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SCHUR–WEYL DUALITY FOR DELIGNE CATEGORIES
II: THE LIMIT CASE

INNA ENTOVA AIZENBUD

This paper is a continuation of a previous paper by the author (Int. Math.
Res. Not. 2015:18 (2015), 8959–9060), which gave an analogue to the classi-
cal Schur–Weyl duality in the setting of Deligne categories.

Given a finite-dimensional unital vector space V (a vector space V with
a chosen nonzero vector 1), we constructed in that paper a complex ten-
sor power of V : an Ind-object of the Deligne category Rep(Sν) which is a
Harish-Chandra module for the pair (gl(V ),P1), where P1 ⊂ GL(V ) is
the mirabolic subgroup preserving the vector 1.

This construction allowed us to obtain an exact contravariant functor
ŜWν,V from the category Repab(Sν) (the abelian envelope of the category
Rep(Sν)) to a certain localization of the parabolic category O associated
with the pair (gl(V ),P1).

In this paper, we consider the case when V =C∞. We define the appropri-
ate version of the parabolic category O and its localization, and show that
the latter is equivalent to a “restricted” inverse limit of categories Ôp

ν,CN

with N tending to infinity. The Schur–Weyl functors ŜWν,CN then give an
antiequivalence between this category and the category Repab(Sν).

This duality provides an unexpected tensor structure on the category
Ôp∞
ν,C∞ .

1. Introduction

1.1. The Karoubian rigid symmetric monoidal categories Rep(Sν), ν ∈ C, were
defined by P. Deligne [2007] as a polynomial family of categories interpolating the
categories of finite-dimensional representations of the symmetric groups; namely, at
points n = ν ∈ Z+ the category Rep(Sν=n) allows an essentially surjective additive
symmetric monoidal functor onto the standard category Rep(Sn). The categories
Rep(Sν) were subsequently studied by Deligne and others (e.g., J. Comes and
V. Ostrik [2011; 2014]).

In [Entova Aizenbud 2015a], we gave an analogue to the classical Schur–Weyl
duality in the setting of Deligne categories. To do that, we defined the “complex
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tensor power” of a finite-dimensional unital complex vector space (i.e., a vector
space V with a distinguished nonzero vector 1). This complex tensor power of V ,
denoted by V⊗ν , is an Ind-object in the category Rep(Sν), and comes with an action
of gl(V ) on it; moreover, this Ind-object is a Harish-Chandra module for the pair
(gl(V ),P1), where P1⊂GL(V ) is the mirabolic subgroup preserving the vector 1.

The “ν-th tensor power” of V is defined for any ν ∈C; for n= ν ∈Z+, the functor
Rep(Sν=n)→Rep(Sn) takes this Ind-object of Rep(Sν=n) to the usual tensor power
V⊗n in Rep(Sn). Moreover, the action of gl(V ) on the former object corresponds
to the action of gl(V ) on V⊗n .

This let us define an additive contravariant functor, called the Schur–Weyl functor:

SWν,V : Repab(Sν)→ Op
V , SWν,V := HomRepab(Sν)( · , V⊗ν).

Here Repab(Sν) is the abelian envelope of the category Rep(Sν) (this envelope was
described in [Comes and Ostrik 2014; Deligne 2007, Chapter 8]). The category Op

V
is a version of the parabolic category O for gl(V ) associated with the pair (V, 1),
which is defined as follows.

We define Op
V to be the category of Harish-Chandra modules for the pair

(gl(V ),P1) on which the group GL(V/C1) acts by polynomial maps, and which
satisfy some additional finiteness conditions (similar to the ones in the definition of
the usual BGG category O).

We now consider the localization of Op
V obtained by taking the full subcategory

of Op
V consisting of modules of degree ν (i.e., modules on which IdV ∈ End(V )

acts by the scalar ν), and localizing by the Serre subcategory of gl(V )-polynomial
modules. This quotient is denoted by Ôp

ν,V . It turns out that for any unital finite-
dimensional space (V,1) and any ν ∈ C, the contravariant functor ŜWν,V makes
Ôp
ν,V a Serre quotient of Repab(Sν)op.
In this paper, we will consider the categories ÔpN

ν,CN for N ∈ Z+ and for N =∞.
Defining appropriate restriction functors

R̂esn−1,n : Ô
pn
ν,Cn → Ôpn−1

ν,Cn−1

allows us to consider the inverse limit of the system ((Ôpn
ν,Cn )n≥0, (R̂esn−1,n)n≥1).

Inside this inverse limit we consider a full subcategory which is equivalent to Ôp∞
ν,C∞ ;

this subcategory is the “restricted inverse limit” of ((Ôpn
ν,Cn )n≥0, (R̂esn−1,n)n≥1) and

will be denoted by lim
←−−n≥1, restr Ôpn

ν,Cn . This category has an intrinsic description,
which we give in this paper (intuitively, this is the inverse limit among finite-length
categories).

Similarly to [Entova Aizenbud 2015a], we define the complex tensor power of the
unital vector space (C∞,1 := e1), and the corresponding Schur–Weyl contravariant
functor SWν,C∞ . As in the finite-dimensional case, this functor induces an exact
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contravariant functor ŜWν,C∞ , and we have the following commutative diagram:

Repab(Sν)op
ŜWν,lim

//

ŜWν,C∞
))

lim
←−−n≥1, restr Ôpn

ν,Cn

Ôp∞
ν,C∞

OO

The contravariant functors ŜWν,C∞ and ŜWν,lim turn out to be antiequivalences
induced by the Schur–Weyl functors SWν,Cn . The antiequivalences ŜWν,C∞ and
ŜWν,lim induce an unexpected rigid symmetric monoidal category structure on

Ôp∞
ν,C∞
∼= lim

←−−
n≥1, restr

Ôpn
ν,Cn .

We obtain an interesting corollary: the duality in this category given by the tensor
structure will coincide with the one arising from the usual notion of duality in BGG
category O .

1.2. Notation. The base field throughout the paper will be C. The notation and
definitions used in this paper can be found in [Entova Aizenbud 2015a, Section 2].
In particular, lowercase Greek letters will denote Young diagrams, and `(λ) will
denote the number of rows in λ, while |λ| will denote the number of boxes in λ.

We will use the definition of a finite-length abelian category given below.

Definition 1.2.1. Let C be an abelian category, and C be an object of C. A Jordan–
Hölder filtration for C is a finite sequence of subobjects of C

0= C0 ⊂ C1 ⊂ · · · ⊂ Cn = C

such that each subquotient Ci+1/Ci is simple.

The Jordan–Hölder filtration might not be unique, but the simple factors Ci+1/Ci

are unique (up to reordering and isomorphisms). Consider the multiset of the simple
factors: each simple factor is considered as an isomorphism class of simple objects,
and its multiplicity is the multiplicity of its isomorphism class in the Jordan–Hölder
filtration of C . This multiset is denoted by JH(C), and its elements are called the
Jordan–Hölder components of C . The length of the object C , denoted by `C(C), is
defined to be the size of the finite multiset JH(C).

Definition 1.2.2. An abelian category C is called a finite-length category if every
object admits a Jordan–Hölder filtration.

1.3. Structure of the paper. Sections 2 and 3 contain preliminaries on the Deligne
category Rep(Sν), the categories of polynomial representations of glN (where
N ∈ Z+ ∪ {∞}) and the parabolic category O for glN . These sections are based on
[Entova Aizenbud 2015a; 2015b; Sam and Snowden 2015].
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In Section 4, we define the version of the parabolic category O for glN which
we will consider (including the case when N =∞; see Section 4.2), and recall the
necessary information about this category.

In Section 5, we give a description of the parabolic category O for gl∞ as a
restricted inverse limit of the parabolic categories O for gln as n tends to infinity.

In Sections 6 and 7, we recall the definition of the complex tensor power (CN )⊗ν,
and define the functors SWν,V :Repab(Sν)op

→ Op
ν,V , ŜWν,V :Repab(Sν)op

→ Ôp
ν,V

for a unital vector space (V,1) (finite- or infinite-dimensional). In Section 7.2, we
recall the finite-dimensional case (studied in [Entova Aizenbud 2015a]).

Section 8 discusses the restricted inverse limit construction in the case of the
classical Schur–Weyl duality, which motivates our construction for the Deligne
categories. Sections 9 and 10 prove the main results of the paper. Section 11
discusses the relation between the rigidity (duality) in Repab(Sν) and the duality in
the parabolic category O for gl∞.

2. Deligne category Rep(Sν)

A detailed description of the Deligne category Rep(Sν) and its abelian envelope
can be found in [Comes and Ostrik 2011; 2014; Deligne 2007; Etingof 2014;
Entova Aizenbud 2015a].

2.1. General description. For any ν ∈ C, the category Rep(Sν) is generated, as a
C-linear Karoubian tensor category, by one object, denoted h. This object is the
analogue of the permutation representation of Sn , and any object in Rep(Sν) is a
direct summand in a direct sum of tensor powers of h.

For ν /∈ Z+, Rep(Sν) is a semisimple abelian category.
For ν ∈ Z+, the category Rep(Sν) has a tensor ideal Iν , called the ideal of

negligible morphisms (this is the ideal of morphisms f : X→Y such that tr( f u)= 0
for any morphism u : Y → X ). In that case, the classical category Rep(Sn) of finite-
dimensional representations of the symmetric group for n := ν is equivalent to
Rep(Sν=n)/Iν (equivalent as Karoubian rigid symmetric monoidal categories). The
full, essentially surjective functor Rep(Sν=n)→ Rep(Sn) defining this equivalence
will be denoted by Sn . Note that Sn sends h to the permutation representation
of Sn .

The indecomposable objects of Rep(Sν), regardless of the value of ν, are
parametrized (up to isomorphism) by all Young diagrams (of arbitrary size). We
will denote the indecomposable object in Rep(Sν) corresponding to the Young
diagram τ by Xτ .

For ν =: n ∈ Z+, the partitions λ for which Xλ has a nonzero image in the
quotient Rep(Sν=n)/Iν=n ∼= Rep(Sn) are exactly the λ for which λ1+ |λ| ≤ n. If
λ1+ |λ| ≤ n, then the image of λ in Rep(Sn) is the irreducible representation of Sn
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corresponding to the Young diagram λ̃(n): the Young diagram obtained by adding
a row of length n− |λ| on top of λ.

For each ν, we define an equivalence relation ν
∼ on the set of all Young diagrams:

we say that λ ν
∼ λ′ if the sequence (ν−|λ|, λ1−1, λ2−2, . . . ) can be obtained from

the sequence (ν−|λ′|, λ′1−1, λ′2−2, . . . ) by permuting a finite number of entries.
The equivalence classes thus obtained are in one-to-one correspondence with the
blocks of the category Rep(Sν) (see [Comes and Ostrik 2011]).

We say that a block is trivial if the corresponding equivalence class is trivial, i.e.,
has only one element (in that case, the block is a semisimple category).

The nontrivial equivalence classes (respectively, blocks) are parametrized by all
Young diagrams of size ν; in particular, this happens only if ν ∈ Z+. These classes
are always of the form {λ(i)}i , with

λ(0) ⊂ λ(1) ⊂ λ(2) ⊂ · · ·

(each λ(i) can be explicitly described based on the Young diagram of size ν corre-
sponding to this class).

2.2. Abelian envelope. As was mentioned before, the category Rep(Sν) is defined
as a Karoubian category. For ν /∈ Z+, it is semisimple and thus abelian, but for
ν ∈ Z+, it is not abelian. Fortunately, it has been shown that Rep(Sν) possesses an
“abelian envelope”, that is, it can be embedded (as a full monoidal subcategory)
into an abelian rigid symmetric monoidal category, and this abelian envelope has a
universal mapping property (see [Comes and Ostrik 2014, Theorem 1.2; Deligne
2007, Conjecture 8.21.2]). We will denote the abelian envelope of the Deligne
category Rep(Sν) by Repab(Sν) (with Repab(Sν) := Rep(Sν) for ν /∈ Z+).

