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ON SEAWEED SUBALGEBRAS AND MEANDER GRAPHS
IN TYPE C

DMITRI I. PANYUSHEV AND OKSANA S. YAKIMOVA

In 2000, Dergachev and Kirillov introduced subalgebras of “seaweed type”
in gln (or sln) and computed their index using certain graphs. In this article,
those graphs are called type-A meander graphs. Then the subalgebras of
seaweed type, or just “seaweeds”, were defined by Panyushev (2001) for
arbitrary simple Lie algebras. Namely, if p1,p2 ⊂ g are parabolic subalge-
bras such that p1+p2 = g, then q= p1 ∩p2 is a seaweed in g. If p1 and p2

are “adapted” to a fixed triangular decomposition of g, then q is said to be
standard. The number of standard seaweeds is finite. A general algebraic
formula for the index of seaweeds was proposed by Tauvel and Yu (2004)
and then proved by Joseph (2006).

In this paper, elaborating on the “graphical” approach of Dergachev and
Kirillov, we introduce the type-C meander graphs, i.e., the graphs associated
with the standard seaweed subalgebras of sp2n, and give a formula for the
index in terms of these graphs. We also note that the very same graphs can
be used in the case of the odd orthogonal Lie algebras.

Recall that q is called Frobenius if the index of q equals 0. We provide
several applications of our formula to Frobenius seaweeds in sp2n. In partic-
ular, using a natural partition of the set Fn of standard Frobenius seaweeds,
we prove that #Fn strictly increases for the passage from n to n + 1. The
similar monotonicity question is open for the standard Frobenius seaweeds
in sln, even for the passage from n to n+ 2.

1. Introduction

The index of an (algebraic) Lie algebra q, ind q, is the minimal dimension of the
stabilisers for the coadjoint representation of q. It can be regarded as a generalisation
of the notion of rank. That is, ind q equals the rank of q if q is reductive. In
[Dergachev and Kirillov 2000], the index of the subalgebras of “seaweed type”
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in gln (or sln) were computed using certain graphs. In this article, those graphs
are called type-A meander graphs. Then the subalgebras of seaweed type, or just
seaweeds, were defined and studied for an arbitrary simple Lie algebra g [Panyushev
2001]. Namely, if p1, p2 ⊂ g are parabolic subalgebras such that p1+ p2 = g, then
q = p1 ∩ p2 is a seaweed in g. If p1 and p2 are “adapted” to a fixed triangular
decomposition of g, then q is said to be standard; see Section 2 for details. A
general algebraic formula for the index of seaweeds was proposed in [Tauvel and
Yu 2004, Conjecture 4.7] and then proved in [Joseph 2006, Section 8].

In this paper, elaborating on the “graphical” approach of [Dergachev and Kirillov
2000], we introduce the type-C meander graphs, i.e., the graphs associated with the
standard seaweed subalgebras of sp2n , and give a formula for the index in terms of
these graphs. Although the seaweeds in sp2n are our primary object in Sections 2–4,
we note that the very same graphs can be used in the case of the odd orthogonal
Lie algebras; see Section 5.

Recall that q is called Frobenius if ind q= 0. Frobenius Lie algebras are very im-
portant in mathematics because of their connection with the Yang–Baxter equation.
We provide some applications of our formula to Frobenius seaweeds in sp2n . Let Fn

denote the set of standard Frobenius seaweeds of sp2n . For a natural partition

Fn =

n⊔
k=1

Fn,k

(see Section 4 for details), we construct the embeddings Fn,k ↪→ Fn+1,k+1 for
all n, k > 1. Since Fn+1,1 does not meet the image of the induced embedding
Fn ↪→ Fn+1 and #(Fn+1,1) > 0, this implies that #(Fn) < #(Fn+1). The similar
monotonicity question is open for the standard Frobenius seaweeds in sln , even for
the passage from n to n+ 2. We also show that Fn,1 and Fn,2 are related to certain
Frobenius seaweeds in sln .

The ground field is algebraically closed and of characteristic zero.

2. Generalities on seaweed subalgebras and meander graphs

Let p1 and p2 be two parabolic subalgebras of a simple Lie algebra g. If p1+p2= g,
then p1 ∩ p2 is called a seaweed subalgebra or just a seaweed in g (see [Panyushev
2001]). The set of seaweeds includes all parabolics (if p2 = g), all Levi subalgebras
(if p1 and p2 are opposite), and many interesting nonreductive subalgebras. We
assume that g is equipped with a fixed triangular decomposition, so that there are
two opposite Borel subalgebras b and b−, and a Cartan subalgebra t = b ∩ b−.
Without loss of generality, we may also assume that p1 ⊃ b (i.e., p1 is standard) and
p2= p−2 ⊃ b− (i.e., p2 is opposite-standard). Then the seaweed q= p1∩p

−

2 is said to
be standard, too. Either of these parabolics is determined by a subset of 5, the set
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of simple roots associated with (b, t). Therefore, a standard seaweed is determined
by two arbitrary subsets of 5; see [Panyushev 2001, Section 2] for details.

