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ALMOST EVERYWHERE CONVERGENCE
FOR MODIFIED BOCHNER–RIESZ MEANS

AT THE CRITICAL INDEX FOR p � 2

MARCO ANNONI

Boundedness for a maximal modified Bochner–Riesz operator between
weighted L2 spaces is proved. As a consequence, we have sufficient con-
ditions for a.e. convergence of the modified Bochner–Riesz means at the
critical exponent p

�
D 2n=.n� 2�� 1/.
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1. Introduction

This paper contains the results proved in the author’s doctoral dissertation [Annoni
2010] and referenced by S. Lee and A. Seeger [2015], but yet unpublished in a
mathematical journal. For �;R > 0, let B�R denote the Bochner–Riesz operators
and m� the Fourier multipliers introduced in [Bochner 1936]:

B�R.f /.x/D

Z
Rn

yf .�/m�

�
j�j

R

�
e2�i

�x d�; m�.t/D .1� t
2/�C:

For p < 2, results related to almost everywhere convergence and maximal operators
have been proved by Tao [1998; 2002], Ashurov [1983], and Ahmedov, Ashurov,
and Mahmud [Ashurov et al. 2010]. For p� 2, partial results on almost everywhere
convergence of B�R.f / to f as R !1 have been achieved in [Carbery 1983;
Christ 1985]. Carbery, Rubio de Francia, and Vega [Carbery et al. 1988] obtained
a.e. convergence in the range 2� p < p� and � > 0.

MSC2010: primary 42B15; secondary 42B10, 42B25.
Keywords: Bochner–Riesz means, maximal Bochner–Riesz means, almost everywhere convergence,

weighted inequalities, radial multipliers.
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In this paper, the situation at the critical exponent p
�
D 2n=.n�2��1/ is studied

by considering the modified Bochner–Riesz multipliers m�;


m�;
 .t/D
.1� t2/�

C

.1� log.1� t2//

;

which were introduced by Seeger [1987]. Seeger [1996] showed that m�;
 is an
Lp�.R2/ multiplier for 
 > 1=p0

�
(where 1=p

�
C 1=p0

�
D 1). His results easily

extend to dimensions n � 3 when � � .n� 1/=.2.nC 1// and had already been
proven to be sharp in [Seeger 1987] when nD 2.

In order to investigate for which values of 
 the means B�;
R defined via m�;

converge a.e. for functions in Lp� , we study the maximal operator B�;
� . The
following theorem is my main result.

Theorem 1.1. Let 1 < 1C 2� < n and 0 � � < 2
 � 2. Then there is a constant
C D C.n; �; 
; �/ such that

(1)
Z

Rn
jB
�;

� .f /.x/j2 dx � C

Z
Rn
jf .x/j2 dx

for all f 2 L2.Rn; dx/ and

(2)
Z

Rn
jB
�;

� .f /.x/j2w�;�.x/ dx � C

Z
Rn
jf .x/j2w�;�.x/ dx

for all f 2 L2.Rn; w�;�.x/ dx/, where w�;� D !�;�.jxj/ and

(3) !�;�.t/D

8̂<̂
:

1

t2�C1
if 0 < t � 1;

1

t2�C1.log.et//�
if t > 1:

For .2�C 1/=n < �, we also have Lp� � L2CL2.w�;�/. Hence:

Corollary 1.2. If 1 < 1C 2� < n, f 2 Lp�.Rn/, and 
 > 1=p0
�
C 1=2, we have

(4) lim
R!1

B
�;

R .f /.x/D f .x/

for almost every x 2 Rn. If f 2 Lp.Rn/ for 2� p < p
�

, then the condition 
 � 0
suffices for (4) to hold.

When I first proved this result, it was natural to wonder whether the condition

 > 1=p0

�
C 1=2 was sharp. Lee, Rogers, and Seeger [Lee et al. 2014] have since

proved among other things that, if

2.nC1/

n�1
< p <1; n� 2;



ALMOST EVERYWHERE CONVERGENCE FOR MODIFIED BOCHNER–RIESZ MEANS 259

and m 2 B2˛;q , then the maximal operator

Mm.f / WD supt>0
ˇ̌�
yf m.t j � j/

�_ˇ̌
is bounded from Lp;q

0

to Lp. This can be applied to mDm�;
 to conclude that
the condition 
 > 1=p0

�
C 1=2 in Corollary 1.2 can be replaced by 
 > 1=p0

�
, if we

further assume .n� 1/=.2.nC 1// < �.
Lee and Seeger [2015] have gone much further, proving that a.e. convergence of

St .f / WD
�
yf m�;
 ı �.t. � //

�_
to f (where � is an arbitrary homogeneous “distance” function, that is a homo-
geneous function that satisfies �.�/ > 0 if � 2 Rn n f0g and �.0/ D 0) holds for
every f 2 Lp�;q when q � 1 if and only if 
 > 1=q0, for all 0 < � < .n� 1/=2.
For q D p

�
and �.�/D j�j, this implies Corollary 1.2. In particular, they proved

that the condition 
 > 1=q0 is sharp.
The sufficiency of the condition 
 > 1=q0 in [Lee and Seeger 2015] is presented

as a consequence of a boundedness estimate between appropriate homogeneous
Herz spaces — see [Baernstein and Sawyer 1985; Gilbert 1972] — of a maximal
operator defined via an arbitrary quasiradial multiplier h ı �, provided that h lies in
an appropriate Besov space. A particular case of the same theorem also implies
a characterization of boundedness for certain convolution operators on L2 spaces
that are weighted with power weights. In order to prove the sufficiency of the
condition on 
 , both of our papers use the approach of [Carbery et al. 1988], to
some extent. However, much of my work is necessary to deal with the weight w�;�,
that isn’t homogenous. The first choice of Lee and Seeger was to keep working
with a homogeneous weight, but to use the observation that, for p > 2, the space
Lp;2 is embedded in L2.jxj�n.1�2=p/ dx/. By sharpening the analysis in [loc. cit.],
this idea would only have yielded their result for q D 2. They solved the problem
for all q by using Herz spaces, embedding theorems, and innovations that were
needed to work with a more general “distance” function � and multiplier h.

The necessity of the condition 
 >1=q0 starts with the reminder that the operators
St (t > 0) are naturally defined on the Schwartz class S and extended on bigger
spaces by using density. So, they proved that each operator St is continuous
from S — equipped with the Lp�;q norm and topology — to S 0 only if 
 > 1=q0.

This paper. The proof of Theorem 1.1 follows closely the idea developed in [Carbery
et al. 1988], but accounts for the necessity to work with nonhomogeneous weights.

In Section 2, Theorem 1.1 is reduced to Lemma 2.1, which is in turn reduced to
Lemma 5.2 in Section 5. Lemma 5.2 is proved in Section 6.

In Section 3, an upper bound is given for the Fourier transform of w.1/�;�, which
is w�;� smoothened in a neighborhood of the spherical surface kxk D 1. An
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analytic continuation argument is needed to prove that the upper bound holds for
all 0 < � < .n� 1/=2. This upper bound will be used to prove Lemma 5.2.

In Section 4, a new weight zwN;�;� is exhibited that is comparable to 1=w�;�
and that has an algebraic form needed in the computations of Section 5.

In Section 5, Lemma 2.1 is reduced to Lemma 5.2. Lemma 5.2 contains weighted
Fourier inequalities for the special weight used in this paper. It is crucial that the
“constants” appearing in both such inequalities have a certain functional form with
respect to the parameter t. So, general results such as those in [Benedetto and
Heinig 2003] were not sufficient.

Section 6 contains the proofs of Lemma 5.2 and Corollary 1.2.
We shall refer to [Carbery et al. 1988] for every piece of the proof that doesn’t

differ significantly. Yet, the reader can find more details of the proof contained in
that reference in [Grafakos 2014, Subsection 10.5.2].

2. Reduction of Theorem 1.1 to Lemma 2.1

We will only need to show (2), as the proof of (1) is contained in [Grafakos 2014]
for the case 
 D 0 (which implies it for all 
 � 0). Let ',  be smooth functions,
supported in

�
�
1
2
; 1
2

�
and

�
1
8
; 5
8

�
respectively, with values in Œ0; 1�, that satisfy

'.t/C

1X
kD0

 

�
1� t

2�k

�
D 1

for all t 2 Œ0; 1/. Let e1D .1; 0; : : : ; 0/2Rn. We definem�;
;00.t/Dm�;
 .te1/ '.t/
and

(5) m�;
;k.t/D 2
k�m�;
 .te1/ 

�
1� t

2�k

�
; k D 0; 1; 2; : : :

We define zm�;
;k , .S�;
;k/t , .S�;
;k/�, and G�;
;k from m�;
;k , analogous to how
zmı, Sıt , S

ı
� , and Gı were defined from mı in [Carbery et al. 1988]. Similarly, we

also define . zS�;
;k/t , . zS�;
;k/�, and zG�;
;k by using zm�;
;k instead ofm�;
;k . For
m�;
;k we have the estimate

(6) sup
0�t�1

ˇ̌̌̌
d `

dt`
m�;
;k.t/

ˇ̌̌̌
� C�;
;`

2k`

k


for all ` 2 ZC[f0g. As in [loc. cit.], these inequalities follow:

kB
�;

� k � k.S�;
;00/�kC

1X
kD0

2�k�k.S�;
;k/�k;(7)



.S�;
;k/�.f /

2L2.w�;�/ � 2kC1

G�;
;k.f /

L2.w�;�/

 zG�;
;k.f /

L2.w�;�/:(8)

By reasoning as in [loc. cit.], one then shows without difficulty that the right-hand
side in (8) can be controlled by the left-hand side of the inequality in the result we
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are about to state:

Lemma 2.1. For k > 4 we haveZ
Rn

Z 2

1

j.S�;
;k/a t .f /.x/j
2 dt

t
w�;�.x/ dx � Cn;�;�;
;k

Z
Rn
jf .x/j2w�;�.x/ dx

for all a > 0 and for all functions f in L2.w�;�/, with

Cn;�;�;
;k D Cn;�;�;

2k.2��1/

k2
��
:

We need not to worry about k � 4 because it is easily verified that w�;� is an A2
weight under the conditions of Theorem 1.1 and therefore

k.S�;
;k/�.f /k
2
L2.w�;�/

<1

for every k. Inequality (8) and Lemma 2.1 then imply:

(9)


.S�;
;k/�

L2.w�;�/!L2.w�;�/ � C 0.n; �; 
/� 22k�

k2
��

�1=2
:

So, the right-hand side of (7) is finite if � < 2
 � 2. Theorem 1.1 is now proved
modulo Lemma 2.1.

3. An upper bound for j yw�;�j

The main result of this section will be used in Section 6. Let � 2 C1.R/ satisfy
0� � � 1, supp.�/�

�
9
10
; 11
10

�
, � � 1 on

�
19
20
; 21
20

�
. Now define

(10) !
.1/
�;�.t/D !�;�.t/

�
1� �.t/

�
C �.t/:

and w.1/�;�.x/D!
.1/
�;�.jxj/ for all x 2Rnnf0g. Then w.1/�;� is smooth on Rnnf0g and

w
.1/
�;���;� w�;�; that is, w.1/�;�.x/ and w�;�.x/ are comparable with comparability

constant depending on � and � only. The goal of this section is to prove this result:

Theorem 3.1. Let w�;� and w.1/�;� be defined as above. Then for every � satisfying
n�1
4
< � < n�1

2
and every �� 0 there exists a constant Cn;�;� such that

(11) j yw�;�.�/j ���;�.�/ WD

8̂̂<̂
:̂
Cn;�;�

1

j�jn�2��1
�
log e
j�j

�� if j�j � 1;

Cn;�;�
1

j�jn�2��1
if j�j � 1;

and, for all � satisfying 0< �< n�1
2

and � as above, there exists a constant C 0
n;�;�

such that

(12) j yw
.1/
�;�.�/j � C

0
n;�;���;�.�/

for all � 2 Rn n f0g.
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Proof. We begin with the proof of (11) As w�;� is radial, its Fourier transform is
given by

yw�;�.�/D
2�

j�j
n�2
2

Z 1
0

!�;�.r/ Jn�2
2
.2�j�jr/ r

n
2 dr;

where Jk denotes the k-th Bessel function. It is well known — see [Watson 1944] —
that jJk.r/j �Ck rk when r � 2� and jJk.r/j �Ck r�

1
2 when r � 2� . We control

j yw�;�.�/j in two cases:

Case 1: 1
j�j
� 1. Then

j yw�;�.�/j � Cn

�Z 1
j�j

0

r�2��1C
n�2
2
Cn
2 dr

�
C

Cn

j�j
n�1
2

�Z 1

1
j�j

r�2��1�
1
2
Cn
2 dr

�

C
Cn

j�j
n�1
2

�Z 1
1

r�2��1�
1
2
Cn
2

.log.er//�
dr

�
:

Case 2: 1
j�j
� 1. Then

j yw�;�.�/j � Cn

�Z 1

0

r
n�2
2
Cn
2
�2��1 dr

�
CCn

�Z 1
j�j

1

1

.log.er//�
r
n�2
2
Cn
2
�2��1 dr

�
C

Cn

j�j
n�1
2

�Z 1
1
j�j

1

.log.er//�
r�

1
2
Cn
2
�2��1 dr

�
:

If � > n�1
4

and � < n�1
2

, all integrals converge and (11) easily follows by using
calculus.

The same holds with w�;� replaced by w.1/�;� and the proof is almost identical.
Then, an analytic continuation argument and the smoothness of w.1/�;� can be used
to prove that (12) holds in the bigger range 0 < � < n�1

2
. The argument involves

many details that we omit but that may be split in two pieces.
In the first one, given any �0 2

�
0; n�1

4

�
, we use more asymptotic estimates of

the Bessel functions — see [Watson 1944] — and iterated integration by parts to
rewrite the right-hand side of

(13) yw
.1/
�;�.�/D

2�

j�j
n�2
2

Z 1
0

!
.1/
�;�.r/Jn�2

2
.2�j�jr/r

n
2 dr

in a way that also is well defined when � ranges in a complex neighborhood O�0 of
the real interval

�
�0; n�1

2

�
. We can call such extension Qu�;�.�/, and show that

j Qu�;�.�/j � C
0
n;�;���;�.�/;

as in (12).
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In the second one, for the same value of �0 and the same neighborhood O�0 , we
use the dominated convergence theorem to prove that, for a given test function '
defined on Rn, the right-hand side of

(14)
Z

Rn
y'.�/w

.1/
�;�.�/ d� D

Z
Rn
'.�/ Qu�;�.�/ d�;

rewritten after the first piece of the argument, is holomorphic, hence analytic, on
O�0 . It can be proved easily that the left-hand side of (14) is also analytic on O�0 .
Since (14) holds when � 2

�
n�1
4
; n�1
2

�
, we conclude from the analytic continuation

theorem that (14) also holds when � 2
�
�0; n�1

2

�
. Then yw.1/�;� D Qu�;�, since ' is

arbitrary. The arbitrariness of �0 concludes the proof. �

4. A useful weight comparable to 1=w�;�

In this section we show that 1=w�;� is comparable to another weight which can be
written in a more useful way for our purposes, a fact that will be used in the next
section. More precisely, let u�;� and zwN;�;� be defined by:

u�;�.y/D

�
jyj�n�2��1

�
log e
jyj

�� if jyj< 1;
jyj�n�2��1 if jyj � 1:

(15)

zwN;�;�.x/D

Z
Rn
jeihx;yi� 1jNu�;�.y/ dy;(16)

where N is a large enough integer independent of x.
The goal of this section is to prove that there exist constants C1;n;�;�;N and

C2;n;�;�;N such that

(17)
C1;n;�;�;N

w�;�.x/
� zwN;�;�.x/�

C2;n;�;�;N

w�;�.x/

for all x 2 Rn n f0g. Let us write zwN;�;� D zwN;�;�;1C zwN;�;�;2, where

zwN;�;�;1.x/D

Z
jyj� 1

jxj

jeihx;yi� 1jNu�;�.y/ dy;(18)

zwN;�;�;2.x/D

Z
jyj> 1

jxj

jeihx;yi� 1jNu�;�.y/ dy:(19)

Observe that in (18),

(20) C1jhx; yij � je
ihx;yi

� 1j � jxj jyj

for an absolute constant 0 < C1 < 1. Now, we estimate zwN;�;�;1.
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Case 1: 1
jxj
� 1. Given a positive constant C > 0, in view of (20),

zwN;�;�;1.x/D

Z
jyj� 1

jxj

jeihx;yi� 1jN jyj�n�2��1
�

log e

jyj

��
dy

� CC;N

Z
�.x/

jxjN jyjN jyj�n�2��1
�

log e

jyj

��
dy

D Cn;C;N jxj
N jS

n�1j

e2�C1�N

Z 1
ejxj

s2��N .log s/� ds;

where �.x/ D
˚
y W jyj � 1

jxj
and C �

ˇ̌˝ x
jxj
; y
jyj

˛ˇ̌	
. In order for this integral to

converge, we need N > 2�C 1. Later we will also need N to be even. So, we set
N DN� WD2d2�C1e. It easily follows that there exist constantsCn;�;N andC�;�;N
such that zwN;�;�;1.x/� Cn;�;N =w�;�.x/ for all x 2 Rn satisfying jxj � C�;�;N .
An easier computation and (20) yield zwN;�;�;1.x/ � C 0n;�;N =w�;�.x/ in Case 1
for all x 2 Rn satisfying jxj � C�;�;N . So, on fx 2 Rn W jxj � maxf1; C�;�;N gg
we have

(21) zwN;�;�;1 �n;�;N 1=w�;�

Case 2: 1
jxj
> 1. Let us use the decomposition zwN;�;�;1.x/D I C II, where

I D

Z
jyj�1

jeihx;yi� 1jN jyj�n�2��1
�

log e

jyj

��
dy �n;�;�;N jxj

N;

II D

Z
1<jyj� 1

jxj

jeihx;yi� 1jN jyj�n�2��1 dy �n;�;N jxj
2�C1;

This proves that

(22) zwN;�;�;1.x/�n;�;�;N jxj
N
Cjxj2�C1 �n;�;N jxj

2�C1
D

1

w�;�.x/

on fx 2 Rn W jxj � 1g. If C�;�;N � 1, then relations (21) and (22) immediately
imply that zwN;�;�;1 �n;�;�;N 1=w�;� on Rn. Otherwise, just observe that both
functions zwN;�;�;1 and 1=w�;� are positive and continuous on the compact annulus
1 � jxj � C�;�;N . We still have to show that zwN;�;�;2 �n;�;�;N 1=w�;�. Let us
define

(23) zzw�;�;2.x/D

Z
jyj> 1

jxj

u�;�.y/ dy:

Then

(24) zwN;�;�;2.x/� 2
N zzw�;�;2.x/:
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We will prove that the inverse inequality also holds (with a constant different from
2N ), so that we have zzw�;�;2 �N;�;�;n zwN;�;�;2. Now, let us prove that

zzw�;�;2 �N;�;�;n 1=w�;�:

Case 1: 1
jxj
> 1. Then:

zzw�;�;2.x/D
jSn�1j

2�C 1
jxj2�C1 ��;n jxj

2�C1
D

1

w�;�.x/
:

Case 2: 1
jxj
� 1. Then:

zzw�;�;2.x/D Cn;�C
jSn�1j

e2�C1

Z ejxj

e

t2�.log t /� dt

��;�;n jxj
2�C1 .log.ejxj//� D 1

w�;�.x/
:

This concludes the proof that zzw�;�;2 ��;�;n 1=w�;� on Rn n f0g. Now we need
to prove that there exists a constant CN;�;�;n such that the inequality

zzw�;�;2 � CN;�;�;n zwN;�;�;2

holds on Rn n f0g. Since both zzw�;�;2 and zwN;�;�;2 are radial, it will be enough to
prove that the functions t 7! zwN;�;�;2.te1/ and t 7! zzw�;�;2.te1/ are comparable on
RC, where e1D .1; 0; : : : ; 0/. Observe that jeihte1;yi�1j>

p
2 onGt WD

S
k2ZG

t
k

,
where

Gtk WD

�
y 2 Rn W he1; yi 2

�
.4kC 1/�

2t
;
.4kC 3/�

2t

��
for all t > 0 and k 2 Z. Therefore u�;�.y/�N jeihte1;yi� 1jNu�;�.y/ on Gt. In
particular, there exists a constant CN such thatZ

Gt
u�;�.y/ dy � CN

Z
Gt
jeihte1;yi� 1jNu�;�.y/ dy:

If t > 0 and k 2 Z n f0g we define

Rtk WD

�
y 2 Rn W he1; yi 2

�
.4k� 1/�

2t
;
.4kC 1/�

2t

��
and

Rt0 WD

�
y 2 Rn W he1; yi 2

�
��

2t
;
�

2t

�
and jyj> 1

t

�
:

As Z
Rt
k

u�;�.y/ dy �

Z
Gt
k�1

u�;�.y/ dy

for all k 2 ZC, and Z
Rt
k

u�;�.y/ dy �

Z
Gt
k

u�;�.y/ dy
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for all k 2 Z�, we also haveZ
S
k2Znf0gR

t
k

u�;�.y/ dy �

Z
Gt
u�;�.y/ dy � CN

Z
Gt
jeihte1;yi� 1jNu�;�.y/ dy:

Since �
y W jhe1; yij>

�

2t

�
DGt [

[
k2Znf0g

Rtk;

we have Z
jhe1;yij>

�
2t

u�;�.y/ dy � 2CN

Z
jyj> 1

t

jeihte1;yi� 1jNu�;�.y/ dy:

Since u�;� is radial, we can replace e1 by ej in the inequality above for j D2; : : : ; n.
Let jyj1 WD sup1�j�njhej ; yij. Then

(25)
Z
fy2RnW jyj1>

�
2t
g

u�;�.y/ dy � 2nCN

Z
jyj> 1

t

jeihte1;yi� 1jNu�;�.y/ dy:

Inequality (25) and the Lemma 4.1 easily imply — see (19) and (23) for details —
that zzw�;�;2.te1/� Cn;�;�;N � zwN;�;�;2.te1/.

Lemma 4.1. Let u�;� be as in (15). Then, for all n 2 ZC, � 2 R, and C > 1

there exists a constantDDD.n; �; C / 2R such that u�;�
� y
C

�
�Du�;�.y/ for all

y 2 Rn n f0g. We can choose D D C nC2�C1 .log.eC //�.

The proof of Lemma 4.1 is left to the reader. This completes the proof that
zwN;�;�;2 �n;�;�;N

1
w�;�

on Rn n f0g and therefore the proof of (17), that is the
claim of this section.

5. Reduction of Lemma 2.1 to Lemma 5.2

By duality, the inequality in Lemma 2.1 can be expressed as

(26)




Z 2

1

.S�;
;k/at .h.t; � //.x/
dt

t






L2. dx

w�;�.x/
/

� Ckh.t; x/kL2.dt
t

dx
w�;�.x/

/

for all functions h.t; x/ in the appropriate space, where

C D Cn;�;�;
;k D

r
Cn;�;�;


2k.2��1/

k2
��
:

In view of the result of Section 4, for every f 2 L2
�
Rn; 1

w�;�

�
,

(27) kf k2
L2. dx

!�;�.jxj/
/
�

Z
Rn

Z
Rn
u�;�.y/

ˇ̌̌̌
ˇ
 
N�=2X
jD0

yf .gj;y.�//bj

!ˇ̌̌̌
ˇ
2

dy d�;
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where

gj;y.�/D

�
� �

�
N�=2� j

2�

�
y

�
; bj D .�1/

j

 
N�=2

j

!
;

Plancherel’s identity was used, and the implicit comparability constants depend
on �;�; n only. We can substitute the left-hand side of (26) by using (27) on the
function

f .x/D

Z 2

1

.S�;
;k/at .h.t; � //.x/
dt

t
:

For such a function we have

(28)

ˇ̌̌̌
ˇ
 
N�=2X
jD0

yf .gj;y.�//bj

!ˇ̌̌̌
ˇ
2

D

ˇ̌̌̌
ˇ
Z 2

1

 
N�=2X
jD0

yh.t; gj;y.�//m�;
;k.at jgj;y.�/j/bj

!
dt

t

ˇ̌̌̌
ˇ
2

:

Since m�;
;k is supported in
�
1� 5

8�2k
; 1� 1

8�2k

�
, the Cauchy–Schwarz inequality

in the t variable allows us to control the right-hand side of (28) by

C�

2k

Z 2

1

ˇ̌̌̌
ˇ
N�=2X
jD0

yh.t; gj;y.�// �m�;
;k.a t jgj;y.�/j/bj

ˇ̌̌̌
ˇ
2

dt

t
DWHk;�;
 .y; �/:(29)

So, if we can show

(30)
Z

Rn

Z
Rn
u�;�.y/Hk;�;
 .y; �/ dyd� � C

2k.2��1/

k2
��
kh.t; x/k2

L2.dt
t

dx
!�;�.jxj/

/

for a constant C WD Cn;�;�;
 , then (26) is proved. But (30) follows from the
following pointwise (with respect to t ) estimate:

(31) k.S�;
;k/t .h/.x/k
2

L2. dx
!�;�.jxj/

/
� Cn;�;�;


22k�

k2
��
khk2

L2. dx
!�;�.jxj/

/

if (31) holds for all t > 0 rather than just t 2 Œ1; 2� (which allowed us to drop
the parameter a), and for all h 2 L2

�
Rn; dx=w�;�.x/

�
. In order to see that (31)

implies (30), just use (27) with f .x/D
�
yh. � /m�;
;k.t j � j/

�_
.x/D .S�;
;k/t .h/.x/,

to rewrite the left-hand side of (31).
By duality, (31) is equivalent to

(32) k.S�;
;k/t .h/k
2
L2.w�;�/

� Cn;�;�;

22k�

k2
��
khk2

L2.w�;�/

for all h 2 L2.w�;�.x/ dx/, t > 0. So, the latter also yields the inequality in
Lemma 2.1 for every f in the appropriate space and every a > 0. We now need to
prove (32).
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We denote by .K�;
;k/t .x/ the kernel of the operator .S�;
;k/t , i.e., the inverse
Fourier transform of the multiplier m�;
;k.t j � j/. .K�;
;k/t is radial on Rn, and it
is convenient to decompose it radially as

.K�;
;k/t D .K�;
;k/
.0/
1 C

1X
jD1

.K�;
;k/
.j /
t ;

where

.K�;
;k/
.0/
1 .x/D .K�;
;k/t .x/ �.2

�.kC3/x=t/;

.K�;
;k/
.j /
t .x/D .K�;
;k/t .x/

�
�.2�.jCkC3/ x=t/� �.2�.kC2Cj / x=t/

�
;

for some radial smooth function � supported in the ball B.0; 2/ and equal to one
on B.0; 1/.

To prove estimate (32) we make use of the subsequent lemmas.

Lemma 5.1. For all M � 2n there is a constant C�;
;k;M D C�;
;k;M .n; �/ such
that for all j D 0; 1; 2; : : : ,

(33) sup
�2Rn
j
3.K�;
;k/.j /t .�/j � C�;
;M

2�jM

k


and also

(34) j
3.K�;
;k/.j /t .�/j � C�;
;M

2�.jCl/M

k


whenever
ˇ̌
t j�j � 1

ˇ̌
� 2l�k�3 and l � 4. Also,

(35) j
3.K�;
;k/.j /t .�/j � C�;
;M

2�.jCkC3/M

k

.1C t j�j/�M

whenever jt �j � 1
8

or jt �j � 15
8

.

Proof. The proof for t D 1 follows the lines of the proof of Lemma 10.5.5 in
[Grafakos 2014, p. 413]. Just observe that estimate (10.5.9) in p. 409 of that
reference is now replaced by (6), which explains why the factor 1=k
 appears. The
general case (any t > 0) is straightforward in view of the fact that

3.K�;
;k/.j /t .�/D
3
.K�;
;k/

.j /
1 .t �/: �

Lemma 5.2. The inequalities

(36)
Z
jjt �j�1j< "

j yf .�/j2 d� � Cn;�;�!�;�.t/"

Z
Rn
jf .x/j2

dx

w�;�.x/

and

(37)
Z

Rn
j yf .�/j2

d�

.1Cjt�j/M
� Cn;�;�;M !�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/
;

hold for all Schwartz functions f, t > 0, M � 2n, all 0 < " < 2, �, and � as in
Theorem 1.1.
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The proof of Lemma 5.2 is postponed to Section 6.
By reasoning as in [Grafakos 2014, p. 414] and using the estimates in Lemmas 5.1

and 5.2 instead of those in Lemma 10.5.5 in [op. cit., p. 413] and Lemma 10.5.6 in
[op. cit., p. 414], we can prove

(38)
Z

Rn
j..K�;
;k/

.j /
t �f /.x/j

2 dx � C
2�2jM

2k k2

!�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/

for another constant C D Cn;�;�;
;M . By duality, this is equivalent to

(39)
Z

Rn
j..K�;
;k/

.j /
t �f /.x/j

2w�;�.x/ dx � C
2�2jM

2k k2

!�;�.t/

Z
Rn
jf .x/j2 dx:

Given a Schwartz function f, we write

f0 D f�Q.n;k;j;t/0

;

whereQ.n;k;j;t/0 is a cube centered at the origin of side lengthCn2jCkC4 t (note that
supp .K�;
;k/

.j /
t �B.0; 2

jCkC4 t /). Then for x 2Q.n;k;j;t/0 we have the inequality

jxj �
p
nCn2

jCkC4 t I

hence, (39) implies

(40)
Z

Rn
j..K�;
;k/

.j /
t �f0/.x/j

2w�;�.x/ dx

� Cn;�;�;
;M
2�2jM

2k k2


!�;�.t/

!�;�.
p
nCn2

jCkC4 t /

Z
Q
.n;k;j;t/
0

jf0.x/j
2w�;�.x/ dx

because the function 1=!�;� is increasing. A simple computation shows that

(41) sup
t>0

!�;�.at/

!�;�.t/
D

1

a2�C1
and sup

t>0

!�;�.at/

!�;�.t/
D
.log.e=a//�

a2�C1

if a > 1 and if a � 1, respectively. Therefore, for all j and k such that j Ck � C 0n
for a suitable purely dimensional constant C 0n,

sup
t>0

!�;�.t/

!�;�.
p
nCn2jCkC4 t /

� C 00n;�;�2
.jCk/.2�C1/.j�C k�/;(42)

where we used the hypothesis on j and k and the fact that

.j C k/� � C�.j
�
C k�/:

It follows from (42) and (40) that
R

Rn
j..K�;
;k/

.j /
t �f0/.x/j

2w�;�.x/ dx is bounded
by

C 2j.2�C1�2M/ 2
2k�

k2

.j�C k�/

Z
Q
.n;k;j;t/
0

jf0.x/j
2w�;�.x/ dx;
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for C D Cn;�;�;
;M , provided that

(43) j C k � C 0n:

Now write Rn nQ
.n;k;j;t/
0 as a mesh of cubes Q.n;k;j;t/i , indexed by i 2 Z n f0g, of

side lengths Cn2jCkC4 t (the same side length of Q.n;k;j;t/0 ) and centers cQi . By
using (33), reasoning as in [Grafakos 2014, p. 415] as well as simply noting that
22k�.j�C k�/� 1, we can find that the piecesZ

Rn
j..K�;
;k/

.j /
t �fi /.x

0/j2w�;�.x
0/ dx0

are bounded by

C�;�;
;M 2
�2jM 22k�

k2

.j�C k�/

Z
Q
.n;k;j;t/

i

jfi .x/j
2w�;�.x/ dx

whenever fi is supported in Q.n;k;j;t/i and, in turn, that

(44) k.K�;
;k/
.j /
t �f kL2.w�;�/

� C 00n;�;�;
;M 2
j.�C 1

2
�M/ 2

k�

k

.j

�
2 C k

�
2 /kf kL2.w�;�/

(in view of the argument in [Grafakos 2014]). Observe that condition (43) is satisfied
if we assume k � C 0n, which we can as the convergence of (7) only depends on the
estimates we have for k big enough. So, for k � C 0n, by using (44) and summing
over j D 0; 1; 2; : : : , we deduce (32) if we just choose M > n=2 (remember that
n > 2�C 1). In turn, (32) is equivalent to (31), which is equivalent to (26), which
is equivalent to the inequality in Lemma 2.1. Therefore, this completes the proof of
the lemma, modulo Lemma 5.2

6. Proof of Lemma 5.2

6.1. Proof of inequality (36). We reduce estimate (36) by duality to

(45)
Z

Rn
jyg.�/j2w�;�.�/ d� � Cn;�;�!�;�.t/"

Z
jjt xj�1j�"

jg.x/j2 dx

for functions g supported in the annulus
ˇ̌
jt xj � 1

ˇ̌
� ". In Section 3 we observed

that

w�;� ��;� w
.1/
�;�

and proved in Theorem 3.1 that the function j yw.1/�;�j is bounded by a scalar multiple
of ��;� (see (12)) in the whole range � 2 .0; .n� 1/=2/. Therefore, we can start



ALMOST EVERYWHERE CONVERGENCE FOR MODIFIED BOCHNER–RIESZ MEANS 271

to prove (45) as follows:

(46)
Z

Rn
jyg.�/j2w�;�.�/ d� ��;�

Z
Rn

�
yg yg
�_
.x/ yw

.1/
�;�.x/ dx

� Cn;�;�

Z
Rn
.jgj � j Qgj/.x/��;�.x/ dx

D Cn;�;�

“
jjt yj�1j�"

jjt xj�1j�"

jg.x/jj Qg.y/j��;�.x�y/ dxdy

� Cn;�;�B.n; �; �; "; t/kgk
2
L2

where zg.x/D g.�x/ and

(47) B.n; �; �; "; t/D
1

tn
sup

fxWjjxj�1j�"g

Z
jjyj � 1j�"

�t�;�.y � x/ dy;

where�t
�;�
.x/ WD��;�.x=t/. The last inequality of (46) is proved by interpolation

between the L1.S/ ! L1.S/ and L1.S/ ! L1.S/ estimates for the linear
operator

L�;�;t;".g/.x/D

Z
S

g.y/��;�.y � x/ dy;

where

S D
˚
y 2 Rn W

ˇ̌
jt yj � 1

ˇ̌
� "

	
;

using the Cauchy–Schwarz inequality. It remains to establish that

(48) B.n; �; �; "; t/� Cn;�;�!�;�.t/":

Then we reason as in [Grafakos 2014, pp. 417, 418]: we apply a rotation and
a change of variable to the integrals in (47) to push the dependence on x to the
domain of integration, then control the supremum in (47) by integrating ��;� over
the bigger set ˚

y W
ˇ̌
jy � e1j � 1

ˇ̌
� 2"

	
;

finally we split this latter integral over the sets S0; S`; S� defined in [op. cit.] to be

S0 D
˚
y 2 Rn W

ˇ̌
jy � e1j � 1

ˇ̌
� 2"; jyj � "

	
;

S` D
˚
y 2 Rn W

ˇ̌
jy � e1j � 1

ˇ̌
� 2"; `"� jyj � .`C 1/"

	
;

S� D
˚
y 2 Rn W

ˇ̌
jy � e1j � 1

ˇ̌
� 2"; jyj � 1

	
:
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In the end, matters reduce to proving the estimatesZ
S0

�t�;�.y/ dy � C
0
n;�;� t

n!�;�.t/"
2�C1;(49)

Œ 1
"
�C1X
`D1

Z
S`

�t�;�.y/ dy � C�;� t
n"!�;�.t/;(50) Z

S�

�t�;�.y/ dy � Cn"!�;�.t/t
n:(51)

In proving the inequalities above, we can assume without loss of generality
that t � 2, because when t < 2 the proof of Lemma 5.2 is an immediate consequence
of Lemma 10.5.6 in [op. cit., p. 414]. We can also assume that t � Cn;�;�, due to
the compactness of Œ2; Cn;�;�� and the continuity and positivity of the functions
involved. For a suitable constant Cn;�;� and t �maxf2; Cn;�;�g, (49) is proved by
using calculus (note that the integrand in (49) is radial and the domain of integration
is a sphere); (50) is proved by using the maximum of the integrand over each set S`,
then by comparing the sum with an integral, finally by using calculus to estimate
the integral; (51) is proved by using the maximum of the integrand over S�. The
condition that t � 2 > " was used in both (49) and (50) and (41) was used in (51).

By combining estimates (49), (50), and (51), we obtain (48). This concludes the
proof of (45) and, therefore, of (36). �

6.2. Proof of inequality (37). Inequality (37) is already known for t � 1; see
equation (10.5.22) in [Grafakos 2014, p. 414]. Indeed, if 0 < t � 1 then !�;�.t/D
1=t2�C1, and (37) follows by dilation from the case tD1, the one shown in [op. cit.].
For t > 1 define:

At1 D
n
� 2 Rn W j�j �

1

t

o
; At2 D

n
� 2 Rn W

1

t
< j�j �

2C
p
t

t

o
;

At3 D
n
� 2 Rn W

2C
p
t

t
< j�j �

2Ct

t

o
; At4 D

n
� 2 Rn W

2Ct

t
< j�j

o
:

We will prove (37) by proving that

(52) Ij WD

Z
At
j

j yf .�/j2
1

.1Cjt �j/M
d� � Cn;�;�;M !�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/

for each j D 1; 2; 3; 4. For j D 1, first observe that 1=.1Cjt �j/M �M 1 on At1
and then argue as in the proof of (36), at the beginning of this section. By duality,
we reduce (52) with j D 1 to

(53)
Z

Rn
j yf .�/j2w�;�.�/ d� � Cn;�;�!�;�.t/

Z
At1

jf .x/j2 dx
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for all functions f supported in the ball At1. By proceeding as in (46), we can prove
that Z

Rn
j yf .�/j2w�;�.�/ d� � B

0.n; �; �; t/kf k2
L2

for every f supported in At1, where B 0.n; �; �; t/, now, is defined by

(54) B 0.n; �; �; t/D sup
fxWjxj� 1

t
g

Z
jyj� 1

t

��;�.y � x/ dy

D
1

tn
sup

fxWjxj�1g

Z
jyCxj�1

��;�

�
y

t

�
dy

and all we still need to show is that

(55) B 0.n; �; �; t/� Cn;�;�!�;�.t/:

Since jxj � 1 and jxCyj � 1 we have jyj � 2. So, (55) is a consequence of

(56)
1

tn

Z
jyj�2

��;�

�
y

t

�
dy � Cn;�;�!�;�.t/;

which can be proved similarly to (49).
When j D 2, we use

(57) I2 �

d
p
teX

`D0

1

.2C `/M

Z
1C`
t
<j�j� 2C`

t

j yf .�/j2 d�:

Next, we apply estimate (36) on each of the latter integrals. We are already assuming
that t > 1. Since !�;�.t/��;�;J 1 on any compact subinterval J of .0;1/, we
can in fact assume t � 3. Now we control the right-hand side of (57) with

(58) Cn;�;�

d
p
t eX

`D0

1

.2C `/M
!�;�

�
2t

3C 2`

�
1

3C 2`

Z
Rn
jf .x/j2

dx

w�;�.x/

� Cn;�;�;M !�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/
;

provided M > 2�C 1. This proves that (52) holds for j D 2.
If j D 3 then .2C

p
t /=t < j�j, which implies that

1

.1Cjt �j/M
�

1

.3C
p
t /M

:

Then apply (36). Observe that, as long as t > 1, we have that the quantity Qt that
now plays the role of t in (36) is bounded above and below by absolute constants,
so !�;�.Qt /��;� 1. In addition, for t in the same range, we have Q"� 1 (Q" being the
quantity that now plays the role of " in (36)). These considerations imply that
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(59) I3 �
1

.3C
p
t /M

Z
2C
p
t

t
<j�j� 2Ct

t

j yf .�/j2 d�

� C 0n;�;�
1

.3C
p
t /M

Z
Rn
jf .x/j2

dx

w�;�.x/

� C 00n;�;�;M !�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/
;

last inequality holding for a suitable constant C 00
n;�;�;M

, provided that M > 4�C2.
It only remains to prove (52) with j D 4. We have

(60) I4 �

1X
`DbtcC1

Z
1C`
t
<j�j� 2C`

t

j yf .�/j2
1

.1Cjt �j/M
d�:

Again, we apply (36) to the integral in the last term of (60), which is therefore
controlled by

Cn;�;�

1X
`DbtcC1

1

.2C `/M
1�

2t
3C2`

�2�C1 1

.3C 2`/

Z
Rn
jf .x/j2

dx

w�;�.x/

� Cn;�;�;M
1

t2�C1

Z
Rn
jf .x/j2

dx

w�;�.x/

1

.1C t /M�2��1
;

which yields the desired inequality, provided that M > 2�C 1. By choosing any
M > 4�C 2 (as required after (59)), we conclude the proof of (37) and of the
claimed statement.

Proof of Corollary 1.2. The proof in [Carbery et al. 1988] can be used with m�;

instead of m�1 to account for the case where 
 � 0 and 2� p < p

�
. When p D p

�

and 
 > 1=p0
�
C1=2, values of � satisfying .2�C1/=n<�<2
�2 exist. For such

�, since 1 < 1C 2� < n, we can use Theorem 1.1. Since (4) trivially holds for all
f 2 S, the boundedness of B�;
� implies that it also holds for every f 2L2.Rn; dx/
and every f 2L2.Rn; w�;�/. But then it must hold for every f 2L2CL2.w�;�/.
Since .2�C 1/=n < � we have Lp� � L2CL2.w�;�/, concluding the proof. �
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UNIQUENESS OF CONFORMAL RICCI FLOW
USING ENERGY METHODS

THOMAS BELL

We analyze an energy functional associated to conformal Ricci flow along
closed manifolds with constant negative scalar curvature. Given initial con-
ditions we use this functional to demonstrate the uniqueness of both the
metric and the pressure function along conformal Ricci flow.

1. Introduction

Uniqueness of Ricci flow on closed manifolds was originally proved by Hamil-
ton [1982]. Chen and Zhu [2006] subsequently proved uniqueness on complete
noncompact manifolds with bounded curvature. The method employed in [Chen
and Zhu 2006] utilizes DeTurck Ricci flow. Recently Kotschwar [2014] used
energy techniques to give another proof of the uniqueness on complete manifolds.
Kotschwar’s proof does not rely on DeTurck Ricci flow. A natural question is
whether similar techniques can be applied to demonstrate uniqueness of other
geometric flows. One such flow is conformal Ricci flow, introduced by Fischer
[2004]. Ricci flow preserves many important properties of metrics, but it generally
does not preserve the property of constant scalar curvature. Conformal Ricci flow is
a modification of Ricci flow which is intended for this purpose, and for this reason
it is restricted to the class of metrics of constant scalar curvature. Conformal Ricci
flow is, like Ricci flow, a weakly parabolic flow of the metric on manifolds, except
that conformal Ricci flow is coupled with an elliptic equation.

Let (Mn, g0) be a smooth n-dimensional Riemannian manifold with a metric g0

of constant scalar curvature s0. Conformal Ricci flow on M is defined as follows:

(1)

{
∂g
∂t
=−2 Ricg(t)+2s0

n
g(t)− 2p(t)g(t),

s(g(t))= s0

on M ×[0, T ].

Here g(t), t ∈ [0, T ], is a family of metrics on M with g(0) = g0, s(g(t)) is
the scalar curvature of g(t), and p(t), t ∈ [0, T ], is a family of functions on M .

MSC2010: primary 53C25, 53C44; secondary 35K65.
Keywords: conformal Ricci flow, Ricci flow.
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In [Fischer 2004; Lu et al. 2014] we see that (1) is equivalent to the following system:

(2)

{∂g
∂t
=−2 Ricg(t)+2s0

n
g(t)− 2p(t)g(t)

((n− 1)1g(t)+ s0)p(t)=−
〈
Ricg(t)−

s0
n

g(t),Ricg(t)−
s0
n

g(t)
〉
.

Throughout we use V to denote the following symmetric 2-tensor:

(3) V (t)= Ricg(t)−
s0
n

g(t)+ p(t)g(t).

In this paper we use Kotschwar’s energy techniques to give a proof of the
uniqueness of conformal Ricci flow for closed manifolds with metrics of constant
negative scalar curvature. It is worth noting similarities to the study of certain
elliptic-hyperbolic systems done by Andersson and Moncrief [2011]. The existence
of solutions to conformal Ricci flow has been shown by Fischer [2004] and by Lu,
Qing, and Zheng [2014], the latter paper using DeTurck conformal Ricci flow. More
precisely we prove the following uniqueness theorem of conformal Ricci flow:

Theorem 1. Let (Mn, g0) be a closed manifold with constant negative scalar curva-
ture s0. Suppose (g(t), p(t)) and (g̃(t), p̃(t)) are two solutions of (1) on M×[0, T ]
with g̃(0)= g(0). Then (g̃(t), p̃(t))= (g(t), p(t)) for 0≤ t ≤ T .

2. The differences between g(t) and g̃(t)

Let g(t) and g̃(t) be as in Theorem 1. We treat g as our background metric and g̃
as our alternative metric. Let ∇ and ∇̃ be the Riemannian connections of g and g̃
respectively. Similarly, let R and R̃ represent the full Riemannian curvature tensors
of g and g̃ respectively.

Let h= g− g̃, and A=∇−∇̃. Explicitly, Ai
jk =0

i
jk−0̃

i
jk where 0i

jk and 0̃i
jk are

the Christoffel symbols of ∇ and ∇̃ respectively. Also let S= R− R̃ and q = p− p̃.
In this section we find bounds on h, A, S, q , ∇q , and ∇∇q (see Propositions 3

and 5). Throughout this chapter we use the convention X ∗ Y to denote any finite
sum of tensors of the form X ·Y . We use C(X) to denote a finite sum of tensors of
the form X .

