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AFFINE WEAKLY REGULAR
TENSOR TRIANGULATED CATEGORIES

IVO DELL’AMBROGIO AND DONALD STANLEY

We prove that the Balmer spectrum of a tensor triangulated category is
homeomorphic to the Zariski spectrum of its graded central ring, provided
the triangulated category is generated by its tensor unit and the graded
central ring is noetherian and regular in a weak sense. There follows a clas-
sification of all thick subcategories, and the result extends to the compactly
generated setting to yield a classification of all localizing subcategories as
well as the analog of the telescope conjecture. This generalizes results of
Shamir for commutative ring spectra.

1. Introduction and results

Let K be an essentially small tensor triangulated category, with symmetric exact
tensor product ⊗ and tensor unit object 1. Balmer [2005] defined a topological
space, the spectrum SpcK, that allows for the development of a geometric theory
of K, similarly to how the Zariski spectrum captures the intrinsic geometry of
commutative rings; see the survey [Balmer 2010b]. Among other uses, Balmer’s
spectrum encodes the classification of the thick tensor ideals of K in terms of certain
subsets. It is therefore of interest to find an explicit description of the spectrum
in the examples, but this is usually a difficult problem requiring some in-depth
knowledge of each example at hand.

The goal of this note is to show that in some cases a concrete description of the
spectrum can be obtained easily and completely formally. Let us denote by

R := End∗K(1)=
⊕
i∈Z

HomK(1, 6i 1)

the graded endomorphism ring of the unit, where 6 : K→ K is the suspension
functor. In the terminology of [Balmer 2010a], this is the graded central ring
of K. It is a graded commutative ring and therefore we can consider its spectrum
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of homogeneous prime ideals, Spec R, equipped with the Zariski topology. As
established in that paper, there is always a canonical continuous map

ρ : SpcK→ Spec R

comparing the two spectra. Under some mild hypotheses, e.g., when R is noetherian,
ρ can be shown to be surjective, but it is less frequently injective and, when it is,
the proof of injectivity is typically much harder.

Here is our main result:

Theorem 1.1. Assume that K satisfies the two following conditions:

(a) K is classically generated by 1, i.e., as a thick subcategory: Thick(1)= K.

(b) R is a (graded) noetherian ring concentrated in even degrees and, for every
homogeneous prime ideal p of R, the maximal ideal of the local ring Rp is
generated by a ( finite) regular sequence of homogeneous non-zero-divisors.

Then the comparison map ρ : SpcK −→∼ Spec R is a homeomorphism.

As in the title, we may refer to a tensor triangulated category K satisfying
hypotheses (a) and (b) as being affine and weakly regular, respectively. Note that
R being noetherian implies that R0

= EndK(1) is a noetherian ring and that R is a
finitely generated R0-algebra, by [Goto and Yamagishi 1983].

The next result is an easy consequence of the theorem. Here SuppR H∗X denotes
the (big) Zariski support of the cohomology graded R-module H∗X :=Hom∗K(1, X).

Corollary 1.2. If K and R are as in the theorem, then there exists a canonical
inclusion-preserving bijection

{thick subcategories C of K} ∼
−−→
←−− {specialization closed subsets V of Spec R}

mapping a thick subcategory C to V =
⋃

X∈C SuppR H∗X and a specialization
closed subset V to C = {X ∈ K | SuppR H∗X ⊆ V }.

In many natural examples, K occurs as the subcategory T c of compact objects
in a compactly generated tensor triangulated category T . By the latter we mean a
compactly generated triangulated category T equipped with a symmetric monoidal
structure ⊗ which preserves coproducts and exact triangles in both variables, and
such that the compact objects form a tensor subcategory T c (that is, 1 is compact
and the tensor product of two compact objects is again compact).

In this case, the same hypotheses allow us to classify also the localizing subcate-
gories of T , thanks to the stratification theory of compactly generated categories due
to Benson, Iyengar and Krause [Benson et al. 2011]. The support suppR X ⊆Spec R
of an object X ∈ T is defined in [Benson et al. 2008], and can be described as the set

suppR X = {p ∈ Spec R | X ⊗ K (p) 6= 0},
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where the residue field object K (p) of a prime ideal p is an object whose cohomology
is the graded residue field of R at p; see Section 3.

Theorem 1.3. Let T be a compactly generated tensor triangulated category with
compact objects K :=T c and graded central ring R satisfying conditions (a) and (b).
Then we have the following canonical inclusion-preserving bijection:

{localizing subcategories L⊆ T } ∼
−−→
←−− {subsets S ⊆ Spec R}.

The correspondence sends a localizing subcategory L to S=
⋃

X∈L suppR X , and an
arbitrary subset S to L= {X ∈ T | suppR X ⊆ S}. Moreover, the bijection restricts
to localizing subcategories L=Loc(L∩K) which are generated by compact objects
on the left and to specialization closed subsets S =

⋃
p∈S V(p) on the right.