An explicit construction of the category Repab(Sν=n) is given in [Comes and
Ostrik 2014], and a detailed description of its structure can be found in [En-
tova Aizenbud 2015a]. It turns out that the category Repab(Sν) is a highest weight
category (with infinitely many weights) corresponding to the partially ordered set
({Young diagrams},≥), where

λ≥ µ ⇐⇒ λ
ν
∼ µ, λ⊂ µ

(namely, in a nontrivial ν
∼-class, λ(i) ≥ λ( j) if i ≤ j).

Thus the isomorphism classes of simple objects in Repab(Sν) are parametrized
by the set of Young diagrams of arbitrary sizes. We will denote the simple object
corresponding to λ by L(λ).

We will also use the fact that blocks of the category Repab(Sν), just like the blocks
of Rep(Sν), are parametrized by ν

∼-equivalence classes. For each ν
∼-equivalence

class, the corresponding block of Rep(Sν) is the full subcategory of tilting objects in
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the corresponding block of Repab(Sν) (see [Comes and Ostrik 2014, Proposition 2.9,
Section 4]).

3. gl∞ and the restricted inverse limit of representations of gln

In this section, we discuss the category of polynomial representations of the Lie
algebra gl∞ and its relation to the categories of polynomial representations of gln for
n ≥ 0. The representations of the Lie algebra gl∞ are discussed in detail in [Penkov
and Styrkas 2011; Dan-Cohen et al. 2016; Sam and Snowden 2015, Section 3].
Most of the constructions and the proofs of the statements appearing in this section
can be found in [Entova Aizenbud 2015b, Section 7].

3.1. The Lie algebra gl∞. Let C∞ be a complex vector space with a countable
basis e1, e2, e3, . . . . Consider the Lie algebra gl∞ of infinite matrices A= (ai j )i, j≥1

with finitely many nonzero entries. We have a natural action of gl∞ on C∞ and
on the restricted dual C∞

∗
= spanC(e

∗

1, e∗2, e∗3, . . . ) (here e∗i is the linear functional
dual to ei : e∗i (e j )= δi j ).

Let N ∈Z+∪{∞}, and let m ≥ 1. We will consider the Lie subalgebra glm ⊂ glN
which consists of matrices A = (ai j )1≤i, j≤N for which ai j = 0 whenever i > m or
j >m. We will also denote by gl⊥m the Lie subalgebra of glN consisting of matrices
A = (ai j )1≤i, j≤N for which ai j = 0 whenever i ≤ m or j ≤ m.

Remark 3.1.1. Note that gl⊥m ∼= glN−m for any m ≤ N .

3.2. Categories of polynomial representations of glN . In this subsection, we take
N ∈ Z+ ∪ {∞}. The notation CN

∗
will stand for (CN )∗ whenever N ∈ Z+, and for

C∞
∗

when N =∞.
Consider the category Rep(glN )poly of polynomial representations of glN : this is

the category of the representations of glN which can be obtained as summands of a
direct sum of tensor powers of the tautological representation CN of glN .

It is easy to see that this is a semisimple abelian category, whose simple objects
are parametrized (up to isomorphism) by all Young diagrams of arbitrary sizes
whose length does not exceed N : the simple object corresponding to λ is SλCN.

Remark 3.2.1. Note that Rep(gl∞)poly is the free abelian symmetric monoidal
category generated by one object (see [Sam and Snowden 2015, Section 2.2.11]).
It has an equivalent definition as the category of polynomial functors of bounded
degree, which can be found in [Hong and Yacobi 2013; Sam and Snowden 2015].

Next, we define a natural Z+-grading on objects in Ind-Rep(glN )poly (cf. [Sam
and Snowden 2015, Section 2.2.2]):

Definition 3.2.2. The objects in Ind-Rep(glN )poly have a natural Z+-grading. Given
M ∈ Ind-Rep(glN )poly, we consider the decomposition M=

⊕
λ SλCN

⊗multλ (here
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multλ is the multiplicity space of SλCN in M), and we define

grk(M) :=
⊕
λ:|λ|=k

SλCN
⊗multλ.

Of course, the morphisms in Ind-Rep(glN )poly respect this grading.

3.3. Specialization and restriction functors. We now define specialization func-
tors from the category of representations of gl∞ to the categories of representations
of gln (cf. [Sam and Snowden 2015, Section 3]):

Definition 3.3.1. We have

0n : Rep(gl∞)poly→ Rep(gln)poly, 0n := ( · )
gl⊥n.

One can easily check (cf. [Entova Aizenbud 2015b, Section 7]) that the functor 0n

is well defined.

Lemma 3.3.2 [Penkov and Styrkas 2011; Sam and Snowden 2015, Section 3].
The functors 0n are additive symmetric monoidal functors between semisimple
symmetric monoidal categories. Their effect on the simple objects is described as
follows: for any Young diagram λ, we have 0n(SλC∞)∼= SλCn.

Definition 3.3.3. Let n ≥ 1. We define the functors

Resn−1,n : Rep(gln)poly→ Rep(gln−1)poly, Resn−1,n := ( · )
gl⊥n−1.

Again, one can easily show that these functors are well defined.

Remark 3.3.4. There is an alternative definition of the functors Resn−1,n . One can
think of the functor Resn−1,n acting on a gln-module M as taking the restriction
of M to gln−1 and then considering only the vectors corresponding to “appropriate”
central characters.

More specifically, we say that a gln-module M is of degree d if IdCn ∈ gln acts
by d IdM on M. Also, given any gln-module M, we may consider the maximal
submodule of M of degree d , and denote it by degd(M). This defines an endofunctor
degd of Rep(gln)poly. Note that a simple module SλCn is of degree |λ|.

The notion of degree gives a decomposition

Rep(gln)poly ∼=
⊕
d∈Z+

Rep(gln)poly,d ,

where Rep(gln)poly,d is the full subcategory of Rep(gln)poly consisting of all poly-
nomial gln-modules of degree d . Then

Resn−1,n =
⊕
d∈Z+

Resd,n−1,n : Rep(gln)poly→ Rep(gln−1)poly,
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with

Resd,n−1,n : Rep(gln)poly,d → Rep(gln−1)poly,d , Resd,n−1,n := degd ◦Resglngln−1
,

where Resglngln−1
is the usual restriction functor for the pair gln−1 ⊂ gln .

Once again, the functors Resn−1,n are additive functors between semisimple
categories.

Lemma 3.3.5. Resn−1,n(SλCn) ∼= SλCn−1 for any Young diagram λ (recall that
SλCn−1

= 0 if `(λ) > n− 1).

Moreover, these functors are compatible with the functors 0n defined before.

Lemma 3.3.6. For any n ≥ 1, we have a commutative diagram:

Rep(gl∞)poly
0n
//

0n−1 ((

Rep(gln)poly

Resn−1,n

��

Rep(gln−1)poly

That is, there is a natural isomorphism 0n−1 ∼=Resn−1,n ◦0n .

Corollary 3.3.7. The functors Resn−1,n : Rep(gln)poly→ Rep(gln−1)poly are sym-
metric monoidal functors.

3.4. Restricted inverse limit of categories Rep(gln)poly. This subsection gives a
description of the category Rep(gl∞)poly as a “restricted” inverse limit of categories
Rep(gln)poly (see the Appendix and [Entova Aizenbud 2015b] for definitions and
details).

We will use the framework developed in [Entova Aizenbud 2015b] for the inverse
limits of categories with Z+-filtrations on objects, and the restricted inverse limits
of finite-length categories (abelian categories in which every object admits a Jordan–
Hölder filtration). The necessary definitions (such as Z+-filtered functors and
shortening functors) can be found in the Appendix.

We define a Z+-filtration on the objects of Rep(gln)poly for each n ∈ Z+:

Notation 3.4.1. For each k ∈ Z+, let Filk(Rep(gln)poly) be the full additive subcat-
egory of Rep(gln)poly generated by SλCn such that `(λ)≤ k.

Clearly the subcategories Filk(Rep(gln)poly) give us a Z+-filtration on the objects
of the category Rep(gln)poly. Furthermore, by Lemma 3.3.5, the functors Resn−1,n

are Z+-filtered functors, i.e., they induce functors

Resk
n−1,n : Filk(Rep(gln)poly)→ Filk(Rep(gln−1)poly).
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This allows us to consider the inverse limit

lim
←−−

n∈Z+,Z+-filtr
Rep(gln)poly ∼= lim

−−→
k∈Z+

lim
←−−

n∈Z+

Filk(Rep(gln)poly).

This is an abelian category (with a natural Z+-filtration on objects).
By Lemma 3.3.5, the functors Resn−1,n are shortening functors; furthermore,

the system ((Rep(gln)poly)n∈Z+, (Resn−1,n)n≥1) satisfies the conditions listed in
Proposition A.5.1, and therefore the category lim

←−−n∈Z+,Z+-filtr Rep(gln)poly is also
equivalent to the restricted inverse limit of this system, lim

←−−n∈Z+, restr Rep(gln)poly.

Remark 3.4.2. The functors Resn−1,n are symmetric monoidal functors, so the
category lim

←−−n∈Z+, restr Rep(gln)poly is a symmetric monoidal category.

The following proposition is relatively straightforward. Its detailed proof can be
found in [Entova Aizenbud 2015b].

Proposition 3.4.3. We have an equivalence of symmetric monoidal Karoubian
categories

0lim : Rep(gl∞)poly→ lim
←−−

n∈Z+, restr
Rep(gln)poly

induced by the symmetric monoidal functors

0n = ( · )
gl⊥n : Rep(gl∞)poly→ Rep(gln)poly.

4. Parabolic category O

In this section, we describe a version of the parabolic category O for glN which we
are going to work with. We give a definition which describes the relevant category
for both gln and gl∞.

4.1. For the benefit of the reader, we will start by giving a definition for glN
when N is a positive integer; this definition is analogous to the usual definition of
the category O . The generic definition will then be just a slight modification of the
first to accommodate the case N =∞. This version of the parabolic category O is
attached to a pair: a vector space V and a fixed nonzero vector 1 in it. Such a pair
is called a unital vector space. In our case, we will just consider V = CN , with the
standard basis e1, e2, . . . , and the chosen vector 1 := e1. Fix N ∈ Z with N ≥ 1.

Notation 4.1.1. The following notation will be used throughout the paper:

• We denote by pN ⊂ glN the parabolic Lie subalgebra which consists of all the
endomorphisms φ : CN

→ CN for which φ(1) ∈ C1. In terms of matrices this
is span{E1,1, Ei, j | j > 1}.

• u+pN
⊂ pN denotes the algebra of endomorphisms φ : CN

→ CN for which
Imφ ⊂ C1⊂ Kerφ. In terms of matrices, u+pN

= span{E1, j | j > 1}.
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Denote UN := span{e2, e3, . . . , eN }. We have a splitting glN ∼= pN ⊕u−pN
, where

u−pN
∼= UN = span{Ei,1 | i > 1}). This gives us an analogue of the triangular

decomposition:
glN ∼= C IdCN ⊕ u−pN

⊕ u+pN
⊕ gl(UN ).

We can now give a precise definition of the parabolic category O we will use:

Definition 4.1.2. We define the category OpN
CN to be the full subcategory of ModU(glN )

whose objects M satisfy the following conditions:

• Viewed as a U(gl(UN ))-module, M is a direct sum of polynomial U(gl(UN ))-
modules (that is, M belongs to Ind-Rep(gl(UN ))poly).

• M is locally finite over u+pN
.

• M is a finitely generated U(glN )-module.

Remark 4.1.3. One can replace the requirement that u+pN
act locally finitely on M

by the requirement that U(u+pN
) act locally nilpotently on M .

Remark 4.1.4. One can, in fact, give an equivalent definition of the category Op
V

corresponding to a finite-dimensional unital vector (V,1) without choosing a split-
ting (cf. [Entova Aizenbud 2015a, Section 5] and the Introduction).

Definition 4.1.5. A module M over the Lie algebra glN will be said to be of degree
K ∈ C if IdCN ∈ glN acts by K IdM on M.

We will denote by OpN
ν,CN the full subcategory of OpN

CN whose objects are modules
of degree ν. To say a module M of OpN

CN is of degree ν is the same as to require
that E1,1 acts on each subspace SλUN of M by the scalar ν− |λ|.

Definition 4.1.6. Let ν ∈ C. Define the functor degν :ModU(glN )→ModU(glN ) by
letting degν(E) be the maximal submodule of E of degree ν (see Definition 4.1.5).
For a morphism f : E→ E ′ of glN -modules, we put degν( f ) := f |degν(E).

