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ON THE ABSOLUTE CONTINUITY OF
p-HARMONIC MEASURE AND SURFACE MEASURE

IN REIFENBERG FLAT DOMAINS

MURAT AKMAN

We study the set of absolute continuity of p-harmonic measure µ associ-
ated to a positive weak solution to the p-Laplace equation with continuous
zero boundary values and (n−1)-dimensional Hausdorff measure Hn−1 on
locally flat domains in space. We prove that when n ≥ 2 and 2 < p < ∞
and when n ≥ 3 and 2− η < p < 2 for some η > 0 there exist locally flat
domains � ⊂ Rn with locally finite perimeter and Borel sets E ⊂ ∂� such
that µ(E) > 0=Hn−1(E).

1. Introduction and statement of main results

A well-known result of F. and M. Riesz says that if � is a simply connected domain
whose boundary has finite length in the plane then harmonic measure and arclength
are mutually absolutely continuous. Makarov [1985] gives a sharp description of
the support of harmonic measure and shows that the function λ given below is the
proper function to measure the size of the support of ω. In particular, if �⊂ R2 is
a simply connected domain in the plane, then ω�Hλ, where

λ(r) := r exp
{

C

√
log 1

r
log log log 1

r

}
for sufficiently large C . Here “�” stands for absolute continuity of the measures, we
use “⊥” to denote measures are singular, and Hλ to denote the Hausdorff measure
with respect to the function λ (see (1.4) for definition of Hλ). In [Makarov 1985], it
is also shown that this result is sharp in the following sense; there is an example of
a simply connected domain for which ω ⊥Hλ whenever C is sufficiently small in
the definition of λ. In higher dimensions, due to examples of Ziemer [1974] and Wu
[1986], neither Hn

|∂��ω nor ω�Hn
|∂� are true in general without imposing extra

topological or nontopological conditions on ∂�. David and Jerison [1990] prove
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that if � is a nontangentially accessible (NTA for short; see Definition 2.1) domain
and ∂� is Ahlfors–David regular (ADR for short; see Definition 2.5) then harmonic
measure is mutually absolutely continuous on ∂� with respect to surface measure,
and in fact they are A∞-equivalent (see [Azzam et al. 2014]). Badger [2012]
considers the same problem by relaxing the ADR property by Hn−1(∂�) <∞

and proves that Hn−1
� ω on ∂�. He also shows that ω�Hn−1

� ω on the set
A ⊂ ∂�, where

A =
{

x ∈ ∂� : lim inf
r→0

Hn−1(1(x, r))
rn−1 <∞

}
.

Here 1(x, r) = B(x, r) ∩ ∂�. Badger also conjectures that when � is an NTA
domain then the same result holds not only on A ⊂ ∂� but on the whole ∂� (see
Conjecture 1.3 in [Badger 2012]). However, it turns out that this is not true in
general. In fact, Azzam, Mourgoglou, and Tolsa [Azzam et al. 2016] construct
an example of a Reifenberg flat domain (see Definition 2.3) � in Rn , n ≥ 3, with
Hn−1(∂�) <∞ and a Borel set E ⊂ ∂� such that

ω(E) > 0=Hn−1(E).

One can consider the same problem for the p-harmonic measure associated with a
positive weak solution to the p-Laplace equation for 1 < p 6= 2 <∞. To define
p-harmonic measure and the p-Laplace equation, we let �⊂ Rn be a domain and
let N be a neighborhood of ∂�. Fix p, 1< p<∞, and suppose that û is a positive
weak solution to the p-Laplace equation in �∩ N . That is, û ∈W 1,p(�∩ N ) and

(1.1)
∫
|∇û|p−2

〈∇û,∇θ〉 dx = 0

whenever θ ∈W 1,p
0 (�∩ N ). Equivalently, we say that û is p-harmonic in �∩ N .