2.1. Preliminary calculations. First we calculate some useful expressions for quan-
tities which arise in the proofs of Propositions 3 and 5. We calculate

gi j
− g̃i j

= gik(g̃ j`g̃k`)− g̃ j`(gik gk`)=−gik g̃ j`hk`,

i.e.,

g−1
− g̃−1

= g̃−1
∗ h.
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If X is any tensor which is not a function we have

(∇ − ∇̃)X = A ∗ X.

We check this when X is a (1, 1)-tensor. Calculating in local coordinates we see

(∇i −∇̃i )X k
j = ∂i X k

j −0
`
i j X k

` +0
k
i`X`

j − ∂i X k
j + 0̃

`
i j X k

` − 0̃
k
i`X`

j

= Ak
i`X`

j − A`i j X k
` = A ∗ X.

If f is a function however, then we have the following:

(∇ i
−∇̃

i ) f = (gi j
− g̃i j )∂ j f =−gik g̃ j`hk`∂ j f =−gikhk`∇̃

` f,

or in other words

(∇ − ∇̃) f = h ∗ ∇̃ f.

We now calculate

∇ g̃−1
= (∇ − ∇̃)g̃−1

= g̃−1
∗ A.

The following calculation is also important.

∇i h jk =∇i g jk −∇i g̃ jk =−(∇i −∇̃i )g̃ jk .

Thus we have

∇h = g̃ ∗ A.

Now we are able to calculate the following for a function f .

∇(∇ − ∇̃) f =∇(h ∗ ∇̃ f )

=∇h ∗ ∇̃ f + h ∗ (∇ − ∇̃)∇̃ f + h ∗ ∇̃∇̃ f

= g̃ ∗ A ∗ ∇̃ f + h ∗ A ∗ ∇̃ f + h ∗ ∇̃∇̃ f.

Now let

U a
i jk` = gab

∇b R̃i jk`− g̃ab
∇̃b R̃i jk`(4)

= gab(∇b−∇̃b)R̃i jk`+ (gab
− g̃ab)∇̃b R̃i jk`

= A ∗ R̃+ g̃−1
∗ h ∗ ∇̃ R̃,

and we may calculate

∇a(gab
∇b R− g̃ab

∇̃b R̃)=∇a(gab
∇b R̃− g̃ab

∇̃b R̃)+ gab
∇a∇b(R− R̃)

= div U +1S.
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We summarize the above calculations in the following lemma:

Lemma 2. Using the notation defined at the beginning of this section,

g−1
− g̃−1

= g̃−1
∗ h,(5)

(∇ − ∇̃)X = A ∗ X,(6)

(∇ − ∇̃) f = h ∗ ∇̃ f,(7)

∇ g̃−1
= g̃−1

∗ A,(8)

∇h = g̃ ∗ A,(9)

∇(∇ − ∇̃) f = g̃ ∗ A ∗ ∇̃ f + h ∗ A ∗ ∇̃ f + h ∗ ∇̃∇̃ f,(10)

U = A ∗ R̃+ g̃−1
∗ h ∗ ∇̃ R̃,(11)

∇a(gab
∇b R− g̃ab

∇̃b R̃)= div U +1S,(12)

where U is defined in (4).

2.2. Bounds on time derivatives of h, A and S. In this subsection we derive
bounds on the time derivatives of h, A and S. In particular we prove the following
proposition. Here, as well as throughout this chapter, we let C denote a constant
dependent only upon n while N denotes a constant with further dependencies.

Proposition 3. Let (g(t), p(t)) and (g̃(t), p̃(t)) be two solutions of (1) on M×[0,T ].
Using the notation defined at the beginning of this section, there exist constants Nh ,
NA and NS such that ∣∣∣ ∂

∂t
h
∣∣∣≤ Nh|h| +C(|S| + |q|),(13) ∣∣∣ ∂

∂t
A
∣∣∣≤ NA(|h| + |A|)+C(|∇S| + |∇q|),(14) ∣∣∣ ∂

∂t
S−1S− div U

∣∣∣≤ NS(|h| + |A| + |S| + |q|)+C |∇∇q|,(15)

where U is defined in (4).

Proof. We start with the time derivative of h. By (1) we have

∂

∂t
hi j =−2(Ri j − R̃i j )+ 2s0

n
(gi j − g̃i j )− 2(p gi j − p̃ g̃i j )

=−2Sk
ki j + 2s0

n
hi j − 2[(p− p̃)gi j + p̃(gi j − g̃i j )]

= −2Sk
ki j + 2s0

n
hi j − 2q gi j − 2 p̃ hi j .

Hence
∂

∂t
h = C(S)+C(s0h)+C(q)+ p̃ ∗ h
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and

(16)
∣∣∣ ∂
∂t

h
∣∣∣≤ C((|s0| + | p̃|)|h| + |S| + |q|).

This proves (13).
Recall the definition of V from (3):

(17) V (t)= Ricg(t)−
s0
n

g(t)+ p(t)g(t).

We may define Ṽ similarly using our alternate metric g̃. Since V and Ṽ are
symmetric 2-tensors, then by [Chow et al. 2006, p. 108] we may calculate

(18) ∂

∂t
Ak

i j = g̃k`(∇̃i Ṽ j`+∇̃ j Ṽi`−∇̃`Ṽi j )− gk`(∇i V j`+∇j Vi`−∇`Vi j ).

We proceed to calculate

(19) g̃k`
∇̃i Ṽ j`− gk`

∇i V j`

= g̃k`(∇̃i R̃ j`)− gk`(∇i R j`)+ g̃k`
∇̃i ( p̃g̃ j`)− gk`

∇i (pg j`)

= (g̃k`
−gk`)∇̃i R̃ j`+ gk`(∇̃i−∇i )R̃ j`− gk`

∇i (Sm
mj`)+ δ

k
j ∇̃i p̃− δk

j∇i p

= g̃−1
∗ h ∗ ∇̃ R̃+ A ∗ R̃+C(∇S)+ h ∗ ∇̃ p̃+C(∇q),

where we have used (7) to get the last equality. Similarly we find

(20) g̃k`
∇̃ j Ṽi`− gk`

∇j Vi` = g̃−1
∗ h ∗ ∇̃ R̃+ A ∗ R̃+C(∇S)+ h ∗ ∇̃ p̃+C(∇q).

Now we consider

(21) −g̃k`
∇̃`Ṽi j + gk`

∇`Vi j

= g̃−1
∗ h ∗ ∇̃ R̃+ A ∗ R̃+C(∇S)+ g̃k`g̃i j ∇̃` p̃− gk`gi j∇` p

= g̃−1
∗ h ∗ ∇̃ R̃+ A ∗ R̃+C(∇S)+ (g̃k`

− gk`)g̃i j ∇̃` p̃

+ gk`(g̃i j − gi j )∇̃` p̃+ gk`gi j (∇̃`−∇`) p̃

+ gk`gi j∇`( p̃− p)

= g̃−1
∗ h ∗ ∇̃ R̃+ A ∗ R̃+C(∇S)

+ g̃−1
∗ h ∗ g̃ ∗ ∇̃ p̃+ h ∗ ∇̃ p̃+C(∇q).

Hence by (18), (19), (20) and (21),

∂

∂t
A = g̃−1

∗ h ∗ ∇̃ R̃+ A ∗ R̃+C(∇S)+ h ∗ ∇̃ p̃+C(∇q)+ g̃−1
∗ h ∗ g̃ ∗ ∇̃ p̃
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and

(22)
∣∣∣ ∂
∂t

A
∣∣∣≤C

(
(|g̃−1

||∇̃ R̃|+|∇̃ p̃|+|g̃−1
||g̃||∇̃ p̃|)|h|+|R̃||A|+|∇S|+|∇q|

)
.

This proves (14).
By [Chow et al. 2006, equation (2.67)] we have

(23) ∂

∂t
R`i jk = g`m(∇i∇k V jm −∇i∇m V jk −∇j∇k Vim +∇j∇m Vik)

− g`m(Rr
i jk Vrm + Rq

i jm Vkq)

= g`m(−∇i∇k R jm +∇i∇m R jk +∇j∇k Rim −∇j∇m Rik)

+ g`m(−g jm∇i∇k p+g jk∇i∇m p+gim∇j∇k p−gik∇j∇m p)

+ g`m(Rr
i jk Rrm+ Rr

i jm Rkr )−
s0
n

g`m(Rr
i jk grm+ Rr

i jm gkr )p

+ g`m(Rr
i jk grm + Rr

i jm gkr )p.

Following the calculations in [Chow et al. 2006, pp. 119–120] we have

(24) 1R`i jk = gab
∇a∇b R`i jk = gab(−∇a∇i R`jbk −∇a∇j R`bik)

= gab(
−∇i∇a R`jbk + Rm

ai j R`mbk + Rm
aib R`jmk + Rm

aik R`jbm − R`aim Rm
jbk

−∇j∇a R`bik + Rm
ajb R`mik + Rm

aji R`bmk + Rm
ajk R`bim − R`ajm Rm

bik
)

= g`m(−∇i∇k R jm +∇i∇m R jk +∇j∇k Rim −∇j∇m Rik)

+ gmr (−Rir R`jmk − R jr Rmik)

+ gab(Rm
ai j R`mbk + Rm

aik R`jbm − R`aim Rm
jbk + Rm

aji R`bmk

+ Rm
ajk R`bim − R`ajm Rm

bik
)
.

Combining (23) and (24) we have

(25) ∂

∂t
R`i jk =1R`i jk + gmr (Rir R`jmk + R jr R`mik)

+ gab(
−Rm

ai j R`mbk − Rm
aik R`jbm + R`aim Rm

jbk

− Rm
aji R`bmk − Rm

ajk R`bim + R`ajm Rm
bik
)

+ g`m(−g jm∇i∇k p+g jk∇i∇m p+gim∇j∇k p−gik∇j∇m p)

+ g`m(Rr
i jk Rrm + Rr

i jm Rkr )−
s0
n

g`m(Rr
i jk grm + Rr

i jm gkr )

+ g`m(Rr
i jk grm + Rr

i jm gkr )p.
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Hence the evolution of S is

(26) ∂

∂t
S`i jk =1R`i jk − 1̃R̃`i jk

+ gmr (Rir R`jmk + R jr R`jmk)− g̃mr (R̃ir R̃`jmk + R̃ jr R̃`mik)

+ gab(
−Rm

ai j R`mbk − Rm
aik R`jbm + R`aim Rm

jbk − Rm
aji R`bmk

− Rm
ajk R`bim + R`ajm Rm

bik
)

− g̃ab(
−R̃m

ai j R̃`mbk − R̃m
aik R̃`jbm + R̃`aim R̃m

jbk − R̃m
aji R̃`bmk

− R̃m
ajk R̃`bim + R̃`ajm R̃m

bik
)

+ g`m(−g jm∇i∇k p+ g jk∇i∇m p+ gim∇j∇k p− gik∇j∇m p)

− g̃`m(−g̃ jm∇̃i ∇̃k p̃+ g̃ jk∇̃i ∇̃m p̃+ g̃im∇̃ j ∇̃k p̃− g̃ik∇̃ j ∇̃m p̃)

+ g`m(Rr
i jk Rrm + Rr

i jm Rkr )− g̃`m(R̃r
i jk R̃rm + R̃r

i jm R̃kr )

−
s0
n

g`m(Rr
i jk grm + Rr

i jm gkr )+
s0
n

g̃`m(R̃r
i jk g̃rm + R̃r

i jm g̃kr )

+ g`m(Rr
i jk grm + Rr

i jm gkr )p− g̃`m(R̃r
i jk g̃rm + R̃r

i jm g̃kr ) p̃.

Looking at the individual components, we see

1R− 1̃R̃ = gab
∇a∇b R− g̃ab

∇̃a∇̃b R̃(27)

=∇a(gab
∇b R)−∇a(g̃ab

∇̃b R̃)+ (∇a −∇̃a)(g̃ab
∇̃b R̃)

=∇a(gab
∇b R− g̃ab

∇̃b R̃)+ g̃−1
∗ A ∗ ∇̃ R̃,

while

g−1 R R− g̃−1 R̃ R̃ = (g−1
− g̃−1)(R̃ R̃)+ g−1(R R− R̃ R̃)(28)

= g̃−1
∗ h ∗ R̃ ∗ R̃+ g−1(R− R̃)R̃+ g−1(R R− R R̃)

= g̃−1
∗ h ∗ R̃ ∗ R̃+ S ∗ R̃+ S ∗ R,

and

(29) g−1g∇∇ p− g̃−1g̃∇̃∇̃ p̃ = (g−1
− g̃−1)g̃∇̃∇̃ p̃+ g−1(g− g̃)∇̃∇̃ p̃

+ g−1g(∇∇ p−∇̃∇̃ p̃)

= g̃−1
∗ h ∗ g̃ ∗ ∇̃∇̃ p̃+ h ∗ ∇̃∇̃ p̃
+ g−1g(∇ − ∇̃)(∇̃ p̃)+ g−1g(∇∇ p−∇∇̃ p̃)

= g̃−1
∗ h ∗ g̃ ∗ ∇̃∇̃ p̃+ h ∗ ∇̃∇̃ p̃+ A ∗ ∇̃ p̃
+ g−1g∇(∇ − ∇̃) p̃+ g−1g∇∇(p− p̃)

= g̃−1
∗ h ∗ g̃ ∗ ∇̃∇̃ p̃+ h ∗ ∇̃∇̃ p̃+ A ∗ ∇̃ p̃

+ h ∗ A ∗ ∇̃ p̃+C(∇∇q),
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where in the last equality we used (10). We also have

g−1gR− g̃−1g̃ R̃ = (g−1
− g̃−1)g̃ R̃+ g−1(g− g̃)R̃+ g−1g(R− R̃)(30)

= g̃−1
∗ h ∗ g̃ ∗ R̃+ h ∗ R̃+C(S),

and lastly

(31) g−1gRp− g̃−1g̃ R̃ p̃ = (g−1
− g̃−1)g̃ R̃ p̃+ g−1(g− g̃)R̃ p̃

+g−1g(R− R̃) p̃+ g−1gR(p− p̃)

= g̃−1
∗ h ∗ g̃ ∗ R̃ ∗ p̃+ h ∗ R̃ ∗ p̃+ S ∗ p̃+ R ∗ q.

Now by (26), (27), (28), (29), (30) and (31) we see

∂

∂t
S =∇a(gab

∇b R− g̃ab
∇̃b R̃)+ g̃−1

∗ A ∗ ∇̃ R̃+ g̃−1
∗ h ∗ R̃ ∗ R̃

+ S∗ R̃+S∗R+g̃−1
∗h∗g̃∗∇̃∇̃ p̃+h∗∇̃∇̃ p̃+A∗∇̃ p̃

+ h∗A∗∇̃ p̃+C(∇∇q)+g̃−1
∗h∗g̃∗ R̃+h∗ R̃+C(S)

+ g̃−1
∗ h ∗ g̃ ∗ R̃ ∗ p̃+ h ∗ R̃ ∗ p̃+ S ∗ p̃+ R ∗ q.

Hence by (12) we have

(32)
∣∣ ∂
∂t

S−1S− div U
∣∣≤ C

((
|g̃−1
||R̃|2+ |g̃−1

||g̃||∇̃∇̃ p̃| + |∇̃∇̃ p̃|

+ |g̃−1
||g̃||R̃|+|R̃|+|g̃−1

||g̃||R̃|| p̃|+|R̃|| p̃|
)
|h|

+ (|g̃−1
||∇̃ R̃| + |∇̃ p̃| + |h||∇̃ p̃|)|A|

+ (|R̃| + |R| + 1+ | p̃|)|S| + |R||q| + |∇∇q|
)
.

This proves (15). �

Remark 4. Upon closer observation we notice the following dependencies:

Nh = Nh(n, s0, | p̃|).

NA = NA(n, s0, |g̃|, |g̃−1
|, |R̃|, |∇̃ R̃|, |∇̃ p̃|).

NS = NS(n, s0, |g̃|, |g̃−1
|, |h|, |R|, |R̃|, |∇̃ R̃|, | p̃|, |∇̃ p̃|, |∇̃∇̃ p̃|).

M is closed, so M × [0, T ] is compact. Thus, given two metrics g and g̃, all of
these quantities are bounded.

2.3. Bounds on q and its spatial derivatives. We turn our attention now to finding
bounds on the differences between our pressure functions p and p̃. We have the
following proposition:
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Proposition 5. Let (g(t), p(t)) and (g̃(t), p̃(t)) be two solutions of (1) on M×[0,T ].
Then there exist constants Nq and N̂q such that∫

M
|q|2 dµ≤ Nq

∫
M
(|h|2+ |A|2+ |S|2) dµ,(33) ∫

M
|∇q|2 dµ≤ Nq

∫
M
(|h|2+ |A|2+ |S|2) dµ,(34) ∫

M
|∇∇q|2 dµ≤ N̂q

∫
M
(|h|2+ |A|2+ |S|2) dµ.(35)

Proof. We let f represent any smooth function or tensor on M . This is general,
but in this paper we represent f by the function q, the difference of the pressure
functions. Since M is compact we have∫

M
((n− 1)1+ s0)( f ) · f dµ= s0

∫
M
| f |2 dµ− (n− 1)

∫
M
〈∇ f,∇ f 〉 dµ.

Since s0 < 0, taking the absolute value gives

(36)
∣∣∣∣∫

M
((n− 1)1+ s0)( f ) · f dµ

∣∣∣∣= |s0|

∫
M
| f |2 dµ+ (n− 1)

∫
M
|∇ f |2 dµ.

Now we deal specifically with p, p̃ and q . By (2) we have the following equations
for the pressure functions p and p̃:

((n− 1)1+ s0)p =−
〈
Ric−s0

n
g,Ric−s0

n
g
〉
.(37)

((n− 1)1̃+ s0) p̃ =−
〈
R̃ic− s0

n
g̃, R̃ic− s0

n
g̃
〉
.(38)

Now we calculate

(39) 1p− 1̃ p̃ = gab
∇a∇b p− g̃ab

∇̃a∇̃b p̃

= (g−1
−g̃−1)∇̃∇̃ p̃+g−1(∇−∇̃)∇̃ p̃+g−1

∇(∇−∇̃) p̃+1(p− p̃)

= g̃−1
∗ h ∗ ∇̃∇̃ p̃+ A ∗ ∇̃ p̃+ h ∗ A ∗ ∇̃ p̃+1q.

We also compute

(40) −
〈
Ric−s0

n
g,Ric−s0

n
g
〉
+

〈
R̃ic− s0

n
g̃, R̃ic− s0

n
g̃
〉

=−(gik g j`Ri j Rk`− g̃ik g̃ j` R̃i j R̃k`)+ 2s0
n
(gi j Ri j − g̃i j R̃i j )

=−(g−1
− g̃−1)g̃−1 R̃ R̃− g−1(g−1

− g̃−1)R̃ R̃− g−1g−1(R− R̃)R̃
− g−1g−1 R(R− R̃)+ 2s0

n
(g−1
− g̃−1)R̃+ 2s0

n
g−1(R− R̃)

= g̃−1
∗ g̃−1

∗ h ∗ R̃ ∗ R̃+ g̃−1
∗ h ∗ R̃ ∗ R̃

+ S ∗ R̃+ S ∗ R+ g̃−1
∗ h ∗ R̃+C(S).
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Combining (37), (38), (39) and (40), we see that q satisfies the following elliptic
equation at each time t ∈ [0, T ]:

(41) Lq = ((n− 1)1+ s0)(q)

= g̃−1
∗ h ∗ ∇̃∇̃ p̃+ A ∗ ∇̃ p̃+ h ∗ A ∗ ∇̃ p̃+ g̃−1

∗ g̃−1
∗ h ∗ R̃ ∗ R̃

+ g̃−1
∗ h ∗ R̃ ∗ R̃+ S ∗ R̃+ S ∗ R+ g̃−1

∗ h ∗ R̃+C(S).

Hence

(42) |Lq| =
∣∣((n− 1)1+ s0)(q)

∣∣≤ N (|h| + |A| + |S|).

To find estimates for q and ∇q , we combine (36) and (42):

|s0|

∫
M
|q|2 dµ+(n−1)

∫
M
|∇q|2 dµ=

∣∣∣∣∫
M
((n−1)1+s0)(q)·q dµ

∣∣∣∣
≤

∫
M

N (|h|+|A|+|S|)|q| dµ

≤
|s0|

2

∫
M
|q|2 dµ+N

∫
M
(|h|2+|A|2+|S|2) dµ.

Thus

|s0|

2

∫
M
|q|2 dµ+ (n− 1)

∫
M

∣∣∇q|2 dµ≤ N
∫

M
(|h|2+ |A|2+ |S|2) dµ,

and we proved (33) and (34).
To find an appropriate bound for |∇∇q| we use interior regularity theory for

elliptic PDEs. From (41) we see that Lq = f is an elliptic equation. We then have
the following estimate from [Rauch 1991, p. 229]:

|q|H2(W ) ≤ K (|Lq|L2(M)+ |q|H1(M)),

where W is any compactly supported open subset of M and K depends only upon
the coefficients of the operator L , the subset W and the manifold M . Since M is a
closed manifold we may in fact choose W = M . Thus we have

(43) |q|H2(M) ≤ K (|Lq|L2(M)+ |q|H1(M)).

Upon squaring both sides we observe

(44)
∫

M
|∇∇q|2 dµ≤ |q|2H2(M) ≤ K 2

(∫
M
|Lq|2 dµ+ |q|2H1(M)

)
.
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Now (33) and (34) imply that

(45) |q|2H1(M) ≤ N
∫

M
(|h|2+ |A|2+ |S|2) dµ.

Combining (42), (44) and (45) we have∫
M
|∇∇q|2 dµ≤ N

∫
M
(|h|2+ |A|2+ |S|2) dµ,

and we have proved (35). �

Remark 6. We observe the following dependencies:

Nq = Nq(n, s0, |g̃−1
|, |h|, |R|, |R̃|, |∇̃ p̃|, |∇̃∇̃ p̃|).

N̂q = N̂q(n, s0, |g̃−1
|, |h|, |R|, |R̃|, |∇̃ p̃|, |∇̃∇̃ p̃|, K ),

where K is from (43).

3. Energy estimates

We now define the energy functional

(46) E(t)=
∫

M
(|h|2+ |A|2+ |S|2) dµ,

as well as the following:

H(t)=
∫

M
|h|2 dµ.(47)

A(t)=
∫

M
|A|2 dµ.(48)

S(t)=
∫

M
|S|2 dµ.(49)

D(t)=
∫

M
|∇S|2 dµ.(50)

Note that E(t)=H(t)+A(t)+S(t). We now estimate the evolution of the energy
functional under conformal Ricci flow, E ′(t), by first estimating the evolutions of
H, A and S.

3.1. Evolution of H(t). Lu, Qing and Zheng [2014] give the evolution of the
volume element under conformal Ricci flow

(51) ∂

∂t
dµg(t) =−np(t) dµg(t).
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Hence by (13) and (47) we have

H′(t)≤ N
∫

M
|h|2 dµ+

∫
M

2
〈
∂h
∂t
, h
〉

dµ

≤ NH(t)+
∫

M
2|h|

∣∣∣∂h
∂t

∣∣∣ dµ

≤ NH(t)+ N
∫

M
(|S||h| + |h|2+ |q||h|) dµ.

Now we know that N (|S||h| + |q||h|)≤ N (|h|2+ |S|2+ |q|2). Hence

H′(t)≤ NH(t)+ N
∫

M
(|S|2+ |q|2) dµ(52)

≤ NH(t)+ N
∫

M
(|S|2+ |h|2+ |A|2) dµ

≤ NH(t)+ NS(t)+ NA(t)= NE(t).

3.2. Evolution of A(t). By (14), (48) and (51) we have

A′(t)≤ NA(t)+
∫

M
2|A|

∣∣∣∂A
∂t

∣∣∣ dµ

≤ NA(t)+
∫

M
(N |h||A| + N |A|2+C |∇S||A| +C |∇q||A|) dµ.

Now

N |h||A| +C |∇S||A| +C |∇q||A| ≤ N |h|2+ N |A|2+ |∇S|2+ |∇q|2.

Hence we have that

A′(t)≤ NA(t)+
∫

M
(N |h|2+ N |A|2+ |∇S|2+ |∇q|2) dµ(53)

≤ NA(t)+ NH(t)+D(t)+ N
∫

M
(|h|2+ |A|2+ |S|2) dµ

≤ NA(t)+ NH(t)+ NS(t)+D(t)= NE(t)+D(t).

3.3. Evolution of S(t). By (15), (49) and (51) we have

S ′(t)≤ N
∫

M
|S|2 dµ+

∫
M

2
〈
∂S
∂t
, S
〉

dµ

≤ NS(t)+
∫

M

(
2〈1S+div V, S〉+N (|h|+|A|+|S|+|q|)|S|+C |∇∇q||S|

)
dµ

≤ NS(t)+
∫

M

(
2〈1S+div V, S〉+N (|h|2+|A|2+|S|2+|q|2+|∇∇q|2)

)
dµ.
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Now by (33) and (35) we have

S ′(t)≤ NS(t)+ NH(t)+ NA(t)

+

∫
M

(
2〈1S+ div V, S〉+ N (|A|2+ |S|2+ |h|2)

)
dµ

≤ NS(t)+ NH(t)+ NA(t)+
∫

M
2〈1S+ div V, S〉 dµ.

Upon integrating by parts we get

S ′(t)≤ NE(t)− 2
∫

M
〈∇S+ V,∇S〉 dµ

≤ NE(t)− 2
∫

M
|∇S|2 dµ+

∫
M

2|V ||∇S| dµ.

Now we know that

2|V ||∇S| ≤ |∇S|2+ |V |2 ≤ |∇S|2+ N (|h|2+ |A|2),

hence

(54) S ′(t)≤ NE(t)+ N
∫

M
(|h|2+ |A|2) dµ−

∫
M
|∇S|2 dµ≤ NE(t)−D(t).

3.4. Proof of main theorem. We are now ready to prove Theorem 1.

Proof. By (52), (53) and (54) we know that

H′(t)≤ NE(t), A′(t)≤ NE(t)+D(t) and S ′(t)≤ NE(t)−D(t),

so
E ′(t)≤ NE(t).

Our initial condition g̃(0)= g(0) tells us that at t = 0 we have |h| = |A| = |S| = 0.
Therefore by the smoothness and integrability of our solutions we know

lim
t→0+

E(t)= 0,

so by Gronwall’s inequality we know that E ≡ 0 on [0, T ]. Thus for t ∈ [0, T ] we
have that h≡ 0 and g(t)≡ g̃(t). Also, E ≡ 0 implies A≡ 0 and S≡ 0, so (33) forces
q ≡ 0. Thus p(t)≡ p̃(t). Therefore (g̃(t), p̃(t))= (g(t), p(t)), t ∈ [0, T ]. �

4. Further research

The arguments in this paper are only valid for conformal Ricci flow on a compact
manifold with constant positive scalar curvature. In particular, if s0 ≥ 0 we do not
have the equality (36). It is worth discovering whether or not there is some other way
to compute the bounds on q and its derivatives, namely equations (33), (34) and (35).
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It is also interesting to consider complete noncompact manifolds of constant
scalar curvature. Previous results in Ricci flow and parabolic PDE suggest that in
this case we will not achieve uniqueness of conformal Ricci flow without some sort
of bound on the curvature of the manifold.
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A FUNCTIONAL CALCULUS AND
RESTRICTION THEOREM ON H-TYPE GROUPS

HEPING LIU AND MANLI SONG

Let L be the sublaplacian and T the partial laplacian with respect to central
variables on H-type groups. We investigate a class of invariant differen-
tial operators by the joint functional calculus of L and T . We establish
Stein–Tomas type restriction theorems for these operators. In particular,
the asymptotic behaviors of restriction estimates are given.

1. Introduction

The restriction theorem for the Fourier transform plays an important role in harmonic
analysis as well as in the theory of partial differential equations. The original version
is credited to E. M. Stein and P. A. Tomas, and states that the transform of an Lp-
function on Rn has a well-defined restriction to the unit sphere Sn�1 which is
square integrable on Sn�1. The result is listed as follows:

Theorem 1.1 [Stein 1993; Tomas 1975]. Let 1� p � 2nC2
nC3

. Then the estimate

k Of kL2.Sn�1/ � Ckf kLp.Rn/(1-1)

holds for all functions f 2 Lp.Rn/.

A simple duality argument shows that the estimate (1-1) is equivalent to the
following estimate:

kf �bd�rkp0 � Crkf kp(1-2)

for all Schwartz functions f on Rn, where 1=pC 1=p0 D 1 and d�r is the surface
measure on the sphere with radius r .
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Moreover, according to the Knapp example [Stein 1993], the estimates (1-1) and
(1-2) fail if .2nC 2/=.nC 3/ < p � 2.

Many authors have worked on the topic and various new restriction theorems
have been proved. The study of restriction theorems has recently obtained more
and more attention. A survey of recent progress on restriction theorems can be
found in [Tao 2004]. To generalize the restriction theorem on the Heisenberg
group, D. Müller [1990] established the boundedness of the restriction operator
with respect to the mixed Lp-norm and also gave a counterexample to show that
the estimate between Lebesgue spaces for the restriction operator was necessarily
trivial, due to the fact that the center of the Heisenberg group was of dimension one.
Some extensions have been treated by S. Thangavelu [1991a; 1991b]. Restriction
theorems have been also studied in the case of the Heisenberg motion group by
P. K. Ratnakumar, R. Rawat and S. Thangavelu [Ratnakumar et al. 1997], where
groups with center with dimension higher than one were first considered.

On an H-type group, let T be the laplacian on the center and L the sublaplacian.
It is well known that L is positive and essentially self-adjoint. Let LD

R1
0 �dE.�/

be the spectral decomposition of L. Then the restriction operator can be formally
written P�f D ı�.L/f D lim�!1 �.���;�C�/.L/f which is well defined for a
Schwartz function f , where �.���;�C�/ is the characteristic function of the interval
.�� �; �C �/. Liu and Wang [2011] investigated the restriction theorem for the
sublaplacian L on H-type groups with center whose dimension was greater than
one. They gave the following result:

Theorem 1.2. Let G be an H-type group with the underlying manifold R2nCm,
where m > 1 is the dimension of the center. Suppose 1 � p � .2mC 2/=.mC 3/.
Then the following estimate

kP�f kp0 � C�
2.nCm/

�
1
p�

1
2

�
�1
kf kp; � > 0

holds for all Schwartz functions f on G.

V. Casarino and P. Ciatti [2013a; 2013b] extended the results of Müller, Liu and
Wang to Métivier groups. They proved the restriction theorem for the sublaplacian
and the full laplacian on Métivier groups. In fact, they also investigated the joint
functional calculus of L and T . The invariant differential operators related to the
joint functional calculus of L and T on H-type groups do not have the homogeneous
properties in general. Thus the asymptotic behaviors of restriction estimates for these
operators are also interesting. Casarino and Ciatti [2013a; 2013b] did not discuss
the asymptotic behavior of the full laplacian. In this article we will show restriction
estimates for these operators on H-type groups. In particular, the asymptotic
behaviors of restriction estimates are given.
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The outline of the paper is as follows. In the second section, we provide the
necessary background for the H-type group. In the third section, by introducing
the joint functional calculus of L and T , the restriction operator can be computed
explicitly. In the fourth section, we prove the restriction theorem on H-type groups.
In the fifth section, we describe the restriction theorems for other operators with
the form of the joint functional calculus of L and T . Finally, in the last section, we
show that the range of p in the restriction theorem is sharp.

2. Preliminaries

Definition 2.1 (H-type group). Let g be a two step nilpotent Lie algebra endowed
with an inner product h � ; � i. Its center is denoted by z. The algebra g is said to be
of H-type if Œz?; z?�D z and for every t 2 z, the map Jt W z?! z? defined by

hJtu;wi WD ht; Œu; w�i for all u;w 2 z?

is an orthogonal map whenever jt j D 1.
An H-type group is a connected and simply connected Lie group G whose Lie

algebra is of H-type.

For a given 0¤ a 2 z�, the dual of z, we can define a skew-symmetric mapping
B.a/ on z? by

hB.a/u;wi D a.Œu; w�/ for all u;w 2 z?:

We denote by za the element of z determined by

hB.a/u;wi D a.Œu; w�/D hJzau;wi:

Since B.a/ is skew-symmetric and nondegenerate, the dimension of z? is even, i.e.,
dim z? D 2n.

For a given 0¤ a 2 z�, we can choose an orthonormal basis

fE1.a/; E2.a/; : : : ; En.a/; E1.a/; E2.a/; : : : ; En.a/g

of z? such that
B.a/Ei .a/D jzajJ za

|za |
Ei .a/D jajEi .a/

and
B.a/Ei .a/D�jajEi .a/:

We set mD dim z. Throughout this paper we assume that m> 1. We can choose
an orthonormal basis f�1; �2; : : : ; �mg of z such that a.�1/ D jaj and a.�j / D 0,
j D 2; 3; : : : ; m. Then we can denote the elements of g by

.z; t/D .x; y; t/D

nX
iD1

.xiEi CyiEi /C

mX
jD1

tj �j :
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We identify G with its Lie algebra g via the exponential map. The group law on
H-type group G has the form

.z; t/.z0; t 0/D .zC z0; t C t 0C 1
2
Œz; z0�/;(2-1)

where Œz; z0�j Dhz; Uj z0i for a suitable skew-symmetric matrixUj , j D1; 2; : : : ; m.

Theorem 2.2. G is an H-type group with underlying manifold R2nCm, with the
group law (2-1) and the matrix Uj , j D 1; 2; : : : ; m satisfies the following condi-
tions:

(i) Uj is a 2n� 2n skew-symmetric and orthogonal matrix, j D 1; 2; : : : ; m.

(ii) U iUj CUjU i D 0, where i; j D 1; 2; : : : ; m with i ¤ j .

Proof. See [Bonfiglioli and Uguzzoni 2004]. �

Remark 2.3. In particular, hz; U 1z0i D
Pn
jD1.x

0
jyj �y

0
jxj /.

Remark 2.4. All the above expressions depend on a given 0¤ a 2 z�, but we will
suppress a from them for simplification.

Remark 2.5. It is well know that H-type algebras are closely related to Clifford
modules [Reimann 2001]. H-type algebras can be classified by the standard theory
of Clifford algebras. Especially, on the H-type group G, there is a relation between
the dimension of the center and its orthogonal complement space. That ismC1�2n
(see [Kaplan and Ricci 1983]).

The left invariant vector fields which agree respectively with @=@xj , @=@yj at
the origin are given by

Xj D
@

@xj
C
1

2

mX
kD1

� 2nX
lD1

zlU
k
l;j

�
@

@tk
;

Yj D
@

@yj
C
1

2

mX
kD1

� 2nX
lD1

zlU
k
l;jCn

�
@

@tk
;

where zl D xl , zlCn D yl , l D 1; 2; : : : ; n.
The vector fields Tk D @=@tk , k D 1; 2; : : : ; m correspond to the center of G. In

terms of these vector fields, we introduce the sublaplacian L and full laplacian �
respectively

LD�

nX
jD1

.X2j CY
2
j /D��zC

1
4
jzj2T �

mX
kD1

hz; U krziTk;(2-2)

�D LCT;(2-3)
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where

�z D

2nX
jD1

@2

@z2j
; T D�

mX
kD1

@2

@t2
k

; rz D
�
@

@z1
;
@

@z2
; : : : ;

@

@z2n

�t
:

3. The restriction operator

First we recall some results about the scaled special Hermite expansion. We refer the
reader to [Thangavelu 1993, 2004] for details. Letting � > 0, the twisted laplacian
(or the scaled special Hermite expansion) L� is defined by

L� D��zC
�2jzj2

4
� i�

nX
jD1

�
xj

@

@yj
�yj

@

@xj

�
;

where we identify z D xC iy 2 Cn with z D .x; y/ 2 R2n.
For f; g 2 L1.Cn/, we define the �-twisted convolution by

f �� g D

Z
Cn
f .z�w/g.w/e

1
2
i� Im z�w dw:

Set Laguerre function '�
k
.z/D Ln�1

k

�
1
2
�jzj2

�
e�

1
4
�jzj2 , k D 0; 1; 2; : : :, where

Ln�1
k

is the Laguerre polynomial of type .n� 1/ and degree k.
For any Schwartz function f on Cn, we have the scaled special Hermite expansion

f .z/D
�
�

2�

�n 1X
kD0

f �� '
�
k .z/;(3-1)

which is an orthogonal form. We also have

kf k2 D
�
�

2�

�n 1X
kD0

kf �� '
�
k k
2:(3-2)

Moreover, f ��'�k is an eigenfunction of L� with the eigenvalue .2kCn/� and

kf �� '
�
k k2 � .2kCn/

n
�
1
p�

1
2

�
�1
2�

n
�
1
p�

3
2

�
kf kp for 1� p < 6nC2

3nC4
(3-3)

(see [Thangavelu 1991b]).
Now we turn to the expression for the restriction operator. We may identify z�

with z. Therefore, we will write ha; ti instead of a.t/ for a 2 z� and t 2 z.

Lemma 3.1. Let 0¤ a 2 z�. If f .z; t/D e�iha;ti'.z/, then

Lf .z; t/D e�iha;tiLjaj'.z/:

Proof. Because ha; tiD jajt1 and hz; U 1rziD
Pn
jD1.yj

@
@xj
�xj

@
@yj
/, Lemma 3.1

is easily deduced from the expression (2-2). �



296 HEPING LIU AND MANLI SONG

Set ea
k
.z; t/D e�iha; ti'

jaj

k
.z/. For f 2S .G/, let

f a.z/D

Z
Rm
f .z; t/eiha; ti dt

be the Fourier transform of f with respect to the central variable t . It is easy to
obtain

f � eak.z; t/D e
�iha; tif a �jaj '

jaj

k
.z/:(3-4)

Note that f � ea
k

is an eigenfunction of T with the eigenvalue jaj2. Furthermore, it
follows from Lemma 3.1 that f � ea

k
is an eigenfunction of L with the eigenvalue

.2kCn/jaj. Thus f � ea
k

is a joint eigenfunction of the operators L and T .
For a Schwartz function f on an H-type group, using the inversion formula for

the Fourier transform together with (3-1) and (3-4), we have

f .z; t/D
1

.2�/m

Z
Rm
f a.z/e�iha; ti da

D
1

.2�/m

Z
Rm

�
jajn

.2�/n

1X
kD0

f a �jaj '
jaj

k
.z/

�
e�iha; ti da

D
1

.2�/nCm

Z
Rm

1X
kD0

f � eak.z; t/jaj
n da

D

Z 1
0

�
1

.2�/nCm

1X
kD0

�nCm�1
Z
Sm�1

f � e�Qak .z; t/ d�. Qa/

�
d�:

The operators L and T extend to a pair of strongly commuting self-adjoint
operators. Therefore, they admit a joint spectral decomposition. By the spectral
theorem, we can define the joint functional calculus ofL and T . The joint functional
calculus ofL and T was investigated in [Casarino and Ciatti 2013a]. As in that paper,
we define the operator ı�.h.L; T // for a suitable function h W RC �RC! R as

h.L; T /f .z; t/DZ 1
0

�
1

.2�/nCm

1X
kD0

h
�
.2kCn/�; �2

�
�nCm�1

Z
Sm�1

f � e�Qak .z; t/ d�. Qa/

�
d�;

where we make the assumption on h that the expression on the right-hand side
is a well-defined distribution for all Schwartz functions f . We also suppose
h..2kCn/�; �2/ is a strictly monotonic differentiable positive function of � on RC,
with the domain .A;B/ where 0 � A < B �1. Then for each � 2 .A;B/, the
equation

h..2kCn/�; �2/D �
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may be solved for each k. We denote the solution by �D �k.�/ and �0
k

denotes
the derivative of �k . Replacing � with � in the integral, we obtain

h.L; T /f .z; t/DZ B

A

�

�
1

.2�/nCm

1X
kD0

�nCm�1
k

.�/j�0k.�/j

Z
Sm�1

f � e
�k.�/Qa

k
.z; t/ d�. Qa/

�
d�;

which is the spectral decomposition of h.L; T /.
Thus, given a Schwartz function f , the spectral decomposition with respect to

h.L; T / is

f .z;t/D

Z B

A

�
1

.2�/nCm

1X
kD0

�nCm�1
k

.�/j�0k.�/j

Z
Sm�1

f �e
�k.�/Qa

k
.z;t/d�. Qa/

�
d�:

We can also use this equation to introduce the spectral resolution of h.L; T /, which
is defined by

(3-5) Ph�f .z; t/D ı�.h.L; T //f .z; t/D lim
�!0C

1

2�
�.���;�C�/.h.L; T //f;

where f is a Schwartz function and �.���;�C�/ is the characteristic function of the
interval .�� �; �C �/. We easily find

Ph�f .z; t/D
1

.2�/nCm

1X
kD0

�nCm�1
k

.�/j�0k.�/j

Z
Sm�1

f � e
�k.�/Qa

k
.z; t/ d�. Qa/:

Specifically, for the full laplacian�, h.�; �/D �C�, so we have�D .2kCn/�C�2,
which yields

(3-6) �k.�/D
1

2

q
4�C .2kCn/2�

2kCn

2
and �0k.�/D

1p
4�C.2kCn/2

:

Therefore,

P��f .z; t/D
1

.2�/nCm

1X
kD0

�nCm�1
k

.�/�0k.�/

Z
Sm�1

f � e
�k.�/Qa

k
.z; t/ d�. Qa/:

4. The restriction theorem

Our main result is the following theorem.

Theorem 4.1. Let G be an H-type group with the underlying manifold R2nCm,
where m> 1 is the dimension of the center. Let h.�; �/D �˛C �ˇ , ˛; ˇ > 0. Then
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for 1� p � .2mC 2/=.mC 3/, we have for all Schwartz functions f :

if ˛ < 2ˇ

8<:kPh�f kp0 � C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ > 2ˇ

8<:kPh�f kp0 � C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ D 2ˇ
n
kPh�f kp0 � C�

2
˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < � <1:

First, we have the following abstract statement.

Proposition 4.2. The function h..2k C n/�; �2/ is a strictly monotonic differen-
tiable positive function of � on RC, with the domain .A;B/ where 0�A<B �1.
Then for 1� p � .2mC 2/=.mC 3/, the estimate

kPh�f kp0 � C�kf kp

holds, where

C� � C

1X
kD0

.2kCn/
2n
�
1
p�

1
2

�
�1
�
2.nCm/

�
1
p�

1
2

�
�1

k
.�/j�0k.�/j(4-1)

for all Schwartz functions f and all positive � 2 .A;B/.

The proof of Proposition 4.2 coincides essentially with Theorem 4.1 in [Casarino
and Ciatti 2013a] and we omit it. To obtain our Theorem 4.1, it suffices to show
the convergence of the series in (4-1). Next we will exploit the following estimates,
which can be easily proved by comparing the sums with the corresponding integrals:

Lemma 4.3. Fix � 2 R. There exists C� > 0 such that for A > 0 and n 2 ZC,
we have X

m2N
2mCn�A

.2mCn/� � C�A
�C1; � < �1I(4-2)

X
m2N

2mCn�A

.2mCn/� � C�A
�C1; � > �1:(4-3)

Now Theorem 4.1 follows from the result in the following lemma.

Lemma 4.4. Let h.�; �/D �˛C �ˇ , ˛; ˇ > 0. The series in (4-1) has the estimate
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if ˛ < 2ˇ

8<:C� � C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
; � > 1;

C� � C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
; 0 < �� 1;

if ˛ > 2ˇ

8<:C� � C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
; � > 1;

C� � C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
; 0 < �� 1;

if ˛ D 2ˇ
n
C� � C�

2
˛ .nCm/

�
1
p�

1
2

�
�1
; 0 < � <1:

Proof. The function h.�; �/D �˛C�ˇ , ˛; ˇ >0, so �D .2kCn/˛�˛
k
.�/C�

2ˇ

k
.�/,

which yields

�0k.�/D
1

˛.2kCn/˛�˛�1
k

.�/C2ˇ�
2ˇ�1

k
.�/

:

To study the convergence of this series, we need to distinguish three cases according
to the relation of ˛ and 2ˇ: ˛ < 2ˇ, ˛ > 2ˇ and ˛ D 2ˇ. In order not to burden
the exposition, we only prove the case ˛ < 2ˇ, and the other cases are analogous.

