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ISOMETRY TYPES OF FRAME BUNDLES
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We consider the oriented orthonormal frame bundle SO(M) of an oriented
Riemannian manifold M. The Riemannian metric on M induces a canon-
ical Riemannian metric on SO(M). We prove that for two closed oriented
Riemannian n-manifolds M and N , the frame bundles SO(M) and SO(N)

are isometric if and only if M and N are isometric, except possibly in di-
mensions 3, 4, and 8. This answers a question of Benson Farb except in
dimensions 3, 4, and 8.
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1. Introduction

Let M be an oriented Riemannian manifold, and let X := SO(M) be the oriented
orthonormal frame bundle of M . The Riemannian structure g on M induces in a
canonical way a Riemannian metric gSO on SO(M). This construction was first
carried out by O’Neill [1966] and independently by Mok [1978], and is very similar
to Sasaki’s [1958; 1962] construction of a metric on the unit tangent bundle of M , so
we will henceforth refer to gSO as the Sasaki–Mok–O’Neill metric on SO(M). Let
us sketch the construction of gSO and refer to Section 2 for the details. Consider the
natural projection π :SO(M)→M . Each of the fibers of p is naturally equipped with
a free and transitive SO(n)-action, so that this fiber carries an SO(n)-bi-invariant
metric gV . The metric gV is determined uniquely up to scaling. Further, the Levi-
Civita connection on the tangent bundle TM→ M induces a horizontal subbundle
of TM . This in turn induces a horizontal subbundle H of T SO(M). We can pull
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back the metric on M along π to get a metric gH on H. The Sasaki–Mok–O’Neill
metric on SO(M) is defined to be gSO := gV ⊕ gH.

Note that gSO is determined uniquely up to scaling of gV , and hence determined
uniquely after fixing a bi-invariant metric on SO(n). The work of O’Neill [1966],
Mok [1978], and later Takagi and Yawata [1991; 1994] has established many natural
properties of Sasaki–Mok–O’Neill metrics and connections between the geometry
of M and SO(M). The following natural question then arises, which was to my
knowledge first posed by Benson Farb.

Question 1.1. Let M , N be Riemannian manifolds. If SO(M) is isometric to
SO(N ) (with respect to Sasaki–Mok–O’Neill metrics on each), is M isometric
to N?

The purpose of this paper is to answer Question 1.1 except when dim M = 3, 4
or 8. The question is a bit subtle, for it is not true in general that an isometry of
SO(M) preserves the fibers of SO(M)→ M , as shown by the following example.

Example 1.2. Let M be a constant curvature sphere Sn . Then SO(M) is diffeomor-
phic to SO(n+ 1). (To see this, identify Sn with the unit sphere in Rn+1. If p ∈ Sn

and v1, . . . , vn is a positively oriented orthonormal frame at p, then the matrix
with columns p, v1, . . . , vn belongs to SO(n+ 1).) There is a unique Sasaki–Mok–
O’Neill metric that is isometric to the bi-invariant metric on SO(n+ 1). However,
of course there are many isometries of SO(n+ 1) that do not preserve the fibers of
SO(n+ 1)→ Sn .

By differentiating the action of SO(n+1) in the above example, we obtain many
Killing fields that do not preserve the fibers of SO(n+ 1)→ Sn . However, by a
theorem of Takagi and Yawata [1991], manifolds with constant positive curvature
are the only Riemannian manifolds whose orthonormal frame bundles admit Killing
fields that do not preserve the fibers. More examples of non-fiber-preserving
isometries appear if we consider isometries that are not induced by Killing fields,
as the following example shows.

Example 1.3. Let M be a flat 2-torus obtained as the quotient of R2 by the subgroup
generated by translations by (l1, 0) and (0, l2) for some l1, l2 > 0. Further fix l3 > 0
and equip SO(M) with the Sasaki–Mok–O’Neill metric associated to the scalar l3.
It is easy to see SO(M) is the flat 3-torus obtained as the quotient of R3 by the
subgroup generated by translations by (l1, 0, 0), (0, l2, 0) and (0, 0, l3).

Now let N be the flat 2-torus obtained as the quotient of R2 by the subgroup
generated by translations by (l1, 0) and (0, l3), and equip SO(N ) with the Sasaki–
Mok–O’Neill metric associated to the scalar l2. Then SO(M) and SO(N ) are
isometric but if l1, l2, l3 are distinct, M and N are not isometric.

On the other hand if l1 = l3 6= l2, then this construction produces an isometry
SO(M)→ SO(M) that is not a bundle map.
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Example 1.3 produces counterexamples to Question 1.1. Note that we used
different bi-invariant metrics gV on the fibers. Therefore to give a positive answer
to Question 1.1 we must normalize the volume of the fibers of SO(M)→ M .

Our main theorem is that under the assumption of normalization, Question 1.1
has the following positive answer, except possibly in dimensions 3, 4 and 8.

Theorem A. Let M, N be closed oriented connected Riemannian n-manifolds.
Equip SO(M) and SO(N ) with Sasaki–Mok–O’Neill metrics where the fibers of
SO(M)→ M and SO(N )→ N have fixed volume ν > 0. Assume n 6= 3, 4, 8. Then
M, N are isometric if and only if SO(M) and SO(N ) are isometric.

We do not know if counterexamples to Question 1.1 exist in dimensions 3, 4,
and 8.

Outline of proof. If f : M→ N is an isometry, then the induced map

SO( f ) : SO(M)→ SO(N )

is also an isometry (see Proposition 2.5). This proves one direction of the theorem.
For the other direction, our strategy is to identify the fibers of the bundle

SO(M)→ M using only the geometry of SO(M). To accomplish this, note that
X = SO(M) carries an action of SO(n) by isometries, and the orbits of this action
are exactly the fibers of SO(M)→M . This action gives rise to an algebra of Killing
fields isomorphic to o(n).

The full Lie algebra i(X) of Killing fields on X = SO(M) has been computed by
Takagi and Yawata [1994] except in dimensions 2, 3, 4 or 8, or when M has positive
constant curvature. We show that if this computation applies, either i(X) contains
a unique copy of o(n) or Isom(M) is extremely large or M is flat. If i(X) contains
a unique copy of o(n), then the fibers of X = SO(M)→ M and X = SO(N )→ N
coincide, and we deduce that M and N are isometric.

We are able to resolve the flat case separately. If Isom(M) is large we use
classification theorems from the theory of compact transformation groups to prove
that M and N are isometric.

Finally we prove the theorem in two situations where the computation of Takagi
and Yawata does not apply, namely constant positive curvature and dimension 2. In
these situations it is in general impossible to identify the fibers of SO(M)→ M
using the geometry of SO(M) alone as shown by Examples 1.2 and 1.3. However,
we are still able to obtain the main result using the scarcity of manifolds with a
metric of constant positive curvature, and the classification of surfaces.

Outline of the paper. In Section 3 we will review preliminaries about actions of Lie
groups G on a manifold M when dim G is large compared to dim M . In Section 4
we will prove Theorem A except when M and N are surfaces or have metrics of
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constant positive curvature. The proof in the case that at least one of M or N has
constant positive curvature will be given in Section 5. We prove Theorem A in the
case that M and N are surfaces in Section 6.

2. Preliminaries

In this section we introduce the Sasaki–Mok–O’Neill metric, and we recall some
basic properties. Then we discuss the classical relationship between isometries and
Killing fields, and Takagi and Yawata’s computations of Killing fields of Sasaki–
Mok–O’Neill metrics. We end this section with a useful lemma for normalizing
Sasaki–Mok–O’Neill metrics, and some general remarks about frame bundles of
fiber bundles that will also be useful later.

Definition of the Sasaki–Mok–O’Neill metric. Our discussion here follows the
construction of Mok [1978], where more details can be found. Let (M, g) be an
oriented Riemannian manifold of dimension n, and let X := SO(M) be the oriented
orthonormal frame bundle of M with natural projection map π : SO(M)→ M .
For e ∈ SO(M), the vertical subspace at e is defined to be Ve := ker Deπ . The
collection of vertical subspaces forms a subbundle V→ TM of T SO(M)→ TM .

Let ω be the Riemannian connection o(n)-valued 1-form associated to the Rie-
mannian metric on M . Explicitly, if p ∈ M and e = (e1, . . . , en) is a frame at p,
we define for X ∈ Te SO(M):

ωi j (X) := θj (∇X (ei )) (1≤ i, j ≤ n),

where θj is the form dual to ej with respect to the Riemannian metric g.
We set He := kerωe. We call He the horizontal subspace at e. We have a

decomposition Te SO(M)= Ve⊕He. Define an inner product on Te SO(M) via

gSO(X, Y )= 〈ω(X), ω(Y )〉+ g(π∗X, π∗Y ),

where 〈 · , · 〉 is an O(n)-invariant inner product on o(n). Note that the choice of
an O(n)-invariant inner product on o(n) is uniquely determined up to scaling by a
positive number λ, so that we obtain a 1-parameter family of Sasaki–Mok–O’Neill
metrics. Explicitly such an inner product is given by

〈A, B〉λ := −λ tr(AB)= λ
∑
i, j

Ai j Bi j ,

for A, B ∈ o(n). We call 〈 · , · 〉1 the standard metric on o(n).

Remark 2.1. The oriented orthonormal frame bundle SO(M)→ M is an example
of a SO(n)-principal bundle of over M , and it has a natural connection form ω as
defined above. For a principal G-bundle E→ B with a principal connection form θ ,
one can construct a so called connection metric (see, e.g., [Ziller 2001, Section 1]).
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The Sasaki–Mok–O’Neill metric is exactly this connection metric in the case of the
principal SO(n)-bundle SO(M)→ M with the connection form ω.

As mentioned above, the geometry of the above defined metric was first investi-
gated by O’Neill and Mok. In particular they showed:

Proposition 2.2 [O’Neill 1966, p. 467, Mok 1978, Theorem 4.3]. The fibers of
SO(M)→ M are totally geodesic submanifolds of SO(M) with respect to any
Sasaki–Mok–O’Neill metric.

Vector fields on frame bundles. Let X be a vector field on SO(M). If Xe ∈ Ve for
any e ∈ SO(M), we say X is vertical. If Xe ∈He for any e ∈ SO(M), we say X is
horizontal.