For classical Lie algebras sln and sp2n , we exploit the usual numbering of 5,
which allows us to identify the standard and opposite-standard parabolic subalgebras
with certain compositions related to n. It is also more convenient to deal with gln
in place of sln .

I. g = gln . We work with the obvious triangular decomposition of gln , where b

consists of the upper-triangular matrices. If p1⊃ b and the standard Levi subalgebra
of p1 is gla1

⊕· · ·⊕glas
, then we set p1= p(a), where a= (a1, a2, . . . , as). Note that

a1+· · ·+as=n and all ai >1. Likewise, if p−2 ⊃b− is represented by a composition
b= (b1, . . . , bt) with

∑
bj = n, then the standard seaweed p1∩p

−

2 ⊂ gln is denoted
by qA(a |b). The corresponding type-A meander graph 0 = 0A(a |b) is defined by
the following rules:

• 0 has n consecutive vertices on a horizontal line numbered from 1 to n.

• The parts of a determine the set of pairwise disjoint arcs (edges) that are drawn
above the horizontal line. Namely, part a1 determines

[ 1
2a1
]

consecutively
embedded arcs above the nodes 1, . . . , a1, where the widest arc joins vertices 1
and a1, the following joins 2 and a1− 1, etc. If a1 is odd, then the middle vertex
1
2(a1+ 1) acquires no arc at all. Next, part a2 determines

[ 1
2a2
]

embedded arcs
above the nodes a1+ 1, . . . , a1+ a2, etc.

• The arcs corresponding to b are drawn following the same rules, but below the
horizontal line.

It follows that the degree of each vertex in 0 is at most 2 and each connected
component of 0 is homeomorphic to either a circle or a segment. (An isolated
vertex is also a segment!) By [Dergachev and Kirillov 2000], the index of qA(a |b)
can be computed via 0 = 0A(a |b) as follows:

(2-1) ind qA(a |b)= 2(number of cycles in 0)+ (number of segments in 0).

Remark 2.1. Formula (2-1) gives the index of a seaweed in gln , not in sln . However,
if q⊂ gln is a seaweed, then q∩ sln is a seaweed in sln and the respective mapping
q 7→ q ∩ sln is a bijection. Here q = (q ∩ sln) ⊕ (1-dim centre of gln); hence
ind (q∩sln)= ind q−1. Since ind qA(a |b)> 1 and the minimal value 1 is achieved
if and only if 0 is a sole segment, we also obtain a characterisation of the Frobenius
seaweeds in sln .

Example 2.2. We have

0A(5, 2, 2|2, 4, 3) = r r r r r r r r r� �� � � � � �� � � �� � 
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and the index of the corresponding seaweed in gl9 (resp. sl9) equals 3 (resp. 2).

II. g= sp2n . We use the embedding sp2n ⊂ gl2n such that

sp2n =

{(
A B

C −Â

)∣∣∣A,B,C ∈ gln, B= B̂, C= Ĉ

}
,

where A 7→ Â is the transpose with respect to the antidiagonal. If b̃⊂ gl2n and b̃−

are the sets of upper-triangular and lower-triangular matrices, respectively, then
b = b̃∩ sp2n and b− = b̃− ∩ sp2n are our fixed Borel subalgebras of g = sp2n . If
p1 ⊃ b, then the standard Levi subalgebra of p is gla1

⊕ · · · ⊕ glas
⊕ sp2d , where

a1+· · ·+as+d = n, all ai > 1, and d > 0. Since d is determined by n and the ‘gl’
parts, p1 can be represented by n and the composition a = (a1, . . . , as). We write
pn(a) for it. Likewise, if p−2 is represented by another composition b= (b1, . . . , bt)

with
∑

bj 6 n, then p1 ∩ p−2 is denoted by qCn (a |b). To a standard parabolic
p1 = pn(a) ⊂ sp2n , one can associate the parabolic subalgebra p̃1 ⊂ gl2n that is
represented by the symmetric composition ã = (a1, . . . , as, 2d, as, . . . , a1) of 2n.
In the matrix form, the standard Levi subalgebra of p̃1 has the consecutive diagonal
blocks gla1

, . . . , glas
, gl2d , glas

, . . . , gla1
and, for the above embedding sp2n ⊂ gl2n

and compatible triangular decompositions, one has p1 = p̃1∩ sp2n (and likewise for
p−2 ⊂ sp2n and p̃−2 ⊂ gl2n); see [Panyushev 2001, Section 5] for details. If ã and b̃
are symmetric compositions of 2n, then the seaweed qA(ã | b̃)⊂ gl2n is said to be
symmetric, too. The above construction provides a bijection between the standard
seaweeds in sp2n and the symmetric standard seaweeds in gl2n (or sl2n).