If ˛ < 2ˇ, then when � � 1, it is easy to see that �k.�/ � �
1
˛ =.2kCn/ and

�0
k
.�/� �

1
˛�1=.2kCn/, so that the series

(4-4)

C� � C

1X
kD0

.2kCn/
2n
�
1
p�

1
2

�
�1
�
2.nCm/

�
1
p�

1
2

�
�1

k
.�/j�0k.�/j

� C

1X
kD0

.2kCn/
2n. 1p�

1
2
/�1

�
�
1
˛

2kCn

�2.nCm/� 1p�12��1 � 1
˛
�1

2kCn

� C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
1X
kD0

1

.2kCn/
2m
�
1
p�

1
2

�
C1

� C�
2
˛ .nCm/

�
1
p�

1
2

�
�1

converges.
When � > 1, we split the sum into two parts, the sum over those k such that

.2kC n/˛�˛
k
.�/� �2ˇ .�/ and those such that .2kC n/˛�˛

k
.�/ < �2ˇ .�/. They

are denoted by I and II respectively.
For the first part, .2kCn/˛�˛

k
.�/� �2ˇ .�/ implies

�k.�/�
�
1
˛

2kCn
; �0k.�/�

�
1
˛�1

2kCn
; and 2kCn� �

2ˇ�˛
2˛ˇ :
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Then we control the first part I by

I� C
X

2kCn��
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1
�
2.nCm/

�
1
p�

1
2

�
�1

k
.�/j�0k.�/j

� C
X

2kCn��
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1

�
�
1
˛

2kCn

�2.nCm/� 1p�12��1 � 1˛�1
2kCn

� C�
2
˛ .nCm/

�
1
p�

1
2

�
�1

X
2kCn��

2ˇ�˛
2˛ˇ

1

.2kCn/
2m
�
1
p�

1
2

�
C1
:

By (4-2), we have

I� C�
2
˛ .nCm/

�
1
p�

1
2

�
�1 1

�
2ˇ�˛
2˛ˇ

�
2m
�
1
p�

1
2

�� � C� 2˛ �nC ˛
2ˇ
m
��
1
p�

1
2

�
�1
:(4-5)

For the second part, .2kCn/˛�˛
k
.�/ < �2ˇ .�/ implies

�k.�/� �
1
2ˇ ; �0k.�/� �

1
2ˇ
�1
; and 2kCn < �

2ˇ�˛
2˛ˇ :

Then we control the second part II by

II� C
X

2kCn<�
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1
�
2.nCm/

�
1
p�

1
2

�
�1

k
.�/j�0k.�/j

� C
X

2kCn<�
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1

�
�
1
2ˇ

�2.nCm/� 1p�12��1
�
1
2ˇ
�1

� C�
1
ˇ
.nCm/

�
1
p�

1
2

�
�1 X

2kCn<�
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1
:

Because 1 � p � .2mC 2/=.mC 3/, we obtain 2n
�
1
p
�
1
2

�
� 1 � �1. Hence, by

(4-3) we getX
2kCn<�

2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1 . �

2ˇ�˛
2˛ˇ

�
2n
�
1
p�

1
2

��
D �

�
2
˛�

1
ˇ

�
n
�
1
p�

1
2

�
:

Thus, for the second part we also have

(4-6) II� C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
:
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Finally, the estimate for the case ˛ < 2ˇ follows from (4-4), (4-5) and (4-6).
This completes the proof of the first case.

Combining Proposition 4.2 and Lemma 4.4, Theorem 4.1 comes out easily. �

Especially, in the case �D LC T , h.�; �/D � C �, we obtain the restriction
theorem associated with the full laplacian on H-type groups.

Corollary 4.5. For 1� p � .2mC 2/=.mC 3/, the estimates

kP��f kp0 � C�
.2nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1

and

kP��f kp0 � C�
2.nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1

hold for all Schwartz functions f .

5. Examples

Similarly to what we have done so far in Theorem 4.1, we now discuss other
operators with the form of the joint functional calculus of L and T . We obtain
the following results. We omit the arguments which are really similar to that of
Theorem 4.1.

Example 5.1. Let h.�; �/D .�˛C�ˇ /�1, ˛; ˇ >0. For 1�p� .2mC2/=.mC3/,
we have for all Schwartz functions f :

if ˛ < 2ˇ

8<:kPh�f kp0 � C�
� 2˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
� 2˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ > 2ˇ

8<:kPh�f kp0 � C�
� 2˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
� 2˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ D 2ˇ
n
kPh�f kp0 � C�

� 2˛ .nCm/
�
1
p�

1
2

�
�1
kf kp; 0 < � <1:

Example 5.2. Let h.�; �/D .1C�/�1. For 1�p� .2mC2/=.mC3/, the estimates

kPh�f kp0 � C�
�2.nCm/

�
1
p�

1
2

�
�1
kf kp; when �! 0C;

and

kPh�f kp0 � C.1��/
2.nCm/

�
1
p�

1
2

�
�1
kf kp; when �! 1�;

hold for all Schwartz functions f .

More generally, we have:
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Example 5.3. Let h.�; �/D .�˛C�ˇ /
 , ˛; ˇ; 
 >0. For 1�p� .2mC2/=.mC3/,
we have for all Schwartz functions f :

if ˛ < 2ˇ

8<:kPh�f kp0 � C�
2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ > 2ˇ;

8<:kPh�f kp0 � C�
2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ D 2ˇ
n
kPh�f kp0 � C�

2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < � <1:

Example 5.4. Letting h.�; �/ D .�˛ C �ˇ /�
 , ˛; ˇ; 
 > 0, then for 1 � p �
.2mC 2/=.mC 3/, we have for all Schwartz functions f :

if ˛ < 2ˇ

8<:kPh�f kp0 � C�
� 2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
� 2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ > 2ˇ

8<:kPh�f kp0 � C�
� 2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
� 2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ D 2ˇ
n
kPh�f kp0 � C�

� 2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < � <1:

Example 5.5. Let h.�; �/ D .1C �˛ C �ˇ /�
 , ˛; ˇ; 
 > 0. Then for 1 � p �
.2mC 2/=.mC 3/, we have for all Schwartz functions f :

if ˛ � 2ˇ

8<:kPh�f kp0 � C�
� 2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp when �! 0C;

kPh�f kp0 � C.1��
1

 /
2
˛ .nCm/

�
1
p�

1
2

�
�1
kf kp when �! 1�;

if ˛ > 2ˇ

8<:kPh�f kp0 � C�
� 2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp when �! 0C;

kPh�f kp0 � C.1��
1

 /
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp when �! 1�:

6. Sharpness of the range p

In this section we only give an example to show that the range of p in the restriction
theorem associated with the full laplacian � is sharp. The example is constructed
similarly to the counterexample of Müller [1990], which shows that the estimates
between Lebesgue spaces for the operators P�� are necessarily trivial.

Let '2C1c .R
m/ be a radial function such that '.a/D .jaj/, where 2 C1c .R/,

with  D 1 on a neighborhood of the point n and  D 0 near 0. Let h be a Schwartz
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function on Rm and define

f .z; t/D

Z
Rm
'.a/ Oh.a/e

�
jaj
4
jzj2
e�iha;tijajn da:

Denote

g.z; t/D

Z
Rm
'.a/e

�
jaj
4
jzj2
e�iha;tijajn da

D

Z
RmC2n

'.a/e
�
j�j2

jaj e�i.ha;tiCh�;zi/ d� da:

Hence 2g.�; a/D '.a/e�
j�j2

jaj , which shows that Og and consequently g are Schwartz
functions. On the other hand, we have f D h �t g, where �t denotes the involu-
tion about the central variable. By Lemma 3.1, we have �

�
e�iha;tie�

1
4
jajjzj2

�
D

.n�C�2/e�iha;tie�
1
4
jajjzj2 . Therefore, we write f by the integration with polar

coordinates as

f .z; t/D

Z 1
0

�
�nCm�1 .�/e

��
4
jzj2

Z
Sm�1

Oh.�w/e�i�hw;ti d�.w/

�
d�

D

Z 1
0

�
��.�/

nCm�1�0�.�/ .��.�//e
�
��.�/
4
jzj2

Z
Sm�1

Oh.��.�/w/e
�i��.�/hw;ti d�.w/

�
d�

D

Z 1
0

P��f .z; t/ d�;

where

P��f .z; t/D ��.�/
nCm�1�0�.�/ .��.�//e

�
��.�/

4
jzj2

�

Z
Sm�1

Oh.��.�/w/e
�i��.�/hw;ti d�.w/;

��.�/D

p
n2C 4��n

2
:

Therefore, letting �D 2n2, we have ��.2n2/D n, �0�.2n
2/D 1=.3n/ and

P�
2n2
f .z; t/D 1

3
nnCm�2e�

njzj2

4

Z
Sm�1

Oh.nw/e�inhw;ti d�.w/

D
1
3
nn�1e�

njzj2

4 h�bd�n.t/:
From the restriction theorem associated the full laplacian on H-type groups, we
have the estimate kP�

2n2
f kLp0 .G/ � Ckf kLp.G/.
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Because of

kP�
2n2
f kLp0 .G/ D Ckh�

bd�nkLp0 .Rm/(6-1)

and

kf kLp.G/ � khkLp.Rm/kgkL1tL
p
z
. khkLp.Rm/;(6-2)

where the mixed Lebesgue norm is defined by

kgkL1tL
p
z
D

�Z
R2n

�Z
Rm
jf .z; t/j dt

�p
dz

� 1
p

;

we have kh�bd�nkLp0 .Rm/ � CkhkLp.Rm/.
From the sharpness of the Stein–Tomas theorem which is guaranteed by the

Knapp counterexample, this would imply p � .2mC 2/=.mC 3/. Hence the range
of p can not be extended. With the same tricks we can prove the range of p for the
restriction theorem associated with the functional calculus is also sharp.
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IDENTITIES INVOLVING CYCLIC AND SYMMETRIC SUMS
OF REGULARIZED MULTIPLE ZETA VALUES

TOMOYA MACHIDE

There are two types of regularized multiple zeta values: harmonic and shuf-
fle types. The first purpose of the present paper is to give identities involving
cyclic sums of regularized multiple zeta values of both types for depth less
than 5. Michael Hoffman, in “Quasi-symmetric functions and mod p mul-
tiple harmonic sums” (Kyushu Journal of Mathematics 69 (2015), 345–366)
proved an identity involving symmetric sums of regularized multiple zeta
values of harmonic type for arbitrary depth. The second purpose is to prove
Hoffman’s identity for shuffle type. We also give a connection between the
identities involving cyclic sums and symmetric sums, for depth less than 5.

1. Introduction and statement of results

Multiple zeta values (MZVs) are real numbers that are variations of special values of
the Riemann zeta function ζ1(s)=

∑
∞

m=1 1/ms with integer arguments. Regularized
multiple zeta values (RMZVs) are generalizations of MZVs, which are defined
in [Ihara et al. 2006] as constant terms of certain polynomials. There are two
types of RMZVs: harmonic and shuffle types. It is known that these values satisfy
a great many relations over Q, including, for example, extended harmonic and
shuffle relations, Drinfeld associator relations, and Kawashima’s relations (e.g., see
[Drinfeld 1990; Ihara et al. 2006; Kawashima 2009]). New classes of relations are
being studied, but their exact structure is not yet fully understood.

The first purpose (Theorem 1.1) of the present paper is to give identities involving
cyclic sums of RMZVs of both types for depth less than 5. Hoffman [1992,
Theorem 2.2] proved an identity involving symmetric sums of MZVs for arbitrary
depth, and then, he extended it to RMZVs of harmonic type [Hoffman 2015,
Theorem 2.3]. The second purpose (Theorem 1.2) is to prove Hoffman’s identity
for shuffle type. We also show that Theorem 1.1 yields Theorem 1.2, for depth less
than 5 (see Corollary 1.3).
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Keywords: multiple zeta value, cyclic sum, symmetric sum, group ring of symmetric group.
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We will begin by introducing the notation and terminology that will be used to
state our results. An MZV is a convergent series defined by

ζn(ln) :=
∑

m1>···>mn>0

1

ml1
1 · · ·m

ln
n
,

where ln = (l1, . . . , ln) is an (ordered) index set of positive integers with l1 ≥ 2. In
other words, MZVs are images under the real-valued function ζn with the domain
{(l1, . . . , ln) ∈ Nn

| l1 ≥ 2}, where N denotes the set of positive integers. We
call wn(ln) = l1 + · · · + ln the weight, and dn(ln) = n the depth. Ihara, Kaneko,
and Zagier [Ihara et al. 2006] extended MZVs to two types of RMZV (harmonic
and shuffle) with two different renormalization procedures for divergent series
ζn(ln) of l1 = 1. The former and latter types are denoted by ζ ∗n (ln) and ζxn (ln),
and they inherit the harmonic and shuffle relation structures, respectively. The
following are a few examples of these values: ζ ∗1 (1)= ζ

x
1 (1)= ζ

x
2 (1, 1)= 0 and

ζ ∗2 (1, 1) = −ζ1(2)/2 6= 0. In other words, RMZVs ζ ∗n (ln) and ζxn (ln) are images
under two different extension functions of ζn to the domain Nn .

Let Sn denote the symmetric group of degree n, and let e = en denote its
unit element. Let C3 and C4 be the cyclic subgroups in S3 and S4 given by
C3=〈(123)〉= {e, (123), (132)} and C4=〈(1234)〉= {e, (1234), (13)(24), (1432)},
respectively. We set C2 = 〈(12)〉 (or C2 = S2) for convenience. The group ring
Z[Sn] of Sn over Z acts on a function f of n variables in a natural way by

( f |0)(x1, . . . , xn) :=
∑

ai f (xσ−1(1), . . . , xσ−1(n)),

where 0 =
∑

aiσi ∈ Z[Sn]. This is a right action, that is, f | (0102)= ( f |01) | 02.
For a subset H in Sn , we define the sum of all elements in H by

6H :=
∑
σ∈H

σ ∈ Z[Sn].

That is, ( f |6H )(x1, . . . , xn) is
∑

σ∈H f (xσ−1(1), . . . , xσ−1(n)). In particular, if H
is a group, it is

∑
σ∈H f (xσ(1), . . . , xσ(n)) because H = H−1. For positive integers

n1, . . . , n j , n with n1 + · · · + n j = n, we define real-valued functions with the
domain Nn by

ζ
†
(n1,...,n j )

(ln)

:= ζ †
n1
(l1, . . . , ln1)ζ

†
n2
(ln1+1, . . . , ln1+n2) · · · ζ

†
n j
(ln1+n2+···+n j−1+1, . . . , ln),

where † ∈ {∗,x}. For example,

ζ
†
(1,1)(l2)= ζ

†
1 (l1)ζ

†
1 (l2) and ζ

†
(2,1)(l3)= ζ

†
2 (l1, l2)ζ

†
1 (l3).
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We define the characteristic functions χ∗n and χx
n of the set Nn by

χ∗n (ln) = 1 and χx
n (ln) =

{
0 if n > 1, l1 = · · · = ln = 1,
1 otherwise,

(1-1)

respectively. We have defined χx
1 (1) to be not 0 but 1, though this definition will

not be used in Theorem 1.1. We will need it to hold consistency between Definitions
(1-1) and (1-7); to prove Theorem 1.2, (1-7) is required.

Theorem 1.1 is stated as follows.

Theorem 1.1. Let ln = (l1, . . . , ln) be an index set in Nn , and let Ln = wn(ln) be
its weight. Then we have the following identities for RMZVs ζ ∗n (ln) and ζxn (ln) of
n = 2, 3, and 4:

(ζ
†
2 |6C2)(l2)= ζ

†
(1,1)(l2)−χ

†
2 (l2)ζ1(L2),(1-2)

(ζ
†
3 |6C3)(l3)=−ζ

†
(1,1,1)(l3)+ (ζ

†
(2,1) |6C3)(l3)+χ

†
3 (l3)ζ1(L3),(1-3)

(ζ
†
4 |6C4)(l4)= ζ

†
(1,1,1,1)(l4)− (ζ

†
(2,1,1) |6C4)(l4)+ (ζ

†
(2,2) |6C0

4
)(l4),(1-4)

+ (ζ
†
(3,1) |6C4)(l4)−χ

†
4 (l4)ζ1(L4),

where † ∈ {∗,x}, and C0
4 in (1-4) is the subset {e, (1234)} of C4.

We note that (1-2) can be easily obtained from the harmonic relations

ζ ∗1 (l1)ζ
∗

1 (l2)= ζ
∗

2 (l1, l2)+ ζ
∗

2 (l2, l1)+ ζ
∗

1 (l1+ l2)

for RMZVs of harmonic type of depth 2; thus our main results are (1-3) and (1-4)
(see Section 5 for their straightforward expressions).

We now recall Hoffman’s identity. Let |P| be the number of elements of a set P .
For any partition 5 = {P1, . . . , Pm} of the set {1, . . . , n}, we define an integer
c̃n(5) by

c̃n(5) := (−1)n−m
m∏

i=1

(|Pi | − 1)!.(1-5)

For † ∈ {∗,x}, we define a real number ζ †(ln;5) by

ζ †(ln;5) :=
m∏

i=1

χ†(ln; Pi )

(∑
p∈Pi

lp

)
,(1-6)

where

(1-7) χ†(ln; Pi ) :=

{
0 if †=x, |Pi |> 1, and lp = 1 for all p ∈ Pi ,

1 otherwise.
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For example,

χx((2, 1, 1); {2, 3})= 0 and χx((2, 1, 1); {1, 3})= χx((2, 1, 1); {3})= 1.

We note that χ†(ln; Pi ) = χ
†
j (lp1, . . . , lp j ) if Pi = {p1, . . . , p j }. For any index

ln = (l1, . . . , ln) in Nn , Hoffman [2015, Theorem 2.3] proved the following identity
involving symmetric sums of RMZVs of harmonic type:

(ζ †
n |6Sn )(ln)=

∑
partitions5 of {1,...,n}

c̃n(5)ζ
†(ln;5),(1-8)

where † = ∗. In the case that li > 1 for all i , he proved (1-8) in [Hoffman 1992,
Theorem 2.2]. (In this case, ζn(ln)= ζ ∗n (ln)= ζxn (ln).)

Theorem 1.2 is stated as follows.

Theorem 1.2. Identity (1-8) for †=x holds.

Corollary 1.3 gives a connection between identities involving cyclic sums and
symmetric sums of RMZVs, for depth less than 5.

Corollary 1.3. Let † ∈ {∗,x}. Identity (1-2) yields (1-8) for n = 2, identities (1-2)
and (1-3) yield (1-8) for n = 3, and identities (1-2), (1-3), and (1-4) yield (1-8) for
n = 4.

Remark 1.4. Hoffman proved (1-8) for †= ∗ under a general algebraic setup, i.e.,
the harmonic algebra H1

∗
that will be introduced in Section 2. (To be more precise,

he used the algebra of quasisymmetric functions that is isomorphic to H1
∗
.) The

constant terms of the polynomials Z∗ln (T ) defined in [Ihara et al. 2006] are RMZVs
ζ ∗n (ln), and the polynomials Z∗ln (T ) have the same harmonic relation structure as
RMZVs ζ ∗n (ln) (see Section 2 for details). Thus, (1-8) for †= ∗ also holds in the
case of Z∗ln (T ). This fact will be necessary to prove Theorem 1.2.

We now briefly explain how Theorem 1.1, Theorem 1.2, and Corollary 1.3 can
be proved. We first prove the identities in Theorem 1.1 for †= ∗ from harmonic
relations of RMZVs ζ ∗n (ln). Ihara et al. [2006, Theorem 1] gave a class of relations
over Q between RMZVs ζ ∗n (ln) and ζxn (ln), which we call renormalization relations.
Using renormalization relations, we derive the identities in Theorem 1.1 for †=x
from those for † = ∗, and we complete the proof of Theorem 1.1. Similarly, we
prove Theorem 1.2 by combining the renormalization relations and (1-8) for †=∗ in
which ζ ∗n (ln) are replaced by Z∗ln (T ). We show Corollary 1.3 by focusing on the fact
that Cn is a subgroup of Sn , i.e., (ζ †

n |6Cn )(ln) is a partial sum of (ζ †
n |6Sn )(ln).

It is worth noting that Theorem 1.1 gives the following property, which is an
analog of the parity property [Borwein and Girgensohn 1996; Euler 1776; Ihara
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et al. 2006; Tsumura 2004]; any cyclic sum of RMZVs of depth less than 5, or

(ζ †
n |6Cn )(ln)=

n∑
j=1

ζ †
n (l j , . . . , ln, l1, . . . , l j−1)(1-9)

for n = 2, 3, 4 and † ∈ {∗,x}, is a rational linear combination of the Riemann zeta
value ζ1(l1 + · · · + ln) and products of RMZVs of smaller depth and weight. It
appears that the existence of such a property for depth greater than 4 is an open
problem. (The case of symmetric sums of general depth easily follows from (1-8);
there is a stronger property from (1-8), such that any symmetric sum can be written
in terms of only Riemann zeta values.) It is also worth noting that Hoffman and
Ohno [2003] studied a class of relations involving

n∑
j=1

ζn(l j + 1, l j+1, . . . , ln, l1, . . . , l j−1),

whose form is quite similar to (1-9), but the first indices differ.
The paper is organized as follows. In Section 2, we review some facts of

RMZVs by referring to [Hoffman 1997; Ihara et al. 2006]. Sections 3 and 4
have two and three subsections, respectively. Sections 3.1 and 3.2 are devoted to
calculating harmonic relations for RMZVs ζ ∗n (ln) and renormalization relations
between RMZVs ζ ∗n (ln) and ζxn (ln), respectively, for depth less than 5. We then
prove Theorem 1.1 in Section 4.1, Theorem 1.2 in Section 4.2, and Corollary 1.3 in
Section 4.3. We give some examples of Theorems 1.1 and 1.2 in Section 5.

Remark 1.5. (i) Although the ideas of the proofs are the same, the computational
complexity of proving (1-4) is much greater than that required to prove (1-2) and
(1-3). We recommend that, on first reading, those readers who are interested only
in the ideas skip over the statements relating to the proof of (1-4) (or statements in
the case of depth 4).

(ii) This paper is an expansion of Section 2.1 in [Machide 2012]. The remainder of
the results of that article has been amplified in [Machide 2015].

2. Preparation

Let H=Q〈x, y〉 be the noncommutative polynomial algebra over Q in two inde-
terminates x and y, and let H0 and H1 be its subalgebras Q+ xHy and Q+Hy,
respectively. These algebras satisfy the inclusion relations H0

⊂ H1
⊂ H. Let zl

denote x l−1 y for any integer l ≥ 1. Every word w = w0 y in the set {x, y} with
terminal letter y is expressed as w = zl1 · · · zln uniquely, and so H1 is the free
algebra generated by zl (l = 1, 2, 3, . . .). We define the harmonic product ∗ on H1
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inductively by

1 ∗w = w ∗ 1 = w,(2-1)

zkw1 ∗ zlw2 = zk(w1 ∗ zlw2)+ zl(zkw1 ∗w2)+ zk+l(w1 ∗w2),(2-2)

for any integers k, l ≥ 1 and words w,w1, w2 ∈ H1, and then extend it by Q-
bilinearity. This product gives the subalgebras H0 and H1 structures of commutative
Q-algebras [Hoffman 1997], which we denote by H0

∗
and H1

∗
, respectively; note that

H0
∗

is a subalgebra of H1
∗
. In a similar way, we can define the shuffle product x on

H1 and the commutative Q-algebras H0
x and H1

x (see [Ihara et al. 2006; Reutenauer
1993] for details).

Let Z : H0
→ R be the Q-linear map (evaluation map) given by

Z(zl1 · · · zln )= ζn(ln) (zl1 · · · zln ∈ H
0).(2-3)

We know from [Hoffman 1997] that Z is homomorphic on both products ∗ and x,
that is,

Z(w1 ∗w2)= Z(w1 x w2) = Z(w1)Z(w2)

forw1, w2 ∈H
0. Let R[T ] be the polynomial ring in a single indeterminate with real

coefficients. Through the isomorphisms H1
∗
'H0

∗
[y] and H1

x 'H0
x[y], which were

proved in [Hoffman 1997] and [Reutenauer 1993], respectively, Ihara et al. [2006,
Proposition 1] considered the algebra homomorphisms

Z∗ : H1
∗
→ R[T ] and Zx

: H1
x→ R[T ],

respectively, which are uniquely characterized by the property that they extend the
evaluation map Z and send y to T . For any word w = zl1 · · · zln ∈ H

1, we denote
by Z∗ln (T ) and Zx

ln (T ) the images under the maps Z∗ and Zx, respectively, of the
word w, that is,

(2-4) Z∗l1,...,ln
(T )= Z∗(zl1 · · · zln ) and Zx

l1,...,ln
(T )= Zx(zl1 · · · zln ).

(The notation Z∗ln (T ) and Zx
ln (T ) will be used when we focus on the variable T

and the corresponding index set ln of the word zl1 · · · zln .) Then the RMZVs ζ ∗(ln)
and ζx(ln) of the harmonic and shuffle types are defined as

(2-5) ζ ∗(l1, . . . , ln) := Z∗l1,...,ln
(0) and ζx(l1, . . . , ln) := Zx

l1,...,ln
(0),

respectively. Obviously, ζ ∗n (ln)= ζxn (ln)= ζn(ln) if l1 > 1. We have

Z∗(zk1 · · · zkm ∗ zl1 · · · zln )= Z∗(zk1 · · · zkm )Z
∗(zl1 · · · zln )

for index sets (k1, . . . , km) and (l1, . . . , ln), since Z∗ is homomorphic, and so we
see from the first equations of (2-4) and (2-5) that the RMZVs ζ ∗n (ln) satisfy the
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harmonic relations. In Section 3.1, we will calculate these relations in detail for
depth less than 5. (We can also see that the RMZVs ζxn (ln) satisfy the shuffle
relations since Zx is homomorphic, but we will not discuss this in the present
paper.)

Let A(u)=
∑
∞

k=0 γkuk be the Taylor expansion of eγ u0(1+u) near u= 0, where
γ is Euler’s constant and 0(x) is the gamma function. The renormalization map
ρ : R[T ] → R[T ] is an R-linear map defined by

ρ(eT u)= A(u)eT u .(2-6)

That is, images ρ(T m) are determined by comparing the coefficients of um on both
sides of (2-6), and expressed as

ρ(T m)= m!
m∑

i=0

γi
T m−i

(m− i)!
(m = 0, 1, 2, . . .).(2-7)

Then the renormalization formula proved by Ihara et al. [2006, Theorem 1] is

ρ(Z∗ln (T ))= Zx
ln (T ).(2-8)

Combining (2-5) and (2-8) with T = 0, we can obtain relations between RMZVs
ζ ∗n (ln) and ζxn (ln), or renormalization relations. In Section 3.2, we will calculate
these relations in detail for depth less than 5.

3. Relations

3.1. Harmonic relations. We begin by defining the notation that we will use to
state the harmonic relations of RMZVs ζ ∗n (ln) of depth less than 5 in terms of
real-valued functions.

We first define analogs of the weight map wn : N
n
→ N of depth n. For positive

integers n1, . . . , n j , n with n1+ · · · + n j = n, we define the map w(n1,...,n j ) from
Nn to N j by

(3-1) w(n1,...,n j )(ln) := (wn1(l1, . . . , ln1), . . . , wn j (ln1+n2+···+n j−1+1, . . . , ln)).

For example,w(2,1)(l1, l2, l3)= (l1+l2, l3) andw(1,2,1)(l1, l2, l3, l4)= (l1, l2+l3, l4).
We define a subset U3 in S3 as

U3 = {e3, (23), (123)},(3-2)

and subsets U4, V 0
4 , V4, W 0

4 , W 1
4 , W4, and X4 in S4 as

U4 = {e4, (34), (234), (1234)},(3-3)

V 0
4 = {(23), (1243)},

V4 = {e4, (13)(24), (123), (243)} ∪ V 0
4 ,(3-4)
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W 0
4 = {(23), (24)},

W 1
4 = {(34), (1234), (1243), (1324)} ∪W 0

4 ,(3-5)
W4 = {e4, (13)(24), (123), (124), (234), (243)} ∪W 1

4 ,

X4 = {(14), (23)} ∪C4.(3-6)

We have the inclusion relations V 0
4 ⊂ V4 and W 0

4 ⊂ W 1
4 ⊂ W4. We denote by A3

and A4 the alternating groups of degree 3 and 4, respectively. Note that A3 = C3.
Functional composition ◦ satisfies the distributive law, i.e.,(∑

i

fi

)
◦

(∑
j

g j

)
=

∑
i, j

fi ◦ g j ,

where fi are real-valued functions with the domain Nn , and g j are vector-valued
functions with a same domain whose images are included in Nn . The notation
f ◦ g | σ is unambiguous since ( f ◦ g) | σ = f ◦ (g | σ).

Remark 3.1. For integers j, n with 1≤ j ≤ n− 1, let sh(n)j be the shuffle elements
given in [Ihara et al. 2006], which are elements in Z[Sn] and defined as

sh(n)j :=
∑
σ∈Sn(

σ(1)<···<σ( j)
σ ( j+1)<···<σ(n)

)
σ.

The elements 6U3 , 6U4 , and 6V4 are equal to sh(3)2 , sh(4)3 , and sh(4)2 , respectively.
The element 6W4 cannot be written in terms of only a shuffle element, but it is
equal to sh(4)2 6〈(34)〉 =6V46〈(34)〉 as we will see in (3-36), below.

The harmonic relations we desire are listed below.

Proposition 3.2 (case of depth 2). We have

ζ ∗(1,1) = ζ
∗

2 |6C2 + ζ1 ◦w2.(3-7)

Proposition 3.3 (case of depth 3). We have

ζ ∗(2,1) = ζ
∗

3 |6U3 + ζ
∗

2 ◦ (w(2,1) | (123)+w(1,2)),(3-8)

ζ ∗(1,1,1) = ζ
∗

3 |6S3 + ζ
∗

2 ◦ (w(2,1)+w(1,2)) |6C3 + ζ1 ◦w3.(3-9)

Proposition 3.4 (case of depth 4). We have

ζ ∗(3,1) = ζ
∗

4 |6U4 + ζ
∗

3 ◦ ((w(2,1,1)+w(1,2,1)) | (234)+w(1,1,2)),(3-10)

ζ ∗(2,2) = ζ
∗

4 |6V4 + ζ
∗

3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) |6V 0
4

(3-11)

+ ζ ∗2 ◦w(2,2) | (23),

ζ ∗(2,1,1) = ζ
∗

4 |6W4(3-12)
+ ζ ∗3 ◦

(
w(2,1,1) |6W 1

4,(34)
+w(1,2,1) |6W 1

4,(1234)
+w(1,1,2) |6W 1

4,(1324)



CONGRUENCE IDENTITIES OF REGULARIZED MULTIPLE ZETA VALUES 315

+ ζ ∗2 ◦ (w(2,2) |6W 0
4
+w(3,1) | (24)+w(1,3))

)
,

ζ ∗(1,1,1,1) = ζ
∗

4 |6S4 + ζ
∗

3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) |6A4(3-13)
+ ζ ∗2 ◦ (w(2,2) |6X4 + (w(3,1)+w(1,3)) |6C4)+ ζ1 ◦w4,

where W 1
4,σ (σ ∈ {(34), (1234), (1324)}) in (3-12) mean the subsets W 1

4 \ {σ }.

We will show Lemmas 3.5, 3.6, and 3.7 to prove Propositions 3.2, 3.3, and 3.4,
respectively. These lemmas calculate the harmonic products of the generators zl of
H1
∗

for the corresponding depths.

Lemma 3.5 (case of depth 2). For positive integers l1, l2, we have

zl1 ∗ zl2 = zl1 zl2+ zl2 zl1+ zl1+l2 .(3-14)

Lemma 3.6 (case of depth 3). For positive integers l1, l2, l3, we have

zl1 zl2 ∗ zl3 = zl1 zl2 zl3+ zl1 zl3 zl2 + zl3 zl1 zl2+ zl1+l3 zl2+ zl1 zl2+l3,(3-15)

zl1 ∗ zl2 ∗ zl3 = zl1 zl2 zl3+ zl1 zl3 zl2+ zl2 zl1 zl3 + zl2 zl3 zl1+ zl3 zl1 zl2(3-16)

+ zl3 zl2 zl1+ zl1+l2 zl3+ zl1+l3 zl2+ zl2+l3 zl1

+ zl1 zl2+l3+ zl2 zl1+l3+ zl3 zl1+l2 + zl1+l2+l3 .

Lemma 3.7 (case of depth 4). For positive integers l1, l2, l3, l4, we have

zl1 zl2 zl3 ∗ zl4 = zl1 zl2 zl3 zl4+ zl1 zl2 zl4 zl3 + zl1 zl4 zl2 zl3+ zl4 zl1 zl2 zl3(3-17)

+ zl1+l4 zl2 zl3+ zl1 zl2+l4 zl3+ zl1 zl2 zl3+l4,

zl1 zl2 ∗ zl3 zl4 = zl1 zl2 zl3 zl4+ zl1 zl3 zl2 zl4 + zl1 zl3 zl4 zl2(3-18)

+ zl3 zl1 zl2 zl4+ zl3 zl1 zl4 zl2 + zl3 zl4 zl1 zl2

+ zl1+l3 zl2 zl4+ zl1+l3 zl4 zl2+ zl1 zl2+l3 zl4

+ zl3 zl1+l4 zl2+ zl1 zl3 zl2+l4+ zl3 zl1 zl2+l4 + zl1+l3 zl2+l4,

zl1 zl2 ∗ zl3 ∗ zl4 = zl1 zl2 ∗ zl3 zl4+ zl1 zl2 ∗ zl4 zl3(3-19)

+ zl3+l4 zl1 zl2+ zl1 zl3+l4 zl2 + zl1 zl2 zl3+l4

+ zl1+l3+l4 zl2+ zl1 zl2+l3+l4,

zl1 ∗ zl2 ∗ zl3 ∗ zl4 = zl1 zl2 ∗ zl3 ∗ zl4+ zl2 zl1 ∗ zl3 ∗ zl4(3-20)

+ zl1+l2 zl3 zl4+ zl1+l2 zl4 zl3+ zl3 zl1+l2 zl4+ zl4 zl1+l2 zl3

+ zl3 zl4 zl1+l2+ zl4 zl3 zl1+l2+ zl1+l2 zl3+l4+ zl3+l4 zl1+l2

+ zl1+l2+l3 zl4+ zl1+l2+l4 zl3+ zl3 zl1+l2+l4+ zl4 zl1+l2+l3

+ zl1+l2+l3+l4 .

Proof of Lemma 3.5. Identity (3-14) follows from Equations (2-1) and (2-2) with
w1 = w2 = 1. �
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Proof of Lemma 3.6. We see from (2-1), (2-2), and (3-14) that

zl1 zl2 ∗ zl3 = zl1(zl2 ∗ zl3)+ zl3(zl1 zl2 ∗ 1)+ zl1+l3(zl2 ∗ 1)

= zl1(zl2 zl3+ zl3 zl2+ zl2+l3)+ zl3 zl1 zl2+ zl1+l3 zl2

= zl1 zl2 zl3+ zl1 zl3 zl2 + zl3 zl1 zl2+ zl1+l3 zl2+ zl1 zl2+l3,

which proves (3-15). We see from (3-14) and (3-15) that

zl1 ∗ zl2 ∗ zl3 = (zl1 zl2+ zl2 zl1+ zl1+l2) ∗ zl3

= zl1 zl2 ∗ zl3+ zl2 zl1 ∗ zl3+ zl1+l2 ∗ zl3

= zl1 zl2 zl3+ zl1 zl3 zl2 + zl3 zl1 zl2+ zl1+l3 zl2+ zl1 zl2+l3

+zl2 zl1 zl3+ zl2 zl3 zl1+ zl3 zl2 zl1+ zl2+l3 zl1+l2 zl1+l3

+zl1+l2 zl3+ zl3 zl1+l2+ zl1+l2+l3,

which proves (3-16), and completes the proof. �

Proof of Lemma 3.7. We see from (2-1), (2-2), and (3-15) that

zl1 zl2 zl3 ∗ zl4 = zl1(zl2 zl3 ∗ zl4)+ zl4(zl1 zl2 zl3 ∗ 1)+ zl1+l4(zl2 zl3 ∗ 1)

= z1(zl2 zl3 zl4+ zl2 zl4 zl3 + zl4 zl2 zl3+ zl2+l4 zl3+ zl2 zl3+l4)

+zl4 zl1 zl2 zl3+ zl1+l4 zl2 zl3

= zl1 zl2 zl3 zl4+ zl1 zl2 zl4 zl3 + zl1 zl4 zl2 zl3+ zl4 zl1 zl2 zl3

+zl1+l4 zl2 zl3+ zl1 zl2+l4 zl3+ zl1 zl2 zl3+l4,

which proves (3-17). We see from (2-2), (3-14), and (3-15) that

zl1 zl2 ∗ zl3 zl4 = zl1(zl2 ∗ zl3 zl4)+ zl3(zl1 zl2 ∗ zl4)+ zl1+l3(zl2 ∗ zl4)

= zl1(zl3 zl4 zl2+ zl3 zl2 zl4 + zl2 zl3 zl4+ zl3+l2 zl4+ zl3 zl4+l2)

+zl3(zl1 zl2 zl4+ zl1 zl4 zl2 + zl4 zl1 zl2+ zl1+l4 zl2+ zl1 zl2+l4)

+zl1+l3(zl2 zl4+ zl4 zl2+ zl2+l4)

= zl1 zl2 zl3 zl4+ zl1 zl3 zl2 zl4 + zl1 zl3 zl4 zl2+ zl3 zl1 zl2 zl4

+zl3 zl1 zl4 zl2+ zl3 zl4 zl1 zl2 + zl1+l3 zl2 zl4+ zl1+l3 zl4 zl2

+zl1 zl2+l3 zl4+ zl3 zl1+l4 zl2+ zl1 zl3 zl2+l4+ zl3 zl1 zl2+l4+ zl1+l3 zl2+l4,

which proves (3-18). We see from (3-14) and (3-15) that

zl1 zl2∗ zl3∗ zl4 = zl1 zl2∗(zl3 zl4+ zl4 zl3+ zl3+l4)

= zl1 zl2∗ zl3 zl4+ zl1 zl2∗ zl4 zl3+ zl1 zl2∗ zl3+l4

= zl1 zl2∗ zl3 zl4+ zl1 zl2∗ zl4 zl3

+zl1 zl2 zl3+l4+ zl1 zl3+l4 zl2+ zl3+l4 zl1 zl2+ zl1+l3+l4 zl2+ zl1 zl2+l3+l4,
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which proves (3-19). We see from (3-14) and (3-16) that

zl1∗ zl2∗ zl3∗ zl4 = (zl1 zl2+ zl2 zl1+ zl1+l2)∗ zl3∗ zl4

= zl1 zl2∗ zl3∗ zl4+ zl2 zl1∗ zl3∗ zl4+ zl1+l2∗ zl3∗ zl4

= zl1 zl2∗ zl3∗ zl4+ zl2 zl1∗ zl3∗ zl4

+zl1+l2 zl3 zl4+ zl1+l2 zl4 zl3+ zl3 zl1+l2 zl4+ zl4 zl1+l2 zl3

+zl3 zl4 zl1+l2+ zl4 zl3 zl1+l2+ zl1+l2+l3 zl4+ zl1+l2+l4 zl3+ zl3+l4 zl1+l2

+zl1+l2 zl3+l4+ zl3 zl1+l2+l4+ zl4 zl1+l2+l3+ zl1+l2+l3+l4,

which proves (3-20), and completes the proof. �

We are now in a position to prove Propositions 3.2 and 3.3.

Proof of Proposition 3.2. Let l2 = (l1, l2) be an index set in N2. Applying the map
Z∗ to both sides of (3-14) and substituting T = 0, we obtain

ζ ∗1 (l1)ζ
∗

1 (l2)= ζ
∗

2 (l1, l2)+ ζ
∗

2 (l2, l1)+ ζ
∗

1 (l1+ l2)

=

∑
σ∈C2

ζ ∗2 (lσ−1(1), lσ−1(2))+ ζ
∗

1 (l1+ l2).

We thus have

ζ ∗(1,1)(l2)= (ζ
∗

2 |6C2)(l2)+ ζ
∗

1 ◦w2(l2),

which proves (3-7) because l2 is arbitrary and ζ ∗1 ◦w2(l2)= ζ1 ◦w2(l2) by virtue of
w2(l2)= l1+ l2 ≥ 2. �

Proof of Proposition 3.3. Let l3 = (l1, l2, l3) be an index set in N3. Applying the
map Z∗ to both sides of (3-15) and substituting T = 0, we obtain

ζ ∗2 (l1, l2)ζ
∗

1 (l3)

= ζ ∗3 (l1, l2, l3)+ ζ
∗

3 (l1, l3, l2)+ ζ
∗

3 (l3, l1, l2)+ ζ
∗

2 (l1+ l3, l2)+ ζ
∗

2 (l1, l2+ l3)

=

∑
σ∈U3

ζ ∗3 (lσ−1(1), lσ−1(2), lσ−1(3))+ ζ
∗

2 (lτ−1(1)+ lτ−1(2), lτ−1(3))+ ζ
∗

2 (l1, l2+ l3),

where τ = (123). We thus have

ζ ∗(2,1)(l3)= (ζ
∗

3 |6U3)(l3)+ (ζ
∗

2 ◦w(2,1) | (123))(l3)+ ζ ∗2 ◦w(1,2)(l3),

which proves (3-8). In a similar way, we obtain from (3-16) that

ζ ∗(1,1,1)(l3)= (ζ
∗

3 |6S3)(l3)+ (ζ
∗

2 ◦ (w(2,1)+w(1,2)) |6C3)(l3)+ ζ
∗

1 ◦w3(l3),

which proves (3-9). �

We require another lemma for the proof of Proposition 3.4, since the proof is
more complicated than those of Propositions 3.2 and 3.3.
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Lemma 3.8. Let id = id4 mean the identity map on N4. We have the following
equations in maps with the domain N4:

(i)

w(2,2) | (23)6〈(34)〉 = w(2,2) |6W 0
4
,(3-21)

w(i, j,k) |6V 0
4
6〈(34)〉(3-22)

=

{
w(i, j,k) | (6W 1

4
− (34)− (1324)) ((i, j, k) ∈ I ),

w(i, j,k) | (6W 1
4
− (24)− (1234)) ((i, j, k)= (1, 2, 1)),

id |6V46〈(34)〉 = id |6W4,(3-23)

where I in (3-22) means the set {(2, 1, 1), (1, 1, 2)}.

(ii)

w(3,1) | (24)6〈(12)〉 = w(3,1) | (6C4 − e− (1234)),(3-24)

w(1,3) |6〈(12)〉 = w(1,3) | (6C4 − (13)(24)− (1234)),(3-25)

w(2,2) |6W 0
4
6〈(12)〉 = w(2,2) | (6X4 − e− (13)(24)),(3-26)

w(2,1,1) |6W 1
4,(34)

6〈(12)〉 = w(2,1,1) | (6A4 − e− (12)(34)),(3-27)

w(1,2,1) |6W 1
4,(1234)

6〈(12)〉 = w(1,2,1) | (6A4 − (123)− (134)),(3-28)

w(1,1,2) |6W 1
4,(1324)

6〈(12)〉 = w(1,1,2) | (6A4 − (13)(24)− (14)(23)),(3-29)

id |6W46〈(12)〉 = id |6S4 .(3-30)

We now prove Proposition 3.4. We will then discuss a proof of Lemma 3.8.

Proof of Proposition 3.4. Let l4 = (l1, l2, l3, l4) be an index set in N4. Applying the
map Z∗ to both sides of (3-17) and substituting T = 0, we obtain

ζ ∗3 (l1, l2, l3)ζ
∗

1 (l4)

= ζ ∗4 (l1, l2, l3, l4)+ ζ
∗

4 (l1, l2, l4, l3)+ ζ
∗

4 (l1, l4, l2, l3)+ ζ
∗

4 (l4, l1, l2, l3)

+ζ ∗3 (l1+ l4, l2, l3)+ ζ
∗

3 (l1, l2+ l4, l3)+ ζ
∗

3 (l1, l2, l3+ l4)

=

∑
σ∈U4

ζ ∗4 (lσ−1(1), lσ−1(2), lσ−1(3), lσ−1(4))

+ζ ∗3 (lτ−1(1)+ lτ−1(2), lτ−1(3), lτ−1(4))

+ζ ∗3 (lτ−1(1), lτ−1(2)+ lτ−1(3), lτ−1(4))+ ζ
∗

3 (l1, l2, l3+ l4),

where τ = (234). We thus have

ζ ∗(3,1)(l4)= (ζ
∗

4 |6U4)(l4)+ ζ
∗

3 ◦ ((w(2,1,1)+w(1,2,1)) | (234)+w(1,1,2))(l4),
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which proves (3-10). Similarly, we have by (3-18),

ζ ∗(2,2)(l4)= (ζ
∗

4 |6V4)(l4)
+(ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) |6V 0

4
)(l4)+ (ζ ∗2 ◦w(2,2) | (23))(l4),

which proves (3-11).
As we calculated above by using (3-17) and (3-18), we can deduce from (3-19)

and (3-20) that

(3-31) ζ ∗(2,1,1) = ζ
∗

(2,2) |6〈(34)〉+ζ
∗

3 ◦(w(2,1,1) | (1324)+w(1,2,1) | (24)

+w(1,1,2) | (34))+ζ ∗2 ◦(w(3,1) | (24)+w(1,3))

and

(3-32) ζ ∗(1,1,1,1) = ζ
∗

(2,1,1) |6〈(12)〉

+ζ ∗3 ◦
(
w(2,1,1) | (e+ (12)(34))

+w(1,2,1) | ((123)+(134))+w(1,1,2) | ((13)(24)+(14)(23))
)

+ζ ∗2 ◦
(
w(2,2) | (e+ (13)(24))+w(3,1) | (e+ (1234))

+w(1,3) | ((13)(24)+ (1234))
)

+ζ1 ◦w4,

respectively. Combining (3-11) and the equations of Lemma 3.8(i), we obtain

(3-33) ζ ∗(2,2) |6〈(34)〉

= ζ ∗4 |6V46〈(34)〉

+ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) |6V 0
4
6〈(34)〉

+ζ ∗2 ◦w(2,2) | (23)6〈(34)〉

= ζ ∗4 |6W4

+ζ ∗3 ◦
(
(w(2,1,1)+w(1,1,2)) |6W 1

4,{(34),(1324)}
+w(1,2,1) |6W 1

4,{(24),(1234)}

)
+ζ ∗2 ◦w(2,2) |6W 0

4
,

where W 1
4,{σ,τ } denotes W 1

4 \ {σ, τ }. A straightforward calculation shows that

ζ ∗3 ◦
(
(w(2,1,1)+w(1,1,2)) |6W 1

4,{(34),(1324)}
+w(1,2,1) |6W 1

4,{(24),(1234)}

)
+ ζ ∗3 ◦ (w(2,1,1) | (1324)+w(1,2,1) | (24)+w(1,1,2) | (34))

= ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) |6W 1
4

− ζ ∗3 ◦ (w(2,1,1) | (34)+w(1,2,1) | (1234)+w(1,1,2) | (1324))

= ζ ∗3 ◦
(
w(2,1,1) |6W 1

4,(34)
+w(1,2,1) |6W 1

4,(1234)
+w(1,1,2) |6W 1

4,(1324)

)
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and so, substituting (3-33) into the right-hand side of (3-31) gives

ζ ∗(2,1,1) = ζ
∗

4 |6W4

+ζ ∗3 ◦
(
(w(2,1,1)+w(1,1,2)) |6W 1

4,{(34),(1324)}
+w(1,2,1) |6W 1

4,{(24),(1234)}

)
+ζ ∗2 ◦w(2,2) |6W 0

4

+ζ ∗3 ◦ (w(2,1,1) | (1324)+w(1,2,1) | (24)+w(1,1,2) | (34))

+ζ ∗2 ◦ (w(3,1) | (24)+w(1,3))

= ζ ∗4 |6W4

+ζ ∗3 ◦
(
w(2,1,1) |6W 1

4,(34)
+w(1,2,1) |6W 1

4,(1234)
+w(1,1,2) |6W 1

4,(1324)

)
+ζ ∗2 ◦ (w(2,2) |6W 0

4
+w(3,1) | (24)+w(1,3)),

which proves (3-12). Similarly, combining (3-12) and the equations of Lemma 3.8(ii),
we obtain

ζ ∗(2,1,1) |6〈(12)〉

= ζ ∗4 |6S4

+ζ ∗3 ◦
(
w(2,1,1) | (6A4 − e− (12)(34))+w(1,2,1) | (6A4 − (123)− (134))

+w(1,1,2) | (6A4 − (13)(24)− (14)(23))
)

+ζ ∗2 ◦
(
w(2,2) | (6X4 − e− (13)(24))+w(3,1) | (6C4 − e− (1234))

+w(1,3) | (6C4 − (13)(24)− (1234))
)
.