Observe that if û is smooth and ∇û 6= 0 in �∩ N then

∇ · (|∇û|p−2
∇û)≡ 0

in the classical sense, where ∇ · denotes divergence. We assume that û has
zero boundary values on ∂� ∩ N in the Sobolev sense. More specifically, if
ζ ∈C∞0 (�∩N ), then ûζ ∈W 1,p

0 (�∩N ). Extend û to N by putting û≡ 0 on N \�.
Then û∈W 1,p(N ) and it follows from (1.1), as in [Heinonen et al. 1993, Chapter 21],
that there exists a finite positive Borel measure µ̂ on Rn with support contained in
∂�∩ N satisfying

(1.2)
∫
|∇û|p−2

〈∇û,∇φ〉 dx =−
∫
φ dµ̂

whenever φ ∈ C∞0 (N ). Existence of µ̂ follows from the maximum principle, basic
Caccioppoli inequalities for û and the Riesz representation theorem for a positive
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linear functional. We note that if ∂� is smooth enough and ∇u 6= 0 in �, then

dµ̂= |∇û|p−1 dHn−1
|∂�∩N .

Remark 1.3. When p= 2 in (1.1), we have the usual Laplace’s equation. Moreover,
if u is the Green’s function for Laplace’s equation with pole at, say z0 ∈�, then the
measure in (1.2) corresponding to this harmonic function u is harmonic measure,
ω, relative to z0. Note also that the p-Laplace equation in (1.1) is degenerate when
p > 2 and is singular when 1< p < 2. The nonlinear structure of this PDE makes
it difficult to work with.

We next introduce the notion of the Hausdorff dimension of a measure. To this
end, let r̂0 > 0 be given, and let 0< δ < r̂0 be fixed. Let λ : [0,∞)→ [0,∞) be a
nondecreasing function with λ(0)= 0. Let d(·) denote the diameter of a set. For a
given Borel set E ⊂ Rn , we define (δ, λ)-Hausdorff content of E in the usual way:

Hλ
δ (E) := inf

{∑
i

λ(d(Ui )) : E ⊂
⋃

Ui , each Ui is open with d(Ui ) < δ

}
.

Then the Hausdorff measure of E is defined by

(1.4) Hλ(E) := lim
δ→0

Hλ
δ (E).

In case λ(r)= rα we write Hα for Hλ. The Hausdorff dimension of µ̂, denoted by
H− dim µ̂, is defined by

H− dim µ̂ := inf
{
α : there exists Borel E ⊂ ∂�

such that Hα(E)= 0 and µ̂(Rn
\ E)= 0

}
.

We return to our study of singular sets of p-harmonic measure with respect to Hn−1

measure. For arbitrary p, 1< p 6= 2<∞, Bennewitz and Lewis [2005] observed
that the natural candidates, i.e., snowflake-type domains, which give sharpness in
the harmonic case shown by Makarov, do not provide sharpness. In the same paper
it was also shown that if ∂� is the von Koch snowflake in the plane and 2< p<∞
then H− dimµ < 1. In [Lewis et al. 2011], a weaker version of Makarov’s result
was obtained under the p-harmonic setting for 1 < p 6= 2 <∞. Finally, Lewis
[2015] proved a p-harmonic analogue of Makarov’s result; let � ⊂ R2 be any
bounded simply connected domain and let µ be the p-harmonic measure described
above. Let λ(r) be as in Makarov’s result. Then the following are true.

(a) If 1< p < 2, there is A = A(p)≥ 1 such that µ�Hλ.

(b) If 2< p <∞, there is A= A(p)≤−1 such that µ is concentrated on a set of
σ -finite H1 measure.



28 MURAT AKMAN

The nonlinearity and degeneracy of the p-Laplace equation makes it difficult to
study the Hausdorff dimension of this measure in Rn , n ≥ 3. The tools developed
by Lewis, Nyström, and Vogel [Lewis et al. 2013] for p-harmonic functions were
used to obtain that:

(1) If ∂� is sufficiently flat in the sense of Reifenberg and p ≥ n ≥ 3, then µ is
concentrated on a set of σ -finite Hn−1 measure.

