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ACTION OF INTERTWINING OPERATORS
ON PSEUDOSPHERICAL K-TYPES

SHIANG TANG

We give a concrete description of the two-fold cover of a simply connected,
split real reductive group and its maximal compact subgroup as Chevalley
groups. We study the representations of the maximal compact subgroups
called pseudospherical representations, which appear with multiplicity one
in the principal series representation. We introduce a family of canonically
defined intertwining operators and compute their action on pseudospherical
K-types, obtaining explicit formulas of the Harish-Chandra c-function.

1. Introduction

Assume that G is the split real form of a simply connected complex algebraic group.
It turns out that G admits a unique nontrivial two-fold cover (or double cover) G,
which is the nonlinear group we wish to study. Such coverings are well-studied.
There are several general results about coverings of algebraic groups in [Steinberg
1968]. We are interested in pseudospherical principal series representations, that
is, principal series representations that contain a pseudospherical K-type. These
representations are defined for G and are related to a conjectural Shimura correspon-
dence for split real groups; see [Adams et al. 2007]. Pseudospherical representation
can refer to three definitions: Let G = PK be an Iwasawa decomposition with
P =MAN a minimal parabolic subgroup. We have pseudospherical representations
of M, pseudospherical representations of K and pseudospherical representations
of G; see the definition at the beginning of Section 3.

The intertwining operators between two principal series representations, when
considered as integral operators, reveal many properties of the principal series repre-
sentations, such as reducibility points. The intertwining operators play an important
role in the general Plancherel formula for semisimple Lie groups developed by
Harish-Chandra. They are also related to the theory of Eisenstein series. A nice
discussion of the formalism can be found in [Schiffmann 1971]. In this paper,
we normalize the intertwining operators between two pseudospherical principal
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series, in a way that it is independent of the choice of representative in NK (A)
of w ∈W = NK (A)/ZK (A), and obtain a canonical definition. We are interested
in the action of intertwining operators on pseudospherical K-types. We compute
explicitly the Harish-Chandra c-function associated to this action, which is our
main result (Theorem 6.5). There is an analogous result in the p-adic case obtained
by H. Y. Loke and G. Savin [2010].

The structure of this paper is arranged as follows: In Section 2, we recall
some basic facts on Chevalley groups and their covering groups. We define the
maximal compact subgroup K of the covering group G using Steinberg symbols.
We calculate the structure of S̃L(2,R), the nontrivial two-fold cover of SL(2,R),
making a comparison between Kubota cocycles and Steinberg symbols and writing
down the exponential map from the Lie algebra to the cover. In Section 3, we
define the pseudospherical representation following [Adams et al. 2007] and list
some properties regarding the action of W on it. In Section 4, we define a family
of canonical intertwining operators among pseudospherical principal series. In
Section 5 we compute the intertwining operators of S̃L(2,R), which are important
for the general groups. Finally, we calculate the action of intertwining operators on
pseudospherical K-types and obtain our main result in Section 6.

2. Chevalley groups and their covering groups

In Section 2A, we recall the well-known construction of the Chevalley groups. In
Section 2B, we state a number of results for the covering group of a Chevalley
group that we will need in later sections. In particular, we give the generators and
relations of the double cover in terms of the Hilbert symbol. We define the minimal
parabolic subgroup P = NAM and the maximal compact subgroup K in terms
of the Steinberg symbol; see Proposition 2.6. In Section 2C, we specialize our
discussion in Section 2B to the case S̃L(2,R) and make a comparison between the
definition based on Kubota symbols and the definition based on Steinberg symbols;
see Proposition 2.8. We also compute explicitly an exponential map from the Lie
algebra to the cover; see Proposition 2.11.

2A. Construction of a Chevalley group. In this section, we recall the construction
of Chevalley groups following [Steinberg 1968]. Let g be a semisimple Lie algebra
over C, and h a Cartan subalgebra of g, and 8 the corresponding root system. We
use α, β, γ, . . . to denote the roots. Let B be the Killing form on g. Since it is
nondegenerate, there exists H ′α ∈ h such that B(H, H ′α) = α(H) for all H ∈ h.
Define (α, β)= B(H ′α, H ′β) for all α, β ∈8. The Cartan integer 〈α, β〉 is defined to
be 2(α, β)/(β, β). The root system 8 is invariant under all reflections wα (α ∈8),
where wα is the reflection across the hyperplane orthogonal to α. These reflections
generate the Weyl group W.
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For each α, define Hα = 2H ′α/(α, α) and Hi = Hαi , where 1= {α1, . . . , αl} is
a set of simple roots. By [Steinberg 1968], one can choose Xα ∈ gα such that

• [Hβ, Xα] = 〈α, β〉Xα,

• [Xα, X−α] = Hα is an integer linear combination of the Hi , and

• [Xα, Xβ] = NαβXα+β , where Nαβ is an integer which is 0 if α + β is not a
root.

The collection of Hi and Xα is called a Chevalley basis of the complex semisimple
Lie algebra g. It is important that the integer span, gZ, of the basis elements is
stable under the Lie bracket.

Let L0 be the root lattice, i.e, the integer span of all roots in 8, and let L1

be the weight lattice, which is the set of all µ ∈ h∗ such that µ(Hα) ∈ Z for all
roots α. Assume (g, V ) is a complex finite-dimensional representation of g. One
can show that its weight lattice LV is contained between L0 and L1. To construct
the Chevalley group based on the representation (g, V ), choose a full-rank lattice M
in V which is invariant under the set

{Xn
α/n! : n ∈ Z≥0, α ∈8},

where we are thinking of Xn
α/n! as a member of End(V ). One can show (see

[Steinberg 1968]) that such a lattice exists. For any field k, set V k to be the vector
space M ⊗Z k on which Xn

α/n! acts in a natural way. Since the representation V
has a finite number of weights, there is some n for each α such that Xn

α ∈ End(V k)

is zero. Therefore, for t ∈ k and α ∈8,

xα(t)= exp(t Xα)= 1+ t Xα +
(t Xα)2

2!
+
(t Xα)3

3!
+ · · · ∈ GL(V k)

is a finite sum and hence is well-defined.
Define the Chevalley group to be the subgroup G(k) of GL(V k) generated by

xα(t), with t ∈ k, α ∈ 8. We say G is simply connected if LV = L1. Note that
this definition is different from simply-connectedness in the topological sense. We
assume all Chevalley groups are simply connected for the rest of this paper.

Define

wα(t)= xα(t)x−α(−t−1)xα(t) and hα(t)= wα(t)wα(−1) for t ∈ k×.

Let T (the Cartan subgroup, or maximal torus) be the subgroup of G generated by
hα(t), with t ∈ k×, α ∈ 8. By [Steinberg 1968, Lemma 28], hα(t) is multiplica-
tive as a function of t , and simply-connectedness implies that any element of T
can be written uniquely as h1(t1)h2(t2) · · · hl(tl) for some t1, . . . , tl ∈ k×, where
hi (ti )= hαi (ti ).
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Now let us describe the generators and relations of a simply connected Chevalley
group G over k:

(A) xα(t)xα(u)= xα(t + u),

(B) (xα(t), xβ(u))=
∏

i, j>0
iα+ jβ∈8

xiα+ jβ(ci j t i u j ),

(B′) wα(t)xα(u)wα(−t)= x−α(−t−2u),

(C) hα(t)hα(u)= hα(tu).