Substituting this into the right-hand side of (3-32) proves (3-13). �

We will show Lemma 3.8 for the completeness of the proof of Proposition 3.4.
For a subgroup H in S4, we define an equivalence relation ≡ on S4 such that

σ ≡ τ mod H if and only if στ−1
∈ H , and we denote by [σ ]H the equivalence

class of σ . Note that [σ ]H is the right coset Hσ of S4. Table 1 below gives
all the equivalence classes in S4 modulo certain subgroups, where we denote by
〈σ1, . . . , σi 〉 the subgroup generated by permutations σ1, . . . , σi . (We have already
used 〈σ 〉 to denote a cyclic subgroup.) We extend the congruence relation ≡ on
S4 to that on its group ring Z[S4], as follows. Let

∑m
i=1 aiσi and

∑n
j=1 b jτ j be

elements in Z[S4]. Without loss of generality, we may assume that σa 6= σb and
τa 6= τb if a 6= b. We then say that

m∑
i=1

aiσi ≡

n∑
j=1

b jτ j mod H

if and only if m = n and there is a permutation ρ ∈ Sm such that ai = bρ(i) and
σi ≡ τρ(i) mod H (i = 1, . . . ,m). The equivalence classes in Table 1 will be
necessary when we prove some congruence equations in Z[S4].
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The following congruence equations in Z[S4] are useful for proving Lemma 3.8.

Lemma 3.9. The following congruence equations hold:

(i)

(23)6〈(34)〉 ≡6W 0
4

mod 〈(12), (34)〉,(3-34)

6V 0
4
6〈(34)〉 ≡

{
6W 1

4
− (34)− (1324) mod 〈(12)〉 or mod 〈(34)〉,

6W 1
4
− (24)− (1234) mod 〈(23)〉,

(3-35)

6V46〈(34)〉 ≡6W4 mod 〈e〉.(3-36)

(ii)

(24)6〈(12)〉 ≡6C4 − e− (1234) mod 〈(12), (123)〉,(3-37)

6〈(12)〉 ≡6C4 − (13)(24)− (1234) mod 〈(23), (234)〉,(3-38)

6W 0
4
6〈(12)〉 ≡6X4 − e− (13)(24) mod 〈(12), (34)〉,(3-39)

6W 1
4,(34)

6〈(12)〉 ≡6A4 − e− (12)(34) mod 〈(12)〉,(3-40)

6W 1
4,(1234)

6〈(12)〉 ≡6A4 − (123)− (134) mod 〈(23)〉,(3-41)

6W 1
4,(1324)

6〈(12)〉 ≡6A4 − (13)(24)− (14)(23) mod 〈(34)〉,(3-42)

6W46〈(12)〉 ≡6S4 mod 〈e〉.(3-43)

Proof. Before proving the congruence equations, we introduce an identity in Z[Sn],
which immediately follows from the definition:

6H6K =6H16K + · · ·+6Hn6K ,(3-44)

where H and K are subsets in Sn such that H1, . . . , Hn are a partition of H (i.e.,
a set of subsets of H satisfying

⋃n
i=1 Hi = H and Hi ∩ H j = φ for i 6= j).

We first prove the congruence equations stated in (i). We obtain from 6〈(34)〉 =

e+ (34) that

(23)6〈(34)〉 = (23)+ (234).(3-45)

Since {(24), (124), (234), (1234)} is an equivalence class modulo 〈(12), (34)〉 as
we see in Table 1,

(234)≡ (24) mod 〈(12), (34)〉.

Thus, noting the definition of W 0
4 in (3-5), we have

(23)6〈(34)〉 ≡ (23)+ (24) = 6W 0
4

mod 〈(12), (34)〉,
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mod All equivalence classes

〈(12), (123)〉 {e, (12), (13), (23), (123), (132)},
{(14), (14)(23), (142), (143), (1423), (1432)},
{(24), (13)(24), (124), (243), (1243), (1324)},
{(34), (12)(34), (134), (234), (1234), (1342)}.

〈(23), (234)〉 {e, (23), (24), (34), (234), (243)},
{(12), (12)(34), (132), (142), (1342), (1432)},
{(13), (13)(24), (123), (143), (1243), (1423)},
{(14), (14)(23), (124), (134), (1234), (1324)}.

〈(12), (34)〉 {e, (12), (34), (12)(34)}, {(13), (132), (143), (1432)},
{(14), (134), (142), (1342)}, {(23), (123), (243), (1243)},
{(24), (124), (234), (1234)}, {(13)(24), (14)(23), (1324), (1423)}.

〈(12)〉 {e, (12)}, {(13), (132)}, {(14), (142)}, {(23), (123)},
{(24), (124)}, {(34), (12)(34)}, {(13)(24), (1324)}, {(14)(23), (1423)},
{(134), (1342)}, {(143), (1432)}, {(234), (1234)}, {(243), (1243)}.

〈(23)〉 {e, (23)}, {(12), (132)}, {(13), (123)}, {(14), (14)(23)},
{(24), (243)}, {(34), (234)}, {(12)(34), (1342)}, {(13)(24), (1243)},
{(124), (1324)}, {(134), (1234)}, {(142), (1432)}, {(143), (1423)}.

〈(34)〉 {e, (34)}, {(12), (12)(34)}, {(13), (143)}, {(14), (134)},
{(23), (243)}, {(24), (234)}, {(13)(24), (1423)}, {(14)(23), (1324)},
{(123), (1243)}, {(124), (1234)}, {(132), (1432)}, {(142), (1342)}.

〈(13)(24)〉 {e, (13)(24)}, {(12), (1423)}, {(13), (24)}, {(14), (1243)},
{(23), (1342)}, {(34), (1324)}, {(12)(34), (14)(23)}, {(123), (142)},
{(124), (143)}, {(132), (234)}, {(134), (243)}, {(1234), (1432)}.

Table 1. All equivalence classes (or all right cosets Hσ ) in S4

modulo subgroups H .

which proves (3-34). A calculation shows that

(1243)6〈(34)〉 = (1243)+ (124),(3-46)

and so we see from (3-44), (3-45), and (3-46) that

(3-47) 6V 0
4
6〈(34)〉= (23)6〈(34)〉+(1243)6〈(34)〉= (23)+(124)+(234)+(1243).

Using (3-47) and the equivalence classes modulo 〈(12)〉, 〈(23)〉, and 〈(34)〉 in
Table 1, we obtain

6V 0
4
6〈(34)〉 ≡

{
(23)+ (24)+ (1234)+ (1243) mod 〈(12)〉 or mod 〈(34)〉,
(23)+ (34)+ (1243)+ (1324) mod 〈(23)〉,

=

{
6W 1

4
− (34)− (1324) mod 〈(12)〉 or mod 〈(34)〉,

6W 1
4
− (24)− (1234) mod 〈(23)〉,
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which proves (3-35). Direct calculations show that

(13)(24)6〈(34)〉 = (13)(24)+ (1324),

(123)6〈(34)〉 = (123)+ (1234),

(243)6〈(34)〉 = (243)+ (24),

which together with (3-47) yields

6V46〈(34)〉 =6{e,(13)(24),(123),(243)}6〈(34)〉+6V 0
4
6〈(34)〉

= e+ (34)+ (13)(24)+ (1324)+ (123)+ (1234)+ (243)+ (24)

+(23)+ (124)+ (234)+ (1243).

We obtain (3-36) because the right-hand side of this equation is 6W4 , by definition.
We next prove the congruence equations stated in (ii). We easily see that

(3-48) (24)6〈(12)〉 = (24)+ (142) and 6〈(12)〉 = e+ (12).

Using (3-48) and the equivalence classes modulo 〈(12), (123)〉 and 〈(23), (234)〉 in
Table 1, we obtain

(24)6〈(12)〉 ≡ (13)(24)+ (1432) = 6C4 − e− (1234) mod 〈(12), (123)〉,

6〈(12)〉 ≡ e+ (1432) = 6C4 − (13)(24)− (1234) mod 〈(23), (234)〉,

which prove (3-37) and (3-38), respectively. A direct calculation shows that

(23)6〈(12)〉 = (23)+ (132),(3-49)

and so we see from (3-48) and (3-49) that

(3-50) 6W 0
4
6〈(12)〉 = (23)6〈(12)〉+ (24)6〈(12)〉 = (23)+ (24)+ (132)+ (142).

Using (3-50) and the equivalence classes modulo 〈(12), (34)〉 in Table 1, we obtain

6W 0
4
6〈(12)〉 ≡ (23)+ (1234)+ (1432)+ (14)

=6X4 − e− (13)(24) mod 〈(12), (34)〉,

which proves (3-39). Direct calculations show that

(3-51)

(34)6〈(12)〉 = (34)+ (12)(34),

(1234)6〈(12)〉 = (1234)+ (134),

(1243)6〈(12)〉 = (1243)+ (143),

(1324)6〈(12)〉 = (1324)+ (14)(23),
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and so we see from (3-50) and (3-51) that

6W 1
4
6〈(12)〉 =6{(34),(1234),(1243),(1324)}6〈(12)〉+6W 0

4
6〈(12)〉

= (34)+(12)(34)+(1234)+(134)+(1243)+(143)+(1324)+(14)(23)

+(23)+ (24)+ (132)+ (142),

which can be restated as

(3-52) 6W 1
4
6〈(12)〉 = (23)+ (24)+ (34)+ (12)(34)+ (14)(23)+ (132)+ (134)

+(142)+ (143)+ (1234)+ (1243)+ (1324).

Equation (3-52) together with the first equation of (3-51) gives

6W 1
4,(34)

6〈(12)〉 =6W 1
4 \{(34)}6〈(12)〉

=6W 1
4
6〈(12)〉− (34)6〈(12)〉

= (23)+ (24)+ (14)(23)

+(132)+ (134)+ (142)+ (143)+ (1234)+ (1243)+ (1324).

Using this equation and the equivalence classes modulo 〈(12)〉 in Table 1, we obtain

(3-53) 6W 1
4,(34)

6〈(12)〉≡ (123)+(124)+(14)(23)+(132)+(134)+(142)+(143)

+(234)+ (243)+ (13)(24) mod 〈(12)〉.

Since (i jk)= (ik)(i j) is an even permutation for a tuple (i, j, k) of distinct integers
i, j, k, and since A4 consists of even permutations in S4 and |A4| = 12, we can
express 6A4 as

(3-54) 6A4 = e+ (12)(34)+ (13)(24)+ (14)(23)

+(123)+ (124)+ (132)+ (134)+ (142)+ (143)+ (234)+ (243).

Combining (3-53) and (3-54) proves (3-40). Similarly, (3-52) together with the
second equation of (3-51) and the equivalence classes modulo 〈(23)〉 in Table 1
yields

(3-55) 6W 1
4,(1234)

6〈(12)〉 = (23)+ (24)+ (34)+ (12)(34)+ (14)(23)

+ (132)+ (142)+ (143)+ (1243)+ (1324)

≡ e+ (243)+ (234)+ (12)(34)+ (14)(23)

+ (132)+ (142)+ (143)+ (13)(24)+ (124)

=6A4 − (123)− (134) mod 〈(23)〉,
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and (3-52) together with the fourth equation of (3-51) and the equivalence classes
modulo 〈(34)〉 in Table 1 yields

(3-56) 6W 1
4,(1324)

6〈(12)〉 = (23)+ (24)+ (34)+ (12)(34)

+ (132)+ (134)+ (142)+ (143)+ (1234)+ (1243)

≡ (243)+ (234)+ e+ (12)(34)

+ (132)+ (134)+ (142)+ (143)+ (124)+ (123)

=6A4 − (13)(24)− (14)(23) mod 〈(34)〉.

Equations (3-55) and (3-56) prove (3-41) and (3-42), respectively. Direct calcula-
tions show that

(3-57)

(13)(24)6〈(12)〉 = (13)(24)+ (1423),

(123)6〈(12)〉 = (123)+ (13),

(124)6〈(12)〉 = (124)+ (14),

(234)6〈(12)〉 = (234)+ (1342),

(243)6〈(12)〉 = (243)+ (1432),

and so we can see from (3-52) and (3-57) that

(3-58) 6W46〈(12)〉 =6{e,(13)(24),(123),(124),(234),(243)}6〈(12)〉+6W 1
4
6〈(12)〉

=6S4,

which proves (3-43), and completes the proof. �

The following statement holds: the maps w(3,1), w(1,3), w(2,2), w(2,1,1), w(1,2,1),
and w(1,1,2) are invariant under the subgroups

〈(12), (123)〉, 〈(23), (234)〉, 〈(12), (34)〉, 〈(12)〉, 〈(23)〉, 〈(34)〉,

respectively. In fact, this statement immediately follows from (3-1) and the fact
that wn is invariant under Sn , i.e., (wn | σ)(ln)=wn(ln) for any σ ∈Sn . Note that
〈(12), (123)〉 and 〈(23), (234)〉 are equivalent to the symmetric groups on {1, 2, 3}
and {2, 3, 4}, respectively.

We are now able to prove Lemma 3.8.

Proof of Lemma 3.8. We can obtain (3-21) by using (3-34) because of the invariance
of w(2,2) under 〈(12), (34)〉. Similarly, we can obtain the equations from (3-22)
through (3-30) by using the congruence equations from (3-35) through (3-43),
respectively. �
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3.2. Renormalization relations. For any real-valued functions f1, . . . , f j of n vari-
ables, we define the product f1 · · · f j of the functions by using the multiplication
in the real number field such that

( f1 · · · f j )(x1, . . . , xn) := f1(x1, . . . , xn)× · · ·× f j (x1, . . . , xn).

For real-valued functions gn1, . . . , gn j such that each gni has ni variables, we define
the function gn1 ⊗ · · ·⊗ gn j of n = n1+ · · ·+ n j variables by

gn1 ⊗ gn2 ⊗ · · ·⊗ gn j (x1, . . . , xn) :=

gn1(x1, . . . , xn1)×gn2(xn1+1, . . . , xn1+n2)×· · ·×gn j (xn1+n2+···+n j−1+1, . . . , xn).

Note that ζ †
(n1,n2,...,n j )

= ζ †
n1
⊗ ζ †

n2
⊗ · · ·⊗ ζ †

n j
. We define a characteristic function

χ̌x
n of the set Nn by

χ̌x
n (ln) :=

{
1 if l1 = · · · = ln = 1,
0 otherwise.

(3-59)

For example, χ̌x
2 · ζ1 ◦w2 is the two-variable function such that

χ̌x
2 · ζ1 ◦w2(l2)= χ̌x

2 (l1, l2)× ζ1 ◦w2(l1, l2) = χ̌x
2 (l1, l2)ζ1(l1+ l2),

and (χ̌x
2 · ζ1 ◦w2)⊗ ζ

x
1 is the three-variable function such that

(χ̌x
2 · ζ1 ◦w2)⊗ ζ

x
1 (l3)= χ̌

x
2 · ζ1 ◦w2(l2)× ζx1 (l3)= χ̌

x
2 (l1, l2)ζ1(l1+ l2)ζ

x
1 (l3).

The renormalization relations for depth less than 5 are written in terms of real-
valued functions, as follows.

Proposition 3.10. We have

ζ ∗1 = ζ
x
1 ,(3-60)

ζ ∗2 = ζ
x
2 −

1
2 χ̌

x
2 · ζ1 ◦w2,(3-61)

ζ ∗3 = ζ
x
3 −

1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
1 +

1
3 χ̌

x
3 · ζ1 ◦w3,(3-62)

ζ ∗4 = ζ
x
4 −

1
2(χ̌

x
2 ·ζ1 ◦w2)⊗ζ

x
2 +

1
3(χ̌

x
3 ·ζ1 ◦w3)⊗ζ

x
1 +

1
16 χ̌

x
4 ·ζ1 ◦w4.(3-63)

We require two lemmas to prove Proposition 3.10.

Lemma 3.11. Let P(T )=
∑n

j=0 a j T j be a polynomial whose degree n is less than
5. Then the constant term of ρ(P(T ))− P(T ) is

(3-64) ρ(P(T )) | T=0− P(0)=


0 (n < 2),

a2ζ1(2) (n = 2),

a2ζ1(2)− 2a3ζ1(3) (n = 3),

a2ζ1(2)− 2a3ζ1(3)+ 27
2 a4ζ1(4) (n = 4).
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Lemma 3.12. Let n be an integer with 1 ≤ n ≤ 4, and let ln = (l1, . . . , ln) ∈ Nn .
Then

Z∗l1(T )≈ 0,(3-65)

Z∗l2(T )≈
1
2 χ̌

x
2 (l2)T

2,(3-66)

Z∗l3(T )≈
1
2 χ̌

x
2 ⊗ ζ

∗

1 (l3)T
2
+

1
6 χ̌

x
3 (l3)T

3,(3-67)

Z∗l4(T )≈
1
2 χ̌

x
2 ⊗ ζ

∗

2 (l4)T
2
+

1
6 χ̌

x
3 ⊗ ζ

∗

1 (l4)T
3
+

1
24 χ̌

x
4 (l4)T

4,(3-68)

where ≈ means the congruence relation on R[T ] modulo RT +R, i.e., P(T ) ≈
Q(T ) if and only if deg(P(T )− Q(T )) < 2.

We will now prove Proposition 3.10. We will then discuss proofs of Lemmas
3.11 and 3.12.

Proof of Proposition 3.10. We first introduce an identity for proving (3-60), (3-61),
(3-62), and (3-63): for any index set ln = (l1, . . . , ln) in Nn with n ≥ 2,

χ̌x
n (ln)ζ1(n)= (χ̌x

n · ζ1 ◦wn)(ln),(3-69)

which can be rewritten in terms of real-valued functions with the domain Nn as

ζ1(n)χ̌x
n = χ̌

x
n · ζ1 ◦wn.

Identity (3-69) is obtained by the fact that χ̌x
n (ln)= 0 unless l1 = · · · = ln = 1, and

the fact that ζ1(n)= ζ1(l1+· · ·+ ln)= ζ1(wn(ln))= ζ1 ◦wn(ln) if l1= · · · = ln = 1
and n ≥ 2.

It follows from (3-64) and (3-65) that

ρ(Z∗l1(T )) | T=0− Z∗l1(0)= 0.

Using (2-5) and (2-8) with T = 0, we can restate this identity as

ζx1 (l1)− ζ
∗

1 (l1)= 0,

which proves (3-60). Similarly, we obtain from (3-64) and (3-66) that

ζx2 (l2)− ζ
∗

2 (l2)=
1
2 χ̌

x
2 (l2)ζ1(2),

which proves (3-61) since χ̌x
2 (l2)ζ1(2)= χ̌x

2 · ζ1 ◦w2(l2) by (3-69). We can obtain
from (3-64) and (3-67) that

ζx3 (l3)− ζ
∗

3 (l3)=
1
2 χ̌

x
2 ⊗ ζ

∗

1 (l3) · ζ1(2)− 1
3 χ̌

x
3 (l3)ζ1(3),

which proves (3-62) since χ̌x
3 (l3)ζ1(3)= χ̌x

3 · ζ1 ◦w3(l3) and

χ̌x
2 ⊗ ζ

∗

1 (l3) · ζ1(2) = (χ̌x
2 (l1, l2)ζ

∗

1 (l3))ζ1(2) = (χ̌x
2 (l1, l2)ζ1(2))ζ ∗1 (l3)

(3-60)
(3-69)
= (χ̌x

2 · ζ1 ◦w2(l1, l2)) · ζ
x
1 (l3) = (χ̌x

2 · ζ1 ◦w2)⊗ ζ
x
1 (l3).
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We can obtain from (3-64) and (3-68) that

(3-70) ζx4 (l4)− ζ
∗

4 (l4)
=

1
2 χ̌

x
2 ⊗ ζ

∗

2 (l4) · ζ1(2)− 1
3 χ̌

x
3 ⊗ ζ

∗

1 (l4) · ζ1(3)+ 9
16 χ̌

x
4 (l4)ζ1(4).

The first term on the right-hand side of (3-70) can be calculated as

1
2 χ̌

x
2 ⊗ ζ

∗

2 (l4) · ζ1(2)= 1
2 χ̌

x
2 ⊗ ζ

x
2 (l4) · ζ1(2)− 5

8 χ̌
x
4 (l4)ζ1(4).(3-71)

In fact, we see from (3-61) and (3-69) that ζ ∗2 (l3, l4)= ζ
x
2 (l3, l4)−

1
2 χ̌

x
2 (l3, l4)ζ1(2),

and so

1
2 χ̌

x
2 ⊗ ζ

∗

2 (l4) · ζ1(2)= 1
2 χ̌

x
2 (l1, l2)ζ

∗

2 (l3, l4)ζ1(2)

=
1
2 χ̌

x
2 (l1, l2)ζ

x
2 (l3, l4)ζ1(2)− 1

4 χ̌
x
2 (l1, l2)χ̌

x
2 (l3, l4)ζ1(2)2

=
1
2 χ̌

x
2 ⊗ ζ

x
2 (l4) · ζ1(2)− 1

4 χ̌
x
4 (l4)ζ1(2)2,

where we note that, by definition, χ̌x
4 (l4) = χ̌

x
2 (l1, l2)χ̌

x
2 (l3, l4). This equality

proves (3-71) because

ζ1(2)2 = 5
2ζ1(4),(3-72)

which follows from Euler’s results ζ1(2)= π2/6 and ζ1(4)= π2/90. Since

χ̌x
3 ⊗ ζ

∗

1 (l4)= χ̌
x
3 ⊗ ζ

x
1 (l4)

by (3-60), combining (3-70) and (3-71) gives

(3-73) ζx4 (l4)− ζ
∗

4 (l4)
=

1
2 χ̌

x
2 ⊗ ζ

x
2 (l4) · ζ1(2)− 1

3 χ̌
x
3 ⊗ ζ

x
1 (l4) · ζ1(3)− 1

16 χ̌
x
4 (l4)ζ1(4).

By (3-69), the right-hand side of (3-73) can be rewritten as

(3-74) (RHS of (3-73))

=
1
2(ζ1(2)χ̌x

2 )⊗ ζ
x
2 (l4)−

1
3(ζ1(3)χ̌x

3 )⊗ ζ
x
1 (l4)−

1
16 χ̌

x
4 (l4)ζ1(4)

=
1
2(χ̌

x
2 ·ζ1 ◦w2)⊗ζ

x
2 (l4)−

1
3(χ̌

x
3 ·ζ1 ◦w3)⊗ζ

x
1 (l4)−

1
16 χ̌

x
4 ·ζ1 ◦w4(l4).

Equating (3-73) and (3-74), we obtain (3-63). �

We will now show Lemmas 3.11 and 3.12 for the completeness of the proof of
Proposition 3.10.

Proof of Lemma 3.11. Let O denote the Landau symbol. By definition,

A(u)=
∞∑

k=0

γkuk
= exp

( ∞∑
m=2

(−1)mζ1(m)
m

um
)

(3-75)
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near u = 0. Thus,

A(u)=1+
(
ζ1(2)

2
u2
−
ζ1(3)

3
u3
+
ζ1(4)

4
u4
+O(u5)

)
+

1
2

(
ζ1(2)

2
u2
+O(u3)

)2

+ · · ·

= 1+
ζ1(2)

2
u2
−
ζ1(3)

3
u3
+

(
ζ1(4)

4
+
ζ1(2)2

8

)
u4
+ O(u5),

and so

γ0 = 1, γ1 = 0, γ2 =
ζ1(2)

2
, γ3 =−

ζ1(3)
3
,

γ4 =
2ζ1(4)+ ζ1(2)2

8
=

9ζ1(4)
16

where we have used (3-72) for the last equality. Therefore, we see from (2-7) that

ρ(T j )=



1 ( j = 0),

T ( j = 1),

T 2
+ ζ1(2) ( j = 2),

T 3
+ 3ζ1(2)T − 2ζ1(3) ( j = 3),

T 4
+ 6ζ1(2)T 2

− 8ζ1(3)T + 27
2 ζ1(4) ( j = 4),

and so ρ(1) | T=0=1, ρ(T ) | T=0=0, ρ(T 2) | T=0=ζ1(2), ρ(T 3) | T=0=−2ζ1(3),
and ρ(T 4) | T=0 = 27ζ1(4)/2. Since

ρ(P(T )) | T=0− P(0)=
n∑

j=0

a jρ(T j ) | T=0− a0,

we obtain (3-64). �

Proof of Lemma 3.12. We first recall a result in [Ihara et al. 2006] that will be
required to prove Lemma 3.12. Let regT

∗
: H1
∗
(' H0

∗
[y])→ H0

∗
[T ] be the algebra

homomorphism defined in [Ihara et al. 2006, Section 3], which is characterized by
the property that it is the identity on H0 and sends y to T . Let reg∗ : H

1
∗
→ H0

∗
be

the algebra homomorphism obtained by specializing regT
∗

to T = 0. It immediately
follows that

Z(reg∗(zk1 · · · zkn ))= Z∗(zk1 · · · zkn ) | T=0 = ζ ∗n (k1, . . . , kn)

for positive integers k1, . . . , kn , since Z∗ : H1
∗
→ R[T ] is the homomorphism

characterized by the property that it extends the evaluation map Z : H0
→ R and
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sends y to T. Ihara et al. [2006, Corollary 5] showed that

w =

m∑
j=0

1
j !

reg∗(y
m− jw0)∗ y∗ j ,(3-76)

for w ∈ H1, w0 ∈ H
0, and m ≥ 0 with w = ymw0.

We set w = zl1 · · · zln ∈ H
1 for the given index set ln . The element w0 can be

written as w0 = zlm+1 · · · zln , where lm+1 ≥ 2. (We set w0 = 1 if l1 = · · · = ln = 1.)
Let {1}k denote k repetitions of 1. Applying Z∗ to both sides of (3-76) gives

Z∗ln (T )=
m∑

j=0

T j

j !
ζ ∗n− j ({1}

m− j , lm+1, . . . , ln),(3-77)

where we define ζ ∗0 (φ) = 1 for the case that j = m = n. For an integer j with
0≤ j ≤ m, we see from (3-59) and l1 = · · · = lm = 1 that χ̌x

j (l1, . . . , l j )= 1, and
so

(3-78) ζ ∗n− j ({1}
m− j , lm+1, . . . , ln)= ζ

∗

n− j (l j+1, . . . , lm, lm+1, . . . , ln)

= χ̌x
j (l1, . . . , l j )ζ

∗

n− j (l j+1, . . . , ln)

= χ̌x
j ⊗ ζ

∗

n− j (ln),

where we define χ̌x
0 (φ) = 1 and χ̌x

0 ⊗ ζ
∗
n (ln) = ζ ∗n (ln). Combining (3-77) and

(3-78), we obtain

Z∗ln (T )=
m∑

j=0

T j

j !
χ̌x

j ⊗ ζ
∗

n− j (ln).(3-79)

Since lm+1 ≥ 2, it follows from (3-59) that χ̌x
j (l1, . . . , l j )= 0 if m < j ≤ n. Thus,

(3-79) can be rewritten as

(3-80) Z∗ln (T )=
n∑

j=0

T j

j !
χ̌x

j ⊗ ζ
∗

n− j (ln).

Identities (3-65), (3-66), (3-67), and (3-68) are obtained from (3-80) for n = 1, 2, 3,
and 4, respectively. �

4. Proofs

4.1. Proof of Theorem 1.1. Before proving Theorem 1.1 we introduce the follow-
ing identity, which can be easily obtained by definitions (1-1) and (3-59): For
n ≥ 2,

χx
n + χ̌

x
n = 1n,(4-1)
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where 1n is the constant function whose value is 1. Identity (4-1) dose not hold
when n = 1, but we will not need this case.

We now prove (1-2) and (1-3) in Theorem 1.1.

Proof of (1-2). By (3-7), we easily obtain

ζ ∗2 |6C2 = ζ
∗

(1,1)− ζ1 ◦w2,(4-2)

which proves (1-2) for †= ∗.
We can deduce the following identities from (3-60) and (3-61):

ζ ∗(1,1) = ζx(1,1) and ζ ∗2 |6C2 = ζx2 |6C2 − χ̌
x
2 · ζ1 ◦w2,(4-3)

where we have used in the second identity the property that χ̌x
2 · ζ1 ◦w2 is invariant

under S2, or χ̌x
2 ·ζ1 ◦w2 |6C2 = 2χ̌x

2 ·ζ1 ◦w2. Substituting (4-3) into (4-2) gives

ζx2 |6C2 − χ̌
x
2 · ζ1 ◦w2 = ζ

x
(1,1)− ζ1 ◦w2.

By (4-1) with n = 2, we can write this identity as

ζx2 |6C2 = ζ
x
(1,1)−χ

x
2 · ζ

x
1 ◦w2,(4-4)

which proves (1-2) for †=x. �

Proof of (1-3). Since C3 = {e, (123), (132)} and U3 = {e, (23), (123)}, direct
calculations give the following equations in Z[S3]:

(123)6C3 =6C3, 6U36C3 =6S3 +6C3 .

We thus see from (3-8) that

ζ ∗(2,1) |6C3 = ζ
∗

3 | (6S3 +6C3)+ ζ
∗

2 ◦ (w(2,1)+w(1,2)) |6C3 .(4-5)

Subtracting (4-5) from (3-9), we obtain ζ ∗(1,1,1)− ζ
∗

(2,1) |6C3 =−ζ
∗

3 |6C3 + ζ1 ◦w3.
This identity is equivalent to

ζ ∗3 |6C3 =−ζ
∗

(1,1,1)+ ζ
∗

(2,1) |6C3 + ζ1 ◦w3,(4-6)

which proves (1-3) for †= ∗.
We can deduce the following identities from (3-60), (3-61), and (3-62):

ζ ∗(1,1,1) = ζ
x
(1,1,1),(4-7)

ζ ∗(2,1) |6C3 = ζ
x
(2,1) |6C3 −

1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
1 |6C3,(4-8)

ζ ∗3 |6C3 = ζ
x
3 |6C3 −

1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
1 |6C3 + χ̌

x
3 · ζ1 ◦w3,(4-9)

where we have used in the third identity the property that χ̌x
3 · (ζ1 ◦w3) is invariant

under S3. By (4-1) with n= 3, substituting (4-7), (4-8), and (4-9) into (4-6) yields

ζx3 |6C3 =−ζ
x
(1,1,1)+ ζ

x
(2,1) |6C3 +χ

x
3 · ζ1 ◦w3.(4-10)
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Identity (4-10) proves (1-3) for †=x, and we complete the proof. �

We now prepare two lemmas before proving (1-4), because the proof of (1-4) is
more complicated than those of (1-2) and (1-3). The identities of Lemma 4.1 (resp.
Lemma 4.2) correspond to (4-5) (resp. (4-7), (4-8), and (4-9) ) in the proof of (1-3).

Lemma 4.1. We have

ζ ∗(3,1) |6C4 = ζ
∗

4 | (26C4+(12)6C4+(34)6C4)(4-11)

+ζ ∗3 ◦(w(2,1,1)+w(1,2,1)+w(1,1,2)) | (6A4−(13)6C4−(23)6C4),

ζ ∗(2,2) |6C0
4
= ζ ∗4 | (6C4+(14)6C4+(23)6C4)(4-12)

+ζ ∗3 ◦(w(2,1,1)+w(1,2,1)+w(1,1,2)) | (23)6C4

+ζ ∗2 ◦w(2,2) | (23)6C0
4
,

ζ ∗(2,1,1) |6C4 = ζ
∗

4 | (26S4+6C4−(13)6C4)(4-13)

+ζ ∗3 ◦(w(2,1,1)+w(1,2,1)+w(1,1,2)) | (26A4−(13)6C4)

+ζ ∗2 ◦(w(2,2) | (6C4+2(23)6C0
4
)+(w(3,1)+w(1,3)) |6C4).

Lemma 4.2. We have

ζ ∗(1,1,1,1) = ζ
x
(1,1,1,1),(4-14)

ζ ∗(2,1,1) |6C4 = ζ
x
(2,1,1) |6C4 −

1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
(1,1) |6C4,(4-15)

ζ ∗(2,2) |6C0
4
= ζx(2,2) |6C0

4
−

1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
2 |6C4 +

5
4 χ̌

x
4 · ζ1 ◦w4,(4-16)

ζ ∗(3,1) |6C4 = ζ
x
(3,1) |6C4 −

1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
(1,1) |6C4(4-17)

+
1
3(χ̌

x
3 · ζ1 ◦w3)⊗ ζ

x
1 |6C4,

ζ ∗4 |6C4 = ζ
x
4 |6C4 −

1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
2 |6C4(4-18)

+
1
3(χ̌

x
3 · ζ1 ◦w3)⊗ ζ

x
1 |6C4 +

1
4 χ̌

x
4 · ζ1 ◦w4.

We now prove (1-4). We will then discuss proofs of Lemmas 4.1 and 4.2.

Proof of identity (1-4). Direct calculations show that

(4-19)

6C4 = e+ (13)(24)+ (1234)+ (1432),

(12)6C4 = (12)+ (143)+ (234)+ (1324),

(13)6C4 = (13)+ (24)+ (12)(34)+ (14)(23),

(14)6C4 = (14)+ (123)+ (243)+ (1342),

(23)6C4 = (23)+ (134)+ (142)+ (1243),

(34)6C4 = (34)+ (124)+ (132)+ (1423),
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from which we see that

6S4 = (e+ (12)+ (13)+ (14)+ (23)+ (34))6C4,(4-20)

i.e., {C4, (12)C4, (13)C4, (14)C4, (23)C4, (34)C4} gives a left C4-coset decomposi-
tion of S4. By (4-20), the sum of (4-11) and (4-12) yields

ζ ∗(3,1) |6C4 + ζ
∗

(2,2) |6C0
4
= ζ ∗4 | (6S4 + 26C4 − (13)6C4)

+ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) | (6A4 − (13)6C4)

+ζ ∗2 ◦w(2,2) | (23)6C0
4
.

Subtracting (4-13) from this identity, we obtain

(4-21) ζ ∗(3,1) |6C4 + ζ
∗

(2,2) |6C0
4
− ζ ∗(2,1,1) |6C4

=−ζ ∗4 | (6S4 −6C4)

− ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) |6A4

− ζ ∗2 ◦ (w(2,2) |6C4 + (23)6C0
4
)+ (w(3,1)+w(1,3)) |6C4).

We see from (3-6) and the equivalence classes modulo 〈(12), (34)〉 in Table 1 that
6X4 = (14)+(23)+6C4 ≡ (23)+(134)+6C4 = (23)6C0

4
+6C4 mod 〈(12), (34)〉,

and so

w(2,2) |6X4 = w(2,2) | (6C4 + (23)6C0
4
).

Thus the sum of (3-13) and (4-21) yields

ζ ∗(3,1) |6C4 + ζ
∗

(2,2) |6C0
4
− ζ ∗(2,1,1) |6C4 + ζ

∗

(1,1,1,1) = ζ
∗

4 |6C4 + ζ1 ◦w4,

which is equivalent to

ζ ∗4 |6C4 = ζ
∗

(1,1,1,1)− ζ
∗

(2,1,1) |6C4 + ζ
∗

(2,2) |6C0
4
+ ζ ∗(3,1) |6C4 − ζ1 ◦w4.(4-22)

Identity (4-22) proves (1-4) for †= ∗.
Combining (4-14)–(4-17) (or considering (4-14) − (4-15) + (4-16) + (4-17),

roughly speaking), we can restate the right-hand side of (4-22) as

(4-23) (RHS of (4-22))= ζx(1,1,1,1)− ζ
x
(2,1,1) |6C4 + ζ

x
(2,2) |6C0

4
+ ζx(3,1) |6C4

−
1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
2 |6C4

+
1
3(χ̌

x
3 · ζ1 ◦w3)⊗ ζ

x
1 |6C4

+ ( 5
4 χ̌

x
4 − 14) · (ζ1 ◦w4).

Equating (4-18), (4-22), and (4-23), we obtain

ζx4 |6C4 = ζ
x
(1,1,1,1)−ζ

x
(2,1,1) |6C4+ζ

x
(2,2) |6C0

4
+ζx(3,1) |6C4+(χ̌

x
4 −14) ·(ζ1◦w4),
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which, together with (4-1) of n = 4, proves (1-4) for †=x, and we complete the
proof. �

We will show Lemmas 4.1 and 4.2 for the completeness of the proof of (1-4).
We first prove Lemma 4.2.

Proof of Lemma 4.2. We easily see from (3-60) that ζ ∗({1}n) = ζ
x
({1}n), which with

n = 4 proves (4-14). Multiplying both sides of (3-61) by ζ ∗(1,1) = ζ
x
(1,1) from the

right, in the sense of the operator ⊗, gives

ζ ∗(2,1,1) = ζ
x
(2,1,1)−

1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
(1,1).

Applying 6C4 to both sides of this equation, we obtain (4-15). We can similarly
obtain (4-17), by using (3-62) and ζ ∗1 = ζ

x
1 instead of (3-61) and ζ ∗(1,1) = ζ

x
(1,1),

respectively. We also obtain (4-18) by applying 6C4 to both sides of (3-63), since
χ̌x

4 · (ζ1 ◦w4) is invariant under S4.
We prove (4-16). We easily see that f ⊗g | (13)(24)= g⊗ f for any functions f

and g of two variables, and so we obtain from (3-61) and ζ ∗(2,2) = ζ
∗

2 ⊗ ζ
∗

2 (= ζ
∗

2
⊗2)

that

(4-24) ζ ∗(2,2) = (ζ
x
2 −

1
2 χ̌

x
2 ·ζ1 ◦w2)⊗(ζ

x
2 −

1
2 χ̌

x
2 ·ζ1 ◦w2)

= ζx(2,2)−
1
2(χ̌

x
2 ·ζ1 ◦w2)⊗ζ

x
2 | (e+(13)(24))+ 1

4(χ̌
x
2 ·ζ1 ◦w2)

⊗2.

We see from (3-69), (3-72), and χ̌x
2
⊗2
= χ̌x

4 that

(χ̌x
2 · ζ1 ◦w2)

⊗2
= ζ1(2)2χ̌x

2
⊗2
=

5
2ζ1(4)χ̌x

4 =
5
2 χ̌

x
4 · ζ1 ◦w4,

by which we can restate (4-24) as

ζ ∗(2,2) = ζ
x
(2,2)−

1
2(χ̌

x
2 · ζ1 ◦w2)⊗ ζ

x
2 |6〈(13)(24)〉+

5
8 χ̌

x
4 · ζ1 ◦w4.(4-25)

Since C0
4 = {e, (1234)} ⊂ C4 = {e, (1234), (13)(24), (1432)},

6〈(13)(24)〉6C0
4
=6C4 .(4-26)

Applying 6C0
4

to both sides of (4-25), we obtain (4-16), and this completes the
proof. �

We now prove Lemma 4.1.

Proof of Lemma 4.1. Let σ ∈ {(12), (23), (34)}. By the equivalence classes modulo
〈σ 〉 in Table 1 and straightforward calculations, (3-54) yields

26A4 ≡6S4 mod 〈σ 〉,(4-27)
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and (4-19) yields

(4-28)

6C4 ≡ (12)6C4 , (13)6C4 ≡ (34)6C4 , (14)6C4 ≡ (23)6C4 mod 〈(12)〉,

6C4 ≡ (23)6C4 , (12)6C4 ≡ (34)6C4 , (13)6C4 ≡ (14)6C4 mod 〈(23)〉,

6C4 ≡ (34)6C4 , (12)6C4 ≡ (13)6C4 , (14)6C4 ≡ (23)6C4 mod 〈(34)〉.

Thus, we deduce from (4-20) that

6A4 ≡ α6C4 +β6C4 + γ6C4 mod 〈σ 〉,(4-29)

where (α, β, γ ) is a 3-tuple of {e, (12), (13), (14), (23), (34)} such that

(4-30)


α ∈ {e, (12)}, β ∈ {(13), (34)}, γ ∈ {(14), (23)} (σ = (12)),

α ∈ {e, (23)}, β ∈ {(12), (34)}, γ ∈ {(13), (14)} (σ = (23)),

α ∈ {e, (34)}, β ∈ {(12), (13)}, γ ∈ {(14), (23)} (σ = (34)).

We now prove (4-11). Since either gC4=hC4 or gC4∩hC4=φ for any g, h ∈S4,
we can see from the first and second equations of (4-19) that

(1234)6C4 = 6C4 and (234)6C4 = (12)6C4,

respectively. By (3-3) and (3-44), we obtain

6U46C4 =6C4 + (34)6C4 + (234)6C4 + (1234)6C4 = 26C4 + (12)6C4 + (34)6C4

Thus, applying 6C4 to both sides of (3-10) yields

(4-31) ζ ∗(3,1) |6C4 = ζ
∗

4 | (26C4 + (12)6C4 + (34)6C4)

+ζ ∗3 ◦
(
(w(2,1,1)+w(1,2,1)) | (12)6C4 +w(1,1,2) |6C4

)
.

We know from (4-29) and (4-30) that

6A4 ≡ (13)6C4 + (23)6C4 +

{
(12)6C4 mod 〈(12)〉 or mod 〈(23)〉,

6C4 mod 〈(34)〉.

Since w(2,1,1), w(1,2,1), and w(1,1,2) are invariant under 〈(12)〉, 〈(23)〉, and 〈(34)〉,
respectively, we have

w(i, j,k) | (6A4 − (13)6C4 − (23)6C4)

≡

{
w(i, j,k) | (12)6C4 ((i, j, k)= (2, 1, 1), (1, 2, 1)),
w(i, j,k) |6C4 ((i, j, k)= (1, 1, 2)),

and so

(4-32) ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) | (6A4 − (13)6C4 − (23)6C4)

= ζ ∗3 ◦
(
(w(2,1,1)+w(1,2,1)) | (12)6C4 +w(1,1,2) |6C4

)
.



336 TOMOYA MACHIDE

Combining (4-31) and (4-32), we obtain (4-11).
We can easily see that

6V 0
4
= (23)6〈(13)(24)〉 and 6V4 = (e+ (123)+ (23))6〈(13)(24)〉,

which together with (4-26) give

6V 0
4
6C0

4
= (23)6C4 and 6V46C0

4
= 6C4 + (14)6C4 + (23)6C4,

respectively, where we note that (123)6C4 = (14)6C4 by the fourth equation of
(4-19). Thus, applying 6C0

4
to both sides of (3-11), we obtain (4-12).

Lastly, we prove (4-13). We can obtain the following identity by applying 6C4

to both sides of (3-12):

(4-33) ζ ∗(2,1,1) |6C4 = ζ
∗

4 | (26S4 +6C4 − (13)6C4)

+ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) | (26A4 + (23)6C4 − (14)6C4)

−ζ ∗3 ◦ (w(2,1,1) | (34)6C4 +w(1,2,1) |6C4 +w(1,1,2) | (12)6C4)

+ζ ∗2 ◦ (w(2,2) | (6C4 + 2(23)6C0
4
)+ (w(3,1)+w(1,3)) |6C4).

(We will prove (4-33) in Lemma 4.3 below because the proof is not short.) We can
also obtain by (4-28)

(23)6C4 + (13)6C4 ≡ (14)6C4 +


(34)6C4 mod 〈(12)〉,
6C4 mod 〈(23)〉,
(12)6C4 mod 〈(34)〉.

Thus, (w(2,1,1)+w(1,2,1)+w(1,1,2)) | (13)6C4 can be expressed as

(w(2,1,1)+w(1,2,1)+w(1,1,2)) | (13)6C4

= (w(2,1,1)+w(1,2,1)+w(1,1,2)) | (−(23)6C4 + (14)6C4)

+(w(2,1,1) | (34)6C4 +w(1,2,1) |6C4 +w(1,1,2) | (12)6C4).

Adding −(w(2,1,1)+w(1,2,1)+w(1,1,2)) | (26A4) to both sides of this equation, and
then multiplying both sides by −1, we obtain

(4-34) ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) | (26A4 − (13)6C4)

= ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) | (26A4 + (23)6C4 − (14)6C4)

−ζ ∗3 ◦ (w(2,1,1) | (34)6C4 +w(1,2,1) |6C4 +w(1,1,2) | (12)6C4).