We define the type-C meander graph 0C
n (a |b) for qCn (a |b) to be the type-A

meander graph of the corresponding symmetric seaweed q̃ = p̃1 ∩ p̃−2 ⊂ gl2n .
Formally,

0C
n (a |b)= 0

A(ã | b̃).

We indicate below new features of these graphs.

• 0C
n (a |b) has 2n consecutive vertices on a horizontal line numbered from 1 to 2n.

• Part a1 determines
[1

2a1
]

embedded arcs above the nodes 1, . . . , a1. By symmetry,
the same set of arcs appears above the vertices 2n− a1+ 1, . . . , 2n. Next, part
a2 determines

[ 1
2a2
]

embedded arcs above the nodes a1 + 1, . . . , a1 + a2 and
also the symmetric set of arcs above the nodes 2n− a1− a2+ 1, . . . 2n− a1, etc.

• If d = n−
∑

ai > 0, then there are 2d unused vertices in the middle, and we
draw d embedded arcs above them. This corresponds to part 2d that occurs in
the middle of ã. The arcs corresponding to b are depicted by the same rules, but
below the horizontal line.

• A type-C meander graph is symmetric with respect to the vertical line between
the n-th and (n+ 1)-th vertices, and the symmetry with respect to this line is
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0C
7 (2, 3|∅)
r r r r r r r r r r r r r r
& %

� � � � � � � �� �� �� �� �" !& %& %& %
Figure 1. The meander graph for a parabolic subalgebra of sp14.

denoted by σ. We also say that this line is the σ-mirror. The arcs crossing the
σ-mirror are said to be central. These are exactly the arcs corresponding to
d = n−

∑
ai and d ′ = n−

∑
bj .

Our main result is the following formula for the index in terms of the connected
components of 0C

n (a |b):

(2-2) ind qCn (a |b)
= (number of cycles)+ 1

2 (number of segments that are not σ-stable).

To illustrate this formula, we recall that, for the parabolic subalgebra p with Levi
part gla1

⊕· · ·⊕glas
⊕sp2d , we have ind p=

[1
2a1
]
+· · ·+

[ 1
2as
]
+d; see [Panyushev

2001, Theorem 5.5]. Here p−2 = sp2n and the composition b is empty. On the other
hand, the graph 0C

n (a |∅) has n central arcs below the horizontal line corresponding
to b = ∅. Hence each part ai gives rise to

[ 1
2ai
]

cycles and, if ai is odd, to one
additional segment, which is σ-invariant. The middle part corresponding to sp2d
gives rise to d cycles. This clearly yields the same answer; cf. Example 2.3. Hence
we already know that (2-2) is correct if q is a parabolic subalgebra, i.e., if a =∅ or
b =∅. Note also that ind p= 0 if and only if d = 0 and all ai = 1, i.e., if p= b.

Example 2.3. See Figure 1. Here a = (2, 3) and n = 7 (hence d = 2), and the
σ-mirror is represented by the vertical dotted line. It is easily seen that the only
segment here is σ-stable and the total number of circles is 4. (The circles are
depicted by blue arcs). Hence ind p= 4.

Remark 2.4. (1) For both gln and sp2n , one has q∗(a |b)' q∗(b |a). Hence one
can freely choose what composition is going to appear first.

(2) Moreover, q∗(a |b) is reductive (i.e., a Levi subalgebra) if and only if a = b.

Convention. If q is a seaweed in either sp2n or gl2n , and the corresponding compo-
sitions are not specified, then the respective meander graph is denoted by 0C(q) or
0A(q).