Let E ∈ModU(glN ). The maximal submodule of E of degree ν is well defined: it
is the subspace of E consisting of all vectors on which IdCN acts by the scalar ν,
and it is a glN -submodule since IdCN lies in the center of glN .

One can show that the functor degν : ModU(glN ) → ModU(glN ) is left-exact.
Moreover, it is easy to show that the category OpN

ν,CN is a direct summand of OpN
CN ,

and the functor degν : O
pN
CN → OpN

ν,CN is exact.

4.2. Parabolic category O for glN . We now give a definition of the parabolic
category O which for glN . Again, we let N ∈ Z≥1 ∪ {∞}.

Consider a unital vector space (CN ,1), where 1 := e1. Put

UN := spanC(e2, e3, . . . )⊂ CN,
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so that we have a splitting CN
=Ce1⊕UN . We also denote UN ,∗ := span(e∗2, e∗3, . . . )

(so UN ,∗ =U∗N whenever N ∈ Z). We have a decomposition

glN ∼= gl(UN )⊕ gl1⊕ u+pN
⊕ u−pN

.

Of course, for any N , we have u−pN
∼=UN ; moreover, u+pN

∼=UN ,∗. We will also use
the isomorphisms gl(UN )∼= gl⊥1

∼= glN−1.

Definition 4.2.1.

• Define the category ModglN ,gl(UN )-poly to be the category of glN -modules whose
restriction to gl(UN ) lies in Ind-Rep(glUN

)poly; that is, glN -modules whose re-
striction to gl(UN ) is a (perhaps infinite) direct sum of Schur functors applied
to UN . The morphisms would be glN -equivariant maps.

• We say that an object M ∈ModglN ,gl(UN )-poly is of degree ν (ν ∈ C) if on every
summand SλUN ⊂ M , the element E1,1 ∈ glN acts by (ν− |λ|) IdSλUN .

• Let M ∈ModglN ,gl(UN )-poly. We have a commutative algebra Sym(UN )∼=U(u−pN
)

(the enveloping algebra of u−pN
⊂ glN ). The action of glN on M gives M a

Sym(UN )-module structure. We say that M is finitely generated over Sym(UN )

if M is a quotient of a “free finitely generated Sym(UN )-module”; that is, as a
Sym(UN )-module, M is a quotient (in Ind-Rep(glN )poly) of Sym(UN )⊗ E for
some E ∈ Rep(gl(UN ))poly.

• Let M ∈ModglN ,gl(UN )-poly. We have a commutative algebra Sym(UN ,∗)∼=U(u+pN
)

(the enveloping algebra of u+pN
⊂ glN ). The action of glN on M gives M a

Sym(UN ,∗)-module structure. We say that M is locally nilpotent over the algebra
U(u+pN

) if for any v ∈ M , there exists m ≥ 0 such that for any A ∈ Symm(UN ,∗)

we have A.v = 0.

Recall the natural Z+-grading on the object of Ind-Rep(glN )poly. For each
M ∈ModglN ,gl(UN )-poly, the above definition implies that gl(UN ) acts by operators
of degree zero, and that UN ,∗ acts by operators of degree 1. We now define the
parabolic category O for glN which we will use throughout the paper:

Definition 4.2.2. We define the category OpN
ν,CN to be the full subcategory of

ModglN ,gl(UN )-poly whose objects M satisfy the following requirements:

• M is of degree ν.

• M is finitely generated over Sym(UN ).

• M is locally nilpotent over the algebra U(u+pN
).

Of course, for a positive integer N , this is just the category OpN
ν,CN we defined in

the beginning of this section.
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We will also consider the localization of the category OpN
ν,CN by its Serre subcat-

egory of polynomial glN -modules of degree ν; such modules exist if and only if
ν ∈ Z+. This localization will be denoted by

π̂N : O
pN
ν,CN → ÔpN

ν,CN

and will play an important role when we consider the Schur–Weyl duality in complex
rank.

4.3. Duality in category O. Let n ∈ Z+. Recall that in the category O for gln we
have the notion of a duality (cf. [Humphreys 2008, Section 3.2]): namely, given a
gln-module M with finite-dimensional weight spaces, we can consider the twisted
action of gln on the dual space M∗, given by A. f := f ◦ AT , where AT means the
transpose of A ∈ gln . This makes M∗ a gln-module. We then take M∨ to be the
maximal submodule of M∗ lying in category O .

More explicitly, considering M as a direct sum of its finite-dimensional weight
spaces

M =
⊕
λ

Mλ

we can consider the restricted twisted dual

M∨ :=
⊕
λ

M∗λ

(that is, we take the dual to each weight space separately). The action of gln is
given by A. f := f ◦ AT for any A ∈ gln . The module M∨ is called the dual of M ,
and we get an exact functor ( · )∨ : Oop

→ O .

Proposition 4.3.1. The category Opn
Cn is closed under taking duals, and the duality

functor ( · )∨ : (Opn
Cn )

op
→ Opn

Cn is an equivalence of categories.

In fact, a similar construction can be made for Op∞
ν,C∞ . All modules M in Op∞

ν,C∞

are weight modules with respect to the subalgebra of diagonal matrices in gl∞, and
the weight spaces are finite-dimensional (due to the polynomiality condition in the
definition of Op∞

ν,C∞). This allows one to construct the restricted twisted dual M∨ in
the same way as before, and obtain an exact functor

( · )∨ : (Op∞
ν,C∞)

op
→ Op∞

ν,C∞ .

Remark 4.3.2. It is obvious that for n ∈ Z+, the functor ( · )∨ : (Opn
Cn )

op
→ Opn

Cn

takes finite-dimensional (polynomial) modules to finite-dimensional (polynomial)
modules. In fact, one can easily check that the functor ( · )∨ : (Op∞

ν,C∞)
op
→ Op∞

ν,C∞

takes polynomial modules to polynomial modules as well.
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4.4. Structure of the category Opn
ν,Cn . In this subsection, we present some facts

about the category Opn
ν,Cn which will be used later on. The material of this section

is discussed in more detail in [Entova Aizenbud 2015a, Section 5] and is mostly
based on [Humphreys 2008, Chapter 9].

Fix ν ∈ C, and fix n ∈ Z+. We denote by e1, e2, . . . , en the standard basis of Cn ,
and put 1 := e1 and Un := span{e2, e3, . . . , en}. We will consider the category Opn

Cn

for the unital vector space (Cn,1) and the splitting Cn
= C1⊕Un .

Proposition 4.4.1. The categories Opn
Cn and Ind-Opn

Cn are closed under taking duals,
direct sums, submodules, quotients and extensions in Ogln , as well as tensoring with
finite-dimensional gln-modules.

The category Opn
ν,Cn decomposes into blocks (each of the blocks is an abelian

category in its own right). To each ν
∼-class of Young diagrams corresponds a block

of Op
ν,Cn . If all Young diagrams λ in this ν

∼-class have length at least n, then the
corresponding block is zero. To each nonzero block of Op

ν,Cn corresponds a unique
ν
∼-class.

Moreover, the blocks corresponding to trivial ν
∼-classes are either semisimple

(i.e., equivalent to the category VectC) or zero.
We now discuss standard objects in Opn

Cn .

Definition 4.4.2. Let λ be a Young diagram. The generalized Verma module
Mpn (ν− |λ|, λ) is defined to be the gln-module

U(gln)⊗U(pn) SλUn,

where gl(Un) acts naturally on SλUn , IdCn ∈ pn acts on SλUn by scalar ν, and u+pn

acts on SλUn by zero. Thus Mpn(ν − |λ|, λ) is the parabolic Verma module for
(gln, pn) with highest weight (ν − |λ|, λ) if and only if n − 1 ≥ `(λ), and zero
otherwise.

Definition 4.4.3. L(ν − |λ|, λ) is defined to be zero if n ≥ `(λ), or the simple
module for gln of highest weight (ν− |λ|, λ) otherwise.

The following basic lemma will be very helpful.

Lemma 4.4.4. Let λ be a Young diagram such that `(λ) < n. We then have an
isomorphism of gl(Un)-modules:

Mpn (ν− |λ|, λ)
∼= Sym(Un)⊗ SλUn.

We will also use the following lemma.

Lemma 4.4.5. Let {λ(i)}i be a nontrivial ν∼-class, and i ≥ 0 be such that `(λ(i))< n.
Then there is a short exact sequence

0→ L(ν− |λ(i+1)
|, λ(i+1))→ Mpn (ν− |λ

(i)
|, λ(i))→ L(ν− |λ(i)|, λ(i))→ 0.
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Corollary 4.4.6. The isomorphism classes of the generalized Verma modules and
the simple polynomial modules in Opn

ν,Cn form a basis for the Grothendieck group
of Opn

ν,Cn .

5. Stable inverse limit of parabolic categories O

5.1. Restriction functors.

Definition 5.1.1. Let n ≥ 1. Define the functor

Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1, Resn−1,n := ( · )
gl⊥n−1.

Again, the subalgebras gln−1, gl
⊥

n−1 ⊂ gln commute, and therefore the subspace
of gl⊥n−1-invariants of a gln-module automatically carries an action of gln−1.

We need to check that this functor is well defined. In order to do so, consider the
functor Resn−1,n : O

pn
ν,Cn →ModU(gln−1). This functor is well defined, and we will

show that the objects in the image lie in the full subcategory Opn−1
ν,Cn−1 of ModU(gln−1).

The functor Resn−1,n can alternatively be defined as follows: for a module M in
Opn
ν,Cn , we restrict the action of gln to gln−1, and then only take the vectors in M

attached to specific central characters. More specifically, we have:

Lemma 5.1.2. The functor Resn−1,n is naturally isomorphic to the composition
degν ◦Resglngln−1

(the functor degν was defined in Definition 4.1.6).

Proof. Let M ∈ Opn
ν,Cn . For any vector m ∈ M , we know that

IdCn .m = (E1,1+ E2,2+ · · ·+ En,n).m = νm.

Then the requirement that

IdCn−1 .m = (E1,1+ E2,2+ · · ·+ En−1,n−1).m = νm

is equivalent to the requirement that En,n.m = 0, namely that m ∈ Mgl⊥n−1 . �

We will now use this information to prove the following result:

Lemma 5.1.3. The functor Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1 is well defined.

Proof. Let M ∈ Opn
ν,Cn , and consider the gln−1-module Resn−1,n(M). By definition,

this is a module of degree ν. We will show that it lies in Opn−1
ν,Cn−1 .

First of all, consider the inclusion gl(Un−1)
⊥
⊕gl(Un−1)⊂gl(Un). This inclusion

gives us the restriction functor (see Definition 3.3.3)

ResUn−1,Un : Rep(gl(Un))poly→ Rep(gl(Un−1))poly, ResUn−1,Un := ( · )
gl(Un−1)

⊥

.

The latter is an additive functor between semisimple categories, and takes polyno-
mial representations of gl(Un) to polynomial representations of gl(Un−1).

Now, the restriction to gl(Un−1) of the gln−1-module Resn−1,n(M) is isomorphic
to ResUn−1,Un (M |gl(Un)), and thus is a polynomial representation of gl(Un−1).
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Secondly, Resn−1,n(M) is locally nilpotent over U(u+pn−1
), since M is locally

nilpotent over U(u+pn
) and U(u+pn−1

)⊂ U(u+pn
).

It remains to check that given M ∈ Opn
ν,Cn , the module Resn−1,n(M) is finitely

generated over Sym(Un−1). Indeed, we know that there exists a polynomial gl(Un)-
module E and a surjective gl(Un)-equivariant morphism of Sym(Un)-modules
Sym(Un)⊗E � M . Taking the gl(Un−1)

⊥-invariants and using Corollary 3.3.7, we
conclude that there is a surjective gl(Un−1)-equivariant morphism of Sym(Un−1)-
modules

Sym(Un−1)⊗ Egl(Un−1)
⊥

�Resn−1,n(M).

Thus Resn−1,n(M) is finitely generated over Sym(Un−1). �

Lemma 5.1.4. The functor Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1 is exact.