Note that here the affine condition (a) is equivalent to requiring that T is generated
by 1 as a localizing subcategory. As SuppR H∗X = suppR X for all compact objects
X ∈ K, one sees easily that in the compactly generated case Theorem 1.1 and
Corollary 1.2 are also a consequence of Theorem 1.3.

The next corollary is another byproduct of stratification. Recall that a localizing
subcategory L⊆ T is smashing if the inclusion functor L ↪→T admits a coproduct-
preserving right adjoint.

Corollary 1.4 (the telescope conjecture in the affine weakly regular case). In the
situation of Theorem 1.3, every smashing subcategory of T is generated by a set of
compact objects of T .

A few special cases of our formal results had already been observed, such as
when R is even periodic and of global dimension at most one; see [Dell’Ambrogio
and Tabuada 2012]. We now consider some more concrete examples.

∗ ∗ ∗

Example 1.5. Let A be a commutative dg algebra and D(A) its derived category
of dg modules. Then D(A) is an affine compactly generated tensor triangulated
category with respect to the standard tensor product ⊗ = ⊗L

A, and R = H∗A is
the cohomology algebra of A; thus if the latter satisfies (b) all our results apply
to D(A). Actually, in this example we can improve our results a little by eliminating
the hypothesis that R is even and that the elements of the regular sequences are
non-zero-divisors:

Theorem 1.6. Let A be a commutative dg algebra such that its graded cohomology
ring R = H∗A is noetherian and such that every local prime pRp is generated by a
finite regular sequence. Then all the conclusions of Theorems 1.1 and 1.3 and of
Corollaries 1.2 and 1.4 hold for T = D(A) and K = D(A)c.

We can apply this, for instance, to a graded polynomial algebra with any choice
of grading for the variables, seen as a strictly commutative formal dg algebra.
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Example 1.7. Let A be a commutative S-algebra (a.k.a. commutative highly struc-
tured ring spectrum), and let D(A) be its derived category. (This covers Example 1.5,
as commutative dga’s can be seen as commutative S-algebras.) Then D(A) is an
affine compactly generated tensor triangulated category, and R = π∗A is the stable
homotopy algebra of A; thus if the latter satisfies (b) all our results apply to D(A).
Shamir [2012] already treated this example under the additional hypothesis that
π∗A has finite Krull dimension. Working with∞-categories and E∞-rings, Mathew
[2015, Theorem 1.4] established the classification of thick subcategories as in
Corollary 1.2 for the case when π∗A is even periodic and π0 A regular noetherian.
Remarkably, in the special case of S-algebras defined over Q, Mathew was also able
to prove the classification of thick subcategories only assuming π∗A noetherian, i.e.,
without any regularity hypothesis; see [Mathew 2016, Theorem 1.4]. (Note however
that, thanks to [Mandell 2012], in order to apply our own results we really only need
an E4-structure on a ring spectrum rather than a fully commutative E∞-structure.)

The next two well-known examples show that neither hypothesis (a) nor (b) can
be weakened with impunity.

Example 1.8. The derived category T = D(P1
k) of the projective line over a field k

is an example where R = End∗(1)' k certainly satisfies (b) but (a) does not hold.
Indeed ρ can be identified with the structure map P1

k→ Spec k and is therefore far
from injective in this case; see [Balmer 2010a, Remark 8.2].

Example 1.9. If T = D(A) is the derived category of a commutative (ungraded)
ring A, Theorem 1.1 and the classification of thick subcategories always hold by a
result of Thomason [1997] (see [Balmer 2010a, Proposition 8.1]); the classification
of localizing subcategories and the telescope conjecture hold if A is noetherian by
[Neeman 1992a]. On the other hand, Keller [1994] found examples of nonnoetherian
rings A for which the two latter results fail.

In view of these examples, it would be interesting to know how far our weak
regularity hypothesis (b) can be weakened in general. Would noetherian suffice?

2. Preliminaries

Let K be an essentially small tensor triangulated category.
For any two objects X, Y ∈ K, consider the Z-graded group Hom∗K(X, Y ) =⊕
i∈Z HomK(X, 6i Y ). Recall that the symmetric tensor product of K canonically

induces on R := Hom∗K(1, 1) the structure of a graded commutative1 ring, and

1To be precise, graded commutativity means here that f g = ε| f ||g|g f for any two homogeneous
elements f ∈ HomK(1, 6| f |1) and g ∈ HomK(1, 6|g|1), where ε ∈ R0 is a constant with ε2

= 1
induced by the symmetry isomorphism 61⊗61−→∼ 61⊗61. In most cases we have ε =−1, e.g., if
K admits a symmetric monoidal model, but usually no extra difficulty arises by allowing the general
case. Of course, this is immaterial for R even.
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on each Hom∗K(X, Y ) the structure of a (left and right) graded R-module. The
composition of maps in K and the tensor functor −⊗− are (graded) bilinear for
this action. See [Balmer 2010a, §3] for details.