We will now discuss how to lift a vector field Y on M to a vector field X on
SO(M) such that π∗X =Y . There are two useful constructions, called the horizontal
and complete lift of Y . Both constructions start by considering the derivative of the
bundle map π : SO(M)→ M . For a frame e ∈ SO(M), we have a decomposition
Te SO(M)=Ve⊕He as discussed above. Here Ve= kerπ∗, and hence π∗ restricts to
an isomorphism He→ Tπ(e)M . Therefore for a vector field Y on M , there exists a
unique horizontal vector field Y H on M with Y =π∗Y H . We call Y H the horizontal
lift of Y .

The complete lift Y C of Y was first introduced in [Kobayashi and Nomizu 1963].
First observe that given a map f : M → M , we can consider its induced map
SO( f ) : SO(M)→ SO(M) on frames. Then we can define Y C as follows: Let ϕt

be the 1-parameter family of diffeomorphisms of M obtained by integrating Y , so
that Y = d

dt

∣∣
t=0 ϕt . Then we define

Y C
:=

d
dt

∣∣∣
t=0

SO(ϕt).

Note that Y C is in general neither vertical nor horizontal. Mok [1979, Section 3]
has given a description of Y C in terms of local coordinates.

Killing fields and isometries. Before considering the isometries of SO(M) equipped
with a Sasaki–Mok–O’Neill metric gSO, we will review some classical facts about
the structure of the group of isometries Isom(M) of a Riemannian manifold M .

Myers and Steenrod [1939] have proved that Isom(M) of a Riemannian manifold
is a Lie group. If (ht)t is a 1-parameter group of isometries, then Y := d

dt

∣∣
t=0 ht is

a vector field on M . Differentiating the condition h∗t g= g gives the Killing relation
for Y ,

(2-1) LY g = 0,

where L is the Lie derivative. Any vector field Y satisfying equation (2-1) is called
a Killing field. Given a Killing field Y on M , the 1-parameter group (ht)t obtained
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by integrating Y consists of isometries. The Killing fields on M form a Lie algebra
i(M) of vector fields. We have:

Theorem 2.3. Let M be a Riemannian manifold. Then Isom(M) is a Lie group
(possibly not connected), with Lie algebra i(M).

The Takagi–Yawata theorem on Killing fields. We will now discuss a complete
description due to Takagi and Yawata [1994] of the Killing fields on SO(M) in
terms of the geometry of M for many manifolds M . Let us first discuss three
constructions of Killing fields on SO(M).

For the first construction, recall that Sasaki [1958, Corollary 1] showed that
whenever f : M→ M is an isometry of M , the derivative D f : TM→ TM is an
isometry of TM (where TM is equipped with a Sasaki metric). Therefore if Y is
a Killing field on M , then the complete lift of Y is a Killing field on TM . This is
also true for frame bundles:

Proposition 2.4 [Mok 1978, Proposition 5.3]. If Y is a Killing field on M , then Y C

is a Killing field on SO(M) with respect to any Sasaki–Mok–O’Neill metric.

In fact the following more general statement is true:

Proposition 2.5. Let M be a Riemannian manifold and f : M→ M any isometry.
Then the induced map SO( f ) : SO(M)→ SO(M) is an isometry of SO(M) with
respect to any Sasaki–Mok–O’Neill metric.

Proof. Note that since the Riemannian connection form ω is canonically associated
to the metric, we have f ∗ω = ω. In particular SO( f ) preserves the horizontal
subbundle H := kerω. Also note that SO( f ) is a bundle map of π : SO(M)→ M
(i.e., we have SO( f ) ◦π = π ◦ f ), and in particular SO( f ) preserves the vertical
subbundle V :=kerπ∗. Using these facts it is easy to check SO( f ) is an isometry. �

The second construction of Killing fields comes from the structure of SO(M)→
M as a principal SO(n)-bundle. There is an action of SO(n) on the fibers of
SO(M)→M , which is easily seen to be isometric with respect to any Sasaki–Mok–
O’Neill metric. Differentiating any 1-parameter subgroup of SO(n) then gives a
Killing field on SO(M). Explicitly, we can define these as follows: for A ∈ o(n),
define the vector field A∗ on SO(M) via ω(A∗)= A and π∗(A∗)= 0, where ω is
the connection form as above. Then A∗ is a vertical Killing field. Write i M

V for the
Killing fields thus obtained. In particular i M

V
∼= o(n) as Lie algebras.

Finally, here is the third construction of a Killing field on SO(M). Let ϕ be a
2-form on M , so that it defines a skew-symmetric bilinear form on every tangent
space Tp M for p ∈ M . With respect to a frame e of Tp M , the skew-symmetric
form ϕp can be represented as a skew-symmetric matrix Ae ∈ o(n). We then define
a vector field Xϕ on SO(M) via ωe(X

ϕ
e ) := Ae and π∗(X

ϕ
e )= 0. Note that the latter
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condition just means that we define Xϕ to be a vertical vector field. An explicit
computation shows that if ϕ is parallel, then Xϕ is a Killing field (see, e.g., [Takagi
and Yawata 1991]). Denote by (32 M)0 the Lie algebra of parallel 2-forms on M .

It is known that for many manifolds, these three constructions are the only ways
of producing Killing fields on SO(M):

Theorem 2.6 [Takagi and Yawata 1994]. Let M be a closed Riemannian manifold
and equip SO(M) with the Sasaki–Mok–O’Neill metric corresponding to the stan-
dard inner product 〈 · , · 〉1 on o(n). Suppose M does not have constant curvature 1

2
and dim M 6= 2, 3, 4, 8. Then for any Killing field X on SO(M) there exist unique
Y ∈ i(M), A ∈ o(n), and ϕ ∈ (32 M)0 such that

X = Y C
+ A∗+ Xϕ.

Remark 2.7. Of course a version of the above result holds for different Sasaki–
Mok–O’Neill metrics as well: If we use the inner product 〈 · , · 〉λ = λ〈 · , · 〉1 on
o(n), the same conclusion holds except that we should now require that M does
not have constant curvature 1/(2

√
λ).

An explicit computation shows that if Y ∈ i(M), A ∈ o(n) and ϕ ∈ (32 M)0,
then the vector fields Y C , A∗ and Xϕ pairwise commute. Combining this with
Theorem 2.6, we obtain the following Lie algebra decomposition of Killing fields
on SO(M):

Corollary 2.8 [Takagi and Yawata 1994]. Let M be a Riemannian manifold satisfy-
ing the hypotheses of Theorem 2.6. Then there is a Lie algebra decomposition

i(SO(M))= i(M)⊕ i M
V ⊕ (3

2 M)0,

where i(M) (resp. i M
V , (32 M)0) corresponds to the subalgebra of Killing fields

consisting of Y C (resp. A∗, Xϕ) for Y ∈ i(M) (resp. A ∈ o(n), ϕ ∈ (32 M)0).

Normalizing volume. Given a closed oriented Riemannian manifold M , we have
previously obtained a 1-parameter family of Sasaki–Mok–O’Neill metrics on M .
These can be parametrized by a choice of O(n)-invariant inner product on o(n)
(which is unique up to scaling), or, equivalently, by the volume of a fiber of
SO(M)→M . The following easy lemma will be useful to us on multiple occasions
in the rest of the paper.

Lemma 2.9. Fix ν > 0. Let M , N be closed orientable connected Riemannian
n-manifolds and equip SO(M) and SO(N ) with Sasaki–Mok–O’Neill metrics where
the fibers of SO(M)→ M and SO(N )→ N have volume ν. Suppose that SO(M)
and SO(N ) are isometric. Then vol(M)= vol(N ).



400 WOUTER VAN LIMBEEK

Proof. Set X := SO(M)∼= SO(N ). Since the fiber bundle X→ M has fibers with
volume ν, we have vol(X) = vol(M)/ν. Likewise we have vol(X) = vol(N )/ν.
Combining these we get vol(M)= vol(N ). �

3. High dimensional isometry groups of manifolds

In this section we review some known results about effective actions of a compact
Lie group G on a closed n-manifold M when dim G is large compared to n. We
will be especially interested in actions of SO(n) on an n-manifold M . First, there
is the following classical upper bound for the dimension of a compact group acting
smoothly on an n-manifold.

Theorem 3.1 [Kobayashi 1972, II.3.1]. Let M be a closed n-manifold and G a
compact group acting smoothly, effectively, and isometrically on M. Then dim G ≤
1
2 n(n+ 1). Further equality holds if and only if

(i) M is isometric to Sn with a metric of constant positive curvature, and we have
G = SO(n+ 1) or O(n+ 1) acting on M in the standard way, or

(ii) M is isometric or RPn with a metric of constant positive curvature, and
G = PSO(n+ 1) or PO(n+ 1), acting on M in the standard way.

Note that in the above case G = Spin(n+ 1) does not occur because there is no
effective action on Sn or RPn . Theorem 3.1 leads us to study groups of dimension
< 1

2 n(n+ 1). First, there is the following remarkable “gap theorem” due to H. C.
Wang.

Theorem 3.2 [Wang 1947]. Let M be a closed n-manifold with n 6= 4. Then there
is no compact group G acting effectively on M with

n(n−1)
2
+ 1< dim G <

n(n+1)
2

.

Therefore the next case to consider is dim G = 1
2 n(n− 1)+ 1. The following

characterization is independently due to Kuiper and Obata; see [Kobayashi 1972,
II.3.3].

Theorem 3.3 (Kuiper, Obata). Let M be a closed Riemannian n-manifold with
n > 4 and G a connected compact group of dimension 1

2 n(n − 1) + 1 acting
smoothly, effectively, and isometrically on M. Then M is isometric to Sn−1

× S1 or
RPn−1

× S1 equipped with a product of a round metric on Sn−1 or RPn−1 and the
standard metric on S1. Further G = SO(n)× S1 or PSO(n)× S1.

After Theorem 3.3, the natural next case to consider is dim G = 1
2 n(n−1). There

is a complete classification due to Kobayashi and Nagano.
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Theorem 3.4 [Kobayashi and Nagano 1972]. Let M be a closed Riemannian n-
manifold with n > 5 and G a connected compact group of dimension 1

2 n(n − 1)
acting smoothly, effectively, and isometrically on M. Then M must be one of the
following.

(1) M is diffeomorphic to Sn or RPn and G = SO(n) or PSO(n). In this case G
has a fixed point on M. Every orbit is either a fixed point or has codimension 1.
Regarding Sn as the solution set of

∑n
i=0 x2

i = 1 in Rn+1, the metric on M (or
its double cover if M is diffeomorphic to RPn) is of the form

ds2
= f (x0)

n∑
i=0

dx2
i

for a smooth positive function f on [−1, 1].

