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THE SU(2) CASSON–LIN INVARIANT OF THE HOPF LINK

HANS U. BODEN AND CHRISTOPHER M. HERALD

We compute the SU(2) Casson–Lin invariant for the Hopf link and deter-
mine the sign in the formula of Harper and Saveliev relating this invariant
to the linking number.

The Casson–Lin invariant h(K ) was defined for knots K by X.-S. Lin [1992] as
a signed count of conjugacy classes of irreducible SU(2) representations of the knot
group GK = π1(S3

\ K ) with traceless meridional image, and Corollary 2.10 of
the same paper shows that h(K ) is equal to 1

2 sign(K ), one half the knot signature.
E. Harper and N. Saveliev [2010] introduced the Casson–Lin invariant h2(L) of
2-component links, which they defined as a signed count of certain projective SU(2)
representations of the link group GL = π1(S3

\ L). They showed that h2(L) equals
the linking number of L = `1 ∪ `2, up to an overall sign: h2(L) = ± lk(`1, `2).
Harper and Saveliev [2012] also show that h2(L) can be regarded as an Euler
characteristic associated to a certain SU(2) instanton Floer homology theory, defined
by Kronheimer and Mrowka [2011].

The purpose of this note is to determine the sign in the formula of Harper and
Saveliev, establishing the following.

Theorem 1. If L = `1 ∪ `2 is an oriented 2-component link in S3, then its Casson–
Lin invariant satisfies h2(L)=− lk(`1, `2).

We remark that the braid approach in [Harper and Saveliev 2010] is close in
spirit to Lin’s original definition, and it shows that h2(L) is an invariant of oriented
links, because the Alexander and Markov theorems hold for oriented links; see
Theorems 2.3 and 2.8 of [Kassel and Turaev 2008]. The sign of the invariant h2(L)
depends not only on the choice of orientation on the braid, but also on the more
subtle choice of identification of geometric braids with elements in the abstract braid
group Bn , viewed as a subgroup of Aut(Fn). Here we follow Conventions 1.13 of
[Kassel and Turaev 2008] in making this choice.

Note that extensions of the Casson–Lin invariants to SU(N ) and to oriented
links L in S3 with at least two components are presented in [Boden and Harper
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2016], where, as before, they are defined by counting certain projective SU(N )
representations of the link group GL .

The rest of this paper is devoted to proving Theorem 1.

Proof. The proof of Proposition 5.7 in [Harper and Saveliev 2010] shows that the
sign of lk(`1, `2) in our theorem is independent of L . (See also the proof of their
Theorem 2 and their general discussion in Section 5.) Thus Theorem 1 will follow
from a single computation.

To that end, we will determine the Casson–Lin invariant for the right-handed Hopf
link. Since there is just one irreducible projective SU(2) representation of the link
group, up to conjugation, it suffices to determine the sign associated to this one point.

We identify

SU(2)=
{

x + yi + z j +wk
∣∣ |x |2+ |y|2+ |z|2+ |w|2 = 1

}
with the group of unit quaternions and consider the conjugacy class

Ci =
{

yi + z j +wk
∣∣ |y|2+ |z|2+ |w|2 = 1

}
⊂ SU(2)

of purely imaginary unit quaternions. Notice that Ci is diffeomorphic to S2 and
coincides with the set of SU(2) matrices of trace zero.

Let L be an oriented link in S3, represented as the closure of an n-strand
braid σ ∈ Bn . We follow Conventions 1.13 on page 17 of [Kassel and Turaev 2008]
for writing geometric braids σ as words in the standard generators σ1, . . . , σn−1.
In particular, braids are oriented from top to bottom and σi denotes a right-handed
crossing in which the (i+1)-st strand crosses over the i-th strand. The braid group Bn

gives a faithful right action on the free group Fn on n generators, and here we follow
the conventions in [Boden and Harper 2016] for associating an automorphism of Fn

to a given braid σ ∈ Bn , which we write as xi 7→ xσi for i = 1, . . . , n. To be precise,
to each braid group generator σi we associate the map σi : Fn→ Fn given by

xi 7→ xi+1, xi+1 7→ (xi+1)
−1xi xi+1, x j 7→ x j ( j 6= i, i + 1),

and this is a right action, i.e., if σ, σ ′ ∈ Bn are two braids, then (xi )
σσ ′
= (xσi )

σ ′ for
all 1≤ i ≤ n. Note that each braid σ ∈ Bn fixes the product x1 · · · xn .

A standard application of the Seifert–van Kampen theorem shows that the link
complement S3

\ L has fundamental group

π1(S3
\ L)= 〈x1, . . . , xn | xσi = xi , i = 1, . . . , n〉.

We can therefore identify representations in Hom(π1(S3
\ L),SU(2)) with fixed

points in Hom(Fn,SU(2)) under the induced action of the braid σ . We further
identify Hom(Fn,SU(2)) with SU(2)n by associating to a homomorphism % the
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n-tuple (X1, . . . , Xn) = (%(x1), . . . , %(xn)). Note that σ : SU(2)n → SU(2)n is
equivariant with respect to conjugation, so that fixed points come in whole orbits.