Since we are using cohomological gradings, we write H∗X for the R-module
Hom∗K(1, X) and call it the cohomology of X .

Supports for graded modules. We denote by Spec R the Zariski spectrum of all
homogeneous prime ideals in R. If M is an R-module (always understood to be
graded) and p ∈ Spec R, the graded localization of M at p is the R-module Mp

obtained by inverting the action of all the homogeneous elements in R rp. The big
support of M is the following subset of the spectrum:

SuppR M = {p ∈ Spec R | Mp 6= 0}.

Since our graded ring R is noetherian we also dispose of the small support, defined
in terms of the indecomposable injective R-modules E(R/p):

suppR M = {p | E(R/p) occurs in the minimal injective resolution of M}.

We recall from [Benson et al. 2008, §2] some well-known properties of supports.
In general we have suppR M ⊆ SuppR M . If M is finitely generated, these two
sets are equal and also coincide with the Zariski closed set V(AnnR M). For a
general M , SuppR M is always specialization closed: if it contains any point p
then it must contain its closure V(p)= {q | p⊆ q}. In fact SuppR M is equal to the
specialization closure of suppR M : SuppR M =

⋃
p∈suppR M V(p). The small support

plays a fundamental role in the Benson–Iyengar–Krause stratification theory, but in
this note it will only appear implicitly.

The next lemma follows by a standard induction on the length of the objects.

Lemma 2.1. If K = Thick(1) is affine and R is noetherian, the graded R-module
Hom∗K(X, Y ) is finitely generated for all X, Y ∈ K. �

The comparison map of spectra. Recall from [Balmer 2005] that, as a set, the
spectrum SpcK is defined to be the collection of all proper thick subcategories P(K
which are prime tensor ideals: X⊗Y ∈P ⇐⇒ X ∈P or Y ∈P . For every P ∈SpcK,
let ρK(P) denote the ideal of Spec R generated by the set of homogeneous elements
{ f : 1→6| f |1 | cone( f ) /∈ P}. By [Balmer 2010a, Theorem 5.3], the assignment
P 7→ρK(P) defines a continuous map ρK :SpcK→Spec R, natural in K. Moreover,
the two spaces SpcK and Spec R are spectral in the sense of Hochster [1969], and
ρK is a spectral map in that the preimage of a compact open set is again compact.

Lemma 2.2. If ρK is bijective then it is a homeomorphism.
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Proof. This is an immediate consequence of [Hochster 1969, Proposition 15],
which says that for a spectral map of spectral topological spaces to be a homeo-
morphism it suffices that it is an order isomorphism for the specialization order of
the two spaces. Recall that the specialization order is defined for the points of any
topological space by x ≥ y ⇐⇒ x ∈ {y}. Indeed ρ := ρK is inclusion reversing,
Q⊆ P ⇐⇒ ρ(Q)⊇ ρ(P), hence it maps the closure {P} = {Q |Q⊆ P} in SpcK
of any point P to the Zariski closure V(ρ(P)) = {q | q ⊇ ρ(P)} in Spec R of the
corresponding point. �

Central localization. For every prime ideal p of the graded central ring R of K,
there exists by [Balmer 2010a, Theorem 3.6] a tensor triangulated category Kp

having the same objects as K and such that its graded Hom modules are the
localizations

Hom∗Kp
(X, Y )= Hom∗K(X, Y )p.

In particular the graded central ring of Kp is the local ring Rp. There is a canonical
exact functor qp : K→ Kp, which is in fact the Verdier quotient by the thick tensor
ideal generated by {cone( f )∈K | f ∈ Rrp homogeneous}. For emphasis, we will
sometimes write Xp for X = qpX when considered as an object of Kp.

Clearly if K is generated by 1 then Kp is generated by 1p. Later we will use the
fact that if a tensor triangulated category is generated by its unit then every thick
subcategory is automatically a tensor ideal.

Let `p : R→ Rp denote the localization map between the graded central rings of
the two categories. By [Balmer 2010a, Theorem 5.4], we have a pullback square of
spaces

(2.3)

Spc(Kp)

ρKp

��

� � Spc(qp) // Spc(K)

ρK

��

Spec(Rp)
� � Spec(`p) // Spec(R)

where the horizontal maps are injective.

Koszul objects. We adapt some convenient notation from [Benson et al. 2008]. For
any object X ∈K and homogeneous element f ∈ R, let X// f := cone( f · X) be any
choice of mapping cone for the map f · X : 6−| f |X → X given by the R-action.
If f1, . . . , fn is a finite sequence of homogeneous elements, define recursively
X0 := X and X i := X//( f1, . . . , fi ) := (X//( f1, . . . , fi−1))// fi for i ∈ {1, . . . , n}.
Thus by construction we have exact triangles

(2.4) 6−| fi |X i−1
fi ·X i−1
−−−−→ X i−1 −→ X i −→6−| fi |+1 X i−1,
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and moreover, since the tensor product is exact, we have isomorphisms

X//( f1, . . . , fi )' X ⊗ 1// f1⊗ · · ·⊗ 1// fi

for all i ∈ {1, . . . , n}. In the following, we will perform this construction inside the
p-local category Kp.

