1. In the remainder of the paper
we consider only noncentral conjugacy classes.

We shall use the following result.

Lemma 3.7. Assume the positive roots β1, . . . , β` are such that [X±βi , X±β j ] = 1
for every 1 ≤ i < j ≤ `. Then, for g = nβ1 · · · nβ`xβ1(1) · · · xβ`(1) and h ∈ T such
that βi (h) 6= 1 for i = 1, . . . , `, we have

ghg−1
∈ BwB ∩ B−

where w = sβ1 · · · sβ` .
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Proof. By [Carter 1989, p. 106], for every positive root α and every t ∈ k∗ we have
x−α(t) = xα(t−1)nαxα(t−1)h′ for a certain h′ ∈ T, so that x−α(t) ∈ BsαB ∩ B−.
Hence, for every i = 1, . . . , `, by (2-1) we have

nβi xβi(1)h(nβi xβi(1))
−1
= nβi xβi(1)hxβi(−1)h−1hn−1

βi

= nβi xβi(1−βi (h))n−1
βi

nβi hn−1
βi

= x−βi(βi (h)− 1)hi

∈ Bsβi B ∩ B−,

where hi = nβi hn−1
βi
∈ T. Let t1, . . . , t` ∈ k∗. Then

(xβ1(t
−1
1 ) · · · xβ`(t

−1
` ))−1x−β1(t1) · · · x−β`(t`)(xβ1(t

−1
1 ) · · · xβ`(t

−1
` ))

lies in nβ1 Xβ1 · · · nβ` Xβ`T = nβ1 · · · nβ` Xβ1 · · · Xβ`T ⊆ wB. Therefore

ghg−1
= x−β1(β1(h)− 1) · · · x−β`(β`(h)− 1)h1 · · · h` ∈ BwB ∩ B−. �

The hypothesis of the lemma is satisfied for instance if β1, . . . , β` are pairwise
orthogonal and long, as in [Costantini 2010, Lemma 4.1]. In characteristic 2, we
have [Xγ , Xδ] = 1 for every pair (γ, δ) of orthogonal roots.

Let O be the conjugacy class of x ∈G. In general the orbit map π :G/C(x)→O
is a bijective morphism, which may not be separable (i.e., an isomorphism). Never-
theless, we have the following result:

Lemma 3.8 [Fowler and Röhrle 2008, Remark 2.14]. Let O be a G-orbit with
isotropy subgroup H. Then O is spherical if and only if G/H is spherical. �

Proposition 3.9. Let g ∈ G with Jordan decomposition g = su for s semisimple
and u unipotent. If Og is spherical then Os and Ou are spherical.

Proof. By Lemma 3.8, C(g)= C(s)∩C(u) is a spherical subgroup of G. Hence
both C(s) and C(u) are spherical subgroups of G and, by Lemma 3.8, Os and Ou

are spherical. �

For J ⊆5 we put TJ = T ∩ L ′J , a maximal torus of the derived subgroup L ′J of
the standard Levi subgroup L J , so that BJ = TJ UwJ

is a Borel subgroup of L ′J .

Lemma 3.10. Let O be a conjugacy class of G and F ⊆ O. Assume there exists
J ⊆5 such that F ⊆ L J and (BJ .x)x∈F is a family of pairwise distinct BJ -orbits.
Then the family (B.x)x∈F consists of pairwise distinct B-orbits.

Proof. Let x and y be elements of F , and assume B.x = B. y. Then there exists
b ∈ B such that bxb−1

= y, i.e., bx = yb. Since B = T UwJ
Uw0wJ

, where Uw0wJ
is

the unipotent radical of the standard parabolic subgroup PJ , we can write b= tu1u2

with t ∈ T, u1 ∈ UwJ
and u2 ∈ Uw0wJ

, so that tu1u2x = ytu1u2. Since Uw0wJ

is normal in PJ , from uniqueness of expression we get tu1x = ytu1. We may
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decompose T = TJ S where S =
(⋂

i∈J kerαi
)◦, and t = t1t2 with t1 ∈ TJ , t2 ∈ S.

Then S ≤ C(L J ), so that t1u1x = yt1u1. But t1u1 lies in BJ , and we conclude that
BJ .x = BJ . y. Therefore x = y and we are done. �

Lemma 3.11. Let x be a semisimple element of G with C(x)= L J , a pseudo-Levi
subgroup of G, and assume Ox is spherical. Let x̃ be a semisimple element in GC

such that C(x̃)= L J (in GC). Then Ox̃ is spherical.

Proof. First we note that such an x̃ exists, by Proposition 3.1. By Lemma 3.8
and [Brundan 1998, Theorem 2.2(i)], it follows that Ox̃ is a spherical semisimple
conjugacy class in GC. �

Type An, n ≥ 1. For every i = 1, . . . ,
[ 1

2(n+ 1)
]
, we denote the root ei − en+2−i

by βi .

Proposition 3.12. Let G = SL(2), any characteristic. Let O be a conjugacy class
of G. Then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.

Proof. We may work (and usually do) up to a central element, hence we may assume
O =Ox , x either unipotent or semisimple. If x is unipotent then the result follows
from [Cantarini et al. 2005, Proposition 11], whose proof is characteristic-free. If x
is semisimple, then either x is central, or x is regular. In the first case C(x)= G,
and in the second case we may assume C(x)= T. Now

x =
(

f 0
0 1/ f

)
for a certain f 6= ±1. Let

g =
(

0 1
−1 0

)(
1 1
0 1

)
.

Then gxg−1
∈O∩ BwB ∩ B− by Lemma 3.7, where w = w0, with dimO = 2=

`(w0)+ rk(1−w0). We conclude by Proposition 3.6. �

Lemma 3.13. Let H be connected and reductive, any characteristic. Then H has
a regular spherical conjugacy class if and only if the semisimple part of H is of
type Ar

1. In this case every conjugacy class is spherical.

Proof. Without loss of generality we may assume H = Z ×G1× · · ·×Gr , where
Z = Z(H)◦ and Gi is simple for each i = 1, . . . , r . Let ni = rk Gi and Ni the
number of positive roots of Gi for i = 1, . . . , r . Let x = (z, x1, . . . , xr ) be an
element of H and O = Ox . Then O is spherical if and only if each Gi .xi is
spherical in Gi , and x is regular if and only if each xi is regular in Gi . Moreover, a
spherical Gi -conjugacy class in Gi has dimension at most ni + Ni , while Gi .xi is
regular in Gi if and only if its dimension is 2Ni .



70 MAURO COSTANTINI

If the semisimple part of H is of type Ar
1, then every conjugacy class of H is

spherical by Proposition 3.12.
Suppose there exists a regular spherical conjugacy class. Then 2Ni ≤ ni + Ni

for every i , which is possible if and only if Ni = ni = 1 for every i . Hence the
semisimple part of H is of type Ar

1. �

Lemma 3.14. Let H = GL(3), any characteristic, g a regular element of H. Then
there exists a subset F = {xm | m ∈ k∗} of Og such that (B(H).xm)m∈k∗ consists of
pairwise distinct B(H)-orbits.