(2) If n≥3 and 2< p<n, there exist Wolff snowflakes such that H−dimµ<n−1,
while if 1< p < 2, there exist Wolff snowflakes such that H− dimµ > n− 1.

(3) All examples produced by Wolff’s snowflake method have H− dimµ< n− 1
when p ≥ n.

(4) There is a Wolff snowflake for which the sign of (n−1)− (H−dimµ) equals
the sign of (n−1)−(H−dimω), whereµ is the p-harmonic measure for p in an
open interval containing 2 and ω is the harmonic measure with pole at infinity.

Lewis, Vogel, and the author [Akman et al. 2015] improved these results by proving
the following: let O ⊂ Rn be any open set, ẑ ∈ ∂O , and let ρ > 0. Let u be a
positive weak solution to (1.1) in O ∩ B(ẑ, ρ). Assume also that u has continuous
zero boundary values on ∂O ∩ B(ẑ, ρ). Extend u to all B(ẑ, ρ) by defining 0 in
B(ẑ, ρ) \ O . Let µ be the measure associated to u as in (1.2). If p > n then µ is
concentrated on the set

P =
{

x ∈ ∂O ∩ B(ẑ, ρ) : lim sup
r→0

µ(B(w, r))
rn−1 > 0

}
.

This set P has σ -finite Hn−1 measure. The same result holds when p= n, provided
that ∂O ∩ B(ẑ, ρ) is locally uniformly fat in the sense of n-capacity. Therefore,
H− dimµp ≤ n− 1 when p ≥ n.

On the other hand, the result of David and Jerison described above for harmonic
measure is extended to the p-harmonic setting for 1< p 6= 2<∞ by Lewis and
Nyström [2012]. To state this result, we let �⊂Rn be a bounded NTA domain with
constants M , r0 whose boundary is ADR. Let u be p-harmonic in �∩ B(w, 4r),
w ∈ ∂�, 0 < r < r0, and continuous in �̄ ∩ B(w, 4r) with u ≡ 0 on 1(w, 4r).
Extend u to B(w, 4r) by defining u≡0 on B(w, 4r)\� and let µ be the p-harmonic
measure as in (1.2) associated with u. Then it is shown in [Lewis and Nyström
2012, Proposition 3.4] that µ�Hn−1

� µ on ∂�; in fact they are A∞-equivalent.
It also is proven in the same paper that Badger’s result holds under the p-harmonic
setting; if� is an NTA domain then µ�Hn−1

�µ on the set A′⊂1(w, 4r)⊂ ∂�,
where

A′ =
{

x ∈1(w, 4r) : lim inf
ρ→0

Hn−1(1(x, ρ))
ρn−1 <∞

}
.
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The main result proved in this paper is that there are examples of domains for which
absolute continuity of p-harmonic measure and (n − 1)-dimensional Hausdorff
measure does not hold on the whole boundary when the domain is even locally flat
in the sense of Reifenberg.

Theorem 1.5. When n ≥ 2 and 2< p <∞ and when n ≥ 3 and 2− η < p < 2 for
some η > 0, there exist domains �⊂ Rn and Borel sets E ⊂ ∂� such that:

(1) � is a (δ̂,∞)-Reifenberg flat domain.

(2) σ =Hn−1 is Radon.

(3) µp(E) > 0 = σ(E), where µp is the p-harmonic measure associated to a
positive p-harmonic function in � with continuous zero boundary values
on ∂�.

As the plan of this paper, we first state the definition of nontangentially accessible
domains, Reifenberg flatness, and Ahlfors–David regularity, and we give some
lemmas concerning the regularity of p-harmonic function in NTA domains in
Section 2. We give the construction of Wolff snowflakes in Section 3. Following
[Azzam et al. 2016], we construct “an enlarged domain �+ε ” from a certain domain
� and, using some results from [Lewis et al. 2013] concerning the dimension of
p-harmonic measure, we give a proof of Theorem 1.5 in Section 4.

