Vol. 286, No. 1, 2017

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the geometry of gradient Einstein-type manifolds

Giovanni Catino, Paolo Mastrolia, Dario D. Monticelli and Marco Rigoli

Vol. 286 (2017), No. 1, 39–67
Abstract

In this paper we introduce the notion of Einstein-type structure on a Riemannian manifold (M,g), unifying various particular cases recently studied in the literature, such as gradient Ricci solitons, Yamabe solitons and quasi-Einstein manifolds. We show that these general structures can be locally classified when the Bach tensor is null.

Keywords
Einstein-type manifolds, Ricci solitons, Rigidity results
Mathematical Subject Classification 2010
Primary: 53C20, 53C25, 53A55
Milestones
Received: 17 February 2016
Revised: 12 April 2016
Accepted: 14 July 2016
Published: 9 December 2016
Authors
Giovanni Catino
Dipartimento di Matematica
Politecnico di Milano
I-20133 Milano
Italy
Paolo Mastrolia
Dipartimento di Matematica
Università Degli Studi di Milano
I-20133 Milano
Italy
Dario D. Monticelli
Dipartimento di Matematica
Politecnico di Milano
I-20133 Milano
Italy
Marco Rigoli
Dipartimento di Matematica
Università degli studi di Milano
I-20133 Milano
Italy