Proof. For m, a, b, c ∈ k∗, let

xm = xm(a, b, c)=


0 0 abc

m

0 −m −(a+m)(b+m)(c+m)
m

1 1 a+ b+ c+m



=

 0 0 1
0 −1 0
1 0 0




1 0 0

0 m 0

0 0 abc
m




1 1 a+ b+ c+m

0 1 (a+m)(b+m)(c+m)
m2

0 0 1

 ∈ w0 B.

From the uniqueness of Bruhat decomposition, we have B.xm ∩ w0 B = T.xm ;
moreover, CT (xm) consists of scalar matrices, and

S =


 α 0 0

0 β 0
0 0 1

 ∣∣∣∣∣ α, β ∈ k∗


acts as  α 0 0

0 β 0
0 0 1

.xm =


0 0 α

abc
m

0 −m −β
(a+m)(b+m)(c+m)

m
α−1 β−1 a+ b+ c+m

 .
Hence

T.xm ∩F = {xm}.

The characteristic polynomial of xm(a, b, c) is (X − a)(X − b)(X − c). Moreover,
dim B.xm(a, b, c)= 5, so that dimOxm(a,b,c) = 6. We have shown that xm(a, b, c)
is regular for every choice of a, b, c ∈ k∗. Now let g be a regular element of GL(3).
Since Og is determined by the characteristic polynomial of g, there exist a, b, c∈ k∗

such that xm(a, b, c) ∈Og for every m ∈ k∗. We take xm = xm(a, b, c) for m ∈ k∗.
The set F = {xm | m ∈ k∗} is the required set. �
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Proposition 3.15. Let s be a semisimple element of SL(n + 1) with at most 2
eigenvalues, any characteristic, and O its conjugacy class. Then O∩ BwOB ∩ B−

is nonempty, and O is spherical.

Proof. We may assume s = diag(aIk, bIn+1−k) with a 6= b, 1≤ k ≤
[1

2(n+1)
]
. Let

g= nβ1 · · · nβk xβ1(1) · · · xβk(1). Then, by Lemma 3.7, gsg−1
∈O∩BwB∩B− with

w=wβ1 · · ·wβk . As dimO= `(w)+rk(1−w), we conclude by Proposition 3.6. �

Theorem 3.16. Let g be an element of SL(n+ 1), any characteristic, g = su its
Jordan decomposition and O its conjugacy class. Then O is spherical if and only if
one of the following holds:

(a) u = 1 and s has at most 2 eigenvalues.

(b) u 6= 1, s ∈ Z(G) and u has Jordan blocks of sizes at most 2.

Proof. Assume that O is spherical. Suppose that neither (a) nor (b) hold. Since by
[Knop 1995, Theorem 2.2] every conjugacy class contained in the closure of O is
spherical, without loss of generality we may assume

g = diag(R, S) for R ∈ GL(3), S ∈ GL(n− 2), S diagonal
with

R =

 a 1 0
0 a 1
0 0 a

 or

 a 1 0
0 a 0
0 0 b

 or

 a 0 0
0 b 0
0 0 c

 ,
a, b and c pairwise distinct. Hence R is regular in GL(3). Consider the elements

gm = diag(xm, S)

for m ∈ k∗, where xm is as defined in Lemma 3.14. We apply Lemma 3.10 with
J = {1, 2} and F = {gm | m ∈ k∗} ⊂ L J . The gm are all G-conjugate to g, and
pairwise not BJ -conjugate. By Lemma 3.10 the family (B.gm)m∈k∗ is an infinite
family of (distinct) B-orbits, a contradiction. Hence either (a) or (b) holds.

The remaining assertions follow by Proposition 3.15, and from the classification
of unipotent classes in zero or odd characteristic ([Carnovale 2010, Theorem 3.2]
and in characteristic 2, [Costantini 2012, Table 1]). �

O J wO C(g) dimO

diag(aIk, bIn+1−k)

k = 1, . . . ,
[ 1

2(n+ 1)
]

Jk sβ1 · · · sβk T1 Ak−1 An−k 2k(n+ 1− k)
a 6= b

Table 1. Spherical semisimple classes in An , where wO =w0wJ and
Jk = {k+1, . . . , n−k} for k = 1, . . . ,

[ 1
2(n+1)

]
−1, J[ 12 (n+1)] =∅.
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Type Cn (and Bn), p = 2, n ≥ 2. We put βi = 2ei for each i = 1, . . . , n and
γ` = e2`−1+ e2` for `= 1, . . . ,

[1
2 n
]
.

We describe G as the subgroup of GL(2n) of matrices preserving the bilinear
form associated with the matrix

( 0
−In

In
0

)
with respect to the canonical basis of k2n.

We observe that in characteristic 2 the groups of type Bn and Cn are isomorphic as
abstract groups, hence we deal only with type Cn .

Proposition 3.17. Let x be an element of Sp(2n), any characteristic, n ≥ 2, and O
its conjugacy class. If either

(a) x = aλ = diag(λIn, λ
−1 In) for λ 6= ±1, or

(b) x = cλ = diag(λ, In−1, λ
−1, In−1) for λ 6= ±1,

then O∩BwOB∩B− is nonempty, dimO= `(wO)+rk(1−wO) and O is spherical.

Proof. The proof uses the same method as the proof of Proposition 3.15, so we
omit it. �

Proposition 3.18. Let G = Sp(2n), p= 2, n ≥ 2. The spherical semisimple classes
are represented by

(a) aλ = diag(λIn, λ
−1 In) for λ 6= 1,

(b) cλ = diag(λ, In−1, λ
−1, In−1) for λ 6= 1.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or odd)
characteristic [Cantarini et al. 2005, Table 1; Carnovale 2010, Theorem 3.3], it
follows that L J is of type C`Cn−` for ` = 1, . . . ,

[ 1
2 n
]
, T1Cn−1 or T1 Ãn−1. But

Z(C`Cn−`)= 1, so that we are left with

aλ = diag(λIn, λ
−1 In)←→ T1 Ãn−1,

cλ = diag(λ, In−1, λ
−1, In−1)←→ T1Cn−1,

for λ 6= 1. We conclude by Proposition 3.17. �

We now deal with mixed conjugacy classes.

Lemma 3.19. Let H = Sp(4), any characteristic, and

g =


a 0 0 0
0 1 0 1
0 0 1

a 0
0 0 0 1

,
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a mixed regular element of H (so a 6= ±1). Then there is a subset F = {xm |m ∈ k∗}
of Og such that (B(H).xm)m∈k∗ consists of pairwise distinct B(H)-orbits.

Proof. For m ∈ k∗, we put

xm =



0 0 −
1
m

0

0 0 −1 1

m m a2
+m+1

a
m(−2a+m+1)

a

0 −1 −
1
a

2− m
a



=


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




m 0 0 0

0 −1 0 0

0 0 1
m

0

0 0 0 −1





1 1 a2
+m+1
am

−2a+m+1
a

0 1 1
a

m
a
− 2

0 0 1 0

0 0 −1 1


∈ w0 B.