(2) M is diffeomorphic to a quotient (L ×R)/0 where L = Sn−1 or L = RPn−1

and G = SO(n) or PSO(n). Further, we have 0 ∼= Z. If L = Sn−1, then 0 is
generated either by the map (v, t) 7→ (v, t + 1) or by (v, t) 7→ (−v, t + 1). If
L =RPn−1, then 0 is generated by the map (x, t) 7→ (x, t+1). In all cases the
projection on the second coordinate Sn−1

×R→R descends to a map M→ S1

that is a fiber bundle with fibers diffeomorphic to L. The G-action preserves
the fibers of M→ S1 and restricts to an orthogonal action on each fiber.

(3) M is a quotient (Sn−1
×R)/0 where 0 is generated by

(v, t) 7→ (v, t + 2) and (v, t) 7→ (−v,−t).

In this case G = SO(n) acts on Sn−1
×R by acting orthogonally on each copy

Sn−1
× {t}. This action commutes with the action of 0, so that the G-action

descends to M. We have M/G = [0, 1]. The G-orbits lying over the endpoints
0, 1 are isometric to round projective spaces RPn−1 and the G-orbits lying
over points in (0, 1) are round spheres.

(4) If n = 6 there is the additional case that M ∼= CP3, equipped with the Fubini–
Study metric and the standard action of G = SO(6)∼= SU(4)/{± id}.

(5) If n = 7 there are the additional cases M ∼= Spin(7)/G2 and G = Spin(7), or
M ∼= SO(7)/G2 and G = SO(7). In this case M is isometric to S7 or RP7

with a constant curvature metric.

Remark 3.5. Actually Kobayashi and Nagano prove a more general result that
includes the possibility that M is noncompact, and there are more possibilities. Since
we will not need the noncompact case, we have omitted these. In their formulation
of case (4), M is a manifold of complex dimension 3 with constant holomorphic
sectional curvature, and G is the largest connected group of holomorphic isometries.
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Specializing to the compact case gives an explicit description of case (4) as
follows. Hawley [1953] and Igusa [1954] independently proved that a simply
connected complex n-manifold of constant holomorphic sectional curvature is
isometric to either Cn,Bn or CPn (with standard metrics). Therefore in case (4)
we obtain that M is isometric to CP3 (equipped with a scalar multiple of the
Fubini–Study metric) and G = SO(6)∼= SU(4)/{± id}.

Remark 3.6. If M admits the description in case (2) above, and is in addition
assumed to be orientable, it follows that the bundle M→ S1 is trivial. In particular
M is diffeomorphic to L × S1.

To see this, note that the only other case to consider is that M = (Sn−1
×R)/0

where 0 ∼= Z is generated by the map (v, t) 7→ (−v, t + 1). This is a bundle with
monodromy −id ∈ Diff(Sn−1). Two bundles over S1 are equivalent if and only if
their monodromies are isotopic (i.e., belong to the same component of Diff(Sn−1).
So let us check that −id is isotopic to the identity map: Indeed, because M is
orientable, the map (v, t) 7→ (−v, t + 1) is orientation preserving on Sn−1

×R. It
follows that n is even, so that −id ∈ SO(n) and hence is clearly isotopic to the
identity map.

Theorem 3.4 does not cover the case n = 5. In the following proposition we
resolve this case for semisimple groups. We would like to thank an anonymous ref-
eree for the following statement and its proof, which improve upon those contained
in an earlier version of this paper.

Proposition 3.7. Let M be a closed oriented Riemannian 5-manifold and suppose
G is a semisimple compact connected Lie group that acts on M smoothly, effectively
and isometrically, and that dim(G)= 10. Then M admits a description as in cases
(1), (2) or (3) of Theorem 3.4.

Proof. The proof of Theorem 3.4 (see [Kobayashi and Nagano 1972, Section 3])
shows that the assumption that n > 5 is only used to show that no G-orbit has
codimension 2. We will show under the stated assumptions there are still no
codimension 2 orbits, so that the rest of the proof of Theorem 3.4 applies.

Clearly we can assume that G is connected. Note that dim(G) = rk(G)+ 2k,
where k is the number of root spaces of G. Hence the rank of G is even. Any
semisimple Lie group with rank ≥ 4 has dimension > 10, so that we must have that
rk(G)= 2 and therefore G is a quotient of Spin(5).

Suppose now that x ∈M and that the orbit G(x) has codimension 2 in M . Let Gx

be the stabilizer of x . Note that Gx has rank either 1 or 2, and since the orbit of x
is codimension 2, we must have that dim Gx = 7.

If Gx has rank 1, then it must be S1 or Spin(3) (possibly up to a finite quotient),
but then we see that dim Gx < 7, so this is impossible.



ISOMETRY TYPES OF FRAME BUNDLES 403

On the other hand if rk(Gx)=2, then the dimension of Gx is even, which is also
a contradiction. �

4. Geometric characterization of the fibers of SO(M)→ M

We will now start the proof of Theorem A. In this section we aim to prove the
following theorem, which proves Theorem A in all cases except for round spheres
and surfaces. The remaining cases are resolved in Section 5 (round spheres) and
Section 6 (surfaces).

Theorem 4.1. Let M, N be closed oriented connected Riemannian n-manifolds
and fix λ > 0. Equip SO(M) and SO(N ) with Sasaki–Mok–O’Neill metrics using
the metric 〈 · , · 〉λ on o(n). Assume that n 6= 2, 3, 4, 8 and that M does not have
constant curvature 1/(2

√
λ). Then M, N are isometric if and only if SO(M) and

SO(N ) are isometric.

Proof. Write X := SO(M)∼= SO(N ), and let

πM : X→ M and πN : X→ N

be the natural projections. The strategy of the proof is to characterize the fibers of
πM and πN just in terms of the geometry of X , except when M is flat or Isom(M) has
dimension at least 1

2 n(n−1). It automatically follows that in all but the exceptional
cases the fibers of πM and πN must agree, and we will use this to show that M
and N are isometric. Finally we will show that in the exceptional cases M and N
also have to be isometric.

Note that the assumptions of Theorem 4.1 guarantee that we can use Takagi and
Yawata’s computation of the Lie algebra of Killing fields on X , so we can write
(see Corollary 2.8)

i(X)= i(M)⊕ i M
V ⊕ (3

2 M)0.

Here, as before, i(M) denotes the space of Killing fields on M , and i M
V consists of

the Killing fields A∗ for A∈ o(n) (in particular i M
V
∼= o(n)), and (32 M)0 denotes the

space of parallel 2-forms on M . On the other hand, the natural action of SO(n) on
the fibers of πN induces an embedding of SO(n) in Isom(X), hence an embedding
of Lie algebras

o(n)∼= i N
V ↪→ i(X)= i M

V ⊕ (3
2 M)0⊕ i(M).

We identify i N
V with its image throughout. Now consider the projections of i N

V onto
each of the factors of this decomposition. We have the following cases:

(1) i N
V = i M

V , or

(2) i N
V projects nontrivially to (32 M)0, or

(3) i N
V projects trivially to (32 M)0 but nontrivially to i(M).
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We will show below that these cases correspond to (1) the fibers of πM coincide
with the fibers of πN , (2) M is flat, and (3) dim Isom(M) ≥ 1

2 n(n − 1). We will
complete the proof of Theorem 4.1 in each of these cases below.

Case 1 (vertical directions agree). Assume that i N
V = i M

V . For any x ∈ X , the values
of i M

V at x , i.e., the set of vectors

{Z(x) | Z ∈ i M
V },

span the tangent space to the fiber of πM through x . On the other hand, this set also
spans the tangent space to the fiber of πN through x . It follows that the fibers of
πM and πN actually coincide. Hence we have a natural map f : M→ N defined as
follows: For p ∈ M , let x ∈ π−1

M (p) be any point in the fiber of πM over p. Then
set f (p) := πN (x). The fact that the fibers of πM and πN coincide proves that
f (p) does not depend on the choice of x .

We claim f is an isometry. Denote by HM and VM the horizontal and vertical
subbundles with respect to πM : X→ M . Because πM is a Riemannian submersion,
the metric on Tx M coincides with the metric on the horizontal subbundle HM

u at a
point u ∈ π−1

M (x). We have

HM
u = (V

M
u )
⊥
= (ker(πM)∗)

⊥
= (ker(πN )∗)

⊥.

Here the first identity is because by definition of the Sasaki–Mok–O’Neill metric
on X , the horizontal and vertical subbundles are orthogonal. The last identity
follows because we know the fibers of πM and πN agree. Finally, note that the
space (ker(πN )∗)

⊥ is just the horizontal subbundle of πN : X→ N . Since πN is a
Riemannian submersion, we conclude that the metric on HM

u coincides with the
metric on TπN (u)N . This proves the naturally induced map f : M→ N is a local
isometry. Since f is also injective, M and N are isometric.

Case 2 (many parallel forms). Assume that i N
V
∼= o(n) projects nontrivially to

(32 M)0. Note that the kernel of the projection of i N
V to (32 M)0 is an ideal in i N

V . On
the other hand i N

V
∼= o(n) is simple (because n> 4), so the projection i N

V → (32 M)0
must be an isomorphism onto its image. Therefore

(4-1) dim(32 M)0 ≥ dim o(n)= n(n−1)
2

.

We claim that we actually have equality in equation (4-1). To see this, note that
since a parallel form is invariant under parallel transport, it is determined by its
values on a single tangent space, so that we have an embedding

(4-2) (32 M)0 ↪→32Tx M.
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Therefore dim(32 M)0 ≤ 1
2 n(n− 1), and equality in equation (4-1) holds. Hence

by a dimension count, the projection i N
V → (32 M)0 is not only injective, but also

surjective.
So we have o(n)∼= (32 M)0, and M has the maximal amount of parallel forms it

can possibly have (i.e., a space of dimension 1
2 n(n− 1)). Note that a torus is an

example of such a manifold. Motivated by these examples, we claim that M is a
flat manifold.

