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CONFORMAL HOLONOMY EQUALS AMBIENT HOLONOMY

ANDREAS ČAP, A. ROD GOVER,
C. ROBIN GRAHAM AND MATTHIAS HAMMERL

We study the relation between two notions of holonomy on a conformal man-
ifold. The first is the conformal holonomy, defined to be the holonomy of the
normal tractor connection. The second is the holonomy of the Fefferman–
Graham ambient metric of the conformal manifold. It is shown that the
infinitesimal conformal holonomy and the infinitesimal ambient holonomy
always agree up to the order that the ambient metric is defined.

1. Introduction

The tractor bundle T of a smooth conformal manifold (M, c) of dimension n ≥ 3
and signature (p, q), p+q = n, is a rank-(n+2) vector bundle naturally associated
to the conformal structure, which carries a canonical connection ∇; see [Bailey
et al. 1994]. This connection is characterized by a normalization condition on its
curvature, whence it is called the normal tractor connection [Čap and Gover 2003].
It can be viewed as a conformally invariant analog of the Levi-Civita connection of a
Riemannian manifold and has played an essential role in many recent developments
in conformal geometry. The holonomy of (T ,∇) is called the conformal holonomy
of (M, c). Following early work [Armstrong 2007; Leistner 2006; Leitner 2005], its
study has been the focus of active recent research; see, e.g., [Alt 2012; Armstrong
and Leitner 2012; Lischewski 2015].

Another invariant object associated to a conformal manifold is the ambient metric
of [Fefferman and Graham 1985; 2012]. This is a smooth pseudo-Riemannian
metric of signature (p+ 1, q + 1) on a space of dimension n+ 2, determined up to
diffeomorphism along a canonical hypersurface, to infinite order if n is odd, and to
order n

2 −1 if n is even. Its Levi-Civita connection is another connection associated
to the conformal manifold and one can also consider its holonomy. Because the
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holonomy group of a connection is a global invariant and the ambient metric is
only invariantly defined as a jet along a hypersurface, its holonomy group is not
the appropriate object to study. Instead we consider the infinitesimal holonomy,
which depends only on the jet at a point. The main result of this paper asserts that,
suitably interpreted, the infinitesimal holonomies of the tractor connection and the
Levi-Civita connection of the ambient metric agree at each point.

In order to formulate the result precisely, we describe a realization of the tractor
bundle in ambient terms which was derived in [Čap and Gover 2003]. Details will
be provided in Section 2. If (M, c) is a conformal manifold, its metric bundle is the
ray bundle G ⊂ S2T ∗M whose sections are the metrics g ∈ c. The ambient space is
G ×R, in which G is embedded as the hypersurface G × {0}. There are dilations
δs : G→ G given by δs(x, gx) = (x, s2gx), s > 0, which extend to G ×R acting
in the first factor. For x ∈ M, we denote by Gx the fiber of G over x , and we view
Gx as a 1-dimensional submanifold of G×R via Gx ⊂ G = G×{0} ⊂ G×R. Then
T (G×R)|Gx denotes the tangent bundle to G×R restricted to the submanifold Gx ,
a rank-(n+ 2) vector bundle over Gx . The standard tractor bundle of (M, c) can be
realized as the rank-(n+ 2) vector bundle T → M with fiber

(1-1) Tx =
{
U ∈ 0(T (G×R)|Gx ) : (δs)

∗U = s−1U, s > 0
}
.

The right-hand side of (1-1) is clearly a vector space of dimension n+ 2 varying
smoothly with x . A section of T on M is thus a vector field in G×R defined on G
which is homogeneous of degree −1 with respect to the δs .

As we will also review in Section 2, an ambient metric for (M, c) is a pseudo-
Riemannian metric g̃ which is defined in a dilation-invariant neighborhood G̃ of G in
G×R by certain conditions. As indicated above, it is uniquely determined by (M, c)
up to diffeomorphism to infinite order if n is odd and to order n

2 − 1 if n is even.
It seems that the notion of infinitesimal holonomy was first introduced and

studied systematically by Nijenhuis [1953a; 1953b; 1954]. A standard reference is
[Kobayashi and Nomizu 1963]. If (V,∇) is a smooth vector bundle with connection
on a manifold M and x ∈M, the infinitesimal holonomy algebra holx of (V,∇) at x
is the subspace of EndVx defined by

(1-2) holx = spanR

{
∇ηk∇ηk−1 · · · ∇η3(R(η1, η2))(x) : k ≥ 2, η1, . . . , ηk ∈X(M)

}
.

Here X(M) denotes the space of smooth vector fields on M and R :32TM→EndV
the curvature of ∇. It is a standard fact that holx is a subalgebra of EndVx for
its natural Lie algebra structure with bracket the commutator of endomorphisms.
Clearly holx depends only on the infinite order jet of ∇ at x , and so in particular
there is generally no relation between holx and holy for x 6= y. However, if M and
(V,∇) are real-analytic, then holx is the Lie algebra of Holx , where Holx ⊂AutVx

is the usual holonomy group of (V,∇) defined by parallel translation around loops
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based at x . Of course, Holx is always isomorphic to Holy for M smooth and
connected.