The characteristic polynomial of xm is (X − 1)2(X − a)(X − 1/a), and the 1-
eigenspace has dimension 1. Hence xm is H -conjugate to g. Suppose xm , xm′ are
B-conjugate. Then xm , xm′ are T-conjugate and, from a direct calculation, it follows
that T.xm ∩F = {xm}, hence m = m′. �

Proposition 3.20. Let O be the conjugacy class of a mixed element g of Sp(2n),
p = 2. Then O is not spherical.

Proof. Let g = su, the Jordan decomposition. Assume, for a contradiction, that O
is spherical. Then both Os and Ou are spherical. By Proposition 3.18, H = C(s) is
of type T1Cn−1 or T1 Ãn−1. However dim T1 Ãn−1 = n2, and therefore CT1 Ãn−1

(u)
is not spherical in G. We are left with H of type T1Cn−1, and we may assume
s = ca = hβ1(a) for a certain a 6= 1.

Since every conjugacy class contained in the closure of O is spherical, it is
enough to deal with the minimal nontrivial spherical unipotent classes in T1Cn−1.
From the classification of spherical unipotent classes in characteristic 2 [Costantini
2012, Tables 1 and 2], we may assume

g = hβ1(a)xα2(1) if n = 2,

g = hβn−1(a)xαn(1) or g = hβ1(a)xα2(1) if n ≥ 3,

since hβn−1(a)= diag(In−2, a, 1, In−2, a−1, 1) is conjugate to hβ1(a).
Suppose g = hβn−1(a)xαn(1), n ≥ 2. We apply Lemma 3.10 with J = {n− 1, n}.

By considering the corresponding embedding of C2 into Cn , we may assume that
the family F = {xm | m ∈ k∗}, introduced in Lemma 3.19, is a subset of L J . The
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xm are all G-conjugate to g, and pairwise not BJ -conjugate. By Lemma 3.10,
the family (B.xm)m∈k∗ is an infinite family of (distinct) B-orbits, a contradiction.
Hence the class of g = hβn−1(a)xαn(1) is not spherical.

Suppose g = hβ1(a)xα2(1), n ≥ 3. Then

g =


A 0 0 0
0 In−3 0 0
0 0 tA−1 0
0 0 0 In−3

, A =

a 0 0
0 1 1
0 0 1

.
Let (xm)m∈k∗ be the family introduced in Lemma 3.14, such that xm is GL(3)-
conjugate to A for every m ∈ k∗. We put

gm =


xm 0 0 0
0 In−3 0 0
0 0 t x−1

m 0
0 0 0 In−3

.
The gm are all Sp(2n)-conjugate to g. By Lemma 3.10 with J = {1, 2}, the family
(B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a contradiction. Hence the
class of g = hβ1(a)xα2(1) is not spherical. �

Theorem 3.21. Let G = Sp(2n), p = 2, n ≥ 2. The spherical classes are either
semisimple or unipotent. The semisimple classes are represented in Table 2 and the
unipotent classes are represented in Table 2 of [Costantini 2012]. �

O J wO C(g) dimO

cλ = diag(λ, In−1, λ
−1, In−1) J2 sβ1sβ2 T1Cn−1 4n− 2

λ 6= 1

aλ = diag(λIn, λ
−1 In) ∅ w0 = sβ1 · · · sβn T1 Ãn−1 n2

+ n
λ 6= 1

Table 2. Spherical semisimple classes in Cn , n ≥ 2, p = 2. Here
wO = w0wJ , J2 =∅ if n = 2 and J2 = {3, . . . , n} if n ≥ 3.

Type Dn, p= 2, n≥ 4. Let r =
[ 1

2 n
]
. We put β`= e2`−1+e2` and δ`= e2`−1−e2`

for `= 1, . . . , r . Also, we set J1 = {3, . . . , n}, Kr = {1, 3, . . . , 2r − 1} and, if n is
even, K ′r = {1, 3, . . . , n− 3, n}.

In this section we deal with groups G of type Dn . We recall that we are assuming
G simply connected. Since p = 2, the covering map π : G → SO(2n) is an
isomorphism of abstract groups. We describe SO(2n) as the connected component
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of the subgroup of Sp(2n) of matrices preserving the quadratic form associated
with

( 0
In

In
0

)
with respect to the canonical basis of k2n [Carter 1989, §1.6].

Proposition 3.22. Let x be an element of G = Dn , any characteristic, n ≥ 4, and
O its conjugacy class. If one of

(a) x = cλ = hβ1(λ)hδ1(λ) for λ 6= ±1,

(b) x = aλ = hβ1(λ) · · · hβr (λ) for λ 6= ±1, or

(c) x = a′λ = hβ1(λ) · · · hβr−1(λ)hαn−1(λ) for λ 6= ±1, n even,

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.

Proof. Assume x = cλ with λ 6= ±1. Let g = nβ1nδ1 xβ1(1)xδ1(1). Then we have
gxg−1

∈O∩ BwB ∩ B−, with w = sβ1sδ1 and dimO = `(w)+ rk(1−w).
Similarly, assume x = aλ with λ 6=±1. Let g= nβ1 · · · nβr xβ1(1) · · · xβr(1). Then

gxg−1
∈O∩ BwB ∩ B−, with w = sβ1 · · · sβr and dimO = `(w)+ rk(1−w).

The case (c) follows from (b) by using the graph automorphism of G exchanging
n− 1 and n. We conclude by Proposition 3.6. �

Proposition 3.23. Let G = Dn , p = 2, n ≥ 4. The spherical semisimple classes are
represented by

(a) x = cλ = hβ1(λ)hδ1(λ) for λ 6= 1,

(b) x = aλ = hβ1(λ) · · · hβm (λ) for λ 6= 1,

(c) x = a′λ = hβ1(λ) · · · hβm−1(λ)hαn−1(λ) for λ 6= 1, n even.

Proof. The proof uses the same method as the proof of Proposition 3.18, so we
omit it. �

We now deal with mixed conjugacy classes.

Proposition 3.24. Let O be the conjugacy class of a mixed element g in Dn , p = 2.
Then O is not spherical.

Proof. We work with SO(2n) via π . Let g= su, the Jordan decomposition. Assume
that O is spherical. Then both Os and Ou are spherical, and we may assume, up to
conjugation and graph automorphism, that for a certain a 6= 1,

s = diag(aIn−1, a−1, a−1 In−1, a) or s = diag(In−3, a, I2, In−3, a−1, I2).

Assume s = diag(aIn−1, a−1, a−1 In−1, a) for a certain a 6= 1. Without loss of
generality we may assume u = xαn−2(a

−1), so that

g =


aIn−3 0 0 0

0 A 0 0
0 0 a−1 In−3 0
0 0 0 tA−1

, A =

a 1 0
0 a 0
0 0 a−1

.
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Let (xm)m∈k∗ be the family introduced in Lemma 3.14, such that xm is GL(3)-
conjugate to A for every m ∈ k∗ and (B(GL(3)).xm)m∈k∗ consists of pairwise
distinct B(GL(3))-orbits.

