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HIDDEN SYMMETRIES AND COMMENSURABILITY
OF 2-BRIDGE LINK COMPLEMENTS

CHRISTIAN MILLICHAP AND WILLIAM WORDEN

In this paper, we show that any nonarithmetic hyperbolic 2-bridge link
complement admits no hidden symmetries. As a corollary, we conclude that
a hyperbolic 2-bridge link complement cannot irregularly cover a hyper-
bolic 3-manifold. By combining this corollary with the work of Boileau and
Weidmann, we obtain a characterization of 3-manifolds with nontrivial JSJ-
decomposition and rank-two fundamental groups. We also show that the
only commensurable hyperbolic 2-bridge link complements are the figure-
eight knot complement and the 62

2 link complement. Our work requires
a careful analysis of the tilings of R2 that come from lifting the canonical
triangulations of the cusps of hyperbolic 2-bridge link complements.

1. Introduction

Two manifolds are called commensurable if they share a common finite sheeted
cover. Here, we focus on hyperbolic 3-manifolds, that is, M =H3/0 where 0 is a
discrete, torsion-free subgroup of Isom(H3). We are interested in analyzing the set
of all manifolds commensurable with M . Commensurability is a property of interest
because it provides a method for organizing manifolds, and many topological prop-
erties are preserved within a commensurability class. For instance, Schwartz [1995]
showed that two cusped hyperbolic 3-manifolds are commensurable if and only
if their fundamental groups are quasi-isometric. In this paper, we restrict our
attention to hyperbolic 2-bridge link complements; see Section 2 for the definition
of a 2-bridge link. We use the word link to refer to a link in S3 with at least one
component. We use the word knot to only mean a single component link.

A significant challenge in understanding the commensurability class of a hy-
perbolic 3-manifold M = H3/0 is determining whether or not M has any hidden
symmetries. To understand hidden symmetries, we first need to introduce some
terminology. The commensurator of 0 is

C(0)= {g ∈ Isom(H3) : |0 : 0 ∩ g0g−1
|<∞}.
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It is a well known fact that two hyperbolic 3-manifolds are commensurable if
and only if their corresponding commensurators are conjugate in Isom(H3); see
Lemma 2.3 of [Walsh 2011]. We denote by C+(0) the restriction of C(0) to
orientation-preserving isometries. We also denote by N (0) the normalizer of
0 in Isom(H3) and by N+(0) the restriction of N (0) to orientation-preserving
isometries. Note that 0 ⊂ N (0) ⊂ C(0). A symmetry of M corresponds to an
element of N (0)/0, and a hidden symmetry of M corresponds to an element of
C(0) that is not in N (0). Geometrically, M admits a hidden symmetry if there
exists a symmetry of a finite cover of M that is a not a lift of an isometry of M . See
Sections 2 and 3 of [Walsh 2011] for more details on commensurators and hidden
symmetries.

In this paper, we give a classification of the hidden symmetries of hyperbolic
2-bridge link complements. Reid and Walsh [2008] used algebraic methods to
determine that hyperbolic 2-bridge knot complements (other than the figure-eight
knot complement) have no hidden symmetries. However, their techniques do not
apply to hyperbolic 2-bridge links with two components. Here, we use a geometric
and combinatorial approach to prove the following theorem.

Theorem 1.1. If M = S3
\ K is a nonarithmetic hyperbolic 2-bridge link com-

plement, then M admits no hidden symmetries (either orientation-preserving or
orientation-reversing).

The only arithmetic hyperbolic 2-bridge links are the figure-eight knot, the White-
head link, the 62

2 link, and the 62
3 link. Though it will not be needed in what follows,

we refer the interested reader to [Maclachlan and Reid 2003, Definition 8.2.1] for
the definition of an arithmetic group 0 ≤ Isom(H3).

We prove Theorem 1.1 by using the canonical triangulation T of a hyperbolic
2-bridge link complement, M = H3/0 = S3

\ K . This triangulation was first
described in [Sakuma and Weeks 1995]. Guéritaud in his thesis [2006a] proved
that this triangulation is geometrically canonical, i.e., topologically dual to the
Ford–Voronoi domain for equal volume cusp neighborhoods. In addition, Akiyoshi,
Sakuma, Wada and Yamashita [2007] have announced a proof of this result where
they analyze the triangulation T via cone deformations of M along the unknot-
ting tunnel. Futer also showed that this triangulation is geometric by applying
Rivin’s volume maximization principle; see the appendix of [Guéritaud 2006b]. By
[Goodman et al. 2008, Theorem 2.6], if any such M is nonarithmetic, then C(0)
can be identified with the group of symmetries of the tiling of H3 obtained by
lifting T , which we call T̃ . We prove that any nonarithmetic hyperbolic 2-bridge
link complement M does not admit hidden symmetries, by showing that any sym-
metry of T̃ actually corresponds to a composition of symmetries of M and deck
transformations of M . In other words, C(0)= N (0).
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Rather than analyze this tiling of H3, we drop down a dimension and instead
analyze the (canonical) cusp triangulation T̃ of R2, induced by T̃ . By intersecting
a cusp cross-section of M with its canonical triangulation T , we obtain a canonical
triangulation T of the cusp(s). If K has two components, we still end up with
the same canonical triangulation on both components of T since there is always
a symmetry exchanging the two components, and we take equal volume cusp
neighborhoods. We can lift T to a triangulation T̃ of R2 (or two copies of R2 if K
has two components). We also place edge labels on T̃ which record edge valences of
corresponding edges in the three-dimensional triangulation. This labeling provides
us with enough rigid structure in T̃ to rule out any hidden symmetries. Goodman,
Heard and Hodgson [2008, Theorem 3.1] use a similar approach to prove that
nonarithmetic hyperbolic punctured-torus bundles do not admit hidden symmetries.

If a hyperbolic 3-manifold M admits no hidden symmetries, then M can not irreg-
ularly cover any hyperbolic 3-orbifolds. A hyperbolic 3-orbifold is any N = H3/0,
where 0 is a discrete subgroup of Isom(H3), possibly with torsion. All of the
previous statements about commensurability of hyperbolic 3-manifolds and the
commensurator of 0 also hold for hyperbolic 3-orbifolds. Theorem 1.1 quickly gives
us the following corollary about coverings of hyperbolic 3-orbifolds by hyperbolic
2-bridge link complements. For the arithmetic cases, volume bounds are taken into
consideration to rule out irregular covers of manifolds.

Corollary 1.2. Let M be any hyperbolic 2-bridge link complement. If M is nonar-
ithmetic, then M does not irregularly cover any hyperbolic 3-orbifolds (orientable
or nonorientable). If M is arithmetic, then M does not irregularly cover any
orientable hyperbolic 3-manifolds.

By combining Corollary 1.2 with the work of Boileau and Weidmann [2005], we
get the following characterization of 3-manifolds with nontrivial JSJ-decomposition
and rank-two fundamental groups. For a more detailed description of this decom-
position see page 478.

Corollary 1.3. Let M be a compact, orientable, irreducible 3-manifold which
has rank(π1(M)) = 2. If M has a nontrivial JSJ-decomposition, then one of the
following holds:

(1) M has Heegaard genus 2.

(2) M decomposes into a Seifert fibered 3-manifold and hyperbolic 3-manifold.

(3) M decomposes into two Seifert fibered 3-manifolds.

The original characterization given by Boileau and Weidmann included a fourth
possibility: a hyperbolic piece of M is irregularly covered by a 2-bridge link
complement. Corollary 1.2 eliminates this possibility.
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Ruling out hidden symmetries also plays an important role in analyzing the com-
mensurability class of a hyperbolic 3-orbifold M=H3/0. By the commensurability
class of a hyperbolic 3-orbifold (or manifold) N , we mean the set of all hyperbolic
3-orbifolds commensurable with N . A fundamental result of Margulis [1991]
implies that C(0) is discrete in Isom(H3) (and 0 is finite index in C(0)) if and
only if 0 is nonarithmetic. Thus, in the arithmetic case, M will have infinitely
many hidden symmetries. In the nonarithmetic case, this result implies that the
hyperbolic 3-orbifold O+ =H3/C+(0) is the unique minimal (orientable) orbifold
in the commensurability class of M . So, in the nonarithmetic case, M and M ′ are
commensurable if and only if they cover a common minimal orbifold. Furthermore,
when M admits no hidden symmetries, C+(0) = N+(0), and so, O+ is just the
quotient of M by its orientation-preserving symmetries.

By using Theorem 1.1 and thinking about commensurability in terms of covering
a common minimal orbifold, we obtain the following result about commensurability
classes of hyperbolic 2-bridge link complements.

Theorem 1.4. The only pair of commensurable hyperbolic 2-bridge link comple-
ments are the figure-eight knot complement and the 62

2 link complement.

We prove Theorem 1.4 by analyzing the cusp of each minimal (orientable)
orbifold, O+, in the commensurability class of a nonarithmetic hyperbolic 2-bridge
link complement. This orbifold always has one cusp since two component 2-bridge
links always have a symmetry exchanging the components. The cusp of this orbifold
inherits a canonical cellulation from the canonical triangulation T of the cusp(s)
of M . By comparing minimal orbifold cusp cellulations, we establish this result.

