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A GENERALIZATION OF THE GREENE–KRANTZ THEOREM
FOR THE SEMICONTINUITY PROPERTY

OF AUTOMORPHISM GROUPS

JAE-CHEON JOO

We give a CR version of the Greene–Krantz theorem (Math. Ann. 261:4 (1982),
425–446) for the semicontinuity of complex automorphism groups. This is
not only a generalization but also an intrinsic interpretation of the Greene–
Krantz theorem.

1. Introduction

By upper semicontinuity, or simply semicontinuity, in geometry, we mean the
property that the set of symmetries of a geometric structure should not decrease
at a limit of a sequence of the structures. For instance, a sequence of ellipses in
the Euclidean plane can converge to a circle, while a sequence of circles cannot
converge to a noncircular ellipse. This property seems as natural as the second law
of thermodynamics in physics, but we still need to make it clear in mathematical
terminology. A symmetry for a geometric structure is described as a transformation
on a space with the geometric structure. The set of transformations becomes a
group with respect to the composition operator. Therefore, semicontinuity can
be understood as a nondecreasing property of the transformation group at the
limit of a sequence of geometric structures. One of the strongest descriptions of
semicontinuity was obtained by Ebin for the Riemannian structures on compact
manifolds in terms of conjugations by diffeomorphisms.

Theorem 1.1 [Ebin 1970]. Let M be a C∞-smooth compact manifold and let
{gj : j = 1, 2, . . . } be a sequence of C∞-smooth Riemannian structures which
converges to a Riemannian metric g0 in the C∞ sense. Then for each sufficiently
large j , there exists a diffeomorphism φ j : M → M such that φ j ◦ Ij ◦ φ

−1
j is a

Lie subgroup of I0, where Ij and I0 represent the isometry groups for gj and g0,
respectively.

The group of holomorphic automorphisms on a complex manifold plays the role
of the group of symmetries with respect to the complex structure. By Cartan’s
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theorem (cf. [Greene et al. 2011]), the automorphism group of a bounded domain
in the complex Euclidean space turns out to be a Lie group with the compact-open
topology on the domain. Greene and Krantz proved the following theorem for the
semicontinuity property of automorphism groups of bounded strongly pseudoconvex
domains.

Theorem 1.2 [Greene and Krantz 1982]. Let � j ( j = 1, 2, . . .) and�0 be bounded
strongly pseudoconvex domains in Cn with C∞-smooth boundary. Suppose that � j

converges to �0 in the C∞ sense, that is, there exists a diffeomorphism ψj defined
on a neighborhood of �0 into Cn such that ψj (�0)=� j and ψj → Id in the C∞

sense on �0. Then for every sufficiently large j , there exists a diffeomorphism
φ j :� j →�0 such that φ j ◦Aut(� j ) ◦φ

−1
j is a Lie subgroup of Aut(�0).

Unlike the isometry group of a compact Riemannian manifold, the holomorphic
automorphism group on a bounded strongly pseudoconvex domain can be non-
compact, so the proof of Theorem 1.2 is divided into two cases: either Aut(�0) is
compact or it is not. It turns out that the latter case is relatively simple, which is
the case of deformations of the unit ball by the Wong–Rosay theorem [Rosay 1979;
Wong 1977]. The main part of the proof of Theorem 1.2 is thus devoted to the case
when Aut(�0) is compact. Greene and Krantz proved this case by constructing a
compact Riemannian manifold (M, gj ) which includes � j as a relatively compact
subset and whose isometry group contains the automorphism group of � j . Then
Ebin’s theorem yields the conclusion. The Riemannian manifold (M, gj ) is called
a metric double of � j .

The idea of this proof is applicable to more general cases. One reasonable gener-
alization is to prove the semicontinuity property for a more general class of domains.
In a recent paper [Greene et al. 2013], the authors generalized Theorem 1.2 to finitely
differentiable cases. Greene and Kim [2014] proved that a partial generalization
is also possible even for some classes of nonstrongly pseudoconvex domains. See
also [Krantz 2010] for this line of generalization.

The aim of the present paper is to obtain another generalization of Theorem 1.2.
According to Hamilton’s theorem [1977; 1979], deformations of a bounded strongly
pseudoconvex domain with C∞-smooth boundary coincide with deformations of a
complex structure on a given domain and they give rise to deformations of the CR
structure of the boundary. Fefferman’s extension theorem [1974] shows that every
holomorphic automorphism on a bounded strongly pseudoconvex domain with C∞-
smooth boundary extends to a diffeomorphism up to the boundary and hence gives
rise to a CR automorphism on the boundary. Conversely, a CR automorphism on the
boundary extends to a holomorphic automorphism on the domain by the Bochner–
Hartogs extension theorem. It is also known that the compact-open topology of
the automorphism group of the domain coincides with the C∞-topology of the
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CR automorphism group of the boundary (cf. [Bell 1987]) if the holomorphic
automorphism group of the domain is compact. In this observation, it is natural
to think of the semicontinuity property for abstract strongly pseudoconvex CR
manifolds under deformations of CR structures as a generalization of Theorem 1.2.
We prove the following theorem for CR automorphism groups when the limit
structure has a compact CR automorphism group.