Combining (4-33) and (4-34) proves (4-13). �

Lemma 4.3. (i) Let σ ∈ {(12), (23), (34)}. The following congruence equations
hold:

6W 0
4
6C4 ≡6C4 + 2(23)6C0

4
mod 〈(12), (34)〉,(4-35)
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6W 1
4
6C4 ≡ 26A4 + (23)6C4 − (14)6C4 mod 〈σ 〉,(4-36)

6W46C4 ≡ 26S4 +6C4 − (13)6C4 mod 〈e〉.(4-37)

(ii) Identity (4-33) holds.

Proof. We first prove the assertion (i). We see from (3-5) and (3-44) that

6W 0
4
6C4 = (23)6C4 + (24)6C4

and from the third equation of (4-19), we see that

(24)6C4 = (13)6C4 .

We thus obtain

6W 0
4
6C4 = (13)6C4 + (23)6C4 .(4-38)

Equation (4-38) proves (4-35), since

(13)6C4 ≡ (1432)+ (1234)+ e+ (13)(24) = 6C4 mod 〈(12), (34)〉,

(23)6C4 ≡ 2((23)+ (134)) = 2(23)6C0
4

mod 〈(12), (34)〉,

which can be seen from the equivalence classes modulo 〈(12), (34)〉 in Table 1. By
virtue of (4-20), calculations similar to (4-38) show that

(4-39) 6W 1
4
6C4 =6{(34),(1234),(1243),(1324)}6C4+6W 0

4
6C4

= ((34)6C4+6C4+(23)6C4+(12)6C4)+((13)6C4+(23)6C4)

=6C4+(12)6C4+(13)6C4+2(23)6C4+(34)6C4

=6S4+(23)6C4−(14)6C4,

and

(4-40) 6W46C4 =6{e4,(13)(24),(123),(124),(234),(243)}6C4 +6W 1
4
6C4

= (6C4 +6C4 + (14)6C4 + (34)6C4 + (12)6C4 + (14)6C4)

+ (6S4 + (23)6C4 − (14)6C4)

=6S4 + 26C4 + (12)6C4 + (14)6C4 + (23)6C4 + (34)6C4

= 26S4 +6C4 − (13)6C4 .

Then we obtain (4-36) by (4-27) and (4-39), and obtain (4-37) by (4-40).
We now prove the assertion (ii), or (4-33). We can deduce from (4-35), (4-36),

and (4-37) that

ζ ∗2 ◦w(2,2) |6W 0
4
6C4 = ζ

∗

2 ◦w(2,2) | (6C4 + 2(23)6C0
4
),(4-41)

ζ ∗3 ◦w(i, j,k) |6W 1
4
6C4 = ζ

∗

3 ◦w(i, j,k) | (26A4 + (23)6C4 − (14)6C4),(4-42)
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ζ ∗4 |6W46C4 = ζ
∗

4 | (26S4 +6C4 − (13)6C4),(4-43)

respectively, where (i, j, k) ∈ {(2, 1, 1), (1, 2, 1), (1, 1, 2)}. Applying 6C4 to both
sides of (3-12) and substituting (4-41), (4-42), and (4-43) into it, we obtain

(4-44) ζ ∗(2,1,1) |6C4 = ζ
∗

4 | (26S4 +6C4 − (13)6C4)

+ζ ∗3 ◦ (w(2,1,1)+w(1,2,1)+w(1,1,2)) | (26A4 + (23)6C4 − (14)6C4)

−ζ ∗3 ◦(w(2,1,1) | (34)6C4+w(1,2,1) | (1234)6C4+w(1,1,2) | (1324)6C4)

+ζ ∗2 ◦ (w(2,2) | (6C4 + 2(23)6C0
4
)+w(3,1) | (24)6C4 +w(1,3) |6C4).

We see from the third equation of (4-19) and the equivalence classes modulo
〈(12), (123)〉 in Table 1 that

(24)6C4 = (13)+ (24)+ (12)(34)+ (14)(23)

≡ e+ (13)(24)+ (1234)+ (1432)=6C4 mod 〈(12), (123)〉,

and so

ζ ∗2 ◦w(3,1) | (24)6C4 = ζ
∗

2 ◦w(3,1) |6C4 .(4-45)

We also have

ζ ∗3 ◦w(1,2,1) | (1234)6C4 = ζ
∗

3 ◦w(1,2,1) |6C4,(4-46)

ζ ∗3 ◦w(1,1,2) | (1324)6C4 = ζ
∗

3 ◦w(1,1,2) | (12)6C4,(4-47)

since (1234)6C4 =6C4 and (1324)6C4 = (12)6C4 by the first and second equations
of (4-19), respectively. Combining (4-44), (4-45), (4-46), and (4-47), we obtain
(4-33). �

4.2. Proof of Theorem 1.2. We denote by P(A) the set of partitions of a set A; if
A is the empty set φ, we set P(φ)= {φ}. We denote by Nn the subset {1, 2, . . . , n}
in the set N.

For †∈ {∗,x}, ln = (l1, . . . , ln)∈Nn , and5={P1, . . . , Pm} ∈P(Nn), we define
a polynomial Z†

ln;5(T ) with real coefficients by

Z†
ln;5(T ) :=

m∏
i=1

χ†(ln; Pi )Z
†
lPi
(T ),(4-48)

where lPi =
∑

p∈Pi
lp. For example,

Z†
(2,1,1);{{1,2,3}}(T )= Z†

2+1+1(T )= ζ1(4)

and
Z†
(2,1,1);{{1,2},{3}}(T )= Z†

2+1(T )Z
†
1(T )= ζ1(3)T,
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where note that χ†((2,1,1); {1,2,3})=χ†((2,1,1); {1,2})=χ†((2,1,1); {3})= 1
by the definition (1-7). Since Z†

k (T ) = ζ
†
1 (k) for k ≥ 2, we can see from (1-6)

and (4-48) that the difference between Z†
ln;5(T ) and ζ †(ln;5) depends on only the

difference between Z†
1(T )= T and ζ †

1 (1)= 0, and so

Z†
ln;5(T )

∣∣
T=0 = ζ

†(ln;5).

By the correspondence between H1 and the algebra of quasisymmetric functions,
which is given by

zl1 · · · zln ←→ M(l1,...,ln) :=

∑
i1<···<in

t l1
i1
· · · t ln

in
∈ proj lim

p
Z[t1, . . . , tp],

we can restate [Hoffman 2015, Theorem 2.3] as∑
σ∈Sn

zlσ(1) · · · zlσ(n) =
∑

5={P1,...,Pm}∈P(Nn)

c̃n(5)zlP1
∗ · · · ∗ zlPm

.(4-49)

We see from (1-7) that χ∗(ln; P)= 1 for any ln ∈ Nn and P ⊂ Nn . Thus, applying
Z∗ to both sides of (4-49) yields the following identity (4-50). Since S−1

n =Sn ,
(4-50) with T = 0 proves (1-8) for †= ∗.

Theorem 4.4 (see [Hoffman 2015, Theorem 2.3]). For any index set ln=(l1, . . . , ln)

in Nn , ∑
σ∈Sn

Z∗lσ(1),...,lσ(n)(T )=
∑

5∈P(Nn)

c̃n(5)Z∗ln;5(T ).(4-50)

We may show (4-51) in order to prove (1-8) for †=x, or Theorem 1.2.

Proposition 4.5. For any index set ln = (l1, . . . , ln) in Nn ,

ρ

( ∑
5∈P(Nn)

c̃n(5)Z∗ln;5(T )
)
=

∑
5∈P(Nn)

c̃n(5)Zx
ln;5(T ).(4-51)

In fact, we can easily prove Theorem 1.2, as follows.

Proof of Theorem 1.2. We see from (2-8) that

ρ

( ∑
σ∈Sn

Z∗lσ(1),...,lσ(n)(T )
)
=

∑
σ∈Sn

Zx
lσ(1),...,lσ(n)(T ).(4-52)

By (4-51) and (4-52), applying ρ to both sides of (4-50) yields

(4-53)
∑
σ∈Sn

Zx
lσ(1),...,lσ(n)(T )=

∑
5∈P(Nn)

c̃n(5)Zx
ln;5(T )

which with T = 0 proves (1-8) for †=x. �
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For subsets A and B in Nn , we define a subset PB(A) in P(A) by

PB(A) := {5= {P1, . . . , Pm} ∈ P(A) | Pi 6⊂ B for all i}.

For example, if A = {1, 2, 3} and B = {3, 4}, then

PB(A)=
{
{{1}, {2, 3}}, {{2}, {1, 3}}, {{1, 2, 3}}

}
,

where

P(A)=
{
{{1}, {2}, {3}}, {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}, {{1, 2, 3}}

}
.

We note that PB(A)= φ if A = φ (or P(A)= {φ}), because the empty set φ is a
subset of any set, i.e., φ ⊂ B. We denote by Acn = Ac the complement of A in Nn ,
and by t the disjoint union.

We will show (4-51) for the completeness of the proof of Theorem 1.2. For this,
we will require Lemmas 4.7, 4.8, and 4.9.

Remark 4.6. The condition B 6= Nn in Lemma 4.7 is necessary for taking an
element in PB(Ac). In fact, if B = Nn , then P ⊂ B for any subset P in Ac, and so
PB(Ac)= φ. That is, (4-54) in Lemma 4.7 does not hold in the case that B = Nn .

Lemma 4.7. For any subset B ⊂ Nn with B 6= Nn , we have⊔
A⊂B
{4t1 | (4,1) ∈ P(A)×PB(Ac)} = P(Nn),(4-54)

where the disjoint union
⊔

A⊂B ranges over all subsets in B, which include the
empty set φ.

We require some notation to state Lemma 4.8. Let A be a subset in Nn , and let
4= {P1, . . . , Pg} be a partition in P(A). We can define a partition in P(Ns) that
is induced from A and 4, as follows. Let a1 < · · ·< as be the increasing sequence
of integers such that A = {a1, . . . , as}. Let σA be the permutation of Sn that is
uniquely determined by

σ−1
A (i)= ai (i = 1, . . . , s) and σ−1

A (s+ 1) < · · ·< σ−1
A (n);

by the definition, σ(A)= {σA(a1), . . . , σA(as)} = {1, . . . , s} =Ns . We then define
the partition induced from A and 4 as

σA(4) := {σA(P1), . . . , σA(Pg)} ∈ P(Ns).

We define σA(4)= φ if A =4= φ.

Lemma 4.8. Let A, B, and (4,1) be as in Lemma 4.7, i.e., let A and B be subsets
with A ⊂ B 6= Nn , and let (4,1) be an element in P(A)× PB(Ac). We define
|φ| = 0 and c̃0(φ)= Z†

φ;φ(T )= 1.
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(i) We have

(4-55) c̃n(4∪1)= c̃|A|(4)c̃|Ac|(1).

(ii) Let † ∈ {∗,x}, and let ln = (l1, . . . , ln) ∈ Nn with ln 6= ({1}n). If B =
{ j ∈ Nn | l j = 1}, then

Z†
ln;4∪1(T )=

( h∏
i=1

ζ1(lQi )

)
Z†
{1}|A|;σA(4)

(T ),(4-56)

where Q1, . . . , Qh mean the parts of 1 (i.e., 1= {Q1, . . . , Qh}).

Lemma 4.9. For a positive integer n, we have∑
5∈P(Nn)

c̃n(5)Z∗{1}n;5(T )= ρ
−1(T n),(4-57)

∑
5∈P(Nn)

c̃n(5)Zx
{1}n;5(T )= T n.(4-58)

We now prove Proposition 4.5. We will then discuss proofs of Lemmas 4.7–4.9.

Proof of Proposition 4.5. Let B = { j ∈Nn | l j = 1} ⊂Nn . We suppose that B =Nn .
Then, ln = ({1}n), and so, we can see from Lemma 4.9 that

(4-59) ρ

( ∑
5∈P(Nn)

c̃n(5)Z∗{1}n;5(T )
)

(4-57)
= ρ(ρ−1(T n)) = T n

(4-58)
=

∑
5∈P(Nn)

c̃n(5)Zx
{1}n;5(T ),

which proves (4-51) for B = Nn .
We suppose that B 6= Nn . Let A be a subset in B. Then we have

{σA(4) |4 ∈ P(A)} = {4′ |4′ ∈ P(N|A|)},(4-60)

because the restriction of the permutation σA to the subset A is a bijection from A
to N|A|. From the definition (1-5) we easily see that c̃|A|(4)= c̃|A|(σA(4)). Thus,∑
5∈P(Nn)

c̃n(5)Z∗ln;5(T )

(Lemma 4.7)
=

∑
A⊂B

∑
4∈P(A)
1∈PB (Ac)

c̃n(4∪1)Z∗ln;4∪1(T )

(Lemma 4.8)
=

∑
A⊂B

∑
1∈PB(Ac)

c̃|Ac|(1)

( h∏
i=1

ζ1(lQi )

) ∑
4∈P(A)

c̃|A|(4)Z∗{1}|A|;σA(4)
(T )
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(4-60)
=

∑
A⊂B

∑
1∈PB(Ac)

c̃|Ac|(1)

( h∏
i=1

ζ1(lQi )

) ∑
4′∈P(N|A|)

c̃|A|(4′)Z∗{1}|A|;4′(T )

(4-57)
=

∑
A⊂B

∑
1∈PB(Ac)

c̃|Ac|(1)

( h∏
i=1

ζ1(lQi )

)
ρ−1(T |A|),

where Q1, . . . , Qh mean the parts of 1. Therefore,

(4-61) ρ

( ∑
5∈P(Nn)

c̃n(5)Z∗ln;5(T )
)

=

∑
A⊂B

∑
1∈PB(Ac)

c̃|Ac|(1)

( h∏
i=1

ζ1(lQi )

)
(ρ−1(T |A|))

=

∑
A⊂B

∑
1∈PB(Ac)

c̃|Ac|(1)

( h∏
i=1

ζ1(lQi )

)
T |A|.

By using Lemma 4.7, Lemma 4.8, and (4-60), and by using (4-58) instead of (4-57),
we can similarly prove

∑
5∈P(Nn)

c̃n(5)Zx
ln;5(T )=

∑
A⊂B

∑
1∈PB(Ac)

c̃|Ac|(1)

( h∏
i=1

ζ1(lQi )

)
T |A|.(4-62)

Equating (4-61) and (4-62), we obtain (4-51) for B 6= Nn . �

We prove Lemmas 4.7 and 4.8.

Proof of Lemma 4.7. Let A be a subset in B, and let (4,1) be an element in
P(A)×PB(Ac). It follows from PB(Ac) ⊂ P(Ac) that (4,1) ∈ P(A)×P(Ac),
which together with A t Ac

= Nn yields 4t1 ∈ P(Nn). Thus, the left-hand side
of (4-54) is included in the right-hand side.

Let 5= {P1, . . . , Pm} be a partition in P(Nn). We can reorder P1, . . . , Pm such
that

Pj ⊂ B ( j = 1, . . . , g) and Pj 6⊂ B ( j = g+ 1, . . . ,m).(4-63)

We define

4 := {P1, . . . , Pg}, 1 := {Pg+1, . . . , Pm} and A := P1 ∪ · · · ∪ Pg,

where A and 4 mean the empty set φ if g = 0. By definition, it is obvious that
A ⊂ B, 5 = 4 t1, 4 ∈ P(A), and 1 ∈ P(Ac). We assume that 1 /∈ PB(Ac).
Then, either PB(Ac)= φ, or there is an integer i such that g < i ≤ m and Pi ⊂ B.
We can see from (4-63) that the latter case does not occur, and so PB(Ac) = φ.
Thus, the simplest partition {Ac

} of Ac does not belong to PB(Ac), which yields
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that Ac
⊂ B. Since A ⊂ B, we have Nn = A ∪ Ac

⊂ B, i.e., B = Nn , which is
a contradiction to the condition B 6= Nn . Therefore, 1 ∈ PB(Ac), and we can
conclude that

A ⊂ B, 5=4∪1 and (4,1) ∈ P(A)×PB(Ac).

This fact proves that the right-hand side of (4-54) is included in the left-hand side,
since 5 is arbitrary.

We should show the disjointness of the left-hand side of (4-54) in order to finish
the proof. Assume that there are subsets A1, A2 ⊂ B with A1 6= A2 such that

(4-64) φ 6= {41 t11 | (41,11) ∈ P(A1)×PB(Ac
1)}

∩ {42 t12 | (42,12) ∈ P(A2)×PB(Ac
2)}.

We can take elements (4 j ,1 j ) ∈ P(A j )×PB(Ac
j ) ( j = 1, 2) such that

41 t11 =42 t12.(4-65)

Let P1 ∈ 41. We easily see that P1 ⊂ B, since 41 ∈ P(A1) and A1 ⊂ B. By
(4-65), there is a subset P2 ∈42 t12 such that P1 = P2. If P2 ∈12, then P2 6⊂ B,
which contradicts P1 ⊂ B. We thus have P1 = P2 ∈ 42, and so 41 ⊂ 42 since
P1 is arbitrary. Similarly, we can prove 42 ⊂41, and we conclude that 41 =42.
Since 4 j is a partition of A j for each j = 1, 2, we can obtain A1 = A2, which
contradicts the assumption A1 6= A2. Therefore, there are no subsets A1, A2 ⊂ B
with A1 6= A2 such as (4-64), which proves that the left-hand side of (4-54) satisfies
the disjointness. �

Proof of Lemma 4.8. Let P1, . . . , Pg be the parts of 4, and let Q1, . . . , Qh be those
of 1. Since n = |A| + |Ac

| and 4∪1= {P1, . . . , Pg, Q1, . . . , Qh}, we see from
(1-5) that

c̃n(4∪1)= (−1)n−(g+h)
( g∏

i=1

(|Pi | − 1)!
)( h∏

i=1

(|Qi | − 1)!
)

= (−1)|A|−g
( g∏

i=1

(|Pi | − 1)!
)
(−1)|A

c
|−h
( h∏

i=1

(|Qi | − 1)!
)

= c̃|A|(4)c̃|Ac|(1),

which proves (4-55). We next prove (4-56). By 1 ∈ PB(Ac), any part Q in
1 satisfies Q 6⊂ B = { j ∈ Nn | l j = 1}, which yields that χ†(ln; Q) = 1 and
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Z†
lQ
(T )= ζ1(lQ). Thus, we can see from (4-48) that

(4-66) Z†
ln;4∪1(T )=

( g∏
i=1

χ†(ln; Pi )Z
†
lPi
(T )

)( h∏
i=1

χ†(ln; Qi )Z
†
lQi
(T )

)

=

( h∏
i=1

ζ1(lQi )

)( g∏
i=1

χ†(ln; Pi )Z
†
lPi
(T )

)
.

For any part P={p1, . . . , pa} in4, every index lpq is 1, since A⊂ B and4∈P(A).
By this fact, we obtain

χ†(ln; P)= χ†
a (lp1, . . . , lpa )= χ

†
a ({1}

a)= χ†({1}|A|; σA(P))

and
Z†

lP
(T )= Z†∑

p∈P lp
(T )= Z†

|P|(T )= Z†
|σA(P)|(T ).

Therefore,

(4-67)
g∏

i=1

χ†(ln; Pi )Z
†
lPi
(T )=

g∏
i=1

χ†({1}|A|; σA(Pi ))Z
†
|σA(Pi )|

(T )

= Z†
{1}|A|;{σA(P1),...,σA(Pg)}

(T ).

Combining (4-66) and (4-67) proves (4-56). �

From Theorems 7.12 and 7.13 in [Stanley 2013], we can obtain the following
identity in formal power series:

(4-68) exp
(

u1u+ u2
u2

2
+ u3

u3

3
+ · · ·

)
= 1+

∞∑
n=1

un
∑

i1,i2,...,in≥0
(1·i1+2·i2+···+n·in=n)

ui1
1 ui2

2 · · · u
in
n

1i1 i1! 2i2 i2! · · · nin in!
,

where u, u1, u2, . . . are variables. (We can also prove (4-68) by a direct calculation
of the Taylor expansion of the exponential function ex .)

We require the following identity (4-69) to prove Lemma 4.9.

Lemma 4.10. We have ∑
5∈P(Nn)

c̃n(5)Z∗{1}n;5(T )= n!γ̃n(T ),(4-69)

where we define

(4-70) γ̃n(T ) := (−1)n
∑

i1,i2,...,in≥0
(1·i1+2·i2+···+n·in=n)

(−1)i1+i2+···+in

i1! i2! · · · in!
T i1

n∏
a=2

(
ζ(a)

a

)ia

.
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Proof of Lemma 4.10. For a partition 5 = {P1, . . . , Pg} in P(Nn) and a positive
integer a, we denote by Na(5) the number of the parts Pj whose cardinalities
equal a, i.e.,

Na(5) := |{ j ∈ {1, . . . , g} | |Pj | = a}|.

For example, N1(5)= 2, N2(5)= 1 and N3(5)= N4(5)= 0 if

5= {{1}, {2}, {3, 4}} ∈ P(N4).

We note that

g = N1(5)+ · · ·+ Nn(5) and n = 1 · N1(5)+ · · ·+ n · Nn(5)

and that
g∏

i=1

(|Pi | − 1)!Z∗
|Pi |
(T )=

n∏
a=1

((a− 1)!Z∗a(T ))
Na(5).

Noting χ∗({1}n; Pi )= 1, we obtain from (1-5) and (4-48) that

c̃n(5)Z∗{1}n;5(T )= (−1)n−g
g∏

i=1

(|Pi | − 1)!Z∗
|Pi |
(T )

= (−1)n−(N1(5)+···+Nn(5))

n∏
a=1

((a− 1)!Z∗a(T ))
Na(5).

Thus,

(4-71)
∑

i1,...,in≥0
(1·i1+···+n·in=n)

∑
5∈P(Nn )

(Na (5)=ia (∀a))

c̃n(5)Z∗{1}n;5(T )

=

∑
i1,...,in≥0

(1·i1+···+n·in=n)

(−1)n−(i1+···+in)

( n∏
a=1

((a− 1)!Z∗a(T ))
ia

) ∑
5∈P(Nn )

(Na (5)=ia (∀a))

1.

Let m be an integer with aia < m. We can choose ia disjoint subsets

Q1, . . . , Qia ⊂ Nm,

with |Q1| = · · · = |Qia | = a in(
m

aia

)
·

(
aia

a

)(
aia − a

a

)
· · ·

(
a
a

)
·

1
ia!

ways, as follows. First, we choose aia integers N = {k1, . . . , kaia } from Nm in
( m

aia

)
ways. Then we select a integers Q1 from N , select a integers Q2 from N \ Q1,



346 TOMOYA MACHIDE

and so on: these combinations are(
aia

a

)(
aia − a

a

)
· · ·

(
a
a

)
.

Finally, we divide it by ia! to ignore the order of Q1, . . . , Qia , and we reach the
desired result. Any partition in

{5 ∈ P(Nn) | Na(5)= ia (for all a)}

can be uniquely obtained by choosing i1 disjoint subsets

Q(1)
1 , . . . , Q(1)

i1
with |Q(1)

j | = 1 (for all j)

from the set Nn , choosing i2 disjoint subsets

Q(2)
1 , . . . , Q(2)

i2
with |Q(2)

j | = 2 (for all j)

from the set Nn \ (Q
(1)
1 ∪ · · · ∪ Q(1)

i1
), and repeating it. Thus,

|{5 ∈ P(Nn) | Na(5)= ia (for all a)}|

=

n∏
a=1

(
n− 1 · i1− · · ·− (a− 1) · ia−1

aia

)
·

(
aia

a

)(
aia − a

a

)
· · ·

(
a
a

)
·

1
ia!

=

n∏
a=1

(
n− 1 · i1− · · ·− (a− 1) · ia−1

aia

)
(aia)!

1
(a!)ia ia!

=

n∏
a=1

(n− 1 · i1− · · ·− (a− 1) · ia−1)!

(n− 1 · i1− · · ·− a · ia)!

1
(a!)ia ia!

= n!
n∏

a=1

1
(a!)ia ia!

,

which is equivalent to

∑
5∈P(Nn )

(Na (5)=ia (∀a))

1= n!
n∏

a=1

1
(a!)ia ia!

.

Therefore, (4-71) can be rewritten as

(4-72)
∑

i1,...,in≥0
(1·i1+···+n·in=n)

∑
5∈P(Nn )

(Na (5)=ia (∀a))

c̃n(5)Z∗{1}n;5(T )

= n!(−1)n
∑

i1,...,in≥0
(1·i1+···+n·in=n)

(−1)i1+···+in

n∏
a=1

1
ia!

(
Z∗a(T )

a

)ia

.
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By (3-80), Z∗a(T ) equals T if a = 1 and ζ1(a) if a > 1, and so combining (4-70)
and (4-72) yields ∑

i1,...,in≥0
(1·i1+···+n·in=n)

∑
5∈P(Nn )

(Na (5)=ia (∀a))

c̃n(5)Z∗{1}n;5(T )= n!γ̃n(T ).(4-73)

It is obvious that P(Nn) can be divided into disjoint subsets as follows:

P(Nn)=
⊔

i1,...,in≥0
(1·i1+···+n·in=n)

{5 ∈ P(Nn) | Na(5)= ia (a = 1, . . . , n)}.(4-74)

Thus, the left-hand sides of (4-69) and (4-73) are equal, and we obtain (4-69). �

We now prove Lemma 4.9.

Proof of Lemma 4.9. By (3-75) we have

A(u)−1eT u
= exp

(
−

∞∑
m=2

(−1)mζ1(m)
m

um
)

eT u

= exp
(
(−1)2T u+

∞∑
m=2

(−1)m+1ζ1(m)
m

um
)
,

which, together with (4-68) for u1 = (−1)2T and um = (−1)m+1ζ1(m) (m ≥ 2),
yields

A(u)−1eT u
= 1+

∞∑
n=1

un(−1)n
∑

i1,i2,...,in≥0
(1·i1+2·i2+···+n·in=n)

(−1)i1+i2+···+in

i1! i2! · · · in!
T i1

n∏
a=2

(
ζ(a)

a

)ia

.

Thus, by Lemma 4.10,

(4-75) A(u)−1eT u
= 1+

∞∑
n=1

un

n!

∑
5∈P(Nn)

c̃n(5)Z∗{1}n;5(T )

Since the renormalization map ρ is an R-linear map from R[T ] to R[T ], we can
see from (2-6) that the inverse ρ−1 is determined by

∞∑
n=0

un

n!
ρ−1(T n)= ρ−1 (eT u)

= ρ−1 (A(u)−1ρ(eT u)
)
= A(u)−1eT u .(4-76)

Equating (4-75) and (4-76), and comparing the coefficients of un (n ≥ 1), we obtain
(4-57).

Let i1, . . . , in be nonnegative integers with 1 · i1 + · · · + n · in = n, and let
5= {P1, . . . , Pg} be a partition in P(Nn) with g = i1+ · · · + in and Na(5)= ia
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(a ∈ Nn). Noting (1-7) for †=x, we can obtain

c̃n(5)Zx
{1}n;5(T )= (−1)n−g

g∏
i=1

(|Pi | − 1)!χx({1}n; Pi )Zx
|Pi |
(T )

=

{
(−1)n−g ∏g

i=1 T (|Pi | = 1 for all i ),
0 (∃ i such that |Pi |> 1 ),

and so

c̃n(5)Zx
{1}n;5(T )=


T n if 5=

{
{1}, . . . , {1}︸ ︷︷ ︸

n

}
,

0 otherwise.

Thus, by (4-74),∑
5∈P(Nn)

c̃n(5)Zx
{1}n;5(T )=

∑
i1,...,in≥0

(1·i1+···+n·in=n)

∑
5∈P(Nn )

(Na (5)=ia (∀a))

c̃n(5)Zx
{1}n;5(T )

= c̃n(5)Zx
{1}n;5(T )

∣∣
5=
{
{1}, . . . , {1}︸ ︷︷ ︸

n

}
= T n,

which proves (4-58). �

4.3. Proof of Corollary 1.3. Let Pn be the set of partitions of {1, . . . , n}, i.e., Pn =

P(Nn). Let Pn;m be the subset of Pn which consists of partitions5= {P1, . . . , Pm}

such that the number of the parts is m. Note that Pn =
⊔n

j=1Pn; j , In what follows,
we identify a partition

5= {{n(1)1 , . . . , n(1)a1
}, . . . , {n(m)1 , . . . , n(m)am

}}

with

n(1)1 . . . n(1)a1
| . . . |n(m)1 . . . n(m)am

.

For example,

{{1, 2, 3}} = 123, {{1, 2}, {3}} = 12|3, and {{1}, {2}, {3}} = 1|2|3.

Let n and n′ be positive integers with n < n′. For convenience, we embed Sn into
Sn′ in the following way: a permutation(

1 . . . n
j1 . . . jn

)
of Sn

is identified with the permutation(
1 . . . n n+ 1 . . . n′

j1 . . . jn n+ 1 . . . n′

)
of Sn′,
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which fixes integers between n+ 1 and n′.
To prove Corollary 1.3, we require the following three lemmas, which state that

certain sums of values ζ †
(n1,...,n j )

(ln) can be written in terms of values ζ †(ln;5), for
depths 2, 3, and 4. We assume that ln = (l1, . . . , ln) ∈ Nn and † ∈ {∗,x} in the
lemmas.

Lemma 4.11 (case of depth 2).

ζ
†
(1,1)(l2)=

∑
5∈P2;2

ζ †(l2;5),(4-77)

(χ
†
2 · ζ1 ◦w2)(l2)=

∑
5∈P2;1

ζ †(l2;5).(4-78)

Lemma 4.12 (case of depth 3).

(ζ
†
(1,1,1) |6S2)(l3)= 2

∑
5∈P3;3

ζ †(l3;5),(4-79)

(ζ
†
(2,1) |6C36S2)(l3)= 3

∑
5∈P3;3

ζ †(l3;5)−
∑
5∈P3;2

ζ †(l3;5),(4-80)

(χ
†
3 · ζ1 ◦w3 |6S2)(l3)= 2

∑
5∈P3;1

ζ †(l3;5).(4-81)

Lemma 4.13 (case of depth 4).

(ζ
†
(1,1,1,1) |6S3)(l4)= 6

∑
5∈P4;4

ζ †(l4;5),(4-82)

(ζ
†
(2,1,1) |6C46S3)(l4)= 12

∑
5∈P4;4

ζ †(l4;5)−2
∑

5∈P4;3

ζ †(l4;5),
(4-83)

(ζ
†
(2,2) |6C0

4
6S3)(l4)= 3

∑
5∈P4;4

ζ †(l4;5)−
∑

5∈P4;3

ζ †(l4;5)+
∑

5∈P(2,2)4;2

ζ †(l4;5),(4-84)

(ζ
†
(3,1) |6C46S3)(l4)= 4

∑
5∈P4;4

ζ †(l4;5)−2
∑

5∈P4;3

ζ †(l4;5)+2
∑

5∈P(3,1)4;2

ζ †(l4;5),(4-85)

(χ
†
4 ·ζ1 ◦w4 |6S3)(l4)= 6

∑
5∈P4;1

ζ †(l4;5),
(4-86)

where P(2,2)4;2 and P(3,1)4;2 in (4-84) and (4-85) are subsets in P4;2 defined by

P(2,2)4;2 := {12|34, 13|24, 14|23} and P(3,1)4;2 := {123|4, 124|3, 134|2, 234|1},

respectively. Note that P4;2 = P(2,2)4;2 ∪P
(3,1)
4;2 .
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We will prove Corollary 1.3 before discussing proofs of Lemmas 4.11, 4.12, and
4.13. We will divide the proof of Corollary 1.3 into three for the cases of n = 2, 3,
and 4.

Proof of Corollary 1.3 for n = 2. Substituting (4-77) and (4-78) into the right-hand
side of (1-2) yields

(ζ
†
2 |6S2)(l2)=

∑
5∈P2;2

ζ †(l2;5)−
∑
5∈P2;1

ζ †(l2;5),

since C2 =S2 and

χ
†
2 (l2)ζ1(L2)= χ

†
2 (l2)ζ1(l1+ l2)= χ

†
2 (l2) · ζ1 ◦w2(l2)= (χ†

2 · ζ1 ◦w2)(l2).

We have by definition (see (1-5))

c̃2(5)=

{
1 (5 ∈ P2;2),

−1 (5 ∈ P2;1),

and thus we obtain by P2 =
⋃2

m=1P2;m

(ζ
†
2 |6S2)(l2)=

∑
5∈P2

c̃2(5)ζ
†(l2;5),

which proves (1-8) for n = 2. �

Proof of Corollary 1.3 for n = 3. Applying 6S2 to both sides of (1-3), we obtain

(4-87) (ζ
†
3 |6S3)(l3)

=−(ζ
†
(1,1,1) |6S2)(l3)+ (ζ

†
(2,1) |6C36S2)(l3)+ (χ

†
3 · ζ1 ◦w3 |6S2)(l3),

where we have used 6S3 =6C36S2 on the left-hand side of (4-87). Substituting
(4-79), (4-80), and (4-81) into the right-hand side of (4-87) yields

(ζ
†
3 |6S3)(l3)=

∑
5∈P3;3

ζ †(l3;5)−
∑
5∈P3;2

ζ †(l3;5)+ 2
∑
5∈P3;1

ζ †(l3;5),

which proves (1-8) for n = 3, since

c̃3(5)=


1 (5 ∈ P3;3),

−1 (5 ∈ P3;2),

2 (5 ∈ P3;1),

and P3 =
⋃3

m=1P3;m . �

Proof of Corollary 1.3 for n = 4. We can see from the fourth and sixth equations
in (4-19) that (14)6C4 = (123)6C4 and (34)6C4 = (132)6C4 , respectively, and so
it follows from (4-20) that 6S4 = 6S36C4 . Taking the inverses of both sides of
this equation gives 6S4 = 6C46S3 . Thus, applying 6S3 to both sides of (1-4)



CONGRUENCE IDENTITIES OF REGULARIZED MULTIPLE ZETA VALUES 351

and combining the identities in Lemma 4.13 (or considering (4-82) − (4-83) +
(4-84)+ (4-85) − (4-86)), we can obtain

(ζ
†
4 |6S4)(l4)

=

∑
5∈P4;4

ζ †(l4;5)−
∑
5∈P4;3

ζ †(l4;5)+
∑

5∈P(2,2)
4;2

ζ †(l4;5)+ 2
∑

5∈P(3,1)
4;2

ζ †(l4;5)

−6
∑
5∈P4;1

ζ †(l4;5),

which proves (1-8) for n = 4, since

c̃4(5)=



1 (5 ∈ P4;4),

−1 (5 ∈ P4;3),

1 (5 ∈ P(2,2)4;2 ),

2 (5 ∈ P(3,1)4;2 ),

−6 (5 ∈ P4;1),

P4;2 = P(2,2)4;2 ∪P
(3,1)
4;2 and P4 =

⋃4
m=1P4;m . �

We see from (1-1) that χ†
1 (k)= 1 for any positive integer k, and so

χ
†
1 (k)ζ

†
1 (k)= ζ

†
1 (k).

Note that ζ1(k)= ζ
†
1 (k) for k ≥ 2. These facts will be used repeatedly below.

We now give proofs of Lemmas 4.11, 4.12, and 4.13.

Proof of Lemma 4.11. We have P2;2 = {1|2} and P2;1 = {12} by definition. Thus,∑
5∈P2;2

ζ †(l2;5)= χ†
1 (l1)ζ

†
1 (l1)χ

†
1 (l2)ζ

†
1 (l2)= ζ

†
1 (l1)ζ

†
1 (l2)= ζ

†
(1,1)(l2),∑

5∈P2;1

ζ †(l2;5)= χ†
2 (l1, l2)ζ

†
1 (l1+ l2)= χ

†
2 (l1, l2)ζ1(l1+ l2)= (χ

†
2 · ζ1 ◦w2)(l2),

which prove (4-77) and (4-78), respectively. �

Proof of Lemma 4.12. We have

P3;3 = {1|2|3}, P3;2 = {12|3, 13|2, 23|1}, P3;1 = {123},

by definition. In particular, P3;2 is expressed as
⋃
σ∈C3
{σ−1(1)σ−1(2)|σ−1(3)},

and so∑
5∈P3;2

ζ †(l3;5)=
∑
σ∈C3

χ
†
2 (lσ−1(1), lσ−1(2))ζ

†
1 (lσ−1(1)+ lσ−1(2))χ

†
1 (lσ−1(3))ζ

†
1 (lσ−1(3))
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=

∑
σ∈C3

χ
†
2 (lσ−1(1), lσ−1(2))ζ1(lσ−1(1)+ lσ−1(2))ζ

†
1 (lσ−1(3)).

Thus, we can obtain∑
5∈P3;3

ζ †(l3;5)= ζ †
(1,1,1)(l3),(4-88)

∑
5∈P3;2

ζ †(l3;5)= ((χ†
2 · ζ1 ◦w2)⊗ ζ

†
1 |6C3)(l3),(4-89)

∑
5∈P3;1

ζ †(l3;5)= (χ†
3 · ζ1 ◦w3)(l3).(4-90)

Since ζ †
(1,1,1) is invariant under S3, we have (ζ †

(1,1,1) |6S2)(l3) = 2ζ †
(1,1,1)(l3),

which together with (4-88) proves (4-79). Similarly, we have (χ†
3 ·ζ1◦w3 |6S2)(l3)=

2χ†
3 · ζ1 ◦w3(l3), which together with (4-90) proves (4-81). We know from (1-2)

that

ζ
†
2 |6S2 = ζ

†
(1,1)−χ

†
2 · ζ1 ◦w2,(4-91)

and so

ζ
†
(2,1) |6S2 = ζ

†
2 ⊗ ζ

†
1 |6S2

= (ζ
†
2 |6S2)⊗ ζ

†
1

= (ζ
†
(1,1)−χ

†
2 · ζ1 ◦w2)⊗ ζ

†
1

= ζ
†
(1,1,1)− (χ

†
2 · ζ1 ◦w2)⊗ ζ

†
1 .

Since C3S2 =S2C3, we have

ζ
†
(2,1) |6C36S2 = (ζ

†
(2,1) |6S2)|6C3

= (ζ
†
(1,1,1)− (χ

†
2 · ζ1 ◦w2)⊗ ζ

†
1 ) |6C3

= 3ζ †
(1,1,1)− (χ

†
2 · ζ1 ◦w2)⊗ ζ

†
1 |6C3,

which together with (4-88) and (4-89) proves (4-80). This completes the proof. �

Proof of Lemma 4.13. Let A0
4 be the subset of A4 given by

A0
4 = {e, (13)(24), (123), (132), (142), (234)} = 〈(13)(24)〉C3.

Note that 6A4 =6〈(12)(34)〉6A0
4
. From the definitions of P4;m and P(i, j)

4;2 and some
straightforward calculations, we can see that

P4;4 = {1|2|3|4},
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P4;3 =
⋃
σ∈A0

4

{σ−1(1)σ−1(2)|σ−1(3)|σ−1(4)},

P(2,2)4;2 =
⋃
σ∈C3

{σ−1(1)σ−1(2)|σ−1(3)σ−1(4)},

P(3,1)4;2 =
⋃
σ∈C4

{σ−1(1)σ−1(2)σ−1(3)|σ−1(4)},

P4;1 = {1234}.

Thus, we can obtain∑
5∈P4;4

ζ †(l4;5)= ζ †
(1,1,1,1)(l4),(4-92)

∑
5∈P4;3

ζ †(l4;5)= ((χ†
2 · ζ1 ◦w2)⊗ ζ

†
(1,1) |6A0

4
)(l4),(4-93)

∑
5∈P(2,2)

4;2

ζ †(l4;5)= ((χ†
2 · ζ1 ◦w2)

⊗2
|6C3)(l4),(4-94)

∑
5∈P(3,1)

4;2

ζ †(l4;5)= ((χ†
3 · ζ1 ◦w3)⊗ ζ

†
1 |6C4)(l4),(4-95)

∑
5∈P4;1

ζ †(l4;5)= (χ†
4 · ζ1 ◦w4)(l4).(4-96)

Since ζ †
(1,1,1,1) and χ†

4 · ζ1 ◦w4 are invariant under S4, we have

(ζ
†
(1,1,1,1) |6S3)(l4)=6ζ †

(1,1,1,1)(l4) and (χ
†
4 ·ζ1◦w4 |6S3)(l4)=6χ†

4 ·ζ1◦w4(l4),

which together with (4-92) and (4-96) prove (4-82) and (4-86), respectively.
We now prove (4-83). A direct calculation shows that6C46S3 =6S4 =6S26A4 ,

and so, by (4-91),

(4-97) ζ
†
(2,1,1) |6C46S3 = (ζ

†
(2,1,1) |6S2)|6A4

= (ζ
†
2 |6S2)⊗ ζ

†
(1,1)|6A4

= (ζ
†
(1,1,1,1)− (χ

†
2 · ζ1 ◦w2)⊗ ζ

†
(1,1)) |6A4

= 12ζ †
(1,1,1,1)− (χ

†
2 · ζ1 ◦w2)⊗ ζ

†
(1,1) |6A4 .

Since 6A4 =6〈(12)(34)〉6A0
4

and (χ†
2 ·ζ1 ◦w2)⊗ζ

†
(1,1) is invariant under 〈(12)(34)〉,

(χ
†
2 · ζ1 ◦w2)⊗ ζ

†
(1,1) |6A4 = 2(χ†

2 · ζ1 ◦w2)⊗ ζ
†
(1,1) |6A0

4
.(4-98)
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Combining (4-97) and (4-98), we obtain

ζ
†
(2,1,1) |6C46S3 = 12ζ †

(1,1,1,1)− 2(χ†
2 · ζ1 ◦w2)⊗ ζ

†
(1,1) |6A0

4
,

which, together with (4-92) and (4-93), proves (4-83).
We now prove (4-84). For this, we require the identity

ζ
†
(2,2) |6C0

4
6S3 = (ζ

†
2 |6〈(12)〉⊗ ζ

†
2 |6〈(34)〉)|6C3,(4-99)

which can be verified as follows. A direct calculation shows that

6〈(12),(34)〉6C3 = (e+ (12)+ (34)+ (12)(34))(e+ (123)+ (132))

= e+ (12)+ (13)+ (23)+ (34)+ (12)(34)

+ (123)+ (132)+ (143)+ (243)+ (1243)+ (1432).

From this equation and the equivalence classes modulo 〈(13)(24)〉 in Table 1, we
see that

6S4 ≡ 26〈(12),(34)〉6C3 mod 〈(13)(24)〉.

We also see from 6S4 =6C46S3 and (4-26) that 6S4 ≡ 26C0
4
6S3 mod 〈(13)(24)〉,

and so

6C0
4
6S3 ≡6〈(12),(34)〉6C3 mod 〈(13)(24)〉.

Since ζ †
(2,2) is invariant under 〈(13)(24)〉 and since 6〈(12),(34)〉 =6〈(12)〉6〈(34)〉,

ζ
†
(2,2) |6C0

4
6S3 = ζ

†
(2,2) |6〈(12),(34)〉6C3 = (ζ

†
2 |6〈(12)〉⊗ ζ

†
2 |6〈(34)〉)|6C3,

which verifies (4-99). Then, by (4-91), the right-hand side of (4-99) can be calculated
as

(RHS of (4-99))

= (ζ
†
(1,1)−χ

†
2 ·ζ1 ◦w2)⊗(ζ

†
(1,1)−χ

†
2 ·ζ1 ◦w2)|6C3

= {ζ
†
(1,1,1,1)−(χ

†
2 ·ζ1 ◦w2)⊗ζ

†
(1,1)−ζ

†
(1,1)⊗(χ

†
2 ·ζ1 ◦w2)+(χ

†
2 ·ζ1 ◦w2)

⊗2
} |6C3

= 3ζ †
(1,1,1,1)−(χ

†
2 ·ζ1 ◦w2)⊗ζ

†
(1,1) |6〈(13)(24)〉6C3+(χ

†
2 ·ζ1 ◦w2)

⊗2
|6C3 .

It holds that 6〈(13)(24)〉6C3 =6A0
4
, and so (4-99) can be restated as

ζ
†
(2,2) |6C0

4
6S3 = 3ζ †

(1,1,1,1)− (χ
†
2 · ζ1 ◦w2)⊗ ζ

†
(1,1) |6A0

4
+ (χ

†
2 · ζ1 ◦w2)

⊗2
|6C3,

which, together with (4-92), (4-93), and (4-94), proves (4-84).
We lastly prove (4-85) in a similar way to (4-84). We require the identity

(4-100) ζ
†
(3,1) |6C46S3

= 4ζ †
(1,1,1,1)ζ

†
1
⊗4
−2(χ†

2 ·ζ
†
2 ◦w2)⊗ζ

†
(1,1) |6A0

4
+2(χ†

3 ·ζ1◦w3)⊗ζ
†
1 |6C4,
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which can be verified as follows. Identity (1-8) for n = 3 can be restated as

ζ
†
3 |6S3 = ζ

†
(1,1,1)− (χ

†
2 · ζ

†
1 ◦w2)⊗ ζ

†
1 |6C3 + 2χ†

3 · ζ1 ◦w3,(4-101)

because of (4-88), (4-89), and (4-90). A direct calculation shows that

6C36C4 = e+ (14)+ (34)+ (13)(24)+ (123)+ (124)+ (132)+ (243)

+ (1234)+ (1342)+ (1423)+ (1432),

and so we see from the equivalence classes modulo 〈(12), (34)〉 in Table 1 that

6C36C4 ≡ 26A0
4

mod 〈(12), (34)〉.