We now describe the organization of this paper. In Section 2, we provide some
background on 2-bridge links, including an algorithm for building any 2-bridge
link from a word � in Ls and Rs. Section 3 describes how to build the canonical
triangulation of a 2-bridge link complement and the corresponding cusp triangulation
T based on this word �. In this section we also prove some essential combinatorial
properties of T̃ , the lift of T to R2. Section 4 analyzes the possible symmetries of
a 2-bridge link complement in terms of the word �, and describes the actions of
these symmetries on T̃ . In Section 5, we prove Theorem 1.1, Corollary 1.2, and
Corollary 1.3. In Section 6, we prove Theorem 1.4.

2. Background on 2-bridge links

In order to describe 2-bridge links, we first need to define rational tangles. First, a
2-tangle is a pair (B, t), where t is a pair of unoriented arcs embedded in the 3-ball
B so that t only intersects the boundary of B in four specified marked points: SW,
SE, NW, and NE (if we think of ∂B as the unit sphere centered at the origin in R3,
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S 1
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Ω1

Ω2

Ω3 Ω4

Ωc

S c−1

Ωc−1

Figure 1. Left: the link K (�), where �= R2L3 R2L , read from
S1 inward to Sc. Right: the same link, with crossings labeled and
4-punctured spheres Si shown (note that S5 and S6 are omitted for
readability).

then SW is the southwest corner (−1/
√

2,−1/
√

2, 0), SE is the southeast cor-
ner (1/

√
2,−1/

√
2, 0), etc.). Rational tangles are a special class of 2-tangles. The

simplest rational tangles are the 0-tangle and the∞-tangle. The 0-tangle consists of
two arcs that don’t twist about one another, with one arc connecting NW to NE, and
the other arc connecting SW to SE. Similarly, the∞-tangle consists of two unknotted
arcs, with one arc connecting NE to SE and the other arc connecting NW to SW.
Both of these tangles admit an obvious meridian curve contained on ∂B that bounds
an embedded disk in the interior of B. A rational tangle is constructed by taking one
of these trivial tangles and alternating between twisting about the western endpoints
(NW and SW) and twisting about the southern endpoints (SW and SE). This twisting
process maps the meridian of the 0-tangle (∞-tangle) to a closed curve with rational
slope p/q , which determines this tangle, hence the name rational tangle. A 2-bridge
link is constructed by taking a rational tangle, connecting its western endpoints by
an unknotted strand, and connecting its eastern endpoints by an unknotted strand.

Here, we describe a 2-bridge link K ⊂ S3 in terms of a word �, which is a
sequence of Ls and Rs: �= Rα1 Lα2 Rα3 · · · Rαn , αi ∈N (if n is odd and the starting
letter is R). The sequence [α1+1, α2, . . . , αn−1, αn+1] gives the continued fraction
expansion for the rational tangle p/q used to construct a 2-bridge link. Each L
corresponds to performing a left-handed half-twist about the NW and SW endpoints
of a 0-tangle and each R corresponds to performing a right-handed half-twist about
the SW and SE endpoints of an∞-tangle. Each syllable, i.e., each maximal subword
Lαi or Rαi , corresponds to two strands wrapping around each other αi times. This
word � gives a procedure to construct an alternating 4-string braid between two
4-punctured spheres, S1 and Sc, where S1 is exterior to the braid and Sc is interior
to the braid; see Figure 1. To construct a 2-bridge link, we add a single crossing
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to the outside of S1, and we add a single crossing to the inside of Sc. There is a
unique way to add these crossings so that the resulting link diagram is alternating.
Any 2-bridge link can be constructed in this manner and we use the notation K (�)
to designate the 2-bridge link constructed by the word �. The original source for
this notation comes from the appendix of [Guéritaud 2006b], which contains more
details of this construction.

The following are important facts about 2-bridge links that we will use. From
now on, we will state results in terms of K (�) and we assume that any 2-bridge
link has been constructed in the manner described above, unless otherwise noted.

• Given a 2-bridge link K (�), we obtain a mirror image of the same link (with
orientations changed on S3) if we switch Ls and Rs in the word �. Since we
will only be considering unoriented link complements, we consider such links
equivalent.

• 2-bridge links (and their complements) are determined by the sequence of
integers α1, . . . , αn up to inversion. Schubert [1956] gives this classification
of 2-bridge knots and links, and Sakuma and Weeks [1995, Theorem II.3.1]
give this classification of their complements by examining their (now known)
canonical triangulations.

• A 2-bridge link K (�) is hyperbolic if and only if � has at least two sylla-
bles. This follows from Menasco’s [1984] classification of alternating link
complements.

• The only arithmetic hyperbolic 2-bridge links are those listed below. This
classification was given by Gehring, Maclachlan and Martin [1998].

– The figure-eight knot given by RL or L R,
– The Whitehead link given by RL R or L RL ,
– The 62

2 link given by L2 R2 or R2L2, and
– The 62

3 link given by RL2 R or L R2L .
We care about distinguishing between nonarithmetic and arithmetic hyperbolic
link complements because different techniques have to be used for analyzing
hidden symmetries and commensurability classes.

Throughout this paper, we will always assume that K (�) is hyperbolic, i.e., �
has at least two syllables. In Section 3, we will use the diagram of K (�) described
above to build the canonical cusp triangulation of S3

\ K (�).

3. Cusp triangulations of 2-bridge link complements

Let K = K (�) be a 2-bridge link, defined as in Section 2, with � a word in R
and L , and �i its i th letter. We may assume that �1= R, as mentioned in Section 2.
In this section we give a description of the construction of the triangulation T
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S 1

S 2

(a) (b)

Figure 2. On the left (a), we see which edges of S1 are identified
to edges of S2, and what the region between S1 and S2 looks like.
In the right figure (b), it is a little easier to see, with S1 and S2

unfolded, that the region between them is a pair of tetrahedra.

of S3
\ K , and of the induced cusp triangulation T , and its lift T̃ (if K has two

components, then the two cusp triangulations are identical). We then describe an
algorithmic approach for constructing T̃ , and prove some facts about simplicial
homeomorphisms f : T̃ → T̃ . Our description of these triangulations follows that
of [Guéritaud 2006b, Appendix A] and [Sakuma and Weeks 1995, Chapter II], to
which we refer the reader for further details.

To build the triangulation T , we first place a 4-punctured sphere Si at each
crossing �i corresponding to a letter of �, so that every crossing � j for j ≥ i is
on one side of Si , and the remaining crossings are on the other side; see Figure 1
(right). We will start by focusing on S1 and S2. We triangulate both of them as
shown in the first frame of Figure 2(a) (notice that the edge from the lower-left to
upper-right puncture is in front for both). If we push S1 along the link to the other
side of the crossing �1, we see that some of its edges coincide with edges of S2

(in particular, the horizontal edges coincide, and the diagonal edges of S1 become
vertical in S2, see Figure 2(a)). The vertical edges of S1, however, get pushed to
diagonal edges that cannot be identified to the diagonal edges of S2. The top frame
of Figure 2(b) shows S1 and S2 with appropriate edges identified, as seen lifted to
R2
\ Z2 (i.e., cut along top, bottom, and left edges then unfold). If we lift S1 to

R2
\Z2 in such a way that its triangulation has edge slopes 0

1 , 1
1 , 1

0 , this choice forces
S2 to have edge slopes 0

1 ,
1
2 ,

1
1 , as shown in the lower frame of Figure 2(b). This

means that the triangulation of S2 in R2
\ Z2 is obtained by applying the matrix

R =
(

1 1
0 1

)
to the S1 triangulation of R2

\ Z2. If the letter �1 between S1 and S2

had been an L , we would have found by the same analysis that the matrix taking
us from the triangulation of S1 to the triangulation of S2 must be L =

(
1 0
1 1

)
. This

holds in general. If we know the edge slopes of the triangulation of Si , we can
apply the appropriate matrix, depending on whether �i is an R or an L , to get the
triangulation of Si+1 (see Figure 3).
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R =
(
1 1
0 1

)

L =
(
1 0
1 1

)

S i

S i+1

Figure 3. We apply the transformations R or L as shown, depend-
ing on whether �i is an R or an L , to obtain Si+1 from Si .

Remark 3.1. Though we do not use this fact in what follows, the word � can be
viewed as a path in the Farey tessellation, with each letter corresponding to making
a right (for R) or left (for L) turn from one Farey triangle to the next. In this case
each 4-punctured sphere Si corresponds to a Farey triangle, and its slopes are given
by the vertices of that triangle. For details of this approach, we again direct the
interested reader to [Guéritaud 2006b] and [Sakuma and Weeks 1995].

Coming back to S1 and S2, we see in Figure 2(b) that between the (red) triangu-
lation of S2 and the (blue) triangulation of S1 is a layer of two tetrahedra, which
we denote 11. Similarly, between the 4-punctured spheres Si and Si+1 we get a
layer 1i of tetrahedra. This construction results in a “product region” S× I , where
S×{0} = S1 and S×{1} = Sc. We use quotation marks here because S× I is not a
true product for �∈ {RLk, L Rk, RLk R, L Rk L}, since there will be an edge shared
by all the Si .