Theorem 1.3. Let {Jk : k = 1, 2, . . . } be a sequence of C∞-smooth strongly pseu-
doconvex CR structures on a compact differentiable manifold M of dimension 2n+1
which converges to a C∞-smooth strongly pseudoconvex CR structure J0 on M in
the C∞ sense. Suppose that the CR automorphism group AutCR(M, J0) is compact.
Then there exists N > 0 and a diffeomorphism φk : M→ M for each k > N such
that φk ◦AutCR(M, Jk) ◦φ

−1
k is a Lie subgroup of AutCR(M, J0).

According to Schoen’s theorem [1995], AutCR(M, J0) is compact if and only if
(M, J0) is not CR equivalent to the sphere S2n+1 with the standard CR structure.
One should notice that this condition is not necessary if 2n + 1 ≥ 5. Boutet de
Monvel [1975] showed that a CR structure on M which is sufficiently close to the
standard structure on S2n+1 is also embeddable in Cn+1 if 2n+1≥5, in contrast with
the 3-dimensional case (see [Burns and Epstein 1990; Lempert 1992; Nirenberg
1974; Rosay 1979]). Therefore, if AutCR(M, J0) is noncompact and 2n+ 1 ≥ 5,
then the situation is reduced to the case of deformations of the unit ball and follows
immediately from Theorem 1.2.

The rest of this paper will be devoted to proving Theorem 1.3. Since we are
thinking about abstract CR manifolds, we need to develop an intrinsic way of proving
this. Therefore, the main interest of Theorem 1.3 is not only in the generalization
but also in the intrinsic verification of the Greene–Krantz theorem. The main tool
of the proof is the solution for the CR Yamabe problem about the construction
of pseudohermitian structures with constant Webster scalar curvature, which is
intensively studied in, for instance, [Cheng et al. 2014; Gamara 2001; Gamara
and Yacoub 2001; Jerison and Lee 1987; 1989]. The subellipticity of the CR
Yamabe equation turned out quite useful in obtaining estimates of derivatives of
CR automorphisms in [Schoen 1995]. We make use of various solutions for the
CR Yamabe problem — minimal solutions, local scalar flattening solutions and the
blowing-up solutions given by the Green functions — developed in [Fischer-Colbrie
and Schoen 1980; Jerison and Lee 1987; 1989; Schoen 1995].

2. Strongly pseudoconvex CR manifolds

In this section, we summarize fundamental facts on strongly pseudoconvex CR
manifolds and pseudohermitian structures. The summation convention is always
assumed.
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CR and pseudohermitian structures. Let M be a smooth manifold of dimension
2n + 1 for some positive integer n. A CR structure on M is a smooth complex
structure J on a subbundle H of the rank 2n of the tangent bundle TM which satisfies
the integrability condition. More precisely, the restriction of J on a fiber Hp for a
point p ∈ M is an endomorphism Jp : Hp→ Hp which satisfies Jp ◦ Jp =−IdHp ,
varying smoothly as p varies, and the bundle of i-eigenspace H 1,0 of J in the
complexification C⊗ H satisfies the Frobenius integrability condition

[0(H 1,0), 0(H 1,0)] ⊂ 0(H 1,0).

The subbundle H is called the CR distribution of J. A CR automorphism on M is a
smooth diffeomorphism F from M onto itself such that F∗H 1,0

= H 1,0. We denote
by AutCR(M) the group of all CR automorphisms on M. A CR structure is said to
be strongly pseudoconvex if its CR distribution H is a contact distribution and for a
contact form θ , the Levi form Lθ defined by

Lθ (Z ,W ) := −i dθ(Z ,W )

for Z ,W ∈ H 1,0 is positive definite. It is known that the C0-topology of AutCR(M)
coincides with the C∞-topology for a compact strongly pseudoconvex CR man-
ifold M if AutCR(M) is compact with respect to the C0-topology. See [Schoen
1995] for the proof.

We call a fixed contact form for the CR distribution of a strongly pseudoconvex
CR structure a pseudohermitian structure. Let {Wα : α= 1, . . . , n} be a local frame;
that is, the Wα are sections of H 1,0 which form a pointwise basis for H1,0. We call
a collection of 1-forms {θα} the admissible coframe of {Wα} if they are sections of
(H 1,0)∗ and satisfy

θα(Wβ)= δ
α
β , θα(T )= 0,

where T is the vector field uniquely determined by

θ(T )= 1, T y dθ = 0,

which is called the characteristic vector field for θ. Let gαβ̄ = Lθ (Wα,Wβ̄). Then

dθ = 2igαβ̄ θ
α
∧ θ β̄,

where {θα} is the admissible coframe for {Wα}.

Theorem 2.1 [Webster 1978]. There exist a local 1-form ω = (ωβ
α) and local

functions Aαβ uniquely determined by

dθα = θβ∧ωβα + Aαβ̄ θ∧ θ
β̄,

dgαβ̄ = ωαβ̄ +ωβ̄α, Aαβ = Aβα.
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Here and in the sequel, we lower or raise an index by (gαβ̄) and (gαβ̄)= (gαβ̄)
−1.

A connection ∇ defined by

∇Wα = ωα
β
⊗Wβ, ∇T = 0

is called the pseudohermitian connection or the Webster connection for θ. The
functions Aαβ are called the coefficients of the torsion tensor T. Let

dωαβ −ωαγ∧ωγ β ≡ Rαβγ σ̄ θ
γ
∧ θ σ̄ mod θ, θγ∧ θσ, θ γ̄∧ θ σ̄.