For a conformal manifold (M, c), we denote by holx the infinitesimal holonomy
at x of (T ,∇), where ∇ is the normal tractor connection. Thus holx is a subalgebra
of End Tx . The realization (1-1) of Tx induces the realization

(1-3) End Tx =
{

E ∈ 0(End T (G×R)|Gx ) : (δs)
∗E = E, s > 0

}
of End Tx . Thus an element of holx is realized as a section of the vector bundle
End T (G×R)|Gx over Gx which is homogeneous of degree 0 with respect to the δs .
For any z ∈ Gx , evaluation at z is an isomorphism

evz : End Tx → End Tz(G×R).

So evz(holx) is an isomorphic copy of holx in End Tz(G×R).
If g̃ is an ambient metric for (M, c) and x∈M, the infinitesimal holonomy at z∈Gx

of the Levi-Civita connection ∇̃ of g̃ is a subalgebra of End TzG̃ = End Tz(G×R).
If n is odd, we denote this subalgebra h̃olz . This is clearly independent of the
infinite-order ambiguity in g̃. However, when n is even, the ambient metric is
determined by (M, c) only to order n

2 − 1 along G. So we need to restrict the
number of differentiations transverse to G to avoid this ambiguity. Therefore, when
n ≥ 4 is even, we define

(1-4) h̃olz = spanR

{
∇̃ξ̃k
∇̃ξ̃k−1
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))(z) : k ≥ 2, ξ̃1, . . . , ξ̃k ∈ X(G̃)
}
,

where R̃ is the curvature of ∇̃, but we impose the requirement that no more
than n

2 − 2 of the vector fields ξ̃1, . . . , ξ̃k are somewhere transverse to G. Then
∇̃ξ̃k
∇̃ξ̃k−1
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2)) depends on at most n
2 −1 transverse derivatives of g̃, so

its value at z is independent of the ambiguity at order n
2 . A priori, (1-4) is only

defined as a vector space, but it is a consequence of Theorem 1.1 that it is a Lie
subalgebra of End TzG̃.

Our main result is the following.

Theorem 1.1. Let (M, c) be a conformal manifold of dimension n ≥ 3 and g̃ an
ambient metric for (M, c). If x ∈ M and z ∈ Gx , then

evz(holx)= h̃olz.

An immediate corollary is the equality of restricted tractor and ambient holonomy
groups in the odd-dimensional real-analytic case. Recall that if (V,∇) is a vector
bundle with connection on a smooth manifold M and x ∈ M, then the restricted
holonomy group is

Hol0x(V,∇)= {Lγ } ⊂ AutVx ,
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where γ is a smooth contractible loop based at x and Lγ is the linear transformation
of Vx obtained by parallel translation around γ . Just as with infinitesimal holonomy,
for the tractor connection of a conformal manifold we have that if z ∈ Gx , then
evz(Hol0x(T ,∇)) is an isomorphic copy of Hol0x(T ,∇) in Aut Tz(G×R).

Corollary 1.2. Let (M, c) be an odd-dimensional real-analytic conformal manifold
and g̃ a real-analytic ambient metric for (M, c). If x ∈ M and z ∈ Gx , then

evz(Hol0x(T ,∇))= Hol0z (T G̃, ∇̃).

Corollary 1.2 follows from Theorem 1.1 since evz(Hol0x(T ,∇)) and Hol0z (T G̃, ∇̃)
are connected Lie subgroups of Aut TzG̃ with the same Lie algebra evz(holx)= h̃olz .

The tractor bundle T carries a tractor metric h of signature (p+ 1, q+ 1) which
is parallel with respect to ∇. So by choosing a frame for Tx , one can identify
Hol0(T ,∇) with a subgroup of SOe(p + 1, q + 1) which is well-defined up to
conjugacy independently of x and the choice of frame (assuming M is connected).
Corollary 1.2 immediately implies:

Corollary 1.3. Let (M, c) be an odd-dimensional connected real-analytic con-
formal manifold. Then its restricted conformal holonomy group Hol0(T ,∇) ⊂
SOe(p+ 1, q + 1) is realizable as the restricted holonomy group of a real-analytic
pseudo-Riemannian manifold of signature (p+ 1, q + 1).

Corollary 1.3 is interesting because of the wealth of known information concerning
pseudo-Riemannian holonomy (in particular, Berger’s list) and the restriction it
places on conformal holonomy groups.

If a pseudo-Riemannian manifold admits a nonzero parallel tensor field, then
its holonomy group is constrained to lie in the isotropy group consisting of the
linear transformations preserving the tensor at a point. Of course, many interesting
pseudo-Riemannian holonomy groups arise in this fashion. Likewise, interesting
classes of conformal manifolds are characterized by admitting a parallel tractor-
tensor field (i.e., a section of ⊗rT ∗ for some r ≥ 1) of a particular algebraic type.
A precursor to Theorem 1.1 is the result of [Graham and Willse 2012] asserting
that a parallel tractor-tensor field on a conformal manifold admits an extension to
the ambient space which is parallel with respect to the ambient metric (to infinite
order for n odd, to order n

2 − 1 for n even). This result was one motivation for our
consideration of the question of equality of infinitesimal holonomy in general.