Here the ci j are integers depending on α, β and the chosen ordering, but not on
t or u. By [Steinberg 1968, Theorem 8], if 8 is not of type A1, then (A), (B), (C)
form a complete set of relations for G constructed from 8 and k; if 8 is of type A1,
then (A), (B′), (C) form a complete set of relations. By [Steinberg 1968, Lemma 37],
(B′) is also true when 8 is not of type A1, and it implies that

wα(t)= w−α(−t−1), wα(1)hα(t)wα(−1)= hα(t−1),

which we will use later.

2B. Covering groups. To study the covering group of a simply connected Cheval-
ley group, we need some preparations. First, a central extension of a group G is
a couple (π,G ′), where G ′ is a group, and π is a homomorphism of G ′ onto G
such that Kerπ is a subset of the center of G ′. A central extension (π, E) of a
group G is universal if for any central extension (π ′, E ′) of G there exists a unique
homomorphism φ : E→ E ′ such that π ′ ◦φ = π . It is easy to see that if a universal
central extension exists, it is unique up to isomorphism.

Theorem 2.1 [Steinberg 1968, Theorem 10]. Let 8 be an irreducible root system
and k a field such that |k| > 4 and if rank8 = 1, then |k| > 9. Let G be the
corresponding simply connected Chevalley group abstractly defined by the relations
(A), (B), (B′), (C), let E be the group defined by the relations (A), (B), (B′) (we
use (B′) only if rank8= 1), and let π be the natural homomorphism from E to G.
Then (π, E) is a universal central extension of G.

From now on, we use xα(t), wα(t), hα(t) to denote the elements in the central
extension of G, and xα(t), wα(t), hα(t) to denote the elements in G.

The next theorem gives a complete description of C = Kerπ :

Theorem 2.2 [Steinberg 1968, Theorem 12]. Keep the assumptions in the previous
theorem. C =Kerπ is isomorphic to the abstract group A generated by the symbols
f (t, u) (t, u ∈ k∗) subject to the relations

(a) f (t, u) f (tu, v)= f (t, uv) f (u, v), f (1, u)= f (u, 1)= 1,

(b) f (t, u) f (t,−u−1)= f (t,−1),
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(c) f (t, u)= f (u−1, t),

(d) f (t, u)= f (t,−tu),

(e) f (t, u)= f (t, (1− t)u).

In the case when 8 is not of type Cn (n ≥ 1) the relations above may be replaced by

(ab′) f (t, u) f (t ′, u)= f (t t ′, u), f (t, u) f (t, u′)= f (t, uu′),

(c′) f (t, u)= f (u, t)−1,

(d′) f (t,−t)= 1,

(e′) f (t, 1− t)= 1.

The isomorphism is given by

φ : f (t, u) 7→ hα(t)hα(u)hα(tu)−1,

where α is a fixed long root. One can write

hα(t)hα(u)= f (t, u)hα(tu)

if we identify C = Kerπ with A via φ.

Remark. Because all long roots are conjugate by W, the isomorphism φ does not
depend on the choice of a long root α.

Remark. These relations are satisfied by the norm residue symbol in class field
theory.

For the application to real groups, we specialize our result to the case when k=R,
and consider the double cover. First, recall the real Hilbert quadratic symbol ( , )R.
It is a map from R∗ ×R∗ to µ2 = {±1}. For t, u ∈ R∗, (t, u) = 1 if and only if
x2
− t y2

−uz2 has a nontrivial solution (x, y, z)∈R3. It is easy to see that (t, u)= 1
unless both of t and u are negative. Assume G ′ is a double cover of G, more
precisely, a central extension (p,G ′) of G such that Ker p is of order 2 and such
that it does not split, i.e, there is no homomorphism i :G→G ′ such that p◦ i = idG .
Since (π, E) is the universal central extension of G, there exists a homomorphism
q : E→ G ′ such that p ◦q = π . Any such q maps C onto Ker p, that is, Ker p is a
quotient of C ∼= A. Passing to quotient, we use f (t, u) ∈ µ2 to denote the image
of f (t, u) ∈ A. Since the f (t, u) satisfy (a), (b), (c), (d), (e), G ′ is unique up to
isomorphism. On the other hand, the Hilbert symbol (t, u) satisfies the relations
that f (t, u) satisfies, hence f (t, u)= (t, u). Thus we have:

Corollary 2.3. Assume G is a simply connected Chevalley group over R. Then
there exists a unique (up to isomorphism) double cover (p,G ′) of G. Moreover, an
isomorphism φ : µ2→ Ker p is given by

(t, u) 7→ hα(t)hα(u)hα(tu)−1,
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where α is a fixed long root and (t, u) is the real Hilbert quadratic symbol. One can
write

hα(t)hα(u)= (t, u)hα(tu)

by identifying Ker p and µ2 via φ. Combining with (A), (B), (B′), we get a complete
set of relations for G ′.

In the universal cover E , let T be the subgroup generated by hα(t), α ∈8, t ∈ k×.
It is called the metaplectic torus of E . We also refer to the image of T in any cover
of G as the metaplectic torus. The proposition below lists some relations in T.

Proposition 2.4. Keep the assumptions in Theorems 2.1 and 2.2. Assume further-
more that 8 is not of type Cn . Then

hα(t)hα(u)= f (t, u)hα(tu) if α is long;

hα(t)hα(u)= f (t, u)n8hα(tu) if α is short;

(hα(t), hβ(u))= f (t, u)〈α,β〉 if α, β are long;

(hα(t), hβ(u))= f (t, u)〈α,β〉 if α is long, β is short;

(hα(t), hβ(u))= f (t, u)〈β,α〉 if α is short, β is long;

(hα(t), hβ(u))= f (t, u)n8·〈α,β〉 if α, β are short.

Here n8 =maxα,β∈8(α, α)/(β, β) and we identify f (t, u) with its image in C via φ.

Proof. By [Steinberg 1968, Lemma 37],

(hα(t), hβ(u))= hβ(t 〈β,α〉u)hβ(t 〈β,α〉)−1hβ(u)−1

for any α, β. If β is long, the right-hand side is f (u, t 〈β,α〉)−1, which is equal to
f (t, u)〈β,α〉 since 8 is not of type Cn . Taking the inverse on both sides, we get
(hβ(u), hα(t))= f (u, t)〈β,α〉. Now assume β is short, α is long. Then

hβ(u)hβ(t 〈β,α〉)hβ(t 〈β,α〉u)−1
= (hβ(u), hα(t))= f (u, t)〈α,β〉

= f (u, t 〈α,β〉)= f (u, t 〈β,α〉)
(α,α)
(β,β) = f (u, t 〈β,α〉)n8 .

Because 〈β, α〉 = ±1, t 〈β,α〉 runs through all the elements in k×. Finally, if both of
α, β are short,

(hα(t), hβ(u))= (hβ(u)hβ(t 〈β,α〉)hβ(t 〈β,α〉u)−1)−1

= f (u, t 〈β,α〉)−n8 = f (t, u)n8·〈β,α〉. �

Remark. Assume G is a real group and G ′ is its double cover. The relations above
are still true if we replace f (t, u) by (t, u). Because the Hilbert symbol (t, u) is
bimultiplicative, by the proof of Proposition 2.4, one can remove the assumption
that 8 is not of type Cn .
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Proposition 2.5 [Steinberg 1968, Lemma 37]. Let c= c(α, β)=±1 be independent
of t and u. Then

hα(t)xβ(u)hα(t)−1
= xβ(t 〈β,α〉u),

wα(1)hβ(t)wα(−1)= hwαβ(ct)hwαβ(c)
−1.