Remark 2.5. Let q be a seaweed in sp2n or gln . Then there is a point γ ∈q∗ such that
the stabiliser qγ ⊂ q is a reductive subalgebra; see [Panyushev 2005]. A Lie algebra
possessing such a point in the dual space is said to be (strongly) quasi-reductive
[Duflo et al. 2012]; see also [Moreau and Yakimova 2012, Definition 2.1]. One
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of the main results of [Duflo et al. 2012] states that if a Lie algebra q = Lie Q
is strongly quasi-reductive, then there is a reductive stabiliser Qγ (with γ ∈ q∗)
such that any other reductive stabiliser Qβ (with β ∈ q∗) is contained in Qγ up
to conjugation. In [Moreau and Yakimova 2012] this subgroup Qγ is a called
a maximal reductive stabiliser, MRS for short. For a seaweed q = qA(a |b), an
MRS of q can be described in terms of 0A(a |b) [Moreau and Yakimova 2012,
Theorem 5.3]. A similar description is possible in type C if we use 0C

n (a |b). It will
appear elsewhere.

3. Symplectic meander graphs and the index of seaweed subalgebras

In this section, we prove formula (2-2) on the index of the seaweed subalgebras of
type C.

Let us recall the inductive procedure for computing the index of seaweeds in a
symplectic Lie algebra introduced by the first author [Panyushev 2001]. Suppose
that a = (a1, . . . , as) and b= (b1, . . . , bt) are two compositions with

∑
ai 6 n and∑

bj 6 n. Then we consider the standard seaweed qCn (a |b)⊂ sp2n .

Inductive procedure:

(1) If either a or b is empty, then qCn (a |b) is a parabolic subalgebra and the index
is computed using [Panyushev 2001, Theorem 5.5] (see also the Introduction).

(2) Suppose that both a and b are nonempty. Without loss of generality, we can
assume that a1 6 b1. By [Panyushev 2001, Theorem 5.2], ind qCn (a |b) can
inductively be computed as follows:
(i) If a1 = b1, then qCn (a |b)' gla1

⊕ qCn−a1
(a2, . . . , as |b2, . . . , bt); hence

ind qCn (a |b)= a1+ ind qCn−a1
(a2, . . . , as |b2, . . . , bt).

(ii) If a1 < b1, then

ind qCn (a |b)=
{
ind qCn−a1

(a2, . . . , as |b1− 2a1, a1, b2, . . . , bt) if a1 6
1
2 b1,

ind qCn−b1+a1
(2a1− b1, a2, . . . , as |a1, b2, . . . , bt) if a1 >

1
2 b1.

(iii) Step 2 terminates when one of the compositions becomes empty, i.e., one
obtains a parabolic subalgebra in a smaller symplectic Lie algebra, where
Step 1 applies.

Remark 3.1. Iterating transformations of the form 2(ii) yields a formula that
does not require considering cases; see [Panyushev 2001, Theorem 5.3]. Namely,
if a1 < b1, then ind qCn (a |b) = ind qCn−a1

(a′ |b′), where a′ = (a2, . . . , as), b′ =
(b′1, b′′1, b2, . . . , bt), and b′1 and b′′1 are defined as follows. Let p be the unique
integer such that

p
p+ 1

<
a1

b1
6

p+ 1
p+ 2

.
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Then b′1 = (p+ 1)b1− (p+ 2)a1 > 0 and b′2 = (p+ 1)a1− pb1 > 0. (If b′1 = 0,
then it has to be omitted.)

Theorem 3.2. Let q = qCn (a |b) be a seaweed in sp2n and 0C(q) = 0C
n (a |b) the

type-C meander graph associated with q. Then

ind qCn (a |b)

= #{cycles of 0C
n (a |b)}+

1
2 #{segments of 0C

n (a |b) that are not σ-stable}.

Proof. Our argument exploits the above inductive procedure. Let us temporarily
write Tn(a |b) for the topological quantity in the right-hand side of the formula.
Let us prove that for the pairs of seaweeds occurring in either 2(i) or 2(ii) of the
inductive procedure, the required topological quantity behaves accordingly.

If a1=b1 and gla1
is a direct summand of q, then ind qCn−a1

(a2, . . . , as |b2, . . . , bt)

decreases by a1; on the other hand, 0C
n−a1

(a2, . . . , as |b2, . . . , bt) is obtained from
0C(q) by deleting 2

[1
2a1
]

cycles (and two segments, which are not σ-invariant in
case a1 is odd). This is in perfect agreement with the formula.

If a1 < b1, then one step of sp-reduction for q is equivalent to two steps of gl-
reduction for the meander graph of 0A(q̃), where q̃ is the corresponding symmetric
seaweed in gl2n . These two “symmetric” steps are applied one after another to the
left and right sides of 0A(q̃)= 0C(q). According to [Moreau and Yakimova 2012,
Lemma 5.4(i)], the gl-reduction does not change the topological structure of the
graph. Hence Tn(a |b)= Tn−a1(a

′
|b′).