Proof. We use Lemma 5.1.2. The functor degν : O
pn−1
Cn−1 → Opn−1

ν,Cn−1 is exact, so the
functor Resn−1,n is obviously exact as well. �

Lemma 5.1.5. The functor Resn−1,n takes parabolic Verma modules either to
parabolic Verma modules or to zero:

Resn−1,n(Mpn (ν− |λ|, λ))
∼= Mpn−1(ν− |λ|, λ).

(Recall that the latter is a parabolic Verma module for gln−1 if and only if `(λ)≤
n− 2, and zero otherwise).

Proof. Consider the parabolic Verma module Mpn (ν − |λ|, λ), where the Young
diagram λ has length at most n− 1. By definition, we have

Mpn (ν− |λ|, λ)= U(gln)⊗U(pn) SλUn.

The branching rule for gl(Un−1)⊂ gl(Un) tells us that

(SλUn)|gl(Un−1)
∼=

⊕
λ′

Sλ
′

Un−1,

where the sum is taken over the set of all Young diagrams obtained from λ by
removing several boxes, no two in the same column. So

Resglngln−1
(Mpn (ν− |λ|, λ))

∼=

(⊕
λ′⊂λ

Mpn−1(ν− |λ|, λ
′)

)
⊗ U

(
u−pn
/u−pn−1

)
.

Here:

• Mpn−1(ν − |λ|, λ
′) is either a parabolic Verma module for gln−1 of highest

weight (ν− |λ|, λ′) (note that it is of degree ν− |λ| + |λ′|) or zero.

• gl(Un−1) acts trivially on the space U
(
u−pn
/u−pn−1

)
. This space is isomorphic,

as a Z+-graded vector space, to C[t] (ν standing for En,1 ∈ gln) and E1,1 acts
on it by derivations −t d

dt .
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Thus IdCn−1 ∈ gln acts on the subspace Mpn−1(ν−|λ|, λ
′)⊗ tk

⊂ Mpn (ν−|λ|, λ) by
the scalar ν− |λ| + |λ′| − k.

We now apply the functor degν to the module Resglngln−1
(Mpn (ν − |λ|, λ)). To

see which subspaces Mpn−1(ν− |λ
′
|, λ′)⊗ tk of Mpn (ν− |λ|, λ) will survive after

applying degν , we require that |λ| − |λ′| + k = 0. But we are only considering
Young diagrams λ′ such that λ′⊂ λ, and k ∈Z+, which means that the only relevant
case is λ′ = λ, k = 0. We conclude that

Resn−1,n(MpN (ν− |λ|, λ))
∼= Mpn−1(ν− |λ|, λ). �

Lemma 5.1.6. Given a simple gln-module Ln(ν− |λ|, λ),

Resn−1,n(Ln(ν− |λ|, λ))∼= Ln−1(ν− |λ|, λ).

(Recall that the latter is a simple gln−1-module if and only if `(λ)≤ n−2, and zero
otherwise).

Proof. The statement follows immediately from Lemma 5.1.5 when λ lies in a
trivial ν

∼-class; for a nontrivial ν
∼-class {λ(i)}i , we have short exact sequences (see

Lemma 4.4.5):

0→ Ln(ν− |λ
(i+1)
|, λ(i+1))→ Mpn (ν− |λ

(i)
|, λ(i))→ Ln(ν− |λ

(i)
|, λ(i))→ 0.

Using the exactness of Resn−1,n , we can prove the required statement for
Ln(ν − |λ

(i)
|, λ(i)) by induction on i , provided the statement is true for i = 0.

So it remains to check that

Resn−1,n(Ln(ν− |λ|, λ))∼= Ln−1(ν− |λ|, λ)

for the minimal Young diagram λ in any nontrivial ν
∼-class. Recall that in that case,

Ln(ν− |λ|, λ)= Sλ̃(ν)Cn is a finite-dimensional simple representation of gln . The
branching rule for gln, gln−1 implies that

Resglngln−1
(Sλ̃(ν)Cn)∼=

⊕
µ

SµCn−1,

where the sum is taken over the set of all Young diagrams obtained from λ̃(ν)

by removing several boxes, no two in the same column. Considering only the
summands of degree ν, we see that

Resn−1,n(Ln(ν− |λ|, λ))∼= Sλ̃(ν)Cn−1 ∼= Ln−1(ν− |λ|, λ). �

The functor Resn−1,n : Opn
ν,Cn → Opn−1

ν,Cn−1 clearly takes polynomial modules to
polynomial modules; together with Lemma 5.1.4, this means that Resn−1,n factors
through an exact functor

R̂esn−1,n : Ô
pn
ν,Cn → Ôpn−1

ν,Cn−1,
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i.e., we have a commutative diagram

Opn
ν,Cn

Resn−1,n
//

π̂n

��

Opn−1
ν,Cn−1

π̂n−1

��

Ôpn
ν,Cn

R̂esn−1,n
// Ôpn−1

ν,Cn−1

(see Section 4.2 for the definition of the localizations π̂n).

5.2. Specialization functors.

Definition 5.2.1. Let n ≥ 1. Define the functor

0n : O
p∞
ν,C∞→ Opn

ν,Cn , 0n := ( · )
gl⊥n .

As before, the subalgebras gln, gl
⊥

n ⊂ gl∞ commute, and therefore the subspace
of gl⊥n -invariants of a gl∞-module automatically carries an action of gln .

Lemma 5.2.2. The functor 0n : O
p∞
ν,C∞→ Opn

ν,Cn is well defined.

Proof. The proof is essentially the same as that in Lemma 5.1.3. �

Lemma 5.2.3. The functor 0n : O
p∞
ν,C∞→ Opn

ν,Cn is exact.

Proof. The definition of 0n immediately implies that this functor is left-exact.
Consider the inclusion gl(Un)⊕gl(Un)

⊥
⊂ gl(U∞). We then have an isomorphism

of gl(Un)-modules
(M |gl(U∞))

gl(Un)
⊥
∼= (Mgl⊥n )|gl(Un)

.

The exactness of 0n then follows from the additivity of the functor

( · )gl(Un)
⊥

: Rep(gl(U∞))poly→ Rep(gl(Un))poly,

which is an additive functor between semisimple categories. �

The functor 0n : Op∞
ν,C∞ → Opn

ν,Cn clearly takes polynomial gl∞-modules to
polynomial gln-modules; together with Lemma 5.2.3, this means that 0n factors
through an exact functor

0̂n : Ô
p∞
ν,C∞→ Ôpn

ν,Cn ,

i.e., we have a commutative diagram

Op∞
ν,C∞

0n
//

π̂∞
��

Opn
ν,Cn

π̂n
��

Ôp∞
ν,C∞

0̂n
// Ôpn

ν,Cn
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5.3. Stable inverse limit of categories Opn
ν,Cn and the category Op∞

ν,C∞
. The restric-

tion functors

Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1, Resn−1,n := ( · )
gl⊥n−1

described in Section 5.1 allow us to consider the inverse limit of the system
((Opn

ν,Cn )n≥1, (Resn−1,n)n≥2), and similarly for ((Ôpn
ν,Cn )n≥1, (R̂esn−1,n)n≥2). Let

n ≥ 1.

Notation 5.3.1. For each k ∈ Z+, let Filk(O
pn
ν,Cn ) (resp., Filk(Ô

pn
ν,Cn )) be the Serre

subcategory of Opn
ν,Cn (resp., Ôpn

ν,Cn ) generated by simple modules Ln(ν − |λ|, λ)

(respectively, π̂n(Ln(ν− |λ|, λ))), with `(λ)≤ k.

This defines Z+-filtrations on the objects of Opn
ν,Cn and Ôpn

ν,Cn , i.e.,

Opn
ν,Cn
∼= lim
−−→

k∈Z+

Filk(O
pn
ν,Cn ), Ôpn

ν,Cn
∼= lim
−−→

k∈Z+

Filk(Ô
pn
ν,Cn ).

Lemma 5.3.2. The functors

Resn−1,n : O
pn
ν,Cn → Opn−1

ν,Cn−1

and
R̂esn−1,n : Ô

pn
ν,Cn → Ôpn−1

ν,Cn−1

are both shortening and Z+-filtered functors between finite-length categories with
Z+-filtrations on objects (see the Appendix for the relevant definitions). Moreover,
the systems (Opn

ν,Cn ,Resn−1,n) and (Ôpn
ν,Cn , R̂esn−1,n) satisfy the conditions appear-

ing in Section A.5, and thus for each of these, their restricted inverse limit coincides
with their inverse limit as Z+-graded categories.

Proof. These statements follow directly from Lemma 5.1.6, which tells us that
Resn−1,n(Ln(ν− |λ|, λ))∼= Ln−1(ν− |λ|, λ), and the fact that Ln(ν− |λ|, λ)= 0
whenever `(λ) > n− 1. �

We can now consider the inverse limits of the Z+-filtered systems

((Opn
ν,Cn )n≥1, (Resn−1,n)n≥2), ((Ôpn

ν,Cn )n≥1, (R̂esn−1,n)n≥2).

By Proposition A.5.1, these limits are equivalent to the respective restricted inverse
limits

lim
←−−

n≥1, restr
Opn
ν,Cn , lim

←−−
n≥1, restr

Ôpn
ν,Cn .

The functors 0n described above induce exact functors

0lim : O
p∞
ν,C∞→ lim

←−−
n≥1

Opn
ν,Cn
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and
0̂lim : Ô

p∞
ν,C∞→ lim

←−−
n≥1

Ôpn
ν,Cn .

Proposition 5.3.3. The functors 0n induce an equivalence

0lim : O
p∞
ν,C∞→ lim

←−−
n≥1, restr

Opn
ν,Cn .

Proof. First of all, we need to check that this functor is well defined. Namely, we
need to show that for any M ∈Op∞

ν,C∞ , the sequence {`U(gln+1)(0n+1(M))}n stabilizes.
In fact, it is enough to show that this sequence is bounded (since it is obviously
increasing).

Recall that we have a surjective map of Sym(u−p∞)-modules Sym(u−p∞)⊗E � M
for some E ∈ Rep(gl(U∞))poly. Since 0n+1 is exact, it gives us a surjective map
Sym(u−pn+1

)⊗0n+1(E)�0n+1(M) for any n≥0, with 0n+1(E) being a polynomial
gl(Un+1)-module.

Now,

`U(gln+1)(0n+1(M))≤ `U(u−pn+1 )
(0n+1(M))≤ `U(gl(Un+1))(0n+1(E)).

The sequence {`U(gl(Un+1))(0n+1(E))}n≥0 is bounded by Proposition 3.4.3, and thus
the sequence {`U(gln+1)(0n+1(M))}n is bounded as well.

We now show that 0lim is an equivalence. A construction similar to the one
appearing in [Entova Aizenbud 2015b, Section 7.5] gives a left adjoint to the functor
0lim; that is, we will define a functor

0∗lim : lim
←−−

n≥1, restr
Opn
ν,Cn → Op∞

ν,C∞ .

Let ((Mn)n≥1, (φn−1,n)n≥2) be an object of lim
←−−n≥1, restr Opn

ν,Cn . The isomorphisms
φn−1,n :Resn−1,n(Mn)−→

∼ Mn−1 define gln−1-equivariant inclusions Mn−1 ↪→ Mn .
Consider the vector space

M :=
⋃
n≥1

Mn,

which has a natural action of gl∞ on it. It is easy to see that the obtained gl∞-module
M is a direct sum of polynomial gl(U∞)-modules, and is locally nilpotent over the
algebra

U(u+p∞)
∼= Sym(U∞,∗)∼=

⋃
n≥1

Sym(U∗n ).

Sublemma 5.3.4. Let ((Mn)n≥1, (φn−1,n)n≥2) be an object of lim
←−−n≥1, restr Opn

ν,Cn .
Then M :=

⋃
n≥1 Mn is a finitely generated module over

Sym(U∞)∼= U(u−p∞).
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Proof. In Proposition A.2.2, we show that all the objects in the abelian category
lim
←−−n≥1, restr Opn

ν,Cn have finite length, and that the simple objects in this category
are exactly those of the form ((Ln(ν− |λ|, λ))n≥1, (φn−1,n)n≥2) for a fixed Young
diagram λ. So we only need to check that applying the above construction to these
simple objects gives rise to finitely generated modules over Sym(U∞)∼= U(u−p∞).

