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BUNDLES OF SPECTRA AND ALGEBRAIC K-THEORY

JOHN A. LIND

A parametrized spectrum E is a family of spectra Ex continuously parame-
trized by the points x ∈ X of a topological space. We take the point of
view that a parametrized spectrum is a bundle-theoretic geometric object.
When R is a ring spectrum, we consider parametrized R-module spectra
and show that they give cocycles for the cohomology theory determined by
the algebraic K -theory K (R) of R in a manner analogous to the description
of topological K -theory K 0(X) as the Grothendieck group of vector bun-
dles over X . We prove a classification theorem for parametrized spectra,
showing that parametrized spectra over X whose fibers are equivalent to
a fixed R-module M are classified by homotopy classes of maps from X
to the classifying space BAutR M of the topological monoid of R-module
equivalences from M to M.
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1. Introduction

Contemporary algebraic topology features a vast array of generalized cohomology
theories, but our knowledge of their geometric content remains limited to the
examples of ordinary cohomology theories, topological K -theory and cobordism
theories. In this paper we describe the geometry underlying the cohomology
theory associated to the algebraic K -theory of a ring, or more generally a ring
spectrum. The higher algebraic K -groups Kn(R) of a ring spectrum R may be
defined as the homotopy groups of the algebraic K -theory spectrum K (R). By
the geometry of K (R)-theory, we mean a geometric description of the cocycles
whose equivalence classes form the cohomology groups K (R)∗(X) associated
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to the spectrum K (R). Our methods only give a description of the degree zero
cohomology group K (R)0(X) and the result is reminiscent of the description of
topological K -theory K 0(X) in terms of the Grothendieck group of vector bundles
over X . The analogue of vector bundles for K (R)-theory are parametrized spectra
that are modules over the ring spectrum R. We call these objects R-bundles. The
main result is the following:

Theorem 1.1. Let R be a connective ring spectrum and let K (R) be the algebraic
K -theory spectrum of R. Then for any finite CW complex X , there is a natural
isomorphism

K (R)0(X)∼= Gr[ lifted, free, finite rank R-bundles over X ]

between the degree zero K (R)-cohomology classes of X and the Grothendieck
group of the abelian monoid of equivalence classes of lifted R-bundles over X that
are free and finite rank as parametrized R-modules.

We will give a precise meaning to all of the terms occurring in the statement of
the theorem in §5 and §6, but for now we note that an R-bundle E over X is free
of finite rank if every fiber Ex admits an equivalence of R-modules to the n-fold
wedge R∨n for some n ≥ 0.

Our geometric description of K (R)-theory is inspired by previous work. For
R a discrete ring, Karoubi [1987] gave a similar description of the cocycles for
K (R)-theory in terms of fibrations of projective R-modules. For the case where R is
the connective complex K -theory spectrum ku, Baas, Dundas, Richter and Rognes
[Baas et al. 2004; 2011] interpreted the cocycles of K (ku)-theory as 2-vector
bundles, which are a categorification of complex vector bundles.

By definition, K (R)0(X) is the group of homotopy classes of maps from X
to the underlying infinite loop space of the algebraic K -theory spectrum, whose
homotopy type can be described using Quillen’s plus construction:

�∞K (R)' K0(R)× BGL+
∞
(R).

Here K0(R) = K f
0 (π0 R) is the Grothendieck group of free modules over the

discrete ring π0 R and BGL+
∞
(R) is Quillen’s plus construction applied to the

H-space BGL∞(R)= colimn BGLn(R), where BGLn(R) is the classifying space
of the derived mapping space GLn(R) = AutR(R∨n) of R-module equivalences
R∨n
→ R∨n .

One important point is that, unlike the case of vector bundles and complex
K -theory, the plus construction can radically change the homotopy type. This
forces the bundles that define cocycles for K (R)-theory to be lifted R-bundles over
X , meaning R-bundles defined up to covers of X with homologically trivial fibers —
see Section 6 for a precise definition.
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The term “bundle” is perhaps a little naive: as one continuously varies the
basepoint in X , the fibers of a parametrized spectrum are weak homotopy equivalent,
but need not be strictly isomorphic. Put another way, to describe a parametrized
spectrum in terms of cocycle data would require a derived or infinitely homotopy
coherent descent condition. This point of view naturally leads to a description
of parametrized objects as homotopy sheaves with values in a quasicategory, as
developed by Ando, Blumberg, Gepner, Hopkins and Rezk [Ando et al. 2010;
2011; 2014a]. Rather than using quasicategories, we follow the foundations of
parametrized stable homotopy theory developed by May and Sigurdsson [2006].
In their framework, parametrized spectra are defined in terms of a “total object”
over X instead of cocycle data. Homotopical control of the fiber homotopy type of
parametrized spectra is maintained via the framework of Quillen model categories.

Theorem 1.1 follows from a general classification theorem for parametrized
R-module spectra. In this paper, a spectrum means an orthogonal spectrum, and
we use the stable model structure on orthogonal ring and module spectra from
Mandell, May, Schwede and Shipley [2001]. Given an R-module M, we say
that a parametrized R-module spectrum E over X has fiber M if the fiber Ex of
E over every point x ∈ X admits a stable equivalence Ex ' M of R-modules.
We use the terms “R-bundle with fiber M” and “parametrized R-module with
fiber M” interchangeably. Let AutR M be the derived mapping space of homotopy
automorphisms of M as an R-module. In Section 5, we explain how to realize
this homotopy type as a group-like topological monoid, so that we may form the
classifying space BAutR M, and prove the following classification theorem:

Theorem 1.2. Let X be a CW complex, let R be a ring spectrum and let M be
an R-module. There is a natural bijection between stable equivalence classes of
R-bundles over X with fiber M and homotopy classes of maps [X, BAutR M].

When M = R, Theorem 1.2 says that line R-bundles over X are classified by the
classifying space BGL1 R of the units of R. The construction of the line R-bundle
associated to a map f : X → BGL1 R is the generalized Thom spectrum studied
by Ando, Blumberg, Gepner, Hopkins and Rezk [2014a; 2014b]; see Remark 5.2.
From another point of view, a parametrized spectrum with fiber M gives a twisted
form of the cohomology theory M. We can then view Theorem 1.2 as giving a
general classification theorem of the twists of M-theory.

Ando, Blumberg and Gepner, in their∞-categorical approach to parametrized
homotopy theories, proved in Theorem B.4 of [Ando et al. 2011] that the quasicate-
gory of morphisms 5∞X→S∞ from the singular simplicial complex of a space
X to the quasicategory of spectra S∞ is equivalent to the quasicategory associated
to the May-Sigurdsson model category of parametrized spectra over X . Variants of
their arguments can be used to prove results in the same vein as Theorem 1.2. The
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proof in this paper is more concrete, using the pullback of a universal bundle to
induce the equivalence instead of Lurie’s straightening functor [Lurie 2009, §3.2.1].

In order to prove Theorem 1.2, we compare R-bundles with fiber M and principal
AutR M-fibrations, where AutR M is a point-set model for the derived mapping space
of homotopy automorphisms constructed out of appropriate cofibrant and fibrant
approximations. Much of the technical material in the paper goes into maintaining
control of the fiberwise homotopy type of the principal fibration associated to an
R-bundle with fiber M. By carefully intertwining a Quillen-type model structure
and a Hurewicz-type model structure, we show that this construction induces a
bijection of equivalence classes, and reduce the proof of the classification theorem
for R-bundles with fiber M to the classification theorem for principal fibrations.

