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This paper develops a theory of local symmetric square L-factors of repre-
sentations of general linear groups. We will prove a certain characterization
of a pole of symmetric square L-factors of square-integrable representations,
the uniqueness of certain trilinear forms and the nonexistence of Whittaker
models of higher exceptional representations.
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Introduction

The purpose of this paper is to elaborate on the Rankin–Selberg construction of the
twisted symmetric square L-functions of general linear groups, developed in [Bump
and Ginzburg 1992; Takeda 2014]. We will mainly focus on the local aspects here.

Fix an integer n� 2. The setup involves an exceptional representation � of an
appropriate double cover G of a general linear group G D Gn D GLn.F / over
a nonarchimedean local field F of characteristic zero. This rather mysterious
representation, which is the smallest genuine representation of this covering group
in many senses, was first constructed in generality by Kazhdan and Patterson [1984].

We can associate to each representation ' of the Weil–Deligne group WDF

of F the local L-factor L.s; '/ of Artin type. Let sym2 and ƒ2 be the symmetric
and exterior square representations of GLn.C/. Given an irreducible admissible
representation � of G, we can define its local symmetric and exterior square
L-factors as L.s; sym2 ı�.�// and L.s; ƒ2 ı�.�//, where � stands for the local
Langlands correspondence between irreducible admissible representations of G and
n-dimensional representations of WDF .
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The factorization

(0-1) L.s; �.�/˝�.�//DL.s; ƒ2
ı�.�//L.s; sym2

ı�.�//

is an easy consequence of the Langlands formalism. Assume that � is an irreducible
square-integrable self-dual representation of G. Then L.s; �.�/˝ �.�// has a
simple pole at s D 0, and hence exactly one of the symmetric or exterior square
L-factors of � has a pole at s D 0.

It is known that L.s; ƒ2 ı�.�// has a pole at s D 0 only if n is even. Let  be
a nontrivial additive character of F. When n is even, the L-factor L.s; ƒ2 ı�.�//

has a pole at s D 0 if and only if � admits a nonzero linear form � on � which
satisfies

�

�
�

��
h hX

0 h

��
v

�
D  .tr.X //�.v/

for all v 2 � , h 2 Gn=2 and X 2 Mn=2.F / (see [Kewat and Raghunathan 2012;
Kewat 2011; Lapid and Mao 2017]). A linear form with this property is called
a Shalika functional. As is well known, the space of Shalika functionals on any
irreducible admissible representation is at most one-dimensional (see [Jacquet and
Rallis 1996]).

We will prove analogous results for symmetric square L-factors. We call �
distinguished if there is a nonzero G-invariant linear functional on � ˝ � ˝ �_.
The following theorem, which is a special case of Theorem 3.19, indicates that this
notion of distinction is closely connected with the symmetric square L-factor.

Theorem A. Let � be an irreducible admissible square-integrable representation
of G with central character !� . Then L.s; sym2 ı�.�// has a pole at s D 0 if and
only if !2

� D 1 and � ˝!� is distinguished.

It should be noted that if n is even, � is distinguished and �2 D 1, then !2
� D 1

and � ˝ � is distinguished (see Lemma 1.12). Thus in the case of even n the
L-factor L.s; sym2 ı �.�// has a pole at s D 0 if and only if � is distinguished.
Notice that L.s; sym2 ı�.� ˝�//DL.s; sym2 ı�.�//.

As with many L-factors, the symmetric square L-factor may currently be defined
not only by the local Langlands correspondence, but also via integral representations
or through analysis of Fourier coefficients of Eisenstein series. Henniart [2010]
has shown that the first and third definitions agree. We will define the symmetric
square L-factor of irreducible admissible generic representations via the integral
representation (see Definitions 3.10 and 3.12) and show that this approach gives the
same L-factor at least for square-integrable representations (see Theorem 3.18).

Now the following corollary can trivially be deduced from Theorem A and the
relevant result for L.s; ƒ2 ı�.�//, alluded to above.
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Corollary A. Let � be an irreducible square-integrable representation of G with
central character !� .

(1) Assume that n is odd. Then � is distinguished if and only if !� is trivial and
� is self-dual.

(2) Assume that n is even and !� is nontrivial. Then � is distinguished if and only
if � is self-dual.

(3) Assume that n is even and !� is trivial. Then � is self-dual if and only if either
a nonzero G-invariant linear functional on �˝ � ˝ �_ or a nonzero Shalika
functional on � exists. Moreover, if one of the two functionals exists, then the
other does not.

The following theorem is included in Theorem 2.14.

Theorem B. If � is an irreducible admissible unitary representation of G, then the
space of G-invariant linear functionals on � ˝ � ˝ �_ is at most one-dimensional.

The unitarity assumption is expected to be unnecessary. Sun [2012] proved
uniqueness of another trilinear form. Our proof of Theorem B is a refinement of
the proof of the generic uniqueness in [Kable 2001, Theorem 6.1], combined with
the same idea as in the proof of [Matringe 2014, Proposition 2.3]. Though the
hypothesis is essential to this method, we can prove a somewhat stronger uniqueness,
which is entirely analogous to the well-known theorem of Bernstein [1984] and its
twisted analogue [Ok 1997] (cf. Remark 2.15(1) and [Anandavardhanan et al. 2004;
Matringe 2014]).

Since G has a subgroup N, which is isomorphic to the group of upper unitri-
angular matrices of G, we can consider Jacquet modules, Whittaker models and
derivatives of representations of G.

Theorem C. If n� 3, then the exceptional representations of G carry no Whittaker
functionals.

This result has been proved by Kazhdan and Patterson for nonarchimedean local
fields of odd residual characteristic (see Theorem I.3.5 of [Kazhdan and Patterson
1984]). When nD3, this is Lemma 6 of [Flicker et al. 1990]. We will give a different
proof which covers the dyadic case. Eyal Kaplan indicated another proof, which
uses Lemma 6 of [Flicker et al. 1990] together with induction. It is noteworthy that
our proof covers the twisted case as well.

Theorem C completes the computation of derivatives of the exceptional represen-
tations. For all nonarchimedean local fields of characteristic zero, the first derivative
has been computed by Kable [2001], and the second derivative has been considered
by Bump and Ginzburg [1992]. Theorem C combined with the periodicity (see
Theorem 5.1 of [Kable 2001]) implies that the third and higher derivatives of the
exceptional representations are zero.
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Our proof of Theorem A uses a local functional equation, which is a direct
consequence of the generic uniqueness, and a stronger uniqueness result given in
Theorem 2.14(2). The proofs of these uniqueness results rely upon the knowledge
of derivatives of the exceptional representations. The local functional equation and
uniqueness principle have not been previously discussed in the dyadic case because
of a gap in this knowledge for the exceptional representations over dyadic fields.
One of the contributions of this paper is to remove this restriction.

Takeda [2014] has recently constructed twisted exceptional representations and
generalized the Rankin–Selberg integral to represent the twisted symmetric square
L-functions. In the case of even n the results described so far except for Corollary A
will be proved for twisted symmetric square L-factors and twisted exceptional
representations (cf. Remark 3.20). When n is odd, we will discuss the symmetric
square L-factors without twisting. In order to deal with the twisted case, we
only have to analyze the representation of G induced from a twisted exceptional
representation of Gn�1. Though this analysis is not very difficult, if somewhat
involved, we think that our formulation keeps our exposition a reasonable length
and sufficient for future applications (cf. Theorem 3.19).

1. Exceptional representations

In this section we aim to review those properties of the exceptional representations
that will be required below. Since the proper home for the exceptional representation
is not really GLr .F /, but rather its covering group, we begin this section by recalling
some relevant facts from the theory of the covering groups.

1A. Notation. The notation introduced here will be used constantly in later sec-
tions. Throughout, F will be a local field of characteristic 0. We write jxj for the
normalized absolute value of an element x of F. There is a quadratic Hilbert symbol
. ; / on F��F� which takes values in �2D f˙1g. This symbol is symmetric and
bimultiplicative, and its left kernel is the subgroup F�2 of squares in F�. In the
nonarchimedean case the symbols o and q will denote, respectively, the ring of
integers of F and the cardinality of the residue field of F.

By a character of a locally compact group H we mean any continuous homo-
morphism of H into C�.

Definition 1.1. A character � of F� is said to be unitary (resp. quadratic, even,
odd) if �.a/ is a complex number of modulus 1 for every a 2 F� (resp. �2 D 1,
�.�1/ D 1, �.�1/ D �1). When a 2 F�, we define a quadratic character �a of
F� by �a.b/D .a; b/ for b 2 F�.

For each positive integer r , we denote by Gr D GLr .F / the group of invertible
matrices of size r , by Tr its subgroup of diagonal matrices, by Br its subgroup
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of upper triangular matrices, by Nr its subgroup of upper triangular matrices with
unit diagonal, by Zr its subgroup of scalar matrices, by Pr its subgroup consisting
of matrices whose last row is .0; 0; : : : ; 0; 1/ 2 F r and by Yr the unipotent radical
of Pr . Put Pr DZr �Pr . We denote the group of permutation matrices in Gr by
Wr and identify it with the Weyl group of Gr . For a representation � of Gr we
will denote its central character, if it exists, by !� unless otherwise mentioned.

We fix a maximal compact subgroup Kr of Gr . Let Kr DGLr .o/ in the p-adic
case. When m< r , we shall systematically regard Gm as a subgroup of Gr via the
embedding into the upper left corner. We here allow the specific case mD 0 so that
G0 is the identity group. For a parabolic subgroup P of Gr we denote by ıP the
modulus function of P and extend it to the right Kr -invariant function on Gr .

By a standard parabolic subgroup of Gr we shall mean a parabolic subgroup
of Gr which contains Br . A composition of r is an ordered partition of r. To
such a composition r D .r1; : : : ; rk/ of r , we associate the standard parabolic
subgroup Pr D MrUr of Gr , where Ur is the unipotent radical of Pr and the
group Mr DGr1

� � � � �Grk
, regarded as embedded in the natural way as a block-

diagonal subgroup of Gr , is a Levi subgroup of Pr .
We define the subgroup G�

r of Gr by

G�
r D fg 2Gr j det g 2 F�2

g:

Further we define the subgroup M �
r of Mr by

M �
r D

˚
diagŒm1; : : : ;mk � 2Mr jmi 2G�

ri
for i D 1; 2; : : : ; k

	
:

Put

Zr D fz
e.r/
j z 2Zr g;

where e.r/ is 1 or 2 according to whether r is odd or even. Set

Tr D
˚
t 2 Tr j tr�2iC1t�1

r�2iC2 2 F�2 for i D 1; 2; : : : ;
�

r
2

�	
;

writing a diagonal matrix t 2 Tr in the form diagŒt1; t2; : : : ; tr �. We define the two
compositions of r by

e.r/D .2; 2; 2; : : : ; 2; 2/; o.r/D .1; 2; 2; : : : ; 2; 1/

if r is even, and by

e.r/D .1; 2; 2; : : : ; 2; 2/; o.r/D .2; 2; 2; : : : ; 2; 1/

if r is odd. Lastly, we define the subgroup Mr of Me.r/ by Mr DZr �M
�

e.r/
.
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1B. The double covers of general linear groups. A central double covering pr W

Gr ! Gr corresponds in the usual way to a class in the cohomology group
H 2.Gr ; �2/, where Gr acts trivially on the coefficients �2, and choosing a cocycle
to represent this class is equivalent to choosing a section sr WGr!Gr of the map pr .
We shall choose sr in such a way that the resulting cocycle �r agrees with the one
constructed by Banks, Levy and Sepanski in [Banks et al. 1999, Section 3]. Let
�2 inject into the center of Gr . Then we can write typical elements of Gr uniquely
in the form �sr .g/ for g 2Gr and � 2 �2. The composition rule is given by

�sr .g/ � �
0sr .g

0/D ��0�r .g;g
0/sr .gg0/ .g;g0 2Gr ; �; �

0
2 �2/:

The 2-cocycles f�r g
1
rD1

are well behaved with respect to restriction and satisfy a
nice block formula on all standard Levi subgroups, i.e., if r D r1C � � � C rk and
gi ;g

0
i 2Gri

for i D 1; 2; : : : ; k, then

�r

2424g
1
: : :

g
k

35 ;
24g0

1
: : :

g0
k

3535D kY
iD1

�ri
.gi ;g

0
i/
Y
j<l

.det gj ; det g0l/:

The 2-cocycle �1 is trivial and �2 is the Kubota 2-cocycle on G2.
For any subgroup H of Gr we write zH for its preimage p�1

r .H /. An irreducible
admissible representation of zH is said to be genuine if it does not descend to a
representation of H . Since the restriction of �r to any copy of Gri

embedded along
the diagonal in Gr agrees with the 2-cocycle �ri

, we can naturally identify zGri

with Gri
. The block-compatibility of �r guarantees that the map

.�1sr1
.g1/; : : : ; �ksrk

.gk// 7! .�1 � � � �k/sr .diagŒg1; : : : ;gk �/

is a surjective group homomorphism zG�
r1
� � � � � zG�

rk
! zM �

r , which gives the
decomposition

(1-1) zM �
r '

zG�
r1
� zG�

r2
�� � �� zG�

rk

ı˚
.�1; �2; : : : ; �k/ j �i 2�2; �1�2 � � � �k D 1

	
:

Remark 1.2. (1) The center of Gr is zZr .

