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For a surface in the 3-sphere, by identifying the conformal round 3-sphere
as the projectivized positive light cone in Minkowski 5-spacetime, we use the
conformal Gauss map and the conformal transform to construct the asso-
ciate homogeneous 4-surface in Minkowski 5-spacetime. We then derive the
local fundamental theorem for a surface in the conformal round 3-sphere
from that of the associate 4-surface in Minkowski 5-spacetime. More im-
portantly, following an idea of Fefferman and Graham, we construct local
scalar invariants for a surface in the conformal round 3-sphere. One distinct
feature of our construction is to link the classic work of Blaschke to the work
of Bryant and Fefferman and Graham.

1. Introduction

It is well-known that all local scalar invariants of a (pseudo-)Riemannian metric
are Weyl invariants, based on Weyl’s classical invariant theory for the orthogonal
groups. A conformal structure on a manifold is described by an equivalent class
of conformal Riemannian metrics. Two metrics g1 and g2 on a manifold M are
conformal to each other if g1 = λ

2g2 for some positive smooth function λ on M.
There are several ways to set the theory of local conformal invariants, but it is no
longer straightforward to account for local scalar conformal invariants because of
the lack of Weyl Theorem for the group of conformal transformations. To tackle
this problem, Fefferman and Graham, in a seminal paper [1985], described an
ingenious construction for a Ricci-flat homogeneous Lorentzian ambient spacetime
for a given conformal manifold, where the conformal manifold is represented by
the homogeneous null hypersurface in the ambient spacetime. Their construction
was motivated by the model case in which the conformal round sphere Sn is the
projectivized positive light cone Nn+1

+ in Minkowski spacetime R1,n+1. Thus they
initiated the program of using local scalar (pseudo-)Riemannian invariants of the
ambient metrics at the homogeneous null hypersurface to fully account for local
scalar conformal invariants. Readers are referred to their recent expository paper
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[Fefferman and Graham 2012] to learn all the developments of this program, and
also to [Bailey et al. 1994; Gover 2001]. This program has lead to many significant
advances in the global theory of conformal geometry, particularly via conformally
invariant PDEs.

In this paper we build a model case for the study of local scalar invariants of sub-
manifolds in a conformal manifold, following Fefferman and Graham’s approach.
The model case for us is to study 2-surfaces x̂ in the conformal round 3-sphere
(S3, [g0]). As in [Fefferman and Graham 1985], the conformal round 3-sphere is
represented by the positive light cone N4

+
in Minkowski 5-spacetime R1,4. Given

an immersed surface
x̂ :M2

→ S3

or equivalently

y = (1, x̂) :M2
→ N4

+
,

to incorporate all metrics in [g0] on the 3-sphere we consider the homogeneous
extension

xN
= α(1, x̂) : R+×M2

→ N4
+
⊂ R1,4.

Then we will use the conformal Gauss map ξ of x̂ to choose a canonical null vector
y∗ at each given point y ∈ xN

⊂ N4
+

to extend xN further into a homogeneous
timelike 4-surface

x̃ = αy+αρy∗ : R+×R+×M2
→ R1,4.

We will also consider the associate ruled 3-surface

x+ =
1
√

2
(et y+ e−t y∗) : R×M2

→ H4
⊂ R1,4

where H4 is the hyperboloid in Minkowski 5-spacetime. The main idea, inspired by
Fefferman and Graham’s work, is to use the geometry of the associate 4-surface x̃
in Minkowski spacetime R1,4 (the associate ruled 3-surface x+ in the hyperboloid
H4 and the spacelike surface as the image of the conformal Gauss map ξ in the de
Sitter spacetime S3,1 in Minkowski spacetime R1,4) to study the geometry of the
surface x̂ in the conformal round 3-sphere S3.

Our approach facilitates proofs of the local fundamental theorems (see Theorem
3.3.1 and [Wang 1992; 1998]) and produces local scalar invariants of surfaces in
the conformal round 3-sphere. It is more interesting to find scalar invariants and the
PDE problems similar to the study of Willmore surfaces [Blaschke 1929; Bryant
1984; Li and Yau 1982; Marques and Neves 2014].

We remark that the key to our construction of associate surfaces is the conformal
Gauss map ξ to a given surface x̂ in the conformal round 3-sphere. Conformal
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Gauss maps have been introduced in several contexts [Blaschke 1929; Bryant 1984;
Rigoli 1987]. We are searching for a definition that fits into the context of ambient
spaces of Fefferman and Graham (Lemmas 2.3.1 and 2.3.2). It is fascinating to see
how Blaschke [1929] introduced the conformal Gauss map as the map representing
the family of mean curvature 2-spheres of the surface x̂ and the conformal trans-
form x̂∗ (Definition 2.4.1) as the other envelope surface of the conformal Gauss
map. One technical assumption for the null vector y∗ to be well defined at each
point y ∈ xN is to require that the conformal Gauss map of the surface x̂ induces
a spacelike surface in the de Sitter spacetime S1,3, which is equivalent to require
the surface x̂ is free of umbilical point in the conformal 3-sphere S3.

It is nice to know that in our construction the associate 4-surface x̃ in Minkowski
spacetime R1,4 is a minimal 4-surface (of vanishing mean curvature) if and only if
the 2-surface x̂ is a Willmore surface with no umbilical point in S3 (Theorem 3.2.1).
The same statement also holds for the associate ruled 3-surface x+ in the hyper-
boloid H4 (Theorem 3.4.1) and the conformal Gauss map surface ξ in de Sitter
sapcetime S1,3 (Theorem 2.5.2).

Upon realizing that a different representative λ2g0 in the conformal class [g0]

on S3 is equivalent to a different parametrization for the associate surface

(1.0.1) x̃ = αyλ+αρy∗λ : R
+
×R+×M2

→ R1,4,

where yλ = λ̂(1, x̂) and λ̂ = λ ◦ x̂ for a conformal factor λ, the real issue is how
we use the geometry of the surface x̂ in the 3-sphere (S3, λ2g0) to calculate the
geometry of the associate surface x̃ . The solution is to use as the realization of
(S3, λ2g0) the following 3-sphere S3

λ in the positive light cone N4
+

:

(1.0.2) λ(1, x) : S3
→ N4

+
.

For the convenience of readers we present the calculations of the geometry of
S3
λ as a spacelike 3-surface in Minkowski spacetime in Appendix B. But it starts

with the observation that the conformal Gauss map

(1.0.3) ξ = Hλyλ+ Enλ :M2
→ R1,4,

where Hλ is the mean curvature of x̂ in (S3, λ2g0) and Enλ is the unit normal to yλ
in S3

λ ⊂ N4
+

, is independent of the conformal metric λ2g0 (cf. Lemma 2.3.4).

Using the calculations in Appendix B, we are able to show in the proof of
Theorem 4.3.2 that the data {m, ωλ, �λ, �∗λ} that determine the first and second
fundamental forms of the associate surface x̃ in Minkowski spacetime R1,4 can
all be expressed in terms of covariant derivatives of the curvature of the surface
x̂ in (S3, λ2g0) and the covariant derivatives of curvature of (S3, λ2g0) (including
0th order). In the exact same spirit as in [Fefferman and Graham 1985; 2012],
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our construction of associate surfaces x̃ provides a way to capture local scalar
conformal invariants of a surface x̂ . Namely, one can obtain local scalar con-
formal invariants of the surface x̂ in the conformal round 3-sphere by computing
the local scalar (pseudo-)Riemannian invariants of the associate surface x̃ at the
homogeneous surface xN in the light cone in Minkowski 5-spacetime. The first
nontrivial one is

(1.0.4) 1̃H̃ |ρ=0 = 2α−3(1λHλ+ |I̊Iλ|2 Hλ+ (I̊Iλ)i j (Rλ)i3 j3− (Rλ) i
3i, )

in a general parametrization (1.0.1), where (Rλ)i3 j3 and (Rλ)3i are the Riemann
curvature and Ricci curvature of the metric λ2g0 on S3. Due to the homogeneity
of x̃ we automatically have

(1.0.5) Hλ =1λHλ+|I̊Iλ|2 Hλ+ (I̊Iλ)i j (Rλ)i3 j3− (Rλ) i
3i, = λ̂

−3(1H +|I̊I|2 H)

which is the curvature that vanishes if and only if the surface x̂ is Willmore. Notice
that extra curvature terms do not show up when we work with either the round
metric g0 or the Euclidean metric. Similar formulas have appeared in the literature
[Hu and Li 2004; Gover and Waldron 2015] and are also used by R. Graham and
N. Reichert (work in progress).

In (4.2.7) we obtain this conformal scalar invariant of higher order:

(1.0.6) |∇ h̃|2|ρ=0 = α
−4(
|∇�λ|

2
+ 8|d Hλ|2+ 2 Ricλ(Enλ,∇Hλ)+ 3H 2

λ |�λ|
2

+3K T
λ |�λ|

2
+ 6�λ ·Hess(Hλ)

)
,

where K T
λ is the sectional curvature of (S3, λ2g0) at the tangent plane to the sur-

face x̂ . Another higher-order invariant is

(1.0.7) 1̃1̃H̃ |ρ=0 = 8α−5(1λHλ+ 9|ωλ|2Hλ− 3Div(ωλ)Hλ

−6ωλ(∇Hλ)− 6Hλ|I̊Iλ|−2I̊Iλ ·�∗λ
)
,

where ωλ = <<dyλ, y∗λ >> and �∗λ =− <<dy∗λ, dξ >> are parts of the data that determine
the geometry of the associate surface x̃ ; they are given in (3.1.3) and (4.3.6) as
invariants of the surface x̂ in (S3, λ2g0).

To end the introduction we remark that, for the sake of the production of local
scalar invariants, the assumption of having no umbilical point in our construction
is not an issue.

2. The associate surfaces in R1,4

In this section we introduce the associate surfaces in Minkowski space R1,4 for a
given surface x̂ :M2

→ S3. We then show that such associate surface is canonical
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in doing conformal geometry for the surface x̂ . The construction relies on the con-
formal Gauss map and the conformal transform of x̂ . It is also very interesting to
see how Blaschke and Bryant came to the conformal Gauss map and the conformal
transform in very different perspectives [Blaschke 1929; Bryant 1984].

2.1. Surfaces in the 3-sphere. Suppose that

x̂ :M2
→ S3

⊂ R4

is an immersed surface with isothermal coordinate (u1, u2). Let

n :M2
→ R4

be the unit normal vector at each point on the surface. Then we obtain the first
fundamental form

(2.1.1) I = <<dx̂, dx̂ >> = E |du|2

and the second fundamental form

(2.1.2) II =− <<dx̂, dn >> = e(du1)2+ 2 f du1du2
+ g(du2)2.

Hence the mean curvature of the surface in the 3-sphere is

(2.1.3) H =
1

2E
(e+ g)

and the Gaussian curvature of the surface is

(2.1.4) K =
eg− f 2

E2 + 1.