The next proposition gives a description of maximal compact subgroups in the
setting of Chevalley groups:

Proposition 2.6. Assume k = C or R. Then there exists an automorphism σ of E
such that σ xα(t)= x−α(−t) for any α ∈8, and an automorphism σ of G such that
σ xα(t)= x−α(−t) for any α ∈8. We have σhα(t)= hα(t−1), σhα(t)= hα(t−1).
Moreover, the group K of fixed points of σ is a subgroup of E containing C =
Kerπ , the group K of fixed points of σ is a maximal compact subgroup of G, and
K = π−1(K ).

Proof. This is basically [Steinberg 1968, Theorem 16], which proves the existence
of σ and K for G. In particular, xα(t) 7→ x−α(−t), for all α ∈ 8, preserves the
relations (A) and (B). Hence σ can be lifted to an automorphism of E , which we
denote by σ , such that σ xα(t)= x−α(−t) for any α ∈8. By the definition of wα(t),
σwα(t)= w−α(−t). So

σhα(t)= σwα(t)wα(−1)= σwα(t)σwα(−1)= w−α(−t)w−α(1).

Sincewα(t)=w−α(−t−1) for any α ∈8, t ∈ k×, the last term iswα(t−1)wα(−1)=
hα(t−1). Thus σhα(t)= hα(t−1) as in the linear case. Next, with the notation of
Theorem 2.2, C is generated by f (t, u), t, u ∈ k×, if we identify the groups A, C
via φ. We have hα(t)hα(u)= f (t, u)hα(tu). Let σ act on both sides. Then one has
hα(t−1)hα(u−1)=σ f (t, u)hα(t−1u−1), which implies that σ f (t, u)= f (t−1, u−1).
By relation (c) in Theorem 2.2, f (t−1, u−1) = f (u, t−1) = f (t, u) and hence σ
fixes C . �

For the rest of this paper, we use G to denote a simply connected Chevalley
group over R, and G to denote the double cover of G. For any subgroup H of G,
let H be the image of H under the covering projection p : G→ G. Define the real
metaplectic torus T to be the subgroup of G generated by hα(t), with α ∈8 and
t ∈R∗. Let A∼= (R+)l be the subgroup of T generated by hα(t), with α ∈8, t > 0.
Here l is the rank of8. By the remark on page 196, p|A : A→ A is an isomorphism,
and hence for simplicity we just use A to denote this group. Let M be the subgroup
of T generated by hα(−1), with α ∈ 8. It is easy to see that A is in the center
of T, and T is the direct product of A and M. Note that M is a central extension
of M ∼= (Z/2Z)l by µ2 = {±1}. Let 1 be a set of simple roots, and let 8+ be the
corresponding set of positive roots. Let N be the group generated by xα(t), with
α ∈ 8+, t ∈ R. Then p|N : N → N is an isomorphism, and hence for simplicity
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we just use N to denote this group. Define P to be subgroup of G generated by
N and T, which we call a minimal parabolic subgroup (or Borel subgroup). We
have the Langlands decomposition P = NAM. By Proposition 2.6, there exists an
automorphism σ of G such that σ xα(t)= x−α(−t) for all α ∈8. Similarly for G.
The group K of fixed points of σ is a maximal compact subgroup of G which is the
double cover of K. It is easy to see that M (resp. M) is a subgroup of K (resp. K ).
One has ZK (A)= M , which implies that ZK (A)= M. Define the Weyl group W
to be NK (A)/ZK (A)= NK (A)/M. Then W is isomorphic to NK (A)/M.

Lemma 2.7. Thewα(1) lie in NK (A), for any α∈8, and their images in NK (A)/M
generate W.

Proof. Since σwα(1)=w−α(−1)=wα(1), we havewα(1)∈ K. Also, by the second
relation in Proposition 2.5, wα(1) normalizes A. Each wα(1) corresponds to the
reflection sα through the hyperplane determined by α, which gives an isomorphism
between W = NK (A)/ZK (A) and the Weyl group Ŵ defined in the abstract root
system setting. In particular, the wα(1), for α ∈8, generate W. �

2C. The group SL(2, R) and its double cover S̃L(2, R). In this section, we recall
some basic facts about SL(2,R) and its double cover S̃L(2,R), which are important
for the study of representation theory of general covering groups.

G = SL(2,R) may be described in Steinberg symbols: Let X =
(0

0
1
0

)
, Y =

(0
1

0
0

)
,

H =
( 1

0
0
−1

)
be the sl2 triple. For t ∈ R, define

x(t)= exp(t X)=
(

1 t
0 1

)
, w(t)= x(t)y(−t−1)x(t)=

(
0 t
−t−1 0

)
,

y(t)= exp(tY )=
(

1 0
t 1

)
, h(t)= w(t)w(−1)=

(
t 0
0 t−1

)
.

Let N be the subgroup generated by x(t), t ∈R, and let A be the subgroup generated
by h(t), t>0. Then K =SO(2) consists of rφ=

( cosφ
sinφ

−sinφ
cosφ

)
, φ∈R, and G=NAK.

Let M = {h(±1)} ∈ K. Then the subgroup P of upper-triangular matrices has the
Langlands decomposition P = NAM.

By Corollary 2.3, there exists a unique nontrivial double cover G = S̃L(2,R)

of G = SL(2,R), that is, a central extension of G by µ2 = {±1}. We use p to
denote the covering map. It is generated by the symbols x(t), y(t) satisfying
the same relations as that of G, except that h(t)h(u) = (t, u)h(tu), where ( , )
is the real Hilbert quadratic symbol. The map φ : N → S̃L(2,R), x(t) 7→ x(t),
t ∈ R, is a group homomorphism; ψ : A → S̃L(2,R), h(t) 7→ h(t), t > 0, is
also a group homomorphism. Moreover, φ is the only homomorphism from N to
S̃L(2,R) satisfying p ◦φ = IdN . Assume φ′ is another one. Consider f : N → µ2,
n 7→ φ(n)φ′(n)−1. Then we have f (x(t)) = f (x(t/2)2) = f (x(t/2))2 = 1. So f
is trivial, whence φ = φ′. A similar fact holds for ψ . We still denote the images
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of φ, ψ by N, A. Let K be the subgroup fixed by the automorphism σ of G, where
σ sends x(t) to y(−t), y(t) to x(−t). Then K is a double cover of SO(2). We have
the Iwasawa decomposition G = NAK. Let M = {±h(±1)} ⊂ K. It is isomorphic
to C4, the cyclic group of order four, and it is an extension of M by µ2. The group
P = NAM is an extension of P by µ2.

We may also describe the group structure of S̃L(2,R) using Kubota cocycles.
The only reason we introduce this is that Kubota cocycles make some calculations
involving K more explicit. They will be used in Section 5. As a set, S̃L(2,R)=

SL(2,R)×µ2. The group law is given by

(g, ε)(g′, ε′)= (gg′, εε′c(g, g′)).