(2) The center of zTr is zZr
zT �

r .

(3) The preimage zTr is a maximal abelian subgroup of zTr .

(4) It is known that

�r .ugu0;g0u00/D �r .g;u
0g0/ .g;g0 2Gr ; u;u0;u00 2Nr /:

In particular, the restriction of sr to Nr is a group homomorphism, by which we
view subgroups of Nr as those of Gr . If P is a standard parabolic subgroup of Gr

with unipotent radical U, then

Qpsr .u/ Qp
�1
D sr .pr . Qp/upr . Qp/

�1/ .u 2 U; Qp 2 zP /:
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If F is nonarchimedean, then there are an open subgroup Kr of Kr and a map
�r W Kr ! �2 such that k 7! �r .k/sr .k/ is a group homomorphism from Kr

to Gr by Proposition 0.1.2 of [Kazhdan and Patterson 1984]. The topology of
Gr as a locally compact group is determined by this embedding. If the residual
characteristic of F is odd, then we can take Kr DKr . The splitting Kr ! Gr is
not unique. We shall fix what Kazhdan and Patterson refer to as the canonical lift
of Kr to Gr (see [Kazhdan and Patterson 1984, Proposition 0.I.3]).

1C. Lifts of the main involution. When ' is an automorphism of Gr , a lift of '
to Gr is an automorphism Q' of Gr such that Q'.�/D � and pr . Q'. Qg//D '.pr . Qg//

for all � 2 �2 and Qg 2Gr . The lift of any topological automorphism of Gr to Gr

is a topological automorphism by Corollary 1 of [Kable 1999]. We consider a lift
of the automorphism g 7! �g of Gr defined by �g D w.r /

0
tg�1w.r /

0
, where tg is the

transpose of the matrix g and w.r /
0
2Wr is the longest element.

Proposition 1.3 [Kable 1999]. There exists a lift Qg 7! � Qg of the automorphism
g 7! �g to Gr satisfying

�sr .t/D sr .
�t/
Y
i>j

.ti ; tj /;
�
Qz D Qz�1; �. � Qg/D Qg; �sr .u/D sr .

�u/

for all t D diagŒt1; : : : ; tr �2Tr , Qz 2 zZr , Qg 2Gr and u2Nr . All lifts are of the form
Qg 7! %.det pr . Qg//

� Qg, where % is an arbitrary quadratic character of F�. Moreover,
if the residual characteristic of F is odd and f W Kr ! Gr is a homomorphism,
then f . �k/D �f .k/ for all k 2Kr .

Proof. Kable has determined the lifts of the main involution and proved their
basic properties. However, we need to keep track of his computations, using the
cocycle defined in [Banks et al. 1999]. To that end, we recall how our cocycle �r

is constructed. Put Gk D SLk.F / and define the embedding of Gr into GrC1 by
|r .g/ D diagŒg; .det g/�1�. There is a double cover NGk of Gk by a theorem of
Matsumoto [1969]. Banks, Levy and Sepanski [Banks et al. 1999] defined an explicit
cocycle �k that represents the cohomology class of this cover and defined �r by

(1-2) �r .g;g
0/D �rC1.|r .g/; |r .g

0//.det g; det g0/:

The cocycle �rC1 satisfies

�rC1.u;u
0/D .det t; det t 0/

Y
1�i<j�r

.ti ; t
0
j /D

Y
r�i�j�1

.ti ; t
0
j /D

Y
rC1�i�j�1

.ui ;u
0
j /

for t D diagŒt1; : : : ; tr � and t 0 D diagŒt 0
1
; : : : ; t 0r � by the block-compatibility of �r .

Here we write
uD |r .t/D diagŒu1; : : : ;urC1�;
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and similarly for u0 D |r .t
0/. Kable chooses a cocycle on GrC1 which agrees with

�rC1 on the torus (see [Kable 1999, (3)]) and defines his cocycle on Gr by the
relation [Kable 1999, (4)]. When mD 0 and AD �2, it is the same as (1-2). Since
he does not impose any other condition on his cocycle, we can apply all of his
results to our cocycle.

Finally, we prove the last statement. We can define a quadratic character
%0 W Kr ! �2 by %0.k/ D

�f .k/f . �k/�1 for k 2 Kr . Since SLr .o/ is a perfect
group, there is a quadratic character %1 W o

� ! �2 such that %0.k/ D %1.det k/

for all k 2 Kr . Similarly, there is a quadratic character %2 W o
� ! �2 such that

f .k/D %2.det k/�r .k/sr .k/ for all k 2Kr . If k 2Kr \ Tr , then �r .k/D 1 by
(1.6) of [Takeda 2014], and

%1.det k/D%0.k/D
�.%2.det k/sr .k//.%2.det �k/sr .

�k//�1
D
�sr .k/sr .

�k/�1
D1:

Therefore %1 must be trivial and hence %0 is trivial. �

Let � be a representation of zH . Taking a preimage Qg of g 2Gr in Gr , we define
the representation g� of g zH D Qg zH Qg�1 by g�. Qh/D �. Qg�1 Qh Qg/ for Qh 2 g zH, where
conjugation is independent of the choice of Qg. We define a subgroup � zH of Gr by
� zH D f � Qh j Qh 2 zH g and define a representation �� of � zH on the same space by
��. Qh/ D �. � Qh/. If f is a function on zH, then we define a function �f on � zH by
�f . Qh/D f . � Qh/ for Qh 2 �H. If H is a subgroup of Mr containing M �

r , where r is
a composition of r , then H normalizes Ur in view of Remark 1.2(4) and we can
construct, out of its pull-back to zHUr , the induced representation IndGr

zH Ur
�. Here

the induction is normalized in order that IndGr

zH Ur
� is unitarizable whenever � is

unitarizable. Observe that �ıPr
D ı�Pr

and �Pr DPrE, where rED .rk ; rk�1; : : : ; r1/.
Note that f 7! �f gives a Gr -equivariant isomorphism

(1-3) �
�
IndGr

zH Ur

�
�
' IndGr

� zH �Ur

��:

1D. The Weil representations of zG �
2

. The Weil representation of G2 can be iden-
tified as the original example of the exceptional representation. Fix a nontrivial addi-
tive character of F. Put� .a/D
 . a/=
 . / for a2F�, where a.x/D .ax/

and 
 . / is the Weil constant associated to  . Recall that

� .ab/D � .a/� .b/.a; b/; � .ab2/D � .a/

for a; b 2 F�.
We will denote the space of Schwartz functions in k variables by S .Fk/. For

x 2Fk we define the C-linear functional ex on S .Fk/ by ex.ˆ/Dˆ.x/. The Weil
representation ˝ associated to  is a genuine representation of the metaplectic
double cover of SL2.F / realized on the space S .F /. The explicit action of the
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Borel subgroup of SL2.F / is given by

˝ 
�
s2

��
a 0

0 a�1

���
ˆ.x/D � .a/jaj

1=2ˆ.xa/;(1-4)

˝ 
�
s2

��
1 b

0 1

���
ˆ.x/D  .bx2/ˆ.x/(1-5)

for ˆ 2 S .F /, a 2 F� and b;x 2 F. It is well known that ˝ is reducible and
written as the direct sum˝ D˝

 
1
˚˝

 
�1

, where˝ 
1

(resp.˝ 
�1

) is an irreducible
representation realized in the space of even (resp. odd) Schwartz functions in
one variable. For a character % of F� one can extend ˝ 

%.�1/
to an irreducible

representation ˝ % of zG�
2

by setting

(1-6) ˝ % .s2.a12//D %.a/� .a/

for a 2 F�. When % is trivial, we will sometimes write ˝ C D˝
 
% . For a 2 F� we

put d.a/D diagŒa; 1� 2G2.

Proposition 1.4. Let % be a character of F�.

(1) If a 2 F�, then d.a�1/˝
 
% '˝

 a
% .

(2) The representation IndG2

zG�
2

˝
 
% is irreducible and its equivalence class is inde-

pendent of  .

(3) If ˚ 2 IndG2

zG�
2

˝
 
% and e1.˚. Qp//D 0 for all Qp 2 zP2, then ˚ D 0.

Proof. We will prove only the last part, for the other results are recalled or derived
in Section 2.2 of [Takeda 2014]. By (1-4), (1-6) and the assumption on ˚ ,

0D e1

�
˚.s2.d.a

2// Qp/
�

D e1

�
˝ % .s2.d.a

2///˚. Qp/
�

D .a;�1/%.a/� .a/
2
jaj1=2ea.˚. Qp//

for all a 2 F� and Qp 2 zP2. Therefore ea.˚. Qp//D 0 for all a 2 F�, and so in view
of continuity, ea.˚. Qp//D 0 for all a 2 F. Bear in mind that ˚ is a S .F /-valued
function on G2. We conclude that ˚. Qp/D 0 for all Qp 2 zP2. Since G2 DG�

2
�P2,

we conclude that ˚ D 0. �

1E. Exceptional representations. We can define a genuine character � r of zTr by

� r .sr .t//D

Œr=2��1Y
iD0

� .tr�2i/
�1:
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The exceptional representation � r is the unique irreducible subrepresentation of

I  
r D IndGr

zTr Nr
� r ˝ ı

�1=4
Br

(see Theorem I.2.9 of [Kazhdan and Patterson 1984]). Next we recall Takeda’s
construction [2014] of the twisted exceptional representations.

Definition 1.5. Fix a positive integer r and a character � of F�. In light of (1-1)
and Remark 1.2(1) we can define the genuine representation ‡ r;� of zMr to be the
tensor product

‡ r;� D
�
� r j zZr

�
�˝ 

�1

C � � � ��˝ 
�1

C or ‡ r;� D˝
 �1

� � � � ��˝ �1

�

according to whether r is odd or even. Put

I r;� D IndGr

zMr Ue.r /
‡ r;�˝ ı

�1=4
Pe.r /

:

By the Langlands theorem [Ban and Jantzen 2013] the representation I
 
r;� has

a unique irreducible subrepresentation, which we denote by � r;�. Exceptional
representations of Gr are twists of these representations � r;� by characters of F�.

Remark 1.6. Proposition 1.4(2) implies that the equivalence class of � r;� is inde-
pendent of  whenever r is even. We will sometimes suppress the superscript  
and write �r;� D �

 
r;� when r is even.

Remark 1.7. Whenever r is odd, the representation � r;� is defined independently
of � contrary to what one might guess from the notation. If � is trivial, then by
(1-4), (1-5), (1-6) and the invariant distribution theorem, the map ˚ 7! e0 ı˚ gives
a Gr -intertwining embedding I

 
r;� ,!I

 
r and hence � r ' �

 
r;�. We may therefore

omit the subscript � from the notation either if r is odd or if � is trivial. In view
of Remark 1.6 we may write �r when r is even and � is trivial. We trust this will
cause no confusion.

A little more generally, we assume that � is even. Then we can define a character %
of F�2 by %.a2/D �.a/ for a 2 F�. We extend % to a character of F� and denote
it also by %. If r is even, then since the map ˚ 7! e0 ı˚ gives a Gr -intertwining
embedding I

 
r;� ,!I

 
r ˝ %, we conclude �r ' �r;�˝ %

�1.

The notion of principal series representations of Gr is introduced in Section 1.1
of [Kazhdan and Patterson 1984]. The following result is an easy consequence of
an analogue of the Stone–von Neumann theorem, which states that the genuine
irreducible representations of the two-step nilpotent group zTr are parametrized by
the genuine characters of its center zZr

zT �
r (cf. [Kazhdan and Patterson 1984; Bump

and Ginzburg 1992, Proposition 1.1]).



LOCAL SYMMETRIC SQUARE L-FACTORS 225

Lemma 1.8. Let zT1 and zT2 be maximal abelian subgroups of zTr . Let �i be a
genuine character of zTi . If the restrictions of �1 and �2 to zZr

zT �
r coincide, then

IndGr

zT1Nr
�1 ' IndGr

zT2Nr
�2.