We need the following triangular version of the Nakayama lemma, for K affine.

Lemma 2.5. If X ∈ Kp is any object and f1, . . . , fn is a set of homogeneous
generators for pRp, then in Kp we have X = 0 if and only if X//( f1, . . . , fn)= 0.

Proof. Since K and thus Kp are generated by their tensor unit, it suffices to show that
H∗Xp= 0 if and only if H∗(X//( f1, . . . , fn))p= 0, and the latter can be proved as in
[Benson et al. 2008, Lemma 5.11 (3)]. We give the easy argument for completeness.

With the above notation, by taking cohomology H∗ = Hom∗Kp
(1p,−) of the

triangle (2.4) of Kp we obtain the long exact sequence of Rp-modules

· · · −→ H∗−| fi |X i−1
fi
−→ H∗X i−1 −→ H∗X i −→ H∗−| fi |+1 X i−1 −→ · · · ,

where each module is finitely generated by Lemma 2.1. Since fi ∈ p, if H∗X i−1 6= 0
the first map in the sequence is not invertible by the Nakayama lemma, hence
H∗X i 6= 0. The evident recursion shows that H∗X 6= 0 implies H∗Xn 6= 0. The
very same exact sequences also show that if H∗X = 0 then H∗Xn = 0. �

3. Thick subcategories

Assume from now on that K satisfies conditions (a) and (b) of Theorem 1.1.

Residue field objects. By hypothesis, for every prime ideal p ∈ Spec R there exists
a regular sequence f1, . . . , fn of homogeneous non-zero-divisors of Rp which
generate the ideal pRp. Choose one such sequence once and for all, and construct
the associated Koszul object

K (p) := 1p//( f1, . . . , fn)' 1p// f1⊗ · · ·⊗ 1p// fn

in the p-local tensor triangulated category Kp.

Lemma 3.1. For every object X ∈Kp and every i ∈{1, . . . , n}, each element f of the
ideal ( f1, . . . , fi )⊂ Rp acts as zero on X//( f1, . . . , fi ), i.e., f · X//( f1, . . . , fi )= 0.

Proof. Recall that, as an immediate consequence of the Rp-bilinearity of the
composition in Kp, the elements of Rp acting as zero on an object Y form an
ideal (coinciding with the annihilator of the Rp-module Hom∗Kp

(Y, Y )). Thanks to
the isomorphism X//( f1, . . . , fi )' X⊗1p// f1⊗· · ·⊗1p// fi and the Rp-linearity of
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the tensor product, it will therefore suffice to prove that fi acts as zero on 1p// fi .
Consider the commutative diagram

6−| fi |1p
fi // 1p

g
//

fi

��
0

%%

1p// fi

fi

��

// 6−| fi |+11p

h
xx

6| fi |1p g
// 6| fi |1p// fi

where the top row is the exact triangle defining 1p// fi . Being the composite of two
consecutive maps in a triangle, g fi is zero. Up to a suspension, this is also the
diagonal map in the square. Hence fi · 1p// fi factors through a map h as pictured.
Since R is even by hypothesis, we have that Rp is even, and we claim that also

(3.2) H n(1p// fi )= 0 for all odd n.

This implies h = 0 and therefore fi · 1p// fi = 0, as required. To prove the claim,
note that the defining triangle of 1p// fi induces the exact sequence

Rn−| fi |
p

fi
−→ Rn

p −→ H n(1p// fi )−→ Rn−| fi |+1
p

fi
−→ Rn+1

p ,

where the first and last maps are injective by the hypothesis that fi is a non-zero-
divisor in Rp. Thus (3.2), and even H∗(1p// fi )' Rp/( fi ), follows immediately. �

Corollary 3.3. H∗(X ⊗ K (p)) is a graded k(p)-vector space for every X ∈ Kp.

Proof. By Lemma 3.1 together with the R-linearity of the tensor product, each
f ∈ pRp acts as zero on X⊗K (p) ' X⊗1p//( f1, . . . , fn). Therefore all such f
also act as zero on H∗(X ⊗ K (p)) by the R-linearity of composition. �

Lemma 3.4. There is an isomorphism H∗(1p//( f1, . . . , fi )) ' Rp/( f1, . . . , fi ) of
R-modules for all i ∈ {1, . . . , n}. In particular H∗K (p) is isomorphic to the residue
field k(p) := Rp/pRp.

Proof. Write C0 = 1p and Ci := 1p//( f1, . . . , fi ) for short. Then K (p) = Cn , and
for all i ∈ {1, . . . , n} we have exact triangles

6−| fi |Ci−1
fi ·Ci−1
−−−−→Ci−1 −→ Ci −→6−| fi |+1Ci−1.