Here c, called the Kubota cocycle, is given by the formula

c(g, g′)= (x(g), x(g′))(−x(g)x(g′), x(gg′)),

where

x
((

a b
c d

))
=

{
c if c 6= 0,
d if c = 0,

and ( , ) is the quadratic Hilbert symbol. The map x(t) 7→ (x(t), 1), y(t) 7→ (y(t), 1)
gives an isomorphism between the two definitions. Direct calculation using the
Kubota cocycle shows that w(t) 7→ (w(t), 1) and h(t) 7→ (h(t), sgn(t)). Thus:

Proposition 2.8. We may write

x(t)= (x(t), 1), y(t)= (y(t), 1), w(t)= (w(t), 1), h(t)= (h(t), sgn(t)).

The exponential map

exp : sl(2,R)→ SL(2,R)

is given by the exponents of matrices. In particular,

exp(t X)= x(t), exp(t H)= h(et), exp(−t Z)= rt ,

where Z = X − Y.

Proposition 2.9. Let e : R→ SO(2) be the homomorphism sending φ to rφ . Then
there exists a unique homomorphism e : R→ K such that p ◦ e = e. It is given by
e(φ)= (rφ, ε(φ/2)), where ε :R/2πZ→±1 is defined by ε(θ)= sgn(sin θ sin 2θ)
when θ 6= 0, π/2, π, 3π/2, ε(0)= 1, ε(π/2)=−1, ε(π)=−1, ε(3π/2)= 1.

Proof. It is clear that e is of the form appearing in the proposition for some
ε : R/2πZ→±1. By working out exp(θ) exp(θ)= exp(2θ), one sees that

ε(θ)= (x(rθ ), x(rθ ))(−1, x(r2θ ))= (−1, x(rθ )x(r2θ ))= sgn(x(rθ )x(r2θ )).
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Direct calculations show that x(rθ )x(r2θ )= sin θ sin 2θ when θ 6= 0, π/2, π, 3π/2,
0≤ θ < 2π , and ε(0)= 1, ε(π/2)=−1, ε(π)=−1, ε(3π/2)= 1. �

Corollary 2.10. For any integer n, the map σn/2 : K → S1, (rφ, ε(φ/2)) 7→ einφ/2

is a character of K. In particular, σ = σn/2|M is a character of M satisfying
σ(I, 1)= 1, σ(−I,−1)= in, σ(I,−1)= (−1)n, σ(−I, 1)= (−i)n.

There exists a unique exponential map

exp : sl(2,R)→ S̃L(2,R)

such that p ◦exp= exp. For any X ∈ sl(2,R), let γ (t) be the unique one-parameter
subgroup of G whose tangent vector at the identity is equal to X. Since p is a
covering map, t 7→ γ (t) can be partially lifted to a continuous map γ̃ : I → G
such that it pushes forward to γ |I for some neighborhood I ⊂ R around 0 and
γ̃ (0) = 1 ∈ G. Since γ is a continuous homomorphism, one can extend γ̃ to a
homomorphism from R to G which lifts γ . We define exp(X) to be γ̃ (X).

Proposition 2.11. We have

exp(t X)= (x(t), 1), exp(t H)= (h(et), 1), exp(−t Z)= (rt , ε(t/2)).

Proof. The first two are obvious and the third follows from Proposition 2.9. �

2D. Connections between S̃L(2, R) and general covering groups. Let G be the
unique nontrivial two-fold cover of a split real group G. For each root α,

8α : S̃L(2,R)→ G

is defined to be the homomorphism sending x(t) to xα(t), y(t) to x−α(t), and
h(t) to hα(t).

We now state a definition from [Adams et al. 2007], which will be used later:

Definition. A root α is said to be metaplectic if8α does not factor through SL(2,R).

The next proposition follows from the first two equations in Proposition 2.4:

Proposition 2.12. If G is not of type G2, then α is metaplectic if and only if it is
long. If G is of type G2, then all roots are metaplectic.

3. Pseudospherical Representations

For each α ∈ 8, let mα = hα(−1) ∈ G and Zα = Xα − X−α ∈ g. Then we have
exp(−π Zα)= mα by Propositions 2.8 and 2.11. The following definition is from
Definition 4.9 and Lemma 4.11 of [Adams et al. 2007]:

Definition (pseudospherical representations). An irreducible representation σ of M
is pseudospherical if the eigenvalues of σ(mα) belong to {±i} when α is a metaplec-
tic root, and {1} otherwise. An irreducible representation µ of K is pseudospherical



ACTION OF INTERTWINING OPERATORS ON PSEUDOSPHERICAL K-TYPES 201

if the eigenvalues of dµ(i Zα) belong to
{
±

1
2

}
when α is a metaplectic root, and {0}

otherwise. A representation of G is pseudospherical if it contains a pseudospherical
K-type.

Remark. When G = S̃L(n,R), the double cover of SL(n,R), the Spinor represen-
tation of K = Spin(n) is pseudospherical.

Remark. If G is simply laced or of type G2, then every irreducible genuine rep-
resentation of M is pseudospherical. In fact, all roots are metaplectic in this case,
and so m2

α = hα(−1)hα(−1)=−1 ∈ µ2 ⊂ Z(G). So σ(mα)
2
= σ(−1)=−I and

hence its eigenvalues are ±i with multiplicities.

Also notice that eigenvalues in the pseudospherical conditions for M and K are
compatible: log(1)= 2π iZ, log(±i)=±iπ/2+ 2π iZ.

Example. In the case S̃L(2,R), the representation µ= σ1/2 is a pseudospherical
representation of K = S̃O(2)whose restriction σ =σ1/2|M to M is a pseudospherical
representation of M. In fact,

dµ(Zα)= lim
t→0

µ(exp(t Zα))− 1
t

.

But µ(exp(t Zα))= σ1/2(r−t , ε(−t/2))= e−i t/2, so the limit is

lim
t→0

e−i t/2
−1

t
=−

i
2
.

Thus dµ(i Zα)= 1
2 and

σ(mα)= σ(hα(−1))= σ(rπ , ε(π/2))= eiπ/2
= i.

Below is a fundamental fact on pseudospherical representations:

Theorem 3.1 [Adams et al. 2007, Proposition 5.2]. Let σ be a pseudospherical
representation of M. There is a unique pseudospherical representation µσ of K such
that µσ |M = σ and this defines a bijection between pseudospherical representations
of M and K.

Now we want to define an action of W on irreducible representations (σ, V )
of M that do not factor through M (or equivalently, σ(−1) 6= 1). We call such
representations genuine representations. We use5g(M) to denote the set of isomor-
phism classes of genuine representations of M. We will show that W fixes every
isomorphism class of irreducible genuine pseudospherical representations of M.
This is proved in [Adams et al. 2007, Lemma 4.11(3)]. We repeat the argument
below for completeness.

Proposition 3.2. Let Z(M)⊃ µ2 be the center of M, and let 5g(Z(M)) be the set
of genuine characters of Z(M), that is, those characters χ satisfying χ(−1)=−1.
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For every χ ∈ 5g(Z(M)), there is a unique representation σ(χ) of M such that
σ(χ)|Z(M) = χ · I. The map χ 7→ σ(χ) defines a bijection 5g(Z(M))→5g(M).
The dimension of σ(χ) is |M/Z(M)|1/2 and IndM

Z(M)(χ)
∼= |M/Z(M)|1/2σ(χ).