Every projective SU(2) representation can be identified with a fixed point in
Hom(Fn,SU(2)) under the action of εσ for some n-tuple ε = (ε1, . . . , εn) with
εi = ±1 such that ε1 · · · εn = 1. Notice that the action of εσ on (X1, . . . , Xn) ∈

SU(2)n preserves the product X1 · · · Xn and is equivariant with respect to conjuga-
tion. The Casson–Lin invariant h2(L) is then defined as a signed count of orbits of
fixed points of εσ for a suitably chosen n-tuple ε= (ε1, . . . , εn). The choice is made
so that the resulting projective representations % all havew2(Ad %) 6=0, meaning that
the representations Ad % do not lift to SU(2) representations. It has the consequence
that for all fixed points % of εσ , each %(xi ) is a traceless SU(2) element.

We therefore restrict our attention to the subset of traceless representations,
which are elements % ∈ Hom(Fn,SU(2)) with %(x j ) ∈ Ci for j = 1, . . . , n. Define
f : Cn

i ×Cn
i → SU(2) by setting

f (X1, . . . , Xn, Y1, . . . , Yn)= (X1 · · · Xn)(Y1 · · · Yn)
−1.

We obtain an orientation on f −1(1) by applying the base-fiber rule, using the
product orientation on Cn

i × Cn
i and the standard orientation on the codomain

of f . The quotient f −1(1)/conj is then oriented by another application of the
base-fiber rule, using the standard orientation on SU(2). This step uses the fact that,
if ε = (ε1, . . . , εn) is chosen so that the associated SO(3) representation Ad % has
nontrivial second Stiefel–Whitney class w2 6= 0, then every fixed point of εσ in
Hom(Fn,SU(2)) is necessarily irreducible.

We view conjugacy classes of fixed points of εσ as points in the intersection
1̂ ∩ 0̂εσ , where 1̂ = 1/conj is the quotient of the diagonal 1 ⊂ Cn

i × Cn
i , and

where 0̂εσ = 0εσ/conj is the quotient of the graph 0εσ of εσ : Cn
i → Cn

i .
If the link L is the closure of a 2-strand braid, as it is for the Hopf link, then

ε = (−1,−1) is the only choice whose associated SO(3) bundle has w2 6= 0.
Furthermore, in this case the intersection 1̂ ∩ 0̂εσ takes place in the pillowcase
f −1(1)/conj, which is defined as the quotient

(1) P = {(a, b, c, d) ∈ C4
i | ab = cd}/conj.

It is well known that P is homeomorphic to S2. To see this, first conjugate so
that a = i , then conjugate by elements of the form eiθ to arrange that b lies in the
(i, j)-circle. A straightforward calculation using the equation ab = cd shows that
d must also lie on the (i, j)-circle. Clearly c is determined by a, b, d. We thus
obtain an embedded 2-torus of elements of C4

i satisfying ab = cd , parametrized by

g(θ1, θ2)= (i, ekθ1 i, ek(θ2−θ1)i, ekθ2 i)
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for θ1, θ2 ∈ [0, 2π), which maps onto P . It is easy to verify that this is a two-to-one
submersion, except when θ1, θ2∈{0, π}. This realizes P as a quotient of the torus by
the hyperelliptic involution. In particular, this involution is orientation-preserving,
and away from the four singular points of P , we can lift all orientation questions
up to the torus.

Let L be the right-handed Hopf link, which we view as the closure of the braid
σ = σ 2

1 ∈ B2, and suppose ε = (−1,−1). The intersection 1̂ ∩ 0̂εσ consists of
only one point, the conjugacy class of g

(
π
2 ,

π
2

)
, that is, the point [(i, j, i, j)] ∈ P .

(This is easily verified using the action of σ 2
1 on F2 = 〈x, y〉; see Figure 1.) Thus,

in order to pin down the sign of the Casson–Lin invariant h2(L), we must determine
the orientations of 1̂, 0̂εσ , and P at this point.

Notice that
∂

∂θ1
g(θ1, θ2)= (0, ekθ1 j,−ek(θ2−θ1) j, 0),

∂

∂θ2
g(θ1, θ2)= (0, 0, ek(θ2−θ1) j, ekθ2 j).

Evaluating at θ1 = θ2 =
π
2 gives two tangent vectors u1 := (0,−i,− j, 0) and

u2 := (0, 0, j,−i) to C4
i which span a complementary subspace in ker d f to the

orbit tangent space. Therefore, an ordering of these vectors determines an orientation
on P = f −1(1)/conj.

The orbit tangent space is spanned by the three tangent vectors

v1 :=
∂

∂t

∣∣∣
t=0

ei t(i, j, i, j)e−i t
= (0, 2k, 0, 2k),

v2 :=
∂

∂t

∣∣∣
t=0

e j t(i, j, i, j)e− j t
= (−2k, 0,−2k, 0),

v3 :=
∂

∂t

∣∣∣
t=0

ekt(i, j, i, j)e−kt
= (2 j,−2i, 2 j,−2i).