The claim follows by recursion on i. Indeed H∗C0= Rp, and assume that H∗Ci−1'

Rp/( f1, . . . , fi−1). Then the above triangle induces an exact sequence

H∗−| fi |Ci−1
fi
−→ H∗Ci−1 −→ H∗Ci −→ H∗−| fi |+1Ci−1

fi
−→ H∗+1Ci−1,

where the first and last maps are injective because by hypothesis fi is a non-
zero-divisor in the ring Rp/( f1, . . . , fi−1). We thus obtain a short exact sequence
0→ fi Rp/( f1, . . . , fi−1)→ Rp/( f1, . . . , fi−1)→ H∗Ci → 0, proving the claim
for i. �
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Remark 3.5. Of the weak regularity hypothesis (b), the proof of Lemma 3.4 only
uses that f1, . . . , fn is a regular sequence, while the proof of Lemma 3.1 only uses
that the fi are non-zero-divisors in Rp and that the ring R is even. These are the
only places where we make use of these assumptions (the noetherian hypothesis,
on the other hand, will be needed on several occasions). Note that, although we
already know by Corollary 3.3 that H∗K (p) is a k(p)-vector space, for the next
proposition we also need it to be one-dimensional as per Lemma 3.4.

Proposition 3.6. For all p ∈ Spec R and X ∈ Kp, the tensor product X ⊗ K (p)
decomposes into a coproduct of shifted copies of the residue field object:∐

α

6nαK (p)−→∼ X ⊗ K (p).

Proof. By Corollary 3.3 we know that H∗(X⊗K (p)) is a graded k(p)-vector space.
Choose a graded basis {xα}α , corresponding to a morphism

∐
α 6

nα1p→ X⊗K (p).
We will show that this map extends nontrivially to the Koszul object(∐

α

6nα1p
)
//( f1, . . . , fn)=

∐
α

(
6nα1p//( f1, . . . , fn)

)
.

For this, it will suffice to extend each individual map xα :6nα1p→ X ⊗ K (p). As
before, we proceed recursively along the regular sequence f1, . . . , fn . Consider the
commutative diagram

6nα−| f1|1p
6−| f1|xα

��

f1 //

0
''

6nα1p //

xα
��

6nα1p// f1 //

x1
α

xx

6−| f1|X ⊗ K (p)
f1=0

// X ⊗ K (p)

where the top row is a rotation of the defining triangle for 1p// f1. The left-bottom
composite vanishes because f1 acts trivially on X ⊗ K (p) by Lemma 3.1. Hence
we obtain the map x1

α on the right. Note that x1
α 6= 0 because xα 6= 0. Now we

repeat the procedure for i = 2, . . . , n, using the triangle

6−| fi |1p//( f1, . . . , fi−1)
fi
−→ 1p//( f1, . . . , fi−1)−→ 1p//( f1, . . . , fi )−→

to extend x i−1
α to a nonzero map x i

α :6
nα1p//( f1, . . . , fi )→ X ⊗ K (p) hitting the

same element in cohomology. In particular we obtain the announced extension
xn
α :6

nα K (p)→ X ⊗ K (p). As a nonzero map on a one-dimensional k(p)-vector
space (Lemma 3.4), the induced map H∗(xn

α) must be injective. Hence, collectively,
the maps {xn

α}α yield an isomorphism as required. �

Proposition 3.7. For every p, the thick subcategory Thick(K (p)) of Kp is minimal,
meaning that it contains no proper nonzero thick subcategories.
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Proof. Note that for every nonzero object X of Kp we have X ⊗ K (p) 6= 0. Indeed
if X ⊗ K (p)= X//( f1, . . . , fn)= 0 then Xp = 0 by Lemma 2.5.

Let C be a thick subcategory of Thick(K (p)). Because C is a tensor ideal, if it
contains a nonzero object X then it also contains X⊗K (p), which is again nonzero
by the above observation. Therefore C must contain a shifted copy of K (p) by
Proposition 3.6, hence C = Thick(K (p)). �

Proof of Theorem 1.1. Now we show how to deduce our main result from the
minimality of the thick subcategories Thick(K (p)). By Lemma 2.2 it will suffice to
show that the map ρK : SpcK→ Spec R is bijective. Since R is graded noetherian,
ρK is surjective by [Balmer 2010a, Theorem 7.3]. It remains to prove it is injective.

Let p ∈ Spec R be any homogeneous prime. We must show that the fiber of the
comparison map ρK : SpcK→ Spec R over p consists of a single prime tensor
ideal. By the pullback square (2.3), every point of SpcK lying over p must belong
to SpcKp. Hence it will suffice to show that the fiber of ρ := ρKp over the maximal
ideal m := pRp of Rp consists of a single point. In fact a stronger statement is true:
if P ∈ SpcKp is such that ρ(P)=m, then P = {0}. Let us prove this.