Proof. The key point of the proof in [Adams et al. 2007] is that if σ is a genuine
representation of M, then the character tr σ is supported on Z(M). Suppose m does
not belong to Z(M). Choose h ∈ M such that hmh−1

6= m. Since M is abelian,
p(hmh−1) = p(h)p(m)p(h)−1

= p(m), so hmh−1
= −m. Taking the trace on

both sides, we have tr σ(m) = χ(−1) tr σ(m). Since χ is genuine, χ(−1) = −1,
so tr σ(m)= 0.

Therefore, every irreducible genuine representation of M is uniquely determined
by its central character. Fix χ ∈ 5g(Z(M)). Let I (χ) = IndM

Z(M)(χ). This has
central character χ , so it is a multiple of the irreducible representation σ(χ) of M
with central character χ . Put I (χ)= nσ(χ). By Frobenius reciprocity,

HomM(I (χ), I (χ))= HomZ(M)(I (χ)|Z(M), χ),

which has dimension |M/Z(M)|. On the other hand, by Schur’s lemma,

HomM(I (χ), I (χ))= HomM(nσ(χ), nσ(χ)),

which has dimension n2. Therefore n = |M/Z(M)|1/2 and the dimension of σ(χ)
is |M/Z(M)|1/2. �

Since NK (A) acts on M by conjugation, it also acts on its center Z(M), which
factors down to W =NK (A)/M. Thus we have an action of W on5g(Z(M)). By the
proposition above, this gives rise to an action of W on5g(M). More precisely, pick a
representative ŵ∈ NK (A) ofw∈W. Then ŵσ (m)=σ(ŵ−1mŵ) is a representation
of M. Up to isomorphism, it is independent of the choice of a representative
of w because different representatives ŵ give the same central character, hence
isomorphic representations. Therefore one can denote this representation by wσ ,
as an isomorphism class in 5g(M).

Proposition 3.3. The action of the Weyl group W on the isomorphism classes of
irreducible genuine representations of M fixes each isomorphism class of pseudo-
spherical representations.

Proof. Assume (σ, V ) is a genuine representation of M. For all w ∈W, choose a rep-
resentative ŵ ofw in NK (A). By Theorem 3.1, there is a unique pseudospherical rep-
resentation (µσ , V ) of K such thatµσ |M =σ . Let φ :V→V, v 7→µσ (ŵ

−1)v. Then

φ(µσ (k)v)= µσ (ŵ−1)µσ (k)v = µσ (ŵ−1kŵ)µσ (ŵ−1)v = (ŵµσ )(k)φ(v)

for any k ∈ K. Thus φ is a K-isomorphism, and restricting it to M, we get

σ ∼= (ŵµσ )|M = ŵσ. �
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4. Principal series representations and intertwining operators

In this section, let G be the double cover of a split real group. We define the
principal series representation of G and the intertwining operator. Most of the
results are well-known in the linear group case; see [Schiffmann 1971]. The
discussion for covering groups is almost identical to the linear case. The highlight
is that the intertwining maps can be defined in a canonical way using the theory of
pseudospherical representations.

Let χ be a character of A, and let δ be the modular character of A such that∫
N

f (a−1na) dn = δ(a)
∫

N
f (n) dn

for any a ∈ A and any compact supported function f on N. Here we fix a Haar
measure on N, which is topologically isomorphic to R|8

+
|. Since δ depends on N,

we will write δN instead of δ when needed. The character δ is equal to the product
of the roots in 8+, considered as multiplicative characters of A. Let (σ, V ) be a
pseudospherical representation of M.

Definition. Let I (P, σ, χ), the space of principal series, be the space of smooth
functions f : G→ V such that

f (namx)= δ(a)1/2χ(a)σ (m) f (x)

for all n ∈ N, a ∈ A, m ∈ M, and x ∈ G. Then G acts on I (P, σ, χ) by right
translation: ρ(g) f (x) = f (xg). This defines a representation of G called the
principal series representation, or induced representation, of G. For simplicity, we
denote this representation by I (σ, χ) or I (χ) when there is no confusion.

Assume χ is a character of A. For allw∈NK (A), wχ(a)=χ(w−1aw) is another
character of A. This action factors down to W. Note that w1(w2χ) = (w1w2)χ .
In other words, we have an action of the Weyl group W on 5(A) = the set of
characters of A.

By Theorem 3.1, there is an irreducible representation (µσ , V ) of K such that
µσ |M =σ . For any f ∈ I (P, σ, χ) and anyw∈W, pick a representative ŵ∈ NK (A)
of w, and define a function

M(w, σ, χ) f (x)= µσ (ŵ)
∫

N∩ŵN ŵ−1\N
f (ŵ−1nx) dn.

Note that n→ f (ŵ−1nx) is left (N ∩ ŵN ŵ−1)-invariant, so the integral makes
sense. Also it is well-defined, i.e, independent of the choice of a representative
of w in NK (A) due to the normalizing factor µσ . For simplicity, we write w in
place of ŵ when there is no confusion. Let us remark that Nw, which is equal to
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N ∩wNw−1
\ N, corresponds to those positive roots that are sent to negative by

w−1, and it has one-to-one correspondence with B \ Bw−1 N.
Let S(w) be the set of χ such that the above integral is absolutely convergent

for any x ∈ G, f ∈ I (P, σ, χ). We are going to show that M(w, σ, χ) maps
I (P, σ, χ) into I (P, σ,wχ) for χ ∈ S(w). This map is called the intertwining map.
For simplicity, we sometimes denote this map by M(w, χ) or M(w).

Lemma 4.1. Let w be an element in W, and let δw be a character of A such that∫
Nw

f (a−1na) dn = δw(a)
∫

Nw
f (n) dn

for any a ∈ A and any integrable function f on N. Then (wδ)1/2δw = δ1/2.

Proof. For a simple reflection w, take Q = P ∪ Pw−1 P and let L , U be its Levi
factor and unipotent radical. Note that U = N∩wNw−1. We have δN = δUδN/U and
δwNw−1 = δUδwNw−1/U . But δwNw−1 =wδN and δwNw−1/U = δ

−1
N/U . The conclusion

now follows from simple algebraic manipulations. �

Proposition 4.2. If χ ∈ S(w), then M(w, σ, χ) maps I (P, σ, χ) into I (P, σ,wχ).

Proof. M(w, σ, χ) f (nx)= M(w, σ, χ) f (x) is obvious. Next we have

M(w, σ, χ) f (ax)= µσ (w)
∫

Nw
f (w−1nax) dn

= µσ (w)

∫
Nw

f ((w−1aw)w−1(a−1na)x) dn

= µσ (w)wδ(a)1/2wχ(a)
∫

Nw
f (w−1(a−1na)x) dn

= µσ (w)wδ(a)1/2wχ(a)δw(a)
∫

Nw
f (w−1nx) dn

= δ(a)1/2wχ(a)M(w, σ, χ) f (x).

Similarly,

M(w, σ, χ) f (mx)= µσ (w)
∫

Nw
f (w−1nmx) dn

= µσ (w)

∫
Nw

f ((w−1mw)w−1(m−1nm)x) dn

= µσ (w)σ(w
−1mw)

∫
Nw

f (w−1(m−1nm)x) dn

= σ(m)µσ (w)
∫

Nw
f (w−1nx) dn

= σ(m)M(w, σ, χ) f (x). �
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Assume that the Haar measures on the Nw are normalized so that, when l(w1w2)=

l(w1)+ l(w2), ∫
Nw1w2

f (n) dn =
∫

Nw1×Nw2

f (w1n2w
−1
1 n1) dn1 dn2

for any integrable function f on Nw1w2 . Under this assumption, the following
proposition holds:

Proposition 4.3. Assume w1, w2 ∈W such that l(w1w2)= l(w1)+ l(w2). Then

S(w1w2)= S(w2)∩w
−1
2 S(w1),

and for χ ∈ S(w) regular (only fixed by the trivial element in W ),

M(w1, σ,w2χ) ◦M(w2, σ, χ)= M(w1w2, σ, χ).