The classification theorem for R-bundles and the construction of the principal
fibration associated to an R-bundle has recently been used by Cohen and Jones
[2013a; 2013b] in their study of the gauge group of parametrized spectra and the
K -theory of string topology.

Outline. In Section 2, we collect the necessary facts about model category structures
on parametrized spaces, introduce a homotopical notion of a G-torsor and compare
it to that of a principal G-fibration, where G is a topological monoid. The model
category structures on parametrized spectra are recalled in Section 3, then in
Section 4 we construct the principal AutR M-fibration associated to a bundle with
fiber M. We prove in Section 5 that this construction provides an inverse up to
homotopy to the associated bundle construction

Y 7→ M ∧6∞+ AutR M 6
∞

B Y,

and prove Theorem 1.2. The proof of Theorem 1.1 is given in Section 6.

Topological conventions. We will rely heavily on the foundations for parametrized
homotopy theory developed by May and Sigurdsson [2006]. As explained there, it is
advantageous to leave the category U of compactly generated spaces. By a “space”
we mean a k-space as defined in [May and Sigurdsson 2006, Definition 1.1.1], and
we denote the category of spaces by K . We will always assume that the base space
(denoted by B or X ) is compactly generated. We assume throughout that the ring
spectrum R is well-grounded, meaning that each constituent space is compactly
generated and nondegenerately based.

2. Model category theory and principal fibrations

In this section, we recall some basic material on model category structures on
the category of parametrized spaces from [May and Sigurdsson 2006]. We then
introduce a homotopical notion of a G-torsor, where G is a topological monoid,
and show that it is equivalent to that of a principal G-fibration.
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The category K of k-spaces admits a compactly generated topological model
structure with weak equivalences the weak homotopy equivalences, fibrations the
Serre fibrations, and cofibrations the retracts of relative cell complexes. We refer
to this model structure as the q-model structure, and use the terms q-equivalences,
q-fibrations, and q-cofibrations for its weak equivalences, fibrations, and cofibra-
tions. Let B be a compactly generated topological space. The category K /B
of spaces (X, p) = (p : X → B) over B admits a model structure whose weak
equivalences and fibrations are detected by the forgetful functor (X, p) 7→ X
to the q-model structure on K . An ex-space is a space (X, p) over B along
with a map s : B → X such that p ◦ s = idB . The category KB of ex-spaces
(X, p, s) also admits a model structure given by the forgetful functor to the q-
model structure on K . We refer to these model structures as the q-model structure
on K /B and KB , respectively. While both of these model structures are compactly
generated and topological, they are not well-grounded, in the sense of [May and
Sigurdsson 2006, §5.3–5.6]. The problem is that the generating q-cofibrations and
acyclic q-cofibrations do not satisfy the homotopy extension property defined in
terms of fiberwise or fiberwise pointed homotopies in K /B or KB , as given by
Definitions 5.1.7 and 5.1.8. of the same work. Instead, they are only Hurewicz
cofibrations in the underlying category of spaces. As a result, applications of the
gluing lemma that would allow standard inductive arguments over cell complexes
built out of the generating sets fail for these model structures. In attempting to
construct a stable model structure on parametrized spectra based on the q-model
structure, the verification that relative cell complexes built out of the generating
acyclic cofibrations are weak equivalences is unattainable.

As an alternative, May and Sigurdsson [2006, §6.1–6.2] develop the q f -model
structure on K /B and KB . The q f -model structure also has the q-equivalences as
weak equivalences, so that the associated homotopy category is still the homotopy
category of spaces over B, but there are fewer q f -cofibrations than q-cofibrations.
A q f -fibration need not be a Serre fibration but is a quasifibration. Here, we do
not need the details of the definitions, only the fact that in each case the q f -model
structure is a well-grounded compactly generated model category. We will work
in the unsectioned context, building well-grounded compactly generated model
structures on parametrized diagram spaces out of the q f -model structure on K /B.

The category of spaces over B is tensored over the category of spaces via the
cartesian product

K ×K /B→K /B, (X, Y p
−→ B) 7→ (X × Y p◦π2

−−→ B).

If G is a topological monoid, then we use this structure to define the notion of
an object of K /B with a strictly associative and unital (left) action of G, which
we call a G-space over B. The G-spaces over B form a category GK /B with
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morphisms the G-equivariant maps over B. Equivalently, the category GK /B is
the comma category (GK ↓ B) formed in the category of G-spaces, where we
consider B to have a trivial action of G. We will also need the q f -model structure
on the category of G-spaces over B.

Proposition 2.1. Let G be a topological monoid. There is a well-grounded com-
pactly generated model category structure on the category of GK /B of G-spaces
over B with weak equivalences and fibrations created by the forgetful functor to
the q f -model structure on spaces over B. If f : A→ B is a map of spaces, then
the pullback functor f ∗ : GK /B→ GK /A and its left adjoint f! form a Quillen
adjoint pair for the q f -model structure. If f is a q-equivalence of spaces, then
( f!, f ∗) is a Quillen equivalence.

Proof. The corresponding statements when G = ∗ are Theorem 6.2.5 and Proposi-
tions 7.3.4 and 7.3.5 of [May and Sigurdsson 2006]. The generating cofibrations
and acyclic cofibrations for the associated model structure on the category of
parametrized G-spaces are obtained by applying the free G-space functor G× (−),
defined in terms of the tensor of a space and a space over B, to the generating sets
for the q f -model structure on K /B. The result then follows by directly checking
the criteria for compactly generated model structures in [May and Sigurdsson 2006,
Theorem 5.5.1]. Note that the q f -model structure on GK /B inherits the property
of being right proper from K /B, so it is a well-grounded model structure, see
Definition 5.5.4 of the same work. The claims about the adjunction follow directly
from the case G = ∗. �

In particular, the fiber functor i∗b = (−)b is right Quillen on the category of
G-spaces over B. We let Fb = Ri∗b denote its right derived functor. In other words,
FbY is the object of the homotopy category of G-spaces determined by the fiber
(Rq f Y )b of a q f -fibrant approximation of Y .

While the following terminology is nonstandard, it will be useful as an inter-
mediary between the highly structured notion of a principal G-fibration and the
model-theoretic fiber conditions on parametrized spectra.

Definition 2.2. A G-torsor over B is a G-space (Y, p) over B for which every
derived fiber FbY admits a zigzag of q-equivalences of G-spaces to G, considered
as a G-space via left multiplication. We write Ho(G Tor /B) for the full subcategory
of the homotopy category Ho(GK /B) of G-spaces over B that is spanned by the
G-torsors.

The notion of a G-torsor is native to the Quillen model structure. The following
definition instead uses the Hurewicz model structure.

Definition 2.3. A principal G-fibration over B is a G-space (Y, p) over B for which
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• the structure map p : Y → B is an h-fibration of G-spaces, meaning that it has
the homotopy lifting property in the category of G-spaces,

• for every b ∈ B, there is a zigzag of weak equivalences of G-spaces Yb ' G.