In order to prove Theorem 1.1, one must express the ambient connection and
its curvature in tractor terms. Čap and Gover [2003] showed how the tractor
bundle and connection could be written in ambient terms. This gives the inclusion
evz(holx)⊂ h̃olz in Theorem 1.1. Gover and Peterson [2003] reversed the direction
and showed how to express the full ambient curvature and its covariant derivatives
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in terms of tractor calculus. Our proof of the reverse inclusion in Theorem 1.1, i.e.,
of ambient holonomy in tractor holonomy, is based on these relations.

In Section 2 we review the ambient metric construction and the realization
of the tractor bundle and connection in ambient terms. In Section 3 we discuss
infinitesimal holonomy and prove Theorem 1.1, in the process recalling the tractor
expressions for the ambient curvature and connection.

2. Ambient metrics and tractors

We begin by reviewing background material concerning ambient metrics and tractors.
The main reference for the material on ambient metrics is [Fefferman and Graham
2012]. References for the ambient formulation of tractors are [Čap and Gover 2003]
and [Gover and Peterson 2003].

Let (M, c) be a conformal manifold of dimension n ≥ 3 and signature (p, q),
p + q = n. Metrics in the conformal class c are sections of the metric bundle
G := {(x, gx) : x ∈ M, g ∈ c} ⊂ S2T ∗M. Let π : G→ M denote the projection and
δs : G→ G the dilations defined by δs(x, gx)= (x, s2gx), s > 0. Let T = d

ds δs |s=1

be the infinitesimal generator of the dilations. There is a tautological symmetric
2-tensor g on G defined for X, Y ∈ T(x,gx )G by g(X, Y )= gx(π∗X, π∗Y ).

Regard G as a hypersurface in G×R via ι(z)= (z, 0), z ∈ G. The variable in the
R factor is denoted ρ. A straight preambient metric for (M, c) is a smooth metric g̃
of signature (p+ 1, q + 1) on a dilation-invariant neighborhood G̃ of G satisfying

(1) δ∗s g̃ = s2g̃ for s > 0;

(2) ι∗g̃ = g;

(3) ∇̃T = Id, where Id denotes the identity endomorphism and ∇̃ the Levi-Civita
connection of g̃.

If n is odd, an ambient metric for (M, c) is a straight preambient metric for (M, c)
such that Ric(g̃) vanishes to infinite order on G. (To infinite order, the straightness
condition (3) is a consequence of the infinite order vanishing of Ric(g̃). But this
is a nontrivial result (see [Fefferman and Graham 2012]), and it is convenient to
have (3) holding in a full neighborhood of G. So (3) is included in the definition.)
There exists an ambient metric for (M, c) and it is unique to infinite order up to
pullback by a diffeomorphism defined on a dilation-invariant neighborhood of G×R

which commutes with dilations and which restricts to the identity on G. If M is
a real-analytic manifold and there is a real-analytic metric in the conformal class,
then there exists a real-analytic ambient metric for (M, c) satisfying Ric(g̃)= 0 on
some dilation-invariant G̃ as above.

In order to formulate the definition of ambient metrics for n even, let SIJ be a
symmetric 2-tensor field on an open neighborhood of G in G×R and m≥0. We write
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SIJ = O+IJ (ρ
m) if SIJ = O(ρm) and, for each point z ∈ G, the symmetric 2-tensor

(ι∗(ρ−m S))(z) is of the form π∗s for some symmetric 2-tensor s at x = π(z) ∈ M
satisfying trgx s = 0. If n is even, an ambient metric for (M, c) is a straight
preambient metric such that Ric(g̃)= O+IJ (ρ

n/2−1). There exists an ambient metric
for (M, c) and it is unique up to addition of a term which is O+IJ (ρ

n/2) and up to
pullback by a diffeomorphism defined on a dilation-invariant neighborhood of G
which commutes with dilations and which restricts to the identity on G. For n
even, a conformally invariant tensor, the ambient obstruction tensor, obstructs the
existence of smooth solutions to Ric(g̃)= O(ρn/2).

Let (M, c) be a conformal manifold with metric bundle G π
→M. For x ∈M, write

Gx = π
−1({x}) for the fiber of G over x . Recall that the bundle D(w) of conformal

densities of weight w ∈ C has fiber Dx(w)= { f : Gx → C : (δs)
∗ f = sw f, s > 0}.

Thus sections of D(w) on M are functions on G homogeneous of degree w.
The standard tractor bundle and its normal connection can be similarly realized

in terms of homogeneous vector fields on Gx . As described in the introduction, the
standard tractor bundle can be realized as the rank-(n+ 2) vector bundle T → M
with fiber over x given by (1-1). It can equivalently be described as an R+-quotient
of T G̃|G ; see [Čap and Gover 2003]. If g̃ is an ambient metric for (M, c) and if
U,W ∈ Tx , then g̃(U,W ) is homogeneous of degree 0 on Gx , i.e., g̃(U,W ) ∈ R.
Therefore h(U,W )= g̃(U,W ) defines a metric h of signature (p+ 1, q+ 1) on T ,
the tractor metric. Since T is homogeneous of degree 0 with respect to the δs , it
defines a section of T (1), where in general we denote the effect of tensoring a
bundle with D(w) by appending (w). The set of U in (1-1) which at each point
of Gx is a multiple of T determines a subbundle of T which we denote span{T }.
Its orthogonal complement span{T }⊥ is the set of U which at each point of Gx is
tangent to G. This gives the filtration

(2-1) 0⊂ span{T } ⊂ span{T }⊥ ⊂ T .