We call Rαβγ σ̄ the coefficients of the Webster curvature tensor R. Contracting
indices, we obtain the coefficients Rαβ̄ of the Webster Ricci curvature Ric and the
Webster scalar curvature S:

Rαβ̄ = Rγ γαβ̄, S = Rαβ̄ gαβ̄.

The norm of the Webster curvature |R|θ is defined by

|R|2θ =
∑

α,β,γ,σ

|Rαβγ σ̄ |
2,

where the frame is chosen so that gαβ̄ = δαβ̄ . We similarly define the norm of the
torsion tensor |T |θ .

A pseudohermitian structure defines a sub-Riemannian structure. The distance
function induced by a sub-Riemannian metric is called the Carnot–Carathéodory
distance (cf. [Strichartz 1986]). We denote by Bθ (x, r) the Carnot–Carathéodory
ball with respect to the pseudohermitian structure θ of radius r > 0 centered at
x ∈ M.

The Heisenberg group Hn is a strongly pseudoconvex CR manifold Cn
×R with

the CR structure whose H 1,0 bundle is spanned by

(2-1) Zα =
∂

∂zα
+ i zᾱ

∂

∂t
, α = 1, . . . , n,

where (z, t)= (z1, . . . , zn, t) is the standard coordinate system of Cn
×R. It is well

known that Hn is CR equivalent to the sphere in Cn+1 minus a single point. If we put

(2-2) ϑ0 = dt − i zᾱ dzα+ i zα dzᾱ,

then it turns out the curvature and torsion tensors vanish identically. The converse
also follows from the solution of the Cartan equivalence problem.

Proposition 2.2. If the curvature and the torsion tensors of a pseudohermitian man-
ifold (M, θ) vanish identically, then the pseudohermitian structure of M is locally
equivalent to that of (Hn, ϑ0). If we further assume that M is simply connected and
complete in the sense that every Carnot–Carathéodory ball is relatively compact
in M, then (M, θ) is globally equivalent to (Hn, ϑ0),
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For a given pseudohermitian manifold (M, θ), we can extend the CR structure J
to a smooth section of endomorphism Ĵ on TM by putting Ĵ (T ) = 0, where T
is the characteristic vector field of θ. Let Jk , k = 1, 2, . . . , and J0 be strongly
pseudoconvex CR structures on M with CR distributions Hk and H0, respectively.
We say that Jk converges to J0 in the C l sense (l = 0, 1, 2, . . . ,∞), if there exist
pseudohermitian structures θk and θ0 for (M, Jk) and (M, J0) such that θk → θ0

and Ĵk→ Ĵ0 in the C l sense as tensors on M.

Pseudoconformal change of structures and the CR Yamabe equation. Let (M, θ)
be a (2n+1)-dimensional pseudohermitian manifold and let θ̃ = e2 f θ be a pseu-
doconformal change, where f is a smooth real-valued function. Let {θα} be an
admissible coframe for θ satisfying dθ = 2igαβ̄ θ

α
∧ θ β̄. Then it turns out

θ̃α = e f (θα + i f αθ), α = 1, . . . , n,

form an admissible coframe for θ̃ which satisfies

d θ̃ = 2igαβ̄ θ̃
α
∧ θ̃ β̄.

Let Rαβγ σ̄ and R̃αβγ σ̄ be coefficients of the Webster curvatures for θ and θ̃ evaluated
in the coframes {θα} and {θ̃α}, respectively. Then they are related as

(2-3) R̃αβγ σ̄ = e−2 f {Rαβγ σ̄ − δα
β( fγ σ̄ + fσ̄ γ )− 2gασ̄ f βγ − 2 fασ̄ δβγ

−( f βα + fαβ)gγ σ̄ − 4(δαβgγ σ̄ + gασ̄ δβγ ) f λ fλ
}
,

where fαβ̄ , fαβ and f βα are components of the second covariant derivatives of f of
the pseudohermitian manifold (M, θ) (cf. Proposition 4.14 in [Joo and Lee 2015] for
the more general case). Contracting indices, we obtain the following transformation
formula for the Webster scalar curvatures:

(2-4) S̃ = e−2 f {S+ 2(n+ 1)1θ f − 4n(n+ 1) f λ fλ
}
,

where 1θ f =−( fαα + fᾱ ᾱ). The operator 1θ is called the sublaplacian for θ.
Let u be a positive smooth function on M defined by u p−2

= e2 f , where p =
2+ 2/n. Then (2-4) changes into the following nonlinear equation for u:

(2-5) Lθu := (bn1θ + S)u = S̃ u p−1,

where bn = 2+ 2/n (see [Jerison and Lee 1987; 1989; Lee 1986]). Equation (2-5)
is called the CR Yamabe equation and the subelliptic linear operator Lθ is called the
CR Laplacian for θ. The CR Yamabe problem is to find a positive smooth function u
which makes S̃ constant.
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Let Aαβ̄ and Ãαβ̄ be the coefficients of the torsion tensors for θ and θ̃ in the
coframes {θα} and {θ̃α}, respectively. Then in turns out that

(2-6) Ãαβ̄ = e−2 f (Aαβ̄ − i f αβ̄ + 2i f α fβ̄
)
.

See [Lee 1986] for details.