2. Definitions and preparatory lemmas

To proceed, some notation and definitions are in order. In the sequel, c will denote
a positive constant ≥ 1 (not necessarily the same at each occurrence), which may
depend only on p, n, unless otherwise stated. In general, c(a1, . . . , an) denotes a
positive constant ≥ 1 which may depend only on p, n, a1, . . . , an , not necessarily
the same at each occurrence.

Let x= (x1, . . . , xn) denote points in Rn and let E= cl(E), int E , ∂E , and Ec be
the closure, interior, boundary, and the complement of the set E ⊂ Rn , respectively.
Let diam(E) be the diameter of a set E . Let 〈 · , · 〉 be the usual inner product in Rn .
Let d(E, F) denote the usual distance between the sets E and F and let dH(E, F)
denote the Hausdorff distance between the sets E and F , which is defined by

dH(E, F) :=max(sup{d(E, y) : y ∈ F}, sup{d(x, F) : x ∈ E}).

Let B(x, r) be the usual open ball centered at x with radius r > 0 in Rn and let dx
denote the Lebesgue n-measure in Rn . Let 1(w, r)= ∂�∩ B(w, r). For a given
number t > 0 and a cube Q, let l(Q) be the side length of Q and let t Q denote the
cube whose side length is tl(Q) with the same center as Q.

We state the notion of nontangentially accessible domain which was initially
introduced by Jerison and Kenig [1982].
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Definition 2.1 (NTA domain). A domain � is called a nontangentially accessible
(NTA) domain if there exist M ≥ 2 and r0 such that the following are fulfilled.

(i) Corkscrew condition: for any w ∈ ∂�, 0 < r < r0, there exists ar (w) ∈ �

satisfying

M−1r < |ar (w)−w|< r and M−1r < d(ar (w), ∂�).

(ii) Rn
\� satisfies the corkscrew condition.

(iii) Uniform condition: if w ∈ ∂�, 0 < r < r0, and w1, w2 ∈ B(w, r)∩� then
there exists a rectifiable curve γ : [0, 1] →� with γ (0)= w1 and γ (1)= w2

such that

(a) H1(γ )≤ M |w1−w2|,
(b) min{H1(γ ([0, t])),H1([t, 1]))} ≤ Md(γ (t), ∂�).

Remark 2.2. We use the definition of this notion given in [Lewis and Nyström
2012]. Note that (iii) of Definition 2.1 is different but equivalent to the Harnack
chain condition given in [Jerison and Kenig 1982].

Next we give the definition of Reifenberg flatness from [Azzam et al. 2016].

Definition 2.3 ((δ, r0)-Reifenberg flat domain). Let � be a domain and r0, δ > 0
with 0 < δ < 1

2 . Then � is said to be (δ, r0)-Reifenberg flat provided that the
following two conditions hold.

(i) For every w ∈ ∂� and every 0 < r < r0 there exists a hyperplane P(w, r)
containing w such that

dH(1(w, r),P(w, r)∩ B(w, r))≤ δr.

(ii) For every x ∈ ∂�, one of the connected components of

B(x, r0)∩ {x ∈ Rn
; d(x,P(x, r0))≥ 2δr0}

is contained in � and the other is contained in Rn
\�.

We say that � is (δ,∞)-Reifenberg flat if it is (δ, r0)-Reifenberg flat for every
r0 > 0.

Remark 2.4. An equivalent definition of Reifenberg flatness is given in [Lewis and
Nyström 2012], and it is remarked that these two definitions are equivalent (see
observation after their Definition 1.2).