We now construct an approximation functor 0 in order to compare G-torsors
with principal G-fibrations. Given a G-space (Y, p) over B, let (0Y, 0p) be the
G-space over B defined by the mapping path-space construction

0p : 0Y = B I
×B Y ev1−→ B, (γ, y) 7→ γ (1),

and note that the fiber (0Y )b of 0p is the homotopy fiber of Y at b ∈ B. Note that
the map 0p is an h-fibration of G-spaces, since the lifting problem in the category
of G-spaces

X
(γ, f )

//

i0
��

B I
×B Y

ev1

��

X × I h
//

h̃
99

B

has a solution given by h̃(x, t)= (λt(x), f (x)), where λt(x) is the path

λt(x)(s)=
{
γ (x)(s+ st) for 0≤ s ≤ 1/(1+ t),
h(x, s+ ts− 1) for 1/(1+ t)≤ s ≤ 1,

and the map h̃ is evidently G-equivariant.
The construction of mapping path-spaces is functorial, so that 0 defines an

endofunctor of the category of G-spaces over B with the following easily verifiable
properties:

Lemma 2.4. (i) If p is a quasifibration and every fiber Yb is q-equivalent to G,
then (0Y, 0p) is a principal G-fibration over B.

(ii) Suppose that the map (X, p)→ (Y, q) is a q-equivalence of G-spaces over B.
Then the induced map (0X, 0p)→ (0Y, 0q) is a q-equivalence of principal
G-fibrations.

(iii) The map (Y, p)→ (0Y, 0p) defined by the inclusion into constant paths is a
homotopy equivalence of G-spaces over B. If p is a quasifibration, then the
map restricts to a q-equivalence on fibers.

Proposition 2.5. The functor 0 induces a natural isomorphism between the set of
q-equivalence classes of G-torsors over B and the set of q-equivalence classes of
principal G-fibrations over B.

Proof. Let (Y, p) be a G-space over B. The inclusion of the fiber into the homotopy
fiber for both (Y, p) and a q f -fibrant approximation (Rq f Y, Rq f p) are related by
the commutative diagram
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(2.6)

Yb

��

// (Rq f Y )b

'

��

(0Y )b
'
// (0Rq f Y )b

induced by fibrant approximation and the inclusion of constant paths. Since the
fibrant approximation is a q-equivalence of total spaces, it induces a q-equivalence
of the homotopy fibers. The q f -fibration Rq f p is in particular a quasifibration,
which gives the other displayed q-equivalence. It follows that the derived fiber FbY
is canonically q-equivalent to the homotopy fiber (0Y )b.

Thus 0 takes G-torsors to principal G-fibrations and preserves q-equivalences.
Conversely, every principal G-fibration is a G-torsor. The map η : Y → 0Y in
Lemma 2.4.(iii) is a q-equivalence of G-spaces, so 0 is bijective on q-equivalence
classes. �

Using the proposition, the next theorem is a restatement of May’s classification
theorem [1975, Theorem 9.2] for principal G-fibrations.

Theorem 2.7. Let G be a grouplike topological monoid with nondegenerate base-
point and let B be a CW complex. Taking the pullback of 0EG→ BG along a
given map B→ BG defines a natural bijective correspondence between the set of
homotopy classes of maps [B, BG] and the set of equivalence classes of G-torsors
over B.

3. Model categories of parametrized spectra

We now summarize what we need from the theory of parametrized spectra, following
[May and Sigurdsson 2006, Chapters 11–12]. A spectrum over B is an orthogonal
spectrum in the category of ex-spaces over B. That is, a parametrized spectrum
X consists of an O(V )-equivariant ex-space (X (V ), p(V ), s(V )) for each finite-
dimensional real inner product space V , along with compatible (O(V )× O(W ))-
equivariant structure maps

σ : X (V )∧B SW
B → X (V ⊕W )

over and under B. Here SV
B = r∗SV

= SV
× B is the trivially twisted ex-space

with fiber the one-point compactification SV . The section of SV
B is determined

by the basepoint of SV . The smash product ∧B is the fiberwise smash product of
ex-spaces. A map f : X → Y of spectra over B consists of an equivariant map
f (V ) : X (V )→ Y (V ) of ex-spaces for each indexing space V that are suitably
compatible with the structure maps σ . For each point b ∈ B, the fiber of X over
b is the spectrum Xb = i∗b X given by the pullback of X along the inclusion map
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ib : {b} → B. The fiber spectrum is described levelwise in terms of the fibers of its
constituent ex-spaces by the formula Xb(V )= X (V )b.

The level model structure on the category SB of spectra over B has as weak
equivalences, respectively fibrations, those maps f such that each f (V ) is a
q-equivalence, respectively q f -fibration, of ex-spaces. We refer to these maps
as the levelwise q-equivalences and levelwise q f -fibrations, respectively. The
homotopy groups of a levelwise q f -fibrant spectrum X over B are the homotopy
groups πq Xb of all of the fibers of X . The homotopy groups of a spectrum X
over B are the homotopy groups πq(Rl X)b of the fibers of a levelwise q f -fibrant
approximation Rl X of X . We say that a map X→ Y of spectra over B is a stable
equivalence if it induces an isomorphism on all homotopy groups of all fibers. An
�-spectrum over B is a level q f -fibrant spectrum X over B whose adjoint structure
maps

σ̃ : X (V )→�W
B X (V ⊕W )

are q-equivalences of ex-spaces over B.

Theorem 3.1 [May and Sigurdsson 2006, Theorem 12.3.10]. The category SB of
spectra over B admits the structure of a well-grounded compactly generated model
category whose weak equivalences are the stable equivalences. The fibrations and
cofibrations are called the s-fibrations and the s-cofibrations, and the s-fibrant
objects are the �-spectra over B. We refer to this model structure as the s-model
structure (or stable model structure) on SB .

In the case B = ∗, this coincides with the stable model structure on orthogonal
spectra from Mandell, May, Schwede and Shipley [2001].

Parametrized spaces and parametrized spectra are related by suspension spectrum
and underlying infinite loop space functors. If (Y, p) is a space over B, the fiberwise
suspension spectrum 6∞B Y is the spectrum over B defined by

(6∞B Y )(V )= (Y, p)+ ∧B SV
B ,

where

(Y, p)+ = (Y q B, pq idB, idB)

is the ex-space over B obtained from (Y, p) by adjoining a disjoint section. The right
adjoint �∞B of 6∞B is defined by �∞B X = X (0). By inspecting the definitions, we
see that there are natural isomorphisms of fibers (6∞B Y )b ∼=6∞+ Yb and (�∞B X)b ∼=
�∞Xb.

The category SB of spectra over B is enriched and tensored over the category
S of spectra with tensor the fiberwise smash product ∧. We use this structure to
define parametrized module spectra. Let R be a (nonparametrized) ring spectrum.
We assume, once and for all, that R is well-grounded, meaning that each R(V ) is
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well-based and compactly generated. An R-module over B is a spectrum N over B
with an associative and unital map of spectra R ∧ N → N over B.

Theorem 3.2 [May and Sigurdsson 2006, Theorem 14.1.7]. The category RModB

of R-modules over B is a well-grounded compactly generated model category with
weak equivalences and fibrations created by the forgetful functor to SB . We refer to
this model structure as the s-model structure on RModB .