Notice that

(2.1.5) nu1 =−
e
E

x̂u1 −
f
E

x̂u2, nu2 =−
f
E

x̂u1 −
g
E

x̂u2 .

If one takes another conformal metric λ2g0 on the 3-sphere S3, where λ is a
positive function on S3, then the first fundamental form for the surface x̂ is

(2.1.6) Iλ = λ̂2 I,

where λ̂= λ ◦ x̂ and the second fundamental form is

(2.1.7) IIλ = λ̂II− λn I,

where λn = n(λ). Hence

(2.1.8) Hλ = λ̂−1
(

H −
λn

λ̂

)
and I̊Iλ = λ̂I̊I,
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where I̊I is the traceless part of the second fundamental form II. Here we see the
easy scalar conformal invariant |I̊I|2, which can be considered to be the counter
part of the square of the length of Weyl curvature on a conformal manifold.

2.2. Minkowski 5-spacetime. Let R1,4 be the Minkowski 5-spacetime, where we
use the notation

R1,4
= {(t, x) : t ∈ R and x ∈ R4

}

with the Lorentz inner product

<<(t, x), (s, y) >> =−st + x · y.

Recall the positive light cone is given by

N4
+
= {(t, x) ∈ R1,4

: −t2
+ |x |2 = 0 and t > 0};

the hyperboloid is given as

H4
= {(t, x) ∈ R1,4

: −t2
+ |x |2 =−1 and t > 0};

and the de Sitter 4-spacetime is given as

S1,3
= {(t, x) ∈ R1,4

: −t2
+ |x |2 = 1}.

Given a surface x̂ :M2
→ S3

⊂ R4, we may consider the 2-surface

y = (1, x̂) :M2
→ N4

+
⊂ R1,4

and the homogeneous extension

xN
= αy : R+×M2

→ N4
+
⊂ R1,4

for α ∈R+. There does not seem to be a way of doing “geometry" of the homoge-
neous 3-surface xN in the positive light cone N4

+
.

To motivate our choice of the associate surface in R1,4 of x̂ we first introduce the
so-called homogeneous coordinate for R1,4 used in the ambient space construction
of [Fefferman and Graham 1985; 2012], that is,

(2.2.1) (t, x)= x0(1, x̂)+ x0x∞ 1
2(1,−x̂)

where

x0
=

1
2
(r + t), x0x∞ = (−r + t)

and r = |x | and x = r x̂ . In this coordinate the Minkowski metric is

G̃0 =−2x∞(dx0)2− 2x0 dx0 dx∞+ (x0)2
(
1− 1

2 x∞
)2g0(x̂).
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Hence, given a surface x̂ : M2
→ S3, we are looking to construct an associate

homogeneous timelike 4-surface

(2.2.2) x̃ = αy+αρy∗ : R+×R+×M2
→ R1,4

if we can have canonically the null vector y∗ at a given null position y on xN. It
is clear that the associate surface x̃ is ruled by the positive quadrants of timelike
2-planes in Minkowski spacetime. One may consider the intersection of x̃ with the
hyperboloid H4:

(2.2.3) x+ =
1
√

2
(et y+ e−t y∗) : R×M2

→ H4,

which is called the associate ruled 3-surface since it is a 3-surface in hyperbolic
4-space ruled by geodesics lines. Recall that a geodesic line in the hyperboloid H4

is the intersection of the hyperboloid with a timelike 2-subspaces in Minkowski
spacetime. In the following we will introduce the canonical choice of such y∗.

2.3. Conformal Gauss maps. Let us consider any unit spacelike normal vector
to the homogeneous null 3-surface xN

= αy in N4
+
⊂ R1,4. That is to ask a unit

spacelike 5-vector ξ to satisfy

(2.3.1) <<ξ, xN
>> = 0, <<ξ, xN

u1 >> = 0, <<ξ, xN
u2 >> = 0,

which implies that
ξ = ay+ En,

where En = (0, n) is the unit normal to the surface x̂ in the standard unit round
3-sphere in {1} ×R4

⊂ R1,4. It turns out that there is a unique choice if we insist
that the map

ξ :M2
→ S1,3

⊂ R1,4

is (weakly) conformal. Namely we have

Lemma 2.3.1. Suppose that x̂ : M2
→ S3 is an immersed surface. For a unit

normal vector ξ to the homogeneous null 3-surface xN
= αy : R+×M2

→ N4
+
⊂

R1,4,

<<ξu1, ξu2 >> = 0

if and only if
ξ = H y+ En

and

(2.3.2) <<dξ, dξ >> =
1
2 E |I̊I|2|du|2.
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Proof. It is simply a straightforward calculation. We know

ξui = aui (1, x̂)+ a(0, x̂ui )+ (0, nui ).

Hence we have

<<ξu1, ξu2 >> =−2a f +
1
E
( f e+ f g)= 0,

which is equivalent to a = H . For the rest we calculate

<<ξu1, ξu1 >> = <<ξu2, ξu2 >> =
1

E2

(
f 2
+

(e−g
2

)2)
E . �

Another way to identify a unique unit spacelike normal vector to the homoge-
neous null 3-surface xN

= αy : R+×M2
→ N4

+
is the following:

Lemma 2.3.2. Suppose that x̂ :M2
→S3 is an immersed surface. Then, for a unit

spacelike normal vector ξ to xN
= αy : R+×M2

→ N4
+
⊂ R1,4,

(2.3.3) ξ = H y+ En

if and only if

(2.3.4) <<1ξ, y >> = 0.

Proof. We simply calculate, for ξ = a(1, x̂)+ (0, n),

10ξ = ξu1u1 + ξu2u2 = (10a)(1, x̂)+ 2∇a(0,∇ x̂)+ a(0,10 x̂)+ (0,10n)

and
<<10ξ, (1, x̂) >> =−2aE + 2H E .

Notice that 1= E−110. �

Before we give a formal definition of the conformal Gauss map we remark that
(2.3.4) is the integrability condition for the unit vector field ξ to be the confor-
mal Gauss map (up to a sign) for the surface x̂ . This turns out to be the easiest
way to see that x̂ is Willmore if and only if the conformal Gauss map ξ of x̂ is
also the conformal Gauss map (up to a sign) of the conformal transform x̂∗ (see
Definition 2.4.1).

Definition 2.3.3. Suppose that x̂ :M2
→ S3 is a surface. Then we will call

(2.3.5) ξ = H y+ En :M2
→ S1,3

⊂ R1,4

the conformal Gauss map according to Blaschke (cf. [Bryant 1984; Rigoli 1987]).

For a positive function λ on the sphere S3 we consider the conformal metric
λ2g0 on the sphere S3, which can be realized as the 3-sphere S3

λ: λ(1, x) : S3
→

N4
+
⊂ R1,4 in Minkowski spacetime. It is essential here that the surface x̂ in the

3-sphere S3 with the conformal metric λ2g0 is realized as the 2-surface λ̂(1, x̂) :
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M2
→ N4

+
⊂ R1,4 inside the 3-sphere S3

λ. It is helpful to see the calculations in
Appendix B about the geometry of the 3-sphere S3

λ in Minkowski spacetime R1,4.

Lemma 2.3.4. If one works with a conformal metric λ2g0 in general, then

(2.3.6) ξ = ξλ = Hλyλ+ Enλ,

where Enλ = En+ (log λ)n y is the unit normal to the surface

yλ = λ̂(1, x̂) :M2
→ S3

λ ⊂ N4
+
.

Proof. It is easily seen that the normal direction to the surface yλ inside S3
λ is

λn(1, x̂)+λ(0, n) and that <<λn(1, x̂)+λ(0, n), λn(1, x̂)+λ(0, n) >> =λ2. Therefore
the unit normal for the surface yλ in S3

λ is Enλ= En+(log λ)n y. Hence (2.1.8) yields

Hλyλ+ Enλ = H y+ En. �

In light of (2.3.2), the conformal Gauss map gives rise a spacelike 2-surface

ξ :M2
→ S1,3

⊂ R1,4

when the original surface x̂ :M2
→ S3 is free of umbilical points. We will have

more detailed discussions for the reasons to call ξ the conformal Gauss map in
Section 2.7.

It is interesting that Blaschke came across the conformal Gauss map from a
different perspective. He considered the family of mean curvature 2-spheres to the
surface x̂ in S3. A round 2-sphere in 3-sphere can be thought of as the intersection
of a timelike hyperplane and the 3-sphere at time t = 1 in Minkowski spacetime
R1,4 and a timelike hyperplane in R1,4 is described by a unit normal vector lying in
de Sitter 4-spacetime S1,3. Given a direction (H, H x̂ + n) ∈ S1,3, the hyperplane
perpendicular to that in R1,4 is given by the first equation in (2.3.1):

(2.3.7) <<(s, z), (H, H x̂ + n) >> = 0,

which is
−s H + H z ·

(
x̂ + 1

H
n
)
= 0.

At the level s = 1 in the 3-sphere |z| = 1, we arrive at

1− ẑ ·
(

x̂ + 1
H

n
)
= 0.

We may rewrite this as

(2.3.8)
∣∣∣ẑ− (x̂ + 1

H
n
)∣∣∣2 = 1

H 2

which clearly is a round 2-sphere of mean curvature H when intersects with the
3-sphere S3

⊂ R4 at t = 1 in R1,4. Hence the equations (2.3.1) exactly ask the
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surface y = (1, x̂) :M2
→S3

⊂N4
+
⊂R1,4 to be an envelope surface of the family

of mean curvature 2-spheres described by the conformal Gauss map ξ .
It is known that a mean curvature sphere of a surface goes to the mean curvature

sphere of the image surface under conformal transformations.

2.4. Conformal transforms. Assume that the surface x̂ :M2
→ S3 is free of um-

bilical points. Then the conformal Gauss map induces a spacelike 2-surface in the
de Sitter 4-space S1,3

ξ :M2
→ S1,3

⊂ R1,4.

One notices that the equations (2.3.1) imply that y = (1, x̂) is naturally a null
normal vector the surface ξ in the de Sitter 4-spacetime S1,3. Because

<< y, ξui >> =− <<ξ, yui >> = 0.

Hence it is natural to take the other null normal vector y∗ such that

(2.4.1)
<< y∗, y >> =−1, << y∗, y∗ >> = 0, << y∗, ξ >> = 0,

<< y∗, ξu1 >> = 0 and << y∗, ξu2 >> = 0.

We may write

y∗ = µ̂∗(1, x̂∗).

Definition 2.4.1. Suppose that x̂ :M2
→ S3 is a surface with no umbilical point.

And suppose that

y∗ = µ̂∗(1, x̂∗) :M2
→ N4

+
⊂ R1,4

satisfies the equations (2.4.1) for y = (1, x̂). Then the surface

x̂∗ :M2
→ S3

is said to be the conformal transform of the surface x̂ according to [Bryant 1984]
(cf. [Blaschke 1929]).