Definition 2.5 (Ahlfors–David regular set). We say that ∂� is n-dimensional
Ahlfors–David regular (ADR) if there is some uniform constant C such that

C−1rn
≤Hn(1(x, r))≤ Crn for all r ∈ (0, diam(�)), x ∈ ∂�.
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We next give some estimates from when n ≥ 3 [Lewis et al. 2013, Lemmas
3.2–3.6] and when n = 2 given under the p-harmonic settings [Bennewitz and
Lewis 2005, Lemmas 2.6, 2.7, 2.13, 2.14]. For Lemmas 2.6–2.8, let p be fixed with
1< p 6= 2<∞.

Lemma 2.6. Let u be a positive p-harmonic function in B(w, 2r)⊂Rn , n≥3. Then

r p−n
∫

B(w,r/2)

|∇u|p dx ≤ c
(

max
B(w,r)

u
)p

and
max

B(w,r)
u ≤ c min

B(w,r)
u.

Moreover, there exists β = β(p, n) ∈ (0, 1) such that if x, y ∈ B(w, r) then

|u(x)− u(y)| ≤ c
(
|x − y|

r

)β
max

B(w,2r)
u.

For Lemmas 2.7 and 2.8 let� be an NTA domain in Rn and letw∈∂�, 0<r<r0.

Lemma 2.7. Suppose that u is a nonnegative continuous p-harmonic function in
�̄∩ B(w, 4r) and u = 0 on 1(w, 4r). Extend u to B(w, 4r) by defining u ≡ 0 on
B(w, 4r) \�. Then u has a representative in W 1,p(B(w, 4r)) with Hölder continu-
ous partial derivatives in �∩ B(w, 4r). In particular, there exists σ = σ(p, n) ∈
(0, 1] such that if x, y ∈ B

(
ŵ, 1

2 r̂
)
, where B(ŵ, 4r̂)⊂�∩ B(w, 4r) then

1
c
|∇u(x)−∇u(y)| ≤

(
|x − y|

r̂

)σ
max

B(ŵ,r̂)
|∇u| ≤

c
r̂

(
|x − y|

r̂

)σ
max

B(ŵ,2r̂)
u.

If ∇u(ŵ) 6= 0 then u is real analytic in a neighborhood of ŵ.

The next lemma gives a relation between a p-harmonic function and its corre-
sponding measure.

Lemma 2.8. Suppose that u is a nonnegative continuous p-harmonic function in
�̄∩ B(w, 2r) and u = 0 on 1(w, 2r). Extend u to B(w, 2r) by defining u ≡ 0 on
B(w, 2r) \�. As in (1.2), there exists a unique locally finite positive Borel measure
µ on Rn with support in 1(w, 2r) such that∫

|∇u|p−2
〈∇u,∇θ〉 dx =−

∫
θ dµ

whenever θ ∈ C∞0 (B(w, 2r)). Moreover, there exists c= c(p, n,M) ∈ [1,∞) such
that if r̃ = r/c then

c−1r p−nµ(1(w, r̃))≤ (u(ar̃ (w)))
p−1
≤ cr p−nµ

(
1
(
w, 1

2 r̃
))
,

where ar̃ (w) is as in Definition 2.1.
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3. Construction of Wolff snowflakes

In this section, following [Lewis et al. 2013] when n ≥ 3 and [Bennewitz and Lewis
2005] when n = 2, we describe the construction of Wolff snowflakes in Rn which
was originally introduced in [Wolff 1995]. To this end, let

�0 = {(x ′, xn) : x ′ ∈ Rn−1, xn > 0} ⊂ Rn.

Set

Q(r)=
{

x ′ ∈ Rn−1
: −

1
2r ≤ |xi | ≤

1
2r for 1≤ i ≤ n− 1

}
.

Then Q(r) is an (n−1)-dimensional cube with side length r and centered at 0. Let
φ :Rn−1

→R be a piecewise linear function with support contained in
{

x ′ : |x ′|< 1
2

}
satisfying

(3.1) ‖∇φ‖∞ ≤ θ0.