Then {u1, u2, v1, v2, v3} is a basis for ker(d f |(i, j,i, j)) = T(i, j,i, j) f −1(1). We
choose vectors w1 = (k, 0, 0, 0), w2 = (0, k, 0, 0), w3 = ( j, 0, 0, 0) to extend this
to a basis for T(i, j,i, j)C4

i .
The orientation conventions in the definition of h2(L) (see Section 5d of [Harper

and Saveliev 2010]) involve pulling back the orientation from su(2) = T1 SU(2)
by d f to obtain a coorientation for ker(d f |(i, j,i, j)). With that in mind, we compute
the action of d f on {w1, w2, w3}, namely, d f (w1)=− j , d f (w2)= i , d f (w3)= k.

Notice that the ordered triple {d f (w1), d f (w2), d f (w3)} = {− j, i, k} gives the
same orientation as the standard basis for su(2). Thus, the base-fiber rule gives the
coorientation {w1, w2, w3} on ker d f , so we choose the orientation Oker d f on ker d f
such that O{w1,w2,w3}⊕Oker d f agrees with the product orientation on C2

i ×C2
i .

The orientation on the pillowcase P is then obtained by applying the base-fiber
rule a second time to the quotient (1), using Oker d f to orient f −1(1) and giving the
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x y

y−1xy y−1x−1 yxy

Figure 1. The action of σ = σ 2
1 on F2 = 〈x, y〉.

orbit tangent space the orientation induced from that on SU(2) as well. We claim that
the basis {u1, u2} for the tangent space to the pillowcase has the opposite orientation.
To see this, we note that {v1, v2, v3} is the fiber orientation for SO(3)→ f −1(1)→ P
and compare S = {w1, w2, w3, u1, u2, v1, v2, v3} to the product orientation on
C2

i ×C2
i . Using the basis {( j, 0), (k, 0), (0, k), (0, i)} for T(i, j)(C2

i ), we see that

β = {( j, 0, 0, 0), (k, 0, 0, 0), (0, k, 0, 0), (0, i, 0, 0),
(0, 0, j, 0), (0, 0, k, 0), (0, 0, 0, k), (0, 0, 0, i)}

is an oriented basis for T(i, j,i, j)C4
i =T(i, j)C2

i ×T(i, j)C2
i with the product orientation.1

Let M be the matrix expressing the vectors in S in terms of the basis β. Since

M =



0 0 1 0 0 0 0 2
1 0 0 0 0 0 −2 0
0 1 0 0 0 2 0 0
0 0 0 −1 0 0 0 −2
0 0 0 −1 1 0 0 2
0 0 0 0 0 0 −2 0
0 0 0 0 0 2 0 0
0 0 0 0 −1 0 0 −2


,

one easily computes that det M = −8, confirming our claim that {u2, u1} is a
positively oriented basis for the pillowcase tangent space.

Recall that L is the right-handed Hopf link, which we represent as the closure
of the braid σ = σ 2

1 ∈ B2. For ε = (−1,−1), as in Figure 1, one can verify that

εσ (X, Y )= (−Y−1 XY,−Y−1 X−1Y XY ).

Consider the curve α(θ)=(i, ekθ i), passing through the point (i, j)∈C2
i when θ= π

2 ,
which is transverse to the orbit [(i, j)]. Then (α(θ), α(θ)) and (α(θ), εσ ◦α(θ)) are
curves in 1 and 0εσ , respectively, and both are necessarily transverse to the orbit in

1As explained in Section 5d of [Harper and Saveliev 2010], the invariant h2(L) is independent of
the choice of orientation on Ci . In fact, C2

i can be oriented arbitrarily provided one uses the product
orientation on C2

i ×C2
i .
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C4
i /conj. Thus, we can compare the orientations induced by the parametrizations
[(α(θ), α(θ))] and [(α(θ), εσ ◦α(θ))] of 1̂ and 0̂εσ to the pillowcase orientation de-
termined above, namely {u2, u1}. The velocity vectors for the paths (α(θ), α(θ))=
(i, ekθ i, i, ekθ i) and (α(θ), εσ ◦α(θ))= (i, ekθ i,−e2kθ i,−e3kθ i) at θ = π

2 are given
by (0,−i, 0,−i)= u1+ u2 and (0,−i, 2 j,−3i)= u1+ 3u2, respectively.

The Casson–Lin invariant is defined as the intersection number h2(L)=〈1̂, 0̂εσ 〉,
and in our case the sign of the unique intersection point in 1̂∩ 0̂εσ is determined by
comparing the orientation of {u1+ u2, u1+ 3u2} with {u2, u1}. Since the change
of basis matrix

[ 1
1

3
1

]
has negative determinant, it follows that h2(L)=−1. �
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