If X is a space and Y is a space over B, then there is a natural isomorphism of
parametrized spectra over B

6∞B (X × Y )∼=6∞+ X ∧6∞B Y

that satisfies the analogues of the associativity and unit diagrams for a monoidal
natural transformation. Similarly, �∞B preserves the monoidal structure up to
a lax monoidal transformation, so that if G is a topological monoid, then the
adjunction (6∞B , �

∞

B ) restricts to give an adjunction between G-spaces over B and
6∞
+

G-module spectra over B.

Proposition 3.3. (i) The adjoint pair (6∞B , �
∞

B ) is a Quillen adjunction between
the q f -model structure on spaces over B and the s-model structure on spectra
over B.

(ii) Let G be a topological monoid. The adjoint pair (6∞B , �
∞

B ) is a Quillen ad-
junction between the q f -model structure on G-spaces over B and the s-model
structure on 6∞

+
G-modules over B.

Proof. In both cases, this follows by examining the effect of 6∞B on generating
cofibrations and acyclic cofibrations; since the s-model structure on SB is a left
Bousfield localization of the level q f -model structure, its generating sets contain all
maps of the form 6∞B i , where i runs through the generating sets for the q f -model
structure on K /B. �

It is a formal consequence that the left Quillen functor 6∞B preserves weak
equivalences between cofibrant objects. However, it will be useful to know that a
stronger result is true.

Lemma 3.4. The functor 6∞B :K /B→SB preserves all weak equivalences.

Proof. If f : X → Y is a weak homotopy equivalence of spaces over B, then
each map of ex-spaces f+ ∧B SV

B is a weak homotopy equivalence on total spaces.
This means that 6∞B f is a levelwise weak homotopy equivalence and thus a stable
equivalence of parametrized spectra by [May and Sigurdsson 2006, Lemma 12.3.5].

�

We will work in the nonparametrized setting for a moment in order to fix notation
on some constructions. Suppose that R and A are ring spectra. Consider the function
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spectrum F R(− ,−) of R-modules. If P is an A-module, M is an (R, A)-bimodule
and N is an R-module, then F R(M, N ) is an A-module and we have the following
adjunction:

(3.5) ModR(M ∧A P, N )∼=ModA(P, F R(M, N )).

It is a consequence of the fact that the category of R-modules is a spectrally enriched
model category via the function spectra F R(− ,−) that if M ′ is a cofibrant R-
module, then the functor F R(M ′,−) preserves stable equivalences between fibrant
R-modules, and similarly if N is a fibrant R-module, then the functor F R(−, N )
preserves stable equivalences between cofibrant R-modules.

We will be interested in the generalization of the adjunction (3.5) where N
and P are parametrized spectra. The smash product M ∧A P occurring in the
parametrized version of the adjunction is built out of the external smash product
∧ :S ×SB→SB , as described in [May and Sigurdsson 2006, §14.1]. In particular,
there is never a need to internalize the smash product by taking the pullback 1∗ of
a spectrum over B × B along the diagonal map. In this situation, we are able to
maintain homotopical control of the smash product.

Lemma 3.6. Let i : X → Y be an s-cofibration of R-modules and let j : Z → W
be an s-cofibration of spectra over B. Then the pushout product

i � j : (Y ∧ Z)∪X∧Z (X ∧W )→ Y ∧W

is an s-cofibration of R-modules over B and a stable equivalence if either i or j is.

Proof. Since parametrized spectra and R-modules are well-grounded categories,
we may induct up the cellular filtration of i and j , so it suffices to verify the result
when i and j are generating cofibrations or generating acyclic cofibrations. This
follows from the case when R = S [May and Sigurdsson 2006, Proposition 12.6.5]
because R ∧ (−) takes s-cofibrations and acyclic s-cofibrations of spectra over B
to s-cofibrations and acyclic s-cofibrations of R-modules over B. �

The lemma has the following consequence:

Proposition 3.7. Suppose that M is an (R, A)-bimodule that is cofibrant as an
R-module. Then the adjunction

(A-modules over B)
M∧A(−)

//
(R-modules over B)

F R(M,−)
oo

is a Quillen adjunction.

Proof. It follows from the lemma that the adjunction is Quillen when A = S. In
particular, the functor F R(M,−) is right Quillen when we consider its codomain
to be parametrized spectra. The general case then holds as well because s-fibrations
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and weak equivalences of A-modules over B are created by the forgetful functor to
parametrized spectra. �

4. The principal AutR M-fibration associated to an R-bundle

Let R be a ring spectrum and let M be an R-module. In this section, we will define
the topological monoid AutR M of autoequivalences of R-modules M→ M. We
then describe the construction of an AutR M-torsor from an R-bundle with fiber M.

Suppose that G is a topological monoid. While G may not be grouplike, there is
a maximal grouplike submonoid G× ⊂ G defined as the pullback

(4.1)

G× //

��

G

��

(π0G)× // π0G

where (π0G)× ⊂ π0G is the subset of invertible elements of the monoid π0G.
In other words, the inclusion G× → G is given by the inclusion of those path
components that are invertible under the monoid multiplication. For example, if
G =�∞R = R(0) is the multiplicative topological monoid underlying an s-fibrant
ring spectrum R, then G× = GL1 R is the space of units of R. A more delicate
construction is required if R is commutative and one wants to keep control of the
resulting E∞-space structure on GL1 R [Lind 2013; Schlichtkrull 2004; Sagave and
Schlichtkrull 2013], but we will not need this for our purposes.

We assume for the rest of the section that R is an s-cofibrant ring spectrum and
that M is an s-fibrant and s-cofibrant R-module. The function spectrum F R(M,M)
is a ring spectrum under composition of maps and our assumptions guarantee that
it is s-fibrant. Let

EndR M =�∞F R(M,M)= F R(M,M)(0)

be the underlying topological monoid. We define AutR M to be the units of the ring
spectrum F R(M,M):

AutR M = GL1 F R(M,M)= (�∞F R(M,M))×.

We think of AutR M as the space of weak equivalences of R-modules M → M,
with monoid multiplication given by composition. The suspension spectrum of
the monoid AutR M is a ring spectrum 6∞

+
AutR M. The R-module M also has the

structure of a right 6∞
+

AutR M-module, with action map

M ∧S 6
∞

+
AutR M→ M
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the adjoint of the composite map of ring spectra

6∞
+

AutR M→6∞
+
�∞F R(M,M)

ε
→ F R(M,M)

induced by the canonical inclusion GL1→ �∞ and the counit of the adjunc-
tion (6∞

+
, �∞). Thus M is a (R, 6∞

+
AutR M)-bimodule.

We write Fb = Ri∗b (−) for the right derived fiber functor. If N is an R-module
over B, the derived fiber Fb R is the object of the homotopy category of R-modules
determined by the fiber i∗b RsN of an s-fibrant approximation of N as an R-module
over B.

Definition 4.1. An R-bundle over B with fiber M is an R-module N over B such
that every derived fiber Fb N of N admits a zigzag of stable equivalences of R-
modules to M.