We put

gm =


aIn−3 0 0 0

0 xm 0 0
0 0 a−1 In−3 0
0 0 0 tx−1

m

.
The gm are all SO(2n)-conjugate to g. By Lemma 3.10 with J = {n− 1, n− 2},
the family (B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a contradiction.
This settles the cases when n is odd and C(s) is of type T1 An−1, and when n is
even and C(s) is of type (T1 An−1)

′. Upon application of the graph automorphism
exchanging n and n− 1, this also settles the case when n is even and C(s) is of
type T1 An−1.

Assume s = diag(a, In−1, a−1, In−1) for a certain a 6= 1. Without loss of gener-
ality we may assume u = xα2(1), so that

g =


A 0 0 0
0 In−3 0 0
0 0 tA−1 0
0 0 0 In−3

, A =

a 0 0
0 1 1
0 0 1

.
Let (xm)m∈k∗ be the family introduced in Lemma 3.14, such that xm is GL(3)-
conjugate to A for every m ∈ k∗ and (B(GL(3)).xm)m∈k∗ consists of pairwise
distinct B(GL(3))-orbits.

O J wO C(g) dimO

cλ = hβ1(λ)hδ1(λ)

λ 6= 1 J1 sβ1sδ1 T1 Dn−1 4(n− 1)
diag(λ2, In−1, λ

−2, In−1)

aλ = hβ1(λ) · · · hβr(λ)

λ 6= 1 Kr sβ1 · · · sβr T1 An−1 n2
− n

diag(λIn, λ
−1 In)

a′λ = hβ1(λ) · · · hβr−1(λ)hαn−1(λ)

λ 6= 1 K ′r sβ1 · · · sβr−1sαn−1 (T1 An−1)
′ n2

− n
diag(λIn−1, λ

−1, λ−1 In−1, λ)

Table 3. Spherical semisimple classes in Dn , p= 2, n≥ 4, n= 2r ,
where wO = w0wJ .
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O J wO C(g) dimO

cλ = hβ1(λ)hδ1(λ)

λ 6= 1 J1 sβ1sδ1 T1 Dn−1 4(n− 1)
diag(λ2, In−1, λ

−2, In−1)

aλ = hβ1(λ) · · · hβr(λ)

λ 6= 1 Kr sβ1 · · · sβr T1 An−1 n2
− n

diag(λIn, λ
−1 In)

Table 4. Spherical semisimple classes in Dn , p = 2, n ≥ 5,
n = 2r + 1, where wO = w0wJ .

Set

gm =


xm 0 0 0
0 In−3 0 0
0 0 tx−1

m 0
0 0 0 In−3

.
The gm are all SO(2n)-conjugate to g. By Lemma 3.10 with J = {1, 2}, the family
(B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a contradiction. This settles
the case when C(s) is of type T1 Dn−1, and we are done. �

Theorem 3.25. Let G = Dn , p = 2, n ≥ 4. The spherical classes are either
semisimple or unipotent. The semisimple classes are represented in Tables 3 and 4,
and the unipotent classes in Tables 3 and 4 of [Costantini 2012]. �

Type E6. We put

β1 = (1, 2, 2, 3, 2, 1), β2 = (1, 0, 1, 1, 1, 1),

β3 = (0, 0, 1, 1, 1, 0), β4 = (0, 0, 0, 1, 0, 0).

Proposition 3.26. Let x be an element of E6, any characteristic, and O its conju-
gacy class. If one of

(a) x = hα1(−1)hα4(−1)hα6(−1),

(b) x = h(z)= hα1(z
4)hα2(z

3)hα3(z
5)hα4(z

6)hα5(z
4)hα6(z

2) for z3
6= 1,

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO), and O is
spherical.

Proof. (a) If p = 2, then x = 1, and there is nothing to prove. So assume p 6= 2.
In G there are two classes of involutions: one has centralizer of type A1 A5 and
dimension 40, the other has centralizer of type D5T1 and has dimension 32. Let
y = nβ1 · · · nβ4 ∈ w0 B, w = sβ1 · · · sβ4 = w0. Then y2

= hβ1(−1) · · · hβ4(−1)= 1,
and dimOy ≥ 40 by Proposition 3.6. Since C(x) is of type A1 A5, we conclude
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that x ∼ y, so that O ∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0) and O
is spherical. It is a general fact that if t is semisimple and Ot ∩ BwB 6= ∅, then
Ot ∩ BwB ∩ B− 6=∅ [Cantarini et al. 2005, Lemma 14].

(b) In this case C(x) is of type D5T1 (note that C(x)= C(h(−1)) if p 6= 2). Let
g = nβ1nβ2 xβ1(1)xβ2(1). Then gxg−1

∈ O ∩ Bsβ1sβ2 B ∩ B−, with w = sβ1sβ2 and
dimO = `(w)+ rk(1−w). We conclude by Proposition 3.6. �

Proposition 3.27. Let G = E6. The spherical semisimple classes are represented
by

h(z)= hα1(z
4)hα2(z

3)hα3(z
5)hα4(z

6)hα5(z
4)hα6(z

2), z3
6= 1, for p = 2,

hα1(−1)hα4(−1)hα6(−1),

h(z)= hα1(z
4)hα2(z

3)hα3(z
5)hα4(z

6)hα5(z
4)hα6(z

2), z 6= 1,

}
for p = 3.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.6],
it follows that L J is of type A1 A5 or D5T1.

Let p = 2. Then Z(A1 A5) = Z(G) (of order 3), so that we are left with h(z),
for z3

6= 1.
Let p = 3. Then Z(G)= 1, and we conclude by Proposition 3.26. �

We have established the information in Tables 5 and 6, where wO = w0wJ .

Proposition 3.28. Let O be the conjugacy class of a mixed element g in E6, p = 2
or 3. Then O is not spherical.

Proof. Let g= su, the Jordan decomposition. Assume that O is spherical. Then both
Os and Ou are spherical, and therefore C(s) is of type A1 A5 or D5T1. A dimensional
argument rules out all the possibilities except the case that C(s) is of type A1 A5

and u is a nonidentical unipotent element in the component A1 of C(s) (hence
p = 3). Therefore, without loss of generality we may assume g = hα1(−1)xα1(1),
which is a regular element of the standard Levi subgroup L J , for J = {1, 2}. By
Lemma 3.14, there is an infinite family F = {gm | m ∈ k∗} ⊂ L J such that the gm

O J wO C(g) dimO

h(z)= hα3(z
5)hα4(z

6)hα5(z
4)hα6(z

2)
{3, 4, 5} sβ1sβ2 D5T1 32

z3
6= 1

Table 5. Spherical semisimple classes in E6, p = 2.
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O J wO C(g) dimO
h(z)= hα1(z

4)hα2(z
3)hα3(z

5)