In order to realize the tractor connection, observe that π∗ : TG→ TM induces a
realization of the tangent bundle TM as

(2-2) Tx M =
{
η̄ ∈ 0(TG|Gx ) : (δs)

∗η̄ = η̄, s > 0
}
/span{T },

where here span{T } really means the constant multiples of T. If η ∈ Tx M, choose
η̄ ∈ 0(TG|Gx ) representing η. We will call such an η̄ an invariant lift of η. Let g̃ be
an ambient metric for (M, c) and ∇̃ its Levi-Civita connection. If U is a section
of T near x , then ∇̃η̄U ∈ 0(T G̃|Gx ) makes sense since U is defined on G and η̄ is
tangent to G. The straightness of g̃ and the homogeneity of U imply that ∇̃T U = 0.
Therefore ∇̃η̄U is independent of the choice of invariant lift η̄. Also ∇̃η̄U has the
same homogeneity as U, so ∇̃η̄U defines an element of Tx . This realizes the tractor
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connection ∇ on T :

(2-3) ∇ηU = ∇̃η̄U.

The tractor metric h is parallel with respect to ∇ since ∇̃ g̃ = 0. These realizations
of the tractor metric and connection depend on the choice of ambient metric g̃. But
the realizations obtained by changing g̃ by a diffeomorphism are equivalent.

The realization (1-1) of the tractor bundle induces the realizations

(2-4) (⊗rT ∗)x =
{
χ ∈ 0(⊗r T ∗G̃|Gx ) : (δs)

∗χ = srχ, s > 0
}
, r ∈ N,

of the bundles of cotractor-tensors, as well as the realization (1-3) of the bundle
of tractor endomorphisms. The induced tractor connections on these bundles are
also given in terms of the ambient connection and an invariant lift η̄ as in (2-3).
Throughout this paper we will identify weighted tractor-tensors with homogeneous
sections of bundles on G as in (1-1), (1-3), (2-4).

The curvature R of the tractor connection can be expressed in terms of the curva-
ture R̃ of an ambient metric. We have R :32TM→End T and R̃ :32T G̃→End T G̃.
The straightness of the ambient metric implies that Ty R̃=0 on G. So if η1, η2∈Tx M
and η̄1, η̄2 ∈ 0(TG|Gx ) are invariant lifts, then R̃(η̄1, η̄2) ∈ 0(End T G̃|Gx ) is inde-
pendent of the choices of η̄1, η̄2. Moreover, R̃(η̄1, η̄2) is homogeneous of degree 0
with respect to the δs , so it realizes an element of End Tx , and one has

(2-5) R(η1, η2)= R̃(η̄1, η̄2).

We follow usual notational conventions. We label tensors on the ambient space
and therefore also tractors with capital Latin indices and vectors on M with lower
case Latin indices. We use E to denote the space of smooth sections of a bundle
on M, the bundle specified by the accompanying indices. Just as with the bundles
themselves, we denote the spaces of sections of the corresponding weighted bundles
by appending (w). The notation E8(w) signifies the space of sections of a generic
weighted tractor bundle, where 8 denotes an arbitrary collection of upper and lower
capital indices. If 8 consists of r upper indices and s lower indices, we denote by
Ẽ8(w) the space of sections of (⊗r T G̃)⊗ (⊗s T ∗G̃) on G̃ of the same homogeneity
degree as sections of E8(w), i.e., of homogeneity degree w−r+s. Ambient/tractor
indices are raised and lowered using the ambient/tractor metric g̃AB /hAB and lower
case indices using the conformal metric gi j ∈ Ei j (2).

A choice of metric g in the conformal class induces a splitting of the cotractor
bundle

(2-6) T ∗ = D(−1)⊕ T ∗M(1)⊕D(1).

This is the formulation in the original definition of the tractor bundle in [Bailey
et al. 1994]. It can also be viewed in terms of the ambient realization by putting g̃
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in normal form relative to g (see [Gover and Peterson 2003] or [Graham and Willse
2012]). The three inclusions determined by this splitting determine sections

XA ∈ EA(1), ZA
i
∈ EA

i (−1), YA ∈ EA(−1)

so that

(2-7) VA = ϕXA+ψi ZA
i
+ ρYA

corresponds to VA= (ϕ, ψi , ρ)∈ E(−1)⊕Ei (1)⊕E(1). The sections YA and ZA
i are

scale-dependent, i.e., they depend on the choice of g, while XA is scale-independent:
X A
∈ E A(1) is another notation for the weighted tractor defined by the vector

field T |G .