Proof. Since χ is regular, the dimension of HomG(I (χ), I (wχ)) is one for any
w∈W, by Frobenius reciprocity. So it suffices to show that (M(w1)◦M(w2) f )(1)=
M(w1w2) f (1):

(M(w1) ◦M(w2) f )(1)= µσ (w1)

∫
Nw1

(M(w2) f )(w−1
1 n1) dn1

= µσ (w1)µσ (w2)

∫
Nw1

dn1

∫
Nw2

f (w−1
2 n2w

−1
1 n1) dn2

= µσ (w1w2)

∫
Nw1

dn1

∫
Nw2

f (w−1
2 w−1

1 ·w1n2w
−1
1 n1) dn2.

By the assumption on the Haar measures, the last expression is equal to

µσ (w1w2)

∫
Nw1w2

f (w−1
2 w−1

1 n) dn = M(w1w2) f (1). �

5. Representations of S̃L(2, R)

We carry out the detailed study of principal series and intertwining maps in the SL2

case first, since it is the fundamental building block of the general case. The results
in Section 5A are well-known, but we list them here for the purpose of making a
comparison with the nonlinear case.

5A. Linear case. Let G = SL(2,R), and let P be the standard parabolic subgroup
with Langlands decomposition P = NAM. Then M has only two characters. Let σ
be any of them. For any complex number s, define a character χ of A by χ(a)= as ,
where a = diag(a, a−1). The modular character δ(a) of A is a2. So the space
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I (P, σ, χ) of principal series in this case is the collection of functions f such that

f (namx)= as+1σ(m) f (x).

For simplicity, we denote it by I (σ, s). Let K =SO(2). For any n∈Z, τn(rφ)= einφ

is a character of K. Define f n
s such that

f n
s (nak)= as+1τn(k).

Then f n
s ∈ I (τn|M , s). When n is even, τn|M is trivial, denoted by σ0. When n is

odd, τn|M is nontrivial, denoted by σ1. We say f n
s is of K-type n.

The Weyl group W is of order two. Let w be its nontrivial element. Now we
define the intertwining map M(σ, s) : I (σ, s)→ I (σ,−s). For f ∈ I (σ, s),

M(σ, s) f (x)=
∫

N
f (wnx) dn when σ = σ0,

M(σ, s) f (x)= τ1(w)
−1
∫

N
f (wnx) dn when σ = σ1.

It does not depend on the choice of a representative element ofw in NK (A). We have
M(σ, s) f n

s = cn(s) f n
−s for some constant cn(s)= (M(σ, s) f n

s )(1). The following
proposition is well-known. We will give a proof of a more general proposition in
the next subsection.

Proposition 5.1. cn(s)=
√
π

0
( s

2

)
0
( s+1

2

)
0
( s+n+1

2

)
0
( s−n+1

2

) .

5B. Nonlinear case. Let G= S̃L(2,R), and let P=NAM be its standard parabolic
subgroup which is the double cover of P. Let K be the double cover of K = SO(2).
We are going to study the principal series of G and calculate the intertwining map
using the Kubota cocycle. Let σ be a character of M, and define a character χ
of A by

χ(a)= as,

where s ∈ C, a = (diag(a, a−1), 1) ∈ A. Since δN (a) = a2 and δN̄ (a) = a−2,
I (P, σ, χ), which we denote by I (σ, s) for simplicity, consists of functions f such
that

f (namx)= as+1σ(m) f (x).

I (P̄, σ, χ), which we denote by Ī (σ, s) for simplicity, consists of functions f such
that

f (n̄amx)= as−1σ(m) f (x).

For any n ∈ Z, define f n/2
s such that

f n/2
s (nak)= as+1σn/2(k),
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where σn/2 is a character of K defined in Proposition 2.9. Then f n/2
s ∈ I (σn/2|M , s).

We say f n/2
s is of K-type n/2. Similarly, define f n/2

s such that

f n/2
s (n̄ak)= as−1σn/2(k).

Then f n/2
s ∈ Ī (σn/2|M , s).

There are four different characters σ of M : σ0|M , σ1/2|M , σ1|M , σ3/2|M . Define
the intertwining map M(σ, s) : I (σ, s)→ I (σ,−s) by

M(σ, s) f (x)= σi/2(w)
−1
∫

N
f (wnx) dn, σ = σi/2|M , i = 0, 1, 2, 3.

This definition is canonical. Define T : Ī (σ, s)→ I (σ,−s) by

T f (x)= σi/2(w)
−1 f (wx), σ = σi/2|M , i = 0, 1, 2, 3.

Also define intertwining maps A(σ, s) : I (σ, s)→ Ī (σ, s) such that

A(σ, s) f (x)=
∫

N̄
f (n̄x) dn̄

and Ā(σ, s) : Ī (σ, s)→ I (σ, s) such that

Ā(σ, s) f (x)=
∫

N
f (nx) dn.

Then we have
M(σ, s)= T ◦ A(σ, s).

M(σ, s) sends f n/2
s to cn/2(s) f n/2

−s for some constant cn/2(s). It is sometimes called
the Harish-Chandra c-function. It is easy to see that cn/2(s)= A(σ, s) f n/2

s (1). For
simplicity, we sometimes use I (s) in place of I (σ, s) and A(s) in place of A(σ, s).

Define a pairing ( , ) : I (s)× I (−s̄)→ C by

( f, g)=
∫

K
f (k)g(k) dk.

There is also a pairing ( , ) : Ī (s)× Ī (−s̄)→ C defined using the same formula.
The following lemma follows from formal calculations:

Lemma 5.2. For f ∈ I (s) and g ∈ Ī (−s̄), we have (A(s) f, g)= ( f, Ā(−s̄)g).

Proposition 5.3. For those s ∈ iR such that I (s) is irreducible, Ā(s) ◦ A(s) is a
nonnegative constant.

Proof. By Schur’s lemma, Ā(s) ◦ A(s) is a constant, say λ(s). When s ∈ iR,
s = −s̄, so by Lemma 5.2 (A(s) f, g) = ( f, Ā(s)g). Taking g = A(s) f , we get
(A(s) f, A(s) f )= ( f, Ā(s) ◦ A(s) f )= λ̄(s)( f, f ), hence λ(s) is nonnegative. �

Below is a nice property of the c-function:
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Proposition 5.4. cn/2(s)= c−n/2(s).

Proof. Let d = diag(1,−1) ∈ GL2. The conjugation action of d on SL2 satisfies
drφd−1

= r−φ . This action lifts to the covering group and it gives an inverse on K.
Hence the conjugation of functions by d gives an intertwining map I (σ, s)→
I (σ−1, s) which we denote by d(s). We have

M(σ−1, s) ◦ d(s)= d(−s) ◦M(σ, s).