Using Corollary 4.4.6 we now reduce the proof of the sublemma to proving the
following two statements:

• Let λ be a fixed Young diagram and ((Ln(ν−|λ|, λ))n≥1, (φn−1,n)n≥2) be a simple
object in lim

←−−n≥1, restr Opn
ν,Cn in which Ln(ν − |λ|, λ) is polynomial for every n

(i.e., λ is minimal in its nontrivial ν
∼-class). Then L :=

⋃
n≥1 Ln(ν − |λ|, λ)

is a polynomial gl∞-module (in particular, a finitely generated module over
Sym(U∞)∼= U(u−p∞)).

• Let λ be a fixed Young diagram and let ((Mpn (ν−|λ|, λ))n≥1, (φn−1,n)n≥2) be an
object of lim

←−−n≥1, restr Opn
ν,Cn (this is a sequence of “compatible” parabolic Verma

modules). Then
M :=

⋃
n

Mpn (ν− |λ|, λ)

is a finitely generated module over Sym(U∞)∼= U(u−p∞).

The first statement follows immediately from Proposition 3.4.3. To prove the
second statement, recall from Lemma 4.4.4 that

Mpn (ν− |λ|, λ)
∼= Sym(Un)⊗ SλUn.

So

M :=
⋃

n

Mpn (ν− |λ|, λ)
∼=

⋃
n

Sym(Un)⊗ SλUn ∼= Sym(U∞)⊗ SλU∞,

which is clearly a finitely generated module over Sym(U∞)∼= U(u−p∞). �

This allows us to define the functor 0∗lim by setting

0∗lim((Mn)n≥1, (φn−1,n)n≥2) :=
⋃
n≥1

Mn

and requiring that it act on morphisms accordingly. The definition of 0∗lim gives us
a natural transformation

0∗lim ◦0lim −→
∼ IdOp∞

ν,C∞
.

Restricting the action of gl∞ to gl(U∞) and using Proposition 3.4.3, we conclude
that this natural transformation is an isomorphism.

Notice that the definition of 0∗lim implies that this functor is faithful. Thus we
conclude that the functor 0∗lim is an equivalence of categories, and so is 0lim. �
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Proposition 5.3.5. The functors 0̂n induce an equivalence

0̂lim : Ô
p∞
ν,C∞→ lim

←−−
n≥1, restr

Ôpn
ν,Cn .

Proof. Let M ∈ Op∞
ν,C∞ . First of all, we need to check that the functor 0̂lim is

well defined; that is, we need to show that the sequence {`Ôpn
ν,Cn
(π̂n(0n(M)))}n≥1 is

bounded from above.
Indeed,

`Ôpn
ν,Cn
(π̂n(0n(M)))≤ `Opn

ν,Cn
(0n(M)).

But the sequence {`Opn
ν,Cn
(0n(M))}n≥1 is bounded from above by Proposition 5.3.3,

so the original sequence is bound from above as well.
Thus we obtain a commutative diagram

Rep(gl∞)poly,ν //

0lim

��

Op∞
ν,C∞

π̂∞
//

0lim
��

Ôp∞
ν,C∞

0̂lim
��

lim
←−−n≥1, restr Rep(gln)poly,ν // lim

←−−n≥1, restr Opn
ν,Cn

π̂lim=lim
←−n π̂n

// lim
←−−n≥1, restr Ôpn

ν,Cn

where Rep(glN )poly,ν is the Serre subcategory of ÔpN
ν,CN consisting of all polynomial

modules of degree ν. The rows of this commutative diagram are “exact” (in the sense
that Ôp∞

ν,C∞ is the Serre quotient of the category Op∞
ν,C∞ by the Serre subcategory

Rep(gl∞)poly,ν , and similarly for the bottom row).
The functors

0lim : Rep(gl∞)poly,ν→ lim
←−−

n≥1, restr
Rep(gln)poly,ν

and
0lim : O

p∞
ν,C∞→ lim

←−−
n≥1, restr

Opn
ν,Cn

are equivalences of categories (by Propositions 3.4.3 and 5.3.3), and thus the functor
0̂lim is an equivalence as well. �

6. Complex tensor powers of a unital vector space

In this section we describe the construction of a complex tensor power of the
unital vector space CN with the chosen vector 1 := e1 (again, N ∈ Z+ ∪ {∞}). A
general construction of the complex tensor power of a unital vector space is given
in [Entova Aizenbud 2015a, Section 6].

Again, we denote UN := span{e2, e3, . . . }, and UN∗ := span{e∗2, e∗3, . . . } ⊂ CN
∗

.
As before, we have a decomposition:

glN ∼= C IdCN ⊕ u−pN
⊕ u+pN

⊕ gl(UN )
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such that UN ∼= u−pN
, UN∗ ∼= u+pN

, and if N is finite, we have U∗N ∼=UN∗.
Fix ν ∈ C. Recall from [Entova Aizenbud 2015a, Section 4] that for any ν ∈ C,

in the Deligne category Rep(Sν) we have the objects 1k (k ∈ Z+). These objects
interpolate the representations C Inj({1, . . . , k}, {1, . . . , n}) ∼= IndSn×Sk

Sn−k×Sk×Sk
C of

the symmetric groups Sn; in fact, for any n ∈ Z+ we have

Sn(1k)∼= C Inj({1, . . . , k}, {1, . . . , n}),

where Sn : Rep(Sν=n)→ Rep(Sn) is the monoidal functor discussed in Section 2.1.

Definition 6.0.1 (complex tensor power). Define the object (CN )⊗ν of the category
Ind-

(
Repab(Sν)� OpN

ν,CN

)
by setting

(CN )⊗ν :=
⊕
k≥0

(U⊗k
N ⊗1k)

Sk.

The action of glN on (CN )⊗ν is given as follows:

1

UN

$$

UN ⊗11

UN

%%

UN∗

dd

gl(UN )

WW
(U⊗2

N ⊗12)
S2

UN

%%

UN∗

ff

gl(UN )

UU
(U⊗3

N ⊗13)
S3

UN

$$

UN∗

gg

gl(UN )

TT
· · ·

UN∗

ee

• E1,1 ∈ glN acts by scalar ν− k on each summand (U⊗k
N ⊗1k)

Sk.

• A ∈ gl(UN )⊂ glN acts on (U⊗k
N ⊗1k)

Sk by∑
1≤i≤k

A(i)|U⊗k
N
⊗ Id1k : (U

⊗k
N ⊗1k)

Sk → (U⊗k
N ⊗1k)

Sk.

• u ∈ UN ∼= u−pN
acts by morphisms of degree 1, which are given explicitly in

[Entova Aizenbud 2015a, Section 6.2].

• f ∈UN∗ ∼= u+pN
acts by morphisms of degree −1, which are given explicitly

in [Entova Aizenbud 2015a, Section 6.2].

Remark 6.0.2. The actions of the elements of u+pN
and u−pN

, though not written here
explicitly, are in fact uniquely determined by the actions of E1,1 and gl(UN ).

To see this, note that the ideal in the Lie algebra glN generated by the Lie
subalgebra CE1,1⊕ gl(UN ) is the entire glN . Given two glN -modules M1,M2 and
an isomorphism M1→ M2 which is equivariant with respect to the Lie subalgebra
CE1,1⊕gl(UN ), the above fact implies that this isomorphism is also glN -equivariant.

In other words, if there exists a way to define an action of glN whose restriction
to the Lie subalgebra CE1,1⊕ gl(UN ) is given by the formulas above, then such an
action of glN is unique.
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Remark 6.0.3. The proof that the object (CN )⊗ν lies in Ind-
(
Rep(Sν)� OpN

ν,CN

)
is an easy check, and can be found in [Entova Aizenbud 2015a]. In particular, it
means that the action of the mirabolic subalgebra LieP1 on the complex tensor
power (CN )⊗ν integrates to an action of the mirabolic subgroup P1, thus making
(CN )⊗ν a Harish-Chandra module in Ind-Repab(Sν) for the pair (glN ,P1).

The definition of the complex tensor power is compatible with the usual notion
of a tensor power of a unital vector space (see [Entova Aizenbud 2015a, Section 6]):

Proposition 6.0.4. Let d ∈ Z+. Consider the functor

Ŝd : Ind-
(
Rep(Sν=d)� OpN

d,CN

)
→ Ind-

(
Rep(Sd)� OpN

d,CN

)
induced by the functor

Sd : Rep(Sν=d)→ Rep(Sn)

described in Section 2.1. Then Ŝd((C
N )⊗d)∼= (CN )⊗d.

The construction of the complex tensor power is also compatible with the functors
Resn,n+1 and 0n defined in Definitions 5.1.1 and 5.2.1. These properties can be
seen as special cases of the following statement (when N = n + 1 and N = ∞,
respectively):

Proposition 6.0.5. Let n ≥ 1, and let N ≥ n, N ∈ Z≥1 ∪ {∞}. Recall that we have
an inclusion gln ⊕ gl⊥n ⊂ glN , and consider the functor

( · )gl
⊥
n : Ind-

(
Repab(Sν)� OpN

ν,CN

)
→ Ind-

(
Repab(Sν)� Opn

ν,Cn

)
induced by the functor ( · )gl

⊥
n : OpN

ν,CN → Opn
ν,Cn . The functor ( · )gl

⊥
n then takes

(CN )⊗ν to (Cn)⊗ν.

Proof. The functor ( · )gl
⊥
n :OpN

ν,CN→Opn
ν,Cn induces an endofunctor of Ind-Repab(Sν).

We would like to say that we have an isomorphism of Ind-Repab(Sν)-objects

((CN )⊗ν)gl
⊥
n

?
∼= (C

n)⊗ν

and that the action of gln ⊂ glN on ((CN )⊗ν) corresponds to the action of gln on
(Cn)⊗ν. In order to do this, we first consider (CN )⊗ν as an object in Ind-Repab(Sν)
with an action of gl(UN ):

(CN )⊗ν ∼=
⊕
k≥0

(1k ⊗U⊗k
N )Sk.

If we consider only the actions of gl(UN ), gl(Un), the functor 0n is induced by the
additive monoidal functor ( · )gl(Un)

⊥

: Ind-Rep(gl(UN ))poly→ Ind-Rep(gl(UN ))poly.
This shows that we have an isomorphism of Ind-Repab(Sν)-objects

((CN )⊗ν)gl
⊥
n ∼=

⊕
k≥0

(1k ⊗U⊗k
n )Sk ∼= (C

n)⊗ν
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and the actions of gl(Un) on both sides are compatible. From the definition of the
complex tensor power (Definition 6.0.1) one immediately sees that the actions of
E1,1 on both sides are compatible as well. Remark 6.0.2 now completes the proof. �

7. Schur–Weyl duality in complex rank:
the Schur–Weyl functor and the finite-dimensional case

We fix ν ∈ C and N ∈ Z+ ∪ {∞}. Again, we consider the unital vector space CN

with the chosen vector 1 := e1 and the complement UN := span{e2, e3, . . . }.

7.1. Schur–Weyl functor.

Definition 7.1.1. Define the Schur–Weyl contravariant functor

SWν : Repab(Sν)→ModU(glN )

by
SWν := HomRepab(Sν)( · , (C

N )⊗ν).

Remark 7.1.2. The functor SWν : Repab(Sν) → ModU(glN ) is a contravariant
C-linear additive left-exact functor.

It turns out that the image of the functor SWν : Repab(Sν)→ModU(glN ) lies in
OpN
ν,CN (cf. Remark 6.0.3).
We can now define another Schur–Weyl functor which we will consider: the

contravariant functor ŜWν,CN : Repab(Sν)→ ÔpN
ν,CN . Recall from Section 4.2 that

π̂N : O
pN
ν,CN → ÔpN

ν,CN := OpN
ν,CN /Rep(glN )poly,ν

is the Serre quotient of OpN
ν,CN by the Serre subcategory of polynomial glN -modules

of degree ν. We then define

ŜWν,CN := π̂N ◦SWν,CN .

7.2. The finite-dimensional case. Let n∈Z+. We then have the following theorem,
which can be found in [Entova Aizenbud 2015a, Section 7]:

Theorem 7.2.1. The contravariant functor ŜWν,Cn : Repab(Sν)→ Ôpn
ν,Cn is exact

and essentially surjective. Moreover, the induced contravariant functor

Repab(Sν)/Ker(ŜWν,Cn )→ Ôpn
ν,Cn

is an antiequivalence of abelian categories, thus making Ôpn
ν,Cn a Serre quotient of

Repab(Sν)op.