Since we have already observed (in Section 2) that our formula holds for the
parabolic subalgebras, the result follows. �

Example 3.3. For the seaweed q10(3, 3|4, 5) in sp20, the recursive formula of
Remark 3.1 yields the following chain of reductions:

q= qC10(3, 3|4, 5) qC7 (3|1, 5) qC6 (1, 1|5) qC5 (1|3, 1) qC4 (∅|1, 1, 1).

The last term represents the minimal parabolic subalgebra of sp8 corresponding to
the unique long simple root. The respective graphs are gathered in Figure 2. It is
readily seen that both ends of the graphs undergo the symmetric transformations on
each step; also all the segments are σ-stable and the total number of cycles equals 1.
Thus, ind q= 1.

One can notice that each reduction step consists of contracting certain arcs
starting from some end vertices of a meander graph. Clearly, such a procedure
does not change the topological structure of the graph, and this is exactly how
Lemma 5.4(i) in [Moreau and Yakimova 2012] was proved.

Example 3.4. In Figure 3, one finds the graph of a seaweed in sp16 of index 1. The
segments that are not σ-stable are depicted by red arcs.
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0C
10(3, 3|4, 5) q q q q q q q q q q q q q q q q q q q q� �� � � �� �� �' $� �� �
� � � 
 	� �� � 
 	� �� �� 

0C
7 (3|1, 5) q q q q q q q q q q q q q q� � � �� �� �' $� �
 	� �� � 
 	� �
0C

6 (1, 1|5) q q q q q q q q q q q q� �� �� �' $

 	� �� � 
 	� �

0C
5 (1|3, 1) q q q q q q q q q q� �� �� �' $


 	 � � 
 	

0C
4 (∅|1, 1, 1) q q q q q q q q� �� �� �' $

� �
Figure 2. The reduction steps for a seaweed subalgebra of sp20.

r r r r r r r r r r r r r r r r0C
8 (3, 4|5, 3)
� � � �� �� � � �� �� �
 	� �
 	
 	 
 	� �

Figure 3. A seaweed subalgebra of sp16 with index 1.

4. Applications of symplectic meander graphs

In this section, we present some applications of Theorem 3.2. We begin with a
simple property of the index.

Lemma 4.1. If
∑

ai < n and
∑

bj < n, then ind qCn (a |b)= (n−n′)+ ind qCn′(a |b),
where n′ =max

{∑
ai ,
∑

bj
}
.

Proof. Here 0C
n (a |b) contains n− n′ arcs crossing the σ-mirror on both sides of

the horizontal line. They form n− n′ central circles, and removing these circles
reduces the index by n− n′ and yields the graph 0C

n′(a |b). �

Recall that a Lie algebra q is Frobenius if ind q= 0. In the rest of the section, we
apply Theorem 3.2 to studying Frobenius seaweeds. Clearly, if qCn (a |b) is Frobenius,



ON SEAWEED SUBALGEBRAS AND MEANDER GRAPHS IN TYPE C 493

r r r r r r r r r r r r r r0C
7 (2, 4|4, 3)
� � � �� � � � � �� � � �
� �� � 
 	
 	 � �� �
r r r r r r r r r r r r r r0C

7 (3, 2|2, 5)
� � � � � �� �� � � �� � 
 	� �� �
 	 � �

Figure 4. Frobenius seaweed subalgebras of sp14.

then 0C
n (a |b) has only σ-stable segments and no cycles. Another consequence of

Theorem 3.2 is the following necessary condition.

Lemma 4.2. If qCn (a |b) is Frobenius, then either
∑

ai < n and
∑

bj = n or vice
versa.

Proof. If
∑

ai < n and
∑

bj < n, then the index is positive in view of Lemma 4.1.
If
∑

ai =
∑

bj = n, then there are no arcs crossing the σ-mirror. Therefore
0C

n (a |b) consists of two disjoint σ-symmetric parts, and the topological quantity of
Theorem 3.2 cannot be equal to 0. (More precisely, in the second case qCn (a |b) is
isomorphic to the seaweed qA(a |b) in gln , and ind q> 1 for all seaweeds q⊂ gln;
see Remark 2.1.) �

Graphically, Lemma 4.2 means that, for a Frobenius seaweed, one must have
some central arcs (= arcs crossing the σ-mirror) on one side of the horizontal line
in the meander graph, and then there must be no central arcs on the other side. The
number of central arcs can vary from 1 to n (the last possibility represents the case
in which one of the parabolics is the Borel subalgebra). Let Fn,k denote the set of
standard Frobenius seaweeds whose meander graph contains k central arcs. Then
Fn =

⊔n
k=1 Fn,k is the set of all standard Frobenius seaweeds in sp2n . If qCn (a |b)

lies in Fn,k , then so does qCn (b |a). As we are interested in essentially different
meander graphs, we will not distinguish graphs and algebras corresponding to (a |b)
and (b |a). Set Fn,k = #(Fn,k/∼) and Fn = #(Fn/∼), where ∼ is the corresponding
equivalence relation. Then

Fn,n = 1; Fn,n−1 =

{
1, n = 2,
2, n > 3;

Fn,n−2 =


2, n = 3,
4, n = 4,
5, n > 5.