Let N be an R-bundle over B. The function spectrum F R(M, N ) is a6∞
+

EndR M-
module over B. Applying �∞B we get an EndR M-space �∞B F R(M, N ) over B
which is q f -fibrant when N is s-fibrant. The following lemma allows us to keep
control of its fiber homotopy type. It is a direct consequence of the cofibrancy of
M as an R-module.

Lemma 4.2. Suppose that N is s-fibrant and fix a point b ∈ B. A stable equivalence
of R-modules Nb ' M determines

(i) a stable equivalence of 6∞
+

EndR M-modules F R(M, N )b ' F R(M,M), and

(ii) a q-equivalence of EndR M-spaces �∞B F R(M, N )b '�∞F R(M,M).

Notice that the second condition in the lemma implies that �∞B F R(M, N ) is an
EndR M-torsor. We will now construct an AutR M-torsor

E R(M, N )⊂�∞B F R(M, N ).

The idea of the construction is to restrict to the subspace whose fiber over b ∈ B
consists of the stable equivalences of R-modules M → Nb. To make this idea
rigorous, we need to access the components π0�

∞

B F R(M, N )b of each fiber in a
way that remembers the topology of B.

To this end, we define the parametrized components π B
0 X of a parametrized

space p : X→ B. As a set, π B
0 X consists of all components of all fibers of X :

π B
0 X =

⋃
b∈B

π0 Xb.

Give π B
0 X the quotient topology induced by the map X → π B

0 X that sends a
point x ∈ X to its component [x] ∈ π0 X p(x). Since the quotient map is a map over
B, the space π B

0 X is a parametrized space over B.
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Construction 4.3. We now define a fiberwise version of (4.1). Let G be a topologi-
cal monoid and let (Y, p) be a G-torsor over B whose structure map p : Y→ B is a
quasifibration. A choice of q-equivalence of G-spaces Yb'G gives an isomorphism
of π0G-spaces π0Yb ∼= π0G. Define π0Y×b to be the subset of π0Yb corresponding
to π0G× under this isomorphism. Although the isomorphism π0Y×b ∼= π0G× of
π0G×-spaces depends on the choice of q-equivalence Yb ' G, the subset π0Y×b
does not. Let π B

0 Y× ⊂ π B
0 Y be the subspace consisting of the sets π0Y×b in each

fiber. Define the space Y× over B to be the following pullback:
Y× ι

//

��

Y

��

π B
0 Y× // π B

0 Y

Notice that there is a canonical isomorphism (Y×)b ∼= Y×b , and that a map X→ Y
of spaces over B factors through Y× if and only if for every b ∈ B, the induced
map π0 Xb→ π0Yb has image lying in π0Y×b .

It is straightforward to verify that the construction Y 7→ Y× is functorial for
maps of G-spaces. We will at times write µ = (−)× for the resulting functor.
The assumption that p is a quasifibration is the minimal hypothesis necessary for
the construction to be possible. In practice, p will be either a q f -fibration or an
h-fibration.

Lemma 4.4. Suppose that the base space B is semilocally contractible and that
(Y, p) is a principal G-fibration over B. Then ι : Y× → Y is the inclusion of a
subspace of path components.

Proof. Let γ be a path in Y with γ (0) ∈ Y×. Assuming that γ (1) /∈ Y×, let
t0= inf{t ∈ [0, 1] | γ (t) /∈Y×}. Set b0= p(γ (t0)) and choose an open neighborhood
U of b0 along with a nullhomotopy h : U × I → B of U in B. Consider the G-
space h∗Y over U × I obtained from Y by pullback along h. The restriction
h∗Y |U×{0} is isomorphic to Y |U , while the restriction h∗Y |U×{1} is isomorphic to
U×Yb0 . It follows that we may find a fiberwise homotopy equivalence of G-spaces
ρ :Y |U→U×Yb0 over U . Applying the functor (−)× to ρ, we have a commutative
diagram

Y×|U
ρ×
//

��

U × Y×b0

��

Y |U
ρ
// U × Yb0

which shows that in a neighborhood of t0, the path ρ ◦γ must lie in U ×Y×b0
. Since

ρ is a fiberwise homotopy equivalence, it follows that γ (t) ∈ Y×p(γ (t)) for t near t0,
contradicting our initial assumption. �
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Proposition 4.5. Suppose that (Y, p) is a G-torsor over a semilocally contractible
space B.

(i) The space Y× is a G×-space over B and the canonical inclusion ι : Y×→ Y
is a map of G×-spaces.

(ii) If the structure map p : Y → B is an h-fibration of G-spaces, so that Y is a
principal G-fibration, then p× : Y×→ B is a G×-torsor.

(iii) The functor µ : Y 7→ Y× preserves q-equivalences between principal G-
fibrations.

Proof. Claim (i) is immediate from the definitions. For (ii), observe that by
Lemma 4.4, p× is an h-fibration of spaces. It follows that the natural map Y×b →
FbY× from the fiber to the homotopy fiber is a q-equivalence. A given chain of
q-equivalences of G-spaces Yb'G induces a chain of q-equivalences of G×-spaces
Y×b ' G×, so we conclude that Y× is a G×-torsor.

For (iii), assume that (Y, p)→ (Z , q) is a q-equivalence of G-torsors with p and
q both h-fibrations of G-spaces. For any b ∈ B, the induced map of fibers Yb→ Zb

is a q-equivalence of G-spaces, and so the induced map of G×-spaces Y×b → Z×b
is a q-equivalence. Since p× and q× are h-fibrations, it follows that Y×→ Z× is a
q-equivalence on total spaces. �

As a consequence of Proposition 4.5, we may define the derived functor of µ to
be the functor from the homotopy category of G-torsors to the homotopy category
of G×-torsors

µ : Ho(G Tor /B)→ Ho(G× Tor /B),

Y 7→ µ(0Y )= (0Y )×,

where 0 is the h-fibrant approximation functor from Section 2. Lemma 4.4 implies
that when p : Y → B is an h-fibration, the fiber Y×b ∼= (Y

×)b represents the derived
fiber FbY× of Y×. In other words:

Lemma 4.6. There is a canonical isomorphism of derived functors Fbµ∼= µFb.

We will also need to know how to construct maps into µ.

Lemma 4.7. A morphism X → Y in the homotopy category of G×-spaces over
B factors through ι : µY → Y if and only if for every b ∈ B, the induced map
π0Fb X→ π0FbY has image contained in the subset π0µFbY .

Proof. First notice that the functor π0Fb is invariant under weak equivalences of
spaces over B. We may represent a map in the homotopy category of G×-spaces
over B by a zigzag of map where the wrong way maps are weak equivalences, and
we assume without loss of generality that the final object in this zigzag is a h-fibrant
G×-space over B. The result then follows by using the universal mapping property
of the pullback of spaces defining µ. �
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Definition 4.8. Let N be an R-bundle with fiber M and let RsN be an s-fibrant
approximation of N as an R-module over B. Since M is an s-cofibrant R-module,
the EndR M-torsor �∞B F R(M, RsN ) is q f -fibrant as an EndR M-module. Applying
Construction 4.3 defines an AutR M-space over B

E R(M, RsN )= (�∞B F R(M, RsN ))×,

which need not be an AutR M-torsor. If we instead take the derived functor µ by
applying the h-fibration approximation functor 0 before (−)×, then the value of
the associated derived functor

ER(M, N )= µ�∞B F R(M, RsN )

is our definition of the AutR M-torsor associated to the R-bundle N . Since �∞B
and F R(M,−) are both right Quillen functors, we can summarize the definition by
saying that

E= ER(M,−) : Ho(R-bundles with fiber M)→ Ho(AutR M-torsors)

is the composite derived functor E= µ ◦�, where � is the right derived functor of
�=�∞B F R(M,−).