We will show that a similar result holds in the infinite-dimensional case, when
the contravariant functor ŜWν,C∞ is in fact an antiequivalence of categories.



SCHUR–WEYL DUALITY FOR DELIGNE CATEGORIES, II 209

In the proof of Theorem 7.2.1 we established the following fact (see [En-
tova Aizenbud 2015a, Theorem 7.2.3]):

Lemma 7.2.2. The functor ŜWν,Cn takes a simple object to either a simple object,
or zero. More specifically:

• Let λ be a Young diagram lying in a trivial ν
∼-class. Then

ŜWν,Cn (L(λ))∼= π̂(Lpn (ν− |λ|, λ)).

• Consider a nontrivial ν
∼-class {λ(i)}i≥0. Then

ŜWν,Cn (L(λ(i)))∼= π̂(Lpn (ν− |λ
(i+1)
|, λ(i+1)))

whenever i ≥ 0.

Remark 7.2.3. Recall that Lpn (ν− |λ|, λ) is zero if `(λ)≥ n.

8. Classical Schur–Weyl duality and the restricted inverse limit

8.1. A short overview of the classical Schur–Weyl duality. Let V be a vector
space over C, and let d ∈ Z+. The symmetric group Sd acts on V⊗d by permuting
the factors of the tensor product (the action is semisimple, by Maschke’s theorem):

σ.(v1⊗ v2⊗ · · ·⊗ vd) := vσ−1(1)⊗ vσ−1(2)⊗ · · ·⊗ vσ−1(d).

The actions of gl(V ) and Sd on V⊗d commute, which allows us to consider a
contravariant functor

SWd,V : Rep(Sd)→ Rep(gl(V ))poly, SWd,V := HomSd ( · , V⊗d).

The contravariant functor SWd,V is C-linear and additive, and sends a simple repre-
sentation λ of Sd to the gl(V )-module SλV.

Next, consider the contravariant functor

SWV :
⊕
d∈Z+

Rep(Sd)→ Rep(gl(V ))poly, SWV :=
⊕

d

SWd,V .

This functor SWV is clearly essentially surjective and full (this is easy to see,
since Rep(gl(V ))poly is a semisimple category with simple objects SλV ∼= SW(λ)).
The kernel of the functor SWV is the full additive subcategory (direct factor) of⊕

d∈Z+
Rep(Sd) generated by simple objects λ such that `(λ) > dim V.

8.2. Classical Schur–Weyl duality: inverse limit. In this subsection, we prove that
the classical Schur–Weyl functors SWCn make the category

⊕
d∈Z+

Rep(Sd) dual
(antiequivalent) to the category

Rep(gl∞)poly ∼= lim
←−−

n∈Z+, restr
Rep(gln)poly.
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The contravariant functor SWCN sends the Young diagram λ to the glN -module SλCN.
Let n ∈ Z+. We start by noticing that the functors Resn,n+1 and the functors 0n

(defined in Section 3) are compatible with the classical Schur–Weyl functors SWCn :

Lemma 8.2.1. We have natural isomorphisms

Resn,n+1 ◦ SWCn+1 ∼= SWCn

and
0n ◦ SWC∞

∼= SWCn

for any n ≥ 0.

Proof. It is enough to check this on simple objects in
⊕

d∈Z+
Rep(Sd), in which

case the statement follows directly from the definitions of Resn,n+1 and 0n together
with the fact that SWCN (λ)∼= SλCN for any N ∈ Z+ ∪ {∞}. �

The above lemma implies that we have a commutative diagram

Rep(gln)poly

⊕
d∈Z+

Rep(Sd)
op

SWlim

//

SWCn
44

SWC∞
**

lim
←−−n≥1, restr Rep(gln)poly

Prn

OO

Rep(gl∞)poly

0lim

OO
0n

hh

with the functor 0lim being an equivalence of categories (by Proposition 3.4.3), and
Prn being the canonical projection functor.

Proposition 8.2.2. The contravariant functors

SW∞ :
⊕
d∈Z+

Rep(Sd)→ Rep(gl∞)poly

and
SWlim :

⊕
d∈Z+

Rep(Sd)→ lim
←−−

n∈Z+, restr
Rep(gln)poly

are antiequivalences of semisimple categories.

Proof. As was said in Section 8.1, the functor SWN is full and essentially surjective
for any N . In this case, the functor SW∞ is also faithful, since the simple object λ in⊕

d∈Z+
Rep(Sd) is taken by the functor SW∞ to the simple object SλC∞ 6= 0. This

proves that the contravariant functor SW∞ is an antiequivalence of categories. The
commutative diagram above then implies that the contravariant functor SWlim is an
antiequivalence as well. �
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9. Repab(Sν) and the inverse limit of categories ÔpN
ν,CN

9.1. In this section we prove that the Schur–Weyl functors defined in Section 7.1
give us an equivalence of categories between Repab(Sν) and the restricted inverse
limit lim

←−−N∈Z+, restr ÔpN
ν,CN . We fix ν ∈ C.

Proposition 9.1.1. The functor Resn−1,n satisfies Resn−1,n ◦SWν,Cn ∼= SWν,Cn−1 ;
i.e., there exists a natural isomorphism ηn :Resn−1,n ◦SWν,Cn → SWν,Cn−1 .

Proof. This follows directly from Proposition 6.0.5. �

Corollary 9.1.2. R̂esn−1,n ◦ ŜWν,Cn ∼= ŜWν,Cn−1 ; i.e., there exists a natural isomor-
phism η̂n : R̂esn−1,n ◦ ŜWν,Cn → ŜWν,Cn−1 .

Proof. By the definitions of R̂esn−1,n and ŜWν,Cn , together with Proposition 9.1.1,
we have a commutative diagram

Repab(Sν)op

SWν,Cn

//

SW
ν,Cn−1

++

ŜWν,Cn

""

Opn
ν,Cn

π̂n

��

Resn−1,n

// Opn−1
ν,Cn−1

π̂n−1

��

Ôpn
ν,Cn

R̂esn−1,n

// Ôpn−1
ν,Cn−1

Since π̂n−1 ◦SWν,Cn−1 =: ŜWν,Cn−1 , we get R̂esn−1,n ◦ ŜWν,Cn ∼= ŜWν,Cn−1 . �

Notation 9.1.3. For each k ∈ Z+, Filk(Repab(Sν)) is defined to be the Serre sub-
category of Repab(Sν) generated by the simple objects L(λ) such that the Young
diagram λ satisfies either of the following conditions:

• λ belongs to a trivial ν
∼-class, and `(λ)≤ k.

• λ belongs to a nontrivial ν
∼-class {λ(i)}i≥0, λ= λ(i), and `(λ(i+1))≤ k.

This defines a Z+-filtration on the objects of the category Repab(Sν). That is,

Repab(Sν)∼= lim
−−→

k∈Z+

Filk(Repab(Sν)).

Lemma 9.1.4. The functors ŜWν,Cn are Z+-filtered shortening functors (see the
Appendix for the relevant definitions).

Proof. This result follows from the fact that the ŜWν,Cn are exact, together with
Lemma 7.2.2. �
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This lemma, together with Corollary 9.1.2, implies that there is a canonical
contravariant (Z+-filtered shortening) functor

ŜWν,lim : Repab(Sν)→ lim
←−−

n≥1, restr
Ôpn
ν,Cn ,

X 7→
(
{ŜWν,Cn (X)}n≥1, {η̂n(X)}n≥2

)
,

( f : X→ Y ) 7→ {ŜWν,Cn ( f ) : ŜWν,Cn (Y )→ ŜWν,Cn (X)}n≥1.

This functor is given by the universal property of the restricted inverse limit described
in Proposition A.2.71 and makes the diagram below commutative:

Ôpn
ν,Cn

Repab(Sν)op
ŜWν,lim

//

ŜWν,Cn

55

lim
←−−n≥1, restr Ôpn

ν,Cn

Prn

OO

(here Prn is the canonical projection functor).
We show there is an equivalence of categories Repab(Sν)op and lim

←−−n≥1, restr Ôpn
ν,Cn .

Theorem 9.1.5. The Schur–Weyl contravariant functors ŜWν,Cn induce an anti-
equivalence of abelian categories, given by the (exact) contravariant functor

ŜWν,lim : Repab(Sν)→ lim
←−−

n≥1, restr
Ôpn
ν,Cn .

Proof. The functors ŜWν,Cn are exact for each n ≥ 1, which means that the functor
ŜWν,lim is exact as well.

To see that it is an antiequivalence, we will use Proposition A.4.2. All we need to
check is that the functors ŜWν,Cn satisfy the stabilization condition (Condition A.4.1):
that is, for each k ∈ Z+, there exists nk ∈ Z+ such that

ŜWν,Cn : Filk(Repab(Sν))→ Filk(Ô
pn
ν,Cn )

is an antiequivalence of categories for any n ≥ nk .
Indeed, let k ∈ Z+, and let n ≥ k+1. The category Filk(Repab(Sν)) decomposes

into blocks (corresponding to the blocks of Repab(Sν)), and the category Filk(Ô
pn
ν,Cn )

decomposes into blocks corresponding to the blocks of Ôpn
ν,Cn .

The requirement n ≥ k + 1 together with Lemma 7.2.2 means that for any
semisimple block of Filk(Repab(Sν)), the simple object L(λ) corresponding to
this block is not sent to zero under ŜWν,Cn . This, in turn, implies that ŜWν,Cn

1Alternatively, one can use Proposition A.3.3, since we already stated that in our setting the two
notions of inverse limit coincide.
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induces an antiequivalence between each semisimple block of Filk(Repab(Sν)) and
the corresponding semisimple block of Filk(Ô

pn
ν,Cn ).

Fix a nonsemisimple block Bλ of Repab(Sν), and denote by Filk(Bλ) the corre-
sponding nonsemisimple block of Filk(Repab(Sν)). We denote by Bλ,n the cor-
responding block in Opn

ν,Cn . The corresponding block of Filk(Ô
pn
ν,Cn ) will then be

π̂(Filk(Bλ,n)).
We now check that the contravariant functor

ŜWν,Cn |Filk(Bλ) : Filk(Bλ)→ π̂(Filk(Bλ,n))

is an antiequivalence of categories when n ≥ k+ 1.
Since n ≥ k+1, the Serre subcategories Filk(Bλ) and Ker(ŜWν,Cn ) of Repab(Sν)

have trivial intersection (see Lemma 7.2.2), which means that the restriction of
ŜWν,Cn to the Serre subcategory Filk(Bλ) is both faithful and full (the latter follows
from Theorem 7.2.1).

It remains to establish that the functor ŜWν,Cn |Filk(Bλ) is essentially surjective
when n ≥ k+ 1. This can be done by checking that this functor induces a bijection
between the sets of isomorphism classes of indecomposable projective objects
in Filk(Bλ), π̂(Filk(Bλ,n)) respectively (see [Entova Aizenbud 2015a, proof of
Theorem 7.2.7], where we use a similar technique). The latter fact follows from the
proof of [Entova Aizenbud 2015a, Theorem 7.2.7].

Thus ŜWν,Cn : Filk(Bλ)→ Filk(π̂(Bλ,n)) is an antiequivalence of categories for
n ≥ k+ 1, and

ŜWν,Cn : Filk(Repab(Sν))→ Filk(Ô
pn
ν,Cn )

is an antiequivalence of categories for n ≥ k+ 1. �

10. Schur–Weyl duality for Repab(Sν) and gl∞

10.1. Let C∞ be a complex vector space with a countable basis e1, e2, e3, . . . . Fix
1 := e1 and U∞ := spanC(e2, e3, . . . ).

Lemma 10.1.1. We have a commutative diagram

Repab(Sν)op
ŜWν,lim

//

ŜWν,C∞
))

lim
←−−n≥1, restr Ôpn

ν,Cn

Ôp∞
ν,C∞

0̂lim

OO

Namely, there is a natural isomorphism η̂ : 0̂lim ◦ ŜWν,C∞→ ŜWν,lim.