In fact, for any f ∈ I (σ, s),

M(σ−1, s) ◦ d(s) f (x)= σ−n/2(w)
−1
∫

N
(d(s) f )(wnx) dn

= σ−n/2(w)
−1
∫

N
f (dwnxd−1) dn

= σn/2(w)

∫
N

f (w−1dnxd−1) dn.

Since w−1
= mw for some m ∈ M, the last expression is

σn/2(w)σ(m)
∫

N
f (wdnxd−1) dn = σn/2(w

−1)

∫
N

f (wdnxd−1) dn.

On the other hand,

d(−s) ◦M(σ, s) f (x)= σn/2(w)
−1
∫

N
f (wndxd−1) dn

= σn/2(w)
−1
∫

N
f (wdnxd−1) dn,

hence the two operators are equal.
Now take f = f n/2

s . Then

M(σ−1, s) ◦ d(s) f n/2
s = c−n/2(s) f −n/2

−s ,

d(−s) ◦M(σ, s) f n/2
s = cn/2(s) f −n/2

−s .

Thus cn/2(s)= c−n/2(s). �

Now we calculate cn/2(s):

Proposition 5.5. cn/2(s)=
√
π

0
( s

2

)
0
( s+1

2

)
0
( s+1

2 +
n
4

)
0
( s+1

2 −
n
4

) .
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Proof. We have cn/2(s)=
∫

N̄ f n/2
s (n̄) dn̄. For n̄ =

( 1
t

0
1

)
∈ N̄,

n̄ =
(

1 x
0 1

)(
y1/2 0

0 y−1/2

)
(rφ, 1)

=

(
y1/2 cosφ+ xy−1/2 sinφ −y1/2 sinφ+ xy−1/2 cosφ

y−1/2 sinφ y−1/2 cosφ

)
.

Then

n̄ · i =
i

ti + 1
=

t
t2+ 1

+
1

t2+ 1
i = x + yi,

so a(t)= y1/2
= 1/
√

t2+ 1, tanφ = t , φ = φ(t)= arctan t . Then

cn/2(s)=
∫

R

f n/2
s

((
1 0
t 1

))
dt =

∫
R

1
(t2+ 1)(s+1)/2σn/2(rφ(t), 1) dt.

Since φ(t) ∈ (−π/2, π/2), we have ε(φ(t)/2) = sgn(sin(φ(t)/2) sin(φ(t))) = 1,
hence σn/2(rφ(t), 1)= einφ(t)/2. Finally, by substituting those expressions into the
last integral, we get

cn/2(s)=
∫

R

1
(t2+ 1)(s+1)/2 ein(arctan t)/2

=

∫
R

1
(t2+ 1)(s+1)/2

(
1− i t
√

t2+ 1

)−n/2

dt.

Now the proposition follows from the lemma below. �

Lemma 5.6. For any n ∈ Z,∫
R

1
(t2+ 1)(s+1)/2

(
1− i t
√

t2+ 1

)−n/2

dt =
√
π

0
( s

2

)
0
( s+1

2

)
0
( s+1

2 +
n
4

)
0
( s+1

2 −
n
4

) .
Proof. The integral is absolutely convergent for Re(s)> 0. The integrand is equal to

(1+ i t)(−2s−n−2)/4(1− i t)(−2s+n−2)/4,

which we denote by f (t). By Lebesgue’s dominated convergence theorem,

lim
y→0

∫
R

f (t)e−i t y dt =
∫

R

f (t) dt.

Let 2u = 1
4(2s+ n+ 2), 2v = 1

4(2s− n+ 2). By [Erdélyi et al. 1954],

f̂ (y)=
∫

R

f (t)e−i t y dt = 2π2−u−v0(2v)−1 yu+v−1Wv−u,1/2−v−u(2y)

for y > 0. Here W is the Whittaker function

Wρ,σ (z)=
0(−2σ)

0
(1

2 − σ − ρ
)Mρ,σ (z)+

0(2σ)

0
( 1

2 + σ − ρ
)Mρ,−σ (z),
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where
Mρ,σ (z)= z1/2+σ e−z/2 F

( 1
2 + σ − ρ, 2σ + 1, z

)
,

F(a, b, z)= 1+
∑
k≥1

a(a+ 1) · · · (a+ k− 1)
b(b+ 1) · · · (b+ k− 1)

zk

k!
.

So

Wv−u,1/2−v−u(2y)=
0(−1+ 2u+ 2v)

0(2u)
(2y)1−u−ve−y F(1− 2v, 2− 2u− 2v, 2y)

+
0(1− 2u− 2v)
0(1− 2v)

(2y)u+ve−y F(2u, 2u+ 2v, 2y).

Thus

yu+v−1Wv−u,1/2−v−u(2y)→
0(−1+ 2u+ 2v)

0(2u)
21−u−v

as y→ 0. It follows that∫
R

f (t) dt = lim
y→0

f̂ (y)= 2π2−u−v0(2v)−10(−1+ 2u+ 2v)
0(2u)

21−u−v

= π21−s 0(s)

0
( s+1

2 +
n
4

)
0
( s+1

2 −
n
4

) .
By the double formula,

0(s)= 1
√
π

2s−10
( s

2

)
0
(s+1

2

)
,

hence ∫
R

f (t) dt =
√
π

0
( s

2

)
0
( s+1

2

)
0
( s+1

2 +
n
4

)
0
( s+1

2 −
n
4

) . �

Now we consider a slightly more general situation, which will be used in the
next section. Let (σ, V ) be a finite-dimensional representation of M which is the
restriction of a representation (µ, V ) of K. Let I (σ, s) be the space of functions
f : G→ V such that f (namg)= as+1σ(m) f (g). For f ∈ I (σ, s), define

M(s) f (x)= µ(w)−1
∫

N
f (wnx) dn.

By Proposition 4.2, M(s) maps I (σ, s) into I (σ,−s). For v ∈ V, define

f vs (nak)= as+1µ(k)v.

Then v 7→ f vs is an embedding of (µ, V ) into I (σ, s), as a K-subrepresentation.

Proposition 5.7. Assume (µ, V ) is a direct sum of σ±n/2 for a fixed integer n. Then
(M(s) f vs )(1)= cn/2(s)v.



ACTION OF INTERTWINING OPERATORS ON PSEUDOSPHERICAL K-TYPES 211

Proof. If v belongs to one of those summands, then by the definition of M(s) and
Proposition 5.5, (M(s) f vs )(1)= cn/2(s)v. Because cn/2(s)= c−n/2(s), this is valid
for any v ∈ V. �

6. Action of intertwining operators on pseudospherical K-types

This section contains the main result of this paper. Let G be the unique nontrivial
two-fold cover of a split real group G. Assume σ is a pseudospherical representation
of M and µσ is the pseudospherical representation of K corresponding to σ . We
note that the multiplicity of µσ in I (P, σ, χ) is one and then calculate the action of
the intertwining operator on it, obtaining explicit formulas of the Harish-Chandra
c-function.

The following lemma is fairly simple; see Definition 5.5 of [Adams et al. 2007].

Lemma 6.1. As a K-representation, the multiplicity of µσ in I (P, σ, χ) is 1.