By definition of the comparison map we have

ρ(P)= 〈{ f ∈ Rp | f is homogeneous and 1p// f /∈ P}〉,

and as ρ(P)⊆m always holds by the maximality of m, the hypothesis ρ(P)=m

precisely means that 1p// f /∈ P for all homogeneous elements f ∈m. In particular
1p// fi /∈P for the elements fi in the chosen regular sequence for m. As P is a tensor
prime, we deduce further that

(3.8) K (p)' 1p// f1⊗ · · ·⊗ 1p// fn /∈ P.

Now let X ∈ P and assume that X 6= 0. Then X ⊗ K (p) 6= 0 by Lemma 2.5, hence

(3.9) Thick(X ⊗ K (p))= Thick(K (p))

by the minimality of Thick(K (p)), Proposition 3.7. As P is a thick tensor ideal we
also have X ⊗ K (p) ∈ P and therefore K (p) ∈ P by (3.9), but this contradicts (3.8).
Therefore X = 0 and we conclude that P = {0}, proving the claim. This concludes
the proof of Theorem 1.1.

Proof of Corollary 1.2. To deduce Corollary 1.2 from the theorem, we must verify
that the homeomorphism ρK identifies SuppR H∗X ⊆ Spec R, the ring-theoretic
support of an object X ∈ K, with supp X := {P ∈ SpcK | X /∈ P}, the universal
support datum of X :

Lemma 3.10. We have SuppR H∗X = ρK(supp X) for all X ∈ K.
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Proof. Let p = ρK(P). It follows from (2.3) that X ∈ P if and only if Xp ∈ Pp,
where Pp denotes P seen as an element of SpcKp. We have just proved that
ρKp : SpcKp −→

∼ Rp is a bijection sending {0} to pRp, so we must have Pp = {0}.
Therefore

p ∈ SuppR H∗X ⇐⇒ H∗Xp 6= 0 ⇐⇒ Xp 6= 0 ⇐⇒ Xp /∈Pp ⇐⇒ P ∈ supp X. �

Now it suffices to appeal to the abstract classification theorem [Balmer 2005,
Theorem 4.10]. Indeed, since R is noetherian, the space Spec R is noetherian and
therefore its specialization closed subsets and its Thomason subsets coincide (cf.
[Balmer 2005, Remark 4.11]). Moreover, since K is generated by its tensor unit,
all its objects are dualizable (because dualizable objects form a thick subcategory
and 1 is dualizable) and therefore all its thick tensor ideals are radical (see [Balmer
2007, Proposition 2.4]). Hence by Theorem 1.1 and Lemma 3.10 the classification
of [Balmer 2005, Theorem 4.10] immediately translates into the classification
described in Corollary 1.2, as wished.

4. Localizing subcategories

Assume from now on that T is a compactly generated tensor triangulated category
such that its subcategory K := T c of compact objects satisfies hypotheses (a) and (b)
of Theorem 1.1. Thus in particular T is generated as a localizing subcategory by
the tensor unit: Loc(1) = T . It follows that every localizing subcategory of T is
automatically a tensor ideal.

Since T is compactly generated, the (Verdier) p-localization functor qp :K→Kp

we used so far can be extended to a finite (Bousfield) localization functor

(−)p : T → T .

We briefly recall its properties, referring for all proofs to [Benson et al. 2011, §2]
or [Dell’Ambrogio 2010, §2]. Let

L= Loc({cone( f ) | f ∈ R r p homogeneous}).

Then the Verdier quotient Q : T → T /L =: Tp has a fully faithful right adjoint,
I : Tp ↪→T , and the functor (−)p can be defined to be the composite (−)p := I ◦Q.
As L is generated by a tensor ideal of dualizable objects, we have Xp

∼= X ⊗ 1p
for all X ∈ T . Moreover, the unit X → Xp of the (Q, I )-adjunction induces a
natural map Hom∗T (Y, X)p→ Hom∗T (Y, Xp) which is an isomorphism whenever
Y ∈K (see [Benson et al. 2011, Proposition 2.3] or [Dell’Ambrogio 2010, Theorem
2.33 (h)]). In particular we have the identification

(H∗X)p −→∼ H∗(Xp)
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for all X ∈ T . It follows also that the restriction of Q to compact objects X, Y ∈ K
agrees with qp, so that we may identify Kp with the full subcategory I (Kp) of T
(and thereby eliminate the slight ambiguity of the notation “Xp”).

Recall the residue field objects K (p) defined in Section 3:

K (p) := 1p//( f1, . . . , fn)' 1p// f1⊗ · · ·⊗ 1p// fn ∈ T

(as before, f1, . . . , fn denotes the chosen regular sequence of non-zero-divisors
generating the prime p).

The main point of this section is that the crucial minimality result of Proposition 3.7
can be extended to localizing subcategories of T , as we verify next.