It follows from Lemma 4.2 that if qCn (a |b) ∈ Fn and
∑

bj = n, then the integer k
such that qCn (a |b) ∈ Fn,k is determined as k = n−

∑
ai .

In Figure 4, one finds the meander graphs of Frobenius seaweeds in sp14 with
k = 1 and 2.
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Lemma 4.3. If q ∈ Fn,k , then 0C(q) has exactly k connected components (σ-stable
segments) corresponding to the central arcs. Furthermore, the total number of arcs
in 0C(q) equals 2n− k.

Proof. (1) Let Ai be the i-th central arc and 0i the connected component of 0C(q)

that contains Ai . Each 0i is a σ-stable segment.

• If 0i = 0j for i 6= j , then continuations of Ai and A j meet somewhere in
the left half of 0C(q). By symmetry, the same happens in the right half,
which produces a cycle. Hence the connected components 01, . . . , 0k must
be different.

• Assume that there exists yet another connected component 0k+1. Then it
belongs to only one half of 0C(q). By symmetry, there is also the “same”
component 0k+2 in the other half of 0C(q). This would imply that ind q> 0.

(2) Since the graph 0C(q) has 2n vertices and is a disjoint union of k trees, the
number of edges (arcs) must be 2n− k. �

Lemma 4.4. For any k > 1, there is an injective map Fn,k→ Fn+1,k+1. Moreover,
Fn+1 > Fn; that is, the total number of Frobenius seaweeds strictly increases under
the passage from n to n+ 1.

Proof. For any q∈Fn,k (k> 1), we can add two new vertices in the middle of 0C(q)

and connect them by an arc (on the appropriate side!). This yields an injective
mapping Fn,k→ Fn+1,k+1 for any k > 1 and thereby an injection in : Fn ↪→ Fn+1.

Since Fn+1,1 does not intersect the image of in , the second assertion follows
from the fact that Fn+1,1 > 0 for any n > 0; see the example below. �

Example. We point out an explicit element qCn (a |b) ∈ Fn,1. For n = 2k, one takes
a = (2k) and b= (1, 2k−1). For n = 2k+1, one takes a = (2k) and b= (1, 2k). For
n = 4, the meander graph is

s s s s s s s s� � � � � � � �� � � � � �
Proposition 4.5. (i) For a fixed m∈N, the numbers Fn,n−m stabilise for n>2m+1.

In other words, Fn,n−m = F2m+1,m+1 for all n > 2m+ 1.

(ii) Furthermore, F2m+1,m+1 = F2m,m + 1.

Proof. (i) Let q = qCn (a |b) ∈ Fn,n−m . Then
∑s

i=1 ai = m and
∑t

j=1 bj = n.
Consider the n-th vertex of the graph (the one that is closest to the σ-mirror). We
are interested in bt , the size of the last part of b, i.e., the part that contains the
n-th vertex. By the assumption, we have n −m central arcs over the horizontal
line. Therefore, if n > 2m + 2 and bt > 2, then the smallest arc corresponding
to bt hits two vertices covered by central arcs above the line. And this produces
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a cycle in the graph! This contradiction shows that the only possibility is bt = 1.
Then one can safely remove two central vertices from the graph and conclude that
Fn,n−m = Fn−1,n−1−m as long as n > 2m+ 2. (The last step is opposite to one that
is used in the proof of Lemma 4.4.)

(ii) Again, for q = qC2m+1(a |b) ∈ F2m+1,m+1, we consider bt , the last coordinate
of b. If bt = 1, then the central pair of vertices in 0C(q) can be removed, which
yields a seaweed in F2m,m . Next, it is easily seen that if bt ∈ {2, 3, . . . , 2m}, then
0C(q) contains a cycle. Hence this is impossible. While for bt = 2m + 1, one
obtains a unique admissible possibility

a = (1, 1, . . . , 1︸ ︷︷ ︸
m

). �

Remark. Using a similar analysis, one obtains F2m,m = F2m−1,m−1+ 3 if m > 3.