1F. Distinction by pairs of exceptional representations.

Lemma 1.9. Let � and � be characters of F�.

(1) .� r /_ ' �
 �1

r .

(2) If r is odd and a 2 F�, then � a
r ' �

 
r ˝�

.r�1/=2
a .

(3) If r is even, then �r;�˝�' �r;��2 .

(4) ��
 
r;� ' �

 �1

r;��1 .

Proof. We have .� r /�1 D �
 �1

r simply because � �1 D ��1
 

. Assertion (1)
therefore follows from Theorem 5.1(5) of [Kable 2001].

Note that � a
D �a �� . The restrictions of � a

r and � r � .�a ı det/.r�1/=2 to
zZr
zT �

r agree when r is odd. Assertion (2) follows from Lemma 1.8.
Since ˝ � ˝�'˝

 

��2 by definition, assertion (3) readily follows.
Finally, we will prove (4). First assume that � is trivial. Since the restrictions of

��
 
r and � 

�1

r to zZr
zT �

r coincide, we see that

�I  
r ' IndGr

� zTr Nr

�� r ˝ ı
�1=4
Br

'I  �1

r

by (1-3) and Lemma 1.8, from which assertion (4) follows.
Next assume that r is even. Since

�g D

�
1 0

0 �1

�
g

�
1 0

0 �1

��1

for g 2 SL2.F /, Proposition 1.3 shows that

�
Qg D

�
1 0

0 �1

�
Qg

�
1 0

0 �1

��1

for all elements Qg 2 G2 such that det p2. Qg/D 1. Proposition 1.4(1) tells us that
�˝ 

�1

' ˝ and so �˝
 �1

� ' ˝
 
��1 . If g D diagŒg1; : : : ;gr=2� 2 M �

e.r /, then
�gDw�1

r diagŒ �g1; : : : ;
�gr=2�wr , where the matrixwr is defined in (2-1), and hence

�‡ r;� '
wr‡

 �1

r;��1 ' ‡
 �1

r;��1

(cf. Proposition 2.9 of [Takeda 2015]). �

We define the notion of distinction in our current setup. No subgroup of Gr

appears, but the exceptional representations play the role of “restriction to the
subgroup”.
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Definition 1.10. We assume � to be trivial whenever r is odd. Let � be an admis-
sible representation of Gr. We say that � is �-distinguished if there is a nonzero
Gr -invariant linear form on �˝� r;�˝�

 �1

r . We say that � is distinguished if there
is a nonzero Gr -invariant linear form on � ˝ � r ˝ �

 �1

r .

Remark 1.11. This notion of distinction is independent of the choice of  on
account of Lemma 1.9(1)–(2) and Remark 1.6.

Lemma 1.12. Let � be an irreducible admissible representation of Gr . Let � be a
character of F�.

(1) If r is odd and � is distinguished, then the central character !� of � is trivial
and �_ is distinguished.

(2) If r is even and � is �-distinguished, then !2
��

r is trivial, �_ is ��1-
distinguished and � ˝� is ���2-distinguished for all characters � of F�.

Remark 1.13. By Theorem 3.19, if � is square-integrable and �-distinguished,
then � ' �_˝��1. It is expected that all irreducible admissible �-distinguished
representations � satisfy � ' �_˝��1 (cf. [Flicker 1991, Proposition 12; Jacquet
and Rallis 1996, Theorem 1.1, Proposition 6.1]).

Proof. For � to be �-distinguished, the product of the three central characters must
be trivial on F�e.r/ as zZr is the center of Gr . This gives the stated conditions on !�
(see Lemma 1.9(1) and (1-6)). We can easily deduce the remaining parts from the
relevant properties of exceptional representations stated in Lemma 1.9(3)–(4). �

1G. The intertwining operator. We will fix, once and for all, a positive integer
n � 2 and write G D Gn and G0 D Gn�1. Put `D

�
n
2

�
. We embed G0 into G via

the map h 7!
�

h
1

�
. We omit the subscript n and adapt the same notation adding a

prime 0 for G0; that is,

P DPn; T D Tn; Z DZn; N DNn; B0 D Bn�1;

T 0 D Tn�1; Z 0 DZn�1; � D � n ; � � D �
 
n;�; � D � n ;

and so on.
For each character % of F� we define a genuine character � % of zZ by

� % .s.z1n//D %.z/
�1� .z/

`

for z 2 F�e.n/. Then we can extend � 
n�1

to the representation � 
n�1
� � % of the

semidirect product .G0� zZ /ËY by letting zZ act by � % and letting Y act trivially.
For s 2 C we consider the induced representation

I .s; %/D IndG
zZ zP
.�
 
n�1
� � % /˝ ı

s=4
P :
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We define the intertwining operator

M.s; %/ W I .s; %/! J .�s; %/

for <s� 0 by the integrals

M.s; %/f .s/. Qg/D

Z
�Y

f .s/.s.ı/�1y Qg/ dy

and by meromorphic continuation otherwise, where

(1-7) J .s; %/D IndG
zZ � zP

.ı�
 
n�1
� � % /˝ ı

s=4
�P ; ı D

�
1

1n�1

�
:

The operator M.s; %/ is holomorphic at s D 1 due to the analysis in Sections 4.5
and 4.6 of [Takeda 2015] (see Lemma 3.2).

Lemma 1.14. If zT 0 is a maximal abelian subgroup of zT 0, then zT 0 zZ is a maximal
abelian subgroup of zT.

Proof. Suppose that Qt 2 zT commutes with all elements in zZ zT 0. We can write
Qt D s.z1n/ � Qt

0 (z 2 F�, Qt 0 2 zT 0). If n is odd, then zZ D zZ and hence Qt 0 commutes
with all elements in zT 0, so that Qt 0 2 zT 0. If n is even, then since zT 0 contains zZ 0D zZ0,
we have

.z; z0/.n�2/=2
D �

�
z1n;

�
z01n�1

1

��
D �

��
z01n�1

1

�
; z1n

�
D .z; z0/n=2

for all z0 2 F�, so that z must be a square, and hence Qt 0 2 zT 0. �
Lemma 1.15. Let % be a quadratic character of F�. The representation I .1; %/

has a unique irreducible quotient, which is isomorphic to � 
�1

˝ %. Moreover, the
quotient map

I .1; %/! � 
�1

˝ %

is realized as the intertwining operator M.1; %/.

Proof. Let W and W 0 denote the Weyl groups of G and G0, respectively. Let
w0 2 W and w0

0
2 W 0 be the longest elements. Since � 

n�1
is a quotient of the

principal series representation

IndG0

w0
0 zT 0N 0

w0
0�
 
n�1
˝ ı

1=4
B0

by Theorem I.2.9 of [Kazhdan and Patterson 1984], the representation I .1; %/ is a
quotient of

IndG
w0

0 zT 0 zZ N

�
w0

0�
 
n�1
� � %

�
˝ ı

1=4
B
'
�
IndG

w0 zT N
w0� 

�1

˝ ı
1=4
B

�
˝ %;

where we use Lemma 1.8 and the assumption on %, observing that the inducing
characters agree on zZ zT �. Therefore the first part follows. Similarly, J .�1; %/ is
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a submodule of I  �1

˝ %, and hence � 
�1

˝ % is a submodule of J .�1; %/. We
have an injective C-linear map from HomG.I .1; %/;J .�1; %// to

HomG

��
IndG

w0 zT N
w0� 

�1

˝ ı
1=4
B

�
˝ %;I  �1

˝ %
�
:

Since the latter space is one-dimensional by Proposition I.2.2 of [Kazhdan and
Patterson 1984],

dimC HomG.I .1; %/;J .�1; %//� 1:

Since HomG.I .1; %/; �
 �1

˝ %/ is a subspace of HomG.I .1; %/;J .�1; %//

and since dimC HomG.I .1; %/; �
 �1

˝ %/ � 1, these spaces are equal. Because
M.1; %/ gives a nonzero element in HomG.I .1; %/;J .�1; %//, it is propor-
tional to the basis vector in HomG.I .1; %/; �

 �1
˝ %/. �

2. Derivatives of exceptional representations

Throughout this section we suppose that F is a nonarchimedean local field of
characteristic 0.

2A. Whittaker models of exceptional representations. For an l-group G, its closed
subgroup H and a smooth representation � of H we define indG

H
� to be the space

of all functions f W G! � such that f .hg/D �.h/f .g/ for all h 2H and g 2 G
and such that f is right invariant under some compact open subgroup of G. Define
c-indG

H
� to be the subspace of indG

H
� which consists of functions with compact

support modulo H. The group G acts on both of these by right translation.

Definition 2.1. If U is a closed subgroup of G, 	 a character of U and � a smooth
representation of G, then we call the quotient space �U;	 D �=�.U; 	/ the Jacquet
module of � with respect to U and 	 , where �.U; 	/ is the space spanned by
the vectors of the form �.u/v �	.u/v for v 2 � and u 2 U. When G D Gr and
U D Nr , a 	 -Whittaker functional on � is a complex linear functional � on �
which satisfies �.�.u/v/ D 	.u/�.v/ for all v 2 � and u 2 Nr . The space of
	 -Whittaker functionals on � can be identified with the space of complex linear
functionals on �Nr ;	 .

We say that a character 	 of Nr is generic if it is nontrivial on Ur for all
compositions r of r . We define, as usual, a generic character  r of Nr by

 r .u/D  .u1;2Cu2;3C � � �Cur�1;r /; u 2Nr :

Remark 2.2. (1) The space IndGr
Nr
	 consists of all smooth functions W on Gr

satisfying W .u Qg/ D 	.u/W . Qg/ for all u 2 Nr and Qg 2 Gr . The group Gr acts
on this space by right translation, and a nontrivial intertwining map �! IndGr

Nr
	

is called the 	 -Whittaker model of � . Note that � has a nonzero 	 -Whittaker
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functional � if and only if � has a 	 -Whittaker model ƒ. To obtain a model from
a functional, set ƒ. Qg; v/D �.�. Qg/v/, and to obtain a functional from a model, set
�.v/Dƒ. Qe; v/, where Qe denotes the identity element of Gr .

(2) The group zTr acts transitively on the set of generic characters of Nr thanks
to Remark 1.2(4). For Qt 2 zTr the C-linear map v 7! �.Qt/v is an isomorphism of
�Nr ;	 and �Nr ;

Qt	 .

(3) The vector space �Nr ;	 can be identified with ��Nr ;�	 .

(4) For a 2F� we define a character  a of N2 by  a

��
1
0

x
1

��
D .ax/. Recall that

dimC.˝
 
� /N2; a

D

�
1 if a 2 F�2,
0 if a 2 F� nF�2

(Proposition 2.16 of [Takeda 2014]). When a 2 F�, the complex linear maps
on .˝ � /N2; a2

are scalar multiples of ea in view of (1-5).

We define a matrix wr 2Gr by

(2-1) wr D

0BB@
12

12
:::

12

1CCA or wr D

0BBB@
12

12
:::

12
1

1CCCA
according to whether r is even or odd. Put k D

�
r
2

�
and

J r;� D IndGr

� zMr U �
e.r /

wr‡ r;�˝ ı
1=4
P �

e.r /

; J  r;� D IndGr

zMr Ue.r /
‡ 
�1

r;� ˝ ı
1=4
Pe.r /

:

Lemma 2.3. If 	 is generic, then the space .J r;�/Nr ;	 is one-dimensional.

Remark 2.4. Kazhdan and Patterson [1984] studied Whittaker functionals on the
principal series representations of Gr . Its space of Whittaker functionals is not
one-dimensional:

dimC.I
 
r /Nr ;	 D ŒF

�
W F�2�k

(see Lemma I.3.2 of that paper).