5. The classification of R-bundles

In the previous section we constructed an AutR M-torsor from an R-bundle with
fiber M. We now construct an R-bundle with fiber M from an AutR M-torsor and
show that the constructions are homotopy inverse to each other. At the end of the
section, we complete the proof of Theorem 1.2. We assume that B is a CW complex,
in particular semilocally contractible, so the functor µ from the previous section is
well-behaved. We continue to assume that R is an s-cofibrant ring spectrum and
that M is an s-bifibrant R-module.

For technical reasons, it will be useful to work with a q-cofibrant approximation
AutcR M → AutR M of AutR M as a topological monoid. By pullback along the
approximation map, any AutR M-torsor is also an AutcR M-torsor, so we consider
the functor E=µ◦� from the previous section as taking values in AutcR M-torsors.
Similarly, the right 6∞

+
AutR M-module structure of M pulls back to give a right

6∞
+

AutcR M-module structure on M.

Definition 5.1. If Y is an AutcR M-space over B, then the fiberwise suspension
spectrum 6∞B Y is a 6∞

+
AutcR M-module spectrum over B. The construction

T (Y )= M ∧6∞+ AutcR M 6
∞

B Y

defines a functor from AutcR M-spaces over B to R-module spectra over B which
is left Quillen by Propositions 3.3 and 3.7. We let T= LT denote its left derived
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functor. Note that T is left adjoint to the right derived functor �=�∞B FR(M,−).
In Proposition 5.6, we will prove that when Y is an AutcR M-torsor over B, then TY
is an R-bundle with fiber M, so that we have a functor

T : Ho(AutcR M-torsors)→ Ho(R-bundles with fiber M).

Remark 5.2. In the case M = R, the definition recovers the construction of gen-
eralized Thom spectra from [Ando et al. 2014a, 2014b]. Given a map of spaces
f : B→ BGL1 R, the classification of principal GL1 R-fibrations gives a principal
GL1 R-fibration Y f over B. Applying the functor T then gives a rank one R-bundle
over B. The Thom spectrum associated to the map f is the (nonparametrized)
R-module spectrum

M f = r!T Y f ∼= R ∧6∞+ GLc
1 R 6

∞

+
Y f ,

where r! :SB→S is left adjoint to the pullback functor r∗ :S →SB .

The fiber functor (−)b = i∗b is a left adjoint, but is not left Quillen for either
the stable model structure on parametrized spectra or the q f -model structure on
parametrized spaces. However, i∗b is a right Quillen functor. On the other hand,
T = M ∧6∞+ AutcR M 6

∞

B (−) is a left Quillen functor. There is a natural isomorphism
of functors

(M ∧6∞+ AutcR M 6
∞

B Y )b ∼= M ∧6∞+ AutcR M 6
∞

+
Yb

at the point-set level, but this does not imply an isomorphism of derived functors
after passage to homotopy categories because we are composing left and right
derived functors.

In order to prove the commutation of derived functors, we will make a slight
modification to the functor T . By identifying R ∧S (6

∞
+

AutcR M)op-modules
with (R, 6∞

+
AutcR M)-bimodules, the category of (R, 6∞

+
AutcR M)-bimodules is

a well-grounded compactly generated model category with weak equivalences
and fibrations created in the s-model structure on spectra [Mandell et al. 2001,
Theorem 12.1]. Let M◦ → M be an s-cofibrant approximation of M as an
(R, 6∞

+
AutcR M)-bimodule and define

T ◦(Y )= M◦ ∧6∞+ AutcR M 6
∞

B Y.

Note that since 6∞
+

is left Quillen, 6∞
+

AutcR M is s-cofibrant as a ring spectrum,
and thus s-cofibrant as a spectrum. We record a basic consequence.

Lemma 5.3. The underlying left R-module of M◦ is s-cofibrant. The underlying
right 6∞

+
AutcR M-module of M◦ is s-cofibrant.

Proof. The right adjoint of the forgetful functor from (R, 6∞
+

AutcR M)-bimodules
to left R-modules is the function spectrum functor F S(6∞

+
AutcR M,−). This func-

tor preserves fibrations and acyclic fibrations because 6∞
+

AutcR M is s-cofibrant.
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Therefore its left adjoint, the forgetful functor, preserves cofibrations and acyclic
cofibrations. This proves the first claim. The second claim follows using a similar
argument and the fact that R is s-cofibrant. �

When B = ∗, the fact that M◦ is s-cofibrant as a 6∞
+

AutcR M-module implies
that the functor M◦ ∧6∞+ AutcR M (−) preserves stable equivalences [Mandell et al.
2001, Proposition 12.7]. Along with Lemma 3.4, this shows that the functor T ◦

takes q-equivalences to stable equivalences when the base is a point. The proof
of the next result is inspired by Shulman’s examples in [Shulman 2011, §9]. To
improve clarity, we temporarily revert to the usual notation L and R for left and
right derived functors.

Lemma 5.4. Let f : ∗ → B be the inclusion of a point. Then there is a natural
isomorphism of derived functors R f ∗LT ∼= LT R f ∗.

Proof. The equivalence M◦ → M induces an isomorphism of derived functors
RF R(M,−) ∼= RF R(M◦,−) since M and M◦ are cofibrant R-modules. This
determines an isomorphism of derived functors LT ◦ ∼= LT , so it suffices to prove
the result with T replaced by T ◦.

Suppose that X is a q f -bifibrant AutcR M-space over B, and consider the following
natural transformation of R-modules:

(5.5) T ◦Qq f f ∗X→ T ◦ f ∗X
∼=
−→ f ∗T ◦X→ f ∗Rs T ◦X,

where the first and third maps are induced by q f -cofibrant approximation and
s-fibrant approximation, respectively. Since T ◦ preserves all weak equivalences
when the base is a point, the first map is a stable equivalence. The second map is the
canonical isomorphism. It remains to show that f ∗ preserves the stable equivalence
T ◦X→ Rs T ◦X .

Factor f as a q-equivalence followed by a q-fibration, and consider the two cases
separately. In the first case, the Quillen adjunction ( f!, f ∗) is a Quillen equivalence
both for parametrized AutcR M-spaces (Proposition 2.1) and parametrized R-modules
(the case of R = S is Proposition 12.6.7 in [May and Sigurdsson 2006] and the
general case follows since stable equivalences and s-fibrations of R-modules are
detected by the forgetful functor to parametrized spectra). It follows that the natural
transformation of derived functors

LT ◦R f ∗ η
−→R f ∗L f!LT ◦R f ∗ ∼= R f ∗LT ◦L f!R f ∗ ε

−→R f ∗LT ◦

is an isomorphism. As discussed in [Shulman 2011, §7], this isomorphism of derived
functors is represented by the composite (5.5). In particular, f ∗T ◦X→ f ∗Rs T ◦X
is a stable equivalence in this case, since the map f is still the inclusion of a point.