Lemma 4.1. For every object X ∈ T and every i ∈ {1, . . . , n}, each element f of
( f1, . . . , fi )⊂ R acts as zero on Xp//( f1, . . . , fi ), i.e., f · Xp//( f1, . . . , fi )= 0. In
particular, the R-module H∗(X ⊗ K (p)) is a graded k(p)-vector space.

Proof. Exactly the same as for Lemma 3.1 and Corollary 3.3. (Use that X⊗K (p)=
Xp⊗ K (p) to work inside the big p-local category Tp.) �

Proposition 4.2. For all p ∈ Spec R and X ∈ T , the tensor product X ⊗ K (p)
decomposes into a coproduct of shifted copies of the residue field object:∐

α

6nα K (p)−→∼ X ⊗ K (p).

Proof. Exactly the same as for Proposition 3.6, using Lemma 4.1. �

Proposition 4.3. For every p, the localizing subcategory Loc(K (p)) of T is mini-
mal, meaning that it contains no proper nonzero localizing subcategories.

Proof. This follows from Proposition 4.2 precisely as in the proof of Proposition 3.7,
except that we cannot use Lemma 2.5 to show that X⊗K (p) 6= 0 for every nonzero
object X ∈ Loc(K (p)). Instead, we may use the following argument.

First note that X⊗K (q)= 0 for all q∈ Spec Rr {p}. Indeed, this property holds
for X = K (p) by Lemma 4.1 (because if p 6= q then some homogeneous element
of R must act on K (p)⊗ K (q) both as zero and invertibly) and is stable under
taking coproducts and mapping cones (as the latter are preserved by −⊗K (p));
hence it must hold for all objects of Loc(K (p)), as wished. Now combine this with
Proposition 4.5 below. �

Lemma 4.4. Let M be any nonzero module, possibly infinitely generated, over a
noetherian Z-graded commutative ring S. Then there exists a minimal prime in
SuppS M := {p ∈ Spec S | Mp 6= 0}, the big Zariski support of M.

Proof. If M 6= 0 then Mp 6= 0 for some prime p, so the support is not empty.
Moreover, it suffices to prove the claim for the nonzero module Mp over Sp, because
a minimal prime of SuppSp Mp yields a minimal prime in SuppS M ; hence we may
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assume that S is local. By Zorn’s lemma it suffices to show that in SuppS M every
chain of primes admits a minimum. Indeed, each such chain must stabilize, because
a local commutative noetherian ring has finite Krull dimension. In the ungraded
case, the latter is a well-known corollary of Krull’s principal ideal theorem. A proof
of the analogous result for graded rings can be found in [Bruns and Herzog 1993,
Theorem 1.5.8] or [Park and Park 2011, Theorem 3.5]. �

Proposition 4.5. If an object X ∈ T is such that X ⊗ K (p)= 0 for all p ∈ Spec R
then X = 0.

Proof. We prove the contrapositive. Assume that X 6= 0. Then H∗X 6= 0, hence for
some p ∈ Spec R we must have H∗(Xp)= (H∗X)p 6= 0 and therefore Xp 6= 0. By
Lemma 4.4, we may choose a prime p which is minimal among the primes with
this property. Thus the big support of the R-module H∗Xp consists precisely of
the prime p. We are going to recursively show that X i := Xp//( f1, . . . , fi ) satisfies
SuppR H∗X i = {p} for all i ∈ {1, . . . , n}. Thus in particular X ⊗ K (p) = Xn 6= 0,
which proves the proposition. We already know SuppR H∗X0 = {p} for X0 := Xp,
and suppose we have shown that SuppR H∗X i−1 = {p}. The exact triangle

6−| fi |X i−1
fi
−→ X i−1 −→ X i −→6−| fi |+1 X i−1

implies that SuppR H∗X i ⊆ {p}. Hence X i 6= 0 is equivalent to SuppR H∗X i = {p}.
By the triangle again, if X i = 0 were the case fi would act invertibly on X i−1

and thus on H∗X i−1. This implies H∗X i−1 = (H∗X i−1)[ f −1
i ], and since fi ∈ p

we would conclude that p /∈ SuppR H∗X i−1, in contradiction with the induction
hypothesis. Therefore X i 6= 0, as claimed. �

Proof of Theorem 1.3. The result now follows easily from the machinery developed
by Benson, Iyengar and Krause [Benson et al. 2008; 2011]. Indeed, by [Benson et al.
2011, Theorem 4.2], to obtain the claimed classification of localizing subcategories
it suffices to verify that the action of R stratifies T . By definition, this means that
the following two axioms are satisfied:

• The local-global principle: For every object X ∈ T we have the equality

Loc(X)= Loc({0pX | p ∈ Spec R})

of localizing subcategories of T .

• Minimality: For every p ∈ Spec R the localizing subcategory 0pT of T is
minimal or zero.