It is important that the conformal transform x̂∗ of a surface x̂ is independent of
the conformal factor λ. Notice that the equations in (2.4.1) remain the same except
the first one when replacing y by yλ. It is again very interesting to recall how
Blaschke discovered the surface x̂∗. From the above discussions it is now easy to
see that the surface x̂∗ is nothing but the other envelope surface of the family of
round 2-spheres described by the conformal Gauss map ξ , i.e., the family of the
mean curvature spheres of the surface x̂ , since y∗ satisfies the last three equations
in (2.4.1).
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2.5. The geometry of the surface ξ in S1,3. Recall that the first fundamental form
for the surface ξ in the de Sitter spacetime S1,3

⊂ R1,4 is

(2.5.1) I ξ = <<dξ, dξ >> = m|du|2,

where

(2.5.2) m = 1
2 E |I̊I|2.

The first fundamental form I ξ is usually called the Möbius metric on the surface
x̂ . If one works with a conformal metric λ2g0 instead, then the Möbius metric
remains the same:

(2.5.3) m = mλ =
1
2 Eλ|I̊Iλ|2.

The second fundamental form for the surface ξ in S1,3 is given by

IIξ =− <<dξ, dy >> y− <<dξ, dy∗ >> y∗ =�y+�∗y∗ =�λλ̂−2 yλ+�∗λλ̂
2 y∗λ

and

(2.5.4)
�i j =− <<ξui , yu j >> , �∗i j =− <<ξui , y∗u j >> ,

(�λ)i j =− <<ξui , (yλ)u j >> = λ̂�i j , (�∗λ)i j =− <<ξui , (y∗λ)u j >> = λ̂
−1�∗i j .

In fact it is easy to calculate that

(2.5.5) �=

e−g
2

f

f g−e
2

= I̊I.

Let us first calculate the mean curvature in the y∗ direction. We notice that

<<10ξ, y∗λ >> = ((�
∗

λ)11+ (�
∗

λ)22)

while

<<10ξ, yλ >> = ((�λ)11+ (�λ)22)= 0.

Based on the calculations

<<10ξ, ξ >> =−2m,

<<10ξ, ξu1 >> =
1
2 mu1 −

1
2 mu1 = 0,

<<10ξ, ξu2 >> =−
1
2 mu2 +

1
2 mu2 = 0,

we obtain

(2.5.6) 10ξ =−((�
∗

λ)11+ (�
∗

λ)22)yλ− 2mξ

= (−((�∗λ)11+ (�
∗

λ)22)− 2m Hλ)yλ− 2m Enλ.
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On the other hand, we directly calculate

(2.5.7) 10ξ =10(Hλyλ+ Enλ)

= (10 Hλ)yλ+ Hλ10 yλ+ 2(Hλ)u1(yλ)u1 + 2(Hλ)u2(yλ)u2 +10Enλ.

It seems that the best way to calculate geometrically is to use the Lorentz orthogonal
frame

{yλ, y†
λ, (yλ)u1, (yλ)u2, Enλ},

where
(2.5.8)

<< y†
λ, yλ >> =−1, << y†

λ, y†
λ >> = << y†

λ, (yλ)u1 >> = << y†
λ, (yλ)u2 >> = << y†

λ, Enλ >> = 0.

We find that

(2.5.9) y†
λ =

1
λ

( 1
2 |∇ log λ|2 y+ y†

−∇ log λ
)
,

where y†
=

1
2(1,−x̂) and ∇ is the gradient on the standard round 3-sphere. We

will apply the inner product with the null vector y†
λ to both (2.5.6) and (2.5.7).

To calculate Hλ <<10 yλ, y†
λ >> + <<10Enλ, y†

λ >> we rewrite

Hλ <<10 yλ, y†
λ >> =−Hλ( <<(yλ)u1, (y†

λ)u1 >> + <<(yλ)u2, (y†
λ)u2 >> )

and

<<10Enλ, y†
λ >> =− <<(Enλ)u1, (y†

λ)u1 >> − <<(Enλ)u2, (y†
λ)u2 >> − << Enλ, (y†

λ)ui >> ui .

Meanwhile one may calculate

(2.5.10)


(Enλ)u1 =−

eλ
Eλ
(yλ)u1 −

fλ
Eλ
(yλ)u2 − <<(Enλ)u1, y†

λ >> yλ

(Enλ)u2 =−
fλ
Eλ
(yλ)u1 −

gλ
Eλ
(yλ)u2 − <<(Enλ)u2, y†

λ >> yλ.

Hence we have

(2.5.11) Hλ <<10 yλ, y†
λ >> + <<10Enλ, y†

λ >>

= E−1
λ (I̊Iλ)i j <<(yλ)ui , (y†

λ)u j >> − << Enλ, (y†
λ)ui >> ui

=−E−1
λ (I̊Iλ)i j Rλi3 j3+ Eλ(Rλ) i

3i,

due to (B.6), (B.7), and (B.8). Now we obtain the mean curvature of the surface ξ
in the de Sitter spacetime S1,3.

Lemma 2.5.1. Suppose that x̂ :M2
→S3 is an immersed surface with no umbilical

point and that ξ : M2
→ S1,3 is the conformal Gauss map. Then the surface ξ is
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spacelike and its mean curvature is a null vector

(2.5.12) H ξ
= 2λ̂2 Hλ

|I̊Iλ|2
y∗λ

for any positive function λ on the 3-sphere S3, where

(2.5.13) Hλ =1λHλ+ |I̊Iλ|2 Hλ+ (I̊Iλ)i j (Rλ)i3 j3− (Rλ) i
3i,,

and (Rλ)i jkl , (Rλ)i j are the Riemann curvature and Ricci curvature for the confor-
mal metric λ2g0 on the 3-sphere S3.

Proof. We perform inner product to (2.5.6) and (2.5.7) by the null vector y†
λ and

obtain that

(2.5.14) (�∗λ)11+ (�
∗

λ)22 = Eλ(−1λHλ− |I̊Iλ|2 Hλ− (I̊Iλ)i j (Rλ)i3 j3+ (Rλ) i
3i,)

in the light of (2.5.11). Then one can easily calculate the mean curvature for ξ in
S1,3. �

We remark that (2.5.12) actually shows that

(2.5.15) Hλ = λ̂
−3(−1H − |I̊I|2 H)

for a surface x̂ in the conformal 3-sphere.
Most of the next theorem was known to Blaschke [1929] and Bryant [1984].

Theorem 2.5.2. Suppose that x̂ :M2
→ S3 is an immersed surface with no umbil-

ical point. Then x̂ is a Willmore surface in S3 if and only if the conformal Gauss
map induces a minimal spacelike surface in the de Sitter spacetime S1,3. Moreover
its conformal transform x̂∗ is a dual Willmore surface in S3.

Proof. Because Lemma 2.3.2 implies that ξ is also the conformal Gauss map (up
to the sign) for x̂∗ when H ξ vanishes. The two dual Willmore surfaces are the
two envelope surfaces of the family of round 2-spheres described by the conformal
Gauss map ξ . �

Remark 2.5.3. It is also known to [Blaschke 1929] and [Bryant 1984] that if x̂ is
a minimal surface in S3, then x̂∗ = −x̂ ; and that x̂ is a Willmore surface if and
only if x̂∗∗= x̂ . An interesting question then arises: is it possible to have x̂∗∗∗= x̂ ,
and if so what would that equality imply for the surface?

2.6. Finding y∗λ . Let us now solve y∗λ for yλ = λ̂(1, x̂)= λ̂y, where λ̂= λ◦ x̂ and
λ is a positive function on the sphere S3. At each point on the surface we set

y∗λ = κyλ+ κ† y†
λ + bEnλ+

ωλ1

Eλ
(yλ)u1 +

ωλ2

Eλ
(yλ)u2 .
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We get from (2.4.1)

(2.6.1)



κ† = 1,

−2κ+κ−+ b2
+
(ωλ1)

2
+ (ωλ2)

2

Eλ
= 0,

b = Hλ,

−(�λ)11ω
λ
1 − (�λ)12ω

λ
2 = (Hλ)u1 Eλ,

−(�λ)21ω
λ
1 − (�λ)22ω

λ
2 = (Hλ)u2 Eλ.

Lemma 2.6.1. Suppose that x̂ :M2
→S3 is an immersed surface with no umbilical

point. Then

(2.6.2) y∗λ =
1
2(|ω

λ
|
2
+ H 2

λ )yλ+ y†
λ + HλEnλ− (I̊I)−1

λ d Hλ

for any positive function λ on the 3-sphere, where

|ωλ|2 =
(ωλ1)

2
+ (ωλ2)

2

Eλ
=

1
m
((Hλ)2u1 + (Hλ)2u2).

In particular,

(2.6.3) y∗ = 1
2(|ω|

2
+ H 2)y+ 1

2(1,−x̂)+ H(0,n)− (0, (I̊I)−1d H),

and

(2.6.4) x∗ = ax̂ +
H

1− a
n−

1
1− a

(I̊I)−1d H,

where

(2.6.5) a =
|ω|2+ H 2

− 1
|ω|2+ H 2+ 1

.

Proof. One simply solves (2.6.1) if det�λ 6= 0, which is equivalent to the fact that
the surface has no umbilical point. �

2.7. Canonicity of y∗. We next show that the choice of y∗ is canonical in terms
of doing conformal geometry for the surface x̂ in S3. Two issues are involved;
the first concerns the symmetry of the conformal 3-sphere. To be precise, for a
conformal transformation

φ : S3
→ S3

and the transformed surface

φ(x̂) :M2
→ S3,

is it true that

φ̃(x̃)= αφ̃(y)+αρφ̃(y∗) : R+×R+×M2
→ R1,4
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is the associate 4-surface of φ(x̂) in R1,4, where φ̃ is the corresponding Lorentz
transformation on R1,4 to φ? The other issue is whether or not the associate surface
x̃ is independent of metrics in the conformal class of the round 3-sphere. The first
easy and important fact is that the conformal Gauss map is independent of the
metrics in the conformal class.

Lemma 2.7.1. Suppose that x̂ :M2
→S3 is an immersed surface. Then the confor-

mal Gauss map ξ is independent of the metrics in the conformal class of the round
3-sphere S3. Meanwhile, the conformal Gauss map for the transformed surface
φ(x̂) is exactly φ̃(ξ), where φ̃ is the Lorentz transformation on the Minkowski
spacetime R1,4 corresponding to a conformal transformation φ on S3.

Proof. First of all, one needs to realize that, for any given metric in the conformal
class of the round 3-sphere, it simply amounts to consider the surface

yλ = λ̂(1, x̂) :M2
→ N4

+

for some positive function λ :S3
→R+ and λ̂= λ◦ x̂ . But this might only alter the

parametrization of the homogeneous null 3-surface xN
=αλ̂(1, x̂) :R+×M2

→N4
+

.
Hence it will not alter the conformal Gauss map. Of course we have already seen
this from Lemma 2.3.4.