Folland–Stein spaces and subelliptic estimates. Roughly speaking, a normal coor-
dinate system of a pseudohermitian manifold (M, θ) of dimension 2n+1 is a local
approximation by the standard pseudohermitian structure on the Heisenberg group
(Hn, θ0). For p ∈M, let W1, . . . ,Wn be a local frame defined on a neighborhood V
of p such that the coefficients of the Levi form for θ are given by gαβ̄ = δαβ̄ . Such
a frame is called a unitary frame. We denote by T the characteristic vector field
for θ. Let (z, t) be the standard coordinates of Hn and let |(z, t)| = (|z|4+ t2)1/4

be the Heisenberg group norm. We define Zα and θ0 on Hn as (2-1) and (2-2).

Theorem 2.3 [Folland and Stein 1974]. There is a neighborhood of the diagonal
�⊂ V × V and a C∞-smooth mapping 2 :�→Hn satisfying:

(a) We have 2(ξ, η)=−2(η, ξ)=2(η, ξ)−1. (In particular, 2(ξ, ξ)= 0.)

(b) Let 2ξ (η)=2(ξ, η). Then 2ξ is a diffeomorphism of a neighborhood �ξ of
ξ onto a neighborhood of the origin in Hn. Denote by y = (z, t) = 2(ξ, η)
the coordinates of Hn. Denote by Ok (k = 1, 2, . . . ) a C∞ function f of ξ
and y such that for each compact set K ⊂ V , there is a constant CK with
f (ξ, y)≤ CK |y|k (Heisenberg norm) for ξ ∈ K . Then we have the following
approximation formula:

(2−1
ξ )
∗θ = θ0+ O1dt +

n∑
α=1

(O2dzα + O2dzᾱ),

(2−1
ξ )
∗(θ ∧ dθn)= (1+ O1)θ0 ∧ dθn

0 ,

2ξ∗Wα = Zα + O1E(∂z)+ O2E(∂t),

2ξ∗T = ∂/∂t + O1E(∂z, ∂t),

2ξ∗1θ =1θ0 + E(∂z)+ O1E(∂t , ∂
2
z )+ O2E(∂z∂t)+ O3E(∂2

t ).

Here OkE indicates an operator involving linear combinations of the indicated
derivatives with smooth coefficients in Ok, and we have used ∂z to denote any of the
derivatives ∂/∂zα, ∂/∂zᾱ.

The smooth map2ξ is called the Folland–Stein normal coordinates centered at ξ
with respect to the frame {Wα}. (This coordinate system depends on the choice of
local unitary frame. Another construction of pseudohermitian normal coordinates
which does not depend on local frames is given in [Jerison and Lee 1989].) Here
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and in the sequel, we use the term frame constants to mean bounds on finitely many
derivatives of the coefficients in the OkE terms in Theorem 2.3.

Let V be an open neighborhood of a point p ∈ M with a fixed local unitary
frame W1, . . . ,Wn and let U be a relatively compact open neighborhood of p
in V such that �ξ in Theorem 2.3 contains U for every ξ ∈ U. Let Xα = Re Wα

and Xα+n = Im Wα for α = 1, . . . , n. For a multi-index A = (α1, . . . , αk), with
1 ≤ αj ≤ 2n, j = 1, . . . , k, we denote k by `(A) and write X A f = Xα1 · · · Xαk f
for a smooth function f on U. The S p

k (U )-norm of a smooth function f on U is

‖ f ‖S p
k (U )
= sup
`(A)≤k

‖X A f ‖L p(U ),

where ‖g‖L p(U )=
(∫

U |g|
p θ∧dθn

)1/p is the L p-norm of g on U with respect to the
volume element induced by θ. The completion of C∞0 (U ) with respect to ‖ · ‖S p

k (U )
is denoted by S p

k (U ).
Hölder type spaces suited to 1θ are defined as follows. For x, y ∈ U, let

ρ(x, y)= |2(x, y)| (Heisenberg norm). For a positive real number 0< s < 1,

0s(U )= { f ∈ C0(U ) : | f (x)− f (y)| ≤ Cρ(x, y)s for some constant C > 0}.

If s is a positive nonintegral real number such that k < s < k+ 1 for some integer
k ≥ 1, then

0s(U )= { f ∈ C0(U ) : X A f ∈ 0s−k(U ), `(A)≤ k}.

Then the 0s(U )-norm for f ∈ 0s(U ) is defined by

‖ f ‖0s(U ) = sup
x∈U
| f (x)|+ sup

{
|X A f (x)− X A f (y)|

ρ(x, y)s−k : x, y ∈U, x 6= y, `(A)≤ k
}
.

The function spaces S p
k (U ) and 0s(U ) are called the Folland–Stein spaces on U. We

denote by3s(U ) the Euclidean Hölder space when we regard U as a subset of R2n+1.

Theorem 2.4 [Folland and Stein 1974]. For each positive real number s which is
not an integer, each 1 < r <∞ and each integer k ≥ 1, there exists a constant
C > 0 such that for every f ∈ C∞0 (U ),

(a) ‖ f ‖0s(U ) ≤ C‖ f ‖Sr
k (U ), where 1/r = (k− s)/(2n+ 2),

(b) ‖ f ‖3s/2(U ) ≤ C‖ f ‖0s(U ),

(c) ‖ f ‖Sr
2(U ) ≤ C(‖1θ f ‖Lr (U )+‖ f ‖Lr (U )),

(d) ‖ f ‖0s+2(U ) ≤ C(‖1θ f ‖0s(U )+‖ f ‖0s(U )).