3. Holonomy

Recall from the introduction that the infinitesimal holonomy holx of a vector
bundle with connection (V,∇) on a manifold M is defined pointwise by (1-2), and
Theorem 1.1 is stated in terms of pointwise infinitesimal holonomy. The proof of
Theorem 1.1 goes by induction on the order of differentiation. Thus it is natural to
formulate an induction hypothesis involving objects which can be differentiated.
So we introduce spaces consisting of global sections which restrict at each point to
the infinitesimal holonomy. For k ≥ 2, we define

(3-1) holkM = spanC∞(M)
{
∇ηl∇ηl−1···∇η3(R(η1,η2)) : 2≤ l≤ k, η1,...,ηl ∈X(M)

}
and

holM =
⋃
k≥2

holkM

so that holkM , holM ⊂ 0(EndV). Clearly holx = {E(x) : E ∈ holM}. One has

(3-2) [holkM , hol
l
M ] ⊂ holk+l

M .

In fact, the proof in [Kobayashi and Nomizu 1963] that holx is a subalgebra of
EndVx establishes the analog of (3-2) in the principal bundle setting.

There is an alternate characterization of these spaces in terms of iterated covari-
ant derivatives with respect to a coupled connection. If we choose arbitrarily a
connection on TM and denote also by ∇ the coupled connection on V ⊗ TM, then
the Leibniz formula and induction show that

(3-3) holkM = spanC∞(M)
{
(∇l−2 R)(η1,η2,...,ηl) : 2≤ l ≤ k, η1,...,ηl ∈ X(M)

}
.

R again denotes the curvature of the connection on V. Here it is viewed as a section
of 32T ∗M⊗EndV and ∇l−2 R denotes its iterated covariant derivative with respect
to the coupled connection.
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If (M, c) is a conformal manifold, we take V = T to be the tractor bundle with
its normal connection and we denote the corresponding spaces by holkM , holM . As
usual, via our realization (1-3) we identify elements of holM as global sections of
End T (G×R)|G which are homogeneous of degree 0 with respect to the δs .

For the ambient metric we modify the definition slightly to respect homogeneity.
If n is odd and g̃ is an ambient metric for (M, c), we define for k ≥ 2

(3-4) h̃olkM= spanC∞(M)
{
∇̃ξ̃l
∇̃ξ̃l−1
···∇̃ξ̃3

(R̃(ξ̃1,ξ̃2))|G :2≤ l≤k, ξ̃1,...,ξ̃l∈X0(G̃)
}
,

where X0(G̃) denotes the space of smooth vector fields on G̃ which are homoge-
neous of degree 0 with respect to the δs and C∞(M) is viewed as the subspace
of C∞(G) of functions homogeneous of degree 0. Observe that by definition,
h̃olkM ⊂ 0(End T G̃|G) consists of sections which are homogeneous of degree 0. If
n is even, we again define h̃olkM for k ≥ 2 by (3-4), except that we require that at
most n

2 − 2 of the ξ̃i are somewhere transverse to G. For general n, we then set

h̃olM =
⋃
k≥2

h̃olkM .

As above, h̃olM also has a description in terms of iterated derivatives of curvature:

(3-5) h̃olkM = spanC∞(M)
{
(∇̃l−2 R̃)(ξ̃1,ξ̃2,...,ξ̃l)|G : 2≤ l ≤ k, ξ̃1,...,ξ̃l ∈X0(G̃)

}
.

Here we take the coupling connection on T G̃ also to be the Levi-Civita connection ∇̃.
As usual, for n even we require that at most n

2−2 of the ξ̃i are somewhere transverse
to G. In this case, the equivalence of the descriptions (3-4) and (3-5) only holds for
k ≤ n

2 −1, since ∇̃ξ̃ η̃ can be transverse to G when both ξ̃ |G and η̃|G are tangent to G.
We claim h̃olz = {E(z) : E ∈ h̃olM}. To see this, choose a frame ζ̃0, ζ̃1, . . . , ζ̃n+1

for T G̃ near z such that ζ̃A|G is tangent to G for 1≤ A ≤ n+ 1, and such that each
ζ̃A is homogeneous of degree 0 with respect to the δs . By writing each ξ̃i in (1-4)
as a linear combination of the ζ̃A, it is not hard to see that

h̃olz = spanR

{
∇̃ζ̃Ak
∇̃ζ̃Ak−1

· · · ∇̃ζ̃A3
(R̃(ζ̃A1, ζ̃A2))(z) : k ≥ 2

}
,

where for n even at most n
2 − 2 of the indices A1, . . . , Ak are equal to 0. It follows

immediately that h̃olz = {E(z) : E ∈ h̃olM}.
In light of these observations, it is clear that Theorem 1.1 is a consequence of

the following theorem.

Theorem 3.1. Let (M, c) be a conformal manifold of dimension n ≥ 3 and g̃ an
ambient metric for (M, c). Then

holM = h̃olM .
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The inclusion holM ⊂ h̃olM follows immediately from the ambient realizations
of the tractor connection and curvature. If η1, . . . , ηk ∈ X(M) and η̄1, . . . , η̄k are
invariant lifts, then (2-3), (2-5) give

(3-6) ∇ηk∇ηk−1 · · · ∇η3(R(η1, η2))= ∇̃η̄k ∇̃η̄k−1 · · · ∇̃η̄3(R̃(η̄1, η̄2)),

so holM ⊂ h̃olM . The right-hand side is in h̃olM also for n even since none of the η̄i

are transverse to G.
We remark that (3-6) is already sufficient to prove Theorem 3.1, and therefore

also Theorem 1.1, when n = 4. In fact, when n = 4, each ξ̃i |G in (3-4) is required
to be everywhere tangent to G, so is an invariant lift of some ηi ∈ X(M).