· hα4(z
6)hα5(z

4)hα6(z
2) {3, 4, 5} sβ1sβ2 D5T1 32

z 6= 1

hα1(−1)hα4(−1)hα6(−1)∼ hα1(−1) ∅ w0 A1 A5 40

Table 6. Spherical semisimple classes in E6, p = 3.

are all L J -conjugate (hence G-conjugate) to g, and pairwise not BJ -conjugate. By
Lemma 3.10 the family (B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a
contradiction. Hence O is not spherical. �

Theorem 3.29. Let G= E6, p= 2 or 3. The spherical classes are either semisimple
or unipotent, up to a central element if p=2. The semisimple classes are represented
in Tables 5 and 6, and the unipotent classes are represented in Tables 6 and 7 of
[Costantini 2012]. �

Type E7. Here Z(G)= 〈τ 〉, where τ = hα2(−1)hα5(−1)hα7(−1). We put

β1 = (2, 2, 3, 4, 3, 2, 1), β2 = (0, 1, 1, 2, 2, 2, 1), β3 = (0, 1, 1, 2, 1, 0, 0),

β4 = α7, β5 = α5, β6 = α3, β7 = α2.

Proposition 3.30. Let x be an element of E7, any characteristic, and O its conju-
gacy class. If one of

(a) x = hα2(−ζ )hα5(ζ )hα6(−1)hα7(−ζ ) for ζ 2
=−1, p 6= 2,

(b) x = hα1(−1) for p 6= 2,

(c) x = h(z)= hα1(z
2)hα2(z

3)hα3(z
4)hα4(z

6)hα5(z
5)hα6(z

4)hα7(z
3) for z 6= ±1,

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO), and O is
spherical.

Proof. (a) Let Y be the set of elements y of order 4 of T such that y2
= τ . Then Y

is the disjoint union of 2 W-classes Y1 and Y2: C(y) is of type A7 if y ∈ Y1, and
of type E6T1 if y ∈ Y2. A representative for Y1 is hα2(−ζ )hα5(ζ )hα6(−1)hα7(−ζ )

where ζ is a square root of −1.
Let y=nβ1 · · · nβ7∈w0 B,w=sβ1 · · · sβ7=w0. Then y2

=hβ1(−1) · · ·hβ7(−1)=τ,
and dimOy ≥ dim B by Proposition 3.6. Since C(x) is of type A7, we conclude
that x ∼ y, so that O∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0) and O is
spherical. As above, O∩ BwB ∩ B− 6=∅.

(b) The group G has 2 classes of noncentral involutions: Ohβ1(−1) and Ohβ1(−1)τ .
In fact there are 127 involutions in T, and τ is central. The remaining 126 fall in 2
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classes: {hα(−1) | α ∈8+} and {hα(−1)τ | α ∈8+}. Let y = nβ1nβ2nβ3nα3∈ wB,
where w = sβ1sβ2sβ3sα3 . Then y2

= hβ1(−1)hβ2(−1)hβ3(−1)hα3(−1)= 1, so that
y is a (noncentral) involution. We conclude that x ∼ y or x ∼ yτ , so that (in either
case) O ∩ BwB is nonempty, dimO = `(w)+ rk(1−w) and O is spherical. As
above, O∩ BwB ∩ B− 6=∅. (In fact we have nα∼ hα(ζ ) already in 〈Xα, X−α〉 for
every root α, hence nβ1nβ2nβ3nα3∼ hβ1(ζ )hβ2(ζ )hβ3(ζ )hα3(ζ ) = hγ (−1), where
γ = β1−α1. Therefore x ∼ y.)

(c) (any characteristic) We have C(x) of type E6T1. Let

g = nβ1nβ2nα7 xβ1(1)xβ2(1)xα7(1).

Then gxg−1
∈O∩ BwB∩ B−, with w= sβ1sβ2sα7 , and dimO= `(w)+ rk(1−w).

We conclude by Proposition 3.6. �

Proposition 3.31. Let G = E7. The spherical semisimple classes are represented
by

h(z)= hα1(z
2)hα2(z

3)hα3(z
4)hα4(z

6)hα5(z
5)hα6(z

4)hα7(z
3), z 6= 1, for p = 2,

hα2(−ζ )hα5(ζ )hα6(−1)hα7(−ζ ), ζ
2
=−1,

hα1(−1), hα1(−1)τ,

h(z)= hα1(z
2)hα2(z

3)hα3(z
4)hα4(z

6)hα5(z
5)hα6(z

4)hα7(z
3), z 6= ±1,

 for p = 3.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.7],
it follows that L J is of type E6T1, D6 A1 or A7.

Let p = 2. Then Z(G)= Z(D6 A1)= Z(A7)= 1, so that we are left with h(z),
for z 6= 1.

For p = 3, we conclude by Proposition 3.30. �

We have established the information in Tables 7 and 8, where wO = w0wJ .

O J wO C(g) dimO

h(z)= hα1(z
2)hα2(z

3)hα3(z
4)

· hα4(z
6)hα5(z

5)hα6(z
4)hα7(z

3) {2, 3, 4, 5} sβ1sβ2sα7 E6T1 54

z 6= 1

Table 7. Spherical semisimple classes in E7, p = 2.
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O J wO C(g) dimO

h(z)= hα1(z
2)hα2(z

3)hα3(z
4)

· hα4(z
6)hα5(z

5)hα6(z
4)hα7(z

3) {2, 3, 4, 5} sβ1sβ2sα7 E6T1 54

z 6= ±1

hα1(−1), hα1(−1)τ {2, 5, 7} sβ1sβ2sβ3sα3 D6 A1 64

hα2(−ζ )hα5(ζ )hα6(−1)hα7(−ζ ) ∅ w0 A7 70
ζ 2
=−1

Table 8. Spherical semisimple classes in E7, p = 3.

Proposition 3.32. Let O be the conjugacy class of a mixed element g in E7, p = 2
or 3. Then O is not spherical.

Proof. Let g = su, the Jordan decomposition. Assume that O is spherical. Then
both Os and Ou are spherical, and therefore C(s) is of type E6T1, D6 A1 or A7.
A dimensional argument rules out all the possibilities except the case that C(s)
is of type D6 A1 and u is a nonidentical unipotent element in the component A1

of C(s) (hence p = 3). Therefore, without loss of generality we may assume
g = hα7(−1)xα7(1), which is a regular element of the standard Levi subgroup L J ,
for J = {6, 7}. By Lemma 3.14, there is an infinite family F = {gm |m ∈ k∗} ⊂ L J

such that the gm are all L J -conjugate (hence G-conjugate) to g, and pairwise not
BJ -conjugate. By Lemma 3.10 the family (B.gm)m∈k∗ is an infinite family of
(distinct) B-orbits, a contradiction. Hence O is not spherical. �

Theorem 3.33. Let G= E7, p= 2 or 3. The spherical classes are either semisimple
or unipotent, up to a central element if p=3. The semisimple classes are represented
in Tables 7 and 8, and the unipotent classes are represented in Tables 8 and 9 of
[Costantini 2012]. �

Type E8. We put

β1 = (2, 3, 4, 6, 5, 4, 3, 2), β2 = (2, 2, 3, 4, 3, 2, 1, 0),

β3 = (0, 1, 1, 2, 2, 2, 1, 0), β4 = (0, 1, 1, 2, 1, 0, 0, 0),

β5 = α7, β6 = α5, β7 = α3, β8 = α2.