Since 6C46S3 =6S36C4 , we thus have

ζ
†
(3,1) |6C46S3

= ζ
†
3 ⊗ζ

†
1 |6S36C4 = (ζ

†
3 |6S3)⊗ζ

†
1 |6C4

(4-101)
= ζ

†
(1,1,1,1) |6C4−(χ

†
2 ·ζ

†
1 ◦w2)⊗ζ

†
(1,1) |6C36C4+2(χ†

3 ·ζ1 ◦w3)⊗ζ
†
1 |6C4

= 4ζ †
(1,1,1,1)−2(χ†

2 ·ζ
†
2 ◦w2)⊗ζ

†
(1,1) |6A0

4
+2(χ†

3 ·ζ1 ◦w3)⊗ζ
†
1 |6C4,

which verifies (4-100). Then, combining (4-92), (4-93), (4-95), and (4-100), we
obtain (4-85), which completes the proof. �

Remark 4.14. We can find that (1-2) and (1-3) are used to show Lemma 4.12; this
lemma is required for the proof of (1-8) for n = 3. Thus, not only (1-3) but also
(1-2) are necessary to prove (1-8) for n = 3. Similarly, we can find that (1-2), (1-3),
and (1-4) are used to show Lemma 4.13, and thus not only (1-4) but also (1-2) and
(1-3) are necessary to prove (1-8) for n = 4.

5. Examples

We list examples of (1-3) and (1-4) in Table 2 and Table 4, respectively. We also
list examples of (1-8) for n = 3 and n = 4 in Table 3 and Table 5, respectively, for
comparison. The examples treat the case of weight less than 7. We omit examples
of (1-2) and (1-8) for n = 2 because they are essentially the harmonic relations.
The following straightforward expressions of (1-3) and (1-4) are convenient for
calculating the examples in Table 2 and Table 4:

(5-1) ζ
†
3 (l1, l2, l3)+ ζ

†
3 (l2, l3, l1)+ ζ

†
3 (l3, l1, l2)

=−ζ
†
1 (l1)ζ

†
1 (l2)ζ

†
1 (l3)

+ ζ
†
2 (l1, l2)ζ

†
1 (l3)+ ζ

†
2 (l2, l3)ζ

†
1 (l1)+ ζ

†
2 (l3, l1)ζ

†
1 (l2)

+χ
†
3 (l1, l2, l3)ζ1(l1+ l2+ l3),
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Index set Linear relation

(1,1,1) 3ζ †
3 (1, 1, 1)= χ†

3 (1, 1, 1)ζ1(3) (d3-1)

(1,1,2) ζ
†
3 (1, 1, 2)+ζ †

3 (1, 2, 1)+ζ3(2, 1, 1)= ζ †
2 (1, 1)ζ1(2)+ζ1(4) (d3-2)

(1,1,3) ζ
†
3 (1, 1, 3)+ζ †

3 (1, 3, 1)+ζ3(3, 1, 1)= ζ †
2 (1, 1)ζ1(3)+ζ1(5) (d3-3)

(1,2,2) ζ
†
3 (1, 2, 2)+ζ3(2, 2, 1)+ζ3(2, 1, 2)=−ζ1(2)ζ1(3)+ζ1(5) (d3-4)

(1,1,4) ζ
†
3 (1, 1, 4)+ζ †

3 (1, 4, 1)+ζ3(4, 1, 1)= ζ †
2 (1, 1)ζ1(4)+ζ1(6) (d3-5)

(1,2,3) ζ
†
3 (1, 2, 3)+ζ3(2, 3, 1)+ζ3(3, 1, 2)
= ζ

†
2 (1, 2)ζ1(3)+ζ2(3, 1)ζ1(2)+ζ1(6) (d3-6)

(1,3,2) ζ
†
3 (1, 3, 2)+ζ3(3, 2, 1)+ζ3(2, 1, 3)
= ζ

†
2 (1, 3)ζ1(2)+ζ2(2, 1)ζ1(3)+ζ1(6) (d3-7)

(2,2,2) 3ζ3(2, 2, 2)=−ζ1(2)3+3ζ2(2, 2)ζ1(2)+ζ1(6) (d3-8)

Table 2. Examples of (1-3) (or (5-1)).

(5-2) ζ
†
4 (l1, l2, l3, l4)+ ζ

†
4 (l2, l3, l4, l1)+ ζ

†
4 (l3, l4, l1, l2)+ ζ

†
4 (l4, l1, l2, l3)

= ζ
†
1 (l1)ζ

†
1 (l2)ζ

†
1 (l3)ζ

†
1 (l4)

− ζ
†
2 (l1, l2)ζ

†
1 (l3)ζ

†
1 (l4)− ζ

†
2 (l2, l3)ζ

†
1 (l4)ζ

†
1 (l1)

− ζ
†
2 (l3, l4)ζ

†
1 (l1)ζ

†
1 (l2)− ζ

†
2 (l4, l1)ζ

†
1 (l2)ζ

†
1 (l3)

+ ζ
†
2 (l1, l2)ζ

†
2 (l3, l4)+ ζ

†
2 (l2, l3)ζ

†
2 (l4, l1)

+ ζ
†
3 (l1, l2, l3)ζ

†
1 (l4)+ ζ

†
3 (l2, l3, l4)ζ

†
1 (l1)

+ ζ
†
3 (l3, l4, l1)ζ

†
1 (l2)+ ζ

†
3 (l4, l1, l2)ζ

†
1 (l3)

−χ
†
4 (l1, l2, l3, l4)ζ1(l1+ l2+ l3+ l4).

We have used ζ †
1 (1)= 0 for all equations in the tables, and ζ †

2 (1, k)+ ζ †
2 (k, 1)=

−ζ1(k+ 1) (k > 1) for (d3-4), (d4-2), and (d4-3).
As was mentioned in Section 1, it holds that

ζx2 (1, 1) = 0 and ζ ∗2 (1, 1) = −1
2ζ1(2),(5-3)

which follows from (3-14) with l1= l2= 1, or 2z1z1= z1∗ z1− z2. In fact, applying
Z∗ to both sides of this equation, we obtain 2Z∗1,1(T )= T 2

− ζ1(2), which together
with (2-8) and (3-64) gives (5-3). Lastly, we derive the following equations from
(d3-1) and (d4-1) as applications of examples:

ζx3 (1, 1, 1) = ζx4 (1, 1, 1, 1)= 0,(5-4)

ζ ∗3 (1, 1, 1)= 1
3ζ1(3),(5-5)

ζ ∗4 (1, 1, 1, 1)= 1
16ζ1(4).(5-6)
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Index set Linear relation

(1,1,1) 6ζ †
3 (1, 1, 1)= 2χ†

3 (1, 1, 1)ζ1(3) (d3′-1)

(1,1,2) 2(ζ †
3 (1, 1, 2)+ ζ †

3 (1, 2, 1)+ ζ3(2, 1, 1))
=−χ

†
2 (1, 1)ζ1(2)2+ 2ζ1(4) (d3′-2)

(1,1,3) 2(ζ †
3 (1, 1, 3)+ ζ †

3 (1, 3, 1)+ ζ3(3, 1, 1))
=−χ

†
2 (1, 1)ζ1(2)ζ1(3)+ 2ζ1(5) (d3′-3)

(1,2,2) 2(ζ †
3 (1, 2, 2)+ ζ3(2, 2, 1)+ ζ3(2, 1, 2))
=−2ζ1(2)ζ1(3)+ 2ζ1(5) (d3′-4)

(1,1,4) 2(ζ †
3 (1, 1, 4)+ ζ †

3 (1, 4, 1)+ ζ3(4, 1, 1))
=−χ

†
2 (1, 1)ζ1(2)ζ1(4)+ 2ζ1(6) (d3′-5)

(1,2,3) ζ
†
3 (1, 2, 3)+ ζ †

3 (1, 3, 2)+ ζ3(2, 1, 3)+ ζ3(2, 3, 1)
+ζ3(3, 1, 2)+ ζ3(3, 2, 1)

=−(ζ1(2)ζ1(4)+ ζ1(3)2)+ 2ζ1(6) (d3′-6)
(2,2,2) 6ζ3(2, 2, 2)= ζ1(2)3− 3ζ1(2)ζ1(4)+ 2ζ1(6) (d3′-7)

Table 3. Examples of (1-8) for n = 3.

Index set Linear relation

(1,1,1,1) 4ζ †
4 (1, 1, 1, 1)= 2ζ †

2 (1, 1)2−χ†
4 (1, 1, 1, 1)ζ1(4) (d4-1)

(1,1,1,2) ζ
†
4 (1, 1, 1, 2)+ ζ †

4 (1, 1, 2, 1)+ ζ †
4 (1, 2, 1, 1)+ ζ4(2, 1, 1, 1)

=−ζ
†
2 (1, 1)ζ1(3)+ ζ

†
3 (1, 1, 1)ζ1(2)− ζ1(5) (d4-2)

(1,1,1,3) ζ
†
4 (1, 1, 1, 3)+ ζ †

4 (1, 1, 3, 1)+ ζ †
4 (1, 3, 1, 1)+ ζ4(3, 1, 1, 1)

=−ζ
†
2 (1, 1)ζ1(4)+ ζ

†
3 (1, 1, 1)ζ1(3)− ζ1(6) (d4-3)

(1,1,2,2) ζ
†
4 (1, 1, 2, 2)+ ζ4(1, 2, 2, 1)+ ζ †

4 (2, 2, 1, 1)+ ζ †
4 (2, 1, 1, 2)

=−ζ
†
2 (1, 1)ζ1(2)2+ ζ

†
2 (1, 1)ζ2(2, 2)+ ζ †

2 (1, 2)ζ2(2, 1)
+(ζ

†
3 (1, 1, 2)+ ζ3(2, 1, 1))ζ1(2)− ζ1(6) (d4-4)

(1,2,1,2) 2(ζ †
4 (1, 2, 1, 2)+ ζ4(2, 1, 2, 1))
= ζ

†
2 (1, 2)2+ ζ2(2, 1)2+ 2ζ †

3 (1, 2, 1)ζ1(2)− ζ1(6) (d4-5)

Table 4. Examples of (1-4) (or (5-2)).

We can easily obtain (5-4) from (d3-1) and (d4-1) for †=x, since

χx
3 (1, 1, 1)= χx

4 (1, 1, 1, 1)= 0 and ζx2 (1, 1)= 0.

We can also obtain (5-5) from (d3-1) for † = ∗, since χ∗3 (1, 1, 1) = 1. Since
χ∗4 (1, 1, 1, 1)= 1 and ζ ∗2 (1, 1)=−ζ1(2)/2, we obtain from (d4-1) for †= ∗ that

4ζ ∗4 (1, 1, 1, 1)= 2ζ ∗2 (1, 1)2− ζ1(4) = 1
2ζ1(2)2− ζ1(4),

which together with (3-72) proves (5-6).
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Index set Linear relation

(1,1,1,1) 24ζ †
4 (1, 1, 1, 1)= 3χ†

2 (1, 1)ζ1(2)2− 6χ†
4 (1, 1, 1, 1)ζ1(4) (d4′-1)

(1,1,1,2) 6(ζ †
4 (1, 1, 1, 2)+ ζ †

4 (1, 1, 2, 1)+ ζ †
4 (1, 2, 1, 1)+ ζ4(2, 1, 1, 1))

= 3χ†
2 (1, 1)ζ1(2)ζ1(3)+ 2χ†

3 (1, 1, 1)ζ1(2)ζ1(3)− 6ζ1(5) (d4′-2)

(1,1,1,3) 6(ζ †
4 (1, 1, 1, 3)+ ζ †

4 (1, 1, 3, 1)+ ζ †
4 (1, 3, 1, 1)+ ζ4(3, 1, 1, 1))

= 3χ†
2 (1, 1)ζ1(2)ζ1(4)+ 2χ†

3 (1, 1, 1)ζ1(3)2− 6ζ1(6) (d4′-3)
(1,1,2,2) 4(ζ †

4 (1, 1, 2, 2)+ ζ4(1, 2, 1, 2)+ ζ4(1, 2, 2, 1)+ ζ †
4 (2, 1, 1, 2)

+ζ
†
4 (2, 1, 2, 1)+ ζ †

4 (2, 2, 1, 1))
=−χ

†
2 (1, 1)ζ1(2)3+ (χ

†
2 (1, 1)+ 4)ζ1(2)ζ1(4)

+2ζ1(3)2− 6ζ1(6) (d4′-4)

Table 5. Examples of (1-8) for n = 4.
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CONFORMALLY KÄHLER RICCI SOLITONS AND
BASE METRICS FOR WARPED PRODUCT RICCI SOLITONS

GIDEON MASCHLER

We investigate Kähler metrics conformal to gradient Ricci solitons, and base
metrics of warped product gradient Ricci solitons. A slight generalization
of the latter we name quasi-solitons. A main assumption that is employed is
functional dependence of the soliton potential, with the conformal factor in
the first case, and with the warping function in the second. The main result
in the first case is a partial classification in dimension n ≥ 4. In the second
case, Kähler quasi-soliton metrics satisfying the above main assumption
are shown to be, under an additional genericity hypothesis, necessarily Rie-
mannian products. Another theorem concerns quasi-soliton metrics satisfy-
ing the above main assumption, which are also conformally Kähler. With
some additional assumptions it is shown that such metrics are necessarily
base metrics of Einstein warped products, that is, quasi-Einstein.

1. Introduction

The study of the Ricci flow [Hamilton 1982] has inspired the introduction of a metric
type generalizing the Einstein condition. A gradient Ricci soliton is a Riemannian
metric satisfying

Ric+∇d f = λg, λ constant.

The function f is called the soliton potential. Such solitons are further referred to
as shrinking, steady or expanding, depending on the sign of λ.

We consider Ricci solitons in two settings: the case where they are conformal to
Kähler metrics, and the case where they are warped products. Conformal classes of
Ricci solitons have been studied recently in [Jauregui and Wylie 2015; Catino et al.
2016; Maschler 2015]. Kähler metrics in such a conformal class, with nontrivial
conformal factor, have been examined in [Maschler 2008; Derdziński 2012]. Warped
product Ricci solitons, on the other hand, have been studied extensively when the
base of the warped product is one-dimensional; see for instance [Chow et al. 2007].
The cigar soliton and the Bryant soliton are examples in this category.
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In each case we focus on an auxiliary metric which at least partially determines
the soliton. In the first case that would be the associated Kähler metric in the
conformal class, and in the second case it is the induced metric on the base of the
warped product. The latter metric is a special case of what we call a (gradient Ricci)
quasi-soliton, in analogy with how base metrics of Einstein warped products are
often called quasi-Einstein metrics. We consider only quasi-soliton metrics which
are Kähler, or conformally Kähler.

A common thread for these two cases of auxiliary metrics is the appearance
of two Hessians in their defining equations. One is the Hessian of the soliton
potential f, while the other Hessian depends on the case: it is that of the conformal
factor τ in the first case, and that of the warping function ` in the second.

These equations are, of course, more complex than the original Ricci soliton
equation, and handling them in full generality still appears beyond reach. Our
strategy is thus to consider mainly the case where functional dependence of the
above two functions holds, in either setting. In other words, we require

dτ ∧ d f = 0 for the associated Kähler metric,(1-1i)

d`∧ d f = 0 for the induced metric on the base of the warped product.(1-1ii)

In the latter case we call the metric a special quasi-soliton.
An example where condition (1-1i) occurs in the Kähler conformally soliton case

is when the conformal factor τ is additionally a potential for a Killing vector field of
the Kähler metric (a Killing potential). The latter condition was studied in [Maschler
2008] and plays a role in Theorem 7.4. It turns out that the condition (1-1i) also
implies, generically, the existence of a Killing potential which, however, is of a more
general kind, being only functionally dependent on τ , rather than being τ itself. An
instance of this more general setting was first considered in [Derdziński 2012].

Another metric type that plays an important role in all our main theorems is the
SKR metric, i.e., a metric that admits a so-called special Kähler–Ricci potential.
This notion was introduced by Derdzinski and Maschler [2003; 2006] for the purpose
of classifying conformally Kähler Einstein metrics. In all our main theorems the
proofs involve a Ricci–Hessian equation of the form

α∇dτ +Ric= γ g,

for functions α and γ . The theory of SKR metrics which is then applied is closely
tied to such equations.

The main results in this article are Theorems 6.2, 7.3 and 7.4. The first of these
gives a partial classification of Kähler metrics conformal to gradient Ricci solitons
in dimension n ≥ 4 satisfying condition (1-1i). Theorem 7.3 presents a reducibility
result for special quasi-soliton metrics which are Kähler. The conclusion of this
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theorem, that the metric is locally a Riemannian product, is analogous to a similar
result for quasi-Einstein metrics [Case et al. 2011]. Theorem 7.4 mixes the two main
themes of this paper, as it involves special quasi-soliton metrics that are conformal
to an irreducible Kähler metric. With some additional assumptions, the conclusion
of the theorem is that the metric must in fact be quasi-Einstein. This is in contrast
with the existence of conformally Kähler quasi-Einstein metrics [Maschler 2011;
Batat et al. 2015], and it remains to be seen whether this difference holds in general,
or else is the result of the added assumptions.

Examples of metrics satisfying the conditions of Theorem 6.2 appear in [Maschler
2008; Derdziński 2012]. In one of the possible outcomes of the theorem, occurring
in dimension four, the Ricci soliton must be non-Einstein and steady (λ= 0). There
are at this time many known examples of non-Einstein steady Ricci solitons in all
dimensions. Recent examples were given by Buzano, Dancer and Wang [Buzano
et al. 2015] and Stolarski [2015]. A discussion of their potential relevance to this
theorem is given at the end of Section 6.

The structure of the paper is as follows. After some preliminaries in Section 2, we
give several forms for the conformally soliton equation in Section 3. We then deter-
mine in Section 4, in the context of the first metric type considered, certain implica-
tions of the assumption that vector fields that occur in the conformally soliton equa-
tion are of one of several well-known classical types. One such assumption which
does not occur in nontrivial cases has, nonetheless, an interesting classification,
which we give in the Appendix. In Section 5 we recall the salient features of SKR
metric theory. The main theorem in the conformally Kähler case is given in Section 6,
and the two main theorems for special quasi-soliton metrics appear in Section 7.

2. Preliminaries

Let (M, g) be a Riemannian manifold of dimension n, and τ : M → R a C∞

function. We write metrics conformally related to g in the form ĝ = τ−2g.
We recall a few conformal change formulas. The covariant derivative is

(2-1) ∇̂wu =∇wu− (dw log τ)u− (du log τ)w+〈w, u〉∇ log τ,

where du denotes the directional derivative of a vector field u and the angle brackets
stand for g. It follows that the ĝ-Hessian and ĝ-Laplacian of a C2 function f are
given by

∇̂d f =∇d f + τ−1
[2 dτ � d f − g(∇τ,∇ f )g],(2-2i)

1̂ f = τ 21 f − (n− 2)τg(∇τ,∇ f ),(2-2ii)

where dτ � d f = 1
2(dτ ⊗ d f + d f ⊗ dτ). Finally, the well-known formula for the



364 GIDEON MASCHLER

Ricci tensor of ĝ is given by

(2-3) R̂ic= Ric+ (n− 2)τ−1
∇dτ +

[
τ−11τ − (n− 1)τ−2

|∇τ |2
]
g,

where 1 denotes the Laplacian and the norm | · | is with respect to g.
Recall that a (real) vector field w on a complex manifold (M, J ) is holomorphic

if the Lie derivative Lw J vanishes.

Proposition 2.1. Let ∇ be a torsion-free connection on a complex manifold (M, J ).
For any vector field w,

Lw J =∇w J + [J,∇w],

where the square brackets denote the commutator.

In fact, write (Lw J )u = Lw(Ju)− JLwu and replace each Lie derivative by
the Lie brackets, and each of these by the torsion-free condition for ∇, giving
∇w Ju−∇Juw− J∇wu+ J∇uw. The first and third terms together give (∇w J )(u),
while the second and fourth terms give [J,∇w](u).

Proposition 2.2. Let (M, J ) be a complex manifold with a Hermitian metric g.
Given a C2 function q on M , set w = ∇q. Then ∇dq is J -invariant if and only if
[J,∇w] = 0.

In fact, ∇dq(Ja, b)= g(Ja,∇bw)=−g(a, J∇bw)=−g(a, J (∇w)(b)), while
−∇dq(a, Jb)=−g(a,∇Jbw)=−g(a, (∇w)(Jb)).

In the following well-known proposition ıv denotes interior multiplication by a
vector field, while δ denotes the divergence operator.

Proposition 2.3. Let σ be a smooth function on a Kähler manifold such that v=∇σ
is a holomorphic gradient vector field. Then 2ıvRic = −dY and 2δ∇dσ = dY
for Y =1σ .

For a proof, see [Derdzinski and Maschler 2003, (5.4) and (2.9)(c)].

3. Various forms of the conformally soliton equation

Let g be a Riemannian metric and τ a smooth function on a given manifold, for
which ĝ = g/τ 2 is a gradient Ricci soliton with soliton potential f . The soliton
equation for ĝ, together with its associated scalar equation, are

R̂ic+∇̂d f = λĝ, with λ constant,(3-1i)

1̂ f − ĝ(∇̂ f , ∇̂ f )+ 2λ f = a, for a constant a.(3-1ii)

To obtain this in terms of g, we apply equations (2-3) and (2-2i) to (3-1i). The
result is

(3-2) Ric+ (n− 2)τ−1
∇dτ +∇d f + 2τ−1dτ � d f = γ g.
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for

(3-3) γ = τ−2
[λ+ (n− 1)|∇τ |2] − τ−1

[1τ − g(∇τ,∇ f )],

with |∇τ |2 = g(∇τ,∇τ).
We will now rewrite (3-2) in a different form. Specifically, for the vector fields

v =∇τ and w = τ 2
∇ f , equation (3-2) is equivalent to

(3-4) Ric+αLvg+βLwg = γ g,

with α = 1
2(n− 2)τ−1, β = (2τ 2)−1, and L denoting the Lie derivative. To show

this, recall that for any vector fields a, b,

(3-5) (Lwg)(a, b)= g(∇aw, b)+ g(a,∇bw),

or Lwg = [∇w+ (∇w)∗][, where ∗ denotes the adjoint and [ is the isomorphism
associated with lowering an index. Now clearly Lvg = L∇τ g = 2∇dτ . To compute
the Lie derivative term for w, write w = h∇ f . Then

Lwg = 2h∇d f + 2 dh� d f.

Setting h = τ 2 and dividing by 2τ 2 gives

∇d f + 2τ−1dτ � d f = (2τ 2)−1Lτ 2∇ f g = βLwg.

Another form for equation (3-2) is obtained as follows. It is natural to combine
the two Hessian terms into one. For this, set

µ= log τ, θ = f + (n− 2) log τ, ψ = 2θ − (n− 2)µ.

Then (3-2), (3-3) and (3-1ii) read

Ric+∇dθ + dµ� dψ = γ g, γ = λe−2µ
−1µ+ g(∇θ,∇µ),(3-6i)

e2µ
[1 f − g(∇θ,∇ f )] + 2λ f = a.(3-6ii)

To derive (3-6ii) one uses (2-2ii), which, in terms of µ, reads

e−2µ1̂ f =1 f − (n− 2)g(∇µ,∇ f ).

4. The Kähler condition and distinguished vector fields

Let g be a metric which is Kähler with respect to a complex structure J on a
manifold M , and conformal to a gradient Ricci soliton. Equation (3-4) then holds,
and the J -invariance of g and its Ricci curvature implies that

(4-1) αLvg+βLwg is J -invariant.
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Applying (3-5) to the relation Lx g(J · , · ) = −Lx g( · , J · ), for both x = v and
x = w, and recalling that J ∗ =−J, we see that (4-1) is equivalent to the vanishing
of a commutator: [α(∇v+ (∇v)∗)+β(∇w+ (∇w)∗), J ] = 0, or

(4-2) [α(Lvg)]+β(Lwg)], J ] = 0,

where ] denotes the isomorphism acting by raising an index.
The most obvious case where (4-2) holds is when both summands vanish sepa-

rately, so that, w, for example, satisfies

(4-3) [(Lwg)], J ] = 0.

We wish to study relations between these two vanishing conditions for v and w.
We first note that (4-3) includes as special cases the following three classical types
of vector fields (the first being, of course, a special case of the second):

• a Killing vector field (Lwg = 0),

• a conformal vector field ((Lwg)] = hI, for a function h and I the identity),

• a holomorphic vector field ([∇w, J ] = 0 on a Kähler manifold).

This last type is holomorphic by Proposition 2.1 in the Kähler case, and it is indeed
a special case since [∇w, J ]∗ = [(∇w)∗, J ] and [∇w+ (∇w)∗, J ] = 0, the latter
equality being equivalent to (4-3).

We will see in the next theorem that the Killing case does not lead to important
Kähler conformally soliton metrics. However, Kähler metrics with a Killing field
of the form w = τ 2

∇ f can be classified, as we show in the Appendix.
To state the next result, we continue to assume g is Kähler and conformal to a

gradient Ricci soliton ĝ, but now on a manifold of dimension n > 2. With notation
as above for τ , f , v and w we have:

Theorem 4.1. The following conclusions hold for the vector fields v and w:

(1) If w is a conformal vector field, then ĝ is Einstein.

(2) If w is a holomorphic vector field and either v is holomorphic as well, or ∇̂d f
is J -invariant, then spanC{v} = spanC{w} away from the zero sets of v and w.

Proof. The key to both parts is thatw=τ 2
∇ f is also the ĝ-gradient of f , i.e.,w=∇̂ f .

Therefore Lw ĝ=L∇̂ f ĝ= 2∇̂d f . As the condition that a vector field be conformal is
conformally invariant, it follows that whenw is conformal, the Ricci soliton equation
(3-1i) reduces, using Schur’s lemma, to the Einstein equation. This proves (1).

To prove (2), note first that the combination of Propositions 2.1 and 2.2 for a
Kähler metric yields the result that the vector field v =∇τ is holomorphic exactly
when ∇dτ is J -invariant. This in turn is equivalent, by (2-3) and the fact that the
metric g and its Ricci curvature are J -invariant, to R̂ic being J -invariant. Finally,
the latter condition is equivalent to ∇̂d f being J -invariant, by the soliton equation
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(3-1i). The combination, again, of Propositions 2.1 and 2.2, but this time for a
Hermitian metric, yields equivalence of the latter condition with L∇̂ f J = ∇̂∇̂ f J, or

(4-4) Lw J = ∇̂w J.

Now from (2-1), for any vector field u,

(∇̂w J )u = ∇̂w(Ju)− J ∇̂wu

=∇w(Ju)− τ−1(dwτ)Ju− τ−1(dJuτ)w+〈w, Ju〉τ−1v

− [J∇w(u)− τ−1(dwτ)Ju− τ−1(duτ)Jw+〈w, u〉τ−1 Jv]

= τ−1(−〈v, Ju〉w+〈w, Ju〉v+〈v, u〉Jw−〈w, u〉Jv)

= τ−1(〈Jv, u〉w−〈Jw, u〉v+〈v, u〉Jw−〈w, u〉Jv),

where we used the fact that ∇w J = 0, and the angle brackets denote g. Combining
this with (4-4) we see that as w is holomorphic, the last expression vanishes for
every vector field u. Substituting first u = v and then u = Jv shows that away from
the zeros of v, the vector fields w and Jw are pointwise in span{v, Jv}. As this
reasoning is symmetric for v and w, the result follows. �

In the examples of [Maschler 2008] the manifolds on which g and ĝ reside
are locally total spaces of holomorphic line bundles over manifolds admitting a
Kähler–Einstein metric, and g is an SKR metric (see Section 5), while the conformal
factor τ is a Killing potential. For these examples f is an affine function in τ−1 (see
[Maschler 2008, Proposition 3.1]), so that, in that case, v and w are holomorphic
and in fact spanR v = spanRw, away from the zeros of these vector fields.

5. SKR metrics

We recall here some facts from [Derdzinski and Maschler 2003] and [Maschler 2008]
on the notion of an SKR metric, i.e., a Kähler metric g admitting a special Kähler–
Ricci potential σ . For the definition, recall that a smooth function σ on a Kähler
manifold (M, J, g) is called a Killing potential if J∇σ is a Killing vector field. The
definition of a special Kähler–Ricci potential consists then of the requirement that σ
is a Killing potential and, at each noncritical point of it, all nonzero tangent vectors
orthogonal to the complex span of ∇σ are eigenvectors of both the Ricci tensor and
the Hessian of σ , considered as operators. This rather technical definition implies
that a Ricci–Hessian equation holds for σ on a suitable open set (see [Derdzinski
and Maschler 2003, Remark 7.4]), namely

(5-1) Ric+α∇dσ = γ g,

for some functions α, γ which are functionally dependent on σ .
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We say that equation (5-1) is a standard Ricci–Hessian equation if αdα 6= 0
whenever dσ 6= 0. This condition will appear in all our main theorems. However,
even if it does not hold over the entire set where dσ 6= 0, these theorems will hold,
with the same proofs, on any open subset of {dσ 6= 0} where αdα 6= 0. We have:

Proposition 5.1. A Kähler metric on a manifold of dimension at least four is an
SKR metric, provided it satisfies a standard Ricci–Hessian equation of the form
(5-1) with dα∧ dσ = dγ∧ dσ = 0.

This result appears in [Maschler 2008, Proposition 3.5] with proof referenced
from [Derdzinski and Maschler 2003], a proof that has to be interpreted with the
aid of [Maschler 2008, Remark 3.6]. Note also that in dimension greater than four,
if the Ricci–Hessian equation of a Kähler metric satisfies dα ∧ dσ = 0 then it
automatically also satisfies dγ∧ dσ = 0 (see [Maschler 2008, Proposition 3.3]).

If an SKR metric is locally irreducible, the theory of such metrics (see §4 of
[Maschler 2008]) implies that a pair of equations holds on the open set where the
Ricci–Hessian equation (5-1) holds:

(5-2)
(σ − c)2φ′′+ (σ − c)[m− (σ − c)α]φ′−mφ = K ,

−(σ − c)φ′′+ [α(σ − c)− (m+ 1)]φ′+αφ = γ.

Here φ is defined pointwise as the eigenvalue of the Hessian of σ , considered
as an operator, corresponding to the eigendistribution [spanC ∇σ ]

⊥, and c is a
constant. This eigenvalue and σ are functionally dependent, so that the primes
represent differentiations with respect to σ . Furthermore, K is a constant whose
exact expression in terms of SKR data will not concern us, while m = 1

2 dim(M).
We further have the following relations between φ, 1σ and Q := g(∇σ,∇σ):

(5-3) 1σ = 2mφ+ 2(τ − c)φ′, Q = 2(τ − c)φ.

Note that for an irreducible SKR metric, the function φ is nowhere zero on the open
dense set where dσ 6= 0.

In analyzing equations such as (5-2) we will repeatedly use in Section 7 the
following elementary lemma, taken from [Maschler 2008].

Lemma 5.2. For a system

(5-4)
Aφ′′+ Bφ′+Cφ = D,

φ′+ pφ = q,

with rational coefficients, either A(p2
− p′)− Bp+C = 0 holds identically, or else

the solution is given by φ = (D− A(q ′− pq)− Bq)/(A(p2
− p′)− Bp+C).

We now state the local classification of SKR metrics (Theorem 18.1 in [Derdzinski
and Maschler 2003]).
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Theorem 5.3. Let (M, g, σ ) be a manifold with an SKR metric and a special
Kähler–Ricci potential. Then every point for which dσ 6= 0 has a neighborhood
where g is, up to a biholomorphic isometry, given explicitly on an open set in the
following local model.

Here is the model metric, which is obtained as a special case of the Calabi ansatz.
For simplicity we only give it in the irreducible case. Let π : (L , 〈 · , · 〉)→ (N , h) be
a Hermitian holomorphic line bundle over a Kähler manifold which is also Einstein
if n > 4, where n−2 is the (real) dimension of N. Assume that the curvature of the
Chern connection associated to 〈 · , · 〉 is a multiple of the Kähler form of h. (Note
that, if n > 4, N is compact and h is not Ricci flat, this implies that L is smoothly
isomorphic to a rational power of the anticanonical bundle of N.) Consider, on the
total space of L excluding the zero section, the metric g given by

(5-5) g|H = 2|σ − c|π∗h, g|V =
Q(σ )
(ar)2

Re〈 · , · 〉,

where:

– V and H are the vertical and horizontal distributions of L , assumed to be
g-orthogonal to each other and the latter being determined via the Chern
connection of 〈 · , · 〉.

– c, a 6= 0 are constants.

– r is the norm induced by 〈 · , · 〉.

– σ is a function on L \ 0, obtained by composing with the norm r another
function, denoted via abuse of notation by σ(r), and obtained as follows:
one fixes an open interval I and a positive C∞ function Q(σ ) on I, solves
the differential equation (a/Q)dσ = d(log r) to obtain a diffeomorphism
r(σ ) : I → (0,∞), and defines σ(r) as the inverse of this diffeomorphism.

The metric g is the model SKR metric, with special Kähler–Ricci potential σ =σ(r),
and |∇σ |2g = Q(σ (r)).

SKR metrics on compact manifolds also admit a global classification (Theorem
16.3 of [Derdzinski and Maschler 2006]), which shows they reside only on CP1-
bundles P(L ⊕C) over manifolds N as above, or on complex projective spaces.

6. Functional dependence

Recall equation (3-6i):

(6-1) Ric+∇dθ + dµ� dψ = γ g, γ = λe−2µ
−1µ+ g(∇θ,∇µ),

with µ = log τ , θ = f + (n− 2) log τ and ψ = 2θ − (n− 2)µ. This was one of
the forms of equation (3-2) characterizing a metric g conformal to a gradient Ricci
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soliton. If g is also Kähler on a manifold (M, J ) of real dimension at least four,
constancy of θ implies that g is in fact Kähler–Einstein. This follows since, in this
case, the above relation defining ψ shows that the term dµ� dψ is just a constant
multiple of dµ⊗ dµ, and the latter vanishes, as it is the only term in (6-1) that is
not J -invariant.

Note that f cannot be constant on a nonempty open subset of M without being
constant everywhere in M , by a real-analyticity argument stemming from [Ivey
1996]. Hence the same holds for θ , because we see from the previous paragraph
that constancy of θ on a nonempty open set implies the same for f .

Proposition 6.1. Assume g is Kähler and conformal to a gradient Ricci soliton in
dimension n ≥ 4 with θ nonconstant. If

d f∧ dτ = 0

(equivalently, dµ∧ dθ = 0), then g satisfies on an open dense set a Ricci–Hessian
equation of the form

(6-2) α∇dσ +Ric= γ g,

for appropriate functionally dependent functions α and σ .

In fact, in the set where dθ 6= 0, choose any function t of θ with dt 6= 0, so that θ
and µ become functions of t , on some interval of the variable t . For the moment, t
is not further specified. Denoting the derivative with respect to t by ˙( ), we have

(6-3) ∇dθ + dµ� dψ = θ̇∇dt + [θ̈ + 2µ̇θ̇ − (n− 2)µ̇2
] dt � dt.

Next, we choose a function σ of t such that σ̇ > 0 and

(6-4) σ̈ /σ̇ = [θ̈ + 2µ̇θ̇ − (n− 2)µ̇2
]/θ̇

on the open dense set where θ̇ 6= 0. The right-hand side of this equation is given,
so that this stipulation amounts to the requirement that an (easily solvable) ODE
holds for σ .

We now fix t = σ . For this choice, (6-4) becomes

(6-5) θ̈ + 2µ̇θ̇ − (n− 2)µ̇2
= 0,

which holds on the image under σ of an open dense set, namely the intersection of
the noncritical set of σ , with points where θ̇ 6= 0. It follows from (6-5) and (6-3)
that ∇dθ + dµ� dψ = α∇dσ , with α = θ̇ . This translates the first of equations
(6-1) into a Ricci–Hessian equation.

We now record some relations that will be used in the next theorem, with
assumptions as in Proposition 6.1. Let Q = g(∇σ,∇σ), Y = 1σ and s be the
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scalar curvature of g. First, from (6-1),

(6-6) γ = λe−2µ
− µ̇Y + (αµ̇− µ̈)Q,

as 1µ= µ̇Y + µ̈Q and g(∇θ,∇µ)= αµ̇Q. Next, we have

αY + s = nγ,(6-7i)

αdY + Y α̇dσ + ds = ndγ,(6-7ii)

αdY + α̇dQ+ ds = 2dγ,(6-7iii)

αdQ− dY = 2γ dσ.(6-7iv)

These equations are obtained in succession by taking the g-trace of (6-2); forming the
d-image of (6-7i); finally, applying twice the divergence operator 2δ and, separately,
interior multiplication by ∇σ , i.e., 2ı∇σ , to (6-2) and using Proposition 2.3 and the
Bianchi relation 2δRic= ds.

Further relations are obtained by subtracting (6-7iii) from (6-7ii), then applying
· · · ∧ dσ to (6-8i), d to (6-7iv) and d followed by · · · ∧ dσ to (6-6), which yield

Y α̇ dσ − α̇ dQ = (n− 2) dγ,(6-8i)

α̇ dσ ∧ dQ = (n− 2) dγ∧ dσ,(6-8ii)

α̇ dσ ∧ dQ = 2 dγ∧ dσ,(6-8iii)

dγ∧ dσ = (αµ̇− µ̈) dQ ∧ dσ − µ̇ dY ∧ dσ.(6-8iv)

We can now state the following partial classification theorem.

Theorem 6.2. Let g be a Kähler metric conformal to a gradient Ricci soliton ĝ
on a manifold M of dimension n ≥ 4, so that equations (3-2) and (6-1) hold. If
d f∧ dτ = 0 (equivalently, dµ∧ dθ = 0), then one of the following must occur:

(i) g is a Kähler–Ricci soliton.

(ii) g satisfies a Ricci–Hessian equation, and if it is standard, g is an SKR metric.

(iii) n = 4 and ĝ is an Einstein metric.

(iv) n = 4 and ĝ is a non-Einstein steady gradient Ricci soliton (λ= 0).

The Ricci–Hessian equation in (ii) holds on an open dense set.

After proving this theorem, we address its relation to various known examples.

Proof. If θ is constant, we have seen g is Kähler–Einstein, a special case of (i).
Assume from now on that θ is nonconstant. Then by Proposition 6.1, g satisfies the
Ricci–Hessian equation (6-2) on an open dense set.

When α is constant, so is γ , by (6-8i) and thus (6-2) gives (i). Next, we assume
in the rest of this proof that α is nonconstant.
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If n>4 (or, dQ∧dσ =0 everywhere), then dγ∧dσ =0, as verified by subtracting
(6-8iii) from (6-8ii) (or, using (6-8iii)). If the Ricci–Hessian equation is standard,
taking into consideration that dα∧ dσ = 0 because α = θ̇ , Proposition 5.1 implies
that (ii) holds.

So assume n = 4 and dQ ∧ dσ 6= 0 somewhere in M (and, consequently, almost
everywhere, by an argument involving real-analyticity, valid in dimension four). By
(6-7iv), (6-8iii) and (6-8iv),

(6-9) (α̇+ 2αµ̇− 2µ̈) dQ− 2µ̇dY and 2µ̇(dY −αdQ)

are both functional multiples of dσ . Adding these two relations, we conclude that
(α̇− 2µ̈) dQ ∧ dσ = 0, so that (6-5) with n = 4 gives α̇ = 2µ̈ and

α = 2(µ̇+ p),(6-10i)

2α̇+α2
= 4p2,(6-10ii)

4(αµ̇− µ̈)= (3α+ 2p)(α− 2p),(6-10iii)

for a constant p, where (6-10i) is obtained by integration, (6-10ii) using (6-10i)
and (6-5) with n = 4, while (6-10iii) follows from (6-10i) and (6-10ii) by algebraic
manipulations that use again α̇ = 2µ̈. Also, as θ̇ = α,

ḟ = 2p,(6-11i)

p[e2µ(Y −αQ)+ 2λσ ] = constant.(6-11ii)

In fact, differentiating the relation θ = f + (n− 2)µ with n = 4 and (6-10i) give
(6-11i). Thus, f equals 2pσ plus a constant. Hence 1 f = 2pY , and (6-11ii)
follows from (3-6ii) and (6-10i). If p= 0 then f is constant, and this, by the soliton
equation (3-1i), implies (iii).

Suppose, finally, that p 6= 0 while n = 4 and dQ ∧ dσ 6= 0 somewhere. As a
consequence of (6-8i) and (6-10ii),

(6-12) 4 dγ = (4p2
−α2)(Y dσ − dQ).

On the other hand, (6-6), (6-10i) and (6-10iii) give

(6-13) 4γ = 4λe−2µ
+ (α− 2p)[(α+ 2p)Q+ 2(αQ− Y )].

Since p 6= 0, (6-11ii) yields αQ−Y = e−2µ(2λσ − b) for some constant b, so that
(6-13) and (6-12) become

(6-14i) 4γ = e−2µ
[4λ+ (2λσ − b)(2α− 4p)] + (α2

− 4p2)Q,

(6-14ii) 4 dγ = (4p2
−α2)[αQdσ − e−2µ(2λσ − b)dσ − dQ].
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Thus (4p2
− α2)[αQdσ − e−2µ(2λσ − b)dσ ] equals the sum of Qd(α2

− 4p2)

and d[e−2µ(4λ + (2λσ − b)(2α − 4p))], since both expressions coincide with
4dγ+(4p2

−α2) dQ, which for the former is clear from (6-14ii), and for the latter fol-
lows if one applies d to (6-14i). This equation yields 4e−2µ(2λσ−b)(2p−α)α= 0,
as seen by evaluating these expressions via the first two parts of (6-10), and sub-
tracting the former expression from the latter. As we are assuming α is not constant,
it follows necessarily that λ (and b) must be zero. This gives (iv), completing the
proof. �

We remark on the relation of the four possible outcomes in this theorem to known
examples. Many examples of Ricci solitons that are Kähler have been described in
the literature (see for instance [Koiso 1990; Cao 1996; Pedersen et al. 1999; Wang
and Zhu 2004; Dancer and Wang 2011]), and they are all examples of outcome
(i), with constant conformal factor τ . A glance at the proof of Theorem 6.2 shows
that the door is left open for another possibility. Namely, when θ is nonconstant
but α = θ̇ is constant, equation (6-5) yields that either µ= log τ is constant or µ̇ is
constant, so that τ is an exponential in an expression affine in σ . We do not know if
there exists a corresponding example of a gradient Kähler–Ricci soliton nontrivially
conformal to a gradient Ricci soliton. The case of Einstein metrics conformal
to other Einstein metrics is classical. On non-Einstein gradient Ricci solitons
conformal to other such solitons, see [Jauregui and Wylie 2015; Maschler 2015].

Concerning the SKR metric option in possibility (ii), there are known examples
of SKR metrics nontrivially conformal to Ricci solitons. Such metrics include, up to
biholomorphic isometry, all Kähler conformally Einstein ones in dimension n > 4
[Derdzinski and Maschler 2003; 2006; 2005]. Regarding SKR metrics conformal
to non-Einstein gradient Ricci solitons, examples were constructed in [Maschler
2008] and [Derdziński 2012]. The former examples are special among those of the
latter, as for them the conformal factor τ , rather than some function σ of it, is a
Killing potential, and, more importantly, the soliton is itself Kähler with respect to
another complex structure.

Note that the characteristics of the spaces that admit SKR metrics are fairly
restrictive, in that they are quite specific holomorphic line bundles (if the base is not
Ricci flat) over a base that is Kähler–Einstein (if n> 4, see Section 5). Thus many of
the later examples of Ricci solitons, Kähler or not, such as the cohomogeneity one
metrics on vector bundles over a product of Fano Kähler–Einstein manifolds [Dancer
and Wang 2011; 2009], are not SKR or conformal to SKR metrics. On the other
hand, the recent examples of Stolarski [2015] live on exactly the right type of space,
and it is an interesting question whether his metrics are conformal to SKR metrics.

Note that the examples in [Maschler 2008], are of a type first considered by
Koiso [1990] and Cao [1996]. They, along with those in [Derdziński 2012], are
also irreducible. Although the development of reducible SKR metrics runs in
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parallel to that of the irreducible ones, with somewhat simpler formulas, and a
simpler classification of conformally Einstein such metrics, the theory of reducible
SKR metrics conformal to non-Einstein Ricci solitons is currently underdeveloped,
compared with the irreducible case, perhaps because the eigenfunction φ of the
Hessian in the Ricci–Hessian equation is then identically zero, and so equations
(5-2) do not hold. But see also Remark 7.2.

A Kähler conformally Einstein metric of the type given in possibility (iii) is not an
SKR metric, since the latter must satisfy dQ∧dσ = 0, a relation that, as the proof of
Theorem 6.2 shows, does not hold in this case. Instead, one has a relevant example
on the two-point blowup of CP2, namely the Chen–LeBrun–Weber metric [2008].

Possibility (iv) is perhaps the least expected. We do not know if there are metrics
of this type, and this constitutes an interesting question. The stipulation that the
soliton ĝ is steady brings to mind the four-dimensional version of the examples in
[Buzano et al. 2015], which was already considered in [Ivey 1994]. However, the
condition dQ ∧ dσ 6= 0 that must be satisfied points more towards a metric like
that of (iii) rather than to a bundle-like metric. But unlike case (iii), such a metric
cannot occur on a compact manifold, as it is well known that compact manifolds
do not admit non-Einstein steady gradient Ricci solitons (see [Ivey 1993]).

7. Quasi-solitons

Many of the original examples of gradient Ricci solitons arise as warped products
over a one-dimensional base (see for instance [Chow et al. 2007]). We consider
here the case of an arbitrary base.

Let g be a warped product (gradient Ricci) soliton metric on a manifold M= B×F,
so that

(7-1) g = gB + `
2gF := g+ `2gF , Ric+∇d f = λg,

where ` is (the pullback of) a function on the base B and λ is constant. When g
is Einstein, the base metric g = gB is often called quasi-Einstein. In the setting of
(7-1), gB will be a special case of what we call a quasi-soliton metric. The latter is
defined as a metric g satisfying (7-2i) below, for some functions f and ` and some
constant λ. There, and in what follows, we drop the subscript B in the notation for
gB-dependent quantities.