Proof. From Remark 2.2(2) we may assume that 	 D  r . We will apply Theorem
5.2 of [Bernstein and Zelevinsky 1977] to J

 
r;� with

G DGr ; M D � zMr ; U D U ��
e.r/

; � D 1; N D feg; V DNr :

If we set

P DMU D � zMr U ��
e.r/

; QDNV DNr ; V 0 DM \w
�1

V ;  0 D w�1

 r jV 0
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for w 2G, then the space .J r;�/Nr ;	 is glued from w..wr‡
 
r;�/V 0; 0/, where wP

runs through the Q-orbits on G=P such that 	 is trivial on wU \V . Fix a set † of
representatives of F�2nF�. The Q-orbits satisfying this condition are of the form
sr .�r .a/w

�1
r /P for aD .a1; : : : ; ak/ 2†

˚k, where

�r .a/D diagŒd.a1/; : : : ; d.ak/� or �r .a/D diagŒd.a1/; : : : ; d.ak/; 1�

according to whether r is even or odd. If w D �r .a/w�1
r , then

w�1
r V 0 DMe.r/\Nr 'N˚k

2
; w�1

r  0 D  a1
˚ a2

˚ � � �˚ ak
:

In light of Remark 2.2(4) the space .wr‡
 
r;�/V 0; 0 is zero unless �ai 2 F�2 for

all i D 1; 2; : : : ; k, and when this is the case, .wr‡
 
r;�/V 0; 0 is one-dimensional. �

Lemma 2.5. Fix a preimage Qwr of wr in Gr . The integral

�	x .˚/D

Z
 ���
Ue.r /

ex.˚. Qw
�1
r u//	.u/ du

converges absolutely for all ˚ 2 J  r;�, x 2 Fk and characters 	 of Nr .

Proof. We may assume � to be unitary. Define a function f0 on Gr by

f0.g/D ıPe.r /
.g/3=4

kY
iD1

ˇ̌̌̌
tr�2iC1

tr�2iC2

ˇ̌̌̌1=4

D ıBr
.g/1=2

kY
iD1

jtr�2iC1j
˛i jtr�2iC2j

ˇi �

�
1 if r is even;
jt1j

.r�1/=4 if r is odd;

writing g in the form utk with t D diagŒt1; : : : ; tr �2Tr , u2Nr and k 2Kr , where
˛i D i � 1

4
.r C 3/ and ˇi D i � 1

4
.r C 1/. In view of (1-4) we can find a positive

constant c such that jex.˚. Qg//j � cf0.pr . Qg// for all Qg 2Gr . Since

1
4
.r � 1/� ˇk > ˛k > ˇk�1 > ˛k�1 > � � �> ˇ1 > ˛1;

the integral Z
U �

e.r /

f0.w
�1
r u/ du

is convergent by applying Proposition IV.2.1 of [Waldspurger 2003] with P D Br

and P 0 D w�1
r Brwr . �

Lemma 2.6. If ˚ 2 J  r;�, b 2 .F�/˚k, 	 is a generic character of Nr and
�	

b
.J  r;�. Qp/˚/D 0 for all Qp 2 zPr , then ˚ D 0.

Proof. The proof proceeds as in that of Proposition 3.2 of [Jacquet and Shalika
1983], where an analogous result was proved for standard modules of general linear
groups. There is no harm in assuming that 	 D  r in view of Remark 2.2(3).



LOCAL SYMMETRIC SQUARE L-FACTORS 231

The case r D 1 is trivial. Proposition 1.4(3) proves the case r D 2. We suppose
that r > 2, assuming the result up to r � 2. Take a preimage Qwr�2 of wr�2 in Gr .
Put Qw D Qwr�2 Qw

�1
r and b0 D .b1; : : : ; bk�1/ 2 .F

�/˚k�1. We define the C-linear
map e�

b0
WS .Fk/!S .F / by the relation

ex.e
�
b0.ˆ//Dˆ.b1; : : : ; bk�1;x/

for x 2 F. For each Qg 2Gr we define the map on J  r;� by

˚ 7!W �. Qg; ˚/D

Z
U ����

e.r�2/

e�b0.˚. Qw
�1
r�2u Qg// r .u/ du 2S .F /:

Observe that

�	b .J
 
r;�. Qg/˚/D

Z
U.2;r�2/

ebk
.W �. Qwu Qg; ˚// r .u/ du:

Hence the integrals are absolutely convergent in view of Lemma 2.5.
Suppose that �	

b
.J  r;�. Qp/˚/ D 0 for all Qp 2 zPr . If we replace Qp by s2.g/ Qp,

then a simple computation yieldsZ
M2;r�2.F /

ebk

�
˝ 

�1

� .s2.g//W
�

�
Qwsr

��
12 x

1r�2

��
Qp; ˚

��
 .tr. t"gx// dx D 0

for all g 2G�
2

, where

"D

�
0 0 � � � 0 0

1 0 � � � 0 0

�
2M2;r�2.F /:

Replacing g by diagŒb�2
k

a2; 1�g, we obtainZ
M2;r�2.F /

ea

�
˝ 

�1

� .s2.g//W
�

�
Qwsr

��
12 x

1r�2

��
Qp; ˚

��
 .tr. t"gx// dx D 0

for all a 2 F�, and so by continuity, this holds for all a 2 F.
For x 2M2;r�2.F / we define Fx 2S .F / by

Fx.y/D ey

�
W �

�
Qwsr

��
12 x

1r�2

��
Qp; ˚

��
 .tr. t"gx//; y 2 F:

Since the integral Z
M2;r�2.F /̌̌

ey

�
˝ 

�1

� .s2.g//Fx

�ˇ̌
dx
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is convergent uniformly in y,

0D

Z
F

Z
M2;r�2.F /

ey

�
˝ 

�1

� .s2.g//Fx

�
ˆ.y/ dx dy

D

Z
M2;r�2.F /

Z
F

ey

�
˝ 

�1

� .s2.g//Fx

�
ˆ.y/ dy dx

D

Z
M2;r�2.F /

Z
F

Fx.y/ey

�
˝
 �1

N��1 .s2.g//�1ˆ
�

dy dx

D

Z
F

ey

�
˝
 �1

N��1 .s2.g//�1ˆ
� Z

M2;r�2.F /

Fx.y/ dx dy

for all ˆ 2S .F /, where N� is defined by N�.a/D �.a/ for a 2 F�. We getZ
M2;r�2.F /

Fx.y/ dx D 0

for all g 2G�
2

, Qp 2 zPr and y 2 F. Since this integral is absolutely convergent, we
may apply the Fourier inversion to conclude that for all Qp 2 zPrZ

M2;r�3.F /

ey

�
W �

�
Qwsr

��
12 0 x

1r�2

��
Qp; ˚

�
dx

�
D 0:

We can prove that for any j with 1� j < r � 2 the relationZ
M2;r�2�j .F /

ey

�
W �

�
Qwsr

��
12 0 x

1r�2

��
Qp; ˚

�
dx

�
D 0

for all Qp 2 zPr implies the same relation with j replaced by jC1 by arguing exactly
as on p. 118 of [Jacquet and Shalika 1983]. We ultimately get W �. Qw Qp; ˚/D 0 for
all Qp 2 zPr .

Substituting sr .diagŒ12;p
0�/ Qp for Qp, we see that W �.sr .p

0/ Qw Qp; ˚/ D 0 for
all p0 2 Pr�2 and Qp 2 zPr . The induction hypothesis applied to J  

r�2;�
gives

W �.sr .g
0/ Qw Qp; ˚/D 0 for all g02Gr�2 and Qp 2 zPr . But then W �.u Qw Qp; ˚/D 0

for all u 2 U.r�2;2/ and Qp 2 zP.2;r�2/, and so by continuity, W �. Qg; ˚/D 0 for all
Qg 2Gr . We obtain ˚ D 0 by induction on r. �
Lemma 2.7. When r > 2, the representation J

 
r;� is reducible.

Proof. The periodicity of �r;� stated in [Kazhdan and Patterson 1984, Theorem
I.2.9(e)] or [Takeda 2014, Proposition 2.36] shows that .� r;�/Ue.r /;1 6' .J

 
r;�/Ue.r /;1,

which completes our proof. �
Proposition 2.8. If r > 2, then .� r;�/Nr ; r

D 0.

Proof. Take a subrepresentation V0 of J
 
r;� such that � r;� D J

 
r;�=V0. There are

b 2 .F�/˚k and a generic character 	 such that �0.˚/D �
	
b
. �˚/ gives a  r -

Whittaker functional on J
 
r;�. Suppose that � r;� admits a nonzero  r -Whittaker
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functional �. We can view � as a linear form on J
 
r;� which vanishes on V0. Since

� is a scalar multiple of �0 by the uniqueness of the Whittaker model of J
 
r;� (see

Lemma 2.3), if ˚ 2 V0, then �0.J
 
r;�. Qg/˚/D 0 for all Qg 2Gr , and hence ˚ D 0

by Lemma 2.6. Thus V0 D 0, which contradicts Lemma 2.7. �

2B. The restriction to the group zP. Define the character �r of Gr by �r . Qg/ D

jdet pr . Qg/j for Qg 2Gr . We denote its restriction to zPr by the same symbol. The
five functors ˆ˙, ‰˙ and Ô C play an important role in the theory of representa-
tions of zPr . These functors are the exact analogues of the functors described in
[Zelevinsky 1980]. Although the theory is stated for Gr , the same principle works
in the setting of the double covers Gr (see [Bump and Ginzburg 1992; Kable 2001]).
Given a smooth representation � of Gr we write ‰C� for the representation of
zPrC1 on the same space such that YrC1 acts trivially and Gr acts by � ˝ �1=2

r .
For a smooth representation � of zPr put

ˆC.�/D c-ind
zPrC1

zPr YrC1
� ˝ �1=2

r � . rC1jYrC1
/; ˆ�.�/D �Yr ; r jYr

;

Ô C.�/D ind
zPrC1

zPr YrC1
� ˝ �1=2

r � . rC1jYrC1
/; ‰�.�/D �Yr ;1:

The actions of the groups zPr�1 and Gr�1 on ˆ�.�/ and ‰�.�/ are normalized
respectively in order that the following results hold (see Propositions 4.2 and 4.3 of
[Kable 2001]):

Lemma 2.9. If �, � and � are smooth representations of Gr�1, zPr and zPr�1,
respectively, then

Hom zPr
.�; ‰C.�//D HomGr�1

.‰�.�/; �/; ‰C.�/_ ' ��1
r ˝‰

C.�_/;

Hom zPr
.ˆC.�/; �/D Hom zPr�1

.�;ˆ�.�//; ˆC.�/_ ' ��1
r ˝

Ô C.�r�1˝ �
_/;

Hom zPr
.�; Ô C.�//D Hom zPr�1

.ˆ�.�/; �/; ˆ�.�/_ 'ˆ�.�_/:

Definition 2.10. Let � be an admissible representation of Gr . For i D 1; 2; : : : ; r

the i -th derivative of a smooth representation � of Gr is a representation of Gr�i

defined by �.i/D‰�.ˆ�/i�1.�j zPr
/. If �.h/¤ 0 and �.j/D 0 for all j > h, then

we call the number h the depth of � and call �.h/ the highest derivative of � . It is
convenient to introduce the shifted derivatives � Œi� D �.i/˝ �1=2

r�i .

If � is irreducible, then so is its highest derivative by Theorem 8.1 of [Zelevinsky
1980].

We identify the multiplicative group F� with the center Zr of the group Gr

for r > 0. When � is an irreducible admissible representation of Gr , its central
exponent is the real number e.�/ defined by j!�.z/j D jzje.�/ for z 2 F�. In
the next subsection we will use the following consequence of the unitarizability
criterion given in Section 7.3 of [Bernstein 1984].
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Proposition 2.11 (Bernstein). Let � be an irreducible unitary representation of Gr

of depth h. Then � Œh� is an irreducible unitary representation of Gr�h and all the
central exponents of irreducible subquotients of � Œk� are strictly positive for all
k D 1; 2; : : : ; h� 1.

Thanks to Proposition 2.8, we have the following generalization of Theorem 5.4
of [Kable 2001] to the dyadic and twisted cases. The exceptional representations
are very small in the following sense:

Theorem 2.12. If 3� k � r , then the k-th derivatives of the exceptional represen-
tations of Gr are zero.

2C. Uniqueness of invariant trilinear forms.

Proposition 2.13 (Kable). (1) .� 
�1

r;� /Œ2� ' �
 �1

r�2;�
.

(2) If r is odd, then .� r /.1/˝ �
1=4
r�1
' �r�1.

(3) If r is even, then

� .1/r ˝ �
1=4
r�1
'

M
a2F�2nF�

.�
 
r�1
˝�a/:

(4) If r is even and � is odd, then � .1/r;� D 0.

Proof. After Bump and Ginzburg [1992] showed that the second derivative of an
exceptional representation must again be exceptional, Kable identified it precisely
[2001, Theorem 5.3]. Although they discussed only the case when � is trivial,
one can similarly prove the twisted case. The second and third assertions are
Theorem 5.2 of [Kable 2001]. The last assertion is obvious as ˝ � is supercuspidal
if � is odd. �

Here and throughout the rest of this paper we will retain the notation from
Section 1G.

Theorem 2.14. Let % be a character of F�, � an irreducible admissible represen-
tation of G and # an exceptional representation of G.