To obtain S3
\ K from S× I , we first “clasp” S1 by folding along edges with

slope 1
1 and identifying pairs of triangles adjacent to those edges, as shown in

Figure 4. We clasp Sc in the same way, this time folding along either the edge with
greatest slope or the edge with least slope, depending on whether the final letter of
� is R or L , respectively.

To understand the induced triangulation T of a cusp cross section, we first
consider a neighborhood of a single puncture P in S × I . For each layer of
tetrahedra 1i between Si and Si+1, we get a pair of triangles Di and D′i going once
around the puncture, as in Figure 5(a). In this figure vertices of Di ∪ D′i are labeled
according to the edges of 1i that they are contained in, and edges of Di ∪ D′i are
labeled according to the edge of 1i that they are across a face from. Notice in
Figure 5(a) that Di has a vertex (c−) meeting an edge of Si but not meeting Si+1,
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1
1

1
1

0
1

0
1

Figure 4. The clasping of S1. The viewpoint of the reader is the
“inside” of S1, i.e., the side containing the braid in Figure 1.
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Figure 5. In (a), a layer1i with a neighborhood of a cusp removed (left),
and the triangles Di ∪D′i that the layer 1i contributes to the cusp triangu-
lation (right). Edges with the same slope have labels that differ by a ∼
decoration. Figure (b) shows Di and D′i after being adjusted as prescribed
in Figure 6, with ∼ decorations removed so that edges with the same
slope are labeled the same.

and D′i has a vertex (c̃) meeting Si+1 but not meeting Si . Thus Di is distinguished
from D′i .

To see how Di ∪ D′i attaches to Di−1∪ D′i−1, we must consider how 1i attaches
to 1i−1. Figure 6(a) shows 1i and 1i−1 in (R2

\Z2)× I (sandwiched between
Si−1∪ Si ∪ Si+1) in the case where �i = R, and the corresponding triangles around
the puncture. There is a unique edge e of Di ∪ D′i , corresponding to an edge of
Si shared by both Si−1 and Si+1, and with vertices v1 ∈ Si−1 and v2 ∈ Si+1. This
means that the edge e moves us along the cusp cross-section in the longitudinal
direction, so it will be part of a longitude in T̃ . It makes sense then to adjust these
edges to be horizontal, as we build the triangulation T̃ (see Figure 6(a)). Figure 6(b)
shows the analogous adjustment when �i = L .

When we clasp S1, an edge of D1 is identified to an edge of D′1, and similarly
for D′c and Dc when Sc is clasped, as illustrated in Figure 7. We will call the
triangles D1 and D′c clasping triangles. For � = R2L3 R2L , the triangulation
around a puncture before clasping and after clasping is shown in Figures 7(b) and
7(c), respectively.
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Di
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Di−1

D′i−1S i−1 S i S i+1∪ ∪
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(a) (b)

Figure 6. Building the cusp triangulation. In (a), the left frame
shows three layers of 4-punctured spheres, with a truncated punc-
ture. Note the special edge e on the truncated puncture, also shown
in the right frame, which connects Si−1 to Si+1. Note that in the
two figures on the right, the top and bottom vertices are identified,
and in (b) we have rotated (vertically) by π to make the picture
more clear.
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Figure 7. The effect of clasping on the triangulation around a
puncture. (a) shows 11, with S1 below S2, and edge colors of S1

corresponding to colors in Figure 4. On the right, (b) and (c) show
the effect of clasping as seen from the cusp cross-section.

Before clasping, it is clear from the construction that the combinatorics around
each of the four punctures is identical. Clasping identifies the punctures on
S1 = S × {0} in pairs, and identifies the punctures on Sc = S × {1} in pairs, in
an orientation-preserving way. This means that for a 2-component link, a cusp
triangulation is obtained by gluing two puncture triangulations (as in Figure 7(c))
along their front edges, and along their back edges, in an orientation-preserving
way. For a knot, the situation is similar, except that we glue all four puncture
triangulations, always identifying front edges to front edges, and back to back, with
orientation preserved. In both cases the lifted triangulation T̃ of R2 is the same,
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−1 1 2 . . . c1 c2+1 c2+2 . . . c3 cn−3 cn−2+1 cn−2+2 . . . cn−1

c0=0 c1+1 c1+2 . . . c2 cn−4 cn−3+1 cn−3+2 . . . cn−2 . . . cn−2 cn−1 cn︸ ︷︷ ︸
α2

︸ ︷︷ ︸
αn−2

︸ ︷︷ ︸
αn

α1︷ ︸︸ ︷ α3︷ ︸︸ ︷ αn−1︷ ︸︸ ︷

Figure 8. Triangulation of D′ = [0, 1] × [0, 1] ⊂ R2. The word
� = Rα1 Lα2 · · · Lαn can be read from the triangulation. Here,
c j =

∑ j
i=1 αi .

except that the fundamental region for a knot is twice as large as for a link. Note
that when �1 6=�c, the clasping triangle on the right is offset vertically from the
clasping triangle on the left (as in Figure 7(c)), whereas if �1 =�c this will not be
the case.

As a result of the above discussion, we can now give an algorithmic approach to
constructing the lifted cusp triangulation T̃ for an arbitrary word�= Rα1 Lα2 · · · Lαn

(we will assume the last letter is L for concreteness; the case where �c = R is
similar). This follows the approach in [Sakuma and Weeks 1995, Section II.4],
with some changes of notation. We start with a rectangle D′ = [0, 1]× [0, 1] ⊂ R2

divided into c =
∑

iαi triangles, each corresponding to a letter of �, as in Figure 8.
Vertices of D′ are labeled as shown, with c j =

∑ j
i=1αi for 1≤ j ≤ n, and c0= 0. To

fill out R2 we first reflect D′ in its top edge to get its mirror D, so that D ∪ D′ is a
triangulation of a puncture (with triangles Di in D and triangles D′i in D′), as in
Figure 7(c). We then rotate D ∪ D′ by π about (0, 1) (i.e., about the vertex labeled
−1), and translate the resulting double of D ∪ D′ vertically and horizontally to fill
R2. Finally, we remove all edges −1, 1 and r, cn , where r = cn−2 if αn = 1, and
r = cn − 1 otherwise (i.e., all images of the red edges in Figure 8).

With this parametrization of the cusp triangulation in R2, deck transformations
are generated by (x, y) 7→ (x, y + 2) and (x, y) 7→ (x + k, y), where k = 2 if
K = K (�) has two components, and k = 4 if it has one component. We observe
that the long edge of each clasping triangle goes all the way around the meridian
of the cusp, and these edges are unique in this respect. For this reason we call
these edges meridional edges (whether we are referring to them in T or T̃ ), and
we call each connected component of their union in T̃ a meridional line (i.e., any
line x = c, c ∈ Z). A strip of adjacent nonclasping triangles that all meet the lines
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Figure 9. Edge/vertex correspondence in T̃ . Vertices and edges
with the same slope (as edges in T̃ ), are labeled the same.

y =m and y =m+ 1 (in an edge or vertex), for some m ∈ Z, is called a horizontal
strip (see Figure 12).

We will now describe a correspondence between edges and vertices of T̃ . Given
an edge e in T̃ , meaning a truncated tip of an ideal triangle in T̃ , we have a
corresponding edge in T̃ : this is just the edge of T̃ across from e in the ideal
triangle, as in Figure 5(a). Similarly, a vertex of T̃ corresponds to the edge in T̃
that it is contained in. We say that an edge e and a vertex v of T̃ correspond if
their corresponding edges in T̃ have the same slope (when viewed in (R2

\Z2)× I ).
Edge and vertex correspondence in T̃ , for edges and vertices that do not come from
S1 or Sc, can be read off Figure 5(b), which shows the cusp cross-section of a layer
1i with vertices and edges of the same slope labeled the same.

As for edges and vertices affected by clasping, we can easily read the correspon-
dences off the labellings in Figure 7 for the clasping of S1, and the Sc clasping
works similarly. This gives edge/vertex correspondences for D ∪ D′, as shown in
Figure 9 (as usual, we assume �1 = R). A fundamental region of T is constructed
by gluing together either two or four copies of D ∪ D′ by orientation-reversing
homeomorphisms {0} × [0, 1] → {0} × [0, 1] and {1} × [0, 1] → {1} × [0, 1], as
previously discussed. Hence, the algorithmic construction of T̃ by rotating D ∪ D′

by π about (0, 1) then translating to tile the plane respects edge valence, and
so edge/vertex correspondence for all of T̃ can be obtained in this way. From
here forward we will consider the edges of T̃ to be labeled by the valence of a
corresponding vertex, and we will refer to this number as the edge valence.

We summarize the preceding discussion in the following lemma, part (d) of
which corrects a minor error in the proof of Theorem II.3.1 in [Sakuma and Weeks
1995] (this error does not, however, affect the validity of their proof). Note that the
relevant notation in [Sakuma and Weeks 1995] differs from ours in several ways:
most importantly, what we call val(i) they denote d(i), and we follow a different
indexing convention for vertices of T̃ .
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Lemma 3.2. The lifted cusp triangulation T̃ for the link given by a word � =
Rα1 Lα2 Rα3 · · · Lαn has the following description:

(a) T̃ is obtained from the triangulated rectangle D′=[0, 1]×[0, 1]⊂R2, described
by Figure 8, as follows: reflect in [0, 1]×{1} to get D, then rotate D∪D′ about (0, 1),
and translate the resulting two copies of D ∪ D′ by (x, y) 7→ (x + 2k, y + 2m),
where k,m ∈ Z, to tile R2.