Proposition 7.1. With notation as above, the soliton equation for g (see (7-1)) is
equivalent to the system

Ric− k
`
∇d`+∇d f = λg, k = dim(F),(7-2i)

RicF = νgF ,(7-2ii)

where ν =−`d∇ f `+ `
2`#
+ λ`2, for `#

= `−11`+ (k− 1)`−2
|∇`|2.(7-2iii)



CONFORMALLY KÄHLER RICCI SOLITONS AND RICCI QUASI-SOLITONS 375

In particular the fiber metric is Einstein if dim(F) > 2, and f turns out to be a
function with vanishing fiber covariant derivative (see below), so that we regard it
as a function on B. Unlike the quasi-Einstein case [Kim and Kim 2003], the scalar
equation on the left in (7-2iii), with ν a constant, does not follow from (7-2i).

Proof. To derive the equations, we need the well-known Ricci curvature formulas
for warped products (see [O’Neill 1983]), and additionally, similar equations for
the Hessian of f . For the latter we use the covariant derivative formulas for warped
products, together with the known fact that for a C1 function defined on the base,
the gradient of its pullback equals the pullback of its base gradient.

Let, x , y denote lifts of vector fields on B, and u, v lifts of vector fields on F.
Then

(7-3)

∇x y is the lift of ∇x y on B,

∇xv = ∇vx = dx log(`)v,

[∇vw]
F is the lift of ∇F

v w on F,

[∇vw]
B
=−g(v,w)∇ log `.

Hence,

∇d f (x, y)= g
(
∇x(∇ f )B, y

)
+ g

(
∇x(∇ f )F, y

)
= g

(
∇x(∇ f )B, y

)
+ g

(
dx log `(∇ f )F, y

)
= g

(
∇x(∇ f )B, y

)
,

∇d f (x, v)= g
(
∇x(∇ f )B, v

)
+ g

(
∇x(∇ f )F, v

)
= `dx`gF

(
(∇ f )F, v

)
,

∇d f (v,w)= g
(
∇v(∇ f )B,w

)
+ g

(
∇v(∇ f )F,w

)
= d(∇ f )B (log `)g

(
v,w

)
+ g

(
∇

F
v (∇ f )F,w

)
− g

(
v, (∇ f )F)g(∇ log `,w

)
= `d(∇ f )B (`)gF

(
v,w

)
+ `2gF

(
∇

F
v (∇ f )F,w

)
.

We combine these with the Ricci curvature formulas

(7-4)

Ric(x, y)= RicB(x, y)−
(k
`

)
∇d`(x, y),

Ric(x, v)= 0,

Ric(v,w)= RicF (v,w)− `
#g(v,w).

We now notice that the soliton equation applied to x and v implies that (∇ f )F
= 0

so that f can be regarded as the pullback of a function on B. This readily gives
equations (7-2). �

Remark 7.2. The structure (7-1) above can at times give an example of a Ricci
soliton which is conformally Kähler. Namely, g̃ = `−2g is clearly a product metric,
and if, for example, dim B = 2, so that the quasi-Einstein metric gB is Kähler with
respect to some complex structure on B, while gF is chosen to be Kähler–Einstein
on F, then g̃ is Kähler, reducible and conformal to a Ricci soliton.
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In analogy with the previous section, we will be considering quasi-soliton metrics
for which f and ` are functionally dependent, that is,

(7-5) d f∧ d`= 0.

We call such metrics special quasi-soliton metrics.
It is known that Kähler quasi-Einstein metrics which are not Einstein do not

exist on a compact manifold, and in general must be certain Riemannian product
metrics [Case et al. 2011]. Similarly we show:

Theorem 7.3. Let g be a Kähler special quasi-soliton metric on a manifold M of
dimension at least four. Then g satisfies a Ricci–Hessian equation on an open set.
If this equation is standard, then g is a Riemannian product there. If the dimension
is greater than four, then one of the factors in this product is a Kähler–Einstein
manifold of codimension two.

Proof. As the quasi-soliton metric is special, we have ∇d f = f ′∇d`+ f ′′d`⊗ d`,
where the prime denotes differentiation with respect to `. Then (7-2i) becomes

(7-6) Ric+
(

f ′− k
`

)
∇d`+ f ′′d`⊗ d`= λg.

In analogy with Proposition 6.1, we introduce a function σ with d`∧ dσ = 0
and rewrite the special quasi-Einstein equation (7-6) as

(7-7) Ric+ α̃`′∇dσ + (α̃`′′+ f ′′`′2) dσ ⊗ dσ = λg,

for α̃ = f ′(`)− k/`, with the convention that primes on ` represent differentiations
with respect to σ , while primes on f still represent differentiations with respect
to `. The restriction on the open set where an ODE analogous to (6-4) holds is
α := α̃`′ 6= 0 (corresponding to θ̇ 6= 0 in Proposition 6.1). On that set, equation
(7-7) becomes a Ricci–Hessian equation of the form

Ric+α∇dσ = λg, α = α̃`′,

provided we choose σ so that the differential equation

(7-8) α̃`′′+ f ′′`′2 = 0

also holds.
Assuming the Ricci–Hessian equation is standard, Proposition 5.1 now shows

that g is an SKR metric on the open set described above. If g is irreducible, the
theory of SKR metrics gives the two equations (5-2), which now take the form

(σ − c)2φ′′+ (σ − c)[m− (σ − c)α]φ′−mφ = K ,(7-9i)

−(σ − c)φ′′+ [α(σ − c)− (m+ 1)]φ′+αφ = λ,(7-9ii)
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where φ is defined pointwise as the eigenvalue of the Hessian of σ , mentioned in
Section 5.

Divide (7-9i) by σ − c, add to (7-9ii) and multiply both sides of the resulting
equality by −1, to obtain

(7-10) φ′+
( m
σ−c

−α
)
φ =−λ−

K
σ−c

.

We will apply Lemma 5.2 to the system consisting of (7-9i) (whose coefficients
we now call A, B, C , D) and (7-10) (with the obvious p and q). According to the
lemma, the solution φ is the ratio (D−A(q ′− pq)−Bq)/(A(p2

− p′)−Bp+C), if
the denominator is nonzero. But one easily computes that D−A(q ′− pq)−Bq = 0.
However, as mentioned in Section 5, the function φ is nowhere zero on the set where
dσ 6=0 when g is irreducible. Hence the only possibility is that A(p2

− p′)−Bp+C
vanishes identically. But it is easily seen from the definitions of A, B,C, p that

A(p2
− p′)− Bp+C = α′(σ − c)2.

We conclude that α is constant, so g is additionally a gradient Ricci soliton. Writing
this condition explicitly we get, with primes now denoting solely differentiation
with respect to σ ,

( f ◦ `)′− k `
′

`
= b,

where b is constant. But equation (7-8) can also be written as

( f ◦ `)′′− k `
′′

`
= 0.

Differentiating the first of these two equations and combining it with the second
shows that ` is constant, hence g is Einstein. But this means α ≡ 0, contradicting
that the Ricci–Hessian equation for g is standard. Hence g must be reducible. The
structure of the Riemannian product constituting g follows from SKR theory. �

Next we consider the problem of whether quasi-soliton metrics can be confor-
mally Kähler. This is certainly possible for quasi-Einstein metrics (see [Maschler
2011; Batat et al. 2015]). We have the following result, analogous in form and in
proof to the previous one, though it requires more assumptions and is computation-
ally more difficult.

Theorem 7.4. Let M be a manifold of dimension n = 2m > 4 and g an irreducible
Kähler metric on M conformal to a special quasi-soliton ĝ = g/τ 2 having warping
function `, potential f and appropriate constants k and λ. Assume τ is a Killing
potential for g and d`∧ dτ = 0. Then g satisfies a Ricci–Hessian equation. If the
latter is standard, then ĝ is quasi-Einstein.
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Proof. Being a special quasi-soliton, ĝ satisfies equation (7-6), i.e.,

(7-11) R̂ic+µ∇̂d`+χd`⊗ d`= λĝ,

for µ= f ′(`)− k/` and χ = f ′′(`).
Using (2-3) and (2-2i), we see that g satisfies

(7-12) Ric+ (n− 2)τ−1
∇dτ + (τ−11τ − (n− 1)τ−2 Q)g

+µ(∇d`+ 2τ−1dτ � d`− τ−1g(∇τ,∇`)g)+χd`⊗ d`= λτ−2g,

with Q = g(∇τ,∇τ). Since d`∧ dτ = 0, writing d` = `′(τ )dτ and rearranging
terms, we rewrite this equation as

(7-13) Ric+ α∇dτ + (µ(`′′+ 2τ−1`′)+ (`′)2χ) dτ ⊗ dτ

= (λτ−2
− τ−11τ + (α+ τ−1)τ−1 Q)g for α = (n− 2)τ−1

+µ`′.

As g is Kähler and τ is a Killing potential, the term with dτ ⊗ dτ is the only
one which is not J -invariant. Hence its coefficient must vanish:

(7-14) µ(`′′+ 2τ−1`′)+ (`′)2χ = 0.

As a result, equation (7-13) is Ricci–Hessian:

(7-15) Ric+α∇dτ = γ g, where γ = λτ−2
− τ−11τ + (α+ τ−1)τ−1Q.

Since clearly dα ∧ dτ = 0, and n > 4, as mentioned in Section 5, we also have
dγ∧ dτ = 0. Under the assumption that the Ricci–Hessian equation is standard,
we conclude from Proposition 5.1 that (g, τ ) is an SKR metric with τ the special
Kähler–Ricci potential. As in the previous theorem, irreducibility of g again implies
that two ODEs hold for the horizontal Hessian eigenvalue function φ. They are

(τ − c)2φ′′+ (τ − c)[m− (τ − c)α]φ′−mφ = K ,(7-16i)

−(τ − c)φ′′+ (α(τ − c)− (m+ 1))φ′+αφ = γ(7-16ii)

= λτ−2
− τ−1(2mφ+ 2(τ − c)φ′)+(α+ τ−1)τ−12(τ − c)φ,

where K , c are constants, and we have used formulas (5-3) giving 1τ and Q in
terms of φ.

Simplifying the second equation, we then replace it by a first-order equation as
in the previous theorem, to obtain the equivalent system

(7-17i) (τ − c)2φ′′+ (τ − c)[m− (τ − c)α]φ′−mφ = K ,

(7-17ii) (τ−c)(τ−2c)
τ

φ′−
(
(τ−c)(τ−2c)

τ
α+

2(τ−c)2−mτ(τ−2c)
τ 2

)
φ

=
K τ 2
+λτ−λc
τ 2 .
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Naming the coefficients A, B, C , D, p, q as before, we now apply Lemma 5.2 to the
system (7-17). This time the computation of the two quantities used in the lemma
is quite laborious, though still elementary. A symbolic computational program
simplifies the result to the following.

(7-18)
A(p2

− p′)− Bp+C = (τ−c)2((τ−2c)τα′+2(τ−c)α+2−2m)
τ (τ−2c)

,

D− A(q ′− pq)− Bq = 0.

By the lemma and the fact that φ is nowhere zero, solutions are only possible if the
first expression vanishes identically, so that α solves

(τ − 2c)τα′+ 2(τ − c)α+ 2− 2m = 0.

The solutions of this equation take the form

(7-19) α =
n−2
τ
+

C
τ(τ−2c)

,

where C is a constant. As (7-15) and (7-16ii) imply that the form of α determines
that of γ , we have the following outcome. If c = 0, the metric g is conformal to
a gradient Ricci soliton [Maschler 2008, Proposition 2.4], while if c 6= 0 then g
is conformal to a quasi-Einstein metric [Maschler 2011]1. (The case C = 0 is a
special case of both these types, where g is conformally Einstein [Derdzinski and
Maschler 2003].)

To rule out the case that ĝ is a nontrivial gradient Ricci soliton, we note first that
the expression defining α in (7-13), when compared to that in (7-19), results in

( f ◦ `)′− k `
′

`
=

C
τ(τ−2c)

.

Additionally, equation (7-14) can also be written as

( f ◦ l)′′− k `
′′

`
+ 2

(
( f ◦ `)′− k `

′

`

)
τ−1
= 0.

Substituting the first of these equations in the last term of the second, and com-
bining the result with the derivative of the first equation gives, after eliminating
( f ◦ `)′′− k`′′/` and rearranging terms,

k
`′ 2

`2 =
2C

τ 2(τ−2c)
+

( C
τ(τ−2c)

)′
=−

2cC
τ 2(τ−2c)2

.

Hence the Ricci soliton case c = 0 implies that ` is constant, so that comparing
the two expressions for α again yields C = 0, i.e., that ĝ is Einstein, which is, of
course, a special case of the quasi-Einstein condition. �

1See (2.3) in that paper, where the quasi-Einstein case is given by α = (n− 2)/τ +a/(τ(1+ kτ)),
where a is a constant and k =− 1

2c . This corresponds to formula (7-19) with C =−2ac.
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We comment here on the assumption in this theorem that τ is a Killing potential,
which is the same assumption that singles out the examples in [Maschler 2008]
among those of [Derdziński 2012]. In analogy with the previous theorems, it is
possible instead to replace equation (7-13) by a similar equation involving ∇dσ and
dσ ⊗dσ , for a function σ of τ that will serve, after choosing it appropriately, as the
special Kähler–Ricci potential instead of τ . One can obtain then two differential
equations analogous to (7-16) and (7-17) with independent variable σ . However,
these equations will involve τ and its derivatives with respect to σ , and this unknown
dependency hinders the determination of solutions and the corresponding α. Even
if one knew this α as a function of σ , this will not easily shed light on what metric g
is conformal to (with conformal factor τ ). Finally, without the Killing assumption
on τ , it is not clear that a similar result should be expected, as existence of more
general conformally Kähler quasi-solitons may occur. This is in analogy with the
fact mentioned above, that there do exist conformally Kähler quasi-Einstein metrics.

Appendix: Killing vector fields of the form w = τ 2∇ f

We consider here the classification problem for Killing fields of the form w= τ 2
∇ f ,

a form that played an important role in Section 4. In the following τ and f will
denote smooth functions on a given manifold.

Proposition A.1. On a compact manifold, a Killing field of the form w = τ 2
∇ f

must be trivial.

Proof. First, on a compact manifold ∇ f has zeros, hence so does w. Let p be a
zero of w= τ 2

∇ f . Since ∇w= 2τdτ ⊗∇ f +τ 2
∇d f , and at a zero either τ = 0 or

∇ f = 0, we see that at a zero ∇w equals either zero or τ 2
∇d f . But in the latter case

∇w is symmetric, yet it is also skew-symmetric as w is a Killing field, hence ∇w
must be zero in this case as well. However, a Killing field w is uniquely determined
by the values of w and ∇w at one point. As those values are zero at p, we see
that w must be the zero vector field. �

Without compactness, we have the following classification for such vector fields.

Theorem A.2. A Riemannian metric g with a Killing vector field of the form
w = τ 2

∇ f is, near generic points, a warped product with a one-dimensional fiber.
If g is also Kähler, it is, near such points, a Riemannian product of a Kähler metric
with a surface metric admitting a nontrivial Killing vector field.

We note here that a surface with a nontrivial Killing vector field can be presented
as a warped product with a one-dimensional fiber and base.

Proof. First, the orthogonal complement H to span(w) is generically [∇ f ]⊥, which
is obviously integrable. Next, H is totally geodesic. This follows immediately since
g(ẋ, w) is constant for any geodesic x(t) and Killing field w.
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By a result going back to [Hiepko 1979] and [Ponge and Reckziegel 1993] (see
especially Theorem 3.1 in the survey [Zeghib 2011]), a metric is a warped product
if and only if it admits two orthogonal foliations, one totally geodesic and the other
spherical. In our case we have just shown the foliation orthogonal to w is totally
geodesic. The fibers tangent to span(w), on the other hand, are certainly totally
umbilic, as they are one-dimensional. This is part of the definition of spherical. The
other part is that the mean curvature vector is parallel with respect to the normal
connection. We now check this.

Let w′ = w/|w| be a unit vector parallel to w, defined away from its zeros. The
mean curvature vector to the fibers is then, by definition, n = ∇w′w′, which takes
values in H. The requirement that span(w) be spherical amounts to showing that
for any x ∈H, we have g(∇wn, x)= 0. The flow of w certainly preserves itself (as
[w,w] = 0) and also g and ∇ (as w is Killing). Therefore the flow also preserves
w′ = w/

√
g(w,w) and thus also n =∇w′w′. Hence [w, n] = 0, so that

2g(∇wn, x)= 2g(∇nw, x)= g(∇nw, x)− g(n,∇xw)

=−g(w,∇nx)+ g(w,∇x n)

= g(w, [x, n])= 0,

as H is integrable. This concludes the first part of the proof.
What remains is to classify Kähler warped products with a one-dimensional fiber.

Suppose the manifold is given by M = B× F, with F the fiber (an interval). Since
the base foliation corresponding to B is totally geodesic, parallel transport along
one of its leaves with respect to g is the same as parallel transport with respect to
the induced metric on this leaf, and therefore it preserves the tangent spaces to these
leaves. It is well known that it also preserves the normal spaces to the leaves; for
completeness, we show explicitly that the unit vector field w′ perpendicular to the
leaves is preserved. If x and y are, as usual, vector fields tangent to the leaves, then
g(w′, y)= 0, so 0= dx g(w′, y)= g(∇xw

′, y)+ g(w′,∇x y)= g(∇xw
′, y) because

the leaves are totally geodesic, and similarly 0= dx g(w′, w′)= 2g(∇xw
′, w′). So

∇xw
′, being orthogonal to a basis, is zero, i.e., w′ is parallel in directions tangent

to the leaves.
As g is Kähler, the complex structure J commutes with any ∇x , so that Jw′

is also parallel in leaf directions. But Jw′ is itself tangent to leaves of the base
foliation. Therefore, by the local de Rham theorem, the induced metric on any
leaf splits locally into a Riemannian product so that B = N × I, where the one-
dimensional factor I is tangent to Jw′, and N is J -invariant, hence has holomorphic
(and totally geodesic) leaves in M .

Armed with this information it remains to show that, near generic points,

g is a product of a Kähler metric on N and a local metric of revolution on I × F.
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For this we turn to a computation that is based on the formulas (see for example
[O’Neill 1983]) for the connection of the warped product metric g = gB + l2gF ,
where the function l is a (lift of) a function on B. Let t be a nontrivial vector field
tangent to F which is projectable onto F. Let s = J t , a vector field tangent to I.
Then standard formulas for warped products give

(A-1) ∇t t = (∇t t)B
+ (∇t t)F

=−|t |2∇(log l)+ ct,

with c some function, and the last term takes that form because the fiber is one-
dimensional. Next, as s is tangent to I, there is some function h on M such that the
vector field hs is projectable onto I. Therefore, again by warped product formulas,

(A-2) ∇t(hs)= hs(log l)t.

But ∇t(hs) = (dt h)s + h∇t s = (dt h)s + h J∇t t = (dt h)s − h|t |2 J∇(log l)+ hcs,
by (A-1). Equating this expression with the right-hand side of (A-2) and taking
components tangent to N gives h|t |2[J∇(log l)]N = 0, so that, away from the zeros
of h and t , [J∇(log l)]N = 0. Now each tangent space Tp N is J -invariant, so J
commutes with the projection to N. Hence ∇(log l)N

= 0 and so ∇(log l) is parallel
to s, which means that the warping function l is constant on the leaves of N, and
only changes along the fibers associated with I. Thus g is a Riemannian product of
the type claimed above. �
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CALCULATING GREENE’S FUNCTION
VIA ROOT POLYTOPES AND SUBDIVISION ALGEBRAS

KAROLA MÉSZÁROS

Greene’s rational function 9P (x) is a sum of certain rational functions in
x = (x1, . . . , xn) over the linear extensions of the poset P (which has n
elements), which he introduced in his study of the Murnaghan–Nakayama
formula for the characters of the symmetric group. In recent work Boussi-
cault, Féray, Lascoux and Reiner showed that 9P (x) equals a valuation on a
cone and calculated 9P (x) for several posets this way. In this paper we give
an expression for 9P (x) for any poset P. We obtain such a formula using
dissections of root polytopes. Moreover, we use the subdivision algebra of
root polytopes to show that in certain instances 9P (x) can be expressed
as a product formula, thus giving a compact alternative proof of Greene’s
original result and its generalizations.

1. Introduction

Given a poset P on the set [n]= {1, . . . , n}, Greene’s rational function is defined by

(1-1) 9P(x)=
∑

w∈L(P)

w

(
1

(x1− x2)(x2− x3) · · · (xn−1− xn)

)
,

where L(P) denotes the set of linear extensions of P and for w ∈ L(P) and a
function f (x1, . . . , xn) we have that w( f (x1, . . . , xn)) = f (xw(1), . . . , xw(n)). It
was introduced by Greene [1992] in his work on the Murnaghan–Nakayama formula.
Boussicault, Féray, Lascoux and Reiner [Boussicault et al. 2012] showed that

(1-2) 9P(x)= s(K root
P ; x),

where

(1-3) K root
P = R+{ei − ej | i <P j} = R+{ei − ej | i lP j}
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and

(1-4) s(K ; x) :=
∫

K
e− spanR+

(x,v) dv,

for K a polyhedral cone in a Euclidean space V with inner product spanR+
( · , · ).

Next we explain two important results about calculating 9P(x). Further work
on 9P(x) appeared in [Boussicault 2007; 2009; Boussicault and Féray 2009; Ilyuta
2009].

Greene’s theorem. Let P be a strongly planar poset, meaning that the Hasse
diagram of P t{0̂, 1̂} has a planar embedding with all edges directed upward in the
plane. For a strongly planar poset P the edges of the Hasse diagram of P dissect
the plane into bounded regions ρ such that the set of vertices of P in the boundary
of ρ are two chains starting and ending at the same two elements, min(ρ) and
max(ρ), respectively. Denote by b(P) the set of bounded regions into which the
Hasse diagram of P dissects the plane.

Greene’s theorem [Greene 1992]. For any strongly planar poset P,

(1-5) 9P(x)=
∏
ρ∈b(P)(xmin(ρ)− xmax(ρ))∏

ilP j (xi − x j )
.

Boussicault’s, Féray’s, Lascoux’s and Reiner’s theorem. A beautiful theorem ap-
pearing in [Boussicault et al. 2012] gives an expression for9P(x) for some posets P
whose Hasse diagrams are bipartite graphs in terms of certain lattice paths. The
setup is as follows. Let D be a skew Ferrers diagram in English notation, and let
us labels its rows from top to bottom by 1, 2, . . . , r and its columns from right to
left by 1, 2, . . . , c. See the left of Figure 1. With this labeling the northeasternmost
point of D is (1, 1) and the southwesternmost is (r, c). The bipartite poset PD is a
poset on the set {x1, . . . , xr , y1, . . . , yc} with order relations xi <P yj if and only
if (i, j) ∈ D.

BFLR theorem [Boussicault et al. 2012]. For any skew diagram D,

(1-6) 9PD (x)=
∑
π

1∏
(i, j)∈π (xi − yj )

,

where the sum runs over all lattice paths π from (1, 1) to (r, c) inside D that take
steps either one unit south or one unit west.

Roadmap of the paper. The objective of this paper is to (1) give a combinatorial
expression of 9P(x) for any poset P, (2) give an alternative proof of the BFLR
theorem and (3) generalize Greene’s theorem. We accomplish (1) and (2) in
Section 2, while we do (3) in Sections 3 and 4. In Sections 3 and 4 we also study
the integer point transform of the root cone, which can be seen as a more refined
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invariant of the cone than Greene’s function. The integer point transform of the root
cone and generalizations of Greene’s theorem were also investigated in [Boussicault
et al. 2012]. Our tools will be root polytopes and their subdivision algebras, the
latter of which were introduced in [Mészáros 2011] and put to use in [Escobar and
Mészáros 2015a; 2015b; Mészáros 2015a; 2015b; 2016a; 2016b; Mészáros and
Morales 2015].

2. Greene’s function for an arbitrary poset

The purpose of this section is twofold. First we show how to express 9P(x) for
any poset P in terms of 9P(x) for posets P whose Hasse diagrams are alternating
graphs. Then we give an expression for 9P(x) for posets whose Hasse diagrams
are alternating graphs, thereby also obtaining an expression for 9P(x) for any
poset P. Finally, we show that for certain posets P whose Hasse diagrams are
bipartite graphs we can write 9P(x) as a nice summation formula. The latter
result originally appeared in the work of Boussicault, Féray, Lascoux and Reiner
[Boussicault et al. 2012], who used triangulations of order polytopes in their proof.
We phrase our proof in terms of root polytopes. The point of view of this paper is
that (dissections of) root polytopes (and the root cone) are the unifying approach to
the calculation of 9P(x).

A root polytope (of type An−1) is the convex hull of the origin and some of the
points ei −ej for 1≤ i < j ≤ n. Given a graph G on the vertex set [n] we associate
to it the root polytope

(2-1) Q̃G = ConvHull
(
0, ei − ej | (i, j) ∈ E(G), i < j

)
.

It can be seen that Q̃G is a simplex if and only if G is acyclic and to emphasize this
we sometimes denote Q̃G for acyclic graphs G by 1̃G . In the proof of Lemma 4.2
we will also use the notation

(2-2) 1F = ConvHull
(
ei − ej | (i, j) ∈ E(F), i < j

)
for a forest F.

The posets P we work with in this section are on the set [n] and they are labeled
naturally; that is to say that if i <P j then i < j in the order of natural numbers.
Note that this does not pose a restriction on the results, it only makes them easier to
state. Denote by H(P) the graph of the Hasse diagram of P. The directed transitive
closure of a graph H is denoted by H, and it is the graph on vertex set V (G) with
edges (i, j) ∈ H if there is an increasing path from i to j in H.

9P(x) in terms of alternating posets. This subsection explains how to reduce the
computation of 9P(x) to the computation of 9P(x) for posets P whose Hasse
diagram is an alternating graph. A graph G on the vertex set [n] is called alternating
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if there are no edges (i, j) and ( j, k) in it with i < j < k. We call a poset on [n] an
alternating poset if its Hasse diagram is an alternating graph.

Proposition 2.1. For any naturally labeled poset P on [n] we can write

(2-3) 9P(x)=
∑
L ,R

9PL ,R (x),

where the summation runs over all L , R such that L t R = [n], and

GL ,R =
(
[n], {(i, j) ∈ E(G) | i ∈ L , j ∈ R, i < j}

)
is a connected graph, where G = H(P). Furthermore, H(PL ,R) = GL ,R for a
naturally labeled alternating poset PL ,R .

Proof. Recall that 9P(x) = s(K root
P ; x). If K root

P =
⋃l

i=1 Ki for interior disjoint
cones Ki with i ∈ [l] then s(K root

P ; x) =
∑l

i=1 s(Ki ; x). If Ki = K root
Pi

for some
posets Pi with i ∈ [l] then 9P(x) =

∑l
i=19Pi (x). Therefore, to prove (2-3), it

suffices to show that K root
P =

⋃
L ,R K root

PL ,R
, where the union runs over all L , R such

that L t R = [n], GL ,R is a connected graph (G =H(P)) and H(PL ,R)= GL ,R for
a naturally labeled poset PL ,R .

Since K root
P = R+{ei − ej | i <P j}, if Q̃G =

⋃
Q̃GL ,R (the Q̃GL ,R are interior

disjoint), where the union runs over all L , R such that L t R = [n], and GL ,R

is a connected graph, then we also obtain that K root
P =

⋃
L ,R K root

PL ,R
for interior

disjoint cones K root
PL ,R

. The equation Q̃G =
⋃

Q̃GL ,R follows from [Postnikov 2009,
Proposition 13.3] together with the observation that G = G for our choice of G. �

We note that the cones K root
PL ,R

are generally not simplicial. One way to compute
9PL ,R (x) would be to triangulate K root

PL ,R
into simplicial cones with rays of the form

ei−ej , since for such a cone the following simple lemma gives the value of Greene’s
function.

Lemma 2.2 [Boussicault et al. 2012]. The cone K root
P is simplicial if and only if the

Hasse diagram of P contains no cycles. In this case it is also unimodular and

9P(x)=
1∏

ilP j (xi − x j )
.

We remark that a proof of Lemma 2.2 different from that given in [Boussicault
et al. 2012] follows immediately using the subdivision algebra of root polytopes
defined in [Mészáros 2011].

Calculating 9P(x) for an alternating poset P. In light of Proposition 2.1, if we
can calculate 9P(x) for an alternating poset P, then we can in turn calculate 9P(x)
for any poset P. In this section we accomplish the former, building on the results of
Li and Postnikov [2015]. The next paragraph follows the exposition of that paper.
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Given an alternating graph G on the vertex set [n], pick a linear order O on the
edges of G. Let T be a spanning tree of G, and let e be an edge that does not belong
to T. Let C be the unique cycle contained in the graph ([n], E(T )∪ {e}). Let e∗

be the maximal edge in the cycle C in the linear ordering O of the edges. We say
that an edge e is externally semiactive if either e = e∗ or there is an odd number
of edges in C between e and e∗. (Since G is alternating, all cycles in G have an
even length.) Let extOG(T ) be the number of externally semiactive edges of G with
respect to a spanning tree T.

Theorem 2.3 [Li and Postnikov 2015]. Given an alternating graph G and a linear
ordering O of its edges, let T O

G be the set of spanning trees T with extOG(T ) = 0.
Then

(2-4) Q̃G =
⋃

T∈T O
G

1̃T ,

where the simplices 1̃T are interior disjoint.

Corollary 2.4. For any naturally labeled poset P on [n] we can write

(2-5) 9P(x)=
∑
L ,R

∑
T∈T

OL ,R
GL ,R

1∏
(i, j)∈E(T ),i< j (xi − x j )

,

where the summation runs over all L , R such that L t R = [n], and

GL ,R =
(
[n], {(i, j) ∈ E(G) | i ∈ L , j ∈ R, i < j}

)
is a connected graph, where G =H(P). Furthermore, OL ,R is an arbitrary linear
order of the edges of GL ,R .

Proof. The proof follows from Proposition 2.1, Lemma 2.2 and Theorem 2.3. �

We remark that we obtained Corollary 2.4 from a particular dissection of the
root polytope ConvHull(0, ei −ej | ei <P ej ) into simplices. Such a dissection then
induced a dissection of K root

P =R+{ei−ej | ei <P ej } into simplicial cones. Since we
know that K root

P =R+{ei − ej | ei lP ej }, instead of ConvHull(0, ei − ej | ei <P ej )

one could also dissect ConvHull(0, ei − ej | ei lP ej ) into simplices and obtain an
expression with fewer terms for9P(x). However, since such a dissection also would
not in general yield significantly fewer terms, we find the expression presented
in Corollary 2.4 a fine representative of what a general formula for 9P(x) for an
arbitrary poset P can look like. We devote the next section to particularly nice
formulas for9P(x) for special posets P, also demonstrating that in certain instances
we can expect the formula presented in Corollary 2.4 to be far better than the formula
given in (1-1), although this is not always the case.
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An alternative proof of the BFLR theorem. Let PD be the poset of a connected
skew diagram D as in the BFLR theorem. Let GD be the graph H(PD) drawn on a
line with vertices from left to right, xr , . . . , x1, y1, . . . , yc, and with edges as arcs
above this line. Note that the condition that GD comes from PD can be translated
into the conditions that GD is bipartite on parts {x1, . . . , xr } and {y1, . . . , yc} and
for each i ∈ [r ], xi is connected to yj for j ∈ [ai , bi ], i ∈ [r ], where a1 ≤ · · · ≤ ar

and b1 ≤ · · · ≤ br and [1, c] =
⋃r

i=1[ai , bi ].
Given a drawing of a graph G such that its vertices v1, . . . , vn are arranged in

this order on a horizontal line and its edges are drawn above this line, we say that G
is noncrossing if it has no edges (vi , vk) and (vj , vl) with i < j < k < l. A vertex vi

of G is said to be nonalternating if it has both an incoming and an outgoing edge;
it is called alternating otherwise. The graph G is alternating if all its vertices are
alternating.

Lemma 2.5. The root polytope Q̃GD decomposes into Q̃GD =
⋃

T 1̃T , where the
union runs over all noncrossing alternating trees of GD and the simplices 1̃T are
interior disjoint.

Since noncrossing depends on the drawing of the graph it is essential that we
remember that we drew GD with vertices from left to right: xr , . . . , x1, y1, . . . , yc.

Proof of Lemma 2.5. Consider the following ordering O on the edges of GD . The
edges incident to yi precede the edges incident to yj in the ordering O if 1≤ i< j ≤c.
Moreover, if edges (xa, yk) and (xb, yk) are incident to yk for some k ∈ [c] with
1≤ a < b≤ r , then (xa, yk) precedes (xb, yk) in the ordering O. We claim that then
the spanning trees T of GD with extOGD

= 0 are exactly the noncrossing alternating
trees of GD and then the lemma follows from Theorem 2.3. Indeed, note that
given any noncrossing alternating tree T of GD and an edge e ∈ E(GD)− E(T ),
in the unique cycle C of the graph T with the edge e adjoined, the edge e is
always 0 edges away from the largest edge of C in the ordering O. Thus, for any
noncrossing alternating tree T of GD we have extOGD

= 0. On the other hand, given
a crossing alternating spanning tree T ′ of GD (note that all spanning trees of GD

are alternating) let the edges (xi , yj ) and (xk, yl) cross with k > i and l < j . Since
D is a connected skew diagram, both of the edges (xk, yj ) or (xi , yl) are contained
in GD . Since T ′ is a spanning tree of GD , it follows that exactly one of the edges
from {(xk, yj ), (xi , yl)} is in it. Adjoining the other edge as edge e we see that it is
an externally semiactive edge for T , concluding the proof. �

Lemma 2.6. The noncrossing alternating spanning trees of GD are in bijection
with the lattice paths π from (1, 1) to (r, c) inside D that take steps either one unit
south or one unit west.
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y6 y5 y4 y3 y2 y1

x1

x2

x3

x4

x5 x5 x4 x3 x2 x1 y1 y2 y3 y4 y5 y6

⇐⇒

Figure 1. The correspondence between noncrossing alternating
spanning trees of GD and lattice paths from (1, 1) to (r, c) inside D
that take steps either one unit south or one unit west.

Proof. The bijection is given by the map that takes a noncrossing alternating
spanning tree T =

(
{xr , . . . , x1, y1, . . . , yc}, {(xi , yj ) | (i, j) ∈ S(T )}

)
of GD to the

path π = S(T ). See Figure 1. �

Given a graph G on the vertex set [n] such that if (i, j) ∈ E(G) then the only
increasing path from i to j in G is the edge (i, j) itself, we can define the naturally la-
beled poset PG to be one on the set [n]with Hasse diagram given by (the edges of) G.

Corollary 2.7 (BFLR theorem). For any skew diagram D,

(2-6) 9PD (x)=
∑
π

1∏
(i, j)∈π (xi − yj )

,

where the sum runs over all lattice paths π from (1, 1) to (r, c) inside D that take
steps either one unit south or one unit west.

Proof. By Lemma 2.5 we have that the cone K root
PD

is triangulated into simplicial
cones K root

PT
, where the T ’s run over all noncrossing alternating spanning trees

of GD. By Lemma 2.6 the latter trees are in bijection with lattice paths π from
(1, 1) to (r, c) inside D that take steps either one unit south or one unit west, and
thus by Lemma 2.2 we obtain the corollary. �

Our proof for Corollary 2.7 is a special case of the proof of Corollary 2.4. We
note that the formula for 9PD (x) given in Corollary 2.7 is substantially different
from the expression given in (1-1). We can see this for example by looking at the
number of terms that can appear in each. When D is a diagram in the shape of
an r × c rectangle, then in (1-1) we are summing over all linear extensions of the
poset PD yielding r !c! terms. In comparison, in Corollary 2.7 we have

(r+c−2
r−1

)
terms corresponding to the lattice paths from (1, 1) to (r, c) inside D. The latter
in general can be larger than the former. However, if instead we take D to be the
skew shape D = (n, n− 1, . . . , 1) \ (n− 2, n− 3, . . . , 1), then in Corollary 2.7 we
have a single term and in (1-1) we are summing over all linear extensions of the
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zigzag poset PD . In this case the number of terms in (1-1) is larger than n!(n− 1)! ,
which is many more than the one term in Corollary 2.7.

3. Lifting Greene’s theorem to the subdivision algebra

The objective of this section is to generalize Greene’s theorem to a relation in the
subdivision algebra of root polytopes. Subdivision algebras of root polytopes were
introduced and studied in [Mészáros 2011], where they were used for triangulating
root polytopes. Subdivision algebras were also utilized for subword complexes and
flow polytopes in [Escobar and Mészáros 2015a; Mészáros 2015a; 2015b; 2016a;
2016b; Mészáros and Morales 2015]. We will see in this section that both Greene’s
theorem and an analogous one for the integer point transform of the root cone are
special cases of a relation in the subdivision algebra.

We begin by explaining how to use subdivision algebras to subdivide root
cones K root

P . Since Greene’s function of a poset P is a valuation on a root cone K root
P

and we know its expression for unimodular root cones, if we triangulate K root
P into

unimodular root cones, then we obtain a way to calculate Greene’s function of P.

Root cones C(G) and their subdivisions. We establish a simpler notation for root
cones here. For an arbitrary loopless graph G, define the root cone

(3-1) C(G) := spanR+

(
ei − ej | (i, j) ∈ E(G), i < j

)
.

In order for C(G) and C(H) to be distinct for distinct graphs G and H , we will
mostly consider good graphs G, which are loopless graphs such that if there is an
increasing path from vertex i to vertex j in G, which is not the edge (i, j), then the
edge (i, j) is not present in G. (In particular, G contains no multiple edges.) Given
a graph H let g(H) be the unique good graph on the vertex set V (H) such that
C(H)= C(g(H)). The graph g(H) can be obtained from H by repeated removal
of edges (i, j) for which there is an increasing path between i and j other than the
edge (i, j). In particular, all multiple edges are removed in order to obtain g(H).
An important property of root cones is given in the cone reduction lemma below,
which can be expressed through reduction rules on graphs, as we now explain.

The reduction rule for graphs: given a graph G0 on the vertex set [n] and
(i, j), ( j, k) ∈ E(G0) for some i < j < k, let G1,G2,G3 be graphs on the vertex
set [n] with edge sets

(3-2)

E(G1)= E(G0) \ {( j, k)} ∪ {(i, k)},

E(G2)= E(G0) \ {(i, j)} ∪ {(i, k)},

E(G3)= E(G0) \ {(i, j), ( j, k)} ∪ {(i, k)}.

We say that G0 reduces to G1,G2 and G3 under the reduction rules defined by
equations (3-2).
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For a good graph G we define two edges (i, j), ( j, k) ∈ E(G), i < j < k, to be
a good pair of edges of G if they belong to a common cycle in G, or if neither of
them belongs to any cycle in G.

Lemma 3.1 (cone reduction lemma; cf. [Mészáros 2011]). Given a good graph G0

let (i, j), ( j, k) ∈ E(G0) be a good pair of edges of G0 for some i < j < k and
G1,G2 as described by equations (3-2). Then

(3-3) C(G0)= C(G1)∪ C(G2)

and

(3-4) C(G3)= C(G1)∩ C(G2),

where the cones C(G0), C(G1), C(G2) are of the same dimension and C(G3) is a
facet of both C(G1) and C(G2).

For convenience we include a proof of Lemma 3.1 here. It is an adaptation of
the proof from [Mészáros 2011], where it was written for acyclic graphs.

Proof. Let the edges of G0 be f1= (i, j), f2= ( j, k), f3, . . . , fk . Let v( f1), v( f2),

v( f3), . . . , v( fk) denote the vectors that the edges of G0 correspond to under the
correspondence v : (i, j) 7→ ei − ej , where i < j . By equations (3-2),

C(G0)= spanR+
(v( f1), v( f2), v( f3), . . . , v( fk)),

C(G1)= spanR+
(v( f1), v( f1)+v( f2), v( f3), . . . , v( fk)),

C(G2)= spanR+
(v( f1)+v( f2), v( f2), v( f3), . . . , v( fk)),

C(G3)= spanR+
(v( f1)+v( f2), v( f3), . . . , v( fk)).

Thus, if C(G0) is d-dimensional, so are the cones C(G1) and C(G2), while cone
C(G3) is at least (d−1)-dimensional (and at most d-dimensional). We note that
dim(C(G3)) 6= d because G0 is a good graph and f1 and f2 are a good pair of edges.

Clearly, C(G1)∪C(G2)⊂ C(G0). Given an expression of a vector v ∈ C(G0) as a
nonnegative linear combination of the vectors v( f1), v( f2), v( f3), . . . , v( fk) it sat-
isfies either that the coefficient of v( f1) in such an expression is greater than or equal
to the coefficient of v( f2) in the expression, or it is not. In the former case we see
that v ∈ C(G1) and in the latter case v ∈ C(G2). Therefore, C(G0)= C(G1)∪C(G2).

Clearly, C(G3)⊂ C(G1)∩ C(G2). Given an expression of a vector v ∈ C(G1) as
a nonnegative linear combination of the vectors v( f1), v( f2), v( f3), . . . , v( fk), the
coefficient of v( f1) is greater than or equal to the coefficient of v( f2). Similarly,
given an expression of a vector v ∈ C(G2) as a nonnegative linear combination of
the vectors v( f1), v( f2), v( f3), . . . , v( fk), the coefficient of v( f1) is less than or
equal to the coefficient of v( f2). Thus, there is an expression of v ∈ C(G1)∩C(G2)

as a nonnegative linear combination of the vectors v( f1), v( f2), v( f3), . . . , v( fk)
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such that the coefficient of v( f1) is equal to the coefficient of v( f2). Therefore,
C(G1)∩ C(G2)⊂ C(G3), leading to C(G1)∩ C(G2)= C(G3). �

The subdivision algebra, Greene’s theorem and the integer point transform of a
root cone. In this subsection we explain the subdivision algebra and show how it
yields a slick proof for Greene’s theorem and its generalization.

A graph G can be encoded by the monomial m[G] =
∏
(i, j)∈E(G),i< j xi j and the

reduction rule going from G0 to G1, G2 and G3 can be encoded by the equation
xi j x jk = xik(xi j + x jk +β). We define the subdivision algebra Sn of root polytopes
as the commutative algebra generated by the variables xi j , 1≤ i < j ≤ n, subject
to the relations xi j x jk = xik(xi j + x jk +β) for 1≤ i < j < k ≤ n.

Let us explain the connection of the subdivision algebra to Greene’s function.
If we set β = 0, then the relation xi j x jk = xik(xi j + x jk) of Sn is satisfied by
xi j := 1/(xi − x j ), which are the kind of terms appearing in Greene’s function. If
instead, we set β =−1, then the relation xi j x jk = xik(xi j+x jk−1) of Sn is satisfied
by xi j := 1/(1− xi/x j ). The latter will play a part in calculating the integer point
transform σK root

P
(x) of the root cone K root

P ⊂ Zd defined as

(3-5) σK root
P
(x) :=

∑
m∈K root

P ∩Zd

xm.

The function σK root
P
(x) can be seen as a finer invariant of the cone than 9P(x), as

explained in [Boussicault et al. 2012, Section 2.4]. We note that in that paper the
integer point transform σK root

P
(x) is denoted as H(K root

P ; X) and is referred to as
the Hilbert series of the affine semigroup ring of the root cone. We chose to follow
the more geometric name and notation of [Beck and Robins 2007, Section 3.2].

We are now ready to prove the following generalization of Greene’s theorem via
the subdivision algebra, which first appeared in [Boussicault et al. 2012]:

Theorem 3.2 [Boussicault et al. 2012, Corollary 8.10]. For any (connected) strongly
planar poset P on [n] we have

(3-6) σK root
P
(x)=

∏
ρ∈b(P)(1− xmin(ρ)/xmax(ρ))∏

ilP j (1− xi/x j )

and

(3-7) 9P(x)=
∏
ρ∈b(P)(xmin(ρ)− xmax(ρ))∏

ilP j (xi − x j )
,

where ρ runs through all bounded regions of the Hasse diagram.

Proof. Since P is a connected strongly planar poset, it follows that its Hasse
diagram is a good graph on the vertex set [n] such that for every cycle C of G
the only alternating vertices of C (considered within C), that is vertices that have
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Figure 2. In reducing an increasing path we always pick the top-
most leftmost edges in the path and its offsprings to do reductions
on. For a graph G0 the arrow to the left points to G1, the middle
arrow to G3, and the right arrow to G2, as in equations (3-2).

only incoming or only outgoing edges, are its minimal and maximal vertices. Thus
we have that K root

P = C(G) for a good graph G. Note that a root cone C(H) is
unimodular if and only if g(H) is acyclic. We will use the cone reduction lemma
to write C(G) as a union of unimodular cones. Note that the cone reduction lemma
applies to good graphs, and thus if we want to repeatedly apply it to the outcome
cones C(Gi ), i ∈ [3], we need to apply it to g(Gi ), i ∈ [3].

We claim that we can apply the cone reduction lemma repeatedly in such a
fashion that at the end we have trees T1, . . . , Tk (with n − 1 edges), and forests
F j

n−i , 2≤ i ≤ n− 1, j ∈ In−i (for some index sets In−i ), with n− i edges, where
C(T1), . . . , C(Tk) are unimodular cones triangulating C(G) and the C(F j

n−i ) are their
intersections.