Next we consider the transformed surface φ(x̂). Recall that, given a conformal
transformation φ of 3-sphere, we have a unique Lorentz transformation φ̃ in the
time and orientation preserving component of the Lorentz group on the Minkowski
spacetime such that, for λ(1, x̂) ∈ R1,4,

(2.7.1) φ̃(λ(1, x̂))= λµ(1, φ(x̂))

for some positive number µ. By the definition, which requires that φ̃ be a linear
map and that

<< φ̃((t, x̂)), φ̃((s, ŷ)) >> = <<(t, x̂), (s, ŷ) >> ,

we now easily see that φ̃(ξ) is the conformal Gauss map for the transformed surface
φ(x̂). Since φ̃(ξ) is the unit normal vector field to the homogeneous null 3-surface
φ̃(x) in N4

+
that is conformal map from M2 to S1,3. �

Consequently:

Proposition 2.7.2. Suppose that x̂ : M2
→ S3 is an immersed surface with no

umbilical point. Then the associate surface

x̃ = αyλ+αρy∗λ : R
+
×R+×M2

→ R1,4,

for any yλ = λ̂(1, x̂) and y∗ = λ̂−1λ∗(1, x̂∗) defined by the equations (2.4.1), is
independent of the metrics in conformal class of the round 3-sphere S3.
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Proof. It suffices to verify that

(2.7.2) (λ̂y)∗ = λ̂−1 y∗.

Since it implies that the change of metrics in the conformal class will at most cause
a possible change of parametrization of the associate surface x̃ . �

Lemma 2.7.3. Suppose that x̂ :M2
→S3 is an immersed surface with no umbilical

point. Let yλ = λ̂(1, x̂) ∈N4
+

and let φ be a conformal transformation of 3-sphere.
Then

(2.7.3) φ̃(yλ)∗ = φ̃(y∗λ).

Hence

(2.7.4) φ(x̂∗)= (φ(x̂))∗.

Proof. From Lemma 2.7.1 we know that the conformal Gauss map for the trans-
formed surface φ(x̂) is φ̃(ξ). Then it is easy to verify (2.4.1) for φ̃(y∗) to be φ̃(y)∗.
Then the Equation (2.7.4) follows from (2.7.1) and (2.7.3):

γ̂ ∗(1, (φ(x̂))∗)= φ̃(y)∗ = φ̃(y∗)= µ̂∗λ̂∗(1, φ(x̂∗)). �

Therefore:

Proposition 2.7.4. Suppose that x̂ : M2
→ S3 is an immersed surface with no

umbilical point. Let φ be a conformal transformation of 3-sphere. Then the as-
sociate 4-surface in R1,4 of the transformed surface φ(x̂) is exactly the 4-surface
φ̃(x̃) transformed from the associate 4-surface x̃ of the original surface x̂ under
the corresponding Lorentz transformation φ̃ of φ.

3. The geometry of the associate surfaces

In this section we calculate the first and second fundamental forms for the associate
homogeneous timelike 4-surfaces x̃ in R1,4 as well as for the associate ruled surface
x+ in the hyperboloid H4, for a given immersed 2-surface x̂ in S3.

3.1. The first fundamental form for x̃ in R1,4. To calculate the first fundamental
form for the surface in the parametrization

(3.1.1) x̃ = αyλ+αρy∗λ

associated with a conformal metric λ2g0 on the 3-sphere S3 , we first calculate

dx̃= (yλ+ρy∗λ)dα+αy∗λdρ+(α(yλ)u1+αρ(y∗λ)u1)du1
+(α(yλ)u2+αρ(y∗λ)u2)du2.
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Hence the first fundamental form for the associate 4-surface x̃ in the coordinates
(α, ρ, u1, u2) is

I x̃
= <<dx̃, dx̃ >> =−2ρdαdα− 2αdαdρ

+ 2α2
<<(y∗λ, (yλ)u1 >> dρdu1

+ 2α2
<< y∗λ, (yλ)u2 >> dρdu2

+ <<α(yλ)u1 +αρ(y∗λ)u1, α(yλ)u1 +αρ(y∗λ)u1 >> (du1)2

+ <<α(yλ)u2 +αρ(y∗λ)u2, α(yλ)u2 +αρ(y∗λ)u2 >> (du2)2

+ 2 <<α(yλ)u1 +αρ(y∗λ)u1, α(yλ)u2 +αρ(y∗λ)u2 >> du1du2.

In fact one may calculate

(3.1.2)

(yλ)u1 =−ωλ1 yλ−
(�λ)11

m
ξu1 −

(�λ)12

m
ξu2,

(yλ)u2 =−ωλ2 yλ−
(�λ)21

m
ξu1 −

(�λ)22

m
ξu2,

(y∗λ)u1 = ωλ1 y∗λ −
(�λ)

∗

11

m
ξu1 −

(�λ)
∗

12

m
ξu2,

(y∗λ)u2 = ωλ2 y∗λ −
(�λ)

∗

21

m
ξu1 −

(�λ)
∗

22

m
ξu2,

where

(3.1.3) ωλ = <<dyλ, y∗λ >> =−Iλ(�−1
λ d Hλ)

based on (2.6.1). Now let us write I x̃ in matrix form:

(3.1.4) Ix̃ =


−2ρ −α
−α 0

0 0
α2ωλ1 α2ωλ2

0 α2ωλ1
0 α2ωλ2

α2 F


where

(3.1.5)


F11 =

1
m
(p2
+ q2)+ 2ρ(ωλ1)

2,

F12 = F21 =
1
m

q(p+ r)+ 2ρωλ1ω
λ
2 ,

F22 =
1
m
(q2
+ r2)+ 2ρ(ωλ2)

2,

and [
p q
q r

]
=�λ+ ρ�

∗

λ.
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It can be calculated that

(3.1.6) det I x̃
=−

α6

m2 (pr − q2)2

=−
α6

4m2 (E
2
λ|�λ+ ρ�

∗

λ|
2
− ρ2((�∗λ)11+ (�

∗

λ)22)
2)2

which can tell us where the associate surface x̃ is degenerate. It is maybe a little
surprising that it is actually not difficult to calculate the inverse of Ix̃ . We present
the calculations in Appendix A since they are straightforward calculations.

3.2. The second fundamental form for x̃ in R1,4. It is clear from the definition
that the conformal Gauss map ξ is the unit normal vector for the associate 4-surface
x̃ in R1,4. Hence the second fundamental form for x̃ in R1,4 is

(3.2.1) II x̃
=− <<dx̃, dξ >> = (α(�λ)i j +αρ(�

∗

λ)i j )dui du j ,

or in matrix form

II x̃ =

[
0 0
0 α�λ+αρ�

∗

λ

]
.

Therefore the mean curvature for the associate 4-surface in R1,4 is

H x̃
= Tr(Ix̃)

−1II x̃ .

To calculate the mean curvature H x̃ one only needs to know the low-right 2× 2
block in the inverse of the matrix Ix̃ . According to the calculations in Appendix A,
particularly (A.3), (A.9) and (A.10), we therefore have

(3.2.2) H x̃
=

m
α(pr − q2)2

((q2
+ r2)p− 2q2(p+ r)+ (p2

+ q2)r)

=
m(p+ r)
α(pr − q2)

,

where
pr − q2

= det�λ− ρ Tr�λ�∗λ+ ρ
2 det�∗λ

and

(3.2.3) p+ r = ρ((�∗λ)11+ (�
∗

λ)22)=−ρEλHλ

in the light of (2.5.14).

Theorem 3.2.1. Suppose that x̂ :M2
→ S3 is an immersed surface with no umbil-

ical point. Then x̂ is a Willmore surface in S3 if and only if the associate 4-surface
x̃ in R1,4 is minimal.
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Proof. Based on the above equations (3.2.3) and (3.2.2) we obtain

H x̃
=

ρ det�λHλ

α(det�λ− ρ Tr�λ�∗λ+ ρ2 det�∗λ)
. �

3.3. Local fundamental theorem for surfaces in conformal 3-sphere. In this sub-
section we state and prove a local fundamental theorem for surfaces in conformal
3-sphere. In the previous section we have introduced the associate surface x̃ in
Minkowski spacetime R1,4 from a given surface x̂ in S3. From the geometric
structure of the associate surface x̃ one can tell that its intersection with the positive
light cone N4

+
is a homogeneous null 3-surface whose projectivization will recover

the original surface x̂ in S3.
Given a surface x̂ in S3 with a isothermal coordinates (u1, u2) on the parameter

space M2, we have the first fundamental form I in matrix form

I =
[

E 0
0 E

]
and the second fundamental fundamental II form in matrix form

II =
[

e f
f g

]
The local fundamental theorem for surfaces in Riemannian geometry states that,
up to isometries of the standard round sphere S3, locally the surface is uniquely
determined by the first fundamental form I and the second fundamental form II
in the standard round sphere S3. Conversely, given a positive definite symmetric
2-form I and a symmetric 2-form II in the parameter domain, which satisfy some
integrability conditions (Gauss-Codazzi equations), up to isometries, there is lo-
cally a unique surface x̂ in the standard round sphere S3 whose first and second
fundamental forms are I and II. We are looking for the analogous local funda-
mental theorem for surfaces in conformal round 3-sphere S3. The core idea of
the local fundamental theorem in Riemannian geometry is to solve the structure
equations, which are the equations of motion of Frenet frames on the surface and
are determined from I and II.

Our strategy here is to use the local fundamental theorem for the associate sur-
face x̃ in the Minkowski spacetime R1,4 to establish the local fundamental theorem
for a surface x̂ in the conformal sphere S3. Since the association introduced in
previous subsections requires that the surface x̂ has no umbilical point, we will
always assume here that surfaces x̂ have no umbilical point.

To summarize the previous discussions, given a surface x̂ in S3, we have I =
E |du|2 and II = e(du1)2 + 2 f du1du2

+ g(du2)2. We also have the so-called
Möbius metric I ξ = m|du|2 = 1

2 E |I̊I|2|du|2 induced from the Conformal Gauss
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map ξ of the surface x̂ , where

I̊I =

e−g
2

f

f g−e
2


is the traceless part of the second fundamental form II. We then construct the
associate surface

x̃ = αyλ+αρy∗λ : R
+
×R+×M2

: R1,4.

The first fundamental form I x̃ for x̃ in matrix form is, from (3.1.4),
−2ρ −α
−α 0

0 0
α2ωλ1 α2ωλ2

0 α2ωλ1

0 α2ωλ2

α2

m (p
2
+q2)+2α2ρ(ωλ1)

2 α2

m q(p+r)+2α2ρωλ1ω
λ
2

α2

m q(p+r)+2α2ρωλ1ω
λ
2

α2

m (q
2
+r2)+2α2ρ(ωλ2)

2

 ,
where

ωλ = ωλ1du1
+ωλ2du2

=−d log λ̂− I (�−1(d H))= d log λ̂+ω.