Proposition 3.34. Let x be an element of E8, p 6= 2, and O its conjugacy class. If
one of

(a) x = hα2(−1)hα3(−1),

(b) x = hα2(−1)hα5(−1)hα7(−1)∼ hα8(−1),

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.
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Proof. The group E8, for p 6= 2, has 2 classes of involutions.

(a) Let y = nβ1 · · · nβ8 ∈ w0 B, w = sβ1 · · · sβ8 = w0. Then

y2
= hβ1(−1) · · · hβ8(−1)= 1,

and dimOy ≥ dim B by Proposition 3.6. Since C(x) is of type D8, we conclude
that x ∼ y, so that O∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0) and O is
spherical. As above, O∩ BwB ∩ B− 6=∅.

(b) Let x = hα8(−1), so that C(x) is of type E7 A1. Let

g = nβ1nβ2nβ3nα7 xβ1(1)xβ2(1)xβ3(1)xα7(1).

Then gxg−1
∈O∩BwB∩B−, with w= sβ1sβ2sβ3sα7 and dimO= `(w)+rk(1−w).

We conclude by Proposition 3.6. �

Proposition 3.35. Let G = E8. The spherical (nontrivial) semisimple classes are
represented by

none, for p = 2,

hα2(−1)hα3(−1),

hα8(−1),

}
for p = 3 or 5.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.8],
it follows that L J is of type E7 A1 or D8.

Let p = 2. Then Z(E7 A1) = Z(D8) = 1, so there are no nontrivial spherical
semisimple classes.

For p = 3 or 5, we conclude by Proposition 3.34. �

We have established the information in Table 9, where wO = w0wJ .

Proposition 3.36. Let O be the conjugacy class of a mixed element g in E8, p = 2,
3 or 5. Then O is not spherical.

O J wO C(g) dimO

hα8(−1) {2, 3, 4, 5} sβ1sβ2sβ3sα7 E7 A1 112

hα2(−1)hα3(−1) ∅ w0 D8 128

Table 9. Spherical semisimple classes in E8, p = 3 or 5.
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Proof. Let g= su, the Jordan decomposition. Assume that O is spherical. Then both
Os and Ou are spherical, and therefore C(s) is of type E7 A1 or A7. A dimensional
argument rules out all the possibilities except the case that C(s) is of type E7 A1 and
u is a nonidentical unipotent element in the component A1 of C(s) (hence p = 3
or 5). Therefore, without loss of generality we may assume g = hα8(−1)xα8(1),
which is a regular element of the standard Levi subgroup L J , for J = {7, 8}. By
Lemma 3.14, there is an infinite family F = {gm | m ∈ k∗} ⊂ L J such that the gm

are all L J -conjugate (hence G-conjugate) to g, and pairwise not BJ -conjugate. By
Lemma 3.10 the family (B.gm)m∈k∗ is an infinite family of (distinct) B-orbits, a
contradiction. Hence O is not spherical. �

Theorem 3.37. Let G = E8, p = 2, 3 or 5. The spherical classes are either
semisimple or unipotent. The semisimple classes are represented in Table 9, and the
unipotent classes are represented in [Costantini 2012, Tables 10 and 11]. �

Type F4. We put

β1 = (2, 3, 4, 2), β2 = (0, 1, 2, 2), β3 = (0, 1, 2, 0), β4 = (0, 1, 0, 0).

Also, γ1 is the highest short root (1, 2, 3, 2).

Proposition 3.38. Let x be an element of F4, p 6= 2, and O its conjugacy class. If
one of

(a) x = hα2(−1)hα4(−1)∼ hα1(−1),

(b) x = hα4(−1),

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.

Proof. The group F4, for p 6= 2, has 2 classes of involutions.

(a) Let y = nβ1 · · · nβ4 ∈ w0 B, w = sβ1 · · · sβ4 = w0. Then

y2
= hβ1(−1) · · · hβ4(−1)= 1,

and dimOy ≥ dim B by Proposition 3.6. Since C(x) is of type A1C3, we conclude
that x ∼ y, so that O∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0) and O is
spherical. As above, O∩ BwB ∩ B− 6=∅.

(b) We have C(x) of type B4. Let g = nγ1 xγ1(1). Then gxg−1
∈ O ∩ BwB ∩ B−,

with w = sγ1 and dimO = `(w)+ rk(1−w). We conclude by Proposition 3.6. �

Proposition 3.39. Let G = F4. The spherical (nontrivial) semisimple classes are
represented by

none, for p = 2,

hα1(−1),

hα4(−1),

}
for p = 3.



84 MAURO COSTANTINI

O J wO C(g) dimO

hα4(−1) {1, 2, 3} sγ1 B4 16

hα1(−1) ∅ w0 C3 A1 28

Table 10. Spherical semisimple classes in F4, p = 3.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.9],
it follows that L J is of type C3 A1 or B4.

Let p = 2. Then Z(C3 A1) = Z(B4) = 1, so there are no nontrivial spherical
semisimple classes.

For p = 3, we conclude by Proposition 3.38. �

We have established the information in Table 10, where wO = w0wJ .
We finally deal with mixed classes in F4. We recall that over the complex

numbers the principal model orbit is a mixed conjugacy class; see [Luna 2007,
3.3(6) and p. 300], and also [Costantini 2010, Table 24].

Proposition 3.40. Let x = hα4(−1)xα1(1) in F4, p 6= 2, and O its conjugacy class.
Then O∩BwOB∩B− is nonempty, dimO= `(wO)+rk(1−wO) and O is spherical.

Proof. This is the mixed class in F4 which is spherical in zero or good, odd
characteristic. We can deal with this class with the same method used in the proof
of [Cantarini et al. 2005, Theorem 23], and corrected in the proof of [Carnovale
2010, Theorem 3.9], to show that Bw0 B ∩O 6= ∅, so that wO = w0, dimO =
`(w0)+ rk(1−w0) and O is spherical. The (correct) argument at the end of the
proof of [Cantarini et al. 2005, Theorem 23] shows that O∩ Bw0 B ∩ B− 6=∅. �

Proposition 3.41. Let G = F4. The spherical mixed classes are represented by

none, for p = 2,

hα4(−1)xα1(1), for p = 3.

Proof. Let g = su, the Jordan decomposition of a mixed element g. Assume that
O =Og is spherical. Then both Os and Ou are spherical, and therefore C(s) is of
type C3 A1 or B4. A dimensional argument rules out all the possibilities except the
case that C(s) is of type B4 and u is in the minimal unipotent class of C(s) (hence
p = 3). Therefore, without loss of generality we may assume g = hα4(−1)xα1(1).
We conclude by Proposition 3.40. �
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O J wO dimO

hα4(−1)xα1(1) ∅ w0 28

Table 11. Spherical mixed classes in F4, p = 3.