To prove the opposite inclusion h̃olM ⊂ holM , we must rewrite expressions of the
form ∇̃ξ̃l ∇̃ξ̃l−1

· · · ∇̃ξ̃3
(R̃(ξ̃1, ξ̃2))|G purely in tractor terms when the ξ̃i are allowed

to be transverse to G. We do this using tractor representations of the curvature and
connection of the ambient metric derived in [Gover and Peterson 2003]. These
representations are expressed in terms of the splitting (2-6), (2-7) of the cotractor
bundle determined by a choice of metric g ∈ c. Consider first the case n odd.

Proof of Theorem 3.1 for n odd. We show by induction on k ≥ 2 that h̃olkM ⊂ holM .
For k = 2, we use the tractor expression for ambient curvature

R̃AB
P
Q |G = ZA

a ZB
b Rab

P
Q −

2
n−4

X [AZB]
b
∇

c Rcb
P
Q .

This is (13), (35) of [Gover and Peterson 2003]. The ∇c on the right-hand side
refers to the connection obtained by coupling the tractor connection with the Levi-
Civita connection of the chosen representative metric g. Now h̃ol2M is spanned
by contractions of the left-hand side against ξ̃ A

1 ξ̃
B
2 , where ξ̃1, ξ̃2 ∈ X0(G̃). It is

evident that after such a contraction, the first term on the right-hand side is in hol2M .
For the second term, write ∇c Rcb

P
Q = gcd

∇c Rdb
P
Q and introduce a partition of

unity subordinate to a covering of M in each open set of which gcd can be expressed
as a smooth linear combination of tensor products of vector fields. It follows that
after contraction with ξ̃ A

1 ξ̃
B
2 , the second term is in hol3M . Thus the initial k = 2 step

of the induction is established.
The induction step for higher k will be carried out using the tractor-D operator.

If 8 denotes an arbitrary collection of upper and/or lower tractor indices, then

DA : E8(w)→ E8A(w− 1)

is defined in terms of the splitting determined by a representative metric g by

(3-7) DAV = w(n+ 2w− 2)YAV + (n+ 2w− 2)ZA
a
∇a V − XA�V,
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where �V = ∇ i
∇i V +wJ V and J = R/(2(n− 1)). DA can also be expressed in

ambient terms:

(3-8) DAV = (n+ 2w− 2)∇̃AṼ |G − XA(1̃Ṽ )|G .

These are (8), (31) of [Gover and Peterson 2003]. On the right-hand side, Ṽ ∈ Ẽ8(w)
is an arbitrary homogeneous extension of V ∈ E8(w) and 1̃ denotes the ambient
Laplacian acting on the corresponding space of tensors: 1̃= ∇̃ I

∇̃I . The expression
on the right-hand side turns out to be independent of the choice of Ṽ .

Assume now that k ≥ 2 and h̃olkM ⊂ holM . According to (3-5), in order to prove
that h̃olk+1

M ⊂ holM , it suffices to show that
(
ξ̃ A

1 ξ̃
B
2 · · · ξ̃

E
k+1∇̃

k−1
A···C R̃DE

P
Q
)∣∣

G ∈ holM
for ξ̃1, . . . , ξ̃k+1 ∈ X0(G̃). Set ξ A

s = ξ̃
A
s |G ∈ E A(1), 1≤ s ≤ k+ 1.

Define
Ṽ = ∇̃k−2

B···C R̃DE
P
Q ∈ ẼB···E

P
Q(−k)

and rewrite (3-8) as

(n− 2k− 2)∇̃AṼ |G = DAV + XA(1̃Ṽ )|G,

where V := Ṽ |G ∈ EB···E
P
Q(−k). Since the coefficient (n− 2k− 2) is nonzero for

n odd, it suffices to show that

(3-9) ξ A
1 · · · ξ

E
k+1 DAVB···E

P
Q ∈ holM

and

(3-10) ξ̃ B
2 · · · ξ̃

E
k+11̃ṼB···E

P
Q |G ∈ holM .

For (3-9), contract (3-7) against ξ A
1 · · · ξ

E
k+1. The first term on the right-hand side

gives a multiple of
(ξ A

1 YA)ξ
B
2 · · · ξ

E
k+1VB···E

P
Q,

which is in holM by the induction hypothesis. The second term on the right-hand
side gives a multiple of

(ξ A
1 ZA

a)ξ B
2 · · · ξ

E
k+1∇a VB···E

P
Q .

If we set ηa
= ξ A

1 ZA
a, then this can be rewritten as

ηaξ B
2 · · · ξ

E
k+1∇a VB···E

P
Q

=∇η(ξ
B
2 · · · ξ

E
k+1VB···E

P
Q)−

k+1∑
s=2

ξ B
2 · · · (∇ηξ

R
s ) · · · ξ

E
k+1VB···R···E

P
Q .