The second fundamental form II x̃ for x̃ in R1,4 in matrix form is, from (3.2.1),[
0 0
0 α�λ+αρ�

∗

λ

]
,

where �λ = λ̂� and �∗λ = λ̂
−1�∗. Notice that I x̃ and II x̃ are exactly determined

by the Möbius metric I ξ =m|du|2, the 1-form ω, the traceless symmetric 2-tensor
� and the symmetric 2-tensor �∗, plus the conformal factor λ̂.

Next we write the equations for the motion of the Frenet frames on the associate
surface x̃ according to I x̃ and II x̃ . We consider the Frenet frame{

yλ, y∗λ,
1
√

m ξu1, 1
√

m ξu2, ξ
}

on the associate surface x̃ , which are the orthonormal frames on x̃ with respect to
the Minkowski metric G̃0 on R1,4. We now write
(3.3.1)

∂

∂u1



yλ

y∗λ
1
√

m ξu1

1
√

m ξu2

ξ


=



−ωλ1 0 −
1
√

m (�λ)11 −
1
√

m (�λ)12 0

0 ωλ1 −
1
m (�

∗

λ)11 −
1
m (�

∗

λ)12 0
1
√

m (�λ)11
1
√

m (�
∗

λ)11 0 −
1

2m mu2 −
√

m
1
√

m (�λ)21
1
√

m (�
∗

λ)21
1

2m mu2 0 0

0 0
√

m 0 0





yλ

y∗λ
1
√

m ξu1

1
√

m ξu2

ξ


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and
(3.3.2)

∂

∂u2



yλ

y∗λ
1
√

m ξu1

1
√

m ξu2

ξ


=



−ωλ2 0 −
1
√

m (�λ)21 −
1
√

m (�λ)22 0

0 ωλ2 −
1
m (�

∗

λ)21 −
1
m (�

∗

λ)22 0
1
√

m (�λ)21
1
√

m (�
∗

λ)21 0 −
1

2m mu1 0
1
√

m (�λ)22
1
√

m (�
∗

λ)22
1

2m mu1 0 −
√

m

0 0 0
√

m 0





yλ

y∗λ
1
√

m ξu1

1
√

m ξu2

ξ


.

Remember we also have the two trivial equations

∂

∂α


yλ
y∗λ

1
√

m ξu1

1
√

m ξu2

ξ

= 0 and
∂

∂ρ


yλ
y∗λ

1
√

m ξu1

1
√

m ξu2

ξ

= 0.

To solve the ODE systems (3.3.1) and (3.3.2), the necessary integrable condition is

(3.3.3)
∂

∂u1

∂

∂u2


yλ
y∗λ

1
√

m ξu1

1
√

m ξu2

ξ

=
∂

∂u2

∂

∂u1


yλ
y∗λ

1
√

m ξu1

1
√

m ξu2

ξ

 .

It turns out that (3.3.3) is equivalent to the following six equations on the variables:
the positive function m, the 1-form ωλ, the traceless symmetric matrix �λ and the
symmetric matrix �∗λ,

(3.3.4)

{
(�λ)11,2− (�λ)12,1 = ω

λ
1(�λ)12−ω

λ
2(�λ)11,

(�λ)12,2− (�λ)22,1 = ω
λ
1(�λ)22−ω

λ
2(�λ)12,

(3.3.5)
(�∗λ)11,2− (�

∗

λ)12,1 =−ω
λ
1(�

∗

λ)12+ω
λ
2(�

∗

λ)11+
1
2
(�∗λ)11+ (�

∗

λ)22

|�λ|2
(|�λ|

2)u2,

(�∗λ)12,2− (�
∗

λ)22,1 =−ω
λ
1(�

∗

λ)22+ω
λ
2(�

∗

λ)12+
1
2
(�∗λ)11+ (�

∗

λ)22

|�λ|2
(|�λ|

2)u2,

(3.3.6) ωλ1,2−ω
λ
2,1 =

1
m
((�λ)11− (�λ)22)(�

∗

λ)12− ((�
∗

λ)11− (�
∗

λ)22)(�λ)12),

and

(3.3.7) (K− 1)=
1

m2 Tr�λ�∗λ,
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where K is the Gaussian curvature of the Möbius metric I ξ =m|du|2. Of course, as
one may verify, (3.3.4), (3.3.5), (3.3.6) and (3.3.7) are exactly the Gauss-Codazzi
equations for the surface ξ in the de Sitter spacetime S1,3 induced by the conformal
Gauss map ξ of the surface x̂ in conformal 3-sphere S3.

Now we are ready to state and prove the local fundamental theorem for surfaces
in conformal round 3-sphere S3.

Theorem 3.3.1. Suppose that, on a domain in D ⊂ R2, we are given

• a traceless symmetric 2-form �,

• a positive function m or equivalently E such that m = − det�
E

,

• a 1-form ω,

• a symmetric 2-form �∗,

and that they satisfy the integrability conditions (3.3.4)–(3.3.7). Then, for a given
point p0 in D, there exists an open neighborhood D0 of p0 in D, a parametrized
surface x̂ : D0→S3 with no umbilical point, and a positive function λ̂ : D0→R+

with λ̂(p0)= 1, such that

• �= λ̂I̊I, where I̊I is the traceless part of the second fundamental form of x̂ in
the standard round S3 ,

• m|du|2= <<dξ, dξ >> is the Möbius metric induced by the conformal Gauss map
ξ of x̂ ,

• ω = −I ((I̊I)−1(d H))− d log λ̂, where I is the first fundamental form and H
is the mean curvature of x̂ in the standard round S3 ,

• �∗ = −λ̂−1
<<dξ, dy∗ >> , where y∗ = 1

1−x̂ ·x̂∗ (1, x̂∗) and x̂∗ is the conformal
transform of x̂ .

The surface x̂ is unique up to a conformal transformation of S3.

Proof. We start by choosing starting values for y, y∗, ξu1, ξu2, ξ at p0 = (u1
0, u2

0),
First we take a null vector

y(u1
0, u2

0)= y0 = (1, x̂0)

for some x̂0 ∈ S3
⊂ R4. Then we choose ξ(u1

0, u2
0)= ξ0 ∈ R1,4 such that

(3.3.8) << y0, ξ0 >> = 0 and <<ξ0, ξ0 >> = 1.

Next we choose ξu1(u1
0, u2

0)= ξ
1
0 ∈ R1,4 and ξu2(u1

0, u2
0)= ξ

2
0 ∈ R1,4 such that

(3.3.9)
<<ξ

1
0 , ξ

1
0 >> = <<ξ

2
0 , ξ

2
0 >> = m(u1

0, u2
0),

<<ξ
1
0 , ξ

2
0 >> = <<ξ0, ξ

1
0 >> = <<ξ0, ξ

2
0 >> = << y0, ξ

1
0 >> = << y0, ξ

2
0 >> = 0.
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Finally choose the unique null vector y∗(u1
0, u2

0)= y∗0 such that

(3.3.10)
<< y∗0 , y0 >> =−1,

<< y∗0 , y∗0 >> = << y∗0 , ξ0 >> = << y∗0 , ξ
1
0 >> = << y∗0 , ξ

2
0 >> = 0.

Notice that for any other choice of {y1, y∗1 , ξ
1
1 , ξ

2
1 , ξ1} satisfying the same orthonor-

mal properties in (3.3.8)–(3.3.10), there is a Lorentz transformation that takes one
to the other. With the integrability conditions assumed we may solve the sys-
tems (3.3.1) and (3.3.2) at least in an open neighborhood D0 of p0 in D. Using
the uniqueness of solutions to systems of linear ODE one sees that the solution
{y, y∗, 1

√
m ξu1, 1

√
m ξu2, ξ} remains orthonormal in the Minkowski metric in D0.

Now one should realize that the y = λ̂(1, x̂) here is with some positive λ̂ (not
necessarily identically 1 in D0). It is then clear from all previous calculations that
the rest of the statements in the theorem can be easily verified. �

3.4. The geometry of the associate ruled surface x+ in hyperbolic space H4. In
this section we want to discuss the geometry of the associate ruled 3-surface x+

in H4, which is associated with a given surface x̂ in the conformal 3-sphere. It’s
relation to the associate surface x̃ is very much analogous to the one between
the ambient spacetime and the Poincaré-Einstein manifold of a given conformal
manifold in the work of Fefferman and Graham. It is evidently useful to understand
the geometry of the associate ruled 3-surface x+ in H4.

It is rather easy now to do calculations for x+ after we have calculated the first
fundamental form for the associate 4-surface x̃ in Minkowski spacetime R1,4 in
Section 3.1. We first have

dx+= 1
√

2
(et yλ−e−t y∗λ) dt+(et(yλ)u1+e−t(y∗λ)u1) du1

+(et(yλ)u2+e−t(y∗λ)u2) du2

and, using (3.1.2),

I x+
= (dt)2− 2ωλi dt dui

+

(
e2t

2m
((�λ)i1(�λ) j1+ (�λ)i2(�λ) j2)

+ (ωiω j +
1
m
((�λ)i1(�

∗

λ) j1+ (�λ)i2(�
∗

λ) j2))

+
e−2t

2m
((�∗λ)i1(�

∗

λ) j1+ (�
∗

λ)i2(�
∗

λ) j2)

)
dui du j .

One can calculate the determinant

(3.4.1) det I x+
=

1
8m2 (E

2
λ|e

t�λ+ e−t�∗λ|
2
− e−2t((�∗λ)11+ (�

∗

λ)22)
2)2,

which can tell us where the associate ruled surface x+ is degenerate.
To obtain the second fundamental form of the surface x+ it suffices to see that

the conformal Gauss map ξ is still the unit normal vector to the surface x+ in the
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hyperboloid H4. Hence

(3.4.2) IIx+
=− <<dx+, dξ >> =

1
√

2
(et�λ+ e−t�∗λ).

By the similar calculations as that in the previous section we have the mean
curvature of the associate ruled surface x+ as follows:

(3.4.3) H x+
= e−3t

√
2 det�λHλ

(det�λ− e−2t Tr�λ�∗λ+ e−4t det�∗λ)
.

Theorem 3.4.1. Suppose that x̂ is an immersed surface in the conformal sphere
S3 with no umbilical point and that x+ is the associate ruled surface in the hyper-
boloid H4. Then x̂ is a Willmore surface in the conformal sphere if and only if the
associate ruled 3-surface x+ in the hyperboloid is a minimal surface.

4. Scalar invariants of surfaces in conformal round 3-sphere

In this section we want to introduce scalar local invariants for surfaces in conformal
round 3-sphere S3. We will first recall what are scalar invariants for hypersurfaces
in (pseudo-)Riemannian geometry. Inspired by the work of Fefferman and Graham
on scalar local invariants in conformal geometry we are going to use the associate
surface x̃ in the Minkowski R1,4 of a given surface x̂ in the 3-sphere S3, where one
considers the standard conformal 3-sphere as the projectivized positive light cone
of the Minkowski spacetime to construct scalar local invariant.