Theorem 3.42. Let G = F4, p = 2 or 3. If p = 2, the spherical classes are
unipotent and are represented in Table 13 of [Costantini 2012]. If p = 3, the
spherical semisimple classes are represented in Table 10, the spherical unipotent
classes are represented in Table 12 of [Costantini 2012] and the spherical mixed
classes are represented in Table 11. �

Type G2. We put β1 = (3, 2) and β2 = α1. Also, γ1 is the highest short root (2, 1).

Proposition 3.43. Let x be an element of G2, any characteristic, and O its conju-
gacy class. If one of

(a) x = hα1(−1), p 6= 2,

(b) x = hα1(ζ ), ζ a primitive 3rd root of 1, p 6= 3,

holds, then O∩ BwOB ∩ B− is nonempty, dimO = `(wO)+ rk(1−wO) and O is
spherical.

Proof. (a) For p 6= 2, the group G2 has 1 class of involutions. Let

y = nβ1nβ2 ∈ w0 B, w = sβ1sβ2 = w0.

Then y2
= hβ1(−1)hβ2(−1) = 1, and dimOy ≥ dim B by Proposition 3.6. We

conclude that x ∼ y, so that O∩ Bw0 B is nonempty, dimO = `(w0)+ rk(1−w0)

and O is spherical. As above, O∩ BwB ∩ B− 6=∅.

(b) For p 6= 3, let g = nγ1 xγ1(1). Then gxg−1
∈O∩ BwB ∩ B−, with w = sγ1 and

dimO = `(w)+ rk(1−w). We conclude by Proposition 3.6. �

Proposition 3.44. Let G = G2. The spherical semisimple classes are represented
by

hα1(−1), for p = 3,

hα1(ζ ), ζ a primitive 3rd root of 1, for p = 2.

Proof. Let x be a semisimple element of G, and assume O = Ox is spherical.
Without loss of generality C(x)= L J , a pseudo-Levi subgroup of G. There exists
a semisimple element x̃ in GC such that C(x̃) is L J in GC. By Lemma 3.11, it
follows that Ox̃ is a spherical semisimple conjugacy class in GC, and therefore,
from the classification of semisimple spherical conjugacy classes in zero (or good
odd) characteristic [Cantarini et al. 2005, Table 2; Carnovale 2010, Theorem 3.1],
it follows that L J is of type A1 Ã1 or A2. If p = 2, then Z(A1 Ã1) = 1. If p = 3,
then Z(A2)= 1 and we conclude by Proposition 3.43. �
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O J wO C(g) dimO

hα1(ζ ) {2} sγ1 A2 6
ζ a primitive 3rd root of 1

Table 12. Spherical semisimple classes in G2, p = 2.

O J wO C(g) dimO

hα1(−1) ∅ w0 A1 Ã1 8

Table 13. Spherical semisimple classes in G2, p = 3.

Theorem 3.45. Let G = G2, p = 2, 3. The spherical classes are either semisimple
or unipotent. The semisimple classes are represented in Tables 12 and 13, and the
unipotent classes are represented in Tables 14 and 15 of [Costantini 2012].

Proof. By the above discussion, we are left to show that no mixed class is spherical.
Let g = su, the Jordan decomposition. Assume that Og is spherical. Then both Os

and Ou are spherical, and therefore C(s) is of type A1 Ã1 or A2. A dimensional
argument rules out all the possibilities. �

4. Final remarks

Once we have achieved the classification of spherical conjugacy classes and proved
that for every spherical conjugacy class O we have dimO = `(wO)+ rk(1−wO),
we can extend to all characteristics the results obtained in [Carnovale 2008; 2009;
Cantarini et al. 2005; Lu 2011] for the zero and good odd characteristic cases. In
[Cantarini et al. 2005, Theorem 25] we established the characterization of spherical
conjugacy classes in terms of the dimension formula: a conjugacy class O in G is
spherical if and only if dimO = `(wO)+ rk(1−wO). This was obtained over the
complex numbers, and the same proof works over any algebraically closed field
of characteristic zero. Then the same characterization was given in zero, or good
odd characteristic in [Carnovale 2008, Theorem 4.4], without the classification of
spherical conjugacy classes. Lu gave a very neat proof of the dimension formula
(even for twisted conjugacy classes) in [Lu 2011, Theorem 1.1] in characteristic
zero. From the results obtained in the previous section, we may state:

Theorem 4.1. Let O be a conjugacy class of a simple algebraic group, any charac-
teristic. The following are equivalent:

(a) O is spherical;

(b) There exists w ∈W such that O∩ BwB 6=∅ and dimO ≤ `(w)+ rk(1−w);

(c) dimO = `(wO)+ rk(1−wO). �
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Corollary 4.2. Let O be a spherical class of G. Then dimO ≤ `(w0)+ rk(1−w0).

Proof. We have dimO = `(wO)+ rk(1−wO), and

`(w)+ rk(1−w)≤ `(w0)+ rk(1−w0)

for every w ∈W (cf. [Carnovale 2008, Remark 4.14]). �

Proposition 4.3. Let O be a spherical conjugacy class and w=wO =w0wJ . Then
(Tw)◦ ≤ CT (x) ≤ Tw, CU (x) = UwJ

and (Tw)◦UwJ
≤ CB(x) ≤ TwUwJ

for every
x ∈O∩wB.

Proof. We choose a representative ẇ of w in N such that x = ẇu for u ∈ U.
Let b = tu1u2 ∈ CB(x), where t ∈ T, u1 ∈ Uw and u2 ∈ UwJ

. From the Bruhat
decomposition, we get u1 = 1 and t ∈ Tw, so that CB(x) ≤ TwUwJ

. But the
dimension formula dimO = `(w)+ rk(1−w) implies

dim CB(x)= n− rk(1−w)+ `(wJ )= dim TwUwJ
.

Hence (CB(x))◦ = (Tw)◦UwJ
and CU (x)=UwJ

.
Now assume b= tu1∈CT Uw

(x), where t ∈T and u1∈Uw. Again from the Bruhat
decomposition, we get u1 = 1 and t ∈ Tw, so that CT Uw

(x) = CT (x) ≤ Tw. We
have B.x = T UwUwJ

.x = T Uw.x , hence dim CT Uw
(x)= n− rk(1−w)= dim Tw.

It follows that (Tw)◦ ≤ CT (x)≤ Tw. �

Theorem 4.4. Let O be a spherical conjugacy class of a simple algebraic group
and v = O∩ BwOB the dense B-orbit. Then CU (x) is connected and CB(x) is a
split extension of (CB(x))◦ by an elementary abelian 2-group for every x ∈ v. If
p = 2, then CU (x), CT (x) and CB(x) are connected for every x ∈O∩ BwOB.