(1) For all but finitely many values of q�s we have

dimC HomG.� ˝# ˝ I .s; %/;C/� dimC �
.n/:

(2) Assume that � is trivial if n is odd. If � and � are unitary, then

dimC HomG.� ˝ �
 
� ˝ �

 �1

;C/� 1;

dimC HomG.� ˝ �
 
� ˝ I .1; %/;C/� 1:
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Remark 2.15. (1) One can view the second inequality of (2) as an analogue of
Bernstein’s theorem that dimC HomP.�˝�

_;C/D 1 for all irreducible admissible
representations � of G, in view of

HomG.� ˝�
_
˝ IndG

P ı
1=2
P ;C/' HomG.� ˝�

_; IndG
P ı
�1=2
P /

' HomP.� ˝�
_;C/

' HomP.� ˝�
_;C/:

(2) Matringe [2014, Proposition 2.3] proved that if E is a quadratic extension of F

and if � is an irreducible admissible unitary representation of GLn.E/, then the
space of P-invariant linear functionals on � is at most one-dimensional (cf. Theo-
rem 1.1 of [Anandavardhanan et al. 2004]). This is an analogue of the second part
in the context of Asai L-factors.

(3) When � is trivial and F is not dyadic, Kable [2001, Theorem 6.1] proved
the first part by modifying the proof of [Bump and Ginzburg 1992, Theorem 5.1],
and moreover, if � is generic and unitary, then his result implies the second part.
Actually, our proof combines his argument and the idea of [Matringe 2014]. Since
the restriction to nondyadic F entered only through the lack of Theorem 2.12, his
computation is now applicable to the dyadic case, and even to the twisted case.

Proof. Since zZ is the center of G, the space HomG.� ˝# ˝ I .4s; %/;C/ is zero
unless the product of the three central characters is trivial on F�e.n/. Assume that
this is the case. Then the space is isomorphic to

HomG.� ˝#; I �1.�4s; %�1//' Hom zP.�jP ˝#j zP ; ‰
C�

 �1

n�1
˝ ��s/

' HomP.�jP ˝#j zP ˝‰
C�

 
n�1

; �1�s/

by the Frobenius reciprocity and Lemma 2.9. Recall that

.�
 �1

n�1
/_ ' �

 
n�1

:

For 1� k � n and exceptional representations � of Gk and � 0 of Gk�1 we shall
consider the space

Hk;�;� 0.�; s/D HomPk

�
.ˆ�/n�k.�jP/˝ � j zPk

˝‰C� 0; �1�s
k

�
:

Assume that k � 2. Since there is a short exact sequence

0!ˆCˆ�.� j zPk
/! � j zPk

!‰C‰�.� j zPk
/! 0
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as recorded in Section 3 of [Bernstein and Zelevinsky 1977], we have an exact
sequence

0! HomPk

�
.ˆ�/n�k.�jP/˝‰

C‰�.� j zPk
/˝‰C� 0; �1�s

k

�
!Hk;�;� 0.�; s/

! HomPk

�
.ˆ�/n�k.�jP/˝ˆ

Cˆ�.� j zPk
/˝‰C� 0; �1�s

k

�
:

Lemma 2.9 shows that

(2-2) HomPk

�
.ˆ�/n�k.�jP/˝‰

C‰�.� j zPk
/˝‰C� 0; �1�s

k

�
' Hom zPk

�
.ˆ�/n�k.�jP/˝‰

C� 0; ‰C.‰�.� j zPk
/_/˝ ��s

k

�
' HomGk�1

�
‰�

�
.ˆ�/n�k.�jP/˝‰

C� 0
�
; ‰�.� j zPk

/_˝ ��s
k�1

�
' HomGk�1

.� Œn�kC1�
˝ � 0˝ � .1/; ��s

k�1/:

Lemma 2.9 again shows that

HomPk

�
.ˆ�/n�k.�jP/˝ˆ

Cˆ�.� j zPk
/˝‰C� 0; �1�s

k

�
' Hom zPk

�
.ˆ�/n�k.�jP/˝‰

C� 0; Ô C.ˆ�.� j zPk
/_˝ �k�1/˝ �

�s
k

�
' Hom zPk�1

�
ˆ�

�
.ˆ�/n�k.�jP/˝‰

C� 0
�
; ˆ�.� j zPk

/_˝ �1�s
k�1

�
' HomPk�1

�
.ˆ�/n�kC1.�jP/˝ .�

0
j zPk�1

˝ �
1=2

k�1
/˝ˆ�.� j zPk

/; �1�s
k�1

�
:

Now we use Theorem 2.12. It implies that ˆ�.� j zPk
/ ' ‰C� .2/ (see [Kable

2001, (6.8)]). The last space is isomorphic to Hk�1;� 0;� Œ2�.�; s/ and

dimC Hk;�;� 0.�; s/

� dimC Hk�1;� 0;� Œ2�.�; s/C dimC HomGk�1

�
� Œn�kC1�

˝� 0˝‰�.� j zPk
/; ��s

k�1

�
:

We can see by comparing the central characters that the latter dimension must be
zero except for finitely many q�s. From this point onwards the exceptional repre-
sentations with respect to which the spaces Hk;�;� 0.�; s/ are formed will not play a
significant role and we shall allow ourselves to omit them from the notation. Then

dimC HomG.� ˝# ˝ I .4s; %/;C/� dimC Hn.�; s/

� � � �

� dimC H1.�; s/D dimC �
.n/

for all but finitely many q�s by descending induction.
Next we prove (2). Since we obtain the injective map

(2-3) HomG.� ˝ %˝ �
 
� ˝ �

 �1

;C/ ,! HomG.� ˝ �
 
� ˝ I .1; %/;C/
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by composition with the quotient map in Lemma 1.15, we get the first inequality
from the second. The proof of the second inequality is a variation on the proof
of Proposition 2.2 of [Matringe 2014]. Let h denote the depth of � . Note that
.ˆ�/h.�jP/ D 0 and hence Hn�h.�; s/ D 0. If � is a unitary exceptional rep-
resentation, then � .1/˝ �1=4

k�1
is zero or a unitary exceptional representation or a

sum of such by Proposition 2.13. Thus the space (2-2) must vanish at s D 1
4

for
kDn; n�1; : : : ; n�hC2 as the central characters do not match by Proposition 2.11.
We conclude that

dimC HomG.� ˝# ˝ I .1; %/;C/� dimC HomGn�h

�
� Œh�˝ � ˝ .� 0/.1/; �

�1=4

n�h

�
for some unitary exceptional representations � of Gn�h and � 0 of Gn�hC1.

Our task is to prove that the right-hand side is at most one. Without loss of
generality we may suppose that � 0 D � 

n�hC1
by replacing � by � ˝ � for some

unitary character � of F� in view of Proposition 2.13(4) and Remark 1.7. Then
the space is zero by Proposition 2.13 unless the product of the central characters
of � Œh� and # is quadratic. By comparing the central characters, one can find a
nonzero element a0 in F such that

HomGn�h

�
� Œh�˝ � ˝ .� 0/.1/; �

�1=4

n�h

�
' HomGn�h

�
� Œh�˝ � ˝ �

 

n�h
; �a0

�
:

Notice that the central characters of � 
n�h
˝�a (a2F�2nF�) are mutually different

if n� h is odd. Now our proof is complete by induction. �

3. Twisted symmetric square L-factors

One of the most significant uses of exceptional representations in number theory
so far is as an ingredient in the Rankin–Selberg integral for the symmetric square
L-function of an irreducible cuspidal automorphic representation of a general linear
group found by Bump and Ginzburg [1992]. Let F for the moment be a local field
of characteristic zero.

3A. A normalization of the intertwining operator.

Definition 3.1. A normalized intertwining operator is defined by

N.s; %/D
b.�s; %�1/

a.s; %/
M.s; %/;

where

a.s; %/DL
�

1
2
n.s� 1/C 1; %2

�
; b.s; %/DL

�
1
2
n.sC 1/; %2

�
:

Lemma 3.2. The operator M �.s; %/D a.s; %/�1M.s; %/ is entire.

Proof. This is proved in Sections 4.5 and 4.6 of [Takeda 2015]. �
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Lemma 3.3. If we put MDM.n�1;1/, then

�
�
Ind zM
zZ zG0

�
 
n�1
� � %

�
' Ind

� zM
zZ � zG0

ı�
 �1

n�1
� � 

�1

%�1 ;

where the matrix ı is defined in (1-7).

Proof. Recall the longest element w0
0

of the Weyl group of G0. The automorphism
g 7! w0

0
tg�1w0

0
of G stabilizes the subgroup G0. Its restriction to G0 is the main

involution �0 of G0. Since Qg 7! ı�1 � Qgı is a lift of this automorphism, its restriction
to G0 differs from the lift of �0 only by twisting by a quadratic character � of F�

on account of Proposition 1.3. It follows from Lemma 1.9(4) that

�
 
n�1
'
�0�
 �1

n�1
'
�.ı�

 �1

n�1
/˝ �:

Thus �� 
n�1
' ı�

 �1

n�1
˝ �. Since ��

 
% D �

 �1

%�1 , we obtain

�
�
Ind zM
zZ zG0

�
 
n�1
� � %

�
' Ind

� zM
zZ � zG0

�
ı�
 �1

n�1
˝ �

�
� � 

�1

%�1

by (1-3). If n is odd, then ı� 
�1

n�1
˝ �' ı�

 �1

n�1
by Lemma 1.9(3).

Suppose that n is even. Take a genuine character � 0 of � zT 0 in such a way that

Ind
� zM
zZ � zG0

ı�
 �1

n�1
� � 

�1

%�1

is the unique irreducible subrepresentation of

Ind
� zM
zZ �. zT 0N 0/

� 0� � 
�1

%�1

(cf. Lemma 1.14). Since the restrictions of � 0 and � 0 � .� ı det/ to zZ zT � D zT �

coincide,

Ind
� zM
zZ �. zT 0N 0/

� 0� � 
�1

%�1 ' Ind
� zM
zZ �. zT 0N 0/

� 0 � .� ı det/� � 
�1

%�1

by Lemma 1.8, which concludes our proof. �

Lemma 3.3 gives an important isomorphism,

| s;% W
�J .s; %/' I �1.s; %�1/:

The isomorphism depends on s in a fairly trivial way.

Definition 3.4. We call a right zK-finite function .s; Qg/ 7! f .s/. Qg/ on C � G a
holomorphic section of I .s; %/ if f .s/. Qg/ is holomorphic in s for each Qg 2G and
f .s/ 2 I .s; %/ for each s 2 C. A holomorphic section f .s/ is a standard section if
its restriction to C� zK does not depend on s. We call a function f .s/ on C�G a
meromorphic section of I .s; %/ if there is a nonzero entire function ˇ such that
ˇ.s/f .s/ is a holomorphic section.
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We call h.s/ a meromorphic section of J .s; %/ if | s;%. �h.s// is. We define a
C-linear map

ON .s; %/D ON .s; %/ W I .s; %/! I �1.�s; %�1/

by ON .s; %/f .s/ D |
 
�s;%.

�N.s; %/f .s//, where

Œ �N.s; %/f .s/�. Qg/D ŒN.s; %/f .s/�. � Qg/:

We can define a meromorphic function ˛ .s; %/ by

ON �1.�s; %�1/ ON .s; %/D ˛ .s; %/ � Id:

Lemma 3.5. The function ˛ .s; %/ has neither pole nor zero.