Moreover the constant C depends only on frame constants.

One should notice that the constants C in the theorem above depend on frame
constants rather than the pseudohermitian structure itself. Therefore, if U is a small
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neighborhood (J0, θ0) in the C∞-topology, then we can choose constants C in
Theorem 2.4 which are independent of the choice of (J, θ) ∈ U.

If M is compact, we can choose a finite open covering U1, . . . ,Um , each of
which is contained in a normal coordinate. Let φ1, . . . , φm be a partition of unity
subordinate to this covering. Then the spaces of S p

k (M) and 0s(M) are defined as
spaces of a function u such that φ j u ∈ S p

k (Uj ) or φ j u ∈ 0s(Uj ), respectively, for
every j = 1, . . . ,m.

3. Proof of Theorem 1.3

The proof of Theorem 1.3 is based on the following fundamental fact about the
semicontinuity property of compact group actions proved by Ebin [1970] for
Theorem 1.1. We denote by Diff(M) the group of C∞-smooth diffeomorphisms.
Recall that the C∞-topology on Diff(M) is metrizable. We denote a metric inducing
the C∞-topology by d.

Theorem 3.1 ([Ebin 1970]; cf. [Greene et al. 2011; 2013; Grove and Karcher 1973;
Kim 1987]). Let M be a compact C∞-smooth manifold and let Gk (k = 1, 2, . . . )
and G0 be compact subgroups of Diff(M). Suppose G j → G0 in the C∞-topology
as j→∞; that is, for every ε > 0, there exists an integer N such that d( f,G0) :=

infg∈G0 d( f, g) < ε for every f ∈ G j , whenever j > N. Then G j is isomorphic to a
subgroup of G0 for every sufficiently large j . Moreover, the isomorphism can be
obtained by the conjugation by a diffeomorphism φ j of M which converges to the
identity map in the C∞ sense.

Therefore, it suffices to prove the following proposition for the conclusion of
Theorem 1.3.

Proposition 3.2. Let {Jk : k = 1, 2, . . . } be a sequence of strongly pseudoconvex
CR structures on a compact manifold M which tends to a strongly pseudoconvex
CR structure J0 as in Theorem 1.3. Suppose that AutCR(M, J0) is compact. Then
AutCR(M, Jk) is also compact for every sufficiently large k. Furthermore, every
sequence {Fk ∈ AutCR(M, Jk) : k = 1, 2, . . . } admits a subsequence converging to
an element F ∈ AutCR(M, J0) in the C∞ sense.

We will make use of the solutions of the CR Yamabe problem for the proof
of Proposition 3.2. According to the variational approach introduced by Jerison
and Lee [1987; 1989], it is very natural to consider the sign of the CR Yamabe
invariant defined as follows: Let (M, θ) be a compact pseudohermitian manifold.
For a C∞-smooth real-valued function u, let

A(θ; u) :=
∫

M
u Lθu θ ∧ dθn

=

∫
M
(bn|du|2θ + R u2) θ ∧ dθn
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and

B(θ; u) :=
∫

M
|u|p θ ∧ dθn.

Then the CR Yamabe invariant Y (M) is defined by

Y (M) := inf{A(θ; u) : u ∈ C∞(M), B(θ; u)= 1}.

It is well known that Y (M) does not depend on the choice of contact form θ. Let Jk

be a sequence of strongly pseudoconvex CR structures on M tending to a strongly
pseudoconvex CR structure J0 as k→∞. We denote by Yk the CR Yamabe invariant
of (M, Jk). For the proof, we may assume either that Yk ≤ 0 for every k or that
Yk > 0 for every k.

Case Yk ≤ 0. In this case, we use the minimal solution of the Yamabe problem.

Theorem 3.3 [Jerison and Lee 1987]. Let M be a compact strongly pseudoconvex
CR manifold of dimension 2n+ 1.

(i) Y (S2n+1) > 0, where Y (S2n+1) is the CR Yamabe invariant for the sphere
S2n+1 with the standard structure.

(ii) Y (M)≤ Y (S2n+1).

(iii) If Y (M) < Y (S2n+1), then there exists a positive C∞-smooth function u which
satisfies B(θ; u)= 1 and A(θ; u)= Y (M) for a given pseudohermitian struc-
ture θ. This function u satisfies

Lθu = Y (M)u p−1.

That is, the pseudohermitian structure θ̃ =u p−2θ has a constant Webster scalar
curvature R̃ = Y (M).

It is known from [Jerison and Lee 1989] that Y (M) < Y (S2n+1) if M is not
locally spherical and 2n+ 1≥ 5. The cases that 2n+ 1= 3 or that M is spherical
are dealt with in [Gamara 2001; Gamara and Yacoub 2001].

Proposition 3.4 [Jerison and Lee 1987, Theorem 7.1]. If Y (M)≤ 0, then a pseudo-
hermitian structure with constant Webster scalar curvature is unique up to constant
multiples. As a consequence, there is a unique pseudohermitian structure with
constant Webster scalar curvature under the unit volume condition, if Y (M)≤ 0.