(b) The deck group of T̃ is generated by (x, y) 7→ (x, y+2) and (x, y) 7→
(
x+ 4

ε
, y
)
,

where ε ∈ {1, 2} is the number of components of the link K (�).

(c) Edge/vertex correspondence in T̃ is as follows (see Figure 9):

• If e is horizontal or e is a meridional edge, then e corresponds to the vertices
across the two triangles adjacent to it.

• If the lower endpoint of e meets the line y = k, and the upper endpoint meets
y = k+ 1, with k even (resp. odd), then e corresponds to the vertex across the
triangle to the left (resp. right) of e.

(d) If � /∈ {R2L2, RLm, RLm R : m ≥ 1}, then the vertices of T̃ , labeled as in
Figure 8, have valence as follows (recall that r = cn−2 if αn = 1, and r = cn − 1
otherwise):

val(ci )=


4αi+1+ 4 for i ∈ {0, n− 1},
2αi+1+ 4 for 2≤ i ≤ n− 3 or i = 1, α1 > 1 or i = n− 2, αn > 1,
2αi+1+ 3 for i = 1, α1 = 1 or i = n− 2, αn = 1,

val(1)=
{

3 for α1 > 1,
2α2+ 3 for α1 = 1,

val(r)=
{

3 for αn > 1,
2αn−1+ 3 for αn = 1,

val( j)= 4 for j /∈ {0, 1, c1, c2, . . . , cn, r}.

In particular, note that for all � /∈ {R2L2, RLm, RLm R : m ≥ 1}, val( j) is odd
if and only if j ∈ {1, r}. This fact is key to showing that nonarithmetic 2-bridge
links cannot have hidden symmetries. Since a hidden symmetry restricts to an
isometry of T̃ , it is a simplicial automorphism of T̃ (i.e., a homeomorphism T̃ → T̃
preserving the simplicial structure) and hence it is a simplicial automorphism of T̃
that preserves edge valence.

Definition 3.3. We denote by Autev(T̃ ) the group of simplicial automorphisms of
T̃ that preserve edge valence. Note that if we identify T̃ with the horoball centered
at p, then there is a natural injection StabAut(T̃ )(p) ↪→ Autev(T̃ ).
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By analyzing Autev(T̃ ), which must preserve these odd valence vertices, we learn
about the possible isometries of T̃ . The first step in this process is the following
lemma:

Lemma 3.4. If� /∈ {RL , R2L2, RL R}, then Autev(T̃ ) preserves clasping triangles
and meridional edges.

Proof. By the symmetry of the problem, we need only show that any triangle 41,0,0

with vertex labels {1, 0, 0} maps to a clasping triangle. Let f ∈ Autev(T̃ ), and let
4a,b,b′ be the image of a triangle 41,0,0 under f , so that 1 7→ a.

Case 1: � /∈ {Rk Lm, RLm Rk
}. Since val( j) is odd if and only if j ∈ {1, r}, we

must have a ∈ {1, r}. We will assume that a = 1; the case a = r is proved similarly.
Then b ∈ {0, c1, c2, c3} since val(0)= 4α1+ 4≥ 8 and all other vertices that could
share an edge with 1 have valence 4.

If val(1) = 3 (i.e., α1 > 1), then b ∈ {0, c1}, since in this case no vertex c2 or
c3 is connected to 1 by an edge. If b = c1, then we must have α1 = 2, so that
val(0) = 4α1+ 4 = 12 = val(c1) = 2α2+ 4 =⇒ α2 = 4, which means that c1+ 1
must have valence 4. But b= c1 also implies that c1+1 is the image of the valence
3 vertex of the clasping triangle that shares a meridional edge with 41,0,0, giving a
contradiction. Thus b = 0, and by the same argument we must also have b′ = 0.

If val(1) 6= 3, then α1 = 1 and val(1) = val(c1) = 2α2 + 3, and we must
have b ∈ {0, c2, c3}. Also, val(0)= 4α1+ 4= 8.

If b = c2, then 2α3 + 4 = val(c2) = val(0) = 8, so α3 = 2. This implies that
val(c2+ 1)= 4 6= 8, so we must have 41,0,0 7→ 41,c2,0. This determines the image
of the two nonclasping triangles 40,c1,c2 adjacent to 41,0,0, and we see that the c2

vertex of one of these must be mapped to a c2+1 vertex, which is impossible since
val(c2+ 1)= 4 6= 8= val(c2).

If b = c3 then 1= c1 and c3 are connected by an edge, so α3 = 1, which forces
the other 0-labeled vertex of 41,0,0 to map to c2, which is impossible by the above
argument. Hence b = 0, and by the same argument we have b′ = 0.

Since � /∈ {Rk Lm, RLm Rk
} implies that clasping triangles have a unique odd

valence vertex (i.e., the vertex not meeting a meridional edge), that meridional
edges map to meridional edges is immediate.

Case 2: � = Rk Lm and � /∈ {RL , R2L2
}. If k = 1, then clasping triangles either

have vertices with valences 8, 8, 4m + 2 or 3, 4m + 2, 4m + 2, and they are the
only triangles in T̃ with such a triple of valences. If k 6= 1 then clasping triangles
either have vertices with valences 3, 4k+ 4, 4k+ 4 or 3, 4m+ 4, 4m+ 4, and they
are the only triangles in T̃ with such a triple of valences. Furthermore, in every
case two of these vertices have equal valence and the third has distinct valence, so
meridional edges must be preserved.
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C

C′

H
(1,1)

e e′ f (γ)γ

Figure 10. If H maps into more than one horizontal strip, then
f (γ ) traverses more than c− 2 triangles, which is impossible.

Case 3:�= RLm Rk ,� 6= RL R. Then α1= 1=⇒ val(0)= 8. If k> 1 then val(1) 6=
val(r), so 1 7→ 1 and we must have vertices labeled 0 mapping to vertices labeled 0
or c2= cn−1. But val(cn−1)= 4k+4 6= 8, so 0 7→ 0. If k = 1 then clasping triangles
all have vertices with valences 8, 8, 2m + 2, and they are the only triangles in T̃
with this triple of valences. Furthermore, meridional edges are preserved since even
when m = 3 (so that 2m + 2 = 8), the vertices labeled 1 = r are combinatorially
distinct from the vertices labeled 0 and cn−1: vertices labeled 1 have four edges
connecting them to valence 4 vertices, while vertices labeled 0 and cn−1 have only
two such edges. �

Corollary 3.5. If � /∈ {RL , R2L2, RL R}, then Autev(T̃ ) preserves horizontal
strips of T̃ .

Proof. Let C be the clasping triangle in the first quadrant of R2 with a vertex at
the origin. C is adjacent to two horizontal strips; let H be the one adjacent to the
x-axis, and let C ′ be the other clasping triangle adjacent to H . Let γ be the path
directly across H connecting the midpoints of the edges of adjacency with C and C ′.
Consider the image of γ under a simplicial automorphism f : T̃ → T̃ . Since γ
crosses exactly c− 2 triangles, so must f (γ ). By Lemma 3.4, f maps e and e′ to
edges of clasping triangles, which are adjacent to distinct meridional lines since
C and C ′ are, and f maps triangles crossed by γ to nonclasping triangles, so γ
must be mapped into some number of vertically stacked horizontal strips. Since γ
crosses all triangles transversely, if f (γ ) jumps from one horizontal strip to another
the number of triangles it crosses must be one more that if it did not make the jump,
as shown in Figure 10. Hence f (γ ) must be contained in one horizontal strip, the
image of H . �

Recall that in our algorithmic construction of T̃ , we chose coordinates so that
the rectangle D′ shown in Figure 8 is identified with [0, 1]× [0, 1] ⊂ R2.
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Theorem 3.6. If � /∈ {RL , R2L2, RL R}, then Autev(T̃ ) is generated by the deck
transformations and a subset of the following:

• Orientation-preserving: the rotations ρ1, ρ2, and ρ3 about (1,1), (2,1), and
( 1

2 ,1
)
,

respectively, by an angle π .

• Orientation-reversing: the glide reflection g given by the reflection across x = 1
2

composed with (x, y) 7→ (x, y+ 1).

Further, we always have ρ1, ρ2 ∈Aut+ev(T̃ ), and ρ3 ∈Aut+ev(T̃ ) (resp. g ∈Autev(T̃ ))
if and only if ρ3 (resp. g) is a simplicial automorphism.

Proof. Let f ∈ Autev(T̃ ), and let E be the union of all edges of horizontal strips
and clasping triangles, as shown in Figure 12. Since f maps clasping triangles
to clasping triangles, and horizontal strips to horizontal strips, it must map E to
itself. Since the simplicial structure of the triangulation within each horizontal strip
must be preserved, and since we may assume all clasping triangles are congruent
and triangles within each strip are uniformly sized, f is forced to be a Euclidean
isometry of R2. Let ρ4 be the rotation by π about the point

( 1
2 ,

1
2

)
, and let ry be the

reflection about the line y = 1. We first consider the possible Euclidean isometries
preserving E :

Translations: Translations must preserve the integer lattice, so modulo deck trans-
formations they have the form τi, j : (x, y) 7→ (x+i, y+ j), i ∈ {0, 1, 2, 3}, j ∈ {0, 1}.
Since τ0,1, and τ2,1 do not preserve E , and τ0,0 is trivial, we are left with

τ1,0 = ρ1 ◦ρ3; τ2,0 = ρ2 ◦ρ1; τ3,0 = ρ2 ◦ρ3; τ1,1 = ρ1 ◦ρ4; τ3,1 = ρ2 ◦ρ4,

and their inverses.