Proof. It is easy to see that, as a K-representation, I (P, σ, χ) is isomorphic to
IndK

M(σ ). By Frobenius reciprocity, HomK (µσ , IndK
M(σ ))= HomM(σ, σ ), which

is isomorphic to C by Schur’s lemma. �

Let φ be the unique element in HomK (µσ , I (P, σ, χ)) such that (φv)(1) = v
for all v ∈ V , and let ψ be the unique element in HomK (µσ , I (P, σ,wχ)) such
that (ψv)(1)= v for all v ∈ V. Then M(w, σ, χ)(φv)= c · (ψv) for some nonzero
constant c ∈ C which does not depend on v.

Let s = (s1, . . . , sl) ∈ Cl and take χ = χs to be the character of A such that

χs(h1(t1) · · · hl(tl))= t s1
1 · · · t

sl
l , ti > 0.

We write I (P, σ, s) instead of I (P, σ, χ). Let ws ∈ Cl be such that wχs = χws .
We write M(w, s) for the intertwining map instead of M(w, σ, χs).

Lemma 6.2. Define a function f vP,µσ ,s : G→ V such that

f vP,µσ ,s(nak)= χs(a)δN (a)1/2µσ (k)v.

Then f vP,µσ ,s is well-defined and lies in I (P, σ, s).

Proof. For simplicity, we write f vs in place of f vP,µσ ,s when there is no confusion.
Since the Iwasawa decomposition is unique (this is not true in the p-adic case), f vs is
well-defined. It is evident that f vs (nx)= f vs (x). For any a ∈ A, we have f vs (ax)=
f vs (an(x)a(x)k(x)). Since T normalizes N, it is equal to χs(a)δN (a)1/2 f vs (x).
Finally, since T normalizes N and A is contained in the center of T,

f vs (mx)= f vs (mn(x)a(x)k(x))= f vs (n
′(x)ma(x)k(x))

= f vs (n
′(x)a(x)mk(x))= σ(m) f vs (x).

Thus f vs ∈ I (P, σ, s). �
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Lemma 6.3. Define φ :µσ→ I (P, σ, s), v 7→ f vs . Then φ is a K-intertwining map.

Proof. We need to show φ(σ(k)v)= R(k)φ(v). For x ∈ G, let x = n(x)a(x)k(x)
be the Iwasawa decomposition of x . Then

φ(σ(k)v)(x)= f σ(k)vs (x)= χs(a(x))δN (a(x))1/2σ(k(x))σ (k)v.

On the other hand,

R(k)φ(v)(x)= f vs (xk)= χs(a(x))δN (a(x))1/2σ(k(x)k)v

= χs(a(x))δN (a(x))1/2σ(k(x))σ (k)v,

which proves the identity. �

Proposition 6.4. Assume σ is a genuine pseudospherical representation of M.
Then µσ |Kα

=mσ1/2⊕m′σ−1/2 for some integers m, m′ when α is metaplectic, and
µσ |Kα

=m ·1 for some integer m when α is not metaplectic. Here Kα =8α(S̃O(2)).

Proof. For each α, Kα is generated by exp(t Zα), t ∈ R. By the definition at the
beginning of Section 3, the eigenvalues of µ(exp(t Zα)) are e±i t/2 with multiplicities
for αmetaplectic, and 1 otherwise. On the other hand, for each n∈Z, σn/2 :Kα→ S1,
exp(t Zα) 7→ e−int/2 is a character of Kα, and Kα

∼= S1 has no other characters.
Thus µσ |Kα

is a direct sum of σ±1/2 when α is metaplectic and 1 otherwise. �

Let Gα =8α(S̃L(2,R))⊂ G. Then Gα
∼= S̃L(2,R) when α is metaplectic, and

Gα
∼= SL(2,R) when α is not metaplectic. Let Tα be the image of the metaplectic

torus of S̃L(2,R), and let Nα be the image of the unipotent radical of the standard
parabolic subgroup of S̃L(2,R). Consider Q= P∪PwαP , where P= N T = NAM
is a minimal parabolic subgroup of G. Then U = N ∩wαNw−1

α is the unipotent
radical of Q. We have δN (t)= δU (t)δN/U (t) for t ∈ T. In particular, taking t ∈ Tα ,
we get δU (t)= 1, hence δN (t)= δN/U (t)= δNα (t). Thus δN (t)= δNα (t) for t ∈ Tα .

Now we get to the main result of this paper; a similar result on double covers of
p-adic groups can be found in [Loke and Savin 2010].

Theorem 6.5 (action of intertwining operators on pseudospherical K-types). Let
M(w, s) : I (P, σ, s)→ I (P, σ,ws) be the intertwining map. Then M(w, s) f vs =
c(w, s) f vws for some constant c(w, s). Moreover, let 1 = {α1, . . . , αl} be the set
of simple roots, and let wi = wαi . Then in the case when 8 is simply laced or of
type G2,

c(wi , s)= c1/2(si ) for all i.

Otherwise,
c(wi , s)= c0(si ) when αi is short,

c(wi , s)= c1/2(si ) when αi is long.
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Here, for ν ∈ C,

c0(ν) :=
√
π
0
(
ν
2

)
0
(
ν+1

2

) , c1/2(ν) :=
√
π

0
(
ν
2

)
0
(
ν+1

2

)
0
(
ν
2 +

3
4

)
0
(
ν
2 +

1
4

) .
Proof. The idea is reduction to the SL2 case.

The multiplicities of (µσ , V ) in I (P, σ, s) and I (P, σ,ws) are both 1, hence
M(w, s) f vs = c(w, s) f vws for some constant c(w, s). Evaluating at g = 1 on both
sides, we get M(w, s) f vs (1)= c(w, s)v. Forw=wi , there is a map from I (P, σ, s)
to I (σ, si ) given by restricting functions on G to Gαi , where I (σ, si ) is the space
of functions f : Gαi → V such that f (namx) = asi+1σ(m) f (x) (here a stands
for hαi (a)). Since Nwi = N ∩wi Nw−1

i \ N = Nαi , M(wi , s) induces a map from
I (σ, si ) to I (σ,−si ), and f vs |Gαi

satisfies f vs (nak) = asi+1µσ (k)v for n ∈ Nαi ,
a ∈ Aαi , k ∈ Kαi .

By Proposition 2.12, when 8 is simply laced or of type G2, all roots are meta-
plectic By Proposition 6.4,

µσ |Kαi
= mσ1/2⊕m′σ−1/2

for some positive integers m, m′. Applying Proposition 5.7, we see that c(wi , s)=
c1/2(si ).

Now assume 8 is of type Bn , Cn , or F4. If αi is long, then it is metaplectic, by
the same argument as the paragraph above, and we have c(wi , s)= c1/2(si ); if αi

is short, then it is not metaplectic by Proposition 2.12. Hence by Proposition 6.4,

µσ |Kαi
= m · 1

for some positive integer m. Applying Proposition 5.7 again, c(wi , s)= c0(si ). �

Remark. We may write any w ∈ W as a reduced product of simple reflections:
w = w1w2 · · ·wn . Then by Proposition 4.3,

M(w, s)= M(w1, w2 · · ·wns)M(w2, w3 · · ·wns) · · ·M(wn−1, wns)M(wn, s),

which implies

c(w, s)= c(w1, w2 · · ·wns)c(w2, w3 · · ·wns) · · · c(wn−1, wns)c(wn, s).

Define

M(w, s)=
M(w, s)
c(w, s)

.

Then
M(ww′, s)= M(w,w′s) ◦M(w′, s)

for any w,w′ ∈ W. These are called normalized intertwining operators and their
composition law behaves like the Weyl group.
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