To prove that M is flat, let us first show that for any x ∈ M , the holonomy group
at x is trivial. Recall that the holonomy group consists of linear maps Tx M→ Tx M
obtained by parallel transport along a loop in M based at x . Therefore any holonomy
map will fix parallel forms pointwise. Suppose now that T : Tx M → Tx M is
a holonomy map at x ∈ M . We showed above that the evaluation at x is an
isomorphism (32 M)0 ↪→32Tx M (see equation (4-2)). Since T fixes parallel forms,
it is therefore clear that 32T = id (i.e., T acts trivially on oriented planes in Tx M).
Since dim(M) > 2, it follows that T = id.

So M has trivial holonomy. Since the holonomy algebra (i.e., the Lie algebra
of the holonomy group) contains the Lie algebra generated by curvature operators
R(v,w) where v,w ∈ Tx M (see, e.g., [Petersen 2006, Section 8.4]), it follows that
R(v,w)= 0 for all v,w ∈ Tx M , so M is flat.

We will use that M is flat to obtain more information about the Killing fields
i(M) of M . Recall that the structure of flat manifolds is described by the Bieberbach
theorems. Namely, any closed flat manifold is of the form Rn/0 for some discrete
torsion-free subgroup 0 ⊆ Isom(Rn), and there is a finite index normal subgroup
3 ⊆ 0 that consists of translations of Rn (so Rn/3 is a torus). In particular the
Killing fields on Rn/3 are just obtained by translations of Rn , so i(Rn/3)∼= Rn as
a Lie algebra.

The Killing fields on M=Rn/0 are exactly those Killing fields of Rn/3 invariant
under the deck group 0/3 of the (regular) cover Rn/3→ M . In particular i(M)
is a Lie subalgebra of Rn .

Therefore i(M) is abelian. Recall that we have

i(X)∼= i M
V ⊕ (3

2 M)0⊕ i(M).

We know that i N
V
∼=o(n) has no abelian quotients, so we must have i N

V ⊆ i M
V ⊕(3

2 M)0.
Hence for any x ∈ N and x̃ ∈ π−1

N (x), we have

Tx̃π
−1
N (x)= i N

V

∣∣
x̃ ⊆

(
i M
V ⊕ (3

2 M)0
)∣∣

x̃ ⊆ Tx̃π
−1
M (πM(x̃)),

where the last inclusion holds since the vector fields in i M
V ⊕ (3

2 M)0 are vertical
with respect to πM (see page 398). Since π−1

N (x) and π−1
M (πM(x̃)) are connected

submanifolds with the same dimension, we must have π−1
N (x) = π−1

M (πM(x̃)).
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Therefore the fibers of πM and πN agree. We conclude that M and N are isometric
in the same way as case 1.

Case 3 (many Killing fields). Assume i N
V projects nontrivially to i(M). Again

we use that o(n) is a simple Lie algebra because we have n > 4. By assumption
i N
V
∼= o(n) projects nontrivially to i(M), hence i N

V projects isomorphically to i(M).
Let h be the image of i N

V in i(M). At this point we would like to say that i N
V ⊆ i(M).

We cannot in general establish this, but we have the following.

Claim 4.2. Assume that o(n)* (32 M)0 and that o(n)* (32 N )0. Then

(1) i N
V ⊆ i(M), and

(2) i M
V ⊆ i(N ).

Therefore M and N have isometry groups of dimension ≥ 1
2 n(n− 1).

Proof. Note that i M
V and h centralize each other and are isomorphic to o(n). Consider

the projection

p1 : h⊕ i M
V ⊆ i(X)∼= i N

V ⊕ (3
2 N )0⊕ i(N )→ i N

V .

Note that dim(h⊕ i M
V )= 2 dim i N

V , so p1 cannot be injective. If p1 is trivial, then
we have

h⊕ i M
V ⊆ (3

2 N )0⊕ i(N ).

Using again that o(n) is simple, and since (32 N )0 does not contain a copy of o(n)
by assumption, we must have that h⊕ i M

V projects isomorphically to i(N ). However
note that dim i(N )≤ 1

2 n(n+ 1) by Theorem 3.1. Again by comparing dimensions
we see that this is impossible. Therefore ker p1 is a proper ideal of h⊕ i M

V , so ker p1

is either h or i M
V .

Now consider the projection

p2 : h⊕ i M
V ⊆ i(X)∼= i N

V ⊕ (3
2 N )0⊕ i(N )→ i(N ).

As above we see that p2 can be neither injective nor trivial. Hence we have that
ker p2 is either h or i M

V .
If ker p2= i M

V , then we have i M
V = i N

V , but this contradicts the assumption that i N
V

projects nontrivially to i(M). Therefore we must have ker p1 = i M
V and ker p2 = h.

The latter implies i N
V = h, which proves (1).

Since ker p1 = i M
V , we have i M

V ⊆ (3
2 N )0⊕ i(N ) and i M

V projects trivially to
(32 N )0. Therefore we have i M

V ⊆ i(N ), which proves (2). �

If o(n)⊆ (32 M)0 or o(n)⊆ (32 N )0, the proof is finished in case 2. Therefore
we assume i N

V ⊆ i(M) and i M
V ⊆ i(N ). Write HM := exp(i N

V ) and HN := exp(i M
V ),

where exp is the exponential map on the Lie group Isom(X). Then HM and HN are
subgroups of Isom(X), each isomorphic to SO(n), and M = X/HN and N = X/HM .
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Since HM and HN are commuting subgroups of Isom(X), the action of HM

on X descends to an action on M = X/HN with kernel HM ∩ HN . We will write
HM := HM/(HM ∩ HN ) for the group of isometries of M thus obtained. Similarly,
HN acts by isometries on N = X/HM with kernel HM ∩ HN , and we will write
HN := HN/(HM ∩ HN ) for this group of isometries.

Note that HM ∩HN is discrete, since its Lie algebra is i M
V ∩ i N

V = 0. In particular,
since HM and HN are compact, it follows that HM ∩ HN is finite. Therefore the
natural quotient map HM→ HM is a covering of finite degree, and HM and HM have
the same Lie algebra. Similarly, HN and HN have the same Lie algebra. Therefore
HM and HN are groups of isometries of closed n-manifolds with Lie algebras
isomorphic to o(n). The results of Section 3 exactly apply to such actions; these
results will restrict the possibilities for M and N tremendously, as we will see below.

Motivated by the results of Section 3, we will now consider two cases: either
one of HM or HN acts transitively, or neither acts transitively.

Case 3(a) (HM or HN acts transitively). Suppose HM acts transitively on M . Since
HM has Lie algebra o(n) and dim M = n, Theorem 3.4 and Proposition 3.7 give a
classification of the possibilities for M and HM . Since in cases (1), (2), and (3) of
Theorem 3.4 the group of isometries is not transitive, but by assumption HM acts
transitively on M , we know that either

• M is isometric to S7∼= Spin(7)/G2, equipped with a constant curvature metric,
and HM = Spin(7), or

• M is isometric to RP7∼=SO(7)/G2, equipped with a constant curvature metric,
and HM = SO(7), or

• M is isometric to CP3, equipped with a metric of constant holomorphic
sectional curvature, and HM = SO(6)∼= SU(4)/{± id}.

We will show that the first case is impossible, and that in the other cases M and
N are isometric.

Lemma 4.3. M is not isometric to S7.

Proof. Since HM = HM/(HM∩HN ), we know that HM is a quotient of HM ∼=SO(7).
In particular, HM is not simply connected. On the other hand, Spin(7) is simply
connected. This is a contradiction. �

Lemma 4.4. If M is isometric to RP7, then M and N are isometric.

Proof. Suppose now M is isometric to RP7, and consider the action of HN on N .
From the classification in Theorem 3.4 and Remark 3.6, and using that dim(N )=
dim(M)= 7, we see that N must be diffeomorphic to one of the following:
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(1) RP7,

(2) S7,

(3) LN × S1 where LN is S6 or RP6, or

(4) (S6
×R)/0 where 0 ∼= D∞ is generated by

(v, t) 7→ (−v,−t) and (v, t) 7→ (v, t + 2).

Claim 4.5. We must have that N is diffeomorphic to RP7 (and hence to M).

Proof. We will show that we can distinguish the frame bundles of the manifolds
appearing in cases (2), (3), and (4) from SO(RP7) by their fundamental group.

First, let us compute the fundamental group of SO(N ) = SO(RP7). Note that
SO(S7)∼=SO(8) (see Example 1.2). It easily follows that SO(RP7)∼=SO(8)/{± id}.
In particular, π1 SO(RP7) is obtained as an extension

1→ π1 SO(8)→ π1 SO(RP7)→ {± id} → 1.

So π1(SO(RP7)) has order 4. So let us now show that in each of the cases (2), (3),
and (4), π1 does not have order 4.

• In case (2), note that π1 SO(S7)= π1 SO(8)∼= Z/(2Z) has order 2.

• In case (3), π1N is infinite. By the long exact sequence on homotopy groups
for the fiber bundle SO(7)→ SO(N )→ N , we see that π1 SO(N ) surjects
onto π1N . Therefore π1 SO(N ) is also infinite.

• In case (4), π1N ∼= D∞ is infinite as well. The above argument for case (3)
shows that π1 SO(N ) is infinite as well.

The only remaining possibility is that N is diffeomorphic to RP7 (and hence also
to M). �

So we find that N is diffeomorphic to RP7. We will now determine the metric
on N :

Claim 4.6. N has constant curvature.

Proof. Theorem 3.4 classifies the possible metrics on N . Namely, if HN acts
transitively on N , then N has constant curvature, as desired.

Suppose now that HN does not act transitively on N . Identify the universal cover
Ñ of N (which is diffeomorphic to S7) with the solution set of

∑7
i=0 x2

i = 1 in R8.
Then by Theorem 3.4(3) the metric on Ñ is of the form

ds2
Ñ = f (x0)

7∑
i=0

dx2
i ,
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for some smooth positive function f on [−1, 1]. The function |x0| descends from
Ñ to N , and HN acts isometrically and transitively on each level set{

[x0, . . . , x7] ∈ RP7 |
7∑

i=1

x2
i = 1− c2

}
,

for 0≤ c ≤ 1. For c = 0 this level set is a copy of RP6 (the image of the equator
S6
⊆ S7 ∼= Ñ in RP7 ∼= N ) and for c= 1 the level set consists of a single point (the

image of the north and south pole). For 0< c < 1, the level set is a copy of S6.
Let x ∈ N be any point with 0 < x0 < 1, so that the HN -orbit of x is a copy

of S6. Since the metric on HN x is given by f (x0)
∑

i dx2
i , we have

vol(HN x)= ( f (x0))
1
2 n vol(S6),

where on the right-hand side vol(S6) is computed with respect to the standard metric∑
i dx2

i . Now consider the fiber bundle πN : SO(N )→ N . Recall that each fiber
in SO(N ) has a fixed volume ν > 0, and is an HM -orbit. Therefore for e ∈ π−1

N (x),
we have

(4-3) vol(HM HN e)= ν vol(HN x)= ν( f (x0))
6
2 vol(S6).