Rotations: Since meridional lines and integer lattice points must be preserved, any
rotation must be by an angle π about a point

( k
2 ,

m
2

)
, k,m ∈ Z. The rotations about(

1, 1
2

)
and

(
2, 1

2

)
do not preserve clasping triangles, so modulo deck transformations

we are left with ρ1, ρ2, ρ3, ρ4, and the rotations

ρ4 ◦ ρ2 ◦ ρ1; ρ3 ◦ ρ2 ◦ ρ1,

about
( 3

2 ,
1
2

)
and

( 3
2 , 1

)
, respectively.

Reflections: Reflections must preserve meridional lines and clasping triangles, so
possible lines of reflection are x = k

2 or y = k, k ∈ Z. Modulo deck transformations,
we get the reflection ry across y = 1, and the reflections ri across the lines x = i ,
i ∈

{ 1
2 , 1, 3

2 , 2
}
. We have

r1 = ry ◦ ρ1; r2 = ry ◦ ρ2; r 1
2
= ry ◦ ρ3; r 3

2
= r 1

2
◦ ρ2 ◦ ρ1.

Glide reflections: Since simplicial automorphisms preserve meridional lines and
clasping triangles, the reflection component of the glide reflection must be across a



SYMMETRIES AND COMMENSURABILITY OF 2-BRIDGE LINK COMPLEMENTS 469

line x = k
2 or y = k, k ∈ Z. If the reflection is across x = k ∈ Z, then the translation

must be (x, y) 7→ (x, y + 2n), n ∈ Z, so modulo deck transformations this is a
pure reflection, and can be ruled out. Thus we are left with the glide reflection
g = τ0,1 ◦ r 1

2
, given by the reflection across x = 1

2 followed by the translation
(x, y) 7→ (x, y+ 1), and the compositions

ry ◦ τ1,0 = ry ◦ ρ1 ◦ ρ3; ry ◦ τ2,0 = ry ◦ ρ2 ◦ ρ1; r 3
2
◦ τ0,1 = g ◦ ρ2 ◦ ρ1,

all others being obtained by composing with deck transformations.

We show that ry /∈Autev(T̃ ) by considering edge valences near a clasping triangle.
Using the edge/vertex correspondences from Figure 9, we obtain the four pictures in
Figure 11, which correspond to the cases α1≥3, α1=2, α1=1 6=α2, and α1=1=α2,
respectively (note that � nonarithmetic implies � /∈ {RL , RL R, R2L2

}). For the
first three pictures it is clear that ry does not preserve edge valence. For the last
picture, if ry ∈Autev(T̃ ) then c= d= 8, so that α3= 2, which implies 8= d= a= 4,
a contradiction. Hence ry /∈ Autev(T̃ ).

In order to rule out ρ4 and the compositions above involving ρ4 and ry , we will
first need to establish the last assertion of the theorem, namely that we always
have ρ1, ρ2 ∈ Autev(T̃ ), and ρ3 and g are in Autev(T̃ ) if and only if they are
simplicial automorphisms of T̃ . To see this, first note that ρ1 and ρ2 are always
simplicial automorphisms (by construction of T̃ ). Thus we need only show that if
any of g, ρ1, ρ2, or ρ3 is a simplicial homeomorphism, then it is in Autev(T̃ ). But
this follows from the fact that each of g, ρ1, ρ2, and ρ3 preserve the edge/vertex
correspondence given in Lemma 3.2(c) (shown graphically in Figure 9). In particular,
each of these maps switches the parity of k in part (c) of the lemma, but also
exchanges right and left. Thus, if g is simplicial, it preserves vertex valence, and
since it also preserves edge/vertex correspondence, it must preserve edge valence,
that is, g ∈ Autev(T̃ ). The same holds for ρ1, ρ2, and ρ3, so the assertion is proved.

Now, suppose that ρ4 ∈ Autev(T̃ ). First, observe that

g = τ0,1 ◦ r 1
2
= r 1

2
◦ τ0,1 = (ρ3 ◦ ry) ◦ (ρ3 ◦ ρ4)= (ρ3 ◦ ry ◦ ρ3) ◦ ρ4 = ry ◦ ρ4.

Since ry is always a simplicial automorphism (by construction of T̃ ), ρ4 ∈Autev(T̃ )
implies that g is a simplicial automorphism, so by the above paragraph, g∈Autev(T̃ ).
But g, ρ4 ∈ Autev(T̃ ) implies that ry ∈ Autev(T̃ ), a contradiction.

Thus we can rule out the compositions τ1,1, τ3,1, ρ4 ◦ρ2 ◦ρ1, r1, r2, and ry ◦ τ2,0.
For r 1

2
and ry◦τ1,0, since ry is always a simplicial homeomorphism, the composition

is simplicial if and only if ρ3 is. But then by the above observation it follows that ρ3

preserves edge valence, so the composition cannot preserve edge valence (because
ry does not). Last, r 3

2
can now be ruled out since r 1

2
/∈ Autev(T̃ ).
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Figure 11. Reflecting by ry about y = 1, for the cases α1 ≥ 3,
α1= 2, α1= 1 6=α2, and α1= 1=α2, from left to right respectively.
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y

Figure 12. The union E of all edges of horizontal strips and clasp-
ing triangles, in the case where�c= R. If�c= L then the clasping
triangles adjacent to line y = k, k odd, will be shifted vertically
by 1, and horizontal strips will be parallelograms.

Since the only compositions we have not ruled out are generated by ρ1, ρ2, ρ3,
and g, and since compositions involving ρ3 (resp. g) are in Autev(T̃ ) if and only
if ρ3 (resp. g) is, the result follows. �

Remark 3.7. In Theorem 3.6 we have described a set containing the generators
of Autev(T̃ ), but we do not know whether they are all in fact generators. We will
easily obtain in Section 5 a complete description of this group.

4. Symmetries of 2-bridge link complements

Let M =S3
\K (�), and let Sym(M) denote the symmetries of M , i.e., Sym(M) is

the group of self-homeomorphisms of M up to isotopy. Here, we describe the action
of Sym(M) on the triangulation T̃ . First, Theorem 4.1 gives a classification of the
symmetries of M in terms of the word �. This theorem comes from combining
Theorem II.3.2 and Lemma II.3.3 in [Sakuma and Weeks 1995] and translating
from [a1, a2, . . . , an] to the word � given by the following dictionary: a1 = α1+1,
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ai = αi for i ≤ 2 ≤ n− 1, and an = αn + 1. In [Sakuma and Weeks 1995], these
symmetries are called automorphisms of the triangulation T of M described in
Section 3. Since by [Guéritaud 2006a] this triangulation is now known to coincide
with the canonical triangulation of M , we know these automorphisms actually
correspond to all of the symmetries of M .

We let Sym+(M) denote the subgroup of Sym(M) consisting of orientation-
preserving symmetries. We say that� is palindromic if αi =αn−i+1 for all 1≤ i ≤ n.

Theorem 4.1 [Sakuma and Weeks 1995; Guéritaud 2006a]. Let M =S3
\K (�) be

any hyperbolic 2-bridge link complement. Then Sym(M)= Sym+(M)∼= Z2⊕ Z2 if
and only if� is not palindromic. When� is palindromic, then we have the following
possibilities:

• If n is even, then Sym(M)∼= D4 and Sym+(M)∼= Z2⊕ Z2.

• If n is odd and α n+1
2

is odd, then Sym(M)= Sym+(M)∼= D4.

• If n is odd and α n+1
2

is even, then Sym(M)= Sym+(M)∼= Z2⊕ Z2⊕ Z2.

Note that the 2-bridge link complements with orientation-reversing symmetries
are exactly those with n even and � palindromic.

We would like to understand how these symmetries act on T̃ . In order to accom-
plish this, we first show that Sym(M)= Sym(S3, K (�)). Here, Sym(S3, K (�))
denotes the symmetries of (S3, K (�)), that is, the group of self-homeomorphisms of
the pair (S3, K (�)) up to isotopy. Mostow–Prasad rigidity implies that Sym(M)⊇
Sym(S3, K ) for any hyperbolic link K . In fact, if K is a hyperbolic knot, then by the
knot complement theorem of Gordon and Luecke [1989], Sym(M)= Sym(S3, K ).
However, here we do not rely on the knot complement theorem, and in addition,
we prove the desired equality for both hyperbolic 2-bridge knots and hyperbolic
2-bridge links with two components. Once we have established this correspondence,
we can determine how these symmetries act on the cusp triangulation, T . From
here, we just lift this action of Sym(M) on T to the universal cover R2, to get the
corresponding action on T̃ .

The following proposition is certainly known by the experts in the field. However,
the authors were unable to find a reference in the literature.