When f is a q-fibration, we instead consider a levelwise q f -fibrant approximation
T ◦X→ Rl T ◦X . There is a stable equivalence Rl T ◦X→ Rs T ◦X under T ◦X [May
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and Sigurdsson 2006, Lemma 12.6.1] and the induced map f ∗Rl T ◦X→ f ∗Rs T ◦X
is a stable equivalence because f ∗ preserves stable equivalences between level-
wise q f -fibrant spectra. Pullback along q-fibrations preserves weak homotopy
equivalences of topological spaces, so f ∗T ◦X → f ∗Rl T ◦X is a levelwise q-
equivalence, hence a stable equivalence. Therefore f ∗T ◦X→ f ∗Rs T ◦X is also a
stable equivalence. �

We return to using boldface letters to denote derived functors: T is the left
derived functor of T and Fb = Ri∗b is the right derived fiber functor. Recall that the
AutcR M-torsor associated to an R-bundle with fiber M is given by

E= ER(M,−)= µ ◦�,

where µ is the derived functor of Construction 4.3 and � is the right derived functor
of �=�∞B F R(M,−).

Proposition 5.6. There are natural isomorphisms of derived functors FbT∼= TFb

and FbE∼= EFb.

Proof. The first isomorphism is Lemma 5.4. For the second, observe that the
canonical isomorphism i∗b�∼=�i∗b descends to a canonical isomorphism of derived
functors Fb�∼=�Fb because i∗b and � are both right Quillen. By Lemma 4.6, there
is a natural isomorphism Fbµ∼= µFb, completing the proof. �

In particular, the derived functor T takes AutcR M-torsors to R-bundles with
fiber M, as promised in Definition 5.1. We are now ready to prove the main theorem
of this section.

Theorem 5.7. The pair of functors (T,E) defines a bijection between the set of
q-equivalence classes of AutcR M-torsors over B and the set of stable equivalence
classes of R-bundles with fiber M over B.

Proof. We work in the homotopy categories of AutcR M-spaces over B and of
R-modules over B. Suppose that Y is an AutcR M-torsor over B. We will construct
a natural transformation of derived functors ζ : Y → ETY by showing that the unit
of the adjunction (T,�) factors through ER(M,TY ) as indicated in the following
diagram:

(5.8)

Y
η
//

ζ
**

�∞B 6
∞

B Y
η
// �∞B FR(M,TY )

ER(M,TY )

ι

OO

By Lemma 4.7, it suffices to prove that if we apply π0Fb, then the unit map has
image lying in the subset π0µFb�TY .
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Apply Fb to diagram (5.8) and commute Fb past the constituent functors to the
input variable Y . Now fix an isomorphism in the derived category FbY ∼= AutcR M
and consider the isomorphic diagram with FbY replaced by AutcR M. The composite
of the two instances of η in this new diagram is the left vertical composite in the
following commutative diagram:

AutcR M

��

// EndR M

��

�∞6∞
+

AutcR M

��

// �∞6∞
+

EndR M

��

�∞FR(M,M ∧6∞+ AutcR M 6
∞
+

AutcR M) //

∼=

++

�∞FR(M,M ∧6∞+ AutcR M 6
∞
+

EndR M)

��

�∞FR(M,M)

Here the horizontal maps are induced by the composite

AutcR M→ AutR M→ EndR M

of the cofibrant approximation map and the canonical inclusion. The diagonal
map is induced by the action map for the right 6∞

+
AutcR M-module structure on

M and it is an isomorphism as indicated. Since M is bifibrant, we may choose to
represent the value of the derived functor �∞FR(M,M) in the homotopy category
by EndR M. A diagram chase involving the triangle identities for the adjunctions
shows that the right vertical composite is then the identity map. It follows that the
left vertical composite factors through AutR M via the cofibrant approximation map,
and so the map of components

π0FbY → π0Fb�
∞

B FR(M,TY )

lands in the subset π0µFb�
∞

B FR(M,TY ). This establishes the factorization in
diagram (5.8), and so we have constructed the natural transformation ζ : Y →ETY .

As a consequence of the preceding argument, we see that up to natural isomor-
phisms in the domain and codomain, Fbζ may be identified with the cofibrant
approximation map AutcR M→ AutR M. It follows that ζ is a natural isomorphism
of derived functors.

Now let N be an R-bundle with fiber M. Define ξ : TEN → N to be the
composite

TER(M, N ) ι
−→T�∞B FR(M, N ) ε

−→ N
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of the map induced by the inclusion ι : ER(M, N )→�∞B FR(M, N ) followed by
the counit of the adjunction (T,�). After applying the derived fiber functor Fb,
commuting it through to the variable N , and using a chosen equivalence Fb N ' M,
an argument similar to that just given for ζ proves that Fbξ is a fiberwise equivalence.
Hence ξ also induces a natural isomorphism of derived functors. �

Proof of Theorem 1.2. We return to the general situation of a well-grounded ring
spectrum R and an R-module M. Take an s-cofibrant approximation R′ of R
as a ring spectrum and an s-bifibrant approximation M ′ of M as an R-module
so that the material in the last two sections applies. The derived mapping space
AutR M of homotopy automorphisms of M has a point-set model given by the space
AutcR′M

′. Theorem 2.7 and Theorem 5.7 combine to give that homotopy classes
of maps [X, BAutR M] are in bijective correspondence with equivalence classes
of R′-bundles with fiber M ′. The homotopy category of parametrized R-modules
and the homotopy category of parametrized R′-modules are equivalent by pullback
along the approximation map [May and Sigurdsson 2006, Proposition 14.1.9], and
the definition of an R-bundle with fiber M is invariant under stable equivalences in
the entry M, so it follows that equivalence classes of R-bundles with fiber M are
in bijective correspondence with equivalence classes of R′-bundles with fiber M ′.
This completes the proof. �

6. Lifted R-bundles and algebraic K -theory

In this section we will prove Theorem 1.1. The arguments are adapted from [Karoubi
1987; Baas et al. 2004]. Let X be a finite CW complex and let R be a connective
ring spectrum. Let

GLn R = AutR(R∨n)

be the derived mapping space of homotopy automorphisms of the n-fold wedge sum
R∨n with the topological monoid structure coming from composition of maps. By
Theorem 1.2, the classifying space BGLn R classifies stable equivalence classes of
R-bundles with fiber R∨n . Let BGL∞R = hocolimn BGLn R. Recall the following
description of the infinite loop space underlying the algebraic K -theory spectrum
of R:

�∞K (R)' K0 R× BGL∞R+.

The group K0 R = K f
0 π0 R is the algebraic K -theory of free π0 R-modules, and the

plus denotes Quillen’s plus construction with respect to the commutator subgroup
of π1 BGL∞R. Since the plus construction changes the homotopy type in general,
we will need to work with lifted bundles, in the following sense:

Definition 6.1. A lifted R-bundle over X is the data of:
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(i) An H∗-acyclic fibration p : Y → X of CW complexes, by which we mean a
Serre fibration with H̃∗(fiber(p);Z)= 0.

(ii) An R-bundle E over Y .