The induction hypothesis shows that ξ B
2 · · · ξ

E
k+1VB···E

P
Q ∈ holM , so we conclude

that ∇η(ξ B
2 · · · ξ

E
k+1VB···E

P
Q) ∈ holM . Each term in the sum on the right-hand side

is clearly in holM by the induction hypothesis. Thus the contraction of the second
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term of the right-hand side of (3-7) is in holM . The third term of (3-7) is handled
similarly, namely by expanding the difference

ξ B
2 · · · ξ

E
k+1∇

c
∇cVB···E

P
Q −∇

c
∇c(ξ

B
2 · · · ξ

E
k+1VB···E

P
Q)

using the Leibniz rule and introducing a partition of unity to rewrite sections of
tensor product bundles as sums of tensor products of sections of the factors as in
the proof in the case k = 2. This concludes the proof of (3-9).

It remains to prove (3-10). Now 1̃Ṽ = 1̃∇̃k−2 R̃. It is well-known that the
Laplacian of an iterated covariant derivative of the curvature tensor of a Ricci-flat
metric can be reexpressed as a linear combination of quadratic terms in curvature by
commuting both derivatives in 1̃ all the way to the right and applying the second
Bianchi identity. We will argue using the induction hypothesis that each commutator
term is already in holM .

Write
1̃∇̃k−2 R̃DE

P
Q = g̃ IJ

∇̃I ∇̃J ∇̃
k−2 R̃DE

P
Q .

First commute ∇̃J to the right of all derivatives in ∇̃k−2. Modulo commutator terms,
one obtains

g̃ IJ
∇̃I ∇̃

k−2
∇̃J R̃DE

P
Q = g̃ IJ

∇̃I ∇̃
k−2
∇̃D R̃JE

P
Q + g̃ IJ

∇̃I ∇̃
k−2
∇̃E R̃D J

P
Q .

Now commuting ∇̃I all the way to the right shows that modulo commutators the
above is equal to

g̃ IJ
∇̃

k−2
∇̃D∇̃I R̃JE

P
Q + g̃ IJ

∇̃
k−2
∇̃E ∇̃I R̃D J

P
Q .

This vanishes on G by the second Bianchi identity and the infinite-order vanishing
of Ric g̃.

To analyze the commutator terms, it is convenient to suppress writing the End T G̃
indices P

Q . We will denote by R̃BC the curvature tensor of g̃ viewed as an End T G̃-
valued section of 32T ∗G̃. If U is an End T G̃-valued section of ⊗r T ∗G̃ and V is
an End T G̃-valued section of ⊗s T ∗G̃, we will denote by [U, V ] the End T G̃-valued
section of ⊗r+s T ∗G̃ which is the commutator in the End T G̃ indices and the tensor
product in the T ∗G̃ indices. The Leibniz formula gives

(3-11) ∇̃[U, V ] = [∇̃U, V ] + [U, ∇̃V ].

The Ricci identity for commuting covariant derivatives can be written

(3-12) [∇̃B, ∇̃C ]U = R̃BC .U + [R̃BC ,U ],

where R̃BC .U denotes the action of the endomorphism R̃BC on the ⊗r T ∗G̃ indices
of U.
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Every commutator which arose in the above argument was of the form

∇̃
i
[∇̃B, ∇̃C ]∇̃

jR̃

for some choice of indices B, C , where i ≥ 0, j ≥ 0, and i + j = k− 2. Express
the commutator [∇̃B, ∇̃C ]∇̃

jR̃ using (3-12) with U = ∇̃ jR̃. The first term on the
right-hand side of (3-12) gives terms of the form ∇̃ i (R̃ .∇̃ jR̃). Expanding the ∇̃ i

with the Leibniz rule, it is clear that one obtains a sum of terms, each of which has
the form

(3-13) contr(∇̃ pR̃⊗∇̃qR̃),

with p ≥ 0, q ≥ 0, and p+ q = k− 2. Here contr indicates a single contraction of
the upper End T ∗G̃ index of ∇̃ p R̃ against one of the ⊗q+2T ∗G̃ indices of ∇̃qR̃. In
particular, the suppressed End T ∗G̃ indices are those on ∇̃qR̃. The second term on
the right-hand side of (3-12) gives terms of the form ∇̃ i

[R̃, ∇̃ jR̃]. Expanding the
∇̃

i using (3-11), one obtains a sum of terms of the form

(3-14) [∇̃
pR̃, ∇̃qR̃],

again with p ≥ 0, q ≥ 0, and p+ q = k− 2.
We need to show (3-10). Suppressing the End T G̃ indices, we have

ξ̃ B
2 · · · ξ̃

E
k+11̃ṼB···E |G = ξ̃

B
2 · · · ξ̃

E
k+1g̃ IJ

∇̃I ∇̃J ∇̃
k−2
B···CR̃DE |G .