4.1. Scalar invariants of 4-surfaces in R1,4. For our purpose we will focus on
the discussion of scalar (pseudo-)Riemannian invariants of 4-surfaces x̃ in the
Minkowski spacetime R1,4. Suppose that

φ = φ(v2, v3, v4, v5) : A ⊂ R4
→ R1,4

is a local parametrization of a surface x̃ , where A is a domain in R4. Hence it
induces a local coordinate

φ̃ = φ̃(v1, v2, v3, v4, v5) : B ⊂ (−ε, ε)× A→ R1,4

for R1,4 such that

φ(v2, v3, v4, v5)= φ̃(0, v2, v3, v4, v5).

We will use the Capital Latin letters to stand for indices from 1 to 5 and Latin
letters to stand for the indices from 2 to 5. We will use v = (v1, v2, . . . , v5) and
v̂ = (v2, . . . , v5). Hence the Minkowski metric in this coordinate is given as

G̃0 = <<dφ̃, dφ̃ >> = (G̃0)I J dv I dv J



SCALAR INVARIANTS OF SURFACES IN THE CONFORMAL 3-SPHERE 177

and the first fundamental form for x̃ in R1,4 is given as

I x̃
= <<dφ, dφ >> = g̃i j dvi dv j

= (G̃0)i j |v1=0 dvi dv j .

To be more restrictive we will assume that the surface x̃ is timelike and let

ξ : B→ S1,3

be a unit normal vector field on x̃ in R1,4. Then the second fundamental form for
x̃ is given as

II x̃
=− <<dφ, dξ >> = h̃i j dvi dv j ,

and we have
ξvi =−h̃ik g̃k jφv j .

Definition 4.1.1. Let i : Mn−1
→ Nn be an immersed hypersurface and let g be

a (pseudo)-Riemannian metric on the ambient manifold Nn . A scalar (pseudo-)
Riemannian invariant I(i,Nn, g) for the hypersurface i in Nn at a point p0 on the
surface i is a polynomial in the variables that are the coordinate partial derivatives
of gI J of any order and the reciprocal of the determinant of gI J at the point p0 such
that the value of I(i,Nn, g) at p0 is independent of choices of local coordinates
φ̃ of Nn which are induced from a parametrization φ of the surface i nearby the
given point p0.

The well-known examples of scalar Riemannian invariants for x̃ in R1,4 are

• H̃ = g̃i j h̃i j ,

• |h̃|2 = g̃ik g̃ jl h̃i j h̃kl and H̃ 2
= g̃i j g̃kl h̃i j h̃kl ,

• 1̃H̃ = g̃kl g̃i j h̃i j,kl , Div Div h̃ = g̃ik g̃ jl h̃i j,kl , H̃ |h̃|2 = g̃ik g̃ jl g̃mn h̃i j h̃kl h̃mn ,
Trg̃ h̃3

= g̃in g̃ jk g̃km h̃i j h̃kl h̃mn , and H̃ 3
= g̃i j g̃kl g̃mn h̃i j h̃kl h̃mn ,

• |∇̃h̃|2 = g̃i p g̃ jq g̃kr h̃i j,k h̃ pq,r , g̃i p g̃ jr g̃kq h̃i j,k h̃ pq,r , g̃i p g̃ jr g̃kq h̃i j,k h̃ pq,r

|∇̃ H̃ |2 = g̃i j g̃ pq g̃kr h̃i j,k h̃ pq,r , |D̃iv h̃|2 = g̃i p g̃ jk g̃qr h̃i j,k h̃ pq,r , D̃iv h̃ · d H̃ ,

• 1̃1̃H̃

Each scalar invariant has an order. To find the order of each scalar invariant one
simply scales the metric by a constant κ and see what is the dimension of the scalar
invariant. For example, we can easily find that

H̃ [κ2G̃0] = κ
−1 H̃ [G̃0], |h̃|2[κ2G̃0] = κ

−2
|h̃|2[G̃0],

1̃H̃ [κ2G̃0] = κ
−31̃H̃ [G̃0], |∇̃h̃|2[κ2G̃0] = κ

−4
|∇̃ h̃|2[G̃0],

1̃1̃H̃ [κ2G̃0] = κ
−51̃1̃H̃ [G̃0].
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To understand what are scalar Riemannian invariants I(x̃,R1,4, G̃0) we want to
use the so-called Fermi coordinates. A Fermi coordinate is one such that 1) on
the surface φ is a normal coordinate at a given point x̃0; 2) the coordinate curves
φ̃(t, v2, v3, v4, v5) is a geodesic perpendicular to the surface at φ(v2, v3, v4, v5)

with unit speed (a line segment perpendicular to the surface in R1,4). Hence, for a
Fermi coordinate,

(4.1.1) φ̃(v1, . . . , v5)= φ(v2, . . . , v5)+ v1ξ.

The following facts are well known.

Lemma 4.1.2. Suppose that x̃ is a timelike hypersurface in R1,4. Suppose that φ̃
is a Fermi coordinate at a given point x̃0. Then

G̃0 =

[
1 0
0 [Gi j ]

]
and

Gi j (v
1, v̂)= g̃i j (v̂)− 2h̃i j (v̂)v

1
+ h̃ik(v̂)h̃ jl(v̂)g̃kl(v̂)(v1)2,

where
g̃i j (v̂)= ηi j −

2
3 R̃ik jlv

kvl
+ · · · ,

h̃i j (v̂)= h̃i j (0)+ h̃i j,k(0)vk
+ · · · ;

here R̃i jkl = h̃ik h̃ jl− h̃i j h̃kl is the Riemann curvature tensor for x̃ and η is the stan-
dard matrix of signature {−1, 1, 1, 1}. All the coefficients in the Taylor expansions
for Gi j are polynomials of h̃i j and the covariant derivatives of h̃i j at x̃0.

Therefore, in the light of Weyl’s theorem on the invariants of orthogonal groups,
we may conclude:

Proposition 4.1.3. All scalar invariants I(x̃,R1,4, G̃0) of a surface x̃ in R1,4 are
linear combinations of terms that are complete contractions of tensor product of
the second fundamental form h̃ and the covariant derivatives of h̃.

Proof. From the above lemma it is easily that all scalar invariants of a surface x̃ in
R1,4 are polynomials of the first fundamental form g̃, the second fundamental form
h̃ and covariant derivatives of the second fundamental form h̃, if we evaluate them
in a Fermi coordinate for the surface. Then, by the Weyl theorem on the invariants
of orthogonal groups, we know they are linear combinations of full contractions of
h̃ and covariant derivatives of h̃. �

4.2. Scalar invariants of the homogeneous associate surface x̃ in R1,4. Let us
work with the parametrization

x̃ = αλ̂(1, x̂)+αρλ̂−1 1
1− a

(1, x̂∗)= αyλ+αρy∗λ
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and use the calculations given in Section 3.1 and Section 3.2. Now let us compute
some scalar invariants for our associate surface x̃ on the light cone where ρ = 0.
Then the first fundamental form is

Ix̃ |ρ=0 =


0 −α

−α 0
0 0

α2ωλ1 α2ωλ2
0 α2ωλ1
0 α2ωλ2

α2 Eλ 0
0 α2 Eλ


from (3.1.4), whose inverse is

I−1
x̃ |ρ=0 =


|ωλ|2 − 1

α

−
1
α

0

ωλ1
αEλ

ωλ2
αEλ

0 0
ωλ1
αEλ

0
ωλ2
αEλ

0

1
α2 Eλ

0
0 1

α2 Eλ

 .
And the second fundamental form at ρ = 0 is

II x̃ |ρ=0 =

[
0 0
0 α�λ

]
.

So the simplest (pseudo-)Riemannian invariants is the mean curvature H̃ , but it
is clear that

H̃ |ρ=0 =
1
αEλ

((�λ)11+ (�λ)22)= 0.

The first nontrivial one is

(4.2.1) |h̃|2|ρ=0 = g̃ik g̃ jl h̃i j h̃kl |ρ=0 = α
−2
|�λ|

2,

which produces the first nontrivial invariant |I̊I|2 for the surface x̂ in the conformal
3-sphere(cf. see the definition for scalar invariant of surfaces in the conformal 3-
sphere in the next subsection). In fact the following nontrivial invariants without
taking any derivative are all easy to calculate

TrI x̃ h̃k
|ρ=0 = α

−k TrI x̂
λ
�k
λ

for any k = 2, 3, . . . . Obviously those are the ones that can been easily seen with
no difficulty at all.

Next we want to calculate |∇ H̃ |2 and 1̃H̃ at ρ = 0. To do so, let us first recall
from Section 3.2 the mean curvature

H̃ =
ρ det�λHλ

α(det�λ− ρ Tr�λ�∗λ+ ρ2 det�∗λ)
.

Hence H̃α = H̃u1 = H̃u2 = 0 and |∇ H̃ |2 = 0 at ρ = 0, that is, |∇ H̃ |2 gives no
invariant for the surface x̂ . Let us set the convention to have a, b, c stand for α, ρ;
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i, j, k stand for u1, u2, and A, B,C stand for all four variables. We then calculate,
at ρ = 0,

(4.2.2) 1̃H̃ =
1√
|g̃|
∂A(

√
|g̃|g̃ AB∂B H̃)

=
1
α3 E

(
∂α(
√
|g̃|g̃αρ∂ρ H̃)+ ∂ρ(

√
|g̃|g̃ρB∂B H̃)+ ∂i (

√
|g̃|g̃iρ∂ρ H̃)

)
=

1
α3 E

(
∂α(
√
|g̃|g̃αρ∂ρ H̃)+ ∂ρ(

√
|g̃|gρα∂α H̃)+

√
|g̃|(∂ρ g̃ρρ)∂ρ H̃

)
= 2α−3Hλ,

where one needs to use the fact that g̃ρρ |ρ=0 = 0 and ∂ρ g̃ρρ |ρ=0 =
2
α2 based on

calculations (A.8) in Appendix A. This confirms that Hλ is indeed a conformal
invariant of order 3 for a surface x̂ in the 3-sphere in general conformal metric
λ2g0.

The next invariant we want to calculate is 1̃1̃H̃ . To do so we observe, again
from (A.8), that

(4.2.3)
∂ρ |ρ=0g̃ρα =−

2
α
|ωλ|2, ∂ρ |ρ=0g̃ρρ =

2
α2 ,

∂ρ |ρ=0g̃ρi
=−

2
α2

ωλi

Eλ
, ∂ρ∂ρ |ρ=0g̃ρρ =

8
α2 |ω

λ
|
2.

After a lengthy calculation we get

(4.2.4) 1̃1̃H̃ |ρ=0 = 8α−5
(
1λHλ+ 9|ωλ|2Hλ− 3Div(ωλ)Hλ

− 6ωλ(∇Hλ)−
3 Tr(�λ�∗λ)

2m2 |�λ|
2Hλ

)
.

This tells us that the quantity in parentheses is a conformal invariant of order 5 for
the surface x̂ in the 3-sphere.