On the other hand, e is a frame at some point y∈M . Since the fibers of SO(M)→M
also have volume ν, it follows that

vol(HM HN e)= ν vol(HM y).

Since HM acts transitively on M , the right-hand side is just equal to ν vol(M). In
particular, the left-hand side does not depend on e. Using equation (4-3), we see
that f (x0) does not depend on the point x chosen. Since the only requirements for x
were that −1< x0 < 1 and x0 6= 0, we see that f is constant on (−1, 1)\ {0}. Since
f is also continuous, it is in fact constant on [−1, 1], so the metric on Ñ is given by

ds2
Ñ = c

7∑
i=0

dx2
i ,

for some c> 0. Therefore the metric is some multiple of the standard round metric,
so N has constant curvature. �

So we have shown that both M and N are diffeomorphic to RP7 with constant
curvature metrics. Since by Lemma 2.9, we also have that vol(M)= vol(N ), it fol-
lows that M and N have the same curvature, so that they are isometric, as desired. �

Lemma 4.7. If M is isometric to CP3, equipped with a metric of constant holomor-
phic sectional curvature, then M and N are isometric.

Proof. Again consider the action of HN on N . From the classification in Theorem 3.4,
and using that dim(N )= dim(M)= 6, we see that N must be one of the following:
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(1) diffeomorphic to S6 or RP6,

(2) diffeomorphic to LN × S1 where LN is S5 or RP5,

(3) diffeomorphic to (S5
×R)/0 where 0∼= D∞ is generated by (v, t) 7→ (−v,−t)

and (v, t) 7→ (v, t + 2), or

(4) isometric to CP3 with a metric of constant holomorphic sectional curvature.

We can rule out cases (1), (2), and (3) by computations of π2. Namely, let us
first compute π2(SO(CP3)). The long exact sequence on homotopy groups of the
fibration SO(6)→ SO(CP3)→ CP3 gives

1= π2 SO(6)→ π2(SO(CP3))→ π2(CP3)→ π1(SO(6))= Z/(2Z).

Since π2(CP3)∼=Z it follows that π2(SO(CP3))∼=Z. On the other hand, in case (1),
we have π2(SO(S6))= π2(SO(7))= 1 and similarly π2(SO(RP6))= 1. In case (2),
we have that π2 N ∼= π2LN since S1 is aspherical. Since LN is diffeomorphic
to either S5 or RP5, we have π2LN = 1. Again by the long exact sequence on
homotopy groups for the fibration SO(N )→ N , we see that π2 SO(N )= 1. Finally
in case (3) we have π2 N = π2S5

= 1. As in case (2) we have that π2 SO(N )= 1.
Therefore in cases (1), (2), and (3), we cannot have SO(N ) ∼= SO(CP3), so

we conclude that M and N are both isometric to CP3 with a metric of constant
holomorphic sectional curvature.

A metric of constant holomorphic sectional curvature on CP3 is determined by
a bi-invariant metric on SU(4), which is then induced on the quotient

SU(4)/S(U(1)×U(3))∼= CP3.

Hence the metrics on M and N differ only by scaling, so M and N are isometric
if and only if vol(M)= vol(N ). By Lemma 2.9 we indeed have vol(M)= vol(N )
so M and N are isometric. �

Above we assumed that HM acts transitively on M . If instead HN acts transitively
on N , the same proof applies verbatim.

Case 3(b) (HM and HN do not act transitively). Theorem 3.4 and Proposition 3.7
imply that M and N are of one of the following types:

(1) diffeomorphic to Sn or RPn equipped with a metric as in Theorem 3.4(1),

(2) L × S1 where each copy L ×{z} is an isometrically embedded round sphere
or projective space, or

(3) (Sn−1
×R)/0 where 0 ∼= D∞ is generated by

(v, t) 7→ (v, t + 2) and (v, t) 7→ (−v,−t).

Claim 4.8. M and N belong to the same types in the above classification.
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Proof. Again we will show that the different types can be distinguished by the
fundamental group of the frame bundle. Since SO(M) = SO(N ), it must then
follow that M and N belong to the same type.

The fundamental group of X = SO(M) can be computed using the long exact
sequence on homotopy groups for the fiber bundle X→ M (or X→ N ). Namely,
we have

π2(M)→ π1(SO(n))→ π1(X)→ π1(M)→ 1,

and likewise for N . Since π2(M)= π2(N )= 1 for all of the above types, we have
a short exact sequence

1→ Z/2Z→ π1(X)→ π1(M)→ 1,

and likewise for N . We see that π1(X)∼= Z/2Z precisely when M is diffeomorphic
to Sn , and π1(X) has order 4 precisely when M is diffeomorphic to RPn . If π1(X)
is infinite then M is of type (2) or (3). If the maximal finite subgroup of π1(X)
has order 2 then M is of type (2), and if the maximal finite subgroup of π1(X) has
order 4 then M is of type (3). Therefore we can distinguish all the possible cases
by considering π1(X), so M and N are of the same type. �

We will now show that in each of these cases, M and N are isometric.

Case A (M and N are of type (1)). Identify Sn with the solution set of
∑n

i=0 x2
i = 1

in Rn+1. By Theorem 3.4(1), the metric on M (or its double cover if M is diffeo-
morphic to RPn) is of the form

(4-4) ds2
M = fM(x0)

n∑
i=0

dx2
i .

Similarly the metric on N (or its double cover) can be written as

(4-5) ds2
N = fN (x0)

n∑
i=0

dx2
i .

We will now show that fM(x) = fN (x) for all x . We will just do this in case M
and N are diffeomorphic to Sn , since the proof for RPn is similar (note that it is
not possible that one of M and N is diffeomorphic to Sn , and the other to RPn ,
since SO(Sn) and SO(RPn) are not diffeomorphic). Theorem 3.4(1) also describes
the action of HN on N . Namely, HN leaves the coordinate x0 invariant and acts
transitively on each level set of x0. This yields an identification

N/HN ∼= [−1, 1].

The HN -orbits lying over the points in (−1, 1) are copies of Sn−1, and the orbits
lying over±1 are fixed points (corresponding to the north and south pole). Similarly
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we can identify M/HM with [−1, 1]. Of course we can also write M = X/HM ,
and this yields an identification

X/(HM HN )= M/HM .

Let −1 < x < 1 and choose a lift yM ∈ M of x . Equation (4-4) shows that
vol(HM yM)= fM(x) vol(Sn−1) where Sn−1 is equipped with the metric

∑n
i=1 dx2

i .
Similarly if yN is a lift of x to N we have vol(HN yN ) = fN (x) vol(Sn−1). Now
choose a common lift ỹ of yM and yN to X , i.e., ỹ is an oriented orthonormal frame
at the point yM ∈ M and at the point yN ∈ N . Recall that the volume of a fiber of
X→ M is a fixed constant ν > 0. Hence we have

vol(HM HN ỹ)= ν vol(HM yM)= ν fM(x) vol(Sn−1).

Since the volume of a fiber of X→ N is also equal to ν, we also have

vol(HM HN ỹ)= ν vol(HN yN )= ν fN (x) vol(Sn−1).

It follows that fM(x)= fN (x). Hence M and N are isometric.

Case B (M and N are of type (2)). In this case M is diffeomorphic to LM × S1

where each copy LM ×{z} of LM is isometric to a round sphere or projective space.
The group HN acts orthogonally on each fiber. However, note that the metric on
M is not assumed to be a product metric, but in this case it has to be:

Lemma 4.9. M is isometric to a product LM × S1 where LM is either a round
sphere or projective space.

Proof. Let q : M→ S1 be the projection onto the second coordinate. Of course the
fibers of q are just the submanifolds LM × {z} for z ∈ S1, and form a foliation L
of M . Fix an orientation of LM and define SOL(M) to be the space of pairs (x, e)
where x ∈ M and e is a positively oriented frame for the tangent space at x of the
leaf of L through x . There is a natural bundle map p : SOL(M)→ M defined by
p(x, e) := x . Further because HM acts isometrically on M preserving the leaves
of L, it follows that HM acts on SOL(M).

Of course, explicitly we have SOL(M) ∼= SO(LM)× S1, and the bundle map
p : SOL(M)→ M is given by applying the natural bundle map SO(LM)→ LM to
the first coordinate. Next we can explicitly describe the action of HM on SOL(M).
Namely, the action of HM on LM is just the standard action of SO(n) on Sn−1 (or
the standard action of PSO(n) on RPn−1). Using that SO(LM)∼= SO(n) or PSO(n),
we see that HM just acts by left-translations on SO(LM). Finally, the action of HM

on SOL(M)∼= SO(LM)× S1 is just by left-translations on each copy SO(LM)×{z}
of SO(LM).
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The advantage of initially defining SOL(M) more abstractly (in terms of frames
for the fibers of q), is that we can define an embedding

j : SOL(M) ↪→ SO(M)

in the following way. A point (x, e) ∈ SOL(M) consists of an oriented orthonormal
frame e of the copy of LM through x . Hence e can be extended to a frame for M at x
by adding to e the unique unit vector v∈ Tx M such that (e, v) is a positively oriented
orthonormal frame for M . We define j (x, e) := (x, e, v). Using that HM preserves
each copy LM × {z} of LM , it is easy to see that j (SOL(M)) is an HM -invariant
submanifold of SO(M).

We equip SOL(M) with the Riemannian metric on j (SOL(M)) induced from
SO(M). Since the HM -orbits in SO(M) are the fibers of the map πN : X → N ,
the HM -orbits are totally geodesic in SOL(M) (see Proposition 2.2). We conclude
that the foliation F of SOL(M) by HM -orbits is a totally geodesic codimension 1
foliation of SOL(M). Of course this is just the foliation of SOL(M)=SO(LM)×S1

by copies SO(LM)×{z} for z∈ S1. Consider the horizontal foliation F⊥ of SOL(M).
Since F⊥ is 1-dimensional, it is integrable.