Proposition 4.2. Let M = S3
\ K (�) be a hyperbolic 2-bridge link complement.

Then Sym(M)= Sym(S3, K (�)).

Proof. The work of Guéritaud [2006a] shows that T is in fact the canonical
triangulation of any such hyperbolic 2-bridge link complement M . Thus, Aut(T ),
the group of combinatorial automorphisms of this triangulation, is isomorphic
to Sym(M). The description of Aut(T ) in [Sakuma and Weeks 1995, pp. 415-416]
implies that it preserves the meridian(s) of K (�), and therefore extends to an
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Figure 13. Trisymmetric projections of a 2-bridge link with two
components (left) and a 2-bridge knot (right). The axes of symmetry
for σ1 and σ2 are given in both projections. Maxima are labeled
M and minima are labeled m.

M M

mm
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σ3 : ~v 7→ −~v

Figure 14. To the left is the standard projection of K (�) with �
palindromic and n odd. To the right is a depiction of K (�) in R3

(with knot strands connecting at infinity) with � palindromic and
n even. Both visuals show a symmetry σ3 of K (�). Maxima are
labeled M and minima are labeled m.

action on (S3, K (�)). As a result, the natural inclusion from Sym(S3, K (�)) into
Sym(M) is surjective, giving the desired isomorphism. �

Since Sym(M) is isomorphic to Sym(S3, K (�)), we will no longer distinguish
between symmetries of a hyperbolic 2-bridge link and its complement. Below, we
provide visualizations of these symmetries, which will be useful in the proofs of
Lemma 4.3 and Proposition 4.4. For more visualizations of 2-bridge link symmetries,
see [Bleiler and Moriah 1988; Bonahon and Siebenmann 2010], and [Sakuma 1986].
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Recall that any 2-bridge link K (�) can be isotoped so that its projection has
exactly two maxima and two minima. In all four link diagrams given in Figure 13
and Figure 14 the corresponding maxima and minima are labeled. In what follows,
we will examine how Sym(M) acts on these maxima and minima, and “meridional
edges” of Aut(T ) that wrap around them. For an arbitrary link L ⊂ S3, this would
be an issue since the maxima and minima don’t have to be preserved up to isotopy,
and Sym(S3, L) is a group of homeomorphisms up to isotopy. However, for a
2-bridge link, from the work of Schubert [1956] we know that the set of maxima
and minima will be preserved up to isotopy, and so, we are justified in using different
projections of K (�) to analyze how symmetries act on the maxima and minima.

Lemma 4.3. Each “meridional edge” of T wraps around a maximum or minimum
of K (�). These meridional edges alternate between ones that wrap around maxima
and minima.

Proof. In all cases, T , the canonical triangulation of S3
\ K (�), has exactly four

meridional edges, and K (�) has exactly four extrema. These meridional edges of
T result from clasping. See Section 3 for details on how clasping the innermost
and outermost 4-punctured spheres, Sc and S1, affects T . Specifically, clasping
S1 introduces two meridional edges, each one going around one of the strands
of the outermost crossing of K (�). We get the other two meridional edges from
clasping Sc, each one going around one of the strands of the innermost crossing.
See Figure 4 for how clasping forms these meridional edges. The two meridional
edges coming from clasping S1 each go around a maximum of K (�), while the two
meridional edges coming from clasping Sc each go around a minimum of K (�).
Since there are exactly four meridional edges in T and exactly four meridional
edges in T , these sets must correspond with one another. Thus, each meridional
edge of T wraps around a maximum or minimum of K (�). These meridional edges
alternate between wrapping around maxima and minima since if we orient K (�),
our path alternates between traversing maxima and minima. �

We now consider the lifts of the meridional edges of T to T̃ . In what follows,
we shall call the lifts of meridional edges of T that wrap around a maximum of
K (�) maximal meridional edges. Similarly, we shall call the lifts of the meridional
edges of T that wrap around a minimum of K (�) minimal meridional edges.

We now describe how the symmetries of a hyperbolic 2-bridge link complement
act on T̃ . Recall that n is the number of syllables in the word �. If K (�) is a two
component link, then we say T̃ = T̃1∪T̃2, where T̃1 and T̃2 are identical triangulations
of R2, coming from lifting an equal volume cusp cross-section of S3

\ K (�).
Recall that σ1, σ2, and σ3 are the symmetries of Sym(S3, K (�)) described above

and shown in Figure 13 and Figure 14.
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Proposition 4.4. Sym(M) = Sym(S3, K (�)) acts on T̃ (up to deck transforma-
tions) in the following manner:

If K (�) is a knot, then

• σ1 acts as a rotation of π about (1, 1), and

• σ2 acts as a rotation of π about (2, 1).

If K (�) is a two component link, then

• σ1 acts as a rotation of π about (1, 1) in both T̃1 and T̃2, and

• σ2 exchanges (R2, T̃1) and (R2, T̃2) by the identity map.

If � is palindromic, then

• if n is odd, σ3 acts as a rotation of π about
( 1

2 , 1
)
, and

• if n is even, σ3 acts as a glide reflection where we reflect across the line x = 1
2

and translate by (x, y)→ (x, y+ 1) (possibly composed with the rotations σ1

and σ2).

Proof. First, we claim that any symmetry of M acts on (R2, T̃ ) by an isometry of R2.
A priori, a symmetry of M gives rise only to an element f of Autev(T̃ ) since this
triangulation is metrically distorted in our construction. By Theorem 3.6, any such
simplicial homeomorphism (that preserves edge valences) of T̃ is a composition of
deck transformations (which are specific translations) and a specific set of rotations,
reflections, and glide reflections. Thus, any such f must be a Euclidean isometry.

First, we consider the symmetries σ1 and σ2 of M that generate a subgroup of
Sym(M) isomorphic to Z2⊕ Z2. By Theorem 4.1, these symmetries are always
orientation-preserving, and so, we just need to consider rotations and translations
of R2. We do this in three cases.

Case 1: K (�) is a knot. In this case, we note the following properties of σ1 and σ2.
These properties come from examining the tri-symmetric projection given in
Figure 13:

• σ1 exchanges the maxima of K (�) while fixing the minima of K (�).

• σ2 exchanges the minima of K (�) while fixing the maxima of K (�).

• σ1 and σ2 change the orientation of the longitude of K (�).

Since both σ1 and σ2 change the orientation of the longitude, they cannot be
translations, and so, must be rotations. By Lemma 4.3, σ1 must exchange the
maximal meridional edges while fixing the two minimal meridional edges. Thus,
up to deck transformations, σ1 must be a rotation of π about (1, 1). Similarly, up
to deck transformations, σ2 must be a rotation of π about (2, 1).
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Case 2: K (�) is a 2-component link. Here, we once again note several important
features of σ1 and σ2 acting on (S3, K (�)) which come from examining the tri-
symmetric projection in Figure 13.
• σ1 sends each component of K (�) to itself, with maxima mapping to maxima

and minima mapping to minima.

• σ2 exchanges the two link components, with maxima mapping to maxima and
minima mapping to minima.

• σ1 changes the orientations of both of the longitudes of K (�), while σ2

preserves these orientations.

Since σ1 is an orientation-preserving symmetry that switches the orientation of
both of the longitudes, it must act as a rotation on both copies of R2. Up to deck
transformations, the only possible rotation that maps the two maximal meridional
edges to themselves and maps the two minimal meridional edges to themselves is
a rotation of π about (1, 1) in both (R2, T̃1) and (R2, T̃2). Since σ2 interchanges
the cusps and preserves orientations of the longitudes, it must take T̃1 to T̃2 by a
translation. Since the minimal meridional edge of T̃1 must map to the minimal
meridional edge of T̃2, σ2 must be the identity map between these triangulations
of R2, up to deck transformations.

Case 3: � is palindromic. Now, consider any additional symmetries of Sym(M),
which occur only if � is palindromic. By examining the projections of K (�) given
in Figure 14, we see that σ3 has the following properties:
• σ3 exchanges the maxima of K (�) with the minima of K (�).

• σ3 changes the orientation of the longitude of K (�) (or both longitudes if
K (�) is a two component link).

First, suppose that n is odd. By Theorem 4.1, σ3 is an orientation-preserving
symmetry, and since it changes the orientation of the longitude, it must be a rotation
of R2. Since σ3 must exchange maximal meridional edges with minimal meridional
edges, it must act as a rotation about

( 1
2 , 1

)
on (R2, T̃ ), or rotations about

(1
2 , 1

)
in

both (R2, T̃1) and (R2, T̃2), if K (�) has two components.
Now, suppose that n is even. By Theorem 4.1, σ3 is an orientation-reversing

symmetry of M , and so, σ3’s action on T̃ is also orientation-reversing. Theorem 3.6
tells us that σ3 must either correspond with the glide reflection g or a composition
of g with the rotations ρ1 and ρ2 (up to deck transformation). This gives the desired
description of σ3. �

5. Hidden symmetries of 2-bridge link complements

Let the commensurator and normalizer of M = H3/0 = S3
\ K (�), be C(0)

and N (0), respectively, as defined in Section 1. Now that we understand the
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symmetries of M (Section 4), and the simplicial homeomorphisms of the canonical
(lifted) cusp triangulation T̃ (Section 3), we are ready to characterize the hidden
symmetries of M , i.e., the elements of C(0) \ N (0). Clearly, arithmetic links
always have hidden symmetries, since in this case C(0) is dense in Isom(H3). But
hidden symmetries of arithmetic links will not necessarily be symmetries of the
canonical cusp triangulation T̃ . We call a hidden symmetry detectable if it is also a
symmetry of T̃ . For nonarithmetic links, all hidden symmetries are detectable.