Proposition 3.5 [Jerison and Lee 1987, Theorem 5.15]. Let M be a compact
strongly pseudoconvex CR manifold of dimension 2n + 1 and let θ be a pseu-
dohermitian structure. Suppose that f, g ∈ C∞(M), u ≥ 0, u ∈ Lr for some
r > p = 2+ 2/n and

1θu+ gu = f uq−1



SEMICONTINUITY PROPERTY OF AUTOMORPHISM GROUPS 235

in the distribution sense for some 2≤ q ≤ p. Then u ∈C∞(M), u> 0. Furthermore,
‖u‖Ck depends only on ‖u‖Lr , ‖ f ‖Ck , ‖g‖Ck and frame constants, but not on q.

Indeed, a local version of the above lemma is stated in [Jerison and Lee 1987].
But it is obvious it holds globally by taking a partition of unity subordinate to a
chart of normal coordinates.

Proposition 3.6 [Jerison and Lee 1987, Proposition 5.5, case k = 1, r = 2 and
s = p]. For a compact pseudohermitian manifold (M, θ) of dimension 2n+1, there
exists a constant C > 0 such that∫

M
|v|p θ ∧ dθn

≤ C
∫

M
(|dv|2θ + |v|

2) θ ∧ dθn

for every C∞-smooth function v on M.

Since we are considering CR structures converging to the target structure J0,
we can choose also a sequence {θk} of contact forms which tends to a target
pseudohermitian structure θ0 in the C∞ sense. Without loss of generality, we
always assume that

∫
M θk∧ dθn

k = 1 for every k.

Lemma 3.7. Suppose that Yk ≤ 0 for every k. Let uk > 0 be the (unique) solution
as in Theorem 3.3(iii) with respect to (Jk, θk). Then for each nonnegative integer l,
there exists a constant C such that ‖uk‖C l ≤ C for every k.

Proof. Since uk satisfies

(3-1) bn1θk uk + Rkuk = Yku p−1
k ,

where Rk is the Webster scalar curvature for θk , we have∫
M

1
2(p− 1)bnu p−2

k |duk |θk θk∧ dθn
k ≤

∫
M
|Rku p

k | θk∧ dθn
k

by integrating after multiplying by u p−1
k on both sides of (3-1), since Yk ≤ 0.

Therefore, the function wk := u p/2
k satisfies∫

M
|dwk |

2
θk
θk∧ dθn

k ≤ C
∫

M
w2

k θk∧ dθn
k = C

∫
M

u p
k θk∧ dθn

k = C,

since Rk is bounded uniformly for k. Moreover since (Jk, θk)→ (J0, θ0) in the C∞

sense, Proposition 3.6 implies that there exists a constant C > 0 independent of k
such that ∫

M
w

p
k θk∧ dθn

k ≤ C
∫

M
(|dwk |

2
θk
+w2

k ) θk∧ dθn
k ,

which is uniformly bounded for every k. This implies that ‖uk‖Lr is uniformly
bounded as (Jk, θk)→ (J0, θ0), where r = 1

2 p2 > p. Then the conclusion follows
from Proposition 3.5, since frame constants for (Jk, θk) are also uniformly bounded
as (Jk, θk)→ (J0, θ0) in the C∞ sense. �
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If Yk ≤ 0 for every k ≥ 1, then by taking a subsequence, we may assume the
sequence {uk} of solutions of the Yamabe problem with respect to (Jk, θk) converges
to u0, the solution of the Yamabe problem with respect to (J0, θ0) in the C∞ sense
by Lemma 3.7. Replacing θk by u p−2

k θk , then we may assume the Webster scalar cur-
vature of θk is a nonpositive constant for every k. In this case, it is known that the CR
automorphism group of (M, Jk) coincides with the pseudohermitian automorphism
group for (M, Jk, θk). Let gk be the Riemannian metric on M defined by

gk = θk ⊗ θk + dθk( · , Jk · )

for each k. Then we see that gk → g0 = θ0⊗ θ0+ dθ0( · , J0 · ) in the C∞ sense,
and the CR automorphism groups AutCR(M, Jk) and AutCR(M, J0) are subgroups
of the isometry groups of gk and g0, respectively. Then the conclusion follows from
the proof of Theorem 1.1.

Case Yk >0. We will show that if a sequence {Fk ∈AutCR(M, Jk)} is divergent, then
it generates a single “bubble” which is CR equivalent to (M, J0). This case should
be excluded by proving the CR structure of the bubble is the same as that of the
standard sphere, which contradicts the hypothesis that AutCR(M, J0) is compact. An
essential ingredient for analyzing the bubbling phenomenon is the reparametrization
of the pseudohermitian structure by the Green function of the CR Laplacian. The
existence of the Green function is guaranteed by the hypothesis Yk > 0 (see, for
instance, [Cheng et al. 2014; Gamara 2001]). We discuss the bubbling after the
following fundamental lemma on the convergence of CR automorphisms.

Lemma 3.8. Suppose for a sequence {Fk ∈AutCR(M, Jk)}, Fk→ F and F−1
k →G

in the C0 sense for some continuous mappings F and G. Then F ∈ AutCR(M, J0),
G = F−1 and Fk→ F in the C∞ sense.