Johnson and Whitt [1980, Theorem 1.6] proved that if the horizontal distribution
associated to a totally geodesic foliation is integrable, then the horizontal distribution
is also totally geodesic. Further they showed that a manifold with two orthogonal
totally geodesic foliations is locally a Riemannian product [Johnson and Whitt
1980, Proposition 1.3]. Therefore SOL(M) is locally a Riemannian product F ×U
where F (resp. U ) is an open neighborhood in a leaf of F (resp. F⊥).

Now we show the metric on M has to locally be a product. Recall that the
map p : SOL(M)→ M is defined by p(x, e) = x . We have p = πM ◦ j , where
j : SOL(M) ↪→ SO(M) is the isometric embedding defined above, and πM :

SO(M)→ M is the natural projection. Since j is an isometric embedding and πM

is a Riemannian submersion, it follows that p is also a Riemannian submersion.
Now let x ∈ M be any point and choose x̃ ∈ SOL(M) with p(x̃)= x . Since the

metric on SOL(M) is locally a product, we can choose a neighborhood Ũ × Ṽ of
x̃ on which the metric is a product.

Now let w = (u, v) ∈ Tx M ∼= TxLx ⊕ Tq(x)S1, where u ∈ TxLx and v ∈ Tq(x)S1.
Let ũ (resp. ṽ) be a lift of u (resp. v) to Tx̃ SOL(M) that is horizontal with respect
to p. Set w̃ := (ũ, ṽ) ∈ Tx̃ SOL M , so that w̃ is a horizontal lift of w. Then we have

‖w‖2 = ‖w̃‖2 = ‖ũ‖2+‖ṽ‖2 = ‖u‖2+‖v‖2,

where in the first and last step we used that p is a Riemannian submersion, and
in the second step we used that the metric on SOL(M) is locally a Riemannian
product. This shows that the metric on M is locally a product.
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It remains to show that the metric on M is globally a product. Recall that M is
diffeomorphic to LM × S1, and that each copy LM ×{z} (for z ∈ S1) is isometric
to a round sphere or projective space, say with curvature κ(z). Therefore to show
that the metric is globally a product, it suffices to show that κ is constant. This is
immediate because the metric on M is locally a product. �

Of course, the same proof applies to N , and shows that N is also isometric to a
product LN×S1. Further the metrics on the constant curvature spheres or projective
spaces LM and LN only depend on their curvatures.

Claim 4.10. LM and LN have the same curvature.

Proof. Recall that we normalized the Sasaki–Mok–O’Neill metrics on SO(M)∼=
SO(N ) so that the fibers of SO(M)→ M and SO(N )→ N have volume ν. These
fibers are exactly HM and HN -orbits in SO(M), and by definition of the Sasaki–
Mok–O’Neill metric, the metric restricted to an HM or HN -orbit is bi-invariant. On
the other hand, if we restrict πM : X → M to the HM -orbit of a point x ∈ X , we
obtain a bundle

(4-6) πM : HM x→ HMπM(x)∼= LπM (x).

Here HM x is diffeomorphic to SO(n) (if the leaves of L are spheres) or PSO(n)
(if the leaves of L are projective spaces), and the fiber of the bundle in equation
(4-6) is diffeomorphic to SO(n− 1).

Since the metric on HM x (viewed as a submanifold of SO(M)) is a bi-invariant
metric, the above bundle is isometric to a standard bundle

SO(n)→ Sn−1(rM) if LπM (x)
∼= Sn−1,

or

PSO(n)→ RPn−1 if LπM (x)
∼= RPn−1,

where the base is a round sphere or projective space of some radius rM . It
follows that the volume of HM x only depends on rM . Likewise the volume of
HN x will only depend on the radius rN of LN . On the other hand we know that
vol(HM x)= vol(HN x)= ν, so we must have that rM = rN , as desired. �

At this point we know that there are r > 0, `M > 0 and `N > 0 such that
M is isometric to Sn(r) × S1(`M) (or RPn(r) × S1(`M) and N is isometric to
Sn(r)× S1(`N ) (or RPn(r)× S1(`N )). It only remains to show that `M = `N .

To see this, we need only recall that by normalization of the Sasaki–Mok–O’Neill
metrics, we have vol(M)= vol(N ) (see Lemma 2.9).
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Case C (M and N are of type (3)). The unique torsion-free, index-2 subgroups of
π1(M) and π1(N ) give double covers M ′ and N ′. We claim that the frame bundles
SO(M ′) and SO(N ′) are also isometric. The fiber bundle SO(n)→ X→ M gives

1→ Z/2Z→ π1(X)→ D∞→ 1.

Now π1(SO(M ′)) and π1(SO(N ′)) are both index-2 subgroups of π1(X). Since M ′

and N ′ are diffeomorphic to Sn−1
× S1 we see that π1(SO(M ′))∼= (Z/2Z)×Z and

likewise for π1(SO(N ′)). Therefore π1(SO(M ′)) and π1(SO(N ′)) correspond to
the same index 2 subgroup of π1(X). It follows that SO(M ′) and SO(N ′) are also
isometric.

Since M ′ and N ′ are diffeomorphic to Sn−1
× S1 and HM acts on Sn−1 orthog-

onally, the argument from case B applies and yields that M ′ and N ′ are isometric
to the same product Sn−1

× S1. Then M and N are obtained as the quotient of
Sn−1
× S1 by the map (v, z) 7→ (−v, z−1). Hence M and N are isometric. �

5. Proof for M with positive constant curvature

In the previous section we have proved Theorem A in all cases except when M has
constant curvature 1/(2

√
λ) or M is a surface. We will resolve the latter case in

the next section. In this section we will prove:

Theorem 5.1. Let M, N be closed oriented connected Riemannian n-manifolds
and assume M has constant curvature 1/(2

√
λ) for some λ > 0. Equip SO(M) and

SO(N ) with Sasaki–Mok–O’Neill metrics using the invariant inner product 〈 · , · 〉λ
on o(n). Assume n 6= 2, 3, 4, 8. Then M, N are isometric if and only if SO(M) and
SO(N ) are isometric.

Proof. By simultaneously rescaling the metrics on M and N we can assume that
the universal cover of M is a round sphere of radius 1. (Note that in the rescaling,
we should also rescale the inner product on o(n) that is used in the definition of the
Sasaki–Mok–O’Neill metric.)

Since M has positive constant curvature, M is a Riemannian quotient of Sn

by a finite group of isometries. Since the group of orientation-preserving isome-
tries of Sn is SO(n + 1), we can write M = Sn/π1(M) for some (finite) group
π1(M)⊆ SO(n+ 1).

Further we can write Sn
= SO(n)\SO(n+1) where the quotient is on the left by

the standard copy SO(n)⊆ SO(n+1). The action of SO(n+1) on Sn by isometries
is then just the action of SO(n+ 1) by right-translations on SO(n) \SO(n+ 1), so
that we have

M ∼= SO(n) \SO(n+ 1)/π1(M).
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Passing to the frame bundle, we obtain X ∼= SO(n+ 1)/π1(M), where the cover
SO(n+1) is equipped with a bi-invariant metric. Further N is a quotient of X by a
group HM ∼= SO(n) acting effectively and isometrically on X .

Consider now the cover SO(n + 1)→ X . The (effective) action of HM on X
lifts to an effective action of a unique connected cover ĤM of HM on SO(n+ 1).
Note that SO(n) has only one nontrivial connected cover, namely its universal cover
Spin(n). Therefore we have either ĤM ∼= SO(n) or ĤM ∼= Spin(n). We can actually
describe the action of ĤM on SO(n+ 1) precisely:

Claim 5.2. ĤM is isomorphic to SO(n) and acts on SO(n + 1) by either left- or
right-translations.

Proof. Consider the full isometry group of SO(n+1) (with respect to a bi-invariant
metric), which has been computed by d’Atri and Ziller [1979]. Namely, they
show that the isometry group of a simple compact Lie group G equipped with a
bi-invariant metric is

Isom(G)∼= GoAut(G),

where the copy of G acts by left-translations on G. We apply this to the group
G=SO(n+1). Since ĤM is connected, it follows that the image of ĤM ↪→ Isom(G)
is contained in the connected component Isom(G)0 of Isom(G) containing the
identity. We can explicitly compute Isom(G)0. Namely, since Out(G) is discrete,
Isom(G)0 is isomorphic to

Go Inn(G)∼= (G×G)/Z(G),

where Z(G) is the center of G, and Z(G) ↪→ G ×G is the diagonal embedding.
The two copies of G act by left- and right-translations on G.

It will be convenient to work with the product G×G, rather than (G×G)/Z(G).
Note that the preimage of ĤM under the natural projection

G×G→ (G×G)/Z(G)

is a (possibly disconnected) cover of ĤM . Let H̃M denote the connected component
containing the identity (so H̃M is a connected cover of HM , and hence isomorphic
to either SO(n) or Spin(n)).

We will first show that H̃M has to be contained in a single factor of G × G.
To see this, let pi : H̃M → G be the projection to the i-th factor (where i = 1, 2).
Since H̃M is a simple connected Lie group, pi either has finite kernel or is trivial.

Further at least one of the projections has to be faithful: First, if one of the
projections is trivial, then H̃M is contained in a single factor, so that the other
projection is faithful. Therefore to show one of the projections has to be faithful,
it suffices to consider the case where neither projection is trivial, so that both
projections have finite kernel. Let Ki , i = 1,2, be the kernels of the projections
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of H̃M onto the i-th factor. Then Ki is a discrete normal subgroup of H̃M , and
hence central. As discussed above, the only possibilities for H̃M are SO(n) and
Spin(n). The center Z(H̃M) of H̃M is then

Z(H̃M)∼=


1 if H̃M ∼= SO(n), n is odd,
Z/(2Z) if H̃M ∼= SO(n), n is even,
Z/(2Z) if H̃M ∼= Spin(n), n is odd,
Z/(4Z) if H̃M ∼= Spin(n), n is even.

Further, since no nontrivial element of H̃M projects trivially to both factors (for
such an element would be trivial in G ×G), we must have K1 ∩ K2 = 1. On the
other hand, none of the possibilities for Z(H̃M) have two nontrivial subgroups that
intersect trivially, so we conclude that K1 or K2 is trivial. Without loss of generality,
we assume that K1 = 1.