Recall that Autev(T̃ ) is the group of simplicial automorphisms of T̃ preserving
edge valence, so that Aut+ev(T̃ ) is the subgroup consisting of those that preserve
orientation.

Orientation-preserving hidden symmetries.

Theorem 5.1. If M = S3
\ K (�) is a hyperbolic 2-bridge link complement, then

we have the following classification of orientation-preserving hidden symmetries:

• If M is nonarithmetic, then M admits no hidden symmetries.

• If M is the figure-eight knot complement, then M admits an order 6 detectable
hidden symmetry.

• If M is the Whitehead link complement, then M admits an order 4 detectable
hidden symmetry.

• If M is the 62
2 link complement, then M admits an order 3 detectable hidden

symmetry.

• If M is the 62
3 link complement, then M does not admit any detectable hidden

symmetries.

Proof. Case 1: M is nonarithmetic. Since the triangulation T of M is canonical, it
descends to a cellulation of the minimal (orientable) orbifold O+ = H3/C+(0),
where C+(0) is the orientable commensurator of M . Hence any orientation-
preserving symmetry or hidden symmetry h ∈ C+(0)≤ Isom+(H3) must preserve
the lifted triangulation T̃ , which we may assume has a vertex at∞∈ S∞=R2

∪{∞}.
Since M either has one cusp or has a symmetry exchanging its cusps, N+(0) acts
transitively on the set of vertices of T̃ . Thus for some g ∈ N+(0), h ◦ g fixes
∞∈ S∞. Since h is a symmetry of M if and only if h ◦ g is, we may assume that
h fixes ∞ ∈ S∞. Identifying T̃ with a horosphere about ∞, we see then that h
restricts to a simplicial automorphism of T̃ , and this restriction determines h (if
K has two components, we understand T̃ to mean a component of T̃1 ∪ T̃2). It is
enough, then, to show that any element of Aut+ev(T̃ ) comes from a symmetry of M
(possibly composed with deck transformations of T̃ ).

Let G=Z⊕Z be the deck group of T̃ . By Theorem 3.6, Aut+ev(T̃ )/G is generated
by {ρ1, ρ2, ρ3} if ρ3 is a simplicial automorphism, and is generated by {ρ1, ρ2} if ρ3
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ρvv

ρv
v

ρv
v

�= RL �= RL R �= R2L2

Figure 15. Lifted cusp triangulation T̃ for the figure-eight knot,
Whitehead link, and 62

2 link complements, from left to right.
Edges/vertices with the same coloring (within each figure) have
the same valence.

is not simplicial. Let σ1, σ2, σ3 be the symmetries described in Proposition 4.4, and
let H be the horizontal strip in the first quadrant with a vertex at the origin.

We first observe that ρ1=σ1, and ρ2 is either σ2, or σ1 composed with a deck trans-
formation, depending on whether K has one or two components. Hence ρ1 and ρ2

come from symmetries of M in both cases, and so for the case where ρ3 is not simpli-
cial, M cannot have hidden symmetries. If ρ3 is simplicial, then since the reflection
ry across y=1 is always a simplicial automorphism (by construction of T̃ ), the reflec-
tion ρ3 ◦ry across x = 1

2 is also simplicial. Hence in this case H is symmetric about
the line x = 1

2 , and so � is palindromic with �c = R, and it follows that ρ3 comes
from the symmetry σ3 of M . Again, we conclude that M has no hidden symmetries.

Case 2: M is arithmetic. There are exactly four arithmetic 2-bridge links: the figure-
eight knot (�= RL), the Whitehead link (�= RL R), the 62

2 link (�= R2L2), and
the 62

3 link (�= RL2 R).
Since �= RL2 R is not an excluded case in Lemma 3.4 and its corollaries, the

arguments in Case 1 above show that, if M is the 62
3 link complement, then every

h ∈ Aut+ev(T̃ ) that preserves edge valence comes from a symmetry of M , i.e., M
admits no detectable orientation-preserving hidden symmetries.

If M is the figure-eight knot, the Whitehead link complement, or the 62
2 link com-

plement, then we can see by edge/vertex (valence) correspondences in T̃ that if e and
e′ are two edges of a tetrahedron in T which are opposite each other (i.e., they do not
share a vertex), then val(e)= val(e′). This is evident in T̃ by the fact that any edge
and vertex of T̃ that are across from each other (i.e., their convex hull is a single tri-
angle of T̃ ) have the same valence. This makes it easy to identify the (unique) hyper-
bolic structure on T . If an edge of a tetrahedron has valence k, then we make the di-
hedral angle at that edge 2π/k. We just need to make sure that this gives a Euclidean
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structure to the cusp cross-sections, but this is confirmed by Figure 15. It follows that
the depictions of T̃ in Figure 15 are actually metrically correct (up to scaling), so the
rotations ρv indicated are isometries of T̃ . Next we check that ρv extends to an isom-
etry of the three-dimensional triangulation T̃ . Viewing T̃ as a horosphere about∞ in
the upper half-space model of H3, the vertex v about which ρv rotates T̃ corresponds
to some edge ev of T̃ connecting∞ to a point pv ∈ ∂H3

\ {∞}. The rotation of H3

about ev that agrees with ρv on T̃ induces a rotation of the lift T̃v of T centered at pv ,
which is an isometry since T̃ and T̃v are isometric and ev appears in both as a vertex
of the same valence. If v1 is some other vertex of T̃ , and ρv(v1)= v2, then since ρv
differs from ρv1 by composition with symmetries of M and deck transformations of
T̃ , the rotation of H3 induced by ρv takes T̃v1 to T̃v2 isometrically. It follows that ρv
induces an isometry on T̃ , of the order indicated in the statement of the theorem. �

Orientation-reversing hidden symmetries.

Theorem 5.2. If M = S3
\ K (�) is a hyperbolic 2-bridge link complement, then

we have the following classification of orientation-reversing hidden symmetries:

• If M is nonarithmetic, then M admits no orientation-reversing hidden symme-
tries.

• If M is the 62
3 link complement, then M admits no detectable orientation-

reversing hidden symmetry.

• If M is the figure-eight knot complement, the Whitehead link complement, or
the 62

2 link complement, then M admits an order 2 orientation-reversing hidden
symmetry.

Proof. Case 1: M is nonarithmetic. The proof will be analogous to the orientation-
preserving case. As in that case, we need only show that any h ∈ Autev(T̃ ) is in
fact a symmetry of M . By Theorem 3.6, h must be a composition of ρ1, ρ2, ρ3,
and g, where ρ1, ρ2, and ρ3 are the rotations by π about (1, 1), (2, 1), and

( 1
2 , 1

)
,

respectively, and g is the glide reflection given by the composition of r 1
2

with
(x, y) 7→ (x, y + 1). If g /∈ Autev(T̃ ), then Autev(T̃ ) = Aut+ev(T̃ ), and we are
done. If g ∈ Autev(T̃ ), then it is clear from the construction of T̃ that we must
have �c = L , and � must be palindromic. In this case, though, g corresponds to
the symmetry σ3 in the notation of Proposition 4.4, so the nonarithmetic case is
proved.

Case 2: M is arithmetic. The proof is analogous to the orientation-preserving case.
�

Irregular coverings by hyperbolic 2-bridge link complements. Theorem 5.1 and
Theorem 5.2 give us the following corollary about irregular coverings of 3-manifolds.
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Corollary 5.3. Let N be any hyperbolic 2-bridge link complement. If N is nonarith-
metic, then N does not irregularly cover any hyperbolic 3-orbifolds (orientable or
nonorientable). If N is arithmetic, then N does not irregularly cover any orientable
hyperbolic 3-manifolds.

Proof. By Theorem 5.1 and Theorem 5.2, any nonarithmetic hyperbolic 2-bridge
link complement N does not have any hidden symmetries (orientation-preserving
or orientation-reversing). Thus, if any such N covers a hyperbolic 3-orbifold, it
must be a regular cover.

If N is arithmetic, then N is the complement of either the figure-eight knot,
the Whitehead link, the 62

2 link, or the 62
3 link. If N irregularly covers some

hyperbolic 3-manifold N ′, then it must be at least a degree 3 covering. Here, we
get a volume contradiction. Cao and Meyerhoff [2001] showed that the figure-eight
knot complement and its sister are the orientable cusped hyperbolic 3-manifolds
of minimal volume, with volume ≥ 2.029. Therefore, vol(N ′) ≥ 2.029, and so,
vol(N ) ≥ 3(2.029) = 6.087. However, the volumes of any of the four arithmetic
hyperbolic 2-bridge link complements are strictly smaller than 6.087. Thus, we
can’t have any such irregular coverings in the arithmetic case. �

Boileau and Weidmann [2005] give a characterization of 3-manifolds that admit
a nontrivial JSJ-decomposition and whose fundamental groups are generated by
two elements. Their work shows that there are four possibilities for such manifolds,
one of which is that the hyperbolic part of the JSJ decomposition admits a finite-
sheeted irregular covering by a hyperbolic 2-bridge link complement. Corollary 5.3
immediately eliminates this possibility, giving the following revised characterization
of such manifolds. In the following corollary, D stands for a disk, A for an annulus,
and Mb for a Möbius band. For an orbifold, cone points are listed in parentheses
after the topological type of the orbifold is given.