For fixed large N , define ψ(x ′)= N−1φ(N x ′). Let b > 0 be a small constant and
let Q be an (n− 1)-dimensional cube with center aQ and length l(Q) contained in
some hyperplane. Let cch(E) denote the closed convex hull. Let e be a unit normal
to Q and define

PQ = cch(Q ∪ {aQ + bl(Q)e}) and P̃Q = int cch(Q ∪ {aQ − bl(Q)e}).

We set e =−en for Q(1). We also define

3 := {x ∈ PQ(1)∪ P̃Q(1), xn ≥ψ(x)} and ∂ := {x ∈Rn, x ′ ∈ Q(1), xn =ψ(x ′)}.

We assume that N = N (b,M) is so large that

d(∂ \ ∂�0, ∂[PQ(1) ∪ P̃Q(1)])≥
b

100 .

From the construction, it can be easily seen that ∂ ⊂ Q(1)×
[
−

1
2 ,

1
2

]
consists of a

finite number of (n− 1)-dimensional faces. We fix a Whitney decomposition of
each face; we divide each face of ∂ into an (n− 1)-dimensional cube Q, with side
lengths 8−k , k = 1, 2, . . ., and 8−k

≈ to their distance from the edges of the face
they lie on. We next choose a distinguished (n− 2)-dimensional “side” for each
(n− 1)-dimensional cube.

Suppose � is a domain and Q ⊂ ∂� is an (n − 1)-dimensional cube with
distinguished side γ . Let e be a unit normal to ∂� on Q and assume that PQ∩�=∅
and P̃⊂�. We form a new domain �̃ as follows. Let T be the conformal affine map,
i.e., composition of a translation, dilation, and rotation, with T (Q(1))= Q which
fixes dilation, T (0) = aQ which fixes translation, T

({
x ∈ ∂Q(1) : x1 =

1
2

})
and

T (−en) in the direction of e which fixes rotation. Let 3Q = T (3) and ∂Q = T (∂).
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Then we define �̃ through the relations

�̃∩ (PQ ∪ P̃Q) and �̃ \ (PQ ∪ P̃Q)=� \ (PQ ∪ P̃Q).

Note that ∂Q inherits from ∂ a natural subdivision into Whitney cubes with distin-
guished sides. This process is called “adding a blip to � along Q”.

To use the process of “adding a blip” to construct a Wolff snowflake �∞, starting
from �0, we first add a blip to �0 along Q(1) obtaining a new domain �1. We then
inherit a subdivision of ∂�1∩(PQ(1)∩ P̃Q(1)) into Whitney cubes with distinguished
sides, together with a finite set of edges E1 (the edges of the faces of the graph are
not in the Whitney cubes). Let G1 be the set of all Whitney cubes in the subdivision.
Then �2 is obtained from �1 by adding a blip along each Q ∈ G1. From this
process, we inherit a family of cubes G2 ⊂ ∂�2 (each with a distinguished side)
and a set of edges E2 ⊂ ∂�2 of σ -finite Hn−2 measure. Continuing by induction
we get (�m)

∞

m=n−1, (Gm)
∞

m=n−1, and (Em)
∞

m=n−1, where

∂�m ∩ (PQ(1) ∩ P̃Q(1))= Em∪
⋃

Q∈Gm

Q for m ≥ n− 1.

If N = N (b,M) is large enough, then �m→�∞ in the Hausdorff distance sense.
We call �∞ a Wolff snowflake. We state a result which says that Wolff snowflakes
are locally flat in the sense of Reifenberg.

Lemma 3.2 [Lewis et al. 2013, Lemma 7.1]. If θ0, N−1 are small enough, depend-
ing only n, then the Wolff snowflake domain �∞ is (cθ0,∞)-Reifenberg flat, where
c = c(n).