Proof. To prove this statement, we will show that for any n ≥ 1, the following
diagram is commutative:
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Repab(Sν)op SWν,Cn
//

SWν,C∞

((

ŜWν,Cn

((

ŜWν,C∞

44

Opn
ν,Cn

π̂n

// Ôpn
ν,Cn

Op∞
ν,C∞

π̂∞
//

0n

OO

Ôp∞
ν,C∞

0̂n

OO

The commutativity of this diagram follows from the existence of a natural isomor-
phism 0n◦SWν,C∞−→

∼ SWν,Cn (due to Proposition 6.0.5) and a natural isomorphism
0̂n ◦ π̂∞ ∼= π̂n ◦0n (see proof of Proposition 5.3.5). �

Thus we obtain a commutative diagram

Ôpn
ν,Cn

Repab(Sν)op
ŜWν,lim

//

ŜWν,Cn

55

ŜWν,C∞
))

lim
←−−n≥1, restr Ôpn

ν,Cn

Prn

OO

Ôp∞
ν,C∞

0̂lim

OO
0̂n

gg

Theorem 10.1.2. The contravariant functor ŜWν,C∞ : Repab(Sν)→ Ôp∞
ν,C∞ is an

antiequivalence of abelian categories.

Proof. The functor 0̂lim is an equivalence of categories (see Proposition 5.3.5), and
the functor ŜWν,lim is an antiequivalence of categories (see Theorem 9.1.5). The
commutative diagram above implies that the contravariant functor ŜWν,C∞ is an
antiequivalence of categories as well. �

11. Schur–Weyl functors and duality structures

11.1. Let n ∈Z+. Recall the contravariant duality functor ( · )∨n : (O
pn
ν,Cn )

op
→ Opn

ν,Cn

discussed in Section 4.3. This functor takes polynomial modules to polynomial
modules, and therefore descends to a duality functor (̂ · )

∨

n : (Ô
pn
ν,Cn )

op
→ Ôpn

ν,Cn .
Next, the definition of duality functor in Opn

ν,Cn implies that the duality functors
commute with the restriction functors Resn−1,n , namely, that for any n ≥ 2,

( · )∨n−1 ◦Res
op
n−1,n

∼=Res
op
n−1,n ◦ ( · )

∨

n .
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This allows us to define duality functors

( · )∨lim :

(
lim
←−−

n≥1, restr
Opn
ν,Cn

)op

→ lim
←−−

n≥1, restr
Opn
ν,Cn

and

(̂ · )
∨

lim :

(
lim
←−−

n≥1, restr
Ôpn
ν,Cn

)op

→ lim
←−−

n≥1, restr
Ôpn
ν,Cn .

Under the equivalence Op∞
ν,C∞
∼= lim
←−−n≥1, restr Opn

ν,Cn established in Section 5.3,
the functor ( · )∨lim corresponds to the duality functor ( · )∨

∞
: (Op∞

ν,C∞)
op
→ Op∞

ν,C∞

discussed in Section 4.3. Again, this functor descends to a contravariant duality
functor (̂ · )

∨

∞
: (Ôp∞

ν,C∞)
op
→ Ôp∞

ν,C∞ .
As a corollary of Theorem 7.2.1, a connection was established between the no-

tions of duality in the Deligne category Repab(Sν) and duality in the category ÔpN
ν,CN

for N ∈ Z+ (see [Entova Aizenbud 2015a, Section 7.3]). The above construction
allows us to extend this connection to the case when N =∞. Namely, Theorems
9.1.5 and 10.1.2, together with [Entova Aizenbud 2015a, Section 7.3], imply the
next result.

Proposition 11.1.1. Let N ∈ Z+ ∪ {∞} and ν ∈ C. There is an isomorphism of
(covariant) functors

ŜWν,CN ◦ ( · )∗→ (̂ · )
∨

N ◦SWν,CN .

Appendix: Restricted inverse limit of categories

We describe the main elements of the framework for the notion of a restricted
inverse limit of categories. A detailed description of this framework has been given
in the note [Entova Aizenbud 2015b]; this appendix contains the results which are
necessary for understanding the Schur–Weyl duality in complex rank. In particular,
[Entova Aizenbud 2015b] provides some motivation behind the definitions given
below.

Given a system of categories Ci (with i running through the set Z+) and functors
Fi−1,i : Ci → Ci−1 for each i ≥ 1, we define the inverse limit category lim

←−−i∈Z+
Ci to

be the following category:

• The objects are pairs ({Ci }i∈Z+, {φi−1,i }i≥1) where Ci ∈ Ci for each i ∈ Z+

and φi−1,i : Fi−1,i (Ci )−→
∼ Ci−1 for any i ≥ 1.

• A morphism f between objects ({Ci }i∈Z+, {φi−1,i }i≥1), ({Di }i∈Z+, {ψi−1,i }i≥1)

is a set of arrows { fi : Ci → Di }i∈Z+ satisfying some obvious compatibility
conditions.

This category is an inverse limit of the system ((Ci )i∈Z+, (Fi−1,i )i≥1) in the
(2, 1)-category of categories with functors and natural isomorphisms. We will
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denote by Pri the projection functors lim
←−−i∈Z+

Ci → Ci (and similarly the projection
functors from other inverse limits defined below).

A.1. Restricted inverse limit of finite-length categories. To define the restricted
inverse limit, we work with categories Ci which are finite-length categories, namely,
abelian categories where each object has a (finite) Jordan–Hölder filtration. We
require that the functors Fi−1,i be shortening in the following sense:

Definition A.1.1. A functor F : C → D between two finite-length categories is
shortening if it is exact and given an object C ∈ C, we have

`D(F(C))≤ `C(C).

Since F is exact, this is equivalent to requiring that for any simple object L ∈A1,
the object F(L) is either simple or zero.

Example A.1.2. The functors

Resn−1,n :Rep(gln)poly→Rep(gln−1)poly and 0n :Rep(gl∞)poly→Rep(gln)poly

(see Section 3.1 for definitions) are examples of shortening functors.

Given a system ((Ci )i∈Z+, (Fi−1,i )i≥1) of finite-length categories and shortening
functors, it makes sense to consider the full subcategory of lim

←−−i∈Z+
Ci whose objects

are of the form ({Ci }i∈Z+, {φi−1,i }i≥1), with {`Cn (Cn)}n≥0 being a bounded sequence
(the condition on the functors implies that this sequence is weakly increasing).

This subcategory will be called the restricted inverse limit of categories Ci and
will be denoted by lim

←−−i∈Z+, restr Ci . It is the inverse limit of the categories Ci in the
(2, 1)-category of finite-length categories and shortening functors.

Example A.1.3. Consider the restricted inverse limit of the system(
(Rep(gln)poly)n≥0, (Resn−1,n)n≥1

)
.

We obtain a functor

0lim : Rep(gl∞)poly→ lim
←−−

n≥0, restr
Rep(gln)poly.

It is easy to see that 0lim is an equivalence.

A.2. Properties of the restricted inverse limit. The category C := lim
←−−i∈Z+, restr Ci

is an abelian category. In fact, it is a finite-length category, and one can describe its
simple objects. We start by introducing some notation.

Notation A.2.1. Denote by Irr(Ci ) the set of isomorphism classes of irreducible
objects in Ci , and define the pointed set

Irr∗(Ci ) := Irr(Ci )t {0}.
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The shortening functors Fi−1,i then define maps of pointed sets

fi−1,i : Irr∗(Ci )→ Irr∗(Ci−1).

Similarly, we define Irr
(
lim
←−−i∈Z+, restr Ci

)
to be the set of isomorphism classes of

irreducible objects in C, and define the pointed set

Irr∗(C) := Irr(C)t {0}.

Denote by lim
←−−i∈Z+

Irr∗(Ci ) the inverse limit of the system ({Irr∗(Ci }i≥0, { fi−1,i }i≥1).
We will also denote by pr j : lim←−−i∈Z+

Irr∗(Ci )→ Irr∗(C j ) the projection maps.

The elements of the set lim
←−−i∈Z+

Irr∗(Ci ) are just sequences (L i )i≥0 such that
L i ∈ Irr∗(Ci ), and fi−1,i (L i )∼= L i−1.

Proposition A.2.2. Let ((Ci )i∈Z+, (Fi−1,i )i≥1) be a system of finite-length cate-
gories and shortening functors. The category C := lim

←−−i∈Z+, restr Ci is a Serre subcate-
gory of lim

←−−i∈Z+
Ci , and its objects have finite length. The set of isomorphism classes

of simple objects in lim
←−−i∈Z+, restr Ci is in bijection with the set

(
lim
←−−i∈Z+

Irr∗(Ci )
)
\ {0}.

That is, we have a natural bijection

Irr∗(C)∼= lim
←−−
i∈Z+

Irr∗(Ci ).

Proof. Let
C := ({C j } j∈Z+, {φ j−1, j } j≥1),

C ′ := ({C ′j } j∈Z+, {φ
′

j−1, j } j≥1),

C ′′ := ({C ′′j } j∈Z+, {φ
′′

j−1, j } j≥1)

be objects in lim
←−−i∈Z+

Ci , together with morphisms f :C ′→C and g :C→C ′′, such
that the sequence

0−→ C ′ f
−→C g

−→C ′′ −→ 0

is exact.
If C lies in the subcategory C, then the sequence {`Ci (Ci )}i≥0 is bounded from

above, and stabilizes. Denote its maximum by N . For each i , the sequence

0−→ C ′i
fi
−→Ci

g
−→C ′′i −→ 0

is exact. Therefore, `Ci (C
′

i ), `Ci (C
′′

i )≤ N for each i , and so C ′,C ′′ lie in C as well.
Vice versa, assuming C ′,C ′′ lie in C, denote by N ′, N ′′ the maximums of the

sequences {`Ci (C
′

i )}i , {`Ci (C
′′

i )}i , respectively. Then `Ci (Ci ) ≤ N ′ + N ′′ for any
i ≥ 0, and so C lies in the subcategory C as well.

Thus C is a Serre subcategory of lim
←−−i∈Z+

Ci .
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Sublemma A.2.3. Given an object C := ({Ci }i∈Z+, {φi−1,i }i≥1) in C, we have

`C(C)≤max{`Ci (Ci ) | i ≥ 0}.

Proof. Let C lie in C. We would like to say that C has finite length. Denote by N
the maximum of the sequence {`Ci (Ci )}i≥0. It is easy to see that C has length at
most N ; indeed, if {C ′,C ′′, . . . ,C (n)

} is a subset of JHC(C), then for some i � 0,
we have Pri (C (k)) 6= 0 for any k = 1, 2, . . . , n. The objects Pri (C (k)) are distinct
Jordan–Hölder components of Ci , so n ≤ `Ci (Ci )≤ N . In particular, we see that

`C(C)≤ N =max{`Ci (Ci ) | i ≥ 0}. �

Now, let C := ({C j } j∈Z+, {φ j−1, j } j≥1) be an object in C. We denote by JH(C j )

the multiset of the Jordan–Hölder components of C j , and let

JH∗(C j ) := JH(C j )t {0}.

The corresponding set lies in Irr∗(C j ), and we have maps of (pointed) multisets

f j−1, j : JH∗(C j )→ JH∗(C j−1).

Sublemma A.2.4. Let C := ({C j } j∈Z+, {φ j−1, j } j≥1) be in C := lim
←−−i∈Z+, restr Ci .

Then
C ∈ Irr∗(C) ⇐⇒ Pr j (C)= C j ∈ Irr∗(C j ) ∀ j.

In other words, C is a simple object (that is, C has exactly two distinct subobjects:
zero and itself ) if and only if C 6= 0, and for any j ≥ 0, the component C j is either
a simple object in C j , or zero.

Proof. The direction⇐ is obvious, so we will only prove the direction⇒.
Let n0 be a position in which the maximum of the weakly increasing integer

sequence {`Ci (Ci )}i≥0 is obtained. By definition of n0, for j > n0, the functors
F j−1, j do not kill any Jordan–Hölder components of C j .

Now, consider the socles of the objects C j for j ≥ n0. For any j > 0, we have

F j−1, j (socle(C j ))
φ j−1, j
↪−−−→ socle(C j−1),

and thus for j > n0, we have

`C j (socle(C j ))= `C j−1(F j−1, j (socle(C j )))≤ `C j−1(socle(C j−1)).