Corollary 5.4. Let M be a compact, orientable, irreducible 3-manifold which
has rank(π1(M)) = 2. If M has a nontrivial JSJ-decomposition, then one of the
following holds:

(1) M has Heegaard genus 2.

(2) M = S ∪T H where S is a Seifert manifold with basis D(p, q) or A(p), H
is a hyperbolic manifold and π1(H) is generated by a pair of elements with
a single parabolic element. The gluing map identifies the fiber of S with the
curve corresponding to the parabolic generator of π1(H).

(3) M = S1 ∪T S2 where S1 is a Seifert manifold over Mb or Mb(p) and S2 is a
Seifert manifold over D(2, 2l + 1). The gluing map identifies the fiber of S1

with a curve on the boundary of S2 that has intersection number one with the
fiber of S2.
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6. Commensurability of 2-bridge link complements

In this section, we show that there is only one pair of commensurable hyperbolic
2-bridge link complements. We accomplish this by analyzing the cusp of the unique
minimal orbifold in the commensurability class of a nonarithmetic hyperbolic
2-bridge link complement.

Let M = S3
\ K (�) = H3/0 be any nonarithmetic hyperbolic 2-bridge link

complement. By a theorem of Margulis [1991], there exists a unique minimal (ori-
entable) orbifold in the commensurability class of M , specifically, O+=H3/C+(0).
By Theorem 5.1 we know that M admits no hidden symmetries, and therefore,
C+(0)= N+(0). Since N+(0)/0 = Sym+(M), we only have to quotient M by
its orientation-preserving symmetries to obtain O+.

We will analyze the commensurability class of M by considering the cusp of O+.
Recall that every 2-bridge link is either a knot or a link with two components. If
K has two components, then there always exists a symmetry exchanging those
components; see Section 4. Thus, the orbifold O+ admits a single cusp, C . If we
quotient the cusp(s) of M along with the cusp triangulation T by the symmetries
of M , then we obtain the cusp C of O+, along with a canonical cellulation, TC .
Technically, TC is not a triangulation, but just a quotient of a triangulation (hence
we call it a cellulation). If M and M ′ are commensurable, then their corresponding
minimal orbifolds must admit isometric cusps that have identical cusp triangulations.
In this case, we say that the corresponding cusp cellulations, TC and TC ′ , are
equivalent. We wish to determine when these cusps are equivalent. The following
two lemmas take care of this classification.

Lemma 6.1. Let M = S3
\ K (�) be a nonarithmetic hyperbolic 2-bridge link

complement. Suppose � is not palindromic or n is even. Then C ∼= S2(2, 2, 2, 2)
and TC determines the word � up to inversion and switching Ls and Rs.

Proof. By Theorem 4.1, Sym+(M)∼= Z2⊕ Z2, and Proposition 4.4 tells us exactly
how Sym+(M) acts on T and T̃ . First, assume K (�) is a knot. Here, we choose
the rectangle [0, 4]× [0, 2] in T̃ as a fundamental domain for the torus T . In this
case, σ1◦σ2 acts as a translation of T̃ by (x, y)→ (x+2, y). When we quotient our
fundamental domain by the symmetry σ1 ◦ σ2, we produce a fundamental domain
for a torus given by the rectangle [0, 2]× [0, 2], with opposite sides identified. If
K (�) is a link with two components, then our fundamental domain for T is given
by two copies of [0, 2] × [0, 2]. When we quotient by σ2, we just exchange the
cusps. This again produces a fundamental domain for a (single) torus of the form
[0, 2]× [0, 2] in T̃ . In either case (a knot or a two component link), we just need
to quotient by σ1, which acts as a rotation about (1, 1), to obtain C along with TC .
This gives us a fundamental domain of the form [0, 1]× [0, 2], with identifications
given in Figure 16. We can see that this resulting cusp is S2(2, 2, 2, 2).
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R

R

R R

R

LL L L

Figure 16. This shows the cusp triangulation TC for the word
�= R2L3 R2L2 R. The order two singularities are marked by solid
black circles. The red line segment gives lC .

To each such TC we associate a labeled line segment, lC , in the following manner,
depicted in Figure 16. The two endpoints of this line segment come from vertices
placed in the centers of the two clasping triangles of the fundamental domain
of TC . We also place a vertex in the center of each triangle in the top half of the
triangulation of the fundamental domain for TC . We connect two vertices by an
edge if and only if the corresponding triangles in TC share an edge. We label each
vertex of lC (including the endpoints) by L or R corresponding to the label of the
triangle in TC . We say that lC is equivalent to another labeled line segment lC ′ if
there exists a simplicial homeomorphism between the two that preserves labelings
or switches Ls and Rs between labelings.

Now, TC is equivalent to TC ′ if and only if lC is equivalent to lC ′ . This holds
because lC tells you exactly how to build TC and vice versa. However, there are
only two possibilities for how lC can be equivalent to lC ′ : either the left endpoint
maps to the left endpoint, or the left endpoint maps to the right endpoint. In the
first case, � must be the same as �′. In the second case, �′ must be an inversion
of �. �

Lemma 6.2. Let M = S3
\ K (�) be a nonarithmetic hyperbolic 2-bridge link

complement. Suppose � is palindromic and n is odd. Then C ∼= S2(2, 2, 2, 2) and
TC determines the word � up to inversion and switching Ls and Rs.

Proof. By Theorem 4.1, either Sym+(M) ∼= Z2 ⊕ Z2 ⊕ Z2, or Sym+(M) ∼= D4.
Just as in the previous lemma, we can first quotient a fundamental domain for T in
T̃ by the Z2⊕ Z2 subgroup of Sym+(M) to obtain a single S2(2, 2, 2, 2) cusp. To
obtain C and TC , we also quotient by the action of σ3, which is a rotation about( 1

2 , 1
)

in T̃ by Proposition 4.4; see Figure 17.
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Figure 17. This shows the cusp triangulation TC for the word
�= R3L2 R L2 R3. The order two singularities are marked by solid
black circles. The red line segment gives lC .

Similar to Lemma 6.1, we can associate a marked line segment lC to each
cusp TC , as depicted in Figure 17. Once again, we see that this marked line segment
determines TC up to inversions and switching Ls and Rs. We leave the details for
the reader. �

Corollary 6.3. Let M = S3
\ K (�) be a nonarithmetic hyperbolic 2-bridge link

complement. Then C ∼= S2(2, 2, 2, 2) and TC is determined by the word � up to
inversion and switching Ls and Rs.

Proof. We claim that the two types of cusp cellulations coming from Lemma 6.1 and
Lemma 6.2 can not be equivalent. First, note that the tiling TC for an S2(2, 2, 2, 2)
from Lemma 6.1 always has singularities located at vertices. Furthermore, any of
these vertices with singularities have valence 6= 2. Now, the tiling coming from
Lemma 6.2 either has a singularity that is not located at a vertex (this happens
if α n+1

2
is odd) or it has a singularity located at a vertex of valence 2 (this happens

if α n+1
2

is even). Thus, these two types of cusp cellulations can not be equivalent,
and so, the previous two lemmas imply that any such TC is determined by the word
� up to inversion and switching Ls and Rs. �

We can now prove our main theorem.

Theorem 6.4. The only commensurable hyperbolic 2-bridge link complements are
the figure-eight knot complement and the 62

2 link complement.

Proof. It is a well known fact that cusped, arithmetic hyperbolic 3-manifolds
are commensurable if and only if they have the same invariant trace field; see
[Maclachlan and Reid 2003] for details. The figure-eight knot complement and
the 62

2 link complement both have invariant trace field Q(
√
−3), while the White-

head link complement has Q(
√
−1) and the 62

3 link complement has Q(
√
−7).

Thus, among hyperbolic arithmetic 2-bridge link complements, only the figure-
eight knot complement and the 62

2 link complement are commensurable. Now, a
nonarithmetic hyperbolic 2-bridge link complement can not be commensurable
with an arithmetic hyperbolic 2-bridge link complement. This is because their
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commensurators determine their commensurability classes, and by a theorem of
Margulis [1991], the commensurator of a hyperbolic 3-manifold is discrete if and
only if it is nonarithmetic.

It remains to check that nonarithmetic hyperbolic 2-bridge link complements
are pairwise incommensurable. Let M = S3

\ K (�) and M ′ = S3
\ K (�′) be

any two such manifolds. We use TC and TC ′ to denote the cusp cellulations of
the minimal orbifolds in the commensurability classes of M and M ′ respectively.
Recall that if TC is not equivalent to TC ′ , then M and M ′ are not commensurable.
By Corollary 6.3, TC and TC ′ are equivalent only if � and �′ differ by inversion or
switching Ls and Rs. As noted in Section 2, both of these possibilities result in
M and M ′ being isometric. Thus, M and M ′ are commensurable only if they are
isometric, as desired. �
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