4. Proof of Theorem 1.5

In this section we give a proof of Theorem 1.5 using some results from [Lewis et al.
2013; Azzam et al. 2016]. To this end, let �∞ be a Wolff snowflake with constants
θ0, N as described in Section 3. For fixed p, 1< p 6= 2<∞, let u∞ be the unique
positive p-harmonic function in �∞ with continuous boundary value zero on ∂�∞
and |xn−u∞(x)| → 0 uniformly as |x | →∞. Let µ∞ be the p-harmonic measure
associated with u∞ as in (1.2). A proof of existence and uniqueness of u∞ can
be found in [Lewis et al. 2013, Lemma 6.1]. Let �′

∞
be the restriction of �∞ to

Q(1)×[−1, 1] and let µ′
∞

be the restriction of µ∞ to (Q(1)×[−1, 1])∩ ∂�∞.
The following lemma can be easily deduced by combining Lemma 7.4 and

Proposition 7.6 from [Lewis et al. 2013] when n≥3 and combining Lemma 3.23 and
Theorem 1 from [Bennewitz and Lewis 2005] when n=2. Moreover, when n≥3 and
2−η< p<2 it follows from Theorem 4 in [Lewis et al. 2013]. We first state a lemma.

Lemma 4.1. When n ≥ 3 let p be fixed, 2< p <∞, and when n ≥ 2 let p be fixed
with 2− η < p < 2 for some η > 0. Let �′

∞
and µ′

∞
be described as above. Then
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for some d > 0 we have

lim
r→0

logµ′
∞
(1(x, r))

log r
≤ d < n− 1 for all x ∈ ∂�′

∞
\3,

where 3⊂ ∂�′
∞

with µ′
∞
(3)= 0. Moreover, H− dimµ′

∞
≤ d < n− 1.

Proof. We first show that there exist Wolff snowflakes for which H−dimµ< n−1
in all cases stated in Lemma 4.1. To this end, as we discussed in Section 1, when
n≥ 3 and 2< p<∞ there exist Wolff snowflakes such that H−dimµ< n−1 (see
Theorems 2 and 3 in [Lewis et al. 2013]). When n = 2, it follows from [Bennewitz
and Lewis 2005, Theorem 1] that there is a Wolff snowflake for which H−dimµ<1
whenever p is fixed with 2< p <∞. Next, there exist Wolff snowflakes for which
H− dimω < n− 1, which is a well-known result of Wolff [1995] when n ≥ 3. On
the other hand, it is observed in [Lewis et al. 2013, Proposition 6.4] that there exists
a Wolff snowflake such that the sign of (n− 1)− (H− dimω) equals the sign of
(n− 1)− (H− dimµ) for p ∈ (2− η, 2). Therefore, combining these two results,
we first conclude that there exists a Wolff snowflake for which H− dimω < n− 1
when 2− η < p < 2 for some η > 0. Using these observations and Lemma 7.4 in
[Lewis et al. 2013] we finish the proof of lemma. �

We are now ready to prove Theorem 1.5. Under the p-harmonic setting, we
closely follow the arguments given in [Azzam et al. 2016] after Theorem 4.3. We first
observe from Lemma 4.1, more specifically from the fact H−dimµ′

∞
≤ d < n−1,

and the definition of Hausdorff dimension of p-harmonic measure, that there is
a Borel set E ⊂ ∂�′

∞
such that µ′

∞
(Rn
\ E) = 0 and Hd(E) = 0. From this

observation and once again from Lemma 4.1 we also have

(4.2) lim
r→0

logµ′
∞
(B(x, r))

log r
≤ d < n− 1 for all x ∈ E .

Note that �′
∞

is the restriction of �∞ to Q(1)×[−1, 1]; therefore,

∂�∞\ {(x ′, xn) ∈ Rn
: xn = 0} ⊂ ∂�′

∞
.

For ease of notation we let

Rn−1
:= {(x ′, xn) ∈ Rn

: x ′ ∈ Rn−1 and xn = 0}.