Proof. Let w=wO. We may assume x ∈wB. From the discussion after [Costantini
2010, Corollary 3.22], we have T = (Tw)◦(Sw)◦, where Sw = {t ∈ T | tw = t−1

}.
Then Tw

= (Tw)◦(Tw
∩T2), where T2={t ∈ T | t2

= 1}, and CT (x)= (Tw)◦CT2(x)
by Proposition 4.3. There exists a subgroup R of T2 such that Tw

= (Tw)◦× R,
whence CT (x)= (Tw)◦×CR(x). In particular,

CB(x)= ((Tw)◦×CR(x))UwJ
= (CB(x))◦CR(x).

If p = 2, then T2 = {1}, Tw
= (Tw)◦ = CT (x) and CB(x)= (CB(x))◦. �

We recall, from Remark 3.3, that there is an action of W on the set V of B-orbits
in O when O is a spherical conjugacy class and p 6= 2. We are now in the position
to prove that this action is also defined for p = 2.

Corollary 4.5. Let O be a spherical conjugacy class of a simple algebraic group,
any characteristic. Then there is an action of the Weyl group W on the set of
B-orbits in O (as defined in [Knop 1995]).
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Proof. We have only to deal with p=2. By [Knop 1995, Theorem 4.2(c)], the action
of W is defined on the set of B-orbits in O as long as CU (x) is connected for every
x ∈O. By Theorem 4.4, CU (x) is connected for every x in the dense B-orbit; this
ensures that CU (x) is connected for every x ∈O by [Knop 1995, Corollary 3.4]. �

Once the W -action has been defined when p = 2, we can extend to this case the
results obtained by G. Carnovale in zero or good odd characteristic.

Theorem 4.6. Let O be a spherical conjugacy class of a simple algebraic group. If
O∩ BwB is nonempty, then w2

= 1.

Corollary 4.7. Let O be a spherical conjugacy class, and assume O∩ BwB 6=∅
for some w ∈W. Then O∩ BzB 6=∅ for every conjugate z of w in W.

Theorem 4.8. Let O be a conjugacy class in a simple algebraic group. If

{w ∈W |O∩ BwB 6=∅} ⊆ {w ∈W | w2
= 1},

then O is spherical.

Assume O is a spherical conjugacy class of a simple algebraic group (any
characteristic), and v the dense B-orbit in O. Set P = {g ∈ G | g.v = v}. Then P
is a parabolic subgroup of G containing B, and therefore P = PK , the standard
parabolic subgroup relative to a certain subset K of 5.

Theorem 4.9. Let O be a spherical conjugacy class of a simple algebraic group,
any characteristic, w = w0wJ be the unique element in W such that O∩ BwB is
dense in O, v = O ∩ BwB the dense B-orbit in O and PK = {g ∈ G | g.v = v}.
Then K = J . If x ∈ O ∩ wB, then L ′J and (Tw)◦ are contained in C(x) and
CB(x)◦ = (Tw)◦UwJ

.

Proof. We have already showed that CB(x)◦ = (Tw)◦UwJ
for every x ∈ O ∩wB.

Let S = {i, ϑ(i)} be a ϑ-orbit in 5 \ J consisting of 2 elements. We define
HS = {hαi(z)hαϑ(i)(z

−1) | z ∈ k∗}. Let S1 be the set of ϑ-orbits in 5 \ J consisting
of 2 elements. Then, by [Costantini 2010, Remark 3.10], 1J ∪ {αi −αϑ(i)}S1 is a
basis of ker(1−w) and

(4-1) (Tw)◦ =
∏
j∈J

Hα j ×

∏
S∈S1

HS.

We put 9J = {β ∈ 8 | w(β) = −β}. Then 9J is a root system in Im(1 − w)
[Springer 1982, Proposition 2], and w|Im(1−w) is −1. If K = C((Tw)◦)′, then K
is semisimple with root system 9J and maximal torus T ∩ K = (Sw)◦. Assume
x = ẇu ∈ v, with u ∈U . Then (Tw)◦ ≤C(x) implies x ∈C((Tw)◦), and moreover,
ẇ ∈ C(Tw), so that u ∈ K . Let u =

∏
α∈8+∩9J

xα(kα) be the expression of u for
any fixed total ordering on 8+. If kα 6= 0, then w(α) = −α, so that in particular
u ∈ Uw. Moreover, if β ∈ 8J , then (α, β) = (wα,wβ) = (−α, β), so that α ⊥ β.
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Finally, we have ϑα = −α, since wα = −α is equivalent to wJα = −w0α, and
wJα = α, since wJ ∈WJ and (α, α j )= 0 for every j ∈ J .

From the fact that UwJ
≤ C(x), it follows that UwJ

≤ C(ẇ), and therefore
UwJ
≤ C(u). From the Chevalley commutator formula, we deduce further that

wJ UwJ
w−1

J ≤ C(u), so that L ′J ≤ C(x). Then we may argue as in the proof of
[Carnovale 2008, Proposition 4.15] to conclude that K = J. �

Remark 4.10. Assume G is a connected reductive algebraic group over k. From
the classification of spherical conjugacy classes obtained in simple algebraic groups
(which is independent of the isogeny class), one gets the classification of spherical
conjugacy classes in G. In fact, if G = ZG1 · · ·Gr , where Z is the connected
component of the center of G, and G1, . . . ,Gr are the simple components of G,
then the conjugacy class O in G of x = zx1 · · · xr , with z ∈ Z and xi ∈ Gi for
i = 1, . . . , r , is spherical if and only if the conjugacy class Oi of xi in Gi is spherical
for every i = 1, . . . , r .

Remark 4.11. In order to show that a conjugacy class O is spherical, we showed
that dimO = `(wO)+ rk(1−wO). However, in each case we even showed that
O∩ BwOB ∩ B− 6=∅. The motivation for this was the proof of the De Concini–
Kac–Procesi conjecture for quantum groups at roots of one over spherical conjugacy
classes; see [Cantarini et al. 2005]. The fact that O∩ BwOB ∩ B− 6=∅ for every
spherical conjugacy class has been proved in characteristic zero in [Cantarini et al.
2005]. It is a general fact that if O is semisimple, then O ∩ BwB 6= ∅ implies
O∩BwB∩B− 6=∅ for anyw∈W [Cantarini et al. 2005, Lemma 14]. For unipotent
classes, we showed in [Costantini 2012] for p = 2 that O∩ BwOB ∩ B− 6=∅ by
exhibiting explicitly an element in O∩ BwOB ∩ B−. The argument in [Cantarini
et al. 2005, Lemma 10] allows one to prove that O∩ BwOB ∩ B− 6=∅ for every
spherical unipotent class in good characteristic. However, it is possible to adapt the
same proof to the remaining unipotent classes in bad characteristic, due to the fact
that we do have the classification, and so we just make a case by case consideration.
Assume O is a spherical mixed class. In all cases, apart from F4, we have an explicit
element in O∩ BwOB ∩ B−. We observed in Proposition 3.40 that the argument
used in [Cantarini et al. 2005] holds for every odd characteristic. We conclude that
in all characteristics, if O is a spherical conjugacy class, then O∩ BwOB∩ B− 6=∅.
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