We say that a lifted R-bundle (E, Y, p) over X is free if every fiber of E admits a
stable equivalence of R-modules Ey ' R∨n for some n.

Define a relation on lifted R-bundles over X by declaring (E, Y, p)∼ (E ′, Y ′, p′)
if there exists a map f : Y → Y ′ over X such that the induced map of R-modules
E → f ∗E ′ over Y is a stable equivalence. This does not define an equivalence
relation in general, so we work with the equivalence relation on lifted R-bundles over
E generated by∼. When convenient, we make the abbreviation (E, Y )= (E, Y, p).

We assume from now on that X is a finite CW complex. Let 8R(X) be the set of
equivalence classes of lifted free R-bundles over X . The set 8R(X) is an abelian
monoid under the operation (E1, Y1)⊕ (E2, Y2) taking a pair of lifted R-bundles
over X to the lifted R-bundle

(g∗1 E1 ∨Z g∗2 E2, Z),

where Z is the pullback

Z
g2
//

g1

��

Y2

��

Y1 // X

The zero of 8R(X) is the trivial R-bundle (∗X , X) over X . Let K R(X) be the
Grothendieck group of the monoid 8R(X).

We say that a lifted R-bundle is virtually trivial if there exist a space T such
that H̃∗(T ;Z)= 0, and a map f : Y → T (not necessarily over X ) along with an
R-bundle (E ′, T ) over T , and a stable equivalence of R-bundles E ' f ∗E ′.

Lemma 6.2. Let (E1, Y1) be a lifted free R-bundle over X. Then there exists a lifted
free R-bundle (E2, Y2) over X such that (E1, Y1)⊕ (E2, Y2) is virtually trivial.

Proof. Let f1 : Y1→ BGLn R be a classifying map for E1. Let P be the homotopy
fiber of the H∗-acyclic fibration Y1→ X . By Proposition 1.3 in [Hausmann and
Husemoller 1979], the kernel of π1Y1 → π1 X is the perfect normal subgroup
im(π1 P→π1Y1). This is annihilated by the following map to the plus construction:

π1 P→ π1Y1
f1−→π1 BGLn R→ π1 BGLn R+.

By Proposition 3.1 in the same paper, f1 descends to a map g1 : X → BGLn R+.
Use the grouplike H -space structure on BGL∞R+ to find g2 : X → BGLm R+
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such that g1⊕ g2 : X→ BGLm+n R+ is nullhomotopic. Define Y2 as the following
pullback:

Y2
f2
//

��

BGLm R

��

X
g2
// BGLm R+

We choose a model for the plus construction such that the right vertical map (and thus
the left vertical map) is a q-fibration of CW complexes. Let E2 be the free R-bundle
over Y2 classified by the map f2. The sum (E1, Y1)⊕ (E2, Y2) is a lifted R-bundle
over the pullback Y = Y1×X Y2 that is classified by a lift f : Y → BGLm+n R of
g1 ⊕ g2. Thus f is nullhomotopic, so it factors through the H∗-acyclic fiber of
BGLm+n R→ BGLm+n R+, proving that (E1, Y1)⊕ (E2, Y2) is virtually trivial. �

Given any space X , we generically write r : X→∗ for the canonical map to a
point, so that the pullback r∗M is the trivially twisted R-bundle with fiber M.

Lemma 6.3. Suppose that (E, Y ) is a virtually trivial lifted R-bundle over X. Then
there exists a lifted R-bundle (r∗M, Y ′) over X that is equivalent to (E, Y ) as a
lifted R-bundle: [(E, Y )] = [(r∗M, Y ′)] in 8R(X). If E is a free R-bundle, then
M = R∨n for some n.

Proof. We are given an H∗-acyclic fibration p : Y → X , a map f : Y → T where
H̃∗(T ) = 0 and a stable equivalence E ' f ∗E ′ where E ′ is an R-bundle over T .
Choose a point t : ∗→ T . Consider the commutative diagram,

Y
p

{{

g
��

f

""

X T × X
π2

oo
π1

// T

X
id

cc

χ

OO

r
// ∗

t

OO

where g(y) = ( f (y), p(y)) and χ(x) = (t, x). The maps p, π2 and id are all
H∗-acyclic fibrations. Form the R-bundle π∗1 E ′ over T × X . Then we have a
stable equivalence of R-bundles g∗π∗1 E ′ = f ∗E ′ ' E over Y . On the other hand
χ∗π∗1 E ′ ∼= r∗t∗E ′ is a trivial bundle over X with fiber M = t∗E ′, since t ◦ r factors
through a point. The two triangles on the left show that (E, Y )∼ (π∗1 E ′, T × X)
and (π∗1 E ′, T × X)∼ (r∗M, X). �

Consider the abelian group K0(R) as a discrete set and let [X, K0(R)] be the set
of homotopy classes of maps from X , considered as an abelian group under the
pointwise addition in the abelian group K0(R). Let ψ :8R(X)→ [X, K0(R)] be
the function that takes a lifted free R-bundle (E, Y, p) to the map sending x ∈ X
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to the equivalence class of the free R-module Ex = (p ◦ i)∗E , where i : ∗ → Y
is a choice of a point lying in the fiber of p over x . Since the fibers of p are
path-connected, different choices give the same equivalence class in K0(R) and
it is easy to see that the definition depends only on the equivalence class of the
lifted free R-bundle. Since the abelian group structure on K0(R) is induced by the
wedge sum of free R-modules, the function ψ is a monoid homomorphism. Let
ψ : K R(X)→[X, K0(R)] be the extension of ψ to the Grothendieck group. There
is a natural splitting

K R(X)∼= kerψ ⊕[X, K0(R)]

induced by the section of ψ that takes an equivalence class [R∨n
] ∈ K0(R) in-

dexed by a path-component of X to the trivially twisted R-bundle r∗R∨n over that
component. Let 8n

R(X) be the set of equivalence classes of lifted R-bundles of
rank n.

Proposition 6.4. There is a natural isomorphism

kerψ ∼= colimn 8
n
R(X).

Proof. Suppose [E] − [F] is a formal difference of lifted free R-bundles in kerψ .
We associate to [E]−[F] the element [E⊕F ′] ∈ colimn 8

n
R(X) where F ′ is a lifted

free R-bundle such that F ⊕ F ′ is virtually trivial (see Lemma 6.2). Conversely, to
a class [E] ∈8n

R(X) we associate the formal difference [E] − [Tn] ∈ kerψ , where
Tn = r∗R∨n is the trivial R-bundle of rank n. �

Proposition 6.5. There is a natural isomorphism

colimn 8
n
R(X)∼= [X, BGL∞(R)+].

Proof. Given the class of a lifted free R-bundle (E, Y ) over X in colimn 8
n
R(X),

the arguments of Lemma 6.2 show that the classifying map f of E extends to a
map g from X to the plus construction:

Y
f
//

p
��

BGLn R

��

X
g
// BGLn R+

Conversely, given a classifying map g define Y as the pullback displayed in the
same diagram. Then p is an H∗-acyclic fibration and f classifies a lifted free
R-bundle (E, Y ) over X . �

All together, we have proved:

K R(X)∼= [X, K0(R)]⊕ [X, BGL∞(R)+] ∼= [X, �∞K (R)].

This completes the proof of Theorem 1.1.
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