Remark 4.6. Our stabilisation result for Fn,n−m can be compared with [Duflo and
Yu 2015], where Duflo and Yu consider a partition of the set of standard Frobenius
seaweeds in sln into classes and study the asymptotic behaviour of the cardinality
of these classes as n tends to infinity. Let p(a) be the number of nonzero parts of
the composition a and let F̃n,p be the number of the standard Frobenius seaweeds
qA(a |b)∩sln such that p(a)+ p(b)= p. By [Duflo and Yu 2015, Theorem 1.1(b)],
if n is sufficiently large, then F̃n,n+1−t is a polynomial in n of degree

[ 1
2 t
]
, with

positive rational coefficients.

It seems that Fn,1 is the most interesting part of the symplectic Frobenius sea-
weeds. Recall from Section 2 that to any standard seaweed q ⊂ sp2n one can
associate a “symmetric” seaweed q̃⊂ gl2n such that q= q̃∩ sp2n . In this context,
we also set q̃0 = q̃∩ sl2n .

Proposition 4.7.

(i) If q ∈ Fn,1, then ind q̃= 1, hence q̃0 is a Frobenius seaweed in sl2n .

(ii) There is an injective map Fn,1→ Fn+1,1, which is not onto if n > 2.

Proof. (i) If q ∈ Fn,1, then 0C(q) and thereby 0A(q̃) consists of a sole segment
(Lemma 4.3). By (2-1), we have ind q̃= 1 and therefore ind q̃0 = ind q̃− 1= 0.

(ii) If q= qCn (a |b)∈Fn,1, then
∑s

i=1 ai = n−1 and
∑t

j=1 bj = n. We associate to it
a seaweed q̂∈Fn+1,1 as follows. Set q̂=qCn+1(â |b), where â= (a1, . . . , as, 2). Note
that 0C

n (a |b) has one central arc above the horizontal line, while 0C
n+1(â |b) has one

central arc below. The following is a graphical illustration of the transform q 7→ q̂:

s s. . . . . .
� ��� 7→ s s s s. . . . . .

� � � �� � ��
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n ↓ k→ 1 2 3 4 5 6 7 6 = Fn

1 1 - - - - - - 1
2 1 1 - - - - - 2
3 2 2 1 - - - - 5
4 4 4 2 1 - - - 11
5 8 10 5 2 1 - - 26
6 15 20 13 5 2 1 - 56
7 28 44 28 14 5 2 1 122

Table 1. The numbers Fn,k for n 6 7.

This provides a bijection between Fn,1 and the seaweeds in Fn+1,1 whose last
part of the composition that sums to n+ 1 equals 2. If n+ 1 > 3, then there are
seaweeds in Fn+1,1 such that the above-mentioned last part is bigger than 2. Hence
Fn,1 < Fn+1,1. �

Remark 4.8. Another curious observation is that Fn,1 and Fn,2 are related to certain
Frobenius seaweeds in sln:

(i) Suppose that q ∈ Fn,1. Let us remove the only central arc in 0C(q) and take the
remaining left half of the graph as it is. It is a connected type-A meander graph
with n vertices. Therefore, it represents a seaweed of index 1 in gln (= Frobenius
seaweed in sln). Formally, if q= qCn (a |b), with

∑
ai = n− 1 and

∑
bj = n, then

we set q′ = qA(a′ |b)⊂ sln , where a′ = (a, 1). This yields a bijection between Fn,1

and the Frobenius seaweeds of sln such that the last part of a′ equals 1.

(ii) Suppose that q ∈ Fn,2. Let us remove the two central arcs and take the remain-
ing left half. We obtain a graph with n vertices and two connected components
(segments). Joining the last two “lonely” vertices by an arc, we get a connected
type-A meander graph. Formally, if q= qCn (a |b), with

∑
ai = n−2 and

∑
bj = n,

then we set q′ = qA(a′ |b)⊂ sln , where a′ = (a, 2). Again, this yields a bijection
between Fn,2 and the Frobenius seaweeds of sln such that the last part of a′ equals 2.

Unfortunately, such a nice relationship does not extend to Fn,3.

In Table 1 we present the numbers Fn,k for n 6 7. Note that the values 14, 5, 2, 1
in the seventh row are stable in the sense of Proposition 4.5(i). Using the preceding
information, we can also compute the next stable value:

F9,5 = F8,4+ 1= (F7,3+ 3)+ 1= 32.