The functors 0p : T → T are introduced in [Benson et al. 2008], but we don’t need
to know how they are defined. In our context, i.e., where T is a tensor category and
the action of R is the canonical one of the central ring, the local-global principle
always holds by [Benson et al. 2011, Theorem 7.2] (see also [Stevenson 2013,
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Theorem 6.8]). Moreover 0pX = X ⊗ 0p1 for all X ∈ T , which implies that
0pT = Loc(0p1) since T is generated by 1. Therefore the remaining minimality
condition follows from Proposition 4.3, because Loc(K (p))=Loc(0p1) by [Benson
et al. 2011, Lemma 3.8 (2)] (indeed, by construction K (p) is a particular instance
of the objects collectively denoted by 1(p) in [loc. cit.]). This establishes the first
bijection in Theorem 1.3.

The claimed identification of the Benson–Iyengar–Krause support, suppR X =
{p ∈ Spec R | X ⊗0p1 6= 0}, with the set {p ∈ Spec R | X ⊗ K (p) 6= 0} is an easy
consequence of the equality Loc(K (p))= Loc(0p1) mentioned above.

It remains to verify the moreover part of Theorem 1.3. Let us begin by noting
that, if X ∈ K is a compact object, we have

(4.6) suppR X = suppR H∗X = SuppR H∗X

by [Benson et al. 2008, Theorem 5.5 (1)] and Lemma 2.1. Now let L⊆ T be such
that L= Loc(L∩K). Then⋃

X∈L

suppR X =
⋃

X∈L∩K

suppR X =
⋃

X∈L∩K

SuppR H∗X

by (4.6), and the latter is a specialization closed subset of the spectrum. Conversely,
if S ⊆ Spec R is specialization closed the corresponding localizing subcategory
{X ∈ T | suppR X ⊆ S} is generated by compact objects by [Benson et al. 2008,
Theorem 6.4], hence L= Loc(L∩K). This concludes the proof of the theorem.

It is well known that the assignments C 7→ Loc(C) and L 7→ L∩K are mutually
inverse bijections between thick subcategories C ⊆ K and localizing subcategories
L⊆T which are generated by compact objects of T (see [Neeman 1992b]). Together
with (4.6), this shows how to deduce the classification of thick subcategories of
Corollary 1.2 from Theorem 1.3.

Finally, there are several ways to derive the telescope conjecture of Corollary 1.4
from the previous results. For instance, we may proceed as in [Benson et al. 2011,
§6.2].

Remark 4.7. Using the theory of coherent functors, Benson, Iyengar and Krause
have recently developed in [Benson et al. 2015] an analogue of their stratification
theory of compactly generated categories that can be applied to general essentially
small triangulated categories. Their theory, and more specifically [Benson et al.
2015, Theorem 7.4], provides an alternative way to derive Theorem 1.1 from
Proposition 3.7.

The case of commutative dg algebras. We still owe readers a proof of Theorem 1.6.
Let A be a commutative dg algebra and let D(A) be the derived category of (left,
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say) dg-A-modules. The following elementary fact was pointed out to us by the
referee.

Lemma 4.8. Every f ∈ H∗A acts as zero on its own mapping cone C( f ).

Proof. A (homogeneous) element f ∈ H∗A of degree | f | =−n is (represented by) a
morphism f :6n A→ A of left dg-A-modules. Let us write sa (a ∈ A) for a generic
element of degree |a| − 1 in the suspension sA := 6A; here we use the Koszul
sign convention and treat s as a symbol of degree −1. The cone C( f ) has elements
(a, sn+1b) (for a, b ∈ A). Then f acts on C( f ) by a morphism snC( f )→ C( f )
which, under the isomorphism snC( f )∼= C(sn f ), is written as follows:

g : C(sn f )→ C( f ), g(sna, s2n+1b)= ( f (sna), sn+1 f (snb))

(recall that the suspension sh : sB→ sC of a morphism h : B→ C is given by
(sh)(sb)= s(h(b))). With these notations, the map H :C(sn f )→C( f ) defined by
H(sna, s2n+1b) := (0, sn+1a) is easily seen to satisfy H(t x) = (−1)|t |t H(x) (for
t ∈ A, x ∈ C(sn f )) and d H + Hd =−g; in other words, H is a homotopy g ∼ 0
defined over A. �

As noted in Remark 3.5, Lemma 3.1 was the only place in all of our arguments
where we made use of the hypothesis that R is concentrated in even degrees and
that in the regular sequences we may choose the elements to be non-zero-divisors.
But if we consider the example K := D(A)c, T := D(A) and R := H∗A, we see
immediately that the conclusion of the lemma also follows from the above result
(Lemma 4.8). Hence in this case we can get rid of the extra hypotheses, while the
rest of our arguments go through unchanged. This proves Theorem 1.6.

Indeed, in general in condition (b) of Theorem 1.1 we could similarly renounce
the evenness of R if we substitute the requirement that all elements fi of the regular
sequences be non-zero-divisors with the requirement that fi · 1// fi = 0.
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