Proof. We can view I .s; %/ as a subrepresentation of IndG

zT N
�s , where �s is an

extension to zT of the genuine character of zZ zT � defined by

�s.s.t//D %.tn/
�1
jtnj
�.n�1/s=4

l�1Y
iD0

� .tn�2i/

n�1Y
jD1

jtj j
.2j�nCs/=4

for t D diagŒt1; : : : ; tn� 2 Z T �. Theorem I.2.6 of [Kazhdan and Patterson 1984]
shows that

a.s; %/a.�s; %�1/

b.s; %/b.�s; %�1/
˛ .s; %/

�

n�1Y
jD1

L
�
j C 1

2
n.s� 1/; %2

�
L
�
j C 1

2
n.�1� s/; %�2

�
L
�
j C 1

2
n.s� 1/C 1; %2

�
L
�
j C 1

2
n.�1� s/C 1; %�2

�
D

L
�
1C 1

2
n.s� 1/; %2

�
L
�
1C 1

2
n.�1� s/; %�2

�
L
�

1
2
n.sC 1/; %2

�
L
�

1
2
n.1� s/; %�2

�
D

a.s; %/a.�s; %�1/

b.s; %/b.�s; %�1/
;

where � denotes equality up to multiplication by invertible functions. �

3B. Semi-Whittaker functions. When r > 2, the exceptional representations of
Gr fail to possess Whittaker models with respect to generic characters of Nr , but
they have models with respect to certain degenerate characters of Nr . We define
the degenerate characters of Nr by

 e;r .u/D  .u1;2Cu3;4C � � �Cur�1;r /;

 o;r .u/D  .u2;3Cu4;5C � � �Cur�2;r�1/
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when r is even. When r is odd, we define the degenerate characters by

 e;r .u/D  .u2;3Cu4;5C � � �Cur�1;r /;

 o;r .u/D  .u1;2Cu3;4C � � �Cur�2;r�1/:

It is important to note that  r D  e;r � o;r and  �1
r D � e;r �

� o;r .
Recall that � is assumed to be trivial whenever r is odd. We define the C-linear

functional �j on S .Fj / by

�j .ˆ/Dˆ.1; 1; : : : ; 1/

for ˆ 2S .Fj /. The functional ˚ 7! �k.˚. Qe// gives a  e;r -Whittaker functional
on I

 
r;� by (1-5), where k D

�
r
2

�
. The  e;r -Whittaker functional corresponds to a

Gr -intertwining map

QDQ 
r;� W I

 
r;�! IndGr

Nr
 e;r

(see Remark 2.2(1)). One can see from the proof of Proposition 1.4(3) that Q is
injective. Note that

Q.sr .zu/ Qg; ‚/D  e;r .u/
�.z/k

� .z/
k

Q. Qg; ‚/

with z 2 F�e.r/, u 2Nr , Qg 2Gr and ‚ 2 I
 
r;�. When r D n, we will suppress the

subscript r.
For f 2 I .s; %/ we define a  o-Whittaker function R.f / D R

 
s;%.f / by

R. Qg; f /D �`0.f . Qg// for Qg 2G, where `0 D
�

n�1
2

�
. Note that

R.s.zu/ Qg; f /D %.z/�1� .z/
` o.u/R. Qg; f / .z 2 F�e.n/; u 2N; Qg 2G/:

Lemma 3.6.

(1) There is a Gr -intertwining embedding OQD OQ 
r;� W �

 
r;�! IndGr

Nr

� e;r .

(2) There is a G-intertwining embedding ORD OR 
s;% W J .s; %/! IndG

N
� o;r .

Proof. Lemma 1.9(4) gives an isomorphism {
 
r;� W

��
 
r;� ' �

 �1

r;��1 . We obtain a
� e;r -Whittaker model of � r;� and � o;r -Whittaker model of J .s; %/ by setting

OQ 
r;�. Qg; ‚/DQ

 �1

r;��1.
�
Qg; { r;�.‚//;

OR 
s;%. Qg; h/DR

 �1

s;%�1.
�
Qg; | s;%.

�h//

for Qg 2Gr , ‚ 2 � r;� and h 2 J .s; %/. �
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3C. The local zeta integrals. Let � be an irreducible admissible generic represen-
tation of G and W .�/ its  n-Whittaker model. For W 2W .�/, ‚ 2 � � and
a meromorphic section f .s/ of I .s; �

`!�/ the integral

Z.W; ‚; f .s//D

Z
Z N nG

W .g/Q.g; ‚/R.g; f .s// dg

makes sense at least formally. For a meromorphic section h.s/ of J .s; �
`!�/ we

define the integral Z.W; ‚; h.s// by

Z.W; ‚; h.s//D

Z
Z N nG

W .g/ OQ.g; ‚/ OR.g; h.s// dg:

We will use the following estimate for Whittaker functions.

Proposition 3.7 [Jacquet and Shalika 1990, Proposition 3, p. 177]. If � is an irre-
ducible admissible unitary generic representation of G, then for each 1� j � n�1

there is a finite set Cj of characters of F�with positive real parts, and for each
� 2 Cj , an integer n� with the following property: Let Xj be the set of functions of
the form �.a/.log jaj/k with 0� k � n� and X the functions on .F�/˚n�1 which
are products of functions in the Xj . Then for each W 2W  .�/ there are Schwartz
functions �� 2 S.Fn�1 �K/ such that for g D tk

W .g/D ıB0.t/
1=2

X
�2X

��

�
t1

t2
; : : : ;

tn�1

tn
; k

�
�

�
t1

t2
; : : : ;

tn�1

tn

�
:

In the following proposition by “local Euler factor” in the p-adic case we mean a
function of the form P .q�s/�1, where P is a polynomial satisfying P .0/D1, and in
the archimedean case we mean a product of functions of the form ��s=2�

�
1
2
.sCb/

�
for constants b 2 C.

Proposition 3.8 (cf. [Bump and Ginzburg 1992; Takeda 2014]). Let F be a (not nec-
essarily nonarchimedean) local field of characteristic zero. Let � be an irreducible
admissible generic representation of G. We assume � to be trivial if n is odd.

(1) There is ˇ 2 R such that the integrals Z.W; ‚; f .s// converge absolutely in
the right half-plane <s > ˇ for all W 2W .�/, ‚ 2 � � and holomorphic
sections f .s/ of I .s; �

`!�/.

(2) Z.W; ‚; f .s// possesses a meromorphic continuation to C. If F is nonar-
chimedean and f .s/ is a standard section, then it represents a rational function
of q�s=4.

(3) There is a local Euler factor L.s/ such that Z.W; ‚; f .2s�1//=L
�

s
2

�
is entire

for all W 2W .�/, ‚ 2 � � and holomorphic sections f .s/ of I .s; �
`!�/.
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(4) For each point s0 2 C there are W 2 W .�/, ‚ 2 � � and a holomorphic
section f .s/ of I .s; �

`!�/ such that Z.W; ‚; f .s// does not have a zero at
s D s0.

(5) If � and � are unitary, then Z.W; ‚; f .s// converges absolutely for the closed
right half-plane <s � 1.

(6) Suppose that F is nonarchimedean, � is unitary and � is square-integrable.
Then Z.W; ‚; f .s// converges absolutely for <s � �1.

Proof. The paper [Bump and Ginzburg 1992] deals with some basic local theory,
and Proposition 5.5 of [Takeda 2014] discusses the twisted case. Strictly speaking,
our zeta integrals are slightly different from those treated in [Bump and Ginzburg
1992] and [Takeda 2014] when n is even. However, the arguments can easily be
modified to deal with our integrals.

Assertions (2) and (4) are in Proposition 5.2 and Theorem 7.2 of [Bump and
Ginzburg 1992], respectively. It is easy to see from the proof of [Bump and Ginzburg
1992, Proposition 5.2] that the integral Z.W; ‚; f .s// is a finite sum of products of
entire functions and Tate integrals. The exponents of the quasicharacters occurring
in the Tate integrals are finite in number and are independent of the choice of W ,
Q and f .s/, which verifies (1) and (3).

Finally, we assume � to be unitary and prove (5) and (6). Since Z2 and T 0�

have finite indices in Z and T 0, it suffices to prove the convergence of the integralZ
T 0�

ˇ̌
W .t 0t/Q.t 0t; ‚/R.t 0t; f .s//

ˇ̌
ıB.t

0/�1 d t 0

for <s � �1 and all t 2 T. We may assume that t D 1, taking Proposition 1.4(1)
into account. From (1-4) there are positive constants c and c0 such that

jQ.Qt 0; ‚/j � cı
1=4
B
.Qt 0/; jR.Qt 0; f .s///j � c0ı

1=4
B
.Qt 0/ıP.Qt

0/.<sC1/=4

for all Qt 0 2 zT 0�. Therefore all that is required is to show that if � is unitary generic
or square-integrable, then the integralZ

T 0�
jW .t 0/jıB.t

0/�1=2ıP.t
0/.<sC1/=4 d t

is convergent for <s � 1 or <s ��1, respectively. Note that ıB.t 0/D ıB0.t 0/ıP.t 0/
for t 0 2 T 0. Since the integralsZ

F�
jajı

ˇ̌
logjaj

ˇ̌k
jˆ.a/j da

are convergent for all 0 < ı 2 R, 0 � k 2 Z and ˆ 2 S .F /, Proposition 3.7
proves (5). The proof of (6) proceeds exactly as in that of Lemma 2 of [Kable
2004]. �
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Corollary 3.9. Assume that F is nonarchimedean. Let � be an irreducible generic
unitary representation of G and � a unitary character of F�. Assume that � is
trivial if n is odd. Put % D �`!� . If %2 D 1, then the following conditions are
equivalent:

(a) � ˝ % is �-distinguished;

(b) HomG.� ˝ �
 
� ˝ �

 �1

˝ %;C/D HomG.� ˝ �
 
� ˝ I .1; %/;C/;

(c) the functional W ˝‚˝f 7!Z.W; ‚; f / factors through the quotient

� ˝ � � ˝ I .1; %/! � ˝ � � ˝ �
 �1

˝ %:

Proof. Proposition 3.8(4)–(5) combined with Theorem 2.14(2) shows that the
functional W ˝‚˝f 7!Z.W; ‚; f / gives a basis vector in the one-dimensional
vector space HomG.�˝ �

 
� ˝ I .1; %/;C/. Since HomG.�˝ �

 
� ˝ �

 �1

˝%;C/

is its subspace, the equivalence of the three conditions is evident. �

3D. Good sections.

Definition 3.10. Assume that % is unitary. Let s0 2 C and f .s/ be a meromorphic
section of I .s; %/. When <s0 > �1, we say that f .s/ is good at s D s0 if it is
holomorphic at s D s0. When <s0 < 0, we say that f .s/ is good at s D s0 if
ON .s; %/f .s/ is holomorphic at s D s0. We call f .s/ a good section if it is good at

every point s0 2 C.

The following result can be proved in the same way as in the proof of Proposi-
tion 3.1 of [Yamana 2014] by utilizing Lemmas 3.2 and 3.5.

Proposition 3.11. (1) Holomorphic sections are good sections.

(2) If f .s/ is a good section of I .s; %/, then b.s; %/�1f .s/ is a holomorphic
section.

(3) If f .s/ is a meromorphic section which is good at s D s0, then there is a good
section F .s/ such that f .s/�F .s/ has a zero of any prescribed order at sD s0.

(4) Given a meromorphic section f .s/ of I .s; %/ the following conditions are
equivalent:

� f .s/ is a good section of I .s; %/;
� h.s/ D ON .�s; %/f .�s/ is a good section of I �1.s; %�1/;
� there exist holomorphic sections f .s/

1
of I .s; %/ andf .�s/

2
of I �1.�s; %�1/

such that

f .s/ D f
.s/

1
C ON �1.�s; %�1/f

.�s/
2

:

Definition 3.10 coincides in the strip �1<<s0 < 0 by Proposition 3.11(2).
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3E. The twisted symmetric square L-factors. In Sections 3E–3G we will assume
F to be nonarchimedean. Let � be an irreducible admissible generic representation
of G. Suppose that � is trivial if n is odd. Proposition 3.8(2) tells us that if f .s/ is
a standard section of I .s; �

`!�/ multiplied by an element of CŒq�s=4; qs=4� or a
section obtained by applying the normalized intertwining operator to such a section
of I �1.�s; ��`!�1

� /, then Z.W; ‚; f .2s�1// is a rational function of q�s=2. Let
I.�; �/ be the subspace of C.q�s=2/ spanned by these local integrals. One can see
from Propositions 3.8(2) and 3.11(2) that each such rational function can be written
with a common denominator. That is, I.�; �/ is a fractional CŒq�s=2; qs=2�-ideal.
Proposition 3.8(4) shows that it contains 1. It is not difficult to see that I.�; �/ is
independent of the choice of  . With these properties of I.�; �/ in hand, we can
now define the twisted symmetric square L-factor.

Definition 3.12. The ideal I.�;�/ has a unique generator of the form Q�;�.q
�s=2/�1,

where the polynomial Q�;� satisfies Q�;�.0/ D 1. We will define the twisted
symmetric L-factor by L.s; �; sym2˝�/DQ�;�.q

�s=2/�1.

We expect that Q�;�.q
�s=2/ is a polynomial of q�s. It may be worth noting the

simple fact that ıP.t/s is a power of q�2s for t 2 T .
In other words, L.s; �; sym2 ˝ �/ is the minimal factor such that the ratios

Z.W; ‚; f .2s�1//=L.s; �; sym2˝�/ are entire for all W 2W .�/, ‚ 2 � � and
good sections f .s/ of I .s; �

`!�/, simply because any holomorphic section can
be expressed as a linear combination of standard sections with coefficients entire
functions of s.