From (4.2) it follows that for α, 0< α < n− 1− d, one can find small enough ρ
such that µ′

∞
(E1) > 0, where

E1 =

{
x ∈ (E ∩ ∂�∞) \Rn−1

:
logµ′

∞
(B(x, r))

log r
< n− 1−α for all r ∈ (0, ρ]

}
.

We next fix a point ζ0 ∈ E1. By the regularity of p-harmonic measure we can
find ρ0 ∈ (0, ρ] and a compact set K ⊂ E1 ∩ B(ζ0, ρ0) such that for all x ∈ K and
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r ∈ (0, ρ0) the following property holds:

µ′
∞
(K ) > 0 and µ′

∞
(B(x, r)) > rn−1−α.

The construction yields that K ⊂ ∂�′
∞
∩ ∂�∞ and cl(�′

∞
)⊂ cl(�∞). Then using

the fact that the support of µ′
∞

is contained in (Q(1)×[−1, 1])∩ ∂�∞ we have

(4.3) µ∞(K ) > 0 and µ∞(B(x, r)∩ ∂�∞) > rn−1−α

for all x ∈ K and r ∈ (0, ρ0).
For a given number t , 4 ≤ t , and given open set O ⊂ Rn−1 we use Wt(O)

to denote the set of maximal dyadic cubes Q ⊂ O satisfying t Q ∩ K c
= ∅. Let

0< ε < 1
100 and let I be the family of cubes Q ∈Wε−2(K c) such that

Q ∩ (Q(1)×[−1, 1])∩ ∂�∞ 6=∅.
Note that

l(Q)≈ ε2 dist(Q, K ) for all Q ∈ I and ∂�′
∞
\ K ⊂

⋃
Q∈I

Q.

For each Q ∈ I, fix some point zQ ∈ Q∩∂�′
∞

. We then define a new domain�+ε by

�+ε :=�
′

∞
∪

(⋃
Q∈I

BQ

)
, where BQ = B(zQ, ε dist(zQ, K )).

It is observed in [Azzam et al. 2016, Lemma 2.2] that if θ, ε in the construction of
the Wolff snowflake in Section 3 are small enough then�+ε is (cε1/2, r0)-Reifenberg
flat and K ⊂ ∂�+ε , provided that the original domain �∞ is (δ, r0)-Reifenberg flat.
Note that from Lemma 3.2 we have that Wolff snowflake domain �∞ is (cθ0, r0)-
Reifenberg flat, where r0 =∞. Therefore if we choose θ and ε small enough and
use Lemma 2.2 from [Azzam et al. 2016] then �+ε is a (cε1/2,∞)-Reifenberg flat
domain satisfying

(4.4) K ⊂ ∂�′
∞
∩ ∂�+ε and cl(�∞)⊂ cl(�+ε ).

Let u+ε be a positive p-harmonic function in �+ε with continuous boundary value
zero on ∂�+ε . Let µ+ε be the p-harmonic measure associated with u+ε as in (1.2).
From the construction of �+ε we have u+ε ≥ u′

∞
on ∂�′

∞
. Then it follows from

the maximum principle for positive p-harmonic functions and (4.4) that u+ε ≥ u′
∞

in �′
∞

. This observation, Lemmas 2.6–2.8 and (4.3) yield

(4.5) µ+ε (K ) > 0 and µ+ε (B(x, r)) > rn−1−α for all x ∈ K , r ∈ (0, ρ0).

Asµ+ε is a Radon measure which follows from Lemma 2.8 and satisfies (4.5) and�+ε
is (δ̂, r̂0)-Reifenberg flat domain, it follows from [Azzam et al. 2016, Lemma 3.1]
that Hn−1

|∂�+ε
is locally finite. Let � :=�+ε be the (δ̂, r̂0)-Reifenberg flat domain
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with locally finite surface measure and let µ := µ+ε be the p-harmonic measure as
above. From (4.5) we conclude that Theorem 1.5 is true. �
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