Proof. This lemma is a sequential version of Proposition 1.1′ in [Schoen 1995]. Let
θk and θ0 be pseudohermitian structures for Jk and J0, respectively, and suppose
θk→ θ0 in the C∞ sense. For a given point p ∈ M, let qk = Fk(p) and q = F(p).
Let q ∈ Ũ b Ṽ b W̃ be relatively compact neighborhoods of q . Since qk→ q , we
can assume that qk ∈ Ũ for every k. The fact that Yk > 0 implies that the principal
eigenvalue of Lθk on M , and hence the Dirichlet principal eigenvalue of Lθk on W̃ ,
is also positive for every k. Then by the local scalar flattening argument of Fischer-
Colbrie and Schoen [1980; 1995], we have a positive C∞-smooth function uk on
W̃ such that Lθk uk = 0 on W̃ for every k. Multiplying by a positive constant, we
may assume that uk(q)= 1 for every k. Then the subelliptic theory in Theorem 2.3
for the sublaplacian and the Harnack principle (cf. Proposition 5.12 in [Jerison
and Lee 1987]) imply that {uk} has a convergent subsequence which tends to a
positive function u0 on the closure of Ṽ in the C∞ sense. We denote the convergent
subsequence by {uk} again. Then θ̃k = u p−2

k θk and θ̃0 = u p−2
0 θ0 have the trivial
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Webster scalar curvatures on Ṽ. From the equicontinuity of the sequence {Fk}, we
can choose a neighborhood W of p such that Fk(W ) ∈ Ũ for every k. Let vk be a
positive smooth function on V defined by F∗k θ̃k=v

p−2
k θk . Then for every k, we have

(3-2) Lθkvk = 0 on W.

We denote by Volθ̃k
(Ũ ) the volume of Ũ with respect to the volume form θ̃k∧ d θ̃n

k .
Since θ̃k converges to θ̃0 in the C∞ sense in Ṽ, there exists a uniform bound C of
Volθ̃k

(Ũ ). Therefore, it turns out that∫
W
v

p
k θk∧ dθn

k =

∫
W

F∗k (θ̃k∧ d θ̃k)= Volθ̃k
(Fk(W ))≤ Volθ̃k

(Ũ )≤ C

for every k. Fix a neighborhood V b W of p. Then the subelliptic mean-value
inequality for (3-2) implies that there exists a constant C such that vk(x)≤ C for
every x ∈ V. We can also choose this C independently on k by the convergence
of structures. Then for a given neighborhood U b V of p and for each positive
integer l, there exists a constant Cl which is independent of k such that

‖vk‖C l (U ) ≤ Cl

for every k, by Theorem 2.3. Since each Fk is pseudoconformal, the C l-norm of
Fk on U is completely determined by that of vk and is uniformly bounded on U.
This yields that every subsequence of {Fk} contains a subsequence converging in
the C l sense, for every positive integer l. Since Fk converges to F in the C0 sense
on M and since M is compact, we conclude that Fk converges to F in the C∞

sense. By the same reasoning, F−1
k → G in the C∞ sense. It follows immediately

that F ∈ AutCR(M, J0) and G = F−1. �

For a CR diffeomorphism F : (M, θ)→ (M̃, θ̃ ) between two pseudohermitian
manifolds, we denote by |F ′|θ,θ̃ the pseudoconformal factor of F, that is, F∗θ̃ =
|F ′|θ,θ̃ θ. We abbreviate it to |F ′|θ in case (M, θ)= (M̃, θ̃ ).

Lemma 3.9. Let (M, θ) and (M̃, θ̃ ) be pseudohermitian manifolds of the same
dimension. Let K be a relatively compact subset of M and suppose that the Webster
scalar curvature for θ̃ vanishes on M̃. Then there exist constants r0 > 0 and C > 0
such that for every CR diffeomorphism F on a Carnot–Carathéodory ball Bθ (x, r)
into M,

Bθ̃ (F(x),C−1λr)⊂ F(Bθ (x, r))⊂ Bθ̃ (F(x),Cλr)

whenever x ∈ K and r ≤ 1
2r0, where λ= |F ′|θ,θ̃ (x). The constant C depends only

on r0, K and uniform bounds of finite-order derivatives of the CR and pseudohermi-
tian structures of (M, θ).

This lemma is a restatement of Proposition 2.1′(i) in [Schoen 1995], which is a
consequence of the subelliptic Harnack principle.
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To prove Proposition 3.2, assume the contrary. Then there exists a sequence
{Fk ∈ AutCR(M, Jk)} such that supx∈M |F

′

k |θk (x) → ∞ as k → ∞, thanks to
Lemma 3.8. Let xk ∈ M be a point of M with |F ′k |θk (xk) = supx∈M |F

′

k |θk (x).
Extracting a subsequence, we assume that xk → x0 ∈ M and Fk(xk) → z0 as
k → ∞. Choose r > 0 small enough that the Carnot–Carathéodory balls sat-
isfy Bθk (xk, r) b Bθk (xk, 2r) b U for each k, where U is a relatively compact
neighborhood of x0 in M, and 2r < r0 for r0 given in Lemma 3.9.

Lemma 3.10. There exists a subsequence {Fk j : j = 1, 2, . . . } of {Fk : k= 1, 2, . . . }
which admits a point y0 ∈ M such that for every compact subset K in M \ {y0},
there exists N > 0 such that K ⊂ Fk j (Bθk j

(xk j , 2r)) if k j > N. Moreover, for the
subsequence, one can choose the point y0 independently of r > 0 as r→ 0.