Remark 3.13. Recall that �k is the character of Gk defined by �k.g/ D jdet gj.
Since I .s; %/˝ �

y ' I .sC 4y; %�
�ny
1

/,

L.s; � ˝ �y; sym2
˝�/DL.sC 2y; �; sym2

˝�/

for all y 2 C. If n is even and � is a character of F�, then Lemma 1.9(3) implies

L.s; � ˝�; sym2
˝�/DL.s; �; sym2

˝��2/:

3F. Local functional equations. The need for normalizing M.s; �`!�/ and the
need for including sections of the second type are clear from the following result:

Proposition 3.14. Suppose that F is nonarchimedean. Let � be an irreducible
admissible generic representation of G. We assume � to be trivial if n is odd. Then
there is a nowhere-vanishing entire function E.s; �; �;  / such that

Z.W; ‚;N.s; �`!�/f
.s//

L
�

1
2
.1� s/; �_; sym2˝��1

� D E
�

1
2
.1C s/; �; �;  

� Z.W; ‚; f .s//

L
�

1
2
.1C s/; �; sym2˝�

�
for W 2W .�/, ‚ 2 � � and meromorphic sections f .s/ of I .s; �

`!�/.



LOCAL SYMMETRIC SQUARE L-FACTORS 245

Proof. The generic uniqueness in Theorem 2.14(1) produces the functional equation
above. It is well known that the contragredient representation �_ of � is isomorphic
to �� , and we shall allow ourselves to confuse the two. The image of W .�/ under
the map W 7! �W is precisely the space W �1

.�_/. If h.s/ is a meromorphic
section of J .s; �

`!�/, then

Z.W; ‚; h.s//D

Z
Z N nG

W . �g/ OQ 
� .
�g; ‚/ OR

 

s;�`!�
. �g; h.s// dg

D

Z
Z N nG

�W .g/Q
 �1

��1 .g; {
 
� .‚//R

 �1

s;��`!�1
�

.g; |
 

s;�`!�
. �h.s/// dg

DZ. �W; { � .‚/; |
 

s;�`!�
. �h.s///

by the proof of Lemma 3.6. This combined with Proposition 3.11(4) shows that the
ratios on both sides of the functional equation are holomorphic and nonzero every-
where on C, and hence so is its factor of proportionality E

�
1
2
.1C s/; �; �;  

�
. �

3G. Poles of the symmetric square L-factor and distinction. We will continue to
assume F to be nonarchimedean.

Lemma 3.15. Let � be an irreducible square-integrable representation of G and �
a unitary character of F�. Assume that � is trivial when n is odd.

(1) L.s; �; sym2˝�/ is holomorphic for <s > 0.

(2) If L.s; �; sym2˝�/ has a pole at s D 0, then �n!2
� is trivial.

(3) L.s; �; sym2˝�/ has at most a simple pole on <s D 0.

Proof. Recall that L.s; �; sym2˝�/ has the same poles as the family of local inte-
grals Z.W; ‚; f .2s�1// for good sections. Therefore the poles of L.s; �; sym2˝�/

in <s � 0 are contained in the poles of good sections of I .2s�1; �`!�/ with mul-
tiplicity by Proposition 3.8(6). Our assertions now amount to the relevant analytic
properties of b.2s�1; �`!�/DL.ns; �n!2

�/ in view of Proposition 3.11(2). �

Lemma 3.16. (We keep the notation of Lemma 3.15.) Assume that �n!2
�D1. Then

there are W 2W .�/, ‚ 2 � � and a good section f .s/ of I .s; �
`!�/ such that

M .1; �
`!�/f

.1/
D 0; lim

s!1
Z.W; ‚;N.s; �`!�/f

.s//¤ 0:

Proof. Proposition 3.8(4) enables us to choose W 2W .�/,‚2 � � and a holomor-
phic section h.s/ of I �1.s; �`!�/ so that Z. �W; {

 
� .‚/; h

.�1//¤ 0. Put f .�s/D

ON �1.s; �`!�/h
.s/. Then f .s/ is a good section in view of Proposition 3.11(1)



246 SHUNSUKE YAMANA

and (4). Lemma 3.5 shows that

lim
s!1

M .s; �
`!�/f

.s/
D lim

s!�1
M .�s; �`!�/ ON �1.s; �`!�/h

.s/

D lim
s!�1

˛ �1.s; �`!�/
a.�s; �`!�/

b.s; �`!�/

�
�
.|
 

s;�`!�
/�1.h.s//

�
D 0

and
lim
s!1

Z.W; ‚;N .s; �
`!�/f

.s//

D lim
s!�1

Z
�
W; ‚;N .�s; �`!�/ ON �1.s; �`!�/h

.s/
�

D lim
s!�1

˛ �1.s; �`!�/Z
�
W; ‚; �

�
.|
 

s;�`!�
/�1.h.s//

��
D ˛ �1.�1; �`!�/Z.

�W; { � .‚/; h
.�1//

¤ 0

(see the proof of Proposition 3.14). �

Theorem 3.17. Let � be an irreducible square-integrable representation of G

and � a unitary character of F�.

(1) Assume that n is even. Then L.s; �; sym2˝�/ has a pole at s D 0 if and only
if � is �-distinguished.

(2) Assume that n is odd. Then L.s; �; sym2/ has a pole at s D 0 if and only if
!� is quadratic and � ˝!� is distinguished.

Proof. First we shall prove the “only if” part, which, in view of Lemma 1.12, is
equivalent to showing that � is �-distinguished if L.s; �_; sym2˝��1/ has a pole
at s D 0. Then �n!2

� is trivial by Lemma 3.15(2). In the case of odd n we may
assume that !� is trivial at the cost of replacing � by � ˝!� if necessary. If n is
even, then � � ˝�`!� ' �

 
� by Lemma 1.9(3). We get

Z.W; ‚;M .1; �
`!�/f

.1//D cZ.W; ‚; f .1//

by evaluating the functional equation stated in Proposition 3.14 at s D 1, where

c D 2
a.1; �`!�/E.1; �; �;  /RessD0 L.s; �_; sym2˝��1/

L.1; �; sym2˝�/RessD�1 b.s; �`!�/
¤ 0:

Since the zeta integral is convergent by Proposition 3.8(6), the functional

W ˝‚˝f 7!Z.W; ‚;M .1; �
`!�/f /

factors through the quotient

� ˝ � � ˝ I .1; �
`!�/! � ˝ � � ˝ �

 �1
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by Lemma 1.15, and hence so does W ˝‚˝ f 7!Z.W; ‚; f /. Therefore � is
�-distinguished by Corollary 3.9.

Next suppose that L.s; �; sym2˝�/ is holomorphic at s D 0 and that �n!2
� is

trivial. If we take W 2W .�/, ‚ 2 � � and a good section f .s/ of I .s; �
`!�/

as in Lemma 3.16, then the functional equation in Proposition 3.14 shows that
Z.W; ‚; f .1//¤ 0. Thus the functional W ˝‚˝f 7!Z.W; ‚; f / fails to factor
through the quotient, and hence � cannot be �-distinguished by Corollary 3.9. �

3H. Shahidi’s symmetric square L-factor. Let � be an irreducible admissible
generic representation of G and � a character of F�. We can define the twisted
symmetric square L-factor by the Langlands–Shahidi method. We refer to [Shahidi
1990] for its precise definition. Henniart [2010] showed that this L-factor coincides
with the Artin L-factor L.s; sym2ı�.�/˝�/, where � denotes the local Langlands
correspondence.

If F is a nonarchimedean local field of odd residual characteristic, � and � are
unramified and the order of  is 0, then there are a K-fixed Whittaker function
W 0 2 W .�/, a K-fixed semi-Whittaker function ‚0 2 �

 
� and a K-fixed good

section f .s/
0

of I .s; �
`!�/ such that

Z.W 0; ‚0; f
.2s�1/

0
/DL.s; sym2

ı�.�/˝�/;(3-1)

Z
�
W 0; ‚0;N.2s�1; �`!�/f

.2s�1/
0

�
DL.1�s; sym2

ı�.�_/˝��1/

by Theorem 4.1 and Proposition 5.6 of [Bump and Ginzburg 1992] (cf. [Takeda
2014]). Though our zeta integral is slightly different if n is even, one can easily see
that the unramified computation of our integral is reduced to their computation.

Thus L.s; �; sym2˝�/�1 is divisible by L.s; sym2 ı�.�/˝�/�1 if � and �
are unramified. However, the coincidence of the two L-factors still remains open
even in the unramified case. Nevertheless, we can prove that the two L-factors
agree in the square-integrable case.

Theorem 3.18. Suppose that F is nonarchimedean. Let � be an irreducible square-
integrable representation of G and � a character of F�. Suppose that � is the
trivial character if n is odd. Then

L.s; �; sym2
˝�/DL.s; sym2

ı�.�/˝�/:

Proof. We may assume that � is unitary, taking Remark 3.13 into account. The
proof is similar to those of [Kewat and Raghunathan 2012, Theorem 1.1] and [Kable
2004, Theorem 6]. Although the statement is purely local, its proof uses the global
functional equations for both Shahidi’s L-function and the Rankin–Selberg integrals.

Let p0 be the residual characteristic of F and q the cardinality of the residue
field of F. We can find a number field F which has a unique place v0 lying over p0
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and such that the completion Fv0
of F at v0 is isomorphic to F. By Lemma 6.5 of

Chapter 1 of [Arthur and Clozel 1989] there is an irreducible cuspidal automorphic
representation ˘ of G.A/ such that the local component ˘v0

of ˘ at v0 is isomor-
phic to � , where A denotes the adèle ring of F. Take a nontrivial additive character
‰ W FnA!C� and a Hecke character X of A� such that‰v0

D and Xv0
D�. We

define the completed twisted symmetric square L-function by the infinite product

L.s; ˘;X ; sym2/D
Y
v

L.s; sym2
ı�.˘v/˝Xv/:

The L-function L.s; ˘;X ; sym2/ admits a meromorphic continuation to the entire
complex plane and satisfies a functional equation

L.s; ˘;X ; sym2/D ".s; ˘;X ; sym2/L.1�s; ˘_;X�1; sym2/

by Theorem 7.7 of [Shahidi 1990], where the function ".s; ˘;X ; sym2/ is entire
and nonvanishing. The double cover GA of G.A/ and its global exceptional rep-
resentation �‰X are constructed in [Kazhdan and Patterson 1984; Takeda 2014].
Note that GA is split over G.F / and �‰X is an automorphic representation of GA,
which is isomorphic to the restricted tensor product

N0
v �

‰v
Xv . Let S1 be the set

of archimedean places of F and Sr the set of finite places v for which ˘v or ‰v
or �‰vXv is ramified. We set S D S1[Sr .

We form the global induced representation and global intertwining operator.
They have decompositions

I‰.s;X `!˘ /'
N0
v I‰v .s;X `v!˘v /; M.s;X `!˘ /D

N0
v M.s;X `v!˘v /:

The global functional equation of the completed Hecke L-function yields

(3-2) M.s;X `!˘ /D "
�

1
2
n.s� 1/C 1;X n!2

˘

�N0
v N.s;X `v!˘v /:

For any holomorphic section f .s/ of I‰.s;X `!˘ / we form the associated Eisen-
stein series E.f .s// on G.F /nGA by

E. Qg;f .s//D
X


2P.F /nG.F /

X
ı2Z nZ.F /

f .s/.ı
 Qg/;

where Z D fze.n/ j z 2Z.F /g. The series converges absolutely for <s sufficiently
large. By the theory of Eisenstein series, it can be continued to a meromorphic
function on all of C satisfying the functional equation

E.f .s//DE.M.s;X `!˘ /f .s//:
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For ' 2˘ , ‚ 2 �‰X and a meromorphic section f .s/ of I‰.s;X `!˘ / we can
consider the global zeta integral defined by

Z.';‚;f .s//D

Z
ZAG.F /nG.A/

'.g/‚.g/E.g;f .s// dg;

where ZA D fz
e.n/ j z 2Z.A/g. This integral converges absolutely for all s away

from the poles of the Eisenstein series and defines a meromorphic function in s

satisfying
Z.';‚;f .s//DZ.';‚;M.s;X `!˘ /f .s//:

The  n-Whittaker coefficient of ' and the semi-Whittaker coefficients of ‚ and
f .s/ are defined by

W  .g; '/D

Z
N.F /nN.A/

'.ug/ .u/ du;

Q . Qg;‚/D

Z
N.F /nN.A/

‚.s.u/ Qg/ e.u/ du;

R . Qg;f .s//D

Z
N.F /nN.A/

f .s/.s.u/ Qg/ o.u/ du:

In the case of even n the Rankin–Selberg integral differs slightly from those con-
sidered by Bump and Ginzburg [1992] or by Takeda [2014], but it can be unfolded
to an adelic integral of the product of W  .'/, Q .‚/ and R .f .s// in the same
manner as in [Bump and Ginzburg 1992]. If W  .'/D

N
v Wv , ‚ D

N
v ‚v and

f .s/ D
N
v f

.s/
v are factorizable, then

Z.';‚;f .s//D
Y
v

Z.Wv; ‚v; f
.s/
v /;

Z.';‚;M.s;X `!˘ /f .s//D
Y
v

Z.Wv; ‚v;M.s;X `v!˘v /f
.s/
v /:

The first factorization was proved by the author and Eyal Kaplan [Kaplan and
Yamana 2016]. We here prove the second one. Put h.�s/ D M.s;X `!˘ /f .s/.
Unfolding the Eisenstein series, we have

Z.';‚;h.�s//D

Z
ZA
�P.F /nG.A/

'.g/‚.g/h.�s/.g/ dg

D

Z
ZAP.F /nG.A/

'. �g/‚. �g/h.�s/. �g/ dg:

Substituting the Fourier expansion

'. �g/D �'.g/D
X


2N.F /nP.F /

W  �1

.
g; �'/D
X


2N.F /n�P.F /

W  .
 �g; '/;
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we get

Z.';‚;h.�s//D

Z
ZAN.F /nG.A/

W  . �g; '/‚. �g/h.�s/. �g/ dg;

where our formal manipulations can be justified by the absolute convergence
of this integral for <s � 0, which can be checked by a gauge estimate. For
i D 1; 2; : : : ; n� 1 we put

U .i/
D

��
1n�i b

0 u

� ˇ̌̌
b 2Mn�i;i ; u 2Ni

�
:

Proposition 1.3 enables us to lift the main involution of G.A/ to GA. For i D

1; 2; : : : ; n� 1 we define

Qi. Qg/D

Z
U .i/.F /nU .i/.A/

�‚.s.u/ Qg/ e.u/ du;

Ri. Qg;�s/D

Z
U .i/.F /nU .i/.A/

�h.�s/.s.u/ Qg/ o.u/ du;

Zi.';‚;h
�s/D

Z
ZAN.F /U .i/.A/nG.A/

�W  .g; '/Qi.g/Ri.g;�s/ dg:

Let Ni be the subgroup of N consisting of matrices whose only nonzero off-diagonal
elements are in the .n�i/-th column. When i is odd, Propositions 2.4 and 2.5 of
[Bump and Ginzburg 1992] and Lemma 3.11 of [Takeda 2014] state that Qi.s.u/ Qg/

is independent of u 2Ni.A/ and equal to QiC1. Qg/, and hence

Zi.';‚;h
.�s//D

Z
ZAN.F /.A/U .iC1/.A/nG.A/

W  .g; '/QiC1.g/

�

Z
Ni .F /nNi .A/

Ri.s.u/g;�s/ .u/ du dg

DZiC1.';‚;h
.�s//:

When i is even, Propositions 2.4 and 2.5 of [Bump and Ginzburg 1992] and Lemma
3.11 of [Takeda 2014] again imply that Zi.';‚; h

.�s//DZiC1.';‚; h
.�s//. Con-

sequently,

Z.';‚;h.�s//DZ1.';‚;h
.�s//D � � � DZn�1.';‚;h

.�s//

D

Z
ZAN.A/nG.A/

W  .g; '/Q �1

. �g; �‚/R �1

. �g; �h.�s// dg:

Since the semi-Whittaker function of ‚ is the Whittaker function of the Me.n/-part
of the constant term of ‚ along Pe.n/, one can verify that it is factorizable, and
similarly for h.�s/, which gives rise to the factorization we want.
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There are Wi 2W .�/, ‚i 2 �
 
� and good sections f .s/i such thatX

i

Z.Wi ; ‚i ; f
.2s�1/

i /DL.s; �; sym2
˝�/:

On substituting each of these triplets into the functional equation in Proposition 3.14
and summing the results, we find that

(3-3)
X

i

Z
�
Wi ; ‚i ;N.2s�1; �`!�/f

.2s�1/
i

�
D E.s; �; �;  /L.1�s; �_; sym2

˝��1/:

For v 2 S nfv0g we choose Wv 2W‰v .˘v/, ‚v 2 �
‰v
Xv and standard sections f .s/v

such that Z.Wv; ‚v; f
.s/
v / is not identically zero. Put

Wi DWi ˝

� N
v2Snfv0g

Wv

�
˝

�N
v…S

W 0
v

�
;

‚i D‚i ˝

� N
v2Snfv0g

‚v

�
˝

�N
v…S

‚0
v

�
;

f
.s/

i D f
.s/

i ˝

� N
v2Snfv0g

f .s/v

�
˝

�N
v…S

f
.s/
v;0

�
:

Further set

A.s/DL.s; ˘;X ; sym2/�1
X

i

Z.Wi ;‚i ;f
.2s�1/

i /D a.s/˛.s/a.s; �; �/;

where
a.s; �; �/DL.s; �; sym2

˝�/=L.s; sym2
ı�.�/˝�/

and

a.s/D
Y

v2Sr nfv0g

Z.Wv; ‚v; f
.2s�1/
v /

L.s; sym2 ı�.˘v/˝Xv/
;

˛.s/D
Y
v2S1

Z.Wv; ‚v; f
.2s�1/
v /

L.s; sym2 ı�.˘v/˝Xv/
:

Similarly, we put

B.s/DL.s; ˘_;X�1; sym2/�1
X

i

Z
�
Wi ;‚i ;M.1�2s;X `!˘ /f

.1�2s/
i

�
:

Note that

B.s/D ".1�ns;X n!2
˘ /E.1�s; �; �;  /b.s/ˇ.s/a.s; �_; ��1/

by (3-2) and (3-3), where b.s/ (resp. ˇ.s/) is a product of the ratios

Z
�
Wv; ‚v;N.1�2s;X `v!˘v /f

.1�2s/
v

�
=L
�
s; sym2

ı�.˘_v /˝X�1
v

�
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over v 2 Sr n fv0g (resp. v 2 S1). Plugging the functional equation of Shahidi’s
L-function into the functional equation of the global zeta integral, we are led to

".s; ˘;X ; sym2/A.s/D B.1� s/;

that is,

(3-4) ".s; ˘;X ; sym2/a.s/˛.s/a.s; �; �/

D E.s; �; �;  /".n.s�1/C1;X n!2
˘ /b.1�s/ˇ.1�s/a.1�s; �_; ��1/:

To prove Theorem 3.18, it is enough to prove that a.s; �; �/ is entire and nowhere
vanishing. First suppose that a.s; �; �/ has a zero at s D s0. This means that
a.s; �; �/ has zeros at s0C k.2�

p
�1/= log q for all k 2 Z. We claim that all but

finitely many of these zeros must also be zeros of A.s/. This fails to happen only
if all but finitely many zeros are canceled by the poles of a.s/˛.s/. The function
˛.s/ can contribute only finitely many poles on any line with real part constant by
Proposition 3.8(3), and this set of poles is independent of the choice of Wv , ‚v and
f .s/v at the archimedean places. Hence a.s/ must have infinitely many poles of this
form. Since the poles of a.s/ are of the form sj Cm.4�

p
�1/= log qv for m 2 Z

with v2Sr nfv0g, there are a place v and sj 2C and two integers m1¤m2 such that

s0C k1

2�
p
�1

log q
D sj Cm1

4�
p
�1

log qv
; s0C k2

2�
p
�1

log q
D sj Cm2

4�
p
�1

log qv

for some k1; k2 2 Z (in fact, there are infinitely many distinct integers with this
property). Then log qv= log q is rational, which contradicts .qv; q/D 1. Thus the
points s0C k.2�

p
�1/= log q are zeros of A.s/ for all but finitely many k.

Since L.s; sym ı �.�/˝ �/ is holomorphic in the region <s > 0 by Proposi-
tion 7.2 of [Shahidi 1990], the function a.s; �; �/ is nonvanishing in the region
<s > 0. Thus <s0 � 0. From (3-4) we see that all but finitely many of the points
1� s0C k.2�

p
�1/= log q are zeros of the function B.s/. Since a.s; �_; ��1/ is

nonzero for <s > 0, these zeros have to be the zeros of b.s/ˇ.s/. Arguing as above,
these cannot be zeros of b.s/ for infinitely many k. Since the poles ofY

v2S1

L.s; sym ı�.˘_v /˝X�1
v /

lie along horizontal lines, this product can contribute only finitely many poles on
any vertical line. Thus these must be common zeros of functionsY

v2S1

Z
�
Wv; ‚v;N.1�2s;X `v!˘v /f

.1�2s/
v

�
for all Wv, ‚v and f .s/v . This contradicts Proposition 3.8(4) in view of the proof
of Proposition 3.14.



LOCAL SYMMETRIC SQUARE L-FACTORS 253

Suppose that a.s; �; �/ has a pole at s D s0. Since L.s; �; sym2 ˝ �/ is
holomorphic in the region <s > 0 by Lemma 3.15(1), we obtain <s0 � 0. By
Proposition 3.8(5) the product a.s/˛.s/ is holomorphic in <s � 1 and the function
b.1 � s/ˇ.1 � s/ is holomorphic in <s � 0. Therefore A.s/ is holomorphic in
<s � 1 and <s � 0 by (3-4), so that the pole of a.s; �; �/ must be canceled by
the zeros of a.s/˛.s/. Arguing as above, we can see that s0C k.4�

p
�1/= log q

cannot be zeros of a.s/ for infinitely many integers k. Since the poles ofY
v2S1

L.s; sym2
ı�.˘v/˝Xv/

lie along horizontal lines, this product can contribute only finitely many poles on
any vertical line. Thus these must be common zeros of functionsY

v2S1

Z.Wv; ‚v; f
.2s�1/
v /

for all Wv, ‚v and f .s/v , which contradicts Proposition 3.8(4). �

3I. Proof of Theorem A and Corollary A.

Theorem 3.19. Let � be an irreducible square-integrable representation of G

and � a unitary character of F�.

(1) Assume that n is even. Then L.s; sym2 ı�.�/˝�/ has a pole at s D 0 if and
only if � is �-distinguished.

(2) Assume that n is odd. Then L.s; sym2 ı�.�/˝�/ has a pole at s D 0 if and
only if !2

� D �
�n and � ˝ .!�1

� ��.n�1/=2/ is distinguished.

Proof. Theorems 3.17 and 3.18 prove the first part. The factorization (0-1) is
extended to the twisted case as follows:

L.s; �.�/˝�.�/˝�/DL.s; ƒ2
ı�.�/˝�/L.s; sym2

ı�.�/˝�/:

It is a consequence of Proposition 8.1 and Theorem 8.2 of [Jacquet et al. 1983] that
L.s; �.�/˝�.�/˝�/ has a simple pole at s D 0 exactly when � ' �_˝��1.

Suppose that n is odd. If L.s; sym2 ı �.�/˝ �/ has a pole at s D 0, then
� ' �_˝��1 and hence !2

� D �
�n. Put �D !��.n�1/=2 and � 0 D � ˝��1. If

!2
� D �

�n, then �2 D ��1, !� 0 D !���n D !��
.n�1/=2��1 D 1 and

L.s; sym2
ı�.�/˝�/DL.s; sym2

ı�.� 0//DL.s; � 0; sym2/:

The equivalence now amounts to a combination of Theorems 3.17 and 3.18. �

When � ' �_, one of the L-factors on the right-hand side of the factorization
(0-1) must have a pole at s D 0, and the other does not.
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If n is odd or ! is nontrivial, then L.s; ƒ2 ı�.�// cannot have a pole at sD 0 by
Theorems 4.3 and 6.1 of [Kewat and Raghunathan 2012], so that � '�_ if and only
if L.s; sym2ı�.�// has a pole at sD 0. Thus Lemma 1.12(1) and Theorem 3.17(2)
prove Corollary A(1). Theorem 3.19(1) proves Corollary A(2).

Assume that n is even and ! is trivial. Then L.s; ƒ2 ı�.�// has a pole at s D 0

if and only if � admits a nontrivial Shalika model by Proposition 3.4 of [Lapid and
Mao 2017]. This combined with Theorem 3.19(1) proves Corollary A(3).

Remark 3.20. In the proof of Corollary A we limit ourselves to the nontwisted case
even when n is even, because of the lack of knowledge of suitable generalizations
of the results for the twisted exterior square L-factors.
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