Vol. 285, No. 2, 2016

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The $\operatorname{SU}(2)$ Casson–Lin invariant of the Hopf link

Hans U. Boden and Christopher M. Herald

Vol. 285 (2016), No. 2, 283–288
Abstract

We compute the SU(2) Casson–Lin invariant for the Hopf link and determine the sign in the formula of Harper and Saveliev relating this invariant to the linking number.

Keywords
braids, links, representation spaces, Casson–Lin invariant
Mathematical Subject Classification 2010
Primary: 57M25
Secondary: 20C15
Milestones
Received: 22 January 2016
Revised: 20 April 2016
Accepted: 21 June 2016
Published: 21 November 2016
Authors
Hans U. Boden
Department of Mathematics and Statistics
McMaster University
1280 Main St. W.
Room 218
Hamilton, ON L8S 4K1
Canada
Christopher M. Herald
Department of Mathematics and Statistics
University of Nevada, Reno
Reno, NV 89557
United States