Thus the sequence {`C j (socle(C j ))} j≥n0 is a weakly decreasing sequence and stabi-
lizes. Denote its stable value by N. We conclude that there exists n1 ≥ n0 such that

F j−1, j (socle(C j ))
φ j−1, j
−−−→ socle(C j−1)

is an isomorphism for every j > n1.
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Now, set

D j :=

{
F j,n1(socle(Cn1)) if j < n1,

socle(C j ) if j ≥ n1

(here F j,n1 : Cn1→ C j are our shortening functors, with n1 fixed and j varying). We
put D := ((D j ) j≥0, (φ j−1, j ) j≥1) (this is a subobject of C in the category lim

←−−i∈Z+
Ci ).

Of course, `C j (D j ) ≤ N for any j , so D is an object in the full subcategory C of
lim
←−−i∈Z+

Ci . Furthermore, since C 6= 0, we have that for j � 0, socle(C j ) 6= 0,
and thus 0 6= D ⊂ C . Thus D is a semisimple object C, with simple summands
corresponding to the elements of the inverse limit of the multisets lim

←−− j∈Z+
JH∗(D j ).

We conclude that D = C , and that socle(C j ) = C j has length at most one for
any j ≥ 0. �

Remark A.2.5. The latter multiset is equivalent to the inverse limit of multisets
JH∗(socle(C j )), so D is, in fact, the socle of C .

This completes the proof of Proposition A.2.2. �

In particular, given an object C := ({C j } j∈Z+, {φ j−1, j } j≥1) in lim
←−−i∈Z+, restr Ci , we

have JH∗(C)= lim
←−−i∈Z+

JH∗(Ci ) (an inverse limit of the system of multisets JH∗(C j )

and maps f j−1, j ).
It is now obvious that the projection functors Pri : C→ Ci are shortening as well,

and induce the maps pri : Irr∗(C)→ Irr∗(Ci ).

Corollary A.2.6. Given an object C := ({Ci }i∈Z+, {φi−1,i }i≥1) in C, we have

`C(C)=max{`Ci (Ci ) | i ≥ 0}.

It is now easy to see that the restricted inverse limit has the following universal
property:

Proposition A.2.7. Let A be a finite-length category, together with a set of shorten-
ing functors Gi :A→ Ci with the property that for any i ≥ 1, there exists a natural
isomorphism

ηi−1,i : Fi−1,i ◦Gi → Gi−1.

Then lim
←−−i∈Z+, restr Ci is universal among such categories; that is, we have a shorten-

ing functor
G :A→ lim

←−−
i∈Z+, restr

Ci ,

A 7→ ({Gi (A)}i∈Z+, {ηi−1,i }i≥1),

f : A1→ A2 7→ { fi := Gi ( f )}i∈Z+

and Gi ∼= Pri ◦G for every i ∈ Z+.
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Proof. Consider the functor G : A→ lim
←−−i∈Z+

Ci induced by the functors Gi . We
would like to say that for any A ∈ A, the object G(A) lies in the subcategory
lim
←−−i∈Z+, restr Ci , i.e., that the sequence {`Ci (Gi (A))}i is bounded from above.

Indeed, since Gi are shortening functors, we have `Ci (Gi (A))≤ `A(A). Thus the
sequence {`Ci (Gi (A))}i is bounded from above by `A(A).

Now, using Corollary A.2.6, we obtain

`C(G(A))=max
i≥0
{`Ci (Gi (A))} ≤ `A(A)

and we conclude that G is a shortening functor. �

A.3. Inverse limit of categories with filtration. We now define the inverse limit
of categories in a different setting, a priori not related to the restricted inverse limit
defined above. The new inverse limit is defined in the setting of categories with
filtrations, and is sometimes more convenient to use. We will later give a sufficient
condition for the two notions of inverse limit to coincide.

Fix a directed partially ordered set (K ,≤), where “directed” means that for any
k1, k2 ∈ K , there exists k ∈ K such that k1, k2 ≤ k.

Definition A.3.1 (categories with K-filtrations). We say that a category A has
a K-filtration if for each k ∈ K we have a full subcategory Ak of A, and these
subcategories satisfy the following conditions:

(1) Ak
⊂Al whenever k ≤ l.

(2) A is the union of Ak, k ∈ K : that is, for any A ∈ A, there exists k ∈ K such
that A ∈Ak.

A functor F :A1→A2 between categories with K-filtrations A1,A2 is called a
K-filtered functor if for any k ∈ K , F(Ak

1) is a subcategory of Ak
2.

Note that if we consider abelian categories and exact functors, we should require
that the subcategories be Serre subcategories in order for the constructions to work
nicely.

Consider a system ((Ci )i∈Z+, (Fi−1,i )i≥1) of categories with K-filtrations and
K-filtered functors between them. We can define a full subcategory lim

←−−i∈Z+,K-filtr Ci

of lim
←−−i∈Z+

Ci whose objects are of the form ({Ci }i∈Z+, {φi−1,i }i≥1) such that there
exists k ∈ K for which Ci ∈ Filk(Ci ) for any i ≥ 0. The category lim

←−−i∈Z+,K-filtr Ci is
automatically a category with a K-filtration on objects. It is the inverse limit of the
categories Ci in the (2, 1)-category of categories with K-filtrations on objects, and
functors respecting these filtrations:

Example A.3.2. Consider the Z+-filtration on the objects of Rep(glN )poly where
SλCN lies in the component |λ| of the filtration. The functors Resn−1,n respect this
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filtration, and we obtain a functor

0lim : Rep(gl∞)poly→ lim
←−−

n≥0,Z+-filtr
Rep(gln)poly.

One can show that this is an equivalence.

We have the following universal property, whose proof is straightforward:

Proposition A.3.3. Let ((Ci )i∈Z+, (Fi−1,i )i≥1) be a system with a K-filtration as
above, and let A be a category with a K-filtration, together with a set of K-filtered
functors Gi :A→ Ci such that for any i ≥ 1 there exists a natural isomorphism

ηi−1,i : Fi−1,i ◦Gi → Gi−1.

Then lim
←−−i∈Z+,K-filtr Ci is universal among such categories; that is, we have a functor

G :A→ lim
←−−

i∈Z+,K-filtr
Ci ,

A 7→ ({Gi (A)}i∈Z+, {ηi−1,i }i≥1),

f : A1→ A2 7→ { fi := Gi ( f )}i∈Z+

which is obviously K-filtered and satisfies Gi ∼= Pri ◦G for every i ∈ Z+.

A.4. Stabilizing inverse limit. Working in the setting of categories with K-filtrations
and K-filtered functors, we consider the case when A, {Gi }i∈Z+ satisfy the following
stabilization condition (this is the case in Theorem 9.1.5):

Condition A.4.1. For every k ∈ K , there exists ik ∈ Z+ such that G j :Ak
→ Ck

j is
an equivalence of categories for any j ≥ ik .

In this setting, the following proposition holds:

Proposition A.4.2. The functor G : A → lim
←−−i∈Z+,K-filtr Ci is an equivalence of

categories with K-filtrations.

Proof. To prove that G is an equivalence of categories with K-filtrations, we need
to show that

G :Ak
→ Filk

(
lim
←−−i∈Z+,K-filtr Ci

)
is an equivalence of categories for any k ∈ K . Recall that

Filk
(
lim
←−−i∈Z+,K-filtr Ci

)
∼= lim
←−−i∈Z+

Ck
i .
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By Condition A.4.1, for any i > ik we have a commutative diagram where all arrows
are equivalences:

Ak
Gi
//

Gik
��

Ck
i

Fi−1,i~~

Ck
i−1

Since for any fixed k, Fi−1,i : Ck
i → Ck

i−1 is an equivalence for i > ik , it is
obvious that Pri : lim←−−i∈Z+

Ck
i → Ck

i is an equivalence of categories for any i > ik .
Thus G :Ak

→ Filk
(
lim
←−−i∈Z+,K-filtr Ci

)
is an equivalence of categories. �

A.5. Equivalence of inverse limits. Finally, we provide a sufficient condition for
the two notions of “special” inverse limit to coincide. This is the case in the setting
of Theorem 9.1.5.

Let ((Ci )i∈Z+, (Fi−1,i )i≥1) be a system of finite-length categories with K-filtrations
and shortening K-filtered functors, whose filtration components are Serre subcate-
gories. We would like to give a sufficient condition on the K-filtration for the inverse
limit of a system of categories with K-filtrations to coincide with the restricted
inverse limit of these categories.

Recall that since the functors Fi−1,i are shortening, we have maps

fi−1,i : Irr∗(Ci )→ Irr∗(Ci−1)

and we can consider the inverse limit lim
←−−i∈Z+

Irr∗(Ci ) of the sequence of sets Irr∗(Ci )

and maps fi−1,i ; we will denote by pr j : lim←−−i∈Z+
Irr∗(Ci )→ Irr∗(C j ) the projection

maps.
Notice that the sets Irr∗(Ci ) have natural K-filtrations, and the maps fi−1,i respect

these filtrations.

Proposition A.5.1. Assume the following conditions hold:

(1) There exists a K-filtration on the set lim
←−−i∈Z+

Irr∗(Ci ). That is, we require that
for each L in lim

←−−i∈Z+
Irr∗(Ci ), there exists k ∈ K so that pri (L) ∈ Filk(Irr∗(Ci ))

for any i ≥ 0. We would then say that such an object L belongs in the k-th
filtration component of lim

←−−i∈Z+
Irr∗(Ci ).

(2) Stabilization condition: For any k ∈ K , there exists Nk ≥ 0 such that the map
fi−1,i : Filk(Irr∗(Ci ))→ Filk(Irr∗(Ci−1)) is an injection for any i ≥ Nk . That
is, for any k ∈ K there exists Nk ∈ Z+ such that the (exact) functor Fi−1,i is
faithful for any i ≥ Nk .

Then the two full subcategories lim
←−−i∈Z+, restr Ci and lim

←−−i∈Z+,K-filtr Ci of lim
←−−i∈Z+

Ci

coincide.
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Proof. Let C := ({C j } j∈Z+, {φ j−1, j } j≥1) be an object in lim
←−−i∈Z+, restr Ci . As before,

we denote by JH(C j ) the multiset of Jordan–Hölder components of C j , and let
JH∗(C j ) := JH(C j )t {0}.

The first condition is natural: giving a K-filtration on the objects of lim
←−−i∈Z+, restr Ci

is equivalent to giving a K-filtration on the simple objects of lim
←−−i∈Z+, restr Ci , i.e.,

on the set lim
←−−i∈Z+

Irr∗(Ci ).
Assume C ∈ lim

←−−i∈Z+, restr Ci . Let n0 ≥ 0 be such that `C j (C j ) is constant for
j ≥ n0. Recall that we have

JH∗(C)= lim
←−−
i∈Z+

JH∗(C j ).

Choose k such that all the elements of JH∗(C) lie in the k-th filtration component
of lim
←−−i∈Z+

Irr∗(Ci ). This is possible due to the first condition.
Then for any L j ∈ JH(C j ), we have that L j = pr j (L) for some L ∈ JH∗(C), and

thus L j ∈ Filk(Irr∗(C j )). We conclude that C ∈ Filk(lim←−−i∈Z+,K-filtr Ci ).
Thus the first condition of the theorem holds if and only if lim

←−−i∈Z+, restr Ci is a
full subcategory of lim

←−−i∈Z+,K-filtr Ci .
Now, let C ∈ lim

←−−i∈Z+,K-filtr Ci , and let k∈K be such that C ∈Filk(lim←−−i∈Z+,K-filtr Ci ).
We would like to show that `Ci (Ci ) is constant starting from some i . Indeed, the
second condition of the theorem tells us that there exists Nk ≥ 0 such that the map

fi−1,i : Filk(Irr∗(Ci ))→ Filk(Irr∗(Ci−1))

is an injection for any i ≥ Nk . We claim that for i ≥ Nk , `Ci (Ci ) is constant. Indeed,
if it weren’t, then there would be some i ≥ Nk + 1 and some L i ∈ JH(Ci ) such that
fi−1,i (L i )= 0. But this is impossible, due to the requirement above. �
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