Proof. Suppose for every r > 0, there exists no sequence {yk ∈M \Fk(Bθk (xk, 2r))}
such that d(yk, Fk(xk)) > ε for any given ε > 0, where d is the sub-Riemannian dis-
tance induced from θ0. Then it turns out every sequence {yk ∈ M \ Fk(Bθk (xk, 2r))}
converges to z0. In this case, we just need to put y0 = z0.

Now suppose for some r > 0, there exists a sequence {yk ∈ M \ Fk(Bθk (xk, 2r))}
such that d(yk, Fk(xk)) > ε for infinitely many k for some ε > 0. Extracting
a subsequence, we may assume that yk → y0 ∈ M and d(yk, Fk(xk)) > ε for
every k so that the sequence {Fk(xk)} is relatively compact in M \ {y0}. Let Gk

be the Green function for Lθk with pole at yk . We normalize Gk by the condition
minM\{yk} Gk = 1. Since each Gk > 0 and Lθk Gk = 0 on M \ {yk}, we may assume
{Gk : k = 1, 2, . . . } converges to a positive function G0 on M \ {y0} in the local
C∞ sense, by extracting a subsequence if necessary. Let θ̃k = G p−2

k θk . Then θ̃k is
a pseudohermitian structure on M \ {yk} which is Webster scalar flat. Therefore, if
we denote λk = |F ′k |θk ,θ̃k

(xk), then Lemma 3.9 implies that there exists a constant C
independent of k such that

Bθ̃k
(Fk(xk),C−1λkr)⊂ Fk(Bθk (xk, r))⊂ Bθ̃k

(Fk(xk),Cλkr).

Since Gk ≥ 1 and |F ′k |θk (xk)→∞, λk also tends to infinity as k→∞. Therefore,
a relatively compact subset K in M \ {y0} should be included in Fk(Bθk (xk, r)) for
every sufficiently large k, since Fk(xk) lies on a fixed relatively compact subset of
M \ {y0} and θ̃k→ θ̃0 = G p−2

0 θ0 in the local C∞-smooth sense on M \ {y0}. Note
that the choice of the sequence {yk} and y0 still works for every r ′ ≤ r . This yields
the independence of y0 on r as r→ 0. �

As a consequence of Lemma 3.10, it turns out that M \ {y0} is simply connected
and complete with respect to the sub-Riemannian distance induced by θ̃0. In fact,
any loop in M\{y0} is contained in Fk(Bθk (xk, 2r)) for some large k by Lemma 3.10.
Since Bθk (xk, 2r) is simply connected if r > 0 is small enough and since Fk is a
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diffeomorphism, Fk(Bθk (xk, 2r)) is simply connected as well. Therefore, the given
loop should be contractible. This shows that M \ {y0} is simply connected.

Extracting a subsequence, we assume that Lemma 3.10 holds for the entire
sequence {Fk}. Choose yk ∈ M \ Fk(Bθk (xk, 2r)) which tends to y0. Let vk and fk

be real-valued functions on Bθk (xk, 2r) defined by

v
p−2
k = |F ′k |θk ,θ̃k

= e2 fk,

where Gk is the normalized Green function for Lθk with pole at yk which converges
to a positive function G0 in the local C∞-smooth sense on M \ {y0} as k→∞, and
θ̃k = G p−2

k θk . Since Lθkvk = 0, we see that there exists a constant C independent
of k such that |F ′k |θk ,θ̃k

≥ Cλk on Bθk (xk, r) by the Harnack principle, where λk =

|F ′k |θk ,θ̃k
(xk). Let {Zk ∈ 0(H

1,0
k )} be a sequence of vector fields on U which tends

to Z0 ∈ 0(H
1,0
0 ) as k→∞, where H 1,0

k represents the (1, 0)-bundle with respect
to Jk . Since fk = (1/n) log vk , we have

Zk fk =
Zkvk

nvk

for every k. Since Lθkvk = 0 on Bθk (xk, 2r), the subelliptic estimates in Theorem 2.4
imply that Zk fk is uniformly bounded on Bθk (xk, r) for every k. So is Z k fk , and if
Wk is another sequence of vector fields, then Zk Wk fk and Zk Wk fk are all uniformly
bounded on Bθk (xk, r) as k→∞. Therefore, if we denote by Rk and R̃k the Webster
curvature tensors for θk and θ̃k , respectively, then (2-3) implies that

|R̃k |
2
θ̃k
(Fk(x))≤ Cλ−2

k

{
|Rk |

2
θk
(x)+ Ak |Rk |θk (x)+ Bk

}
for every x ∈ Bθk (xk, r), where Ak and Bk are some functions of the first and second
covariant derivatives of fk with respect to the pseudohermitian structure θk which
are uniformly bounded on Bθk (xk, r) as k →∞. Since λk →∞ and |Rk |θk is
uniformly bounded on Bθk (xk, r) for every k, it turns out that |R̃k |θ̃k

→ 0 uniformly
on every compact subset of M \ {y0} by Lemma 3.10. Therefore, we see that the
pseudohermitian manifold (M \ {y0}, θ̃0) has trivial Webster curvature. A similar
argument using (2-6) implies that the torsion tensor of θ̃0 is also trivial. Therefore,
we can conclude that (M \ {y0}, θ̃0) is equivalent to the standard pseudohermitian
structure of the Heisenberg group and therefore, (M, J0) is CR equivalent to the
sphere by the removable singularity theorem. This contradicts the hypothesis that
AutCR(M, J0) is compact and hence yields the conclusion of Proposition 3.2.
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