Upon commuting ∇̃I and ∇̃J to the right as described above, it follows that this
may be written as a sum of contractions of terms of the form (3-13), (3-14) against
ξ̃i and g̃ IJ with all indices contracted except for the suppressed End T G̃ indices.
In a term (3-13), the free End T G̃ indices are those on the second factor ∇̃qR̃.
Consequently, we can introduce a partition of unity and express locally the tensor
arising from g̃ IJ, ∇̃ pR̃, and the ξ̃i which contracts against the other q + 2 indices
of ∇̃qR̃ as a sum of tensor products of vector fields. Since q ≤ k − 2, it follows
by the induction hypothesis that all these terms are in holM when restricted to G.
In a term (3-14), all the indices except the endomorphism indices are contracted
against g̃ IJ and the ξ̃i . Again use a partition of unity and express locally g̃ IJ as
a sum of tensor products of vector fields. Then the induction hypothesis implies
that the restriction to G of the contractions against ∇̃ pR̃ and ∇̃qR̃ are separately
in holM . It follows from (3-2) that the commutator is also in holM . �

Proof of Theorem 3.1 for n even. We have already observed that (3-6) is sufficient
to prove the case n = 4. So we assume that n ≥ 6. We next observe that the same
argument used for n odd applies also when n is even to show h̃ol

n/2−1
M ⊂ holM . In

fact, up to this order the relevant constant n+ 2w− 2 in (3-8) is nonzero and the
argument only uses Ric(g̃)= O(ρn/2−1).
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For n ≥ 6 even, we prove h̃olkM ⊂ holM by induction on k, beginning with the
case k = n

2 −1. So assume for some k ≥ n
2 −1 that h̃olkM ⊂ holM and we will show

h̃olk+1
M ⊂ holM . According to (3-4), we have to show that

∇̃ξ̃k+1
∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G ∈ holM

whenever ξ̃1, . . . , ξ̃k+1 ∈X0(G̃) and at most n
2−2 of the ξ̃i are somewhere transverse

to G. Since k+ 1≥ n
2 , at least two of the ξ̃i are everywhere tangent to G. If ξ̃k+1 is

everywhere tangent to G, then its restriction to G is the invariant lift of some
η ∈ X(M). In this case (2-3) gives

∇̃ξ̃k+1
∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G =∇η
(
∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G
)
.

The induction hypothesis shows that ∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G ∈ holM , from which
it follows that ∇η

(
∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G
)
∈ holM , as desired.

If ξ̃i is everywhere tangent to G for some i , 3≤ i ≤ k, then we can commute ∇̃ξ̃i

all the way to the left and reduce to the previous case. Modulo relabeling the indices,
each commutator is of the form

∇̃ξ̃k+1
· · · ∇̃ξ̃ j+1

[
∇̃ξ̃ j
, ∇̃ξ̃ j−1

]
∇̃ξ̃ j−2
· · · ∇̃ξ̃3

R̃(ξ̃1, ξ̃2)

= ∇̃ξ̃k+1
· · · ∇̃ξ̃ j+1

∇̃
[ξ̃ j ,ξ̃ j−1]

∇̃ξ̃ j−2
· · · ∇̃ξ̃3

R̃(ξ̃1, ξ̃2)

+∇̃ξ̃k+1
· · · ∇̃ξ̃ j+1

[
R̃(ξ̃ j , ξ̃ j−1), ∇̃ξ̃ j−2

· · · ∇̃ξ̃3
R̃(ξ̃1, ξ̃2)

]
.

In the first term on the right-hand side, the number of differentiations has decreased
by 1 without increasing the number of vector fields somewhere transverse to G,
since the commutator of two vector fields tangent to G is also tangent to G. So the
restriction to G of this term is in holM by the induction hypothesis. In the second
term on the right-hand side, expand the derivatives outside the commutator using
the Leibniz rule. One obtains a linear combination of commutators of covariant
derivatives of curvature endomorphisms. The restriction to G of each such covariant
derivative itself is in holM by the induction hypothesis. Equation (3-2) then shows
that the commutator is in holM .

Finally we must consider the possibility that none of ξ̃3, . . . , ξ̃k+1 is everywhere
tangent to G. (This can only happen in the beginning case k = n

2 − 1, but we will
not use this.) It must be that ξ̃1 and ξ̃2 are everywhere tangent to G. In this case, we
apply the second Bianchi identity to write

∇̃ξ̃3
R̃(ξ̃1, ξ̃2)= ∇̃ξ̃1

R̃(ξ̃3, ξ̃2)+∇̃ξ̃2
R̃(ξ̃1, ξ̃3)+ R̃(∇̃ξ̃3

ξ̃1, ξ̃2)+ R̃(ξ̃1, ∇̃ξ̃3
ξ̃2)

− R̃(∇̃ξ̃1
ξ̃3, ξ̃2)− R̃(ξ̃1, ∇̃ξ̃2

ξ̃3)+ R̃(∇̃ξ̃1
ξ̃2−∇̃ξ̃2

ξ̃1, ξ̃3).

The first two terms of the right-hand side reduce to the previous case. The next
four terms reduce to the induction hypothesis since ξ̃1 and ξ̃2 are tangential and at
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least one occurs as an argument in each term, so the number of transversal vector
fields does not increase. The last term also reduces to the induction hypothesis
since ∇̃ξ̃1

ξ̃2−∇̃ξ̃2
ξ̃1 = [ξ̃1, ξ̃2] is tangential. �
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