Therefore to prove the claim that H̃M is contained in a single factor, we must
show that p2(H̃M) is trivial. Suppose it is not. Then p2 has finite kernel, so p2(H̃M)

is a subgroup of G = SO(n+ 1) of dimension dim H̃M =
1
2 n(n− 1). Fortunately,

there are very few possibilities by the following fact:

Lemma 5.3 [Kobayashi 1972, Lemma 1 in II.3]. Let H be a closed connected
subgroup of SO(n+ 1) of dimension 1

2 n(n− 1) with n+ 1 6= 4. Then either

(1) H ∼= SO(n) and H fixes a line in Rn+1, or

(2) H ∼= Spin(7) (and hence n+ 1= 8), and H is embedded in SO(8) via a spin
representation.

Here we say that a representation of Spin(n) is spin if it does not factor through
the covering map Spin(n)→ SO(n). To obtain the desired contradiction, we will
now consider various cases depending on which of the above possibilities describe
p1(H̃M) and p2(H̃M). For ease of notation we set H̃i := pi (H̃M) for i =1, 2. Before
considering each case separately, let us first make the following basic observation
that underlies the argument in each case:

Recall that HM acts freely on X . It follows that H̃M/(Z(G)∩ H̃M) acts freely
on G: namely, if h ∈ H̃M fixes x ∈ G, then the image of h under H̃M → HM fixes
the image of x under the covering map G→ X . Since HM acts freely on X , we
see that h belongs to the kernel of H̃M → X . Since the map G→ X is equivariant
with respect to the morphism H̃M → HM , it follows that for any g ∈ G, the points
g and h · g of G have the same image in X . This exactly means that the action of
h on G is a deck transformation of the covering G→ X . Since h fixes the point
x ∈ G and any deck transformation that fixes a point is trivial, h acts trivially on G.
Since the kernel of the action of G×G on G is the center Z(G), it follows that h
is central, as desired.
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Therefore if h = (h1, h2) ∈ H̃M ⊆ G×G fixes a point in G, then h1 = h2 and hi

are central in G. Since (h1, h2)·g= h1gh−1
2 , the stabilizer of g ∈G consists exactly

of the elements of the form (h1, gh1g−1) where h1 ∈G. Our strategy for obtaining a
contradiction in each of the cases below is to find an element h= (h1, gh1g−1)∈ H̃M

but with h1 /∈ Z(G).

Case 1 (H̃1 and H̃2 are both of type (1) of Lemma 5.3). By assumption, there are
nonzero vectors v1 and v2 ∈Rn+1 such that H̃i ∼= SO(n) fixes vi . The representation
of H̃i on (Rvi )

⊥ is the standard representation of SO(n). Therefore there is some an
intertwiner T : (Rv1)

⊥
→ (Rv2)

⊥ of these representations. Recall that an irreducible
representation leaves invariant at most one inner product up to positive scalars (for
if Q1 and Q2 are linearly independent invariant bilinear forms, then a suitable
linear combination Q = αQ1+βQ2 is invariant and degenerate as a bilinear form;
the kernel of Q is then a proper invariant subspace). It follows that after possibly
replacing T by λT for some λ > 0, the intertwiner T is orthogonal.

We can extend T to an intertwiner Rn+1
→ Rn+1 between H̃1 and H̃2 by setting

T v1 :=µv2 for some µ 6=0. We will denote the extension by T as well. By choosing
µ suitably, we can arrange that T is orthogonal, and after possibly changing the
sign of µ, we can also arrange that det T = 1.

The map T then belongs to SO(n+ 1), so that we have that

H̃M = {(h, T hT−1) | h ∈ H̃1}.

As observed above, it follows that H̃M does not act freely on X .

Case 2 (At least one of H̃1 and H̃2 is of type (2) of Lemma 5.3). Note that it is
not possible that H̃1 is of type (1) and H̃2 is of type (2). Namely, in this case we
would have that H̃M ∼= SO(n) (because H̃M ∼= H̃1), but the map H̃M → H̃2 would
be a covering SO(n)→ Spin(n), which is impossible (since the latter is simply
connected but the former is not).

So we must have that H̃1 is of type (2). In particular we have n=7. Unfortunately,
we cannot immediately apply the same argument as in case 1, because Spin(7)
has multiple faithful representations of dimension 8. This difficulty is resolved
by passing to a suitable subgroup of Spin(7): Namely given a spin representation
of Spin(7), the stabilizer of any nonzero v ∈ R8 is isomorphic to the exceptional
simple Lie group G2.

For the rest of the proof we fix some nonzero v ∈ R8 and let L be the stabilizer
in H̃1 of v. We have two representations of L on R8: On the one hand we have
L ⊆ H̃1. On the other hand we can consider p2(p−1

1 (L))⊆ H̃2. We analyze these
representations in turn and will show they are equivalent. Before doing so, it will
be helpful to recall some classical facts about the representation theory of G2 (see
[Adams 1996, Chapter 5]) for (a) – (d) and [Helgason 1978, Table X.6.IV] for (e)):
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(a) G2 is obtained as the subgroup of matrices of SO(8) that preserve the product
of the octonions O,

(b) G2 has no nontrivial representations of dimension less than 7,

(c) G2 has a single representation of dimension 7 (the action on the purely imagi-
nary octonions) that by fact (b) is necessarily irreducible,

(d) G2 has no irreducible representation of dimension 8, and

(e) G2 has trivial center.

We will write 1 for the trivial representation and Im(O) for the unique 7-dimensional
faithful representation.

Let us now consider the first representation, obtained by considering L as a
subgroup of H̃1. This representation is automatically faithful and has Rv as a trivial
summand. The summand (Rv)⊥ is therefore a faithful 7-dimensional representation
and by (c) equivalent to Im(O). Therefore the first representation is equivalent to
1⊕ Im O.

We turn to the second representation, obtained by the map p2◦p−1
1 : L→ H̃2. This

is a map with finite kernel (because p2 has finite kernel and p1 is an isomorphism),
so that the kernel is contained in the center. Since G2 has no center (see (e)),
it follows that this representation is also faithful. Since G2 has no irreducible
representation of dimension 8 (see (d)), we must have that the second representation
also decomposes as 1⊕Im O. Therefore there is an intertwiner T :R8

→R8 between
these representations. The rest of the argument proceeds exactly as in case 1.

This concludes the proof that H̃M is contained in one of the factors of G×G. To
complete the proof of the claim, we must show that H̃M ∼=SO(n). By the dichotomy
from Lemma 5.3, the only other possibility is that n = 7 and H̃M is given by a spin
representation of Spin(7).

In the latter case, we can see that N has constant positive curvature: Namely,
since M has constant curvature, the metric on X ∼= SO(8)/π1(M) lifts to a bi-
invariant metric on SO(8) and hence to a bi-invariant metric on Spin(8). On the
other hand N = X/HM is finitely covered by SO(8)/Spin(7), and hence also by
Spin(8)/Spin(7). It is well known that a bi-invariant metric on Spin(8) induces a
metric of constant positive curvature on S7 ∼= Spin(8)/Spin(7).

Since N has constant positive curvature, we can write N =SO(7)\SO(8)/π1(N )
for some finite subgroup π1(N ) ⊆ SO(8) acting by right-translations. The frame
bundle of N is then X = SO(8)/π1(N ) with HM ∼= SO(7) acting by left-translations.
This contradicts that H̃M was given by a spin representation into SO(8), and hence
finishes the proof of the claim. �

Since HM acts by left- or right-translations on SO(n+ 1), we will identify HM

with a subgroup of SO(n+ 1). Then we can conjugate HM to a standard copy of
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SO(n) by an element of SO(n+ 1). Therefore without loss of generality we have
N ∼= SO(n) \SO(n+ 1)/π1(N ), and we have an isometry

f : SO(n+ 1)/π1(M)∼= SO(M)→ SO(N )∼= SO(n+ 1)/π1(N ).

By composing with a left-translation of SO(n + 1), we can also assume that
f (eπ1(M))= eπ1(N ). It remains to show there is an isometry

M ∼= SO(n) \SO(n+ 1)/π1(M)→ SO(n) \SO(n+ 1)/π1(N )∼= N .

Claim 5.4. f lifts to an isometry SO(n+ 1)→ SO(n+ 1).

Proof. The universal cover of SO(M) and SO(N ) is Spin(n+1), so f lifts to a map

f̃ : Spin(n+ 1)→ Spin(n+ 1).

We can choose the lift f̃ such that f̃ (e) = e, where e is the identity element of
SO(n+ 1). Note that since f is an isometry, f̃ is an isometry as well (with respect
to a bi-invariant metric on Spin(n + 1)). As previously mentioned, d’Atri and
Ziller [1979] computed the group of isometries of a connected compact semisimple
Lie group G. Indeed, Isom(G) = GoAut(G), where the copy of G acts by left-
translations. It immediately follows that any isometry fixing the identity element e
is an automorphism. Therefore f̃ is an automorphism of Spin(n+ 1).

Recall that Spin(n+ 1) has a unique central element z of order 2, and we have
SO(n + 1) = Spin(n + 1)/〈z〉. Since z is the unique central element of order 2,
we must have that f̃ (z) = z. It follows that f̃ descends to an automorphism of
SO(n+ 1), as desired. �

Let
f̂ : SO(n+ 1)→ SO(n+ 1)

denote a lift of f . As above, by choosing an appropriate lift, we can assume that
f̂ (e)= e, and hence that f̂ is an automorphism of SO(n+ 1) (here we again used
the computation of d’Atri and Ziller of the isometry group of SO(n+ 1)). Because
f̂ is a lift of f , we know that f̂ restricts to an isomorphism π1M→ π1N .

Since f̂ is an automorphism of SO(n+ 1), there is some g ∈ SO(n+ 1) such
that f̂ (SO(n))= g SO(n)g−1. Here, as well as well as below, we identify SO(n)
with a fixed standard copy in SO(n+ 1). Define a map

ϕ̂ : SO(n+ 1)→ SO(n+ 1)

by ϕ̂(x) := g−1 f̂ (x).

Claim 5.5. (1) ϕ̂ is an isometry,

(2) For any x ∈ SO(n+ 1), we have ϕ̂(SO(n)x)= SO(n)ϕ̂(x).

(3) For any x ∈ SO(n+ 1), we have ϕ̂(xπ1(M))= ϕ̂(x)π1(N ).
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Proof. (1) Since left-translation by g is an isometry of SO(n+ 1), and f̂ is also an
isometry of SO(n+ 1), it follows that the map ϕ̂ is an isometry.