5. On meander graphs for the odd orthogonal Lie algebras

As in the case of sp2n , the standard parabolic subalgebras of so2n+1 are parametrised
by the compositions a = (a1, . . . , as) such that

∑
ai 6 n. For instance, if pBn (a) is
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the standard parabolic subalgebra corresponding to a, then a Levi subalgebra of
it is of the form gla1

⊕ · · ·⊕ glas
⊕ so2(n−

∑
ai )+1. Therefore, the standard seaweed

subalgebras of so2n+1 are also parametrised by the pairs of compositions a, b such
that

∑
ai 6 n and

∑
bj 6 n; see [Panyushev 2001, Section 5]. Furthermore, the

inductive procedure for computing the index of standard seaweeds (see Section 3,
Step 2), which reduces the case of arbitrary seaweeds to parabolic subalgebras, also
remains the same [Panyushev 2001, Theorem 5.2].

This means that if the formula for the index of parabolic subalgebras of so2n+1 in
terms of a also remains the “same” as in the symplectic case, then one can use our
type-C meander graphs in type Bn as well. Although there are only partial results
on the index of parabolic subalgebras of so2n+1 in [Panyushev 2001, Section 6],
one can use the general Tauvel–Yu–Joseph formula; see [Tauvel and Yu 2004,
Conjecture 4.7; Joseph 2006, Section 8]. Namely, if q = q(S, T ) is the seaweed
corresponding to the subsets S, T ⊂5, then

(5-1) ind q= rk g+ dim ES + dim ET − 2 dim(ES + ET ).

Here dim ET = #K(T ) is the cardinality of the cascade of strongly orthogonal roots
in the Levi subalgebra of g corresponding to T ; see [Tauvel and Yu 2004] for the
details. Our observation is that it easily implies that, for any composition a, one has

(5-2) ind pBn (a)=
[1

2a1
]
+ · · ·+

[1
2as
]
+

(
n−

s∑
i=1

ai

)
= ind pCn (a).

Indeed, for the parabolic subalgebras, we may assume that S=5, and since ind b=0
for the series Bn , we have dim E5 = rk g. Therefore, ind pBn (a)= dim ET = #K(T ).
As we noticed before, for pBn (a), we have l= gla1

⊕ · · ·⊕ glas
⊕ so2(n−

∑
ai )+1. As

is well known, the cardinality of the cascade of strongly orthogonal roots in gla
(resp. so2n+1) equals

[ 1
2a
]

(resp. n); see [Joseph 1977, Section 2]. Therefore, the
cardinality of the cascade in the above l is given by the middle term in (5-2).

There is another interesting formula for the index of a parabolic subalgebra,
which generalises the above observation.

Theorem 5.1. Let g be a simple Lie algebra such that ind b = 0. Let p ⊂ g be a
parabolic subalgebra, with a Levi subalgebra l . If b(l) is a Borel subalgebra of l
and u(l)= [b(l), b(l)], then

(5-3) ind p= ind u(l)= rk l− ind b(l)= rk g− ind b(l).

In particular, ind p= 0 if and only if u(l)= 0, i.e., p= b.

Outline of the proof. Again, under the assumption that ind b= 0, we have S =5,
dim E5= rk g, and l is determined by T. Hence (5-1) implies that ind p= dim ET =

#K(T ). It is implicit in [Joseph 1977, Section 2.6] that #K(T )= ind u(l), and the
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second equality in (5-3) is a consequence of the fact that rk l= ind b(l)+ ind u(l)

for any reductive Lie algebra l . A more detailed explanation and some applications
of the theorem will appear elsewhere. �

Recall that, for a simple Lie algebra g, ind b= 0 if and only if g 6=An,D2n+1,E6.

Conclusion. (1) Given a standard seaweed q = qBn (a |b) ⊂ so2n+1, we can draw
exactly the same meander graph as in type C (with 2n vertices) and use exactly the
same topological formula (Theorem 3.2) to compute the index of q.

(2) Using our type-C meander graphs, we can establish a bijection between the
standard Frobenius seaweeds for the symplectic and odd orthogonal Lie algebras
of the same rank. It would be very interesting to realise whether there is a deeper
reason for such a bijection.

(3) For the even-dimensional orthogonal Lie algebras (type Dn), there is a similar
inductive procedure that reduces the problem of computing the index of arbitrary
seaweeds to parabolic subalgebras. However, ind b= 1 for D2n+1 and Theorem 5.1
does not apply. Furthermore, although ind b= 0 for D2n , the general formula for the
index of parabolic subalgebras cannot be expressed nicely in terms of compositions.
Of course, the reason is that the Dynkin diagram has a branching node!
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