We can also calculate the covariant derivatives of the second fundamental forms
for the associate surface. We first list the relevant Christoffel symbols for the
calculation

(4.2.5)

0̃k
αα = 0̃

k
ρρ = 0̃

k
αρ = 0,

0̃k
α j = α

−1δ jk,

0̃k
ρ j =

1
2Eλ

(
(ωλk )u j − (ωλj )uk +

1
m
((�λ) jl(�

∗

λ)kl + (�λ)kl(�
∗

λ) jl)
)
,

0̃k
i j = (0λ)

k
i j −ω

λ
k δi j .
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Then we calculate

(4.2.6)

h̃ab,C = 0,

h̃ai,b = 0,

h̃α j,k =−(�λ) jk,

h̃ρ j,k =−
α

2Eλ

(
(�λ)i j ((ω

λ
i )uk−(ωλk )ui )+

1
m
((�λ)kl(�

∗

λ)il+(�λ)il(�
∗

λ)kl)
)
,

h̃i j,α =−(�λ)i j ,

h̃i j,ρ = α(�
∗

λ)i j

−
α

2E

(
(�λ)l j ((ω

λ
l )ui−(ωλi )ul )+

1
m
((�λ)kl(�

∗

λ)ki+(�λ)ki (�
∗

λ)kl)
)

−
α

2E

(
(�λ)il((ω

λ
l )u j−(ωλj )ul )+

1
m
((�λ)kl(�

∗

λ)k j+(�λ)k j (�
∗

λ)kl)
)
,

h̃i j,k = α(�λ)i j,k+α(�λ)l jω
λ
l δik+α(�λ)ilω

λ
l δ jk .

The easy ones are

φα = h̃α j,k g̃ jk
= 0, φρ = h̃ρ j,k g̃ jk

=
1
α
Hλ

in the light of (2.5.14). At the same time

φi = h̃i B,C g̃BC
= h̃i j,C g̃ jC

+ h̃ib,k g̃bk
= h̃i j,k g̃ jk

+ h̃i j,α g̃ jα
+ h̃iα,k g̃αk

=
1
αEλ

(�λ)i j, j +
3
αEλ

(�λ)i jω
λ
j −

1
αEλ

(�λ)i jω
λ
j −

1
αEλ

(�λ)i jω
λ
j

=
1
αEλ

(�λ)i j, j +
1
αEλ

(�λ)i jω
λ
j = 0

due to the integrability condition (3.3.4). Thus |D̃iv h̃|2(= 0) does not give any
invariant on the surface x̂ , nor does D̃iv h̃ · d H̃(= 0), because g̃ρρ |ρ=0 = 0.

We want to calculate |∇̃h̃|2 since we have all the covariant derivatives h̃ AB,C in
(4.2.6). The calculation is direct yet very long. We omit details here.

|∇̃h̃|2|ρ=0 = α
−4
(
|∇�|2+ 8|d H |2− 6� ·�∗

−
2

E3
λ

(�λ)i jω
λ
k (R

λ)3i jk −
6

E3
λ

(�λ)i j (�λ)ki, jω
λ
k

)
,

where the Codazzi equation for the surface x̂ in (S3, λ2g0)

(�λ)i j,k = (�λ)ik, j + (Rλ)3i jk + (Hλ)u j Eλδik − (Hλ)uk Eλδi j
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has been used. At this point we like to write each term as local scalar invariant of
the surface x̂ in (S3, λ2g0). We first calculate

(�λ)i jω
λ
k (R

λ)3i jk

= (�λ)i jω
λ
1(R

λ)3i j1+ (�λ)i jω
λ
2(R

λ)3i j2

= Eλ((�λ)11ω
λ
1(R

λ)31+ (�λ)21ω
λ
1(R

λ)32+ (�λ)22ω
λ
2(R

λ)32+ (�λ)12ω
λ
2(R

λ)31)

= Eλ(�λ)i jω
λ
j (R

λ)3i =−E2
λ(Hλ)ui (Rλ)3i =−Ricλ(Enλ, λHλ).

Then we deal with the last term:

(�λ)i j (�λ)ki, jω
λ
k = (�λ)i j ((�λ)kiω

λ
k ), j − (�λ)i j (�λ)kiω

λ
k, j

=−Eλ(�λ)i j (Hλ)i, j −
1
2 E3

λ|�λ|
2Div(ωλ),

where
Div(ωλ)= E−1

λ ωλi,i = E−1
λ (ωλi )ui

= E−1
λ ( <<10 yλ, y∗λ >> + <<(yλ)ui , (y∗λ)ui >> )

= H 2
λ − |ω

λ
|
2
+ (Rλ)1212+ E−1

<<(yλ)ui , (y∗λ)ui >>

= H 2
λ + 2

�λ ·�
∗

λ

|�λ|2
+ E−1

λ (Rλ)1212,

10 yλ = 2EλHλEnλ+ 2Eλy†
λ − (R

λ)1212 yλ,

and
2∑

i=1

E−1
<<(y)ui , (y∗)ui >> = |ω

λ
|
2
+ 2

�λ ·�
∗

λ

|�λ|2
.

So we have obtained

(4.2.7) |∇ h̃|2|ρ=0 = α
−4(|∇�λ|

2
+ 8|d Hλ|2+ 2 Ricλ(Enλ,∇Hλ)+ 3H 2

λ |�|
2

+ 3K T
λ |�λ|

2
+ 6�λ ·Hess(Hλ)),

where
K T
λ = E−1

λ (Rλ)1212

is the sectional curvature of (S3, λ2g0) of the tangent plane to the surface x̂ .

4.3. Scalar invariants for surfaces in the conformal round 3-sphere. Let us start
with the definition of scalar invariants for surfaces in conformal sphere.

Definition 4.3.1. Let i : Mn−1
: Nn be an immersed hypersurface and let [g] be

a class of conformal metrics on the ambient manifold N|n . Ic(i,Nn, g) is said to
be a scalar conformal invariant of the hypersurface i in the conformal manifold
(Nn, [g]) if it is a scalar Riemannian invariant and

(4.3.1) Ic(i,Nn, λ2g)= λ−kIc(i,Nn, g).
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for any positive function λ on Nn , where k is the order of the invariant Ic(i,Nn, g).

Recall that, for an immersed surface x̂ in S3, we have

I̊I(x̂,S3, λ2g0)= λI̊I(x̂,S3, g0).

Hence it is easy to observe that

|I̊I|2(x̂,S3, λ2g0)= λ
−2gik

0 λ
−2g jl

0 λI̊Ii jλI̊Ikl = λ
−2
‖I̊I‖2(x̂,S3, g0)

and

Trλ2g0(I̊I)
k(x̂,S3, λ2g0)= λ

−k Trg0(I̊I)
k(x̂,S3, g0) for all k = 2, 3, . . . .

On the other hand, it does not seem easy to directly verify that Hλ is a conformal
invariant for a surface in the conformal 3-sphere, though this is a well-known one.
We have verified this in computing the mean curvature (cf. (2.5.12)) of the surface
ξ in the de Sitter spacetime S1,3 as well as in the above calculation of 1̃H̃ (cf.
(4.2.2)) of the homogeneous associate surface x̃ . In general it takes tremendous, if
not impossible, to verify whether an invariant I(x̂,S3, λ2g0) is conformally invari-
ant, complicated by the six integrability conditions. The most important application
of the construction of associate homogeneous surfaces is the following:

Theorem 4.3.2. Suppose that x̂ :M2
→ S3 is an immersed surface with no umbil-

ical point, and let

x̃ = αy+αρy∗ : R+×R+×M2
→ R1,4

be the associate surface for x̂ , where x̂∗ is the conformal transform of x̂ . Then
any scalar (pseudo)-Riemannian invariant I(x̃,R1,4, G̃0) evaluated at ρ = 0, if it
is nontrivial, is a scalar conformal invariant Ic(x̂,S3, λ2g0) multiplied with |I̊Iλ|2n

for some integer n.

Proof. For any invariant I(x̃,R1,4, G̃0), we know that it is a full contraction of
tensor product of the second fundamental form and the covariant derivatives. For a
choice of representative λ2g0 on S3, in the corresponding parametrization (3.1.1),
we claim that

(4.3.2) I(x̃,R1,4, G̃0)|ρ=0 = α
−kI(x̂,S3, λ2g0)|I̊Iλ|2n

for a positive integer k and a nonnegative integer n, due to the homogeneity of the
associate surface. To see the right side of (4.3.2) is indeed a scalar Riemannian
invariant multiplied with factor |I̊Iλ|2n for some integer n, we consider the tensors
that determines the first and second fundamental forms of the associate surface in
that parametrization. We recall from (2.5.5) that

�λ = I̊Iλ
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is the traceless part of the second fundamental form for the surface x̂ in the 3-sphere
with the conformal metric λ2g0. We also know from (3.1.3) that

ωλ =−Iλ((I̊Iλ)−1(d Hλ))=−
2

|I̊Iλ|2
I̊Iλ(∇Hλ),

which causes us to include the possibly negative n in the right side of (4.3.2). We
may also recall from (2.5.3) that

m = 1
2 Eλ|I̊Iλ|2.

Next we want to show that �∗λ is also a tensor product of covariant derivatives
of the 1-form ωλ, covariant derivatives of the second fundamental form IIλ and
covariant derivatives of Riemann curvature tensor of the conformal metric λ2g0 on
the 3-sphere(including 0th order). Recall the definition

(�∗λ)i j = << y∗λ, ξui u j >> .

We use the same idea in the calculation of the trace of �∗ in Section 2.5. Hence
we write

(4.3.3) ξui u j =−(�∗λ)i j yλ− (�λ)i j y∗λ + (0m)
k
i jξuk −mδi jξ.

From (2.6.2) we know that

<< y∗λ, y†
λ >> =−

1
2(|ω

λ
|
2
+ H 2

λ ).

Using ξ = Hλyλ+ Enλ from Lemma 2.3.4 and (B.6), we have

<<ξuk , y†
λ >> =−(Hλ)uk + (Rλ)3k

and

<<ξ, y†
λ >> =−Hλ.