(2) Let x ∈ SO(n + 1). We have ϕ̂(SO(n)x) = g−1 f̂ (SO(n)x). Since f̂ is an
automorphism of SO(n+ 1), we then have

ϕ̂(SO(n)x)= g−1 f̂ (SO(n)) f̂ (x).

Using that f̂ (SO(n))= g SO(n)g−1, we see that

ϕ̂(SO(n)x)= SO(n)g−1 f̂ (x)= SO(n)ϕ̂(x).

(3) Let x ∈ SO(n + 1). This is similar to the proof of (2), but now using that
f̂ (π1(M))= π1(N ). We have

ϕ̂(xπ1(M))= g−1 f̂ (xπ1(M))= g−1 f̂ (x) f̂ (π1(M))= ϕ̂(x)π1(N ). �

From properties (2) and (3) of Claim 5.5, it is immediate that ϕ̂ descends to a
map

ϕ : SO(n) \SO(n+ 1)/π1(M)→ SO(n) \SO(n+ 1)/π1(N ).

Claim 5.6. ϕ is an isometry M→ N.

Proof. Recall that at the end of case 1 of the proof of Theorem 4.1, we showed
that an isometry X → X that maps the fibers of πM : X → M to the fibers of
πN : X→ N , descends to an isometry M→ N .

In the current setting, the map ϕ̂ : SO(n+ 1)→ SO(n+ 1) descends to a map

ϕ : X ∼= SO(n+ 1)/π1(M)→ SO(n+ 1)/π1(N )∼= X

by property (3) of Claim 5.5. Since ϕ̂ is an isometry and the maps

SO(n+ 1)→ SO(n+ 1)/π1(M) and SO(n+ 1)→ SO(n+ 1)/π1(N )

are Riemannian coverings, it follows that ϕ is an isometry.
Therefore to prove the claim, it suffices to show that ϕ maps fibers of X→M

to fibers of X → N . If we make the identifications X ∼= SO(n + 1)/π1(M) and
M ∼= SO(n)\SO(n+ 1)/π1(M), the map X→ M is just the natural orbit map

SO(n+ 1)/π1(M)→ SO(n) \SO(n+ 1)/π1(M).

Therefore the fibers of X→ M are exactly the SO(n)-orbits in SO(n+ 1)/π1(M)
(under the action by left-translation). Likewise, the fibers of X → N are the
SO(n)-orbits in SO(n+ 1)/π1(N ) under the action by left-translation. It follows
immediately from property (3) of Claim 5.5 that ϕ̂ maps SO(n)-orbits to SO(n)-
orbits, and hence so does ϕ. �
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We have shown that the map ϕ is an isometry M → N , so that M and N are
isometric, which finishes the proof of Theorem 5.1. �

6. Proof of the main theorem for surfaces

In this section we prove Theorem A for surfaces. We cannot use the Takagi–Yawata
theorem (Theorem 2.6) that computes i(X) in this situation, but instead we use the
classification of surfaces and Lie groups in low dimensions.

Let M and N be closed oriented surfaces with SO(M)∼= SO(N ). Therefore M
and N are each diffeomorphic to one of 6g with g ≥ 2, S2, or T 2. We know that

• SO(S2) is diffeomorphic to SO(3),

• SO(T 2) is diffeomorphic to T 3, and

• SO(6g) is diffeomorphic to T 16g = PSL2 R/0 for a cocompact torsion-free
lattice 0 ⊆ PSL2 R.

In particular the diffeomorphism type of the frame bundle of a surface determines
the diffeomorphism type of the surface. It follows that M and N are diffeomorphic.

Consider the Lie algebra of Killing fields i(X) of X . Then i(X) contains the
(1-dimensional) subalgebras i M

V and i N
V . If i M

V = i N
V , then we proceed as in case (1)

in Section 4, and we find that M and N are isometric. Therefore we will assume
that i M

V 6= i N
V . In particular we must have dim i(X)≥ 2.

As before, let HM (resp. HN ) be the subgroup of Isom(X) obtained by exponen-
tiating the Lie algebra i N

V (resp. i M
V ). Then HM and HN are closed subgroups of

Isom(X) isomorphic to S1.
We will now consider each of the possibilities of the diffeomorphism types of

M and N , and prove that M and N have to be isometric.

Case 1 (M and N are diffeomorphic to 6g, g ≥ 2). Then X = T 16g is a closed
aspherical manifold. Conner and Raymond [1970] proved that if a compact con-
nected Lie group G acts effectively on a closed aspherical manifold L , then G is a
torus and dim G ≤ rkZ Z(π1L), where Z(π1L) is the center of π1(L). In particular
we find that dim i(X)≤ rkZ Z(π1T 16g)= 1. This contradicts our assumption that
dim i(X)≥ 2.

Case 2 (M and N are diffeomorphic to S2). Let G be the connected component of
Isom(X) containing the identity. Then G is a compact connected Lie group acting
effectively and isometrically on X = SO(3), and G contains HM and HN .

If dim G = 2, then G is a 2-torus. In particular HM and HN centralize each other.
Therefore HN acts on X/HM = N and similarly HM acts on M . The kernel of
either of these actions is HM ∩ HN , which is a finite subgroup of both HM and HN .
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Since an S1-action on S2 has at least one fixed point (because χ(S2) 6= 0), we
see that N/HN ∼= [−1, 1] ∼= M/HM . It is then straightforward to see that the metric
on M (resp. N ) is of the form

ds2
M = fM(x0)(dx2

0 + dx2
1 + dx2

2)

(resp. ds2
N = fN (x0)(dx2

0 + dx2
1 + dx2

2)) as in Theorem 3.4(1). We can apply the
reasoning from case A of the proof of case 3(b) in Section 4 to show M and N are
isometric.

Therefore we will assume dim G ≥ 3. In addition we know that dim G ≤ 6 by
Theorem 3.1. Finally, we must have rk(G)≤ 2: Namely let T be a maximal torus in
G containing HN . Since T centralizes HN , the group T/HN acts effectively on M .
However, a torus of dimension ≥ 2 does not act effectively on S2. (To see this,
note that any 1-parameter subgroup H has a fixed point on S2 because the Killing
field generated by H has a zero on S2. We can take H to be dense, so that the
entire torus fixes a point p. The isotropy action on Tp M is a faithful 2-dimensional
representation of the torus, which is impossible unless the torus is 1-dimensional.)

Therefore the only possibilities for the Lie algebra g of G are

(a) g∼= o(3),

(b) g∼= R⊕ o(3), and

(c) g∼= o(3)⊕ o(3).

We will now consider each of these cases separately.

Case 2(a) (g ∼= o(3)). Since G has rank 1, HM and HN are both maximal tori
of G. Since all maximal tori are conjugate, there is some element g ∈ G so that
gHN g−1

= HM . Then g induces an obvious isometry M→ N .

Case 2(b) (g ∼= R⊕ o(3)). We can conjugate HN by an element g ∈ G so that
gHN g−1 and HM centralize each other. Then either gHN g−1

= HM , in which
case g induces an isometry M→ N , or gHN g−1 and HM generate a 2-torus. In the
latter case the argument above in case dim G = 2 shows that the metrics on M and
N are of the form

ds2
= f (x0)(dx2

0 + dx2
1 + dx2

2),

for some function f on [−1, 1]. Then the argument of case A of case 3(b) in
Section 4 shows that M and N are isometric.

Case 2(c) (g ∼= o(3) ⊕ o(3)). In this case dim Isom(X) = 6 is maximal. By
Theorem 3.1 the metric on X has positive constant curvature. Therefore the metrics
on M and N have positive constant curvature. Further by Lemma 2.9 we have
vol(M)= vol(N ). It follows that M and N are isometric.
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Case 3 (M and N are diffeomorphic to T 2). In this case X is diffeomorphic to T 3.
Again by the theorem of Conner and Raymond [1970] on actions of compact Lie
groups on aspherical manifolds, we know that a connected compact Lie group acting
effectively on a torus is a torus. Therefore HN and HM centralize each other, so
HM and HN generate a 2-torus. Further HM acts on M = X/HN with finite kernel
HM ∩ HN . Again by [Conner and Raymond 1970], the action of HM/(HM ∩ HN )

on M is free, so that the map

M→ M/HM ∼= S1

is a fiber bundle (with S1 fibers). The argument of case B in case 3(b) of the proof
of Theorem A constructs a (unit length) Killing field XM on M that is orthogonal to
the fibers of M→M/HM . It follows that M is a 2-torus equipped with a translation
invariant metric. Any such metric is automatically flat: Namely, because the torus is
abelian, the metric is automatically bi-invariant. Then we use the following general
fact: on a Lie group H with a bi-invariant metric, the Lie structure and sectional
curvature are tied by the identity (see, e.g., [Petersen 2006, Proposition 3.4.12])

K (X, Y )= 1
4
‖[X, Y ]‖2,

where X, Y are orthonormal vectors in h (which is identified with Te H in the usual
way), and the bracket is the Lie bracket. Since T 2 is abelian, it follows that the
sectional curvatures with respect to any invariant metric vanish.

We conclude that M is flat. By carrying out the same construction for N , we
obtain a Killing field XN on N that is orthogonal to the HN -orbits, and we conclude
that N is flat.

To show that M and N are isometric, recall that the isometry type of a flat 2-torus
is specified by the length of two orthogonal curves that generate its fundamental
group. For M we can consider the curves given by an HM -orbit on M and an
integral curve of XM . Similarly for N we can consider an HN -orbit on N and an
integral curve of XN .

For x ∈ M and x̃ ∈ X lying over x , we have a covering

HM x̃→ HM x

of degree |HN ∩ HM |. Recall that the HM -orbits in X have a fixed volume ν, since
we normalized the Sasaki–Mok–O’Neill metric on X in this way. Therefore

`(HM x)= 1
|HN∩HM |

`(HM x̃)= ν

|HN∩HM |
.

Combining this with a similar computation for the length of an HN -orbit on N
gives `(HM x) = `(HN y) for every x ∈ M and y ∈ N . Therefore we see that the
length of an integral curve of XM (resp. XN ) is vol(M)/(`(HM · x)) for x ∈ M
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(resp. vol(N )/(`(HN · y)) for y ∈ N ). Since vol(M) = vol(N ) by Lemma 2.9, it
follows that M and N are isometric.
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