Therefore we derive from (4.3.3) that

(4.3.4) <<ξui u j , y†
λ >>

= (�∗λ)i j +
1
2(|ω

λ
|
2
+ H 2

λ )(�λ)i j + (0m)
k
i j (−Huk + (Rλ)3k)+ Hmδi j ,

where
(0m)

k
i j = 0

k
i j +

1
2 |�λ|

−2(|�λ|
2
ui δ jk + |�λ|

2
u j δik − |�λ|

2
ukδi j )

represents the Christoffel symbols for the Möbius metric m|du|2. On the other
hand we have

ξui u j = (Hλ)ui u j yλ+ (Hλ)ui (yλ)u j + (Hλ)u j (yλ)ui + Hλ(yλ)ui u j + (Enλ)ui u j
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which implies

(4.3.5) <<ξui u j , y†
λ >>

=−(Hλ)ui u j + Hλ <<(yλ)ui u j , y†
λ >> + <<(Enλ)ui u j , y†

λ >>

=−(Hλ)ui u j − Hλ <<(yλ)ui , (y†
λ)u j >> − <<(Enλ)ui , (y†

λ)u j >> − << Enλ, (y†
λ)ui >> u j

=−(Hλ)ui u j +
1

Eλ
(�λ)ik <<(yλ)uk , (y†

λ)u j >> − << Enλ, (y†
λ)ui >> u j

=−(Hλ)ui u j −
1

Eλ
(�λ)ik(Rλ)i3k3+ ((Rλ)3i )u j ,

by (B.7) and (B.6). Thus, comparing (4.3.4) and (4.3.5), we have

(4.3.6) (�∗λ)i j =−(Hλ)ui ,u j − Hλmδi j −
1

Eλ
(�λ)ik(Rλ) j3k3+ ((Rλ)3i ),u j

−
1
2(|ω

λ
|
2
+ H 2

λ )(�λ)i j

+
1
2 |�λ|

−2(|�λ|
2
ui δ jk + |�λ|

2
u j δik − |�λ|

2
ukδi j )((Hλ)uk − (Rλ)3k).

The last factor that goes into the left side of Equation (4.3.2) is the reciprocal of
the determinant:

det g̃|ρ=0 =−
α6

m2 (pr − q2)2|ρ=0 =
α6

m2 (det�λ)2 = α6 E2
λ = α

6 det I x̂
λ .

due to (3.1.6), where I x̂
λ = (x̂)

∗(λ2g0)= Eλ|du|2.
To verify that the right side of (4.3.2) is actually a conformal invariant, for

a positive functions λ on 3-sphere, we simply compare the right side of (4.3.2)
evaluated at α = 1 with that evaluated at α = λ̂ and λ= 1. We then observe that

I(x̂,S3, λ2g0)= λ̂
−kI(x̂,S3, g0).

Therefore it is a conformal scalar invariant for the surface x̂ in the 3-sphere. �

Appendix A: The inverse of I x̃ in general parametrizations

We consider the general parametrization

x̃ = αyλ+αρy∗λ : R
+
×R+×M2

→ R1,4.

Then the first fundamental form in matrix form is

(A.1) Ix̃ =


−2ρ −α
−α 0

0 0
α2ωλ1 α2ωλ2

0 α2ωλ1
0 α2ωλ2

α2 F


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where

(A.2)



F11 =
1
m
(p2
+ q2)+ 2ρ(ωλ1)

2

F12 = F21 =
1
m

q(p+ r)+ 2ρωλ1ω
λ
2

F22 =
1
m
(q2
+ r2)+ 2ρ(ωλ2)

2

and



F∗11 =
1
m
(p2
+ q2)

F∗12 = F21 =
1
m

q(p+ r)

F∗22 =
1
m
(q2
+ r2)

and [
p q
q r

]
=�λ+ ρ�

∗

λ.

It is easily seen that

(A.3) (F∗)−1
=

m
(pr − q2)2

[
r2
+ q2

−q(p+ r)
−q(p+ r) p2

+ q2

]
and

F |ρ=0 = F∗|ρ=0 = E
[

1 0
0 1

]
.

Let

(I x̃)−1
=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 .
Therefore, for example,

(A.4)

−2ρa11−αa12 = 1,

−αa11+α
2ω1a13+α

2ω2a14 = 0,

α2ω1a12+α
2 F11a13+α

2 F21a14 = 0,

α2ω2a12+α
2 F12a13+α

2 F22a14 = 0.

Subtracting the first of these equations multiplied by α from the second equation
multiplied by 2, we get

(A.5) α2a12+ 2α2ρω1a13+ 2α2ρω2a14 =−α.

Subtracting (A.5) multiplied by ω1 from the third equation in (A.4) as well as
subtracting (A.5) multiplied by ω2 from the fourth equation in (A.4), we get

(A.6) α2 F∗
[

a13

a14

]
=

[
αω1

αω2

]
Plugging back the values of a13 and a14 into (A.5) we have
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(A.7)


a12 = α

−1
(
−1− 2ρ[ω1, ω2](F∗)−1

[
ω1
ω2

])
,

a11 =−
αa12+ 1

2ρ
= [ω1, ω2](F∗)−1

[
ω1
ω2

]
.

Similarly one gets

α2 F∗
[

a23

a24

]
=

[
−2ρω1

−2ρω2

]
, α2 F∗

[
a33

a34

]
=

[
1
0

]
, α2 F∗

[
a43

a44

]
=

[
0
1

]
which yield respectively

a21 = α
−1
(
−1− 2ρ[ω1, ω2](F∗)−1

[
ω1
ω2

])
,

a22 =
2ρ
α2

(
1+ 2ρ[ω1, ω2](F∗)−1

[
ω1
ω2

])
,

(A.8)


a31 = α

−1
[ω1, ω2](F∗)−1

[
1
0

]
,

a32 =−
2ρ
α2 ([ω1, ω2](F∗)−1

[
1
0

]
,

(A.9)


a41 = α

−1(F∗)−1
[

0
1

]
,

a42 =
2ρ
α2

(
1+ 2ρ[ω1, ω2](F∗)−1

[
ω1
ω2

])
.

(A.10)

Appendix B: The geometry of the 3-sphere S3
λ in R1,4

Let us calculate the Gauss Theorem for the 3-sphere S3
λ in Minkowski spacetime

R1,4. There is nothing new or difficult about the calculation, but this helps to
understand better about the geometry of the 3-sphere S3

λ ⊂ N4
+
⊂ R1,4. Crucial

to our approach is that the induced metric on S3
λ is exactly the conformal metric

λ2g0. We consider the Fermi parametrization induced from a parametrization of
the surface x̂ :M2

→ S3 such that

(B.1) yλ = λ(x̂(u1, u2, u3))(1, x̂(u1, u2, u3)) :M3
→ S3

λ ⊂ N4
+
⊂ R1,4

with

(B.2) x̂(u1, u2, 0)= x̂(u1, u2) and (yλ)u3 |u3=0 = Enλ.

Notice that yλ here is the extension of λ̂(1, x̂) before. We use the two null normal
vectors {yλ, y†

λ} where

(B.3) << y†
λ, yλ >> − 1, << y†

λ, (yλ)u1 >> = << y†
λ, (yλ)u2 >> = << y†

λ, (yλ)u3 >> = 0.
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The first fundamental form is I S3
λ = λ2g0 = <<dyλ, dyλ >> , and the second is IIS3

λ =

− <<dyλ, dy†
λ >> y†

λ − <<dyλ, dyλ >> yλ . To find the curvature of the metric gλ = λ2g0

we calculate

(B.4) ∇
λ
∂u j
∇
λ
∂ui
∂uk −∇

λ
∂ui
∇
λ
∂u j
∂uk = Rλ(∂ui , ∂u j )∂uk = (Rλ) l

i jk ∂ul .

First

(B.5) ∇
λ
∂u j
∂uk = (yλ)uku j − <<(yλ)u j , (y†

λ)uk >> yλ− <<(yλ)u j , (yλ)uk >> y†
λ;

then

∂ui∇
λ
∂u j
∂uk = (yλ)uku j ui − <<(yλ)u j , (y†

λ)uk >> ui yλ− <<(yλ)u j , (yλ)uk >> ui y†
λ

− <<(yλ)u j , (y†
λ)uk >> (yλ)ui − <<(yλ)u j , (yλ)uk >> (y

†
λ)ui

and

∇
λ
∂ui
∇
λ
∂u j
∂uk = (∂ui∇

λ
∂u j
∂uk )T S3

λ

= (yλ)
T S3

λ

uku j ui − <<(yλ)u j , (y†
λ)uk >> (yλ)ui − <<(yλ)u j , (yλ)uk >> (y

†
λ)ui

Hence

(Rλ) l
i jk ∂ul = <<(yλ)u j , (y†

λ)uk >> (yλ)ui + <<(yλ)u j , (yλ)uk >> (y
†
λ)ui

− <<(yλ)ui , (y†
λ)uk >> (yλ)u j − <<(yλ)ui , (yλ)uk >> (y

†
λ)u j .

One notices that <<(y
†
λ)ui , y†

λ >> = 0 and <<(y
†
λ)ui , yλ >> = 0 and concludes that

(y†
λ)ui = (gλ)ml

<<(y
†
λ)ui , (yλ)um >> (yλ)ul ..

Therefore

(Rλ) l
i jk ∂ul = ( <<(yλ)u j , (y†

λ)uk >> δ
l

i + (gλ) jk(gλ)ml
<<(y

†
λ)ui , (yλ)um >>

− <<(yλ)ui , (y†
λ)uk >> δ

l
j − (gλ)ik(gλ)ml

<<(y
†
λ)u j , (yλ)um >> )∂ul

and

(Rλ)i jkl = (Rλ) n
i jk (gλ)nl

= <<(yλ)u j , (y†
λ)uk >> (gλ)il + <<(y

†
λ)ui , (yλ)ul >> (gλ) jk

− <<(yλ)ui , (y†
λ)uk >> (gλ) jl − <<(y

†
λ)u j , (yλ)ul >> (gλ)ik .

On the surface x̂ , where u3
= 0, we have

[(gλ)i j ] =

Eλ 0 0
0 Eλ 0
0 0 1

 .
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Therefore we have, for i, j ∈ {1, 2},

− <<(yλ)ui , (y†
λ)u j >> − <<(yλ)u3, (y†

λ)u3 >> Eλδi j = (Rλ)i3 j3,

− <<(yλ)u j , (y†
λ)u3 >> Eλδ jl + <<(yλ)ul , (y†

λ)u3 >> Eλ = (Rλ)3 j jl,

− <<(yλ)ui , (y†
λ)ui >> Eλ− <<(yλ)u j , (y†

λ)u j >> Eλ = (Rλ)i j i j .

We obtain, for i, j ∈ {1, 2},

(B.6) << Enλ, (y†
λ)ui >> =

1
Eλ
(Rλ)i j j3 =−(Rλ)i3,

and for i 6= j ,

(B.7)

<<(yλ)ui , (y†
λ)u j >> =−(Rλ)i3 j3

<<(yλ)ui , (y†
λ)ui >> =−(Rλ)i3i3+

1
2((R

λ)33− (Rλ)1212)

<<(yλ)u3, (y†
λ)u3 >> =−

1
2((R

λ)33− (Rλ)1212)

Finally, for the induced Fermi coordinate from an isothermal coordinate, we can
easily see that

(B.8) (Rλ) i
3i, =

1
Eλ

( 2∑
i=1

Rλ
)

3i,i
=

1
Eλ

2∑
i=1

(((Rλ)3i )ui − (Rλ)3k(0λ)
k
ii )

=
1

Eλ

2∑
i=1

(((Rλ)3i )ui .

Indeed, we have
∑2

i=1(0λ)
k
ii = 0 for k = 1, 2, where (0λ)ki j are the Christoffel

symbols for the conformal metric Iλ = Eλ|du|2 in isothermal coordinates.
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