We now prove the above claim. When G has no cycles, the claim is obvious.
Suppose that G has m > 0 linearly independent cycles. Fix a strongly planar
drawing of P. In it there are m bounded regions, and the boundaries of these regions
are m linearly independent cycles in G. Let C be one of these cycles, such that
it bounds a region in the drawing of P which is adjacent to the infinite region.
The cycle C consists of two increasing paths p and p′ from i to j for some i < j .
Let p = (i = i0 → i1 → i2 → · · · → il = j) be the path bordering the infinite
region in the drawing of P. We can perform consecutive reductions on the edges
of the path p and its offsprings, ultimately obtaining all noncrossing alternating
forests on the vertices {i0, i1, . . . , il} containing the edge (i0, il). We do this by
picking the topmost leftmost edges that we can do a reduction on in p and its
offsprings in the reduction process. See Figure 2 for an illustration. (A proof of the
previous claim can be obtained by induction on the length of the path and is given
in detail in [Mészáros 2011].) Until we arrive at the aforementioned noncrossing
alternating forests on the vertices {i0, i1, . . . , il} containing the edge (i0, il) all
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P

G

G1 G3 G2

g(G1) g(G3) g(G2)

Figure 3. Top left shows a strongly planar drawing of our poset, with
the cycle C in bold. The path p is (1→ 3→ 4) and p′ is (1→ 2→ 4).
Top right shows the graph G. Below are the graphs G1,G3,G2

obtained by applying the reduction on the topmost leftmost edges of p,
which are (1, 3), (3, 4). The last row shows g(G1), g(G3), g(G2)

(which are G1,G3,G2 with the edge (1, 4) removed since there is
an increasing path 1→ 2→ 4), on which we can keep applying the
cone reduction lemma as in the proof of Theorem 3.2.

graphs obtained in this fashion from G are good graphs. We can see that once we
obtain the noncrossing alternating forests on the vertices {i0, i1, . . . , il} containing
the edge (i0, il) the offspring of G is not good anymore, as there is still p′ in it,
which is an increasing path between the vertices i0 and il . We need to now remove
the edge (i0, il)= (i, j) from all the aforementioned offsprings in order to obtain
good graphs and be able to apply the cone reduction lemma further. However, once
we remove the edge (i, j) from all these offsprings we will have good graphs with
the number of bounded regions one less than it was for G. We can now repeat the
same process we just described for each of these graphs and their offsprings until
they are all acyclic. We demonstrate the basic idea of this argument in Figure 3.

If we inspect what edges we had to drop in the process to make sure we always
apply the cone reduction lemma to good graphs and obtain the acyclic graphs
described in the previous paragraph, we find the following relation in the subdivision
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algebra:

(3-8) m[G] =
∏

ρ∈b(P)

xmin(ρ),max(ρ)

(∑
Ti

m[Ti ] +
∑
F j

n−i

β i−1m[F j
n−i ]

)
.

Note that

(3-9) σK root
P
(x)=

(∑
Ti

m[Ti ] +
∑
F j

n−i

(−1)i−1m[F j
n−i ]

)∣∣∣∣
xi j=1/(1−xi x j−1)

and

(3-10) 9P(x)=
∑

Ti

m[Ti ]

∣∣∣
xi j=1/(xi−x j )

.

Equations (3-8), (3-9) and (3-10) together with the observations that xi j =

1/(1 − xi x j
−1) satisfies xi j x jk = xik(xi j + x jk − 1) and that xi j = 1/(xi − x j )

satisfies xi j x jk = xik(xi j + x jk) immediately yield equations (3-6) and (3-7). �

We can see (3-8) is the main theorem of this section, so we bestow it with that title:

Theorem 3.3. Let G = H(P) for a naturally labeled connected strongly planar
poset P. Then, using the notation of the proof of Theorem 3.2, we have that

m[G] =
∏

ρ∈b(P)

xmin(ρ),max(ρ)

(∑
Ti

m[Ti ] +
∑
F j

n−i

β i−1m[F j
n−i ]

)

holds in the subdivision algebra.

Both statements of Theorem 3.2 are special cases of Theorem 3.3 as shown in
the proof of Theorem 3.2.

4. Generalizing Greene’s theorem beyond strongly planar posets

In this section we will examine a special family of posets for which Greene’s
function factors linearly. These posets were first identified by Boussicault, Féray,
Lascoux and Reiner [Boussicault et al. 2012], who proved the aforementioned
result by studying the affine semigroup ring of the root cone. We will give a short
alternative proof via root polytopes.

We give some definitions following the exposition of [Boussicault et al. 2012].
In a finite poset P, say that a triple of elements (a, b, c) forms a notch of ∨ shape
(dually, a notch of ∧ shape) if a lP b, c (dually, b, clP a), and in addition, b, c lie
in different connected components of the poset P \ P≤a (dually, P \ P≥a). When
(a, b, c) forms a notch of either shape in a poset P, say that the quotient poset P :=
P/{b= c}, having one fewer element and one fewer Hasse diagram edge, is obtained
from P by closing the notch, and that P is obtained from P by opening a notch.
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Theorem 4.1. Let P be a connected poset in which (a, b, c) forms a notch, and let
P := P/{b = c}. We assume without loss of generality that P and P are naturally
labeled. Then the root polytope Q̃H(P) has a triangulation with top-dimensional
simplices 1̃T1, . . . , 1̃Tk , and Q̃H(P) has a triangulation with top-dimensional sim-
plices 1̃T ′1 , . . . , 1̃T ′k , where (a, b) ∈ T ′i , (a, b), (a, c) ∈ Ti , i ∈ [k], and moreover
Ti |b=c = T ′i (we ignore multiple edges).

To prove Theorem 4.1 we use the following criterion.

Lemma 4.2 (cf. [Postnikov 2009, Lemma 12.6]). For two trees T and T ′ on the
vertex set [n], the intersection 1̃T ∩ 1̃T ′ is a common face of the simplices 1̃T and
1̃T ′ if and only if the directed graph

U (T, T ′)=
(
[n],

{
(i, j) | (i, j) ∈ E(T ), i < j

}
∪
{
( j, i) | (i, j) ∈ E(T ′), i < j

})
has no directed cycles of length at least 3.

The following proof of Lemma 4.2 is a straightforward adaptation of the proof
of [Postnikov 2009, Lemma 12.6] to our more general setting. We include the proof
here for convenience.

Proof of Lemma 4.2. Suppose that U (T, T ′) has a directed cycle C of length at
least 3. Let E be the set of edges of T in C and E ′ be the set of edges of T ′ in C .
Then

∑
(i, j)∈E(ei − ej )=

∑
(i, j)∈E ′(ei − ej ). Let k =max(|E |, |E ′|). Then

x := 1
k

∑
(i, j)∈E

(ei − ej )=
1
k

∑
(i, j)∈E ′

(ei − ej ) ∈ 1̃T ∩ 1̃T ′ .

However, the minimal face of the simplex 1̃T containing x is 1([n],E) if k = |E |
and 1̃([n],E) if k > |E |. Similarly, the minimal face of the simplex 1̃T ′ containing
x is 1([n],E ′) if k = |E ′| and 1̃([n],E ′) if k > |E ′|. In any case, the minimal faces of
1̃T and 1̃T ′ containing x are not equal. Thus, 1̃T ∩ 1̃T ′ is not their common face.

Next, assume that U (T, T ′) has no directed cycles of length at least 3. Let
F = ([n], E(T ) ∩ E(T ′)). Since U (T, T ′) has no directed cycles of length at
least 3 we can find a function h : [n] → R such that (1) h is constant on connected
components of F ; and (2) for any directed edge (a, b) ∈U (T, T ′) that joins two
different components of F we have h(a) < h(b). Thus, if (a, b) is the edge (i < j)
of T then h(i) < h( j), and if (a, b) is the edge (i < j) of T then h(i) > h( j).
The function h defines a linear form fh on the space Rn with the coordinates
h(1), . . . , h(n) in the standard basis. The above conditions imply (1) for any vertex
in the common face 1̃F of 1̃T and 1̃T ′ we have fh(x) = 0; (2) for any vertex
x ∈ 1̃T \ 1̃F we have fh(x) < 0; and (3) for any vertex x ∈ 1̃T ′ \ 1̃F we have
fh(x) > 0. Thus, the hyperplane fh(x)= 0 intersects 1̃T and 1̃T ′ at their common
face 1̃F as desired. �
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Proof of Theorem 4.1. The criterion of Lemma 4.2 is sufficient to establish the above
theorem, since we also have that Q̃H(P) has a triangulation with top-dimensional
simplices 1̃T ′1 , . . . , 1̃T ′k , where (a, b) ∈ T ′i , as ea − eb is a vertex of Q̃H(P). �

When we calculate σK Proot (x) and 9P(x) using triangulations of the root cones
as implied by Theorem 4.1, we immediately get:

Corollary 4.3 [Boussicault et al. 2012, Theorem 8.6]. When P is obtained from P
by closing a ∨-shaped notch (a, b, c), then

σK Proot (x)= (1− xaxb
−1)σK Proot (x)|xb=xc and 9P(x)= (xa − xb)9P(x)|xb=xc .

A consequence of Theorem 4.1 is the following generalization of Greene’s
theorem pertaining to posets P to which we can repeatedly apply the opening notch
operation and obtain a poset whose Hasse diagram has only cycles as biconnected
components. Such posets P we call admissible. We now recall the definition
of biconnected components following [Boussicault et al. 2012]. Given a graph
G = (V, E) we say that two edges of it are cycle-equivalent if there is a cycle
which contains both edges. Let Ei be the equivalence classes of this relation. Let
Vi be the set of vertices which are the endpoint of at least one edge in Ei . Then the
biconnected components of G are the graphs Gi = (Vi , Ei ).

Theorem 4.4. Let P be an admissible planar poset. Then, we have

σK root
P
(x)=

∏
ρ∈b(P)

(
1−

∏
i∈min(ρ) xi

∏
j∈max(ρ) x−1

j

)∏
ilP j (1− xi x j

−1)

and

9P(x)=
∏
ρ∈b(P)

(∑
i∈min(ρ) xmin(i)−

∑
j∈max(ρ) x j

)∏
ilP j (xi − x j )

,

where ρ runs through all bounded regions of the Hasse diagram of P.

Proof. This theorem can be deduced from Corollary 4.3 together with Corollaries
8.2 and 8.3 in [Boussicault et al. 2012]. We note that the latter corollaries also have
simple proofs using the root polytope considerations of this paper, and we leave
such alternative proofs as an exercise for the interested reader. �
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CLASSIFYING RESOLVING SUBCATEGORIES

WILLIAM SANDERS

We use the theory of Auslander–Buchweitz approximations to classify certain
resolving subcategories containing a semidualizing or a dualizing module. In
particular, we show that if the ring has a dualizing module, then the resolving
subcategories containing maximal Cohen–Macaulay modules are in bijection
with grade consistent functions and thus are the precisely the dominant re-
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1. Introduction

Classifying various types of subcategories of mod(R) and D(R) for a commutative
ring R has been the subject of much recent research. These classifications are
intrinsically connected to spec R or some other topological space. For instance, the
Hopkins–Neeman theorem [Hopkins 1987; Neeman 1992] and Gabriel’s theorem
[1962] give a bijection between the Serre subcategories of mod(R), the thick
subcategories of perfect complexes, and the specialization closed subsets of spec R.
Another example is the work regarding the classification of thick subcategories of
mod(R) such as in [Takahashi 2010; Stevenson 2014b].

Recently, much attention has been given to classifying the resolving subcate-
gories of mod(R). The study of resolving subcategories began with Auslander and
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Bridger’s influential work [1969] where they define the category of Gorenstein
dimension zero modules, which we denote by GDZ. Also, they generalize the notion
of projective dimension by defining Gorenstein dimension through approximations
of Gorenstein dimension zero modules. In their paper, they also prove that GDZ
has certain homological closure properties which cause Gorenstein dimension
to behave similarly to projective dimension. They then take these homological
closure properties of GDZ as the definition of resolving subcategories. We can
take dimension with respect to a resolving subcategory, and, as in the case of GDZ,
these homological closure properties force this dimension function to also behave
similarly to projective dimension. See Section 2 for further exposition.

The classification of resolving subcategories was advanced by Dao and Takahashi
in [2015], where they give a bijection between the set of resolving subcategories of
the category of finite projective dimension modules and the set of grade consistent
functions. A function f :spec R→N is called grade consistent if it is increasing (as a
morphism of posets) and f (p)≤grade(p) for all p∈ spec(R). This result motivated
the author to find other situations where a similar bijection exists, furthering the use
of grade consistent functions in classifying resolving subcategories. Before the work
of Dao and Takahashi, Takahashi [2013] classified, over Cohen–Macaulay rings, re-
solving subcategories closed under tensor products and Auslander transposes, and in
[2011] he classified the contravariantly finite resolving subcategories of a Henselian
local Gorenstein ring. Takahashi [2009] also studied resolving subcategories which
are free on the punctured spectrum. Auslander and Reiten [1991] discovered a
connection between resolving subcategories and tilting theory, and they classified
all the contravariantly finite resolving subcategories using cotilting bundles. After
the work of Dao and Takahashi, the resolving subcategories of the category of finite
projective dimension modules were also classified in [Angeleri Hügel et al. 2014] in
terms of descending sequences of specialization closed subsets of spec R, and were
also classified in [Angeleri Hügel and Saorín 2014] in terms of certain t-structures.

In this paper, we assume that R is commutative and Noetherian, and we consider
only finitely generated modules. Let P denote the category of projective modules
and 0 the set of grade consistent functions. For categories M,X ⊆ mod(R)
and f ∈ 0, we define

3M( f )= {X ∈mod(R) | addMp-dim Xp ≤ f (p) for all p ∈ spec R}
and

8M(X ) : spec R→ N,

p 7→ sup {addMp-dim Xp | X ∈ X },

where addMp is the smallest subcategory of mod(Rp) closed under direct sums
and summands and containing Mp for every M ∈M, and where addMp-dim Xp is
the smallest resolution of Xp by objects in addMp. Let R denote the collection of
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resolving subcategories of mod(R). Set 1(M)= {X ∈mod(R) |M-dim X <∞}
for any M⊆mod(R), and let R(M) be the collection of resolving subcategories X
such that M ⊆ X ⊆ 1(M). Using our new notation, we can restate Dao and
Takahashi’s result [2015].

Theorem 1.1. When R is Noetherian,

R(P)
3P //

0
8P

oo

is a bijection, where 3P and 8P are inverses of each other.

Our first main result is Theorem 4.2, which is the following. Note that throughout
this paper, all thick subcategories contain R.

Theorem A. Let 9 be a set of increasing functions from spec R to N. Suppose
A⊆M such that A cogenerates M and addAp is thick in addMp for all p∈ spec R.
Define ηMA :R(A)→R(M) by ηMA (X )= res(X ∪M) and ρM

A :R(M)→R(A)
by setting ρM

A (X )=1(A)∩X . If 8A and 3A are inverses of each other giving a
bijection between R(A) and 9, then we have the commutative diagram

R(M)
8M

&&
9

R(A)
8A

88ηMA

OO

where 8M is bijective with 3M its inverse. Moreover, ρM
A is the inverse of ηMA .

This result allows us to extend the bijection from [Dao and Takahashi 2015] to a
plethora of categories. We use it to prove the following result which is essentially
Theorem 8.5. Note that GC is the category of totally C-reflexive modules where C
is a semidualizing module: see Definition 3.1 and Definition 3.4. Define, ρN

M and
ηNM similarly to ρM

A and ηMA .

Theorem B. For any thick subcategory M of GC containing C, 3M and 8M give
a bijection between R(M) and 0. Furthermore, let S denote the collection of thick
subcategories of GC containing C. The following is a bijection:

3 :S×0 −→
⋃

M∈S

R(M)⊆R.
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For any M,N ∈S with M⊆N, then the following diagram commutes:

R(N )
8N

&&
0

R(M)
8M

88ηNM

OO

In particular, ρN
M and ηNM are inverse functions.

These theorems show that the classification of resolving subcategories is in-
trinsically linked to the classification of thick subcategories of totally C-reflexive
modules and hence to the classification of thick subcategories of mod(R), a topic
of current research. See, for instance, [Takahashi 2010; Neeman 1992]. Applying
these results in the Gorenstein case yields Theorem 9.1 which, letting MCM denote
the category of maximal Cohen–Macaulay modules, states

Theorem C. If R is Gorenstein, then we have the following commutative diagram
of bijections:

{Thick subcategories of MCM}×0
3

++
3P

��

{Z ∈R | Z ∩MCM is thick in MCM}

{Thick subcategories of MCM}×R(P)
4

33

where 4(M,X )= res(M∪X ).

Of independent interest, using semidualizing modules, we generalize the famed
Auslander transpose. This generalization is similar to but different from the gener-
alizations in [Geng 2013; Huang 1999].

This paper is organized as follows: Section 2 gives general information about
resolving subcategories, and Section 3 gives pertinent background regarding semi-
dualizing modules. We prove Theorem A in Section 4. In Section 5, we generalize
the Auslander transpose, which we use in Section 6 to classify resolving subcate-
gories which are locally maximal Cohen–Macaulay. In Section 7 we prove a special
case of Theorem B. We prove Theorem B in full generality in Section 8 by examining
the thick subcategories of maximal Cohen–Macaulay modules containing C. In the
last section, these results are applied to the Gorenstein case. Here, Theorem C and
several other results are proven.
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2. Resolving preliminaries

We proceed with an overview of resolving subcategories. All subcategories con-
sidered are full and closed under isomorphisms. For any collection M⊆mod(R),
let add(M) be the smallest subcategory of mod(R) containing M which is closed
under direct sums and summands.

Definition 2.1. Given a ring R, a full subcategory M⊆mod(R) is resolving if the
following hold:

(1) R is in M.

(2) M ⊕ N is in M if any only if M and N are in M.

(3) If 0→M→N→L→0 is exact and L∈M, then N ∈M if and only if M∈M.

By [Yoshino 2005, Lemma 3.2], this is equivalent to saying these conditions hold:

(1) All projectives are in M.

(2) If M ∈M, then add(M)⊆M.

(3) M is closed under extensions.

(4) M is closed under syzygies.

For a subset M⊆mod(R), we denote by res(M) the smallest resolving subcategory
containing M. Also, addM will be the smallest subcategory containing M which is
closed under direct sums and summands. Let P be the category of finitely generated
projective R-modules.

Example 2.2. The following categories are easily seen to be resolving.

(1) P,

(2) mod(R),

(3) the set of Gorenstein dimension zero modules,

(4) for any B ⊆Mod(R) and any n ≥ 0, {M | Ext>n(M, B)= 0 for all B ∈ B},

(5) for any B ⊆Mod(R) and any n ≥ 0, {M | Tor>n(M, B)= 0 for all B ∈ B},

(6) when R is Cohen–Macaulay, the set of maximal Cohen–Macaulay modules.

A special class of resolving subcategories are thick subcategories.

Definition 2.3. Let N ⊆ mod(R). A resolving subcategory M ⊆ N is a thick
subcategory of N (or M is thick in N ) if for any exact sequence 0→ L→ M→
N → 0 with L ,M ∈M, if N is in N, then N is in M too. A thick subcategory
refers to a thick subcategory of mod(R).

For any M⊆mod(R), let Thick(M) be the smallest thick subcategory of mod(R)
containing M.
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Example 2.4. The following categories are easily seen to be thick subcategories
(moreover, each example is the thick closure of a resolving subcategory from
Example 2.2):

(1) the set of modules with finite projective dimension,

(2) mod(R),

(3) the set of modules with finite Gorenstein dimension,

(4) for any B ⊆Mod(R) and any n ≥ 0, {M | Ext�0(M, B)= 0 for all B ∈ B},

(5) for any B ⊆Mod(R) and any n ≥ 0, {M | Tor�0(M, B)= 0 for all B ∈ B}.

Resolving subcategories are studied in part because dimension with respect to a
resolving subcategory has nice properties. For a subset M⊆mod(R) and a module
X ∈mod(R), we say that M-dim X = n if n ∈ N is the smallest number such that
there is an exact sequence

0→ Mn→ · · · → M0→ X→ 0

with M0, . . . ,Mn ∈M. Projective dimension and Gorenstein dimension are dimen-
sions with respect to resolving subcategories of projective modules and Gorenstein
dimension zero modules respectively. The following proposition (see [Auslander
and Buchweitz 1989, Proposition 3.3]) causes nice properties to hold for dimension
with respect to a resolving subcategory.

Proposition 2.5. If M is resolving and M-dim(X)≤n, then for any exact sequence

0→ L→ Mn−1→ · · · → M0→ X→ 0

with each Mi ∈M, L is in M.

This proposition allows us to prove the following results.

Corollary 2.6. If M is resolving, then M-dim(X)= inf{n |�n X ∈M}.

Proof. If �n X ∈M, then we have

0→�n X→ Fn−1→ · · · → F0→ X→ 0

with each Fi projective. This shows that M-dim X ≤ n. If M-dim X ≤ n, the same
sequence and Corollary 2.6 show that �n X is in M. �

Lemma 2.7. If M is resolving, then M-dim X ⊕ Y =max{M-dim X,M-dim Y }.

Proof. We have �n(X ⊕Y )=�n X ⊕�nY for a suitable choice of syzygies. Since
�n(X ⊕Y ) is in M if and only if �n X and �nY are in M, the result follows from
Corollary 2.6. Parts (1) and (2) are essentially proved in [Masek 1999, Theorem 18].

�
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Lemma 2.8. If M is a resolving subcategory, and 0→ X→ Y → Z→ 0 is exact,
then the following inequalities hold.

(1) M-dim X ≤max{M-dim Y,M-dim Z − 1},

(2) M-dim Y ≤max{M-dim X,M-dim Z},

(3) M-dim Z ≤max{M-dim X,M-dim Y }+ 1.

Proof. For suitable choices of syzygies, we have the following.

0→�k X→�kY →�k Z→ 0

If k =max{M-dim X,M-dim Z}, then, by Corollary 2.6, �k X and �k Z are in M,
and thus, so is �kY, giving us (2). If k =max{M-dim X,M-dim Y }, then, again by
Corollary 2.6, �k X and �kY is in M. Therefore M-dim�k Z ≤ 1, and so �k+1 Z
is in M. Thus by Corollary 2.6, M-dim Z ≤ k+ 1, proving (3).

Now take k =max{M-dim Y,M-dim Z − 1}. Then �kY and �k+1 Z are in M.
We take the pushout diagram

0

��

0

��
�k+1 Z

��

�k+1 Z

��
0 // �k X // T //

��

F //

��

0

0 // �k X // �kY //

��

�k Z //

��

0

0 0

with F free and hence in M. Since, by Corollary 2.6, �k+1 Z and �kY are in M,
so is T . Since F ∈M, �k X has to also be in M. Hence M-dim X ≤ k, and we
have (1). �

For a subset M⊆mod(R), let 1(M) denote the category of modules X such
that M-dim X is finite. If M is resolving, then by Corollary 2.6, 1(M) = {X ∈
mod(R) |��0 X ∈M}. The next result easily follows from the previous lemma.

Corollary 2.9. Let M be resolving. For any n, the set {X ∈mod(R) |M-dim X≤n}
is resolving. Furthermore, 1(M) is thick, and Thick(M)=1(M).

Through these results, we may construct many resolving and thick subcategories.
It is easy to show that the intersection of a collection of resolving subcategories
and the intersection of a collection of thick subcategories are resolving and thick
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respectively. The following lemma allows us to construct even more resolving
subcategories. For M⊆mod(R), we say Mp = {Mp | M ∈M}.

Lemma 2.10. Let R and S be rings and F :mod(R)→mod(S) be an exact functor
with F(R) = S. Then for any resolving subcategory M ⊆ mod(S), F−1(M) is a
resolving subcategory of mod(R).

The proof is elementary and is left to the reader. Applying this lemma to the
localization functor, for any V ⊆ spec R, the category of all M ∈ mod(R) with
Mp free for all p ∈ V is also resolving. The following lemmas give insight into
the behavior of resolving categories under localization. The first lemma is from
[Takahashi 2010, Lemma 4.8; Dao and Takahashi 2014, Lemma 3.2(1)], and the
second is from [Dao and Takahashi 2015, Proposition 3.3].

Lemma 2.11. If M is a resolving subcategory, then so is addMp for all p∈ spec R.

Lemma 2.12. The following are equivalent for a resolving subcategory M and a
module M ∈mod(R):

(1) M ∈M,

(2) Mp ∈ addMp for all p ∈ spec R,

(3) Mm ∈ addMm for all maximal ideals m.

Recall the definition of 3 and 0 from the introduction. These lemmas show that
if M is resolving, then for all f ∈ 0, 3M( f ) is a resolving subcategory.

Corollary 2.13. Set

3M( f )= {M ∈mod(R) | addMp-dim Mp ≤ f (p) for all p ∈ spec R}.

If M is resolving, then for all f ∈ 0, 3M( f ) is a resolving subcategory.

Let MCM denote the category of maximal Cohen–Macaulay modules. As noted
earlier, when R is Cohen–Macaulay, MCM is resolving. Furthermore, letting
d = dim R, �d M is in MCM for every M ∈mod(R). Hence, 1(MCM)=mod(R).
The following shows that dimension with respect to MCM is very computable.

Lemma 2.14. Suppose M ⊆ N are resolving subcategories. Then M is thick in
N if and only if for every module X ∈ 1(M), we have M-dim X = N -dim X.
Furthermore, if R is Cohen–Macaulay, M is a thick subcategory of MCM if and
only if dimension with respect to M satisfies the Auslander–Buchsbaum formula,
i.e., for all X ∈1(M) we have

M-dim X + depth X = depth R.

Proof. Suppose M is thick in N and X ∈1(M). Then we may write 0→ Md →

· · ·→ M0→ X→ 0 with Mi ∈M and d =M-dim X. Since each Mi is also in N,
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we have N -dim X ≤ d . Setting e =N -dim X ≤ d , by Corollary 2.6, there exists a
N ∈N such that

0→ Md→· · ·→ Me→ N→ 0 and 0→ N→ Me−1→· · ·→ M0→ X→ 0

are exact. However, since M is thick in N, N is also in M, which implies that
e = d , proving the only if part of the statement.

Now suppose that M-dim X = N -dim X for all X ∈ 1(M). Now suppose
0→ L → M → N → 0 is exact with L ,M ∈M and N ∈ N. Then N ∈ 1(M)

and M-dim N =N -dim N = 0. Therefore N ∈M, and so M is thick in N.
Assume R is Cohen–Macaulay. Let M be a resolving subcategory whose

dimension satisfies the Auslander–Buchsbaum formula. Then for any module
M ∈1(M)∩MCM, we have

depth R =M-dim M + depth M =M-dim M + depth R.

Thus M-dim M = 0 forcing M to be in M. Hence M is contained in MCM.
By what we have proved so far, it suffices to show that dimension with re-

spect to MCM satisfies the Auslander–Buchsbaum formula. But this follows from
Corollary 2.6. �

Recall the definition of 8 and 0 from the introduction. If dimension with respect
to addMp satisfies the Auslander–Buchsbaum formula for all p ∈ spec R, then for
all X ⊆1(M), 8M(X ) is in 0. Before proceeding, we need one more definition
and a result.

Definition 2.15. Let A⊆M. We say A cogenerates M, if for every M ∈M, there
exists an exact sequence 0→ M→ A→ M ′→ 0 with M ′ ∈M and A ∈A.

The following is an important theorem from [Auslander and Buchweitz 1989,
Theorem 1.1].

Theorem 2.16. Suppose A and M are resolving with A ⊆M. If A cogenerates
M, then for every X ∈1(M) with M-dim X = n, there exists an A ∈1(A) and
M ∈M such that A-dim A = n and 0→ X→ A→ M→ 0 is exact.

3. Preliminaries: semidualizing modules

We fix a module C ∈mod(R) and write M†
= Hom(M,C).

Definition 3.1. A finitely generated module X is totally C-reflexive if it satisfies
the following:

(1) Ext>0(X,C)= 0,

(2) Ext>0(X†,C)= 0,
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(3) The natural homothety map ηX : X→ X†† defined by µ 7→ (ϕ 7→ ϕ(µ)) is an
isomorphism.

Let GC denote the category of totally C-reflexive modules.

The set GC is essentially the subcategory over which † is a dualizing functor. The
notion of totally C-reflexivity generalizes Gorenstein dimension zero. In fact, when
C = R, GR is simply the category of Gorenstein dimension zero modules, which are
also known as totally reflexive modules. See [Masek 1999] for further information
on the subject. The following proposition shows us that GC is almost resolving.

Lemma 3.2. The set GC is closed under direct sums, summands, and extensions.

Proof. It is easy to show that GC is closed under direct sums and direct summands.
Suppose we have

0→ X→ Y → Z→ 0

with X, Z ∈ GC. It is easy to check that Y satisfies condition (1) of Definition 3.1.
We have

0→ Z†
→ Y †

→ X†
→ 0 and 0→ X††

→ Y ††
→ Z††

→ 0.

From the first exact sequence, it is easy to see that Y satisfies condition (2) of
Definition 3.1. We can then use the five lemma to show that Y satisfies condition (3)
of Definition 3.1. �

In general, GC is not resolving. For example, if C = R/x R for a regular element
x ∈ R, Ext1(R/x R, R/x R)= R/x R 6= 0. So R cannot be in GR/x R , and thus GR/x R

cannot be resolving. It is clear from the definition that R ∈ GC is a necessary
condition for GC to be resolving. In fact, this condition is sufficient.

Proposition 3.3. The subcategory GC is resolving if and only if GC contains R.

Proof. If GC is resolving, by definition it contains R, so we prove the converse.
So suppose R is in GC. In light of the last lemma, we need only to prove that if
0→ X→ Y → Z→ 0 is exact with Y, Z ∈ GC, then X is in GC as well. Since Y
and Z satisfy condition (1) of Definition 3.1, it is easy to show that X does too.
Also, since Ext1(Z ,C)= 0, we have

0→ Z†
→ Y †

→ X†
→ 0.

Hence, we have the following commutative diagram with exact rows.

0 // X //

ηX

��

Y //

ηY

��

Z //

ηZ

��

0

0 // X†† // Y †† // Z†† // Ext1(X†,C) // 0
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Since ηY and ηZ are isomorphisms, the five lemma shows that ηX is too, and that
Ext1(X†,C) = 0. Thus X satisfies condition (3) of Definition 3.1. It is easy to
check using the first exact sequence that Ext>1(X†,C)= 0, showing that X satisfies
condition (2) of Definition 3.1. �

Motivated by this proposition, we say that a module, C, is semidualizing if R
is in GC. This is easily seen to be equivalent to the following definition which is
standard in the literature.

Definition 3.4. A module C is called semidualizing if both Ext>0(C,C)= 0 and
R ∼= Hom(C,C) via the map r 7→ (c 7→ rc).

For the remainder of the paper, we let C denote a semidualizing module. Semi-
dualizing modules were first discovered by Foxby [1972] and were later rediscovered
in different guises by various authors, including Vasconcoles [1974], who called
them spherical modules, and Golod, who called them suitable modules. For an
excellent treatment of the general theory of semidualizing modules, see [Sather-
Wagstaff 2009]. Examples of semidualizing modules include R and dualizing
modules. If R is Cohen–Macaulay and D is a dualizing module, then GD is simply
MCM. Dimension with respect to GC is often called Gorenstein C-dimension, or
GC -dimension for short, since it is a generalization of Gorenstein dimension. We
would expect GC and Gorenstein dimension to have similar properties. Thus we
have the following lemma, which is an easy exercise, and proposition, which is
from [Gerko 2001, Theorem 1.22].

Lemma 3.5. If X ∈1(GC), then GC -dim X =min{n | Ext>n(X,C)= 0}.

Proposition 3.6. For any semidualizing module C, GC -dimension satisfies the
Auslander–Buchsbaum formula, i.e., for any module X ∈1(GC), we have

GC -dim X + depth X = depth R.

In light of Lemma 2.14, when R is Cohen–Macaulay this means that GC is a thick
subcategory of MCM. Interest in understanding GC -dimension and the structure
of GC is not new. The following conjecture by Gerko [2001, Conjecture 1.23] is
equivalent to saying that GR is a thick subcategory of GC.

Conjecture 3.7. If C is semidualizing, then for any module X, GC -dim X ≤
GR-dim X, and equality holds when both are finite.

We give one more construction in this section. Take any X ∈ GC. Then we have
0→ �X†

→ Rn
→ X†

→ 0 is exact. Since R† ∼= C, applying † yields the exact
sequence

0→ X→ Cn
→ (�X†)†→ 0.
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Hence GC is cogenerated by add C. Furthermore, if F• is a projective resolution
of X† with X ∈ GC, then F†

•
is an add C coresolution of X. Splicing this together

with a free resolution G• of X, we get what is called a complete P PC or a complete
PC -resolution of X. See [White 2010; Sather-Wagstaff 2009] for more on the
matter.

Before proceeding, we summarize the notations of this paper.

(1) R is a commutative noetherian ring.

(2) P is the subcategory of projective R-modules.

(3) 0 is the set of grade consistent functions.

(4) M-dim X is the dimension of X with respect to the category M⊆mod(R).

(5) addM is the smallest category closed under direct sums and summands con-
taining M⊆mod(R).

(6) 3M( f ) = {X ∈ mod(R) | addMp-dim Xp ≤ f (p) for all p ∈ spec R} with
f ∈ 0.

(7) 8M(X )(p) = sup{addMp-dim Xp | X ∈ X } with M,X ⊆ mod(R) subcate-
gories.

(8) 1(M)= {X ∈mod(R) |M-dim X <∞} with M⊆mod(R) a category.

(9) R(M)= {X ⊆mod(R) |M⊆ X ⊆1(M)X is resolving}.

(10) R the collection of resolving subcategories.

(11) ThickN (M) the smallest thick subcategory of N containing M with M ⊆
N ⊆mod(R) subcategories.

(12) C is a semidualizing module .

(13) GC the collection of totally C-reflexive modules.

(14) X†
= Hom(X,C).

(15) For a resolving subcategory A and a module M ∈ mod(R), set resA M =
res(A∪ {M}).

4. Comparing resolving subcategories

For the entirety of this section, let A, M, and N be resolving subcategories. Recall
that R(A) is the collection of resolving subcategories X such that A⊆ X ⊆1(A).
In this section, we compare R(A) and R(M) when A is contained in M. If A⊆M,
we may define ηMA :R(A)→R(M) by X 7→ res(X∪M) and ρM

A :R(M)→R(A)
by X 7→X ∩1(A). Note that if A⊆M⊆N, then ηNA = η

N
Mη

M
A and ρN

A = ρ
M
A ρN

M.

Proposition 4.1. If A cogenerates M, then the map ρM
A is injective.
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Proof. Suppose that ρM
A (X )=ρM

A (Y) for X,Y ∈R(M), i.e., X∩1(A)=Y∩1(A).
Take any X ∈ X . Since X ∈ 1(M) and A cogenerates M, by Theorem 2.16,
there exists A ∈ 1(A) and M ∈M such that 0→ X → A→ M → 0 is exact.
Since M ∈M ⊆ X and X ∈ X , we know that A is also in X . But then A is in
X ∩1(A) = Y ∩1(A) and thus also in Y. Since M ∈M ⊆ Y, we know that X
must also be in Y. Hence X ⊆ Y, and, by symmetry, we have equality. Therefore,
ρM
A is injective. �

In certain circumstances, this map is a bijection. The following is Theorem A
from the introduction.

Theorem 4.2. Let 9 be a set of increasing functions from spec R to N. Suppose,
A⊆M such that A cogenerates M and addAp is thick in addMp for all p∈ spec R.
If 8A and 3A are inverse functions giving a bijection between R(A) and 9, then
the following diagram commutes:

R(M)
8M

&&
9

R(A)
8A

88ηMA

OO

Furthermore, 3M and ρM
A are the respective inverses of 8M and ηMA .

The proof of this result will be given after this brief lemma.

Lemma 4.3. If X and Y are subcategories and M is resolving, then

8M(res(X ∪Y))=8M(X )∨8M(Y).

Proof. Since every element in res(X ∪Y) is obtained by taking extensions, syzygies,
and direct summands a finite number of times, and since these operations never
increase the M dimension, we have8M(res(X∪Y))≤8M(X )∨8M(Y). However,
since X ,Y ⊆ res(X ∪Y), we actually have equality. �

Proof of Theorem 4.2. First, we show that ρM
A and ηMA are inverse functions and are

thus both bijections. Proposition 4.1 shows that ρM
A is injective. Fix X ∈R(A) and

let Z = ρM
A ηMA (X )= res(X ∪M)∩1(A). It suffices to show that Z = X . Setting

f =8A(X ), this is equivalent to showing that 8A(Z)= f , since 8A and 3A are
inverse functions. Since X ⊆ Z , we know that 8A(Z)≥ f . From Lemma 4.3,

8M(res(X ∪M))=8M(X )∨8M(M)=8M(X ).

Furthermore, since addAp is thick in addMp for all p ∈ spec R, Lemma 2.14
implies that addAp-dim A and addMp-dim A are the same for all p ∈ spec R and
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A ∈1(A). Hence 8A(X )=8M(X ) and 8A(Z)=8M(Z). Therefore,

f ≤8A(Z)=8M(Z)≤8M(res(X ∪M))=8M(X )=8A(X )= f

and so, 8A(Z)= f . Hence, ρM
A and ηMA are inverse functions. Also, this argument

shows that 8A(X )=8M(res(X ∪M))=8M(η
M
A (X )), showing that the diagram

commutes and that 8M is also a bijection.
It remains to show that 3M =8M

−1. For any f ∈9, ηMA (3A( f )) is contained
in 3M( f ). Because 8M is an increasing function and both 8A and 3A are inverse
functions, we have

f =8A3A( f )=8M(η
M
A (3A( f ))≤8M3M( f )≤ f .

Thus we have 8M3M( f )= f , and we are done. �

For a resolving subcategory A, let S(A) be the collection of resolving sub-
categories M such that M and A satisfy the hypotheses of Theorem 4.2, i.e., A
cogenerates M and addAp is thick in addMp for all p ∈ spec R. The following
theorem shows that we can patch together the bijections in Theorem 4.2.

Theorem 4.4. Let A be a resolving subcategory and 9 be a set of increasing
functions from spec R to N. If 8A and 3A are inverse functions giving a bijection
between R(A) and 9, then

3 :S(A)×9 −→
⋃

M∈S(A)

R(M)⊆R.

is a bijection. Furthermore, for any M,N ∈S(A) with M ⊆ N, the map ρN
M is

the inverse of ηNM, and the following diagram commutes:

(1)

R(N )
8N

""
R(M)

8M //

ηNM

OO

9

R(A)
8A

<<

ηMA

OO

Before we proceed with the proof of Theorem 4.4, we need a lemma.

Lemma 4.5. The set S(A) is closed under intersections.

Proof. Let M,N ∈S(A). Take any p ∈ spec R. Suppose 0→ A1→ A2→ A3→ 0
is an exact sequence of Rp-modules with A1, A2 ∈ addAp and A3 ∈ add(M∩N )p.
Then A3 is in addMp. Therefore, since addAp is thick in addMp by assumption,
A3 is in addAp. Since addAp is resolving and contained in add(M∩N )p, addAp

is thick in add(M∩N )p.
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It remains to show that A cogenerates M∩N. Take X ∈M∩N. We have

0→ X→ A→ M→ 0 and 0→ X→ A′→ N → 0,

with M ∈M, N ∈N, and A, A′ ∈A. Consider the following pushout diagram.

0

��

0

��
0 // X //

��

A //

��

M // 0

0 // A′ //

��

T //

��

M // 0

N

��

N

��
0 0

It is easy to see T ∈M∩N. We also have the exact sequence

0→ X→ A⊕ A′→ T → 0.

Since A⊕ A′ ∈A, this completes the proof. �

Proof of Theorem 4.4. Suppose M,N ∈S with M⊆N. From Theorem 4.2, the
following diagrams commute:

R(M)
8M // 9

R(A)
8A

<<

ηMA

OO
and

R(N )
8N // 9

R(A)
8A

<<

ηNA

OO

From here, it is easy to show that diagram (1) commutes and 8N and ηNM are
bijections with (ηNM)

−1
= ρN

M.
Also, Theorem 4.2 shows that Im(3)=

⋃
M∈SR(M). It remains to show that3

is injective. Suppose X =3M( f )=3N (g). Then M,N ⊆X ; hence, M∩N ⊆X .
For any X ∈ X and any n greater than M-dim X and N-dim X, �n X is in M∩N
by Corollary 2.6. Therefore, X is contained in1(M∩N ) and thus X ∈R(M∩N ).
By the previous lemma, M ∩N is in S(A), so 3M∩N : 9 → R(M ∩N ) is a
bijection, by Theorem 4.2. So there exists an h ∈ 9 such that 3M∩N (h) = Z =
3M( f )=3N (g). Therefore, we may assume that M is contained in N.
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Since X ∈ R(M) and X ∈ R(N ), we have N ⊆ X ⊆ 1(M). Thus, because
A⊆M⊆N,

N =N ∩1(M)= ρN
M(N )= η

M
A ρM

A ρN
M(N )= η

M
A ρN

A (N )= ηMA (A)=M.

Since 3M is injective, we then also have f = g. �

As mentioned earlier, it is shown in [Dao and Takahashi 2015] that we have 3P
is a bijection from 0 to R(P). In Sections 8 and 9 we apply Theorem 4.4 when
A= P, and show that S(P) contains the collection of thick subcategories of GR .
The following results gives an alternative way of viewing Theorem 4.4.

Proposition 4.6. In the situation of Theorem 4.4, if 9 = 0 and P is thick in M,
then the following diagram commutes:

S(A)×0

idS(A)×3P

��

3

''
R

S(A)×R(P)

4
77

where 4(M,X ) = res(M∪X ). Furthermore, idS(A)×3P is bijective and 4 is
injective.

Proof. Since 3P is bijective, idS(A)×3P is too. It suffices to show that for any
(M, f ) ∈S(A)×0 we have 4(M,3P( f ))=3M( f ). Set Z =4(M,3P( f )).
First note that Z is in R(M). Since P is thick in M and hence in M, by Lemma 4.3,

8M(Z)=8M(res(M∪3P( f )))=8M(M)∨8M(3P( f ))=8P(3(P)( f ))= f

and thus 3M( f )= Z , proving the claim. �

5. A generalization of the Auslander transpose

Let C be a semidualizing module, and set −†
= Hom(−,C). For the entirety of

this section, A denotes a thick subcategory of GC that is closed under †. Recall-
ing Proposition 3.6, A-dim satisfies the Auslander–Buchsbaum formula. We set
resA M = res({M} ∪A).

The Auslander transpose has been an invaluable tool in both representation theory
and commutative algebra. In this section, we generalize the notion of the Auslander
transpose using semidualizing modules and list some properties which we will use.
The Auslander transpose has previously been generalized in [Geng 2013; Huang
1999], but the construction here is different.

Definition 5.1. An A-presentation of X is an exact sequence A1
ϕ
−→ A0→ X→ 0

with A1, A0 ∈A. Set TrA X = cokerϕ†.
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When C= R, we get the usual Auslander transpose of X which we denote by Tr X.
The “functor” TrA is not well defined up to isomorphism or even stable isomorphism,
motivating a new equivalence relation. Finding the correct equivalence relation is
actually a subtle affair. The equivalence relation must make TrA X be well defined,
but it must also detect resolving subcategories. For modules X and Y, we write
X ∼′ Y and Y ∼′ X if there exists an A ∈ A such that 0→ X → Y → A→ 0 is
exact. Let A-equivalence, denoted by ∼, be the transitive closure of the relation ∼′.
Since∼′ is symmetric and reflexive,∼ is an equivalence relation. Stable equivalence
implies A-equivalence, and when A=P, they are the same. We will see in a moment
that TrA X has the desired properties.

Remark 5.2. We would like to think of TrA as a functor. However, mod(R)
modulo A-equivalence does not form a sensible category. However, a very similar
construction is functorial. Let P

ϕ
−→ Q→ X→ 0 be a projective presentation. Set

TrC X = cokerϕ†. A similar construction is given in [Geng 2013; Huang 1999].
We will briefly show that TrC : mod(R)/A→ mod(R)/A is a functor. We thank
the referee for bringing the following construction to our attention.

We give some definitions first.

(1) X/Y is the category whose objects are X , and whose morphisms are

HomX/Y(X1, X2) := HomX (X1, X2)/FY(X1, X2),

where X1, X2 ∈ X and FY(X1, X2) is the subgroup of morphisms in X which
factor through an object in Y.

(2) MorphX is the category whose objects are morphisms f : X1 → X2. A
morphism (g1, g2) between objects f : X1→ X2 and f ′ : X ′1→ X ′2 in MorphX
is a pair of morphisms g1 : X→ X ′ and g2 : Y → Y ′ such that the following
diagram commutes:

X1
g1 //

f
��

X ′1

f ′

��
X2

g2 // X ′2

(3) For f, f ′ ∈MorphX , a morphism (g1, g2) : f → f ′ is homotopically trivial
if there exists an h : X2→ X ′1 such that f ′h f = g2 f = f ′g1. Let HX ( f, f ′)
denote the subgroup of homotopically trivial maps.

(4) H-MorphX is the category whose objects are the same as MorphX but whose
morphisms are

HomH-MorphX ( f, f ′)= HomMorphX ( f, f ′)/HX ( f, f ′).
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We now mimic the construction of the Auslander transpose [1971, Chapter 3,
Section 1]. Set C = add C. The functor † restricts to a functor †

: P → C which
induces a contravariant functor

†
:MorphP→Morph C,

f 7→ f †.

It is easy to check that the group homomorphism

†
: HomMorphP( f, f ′)→ HomMorph C( f ′†, f †),

(g1, g2) 7→ (g†
2, g†

1),

maps the subgroup HP( f, f ′) to HC( f ′†, f †). Therefore, † induces a functor
H-MorphP→ H-Morph C. Furthermore, it is easy to check that the map

coker : H-Morph C→mod(R)/C,

f 7→ coker f,

is a well defined functor. The discussion in [loc. cit.] indicates that there is a functor
ρ :mod(R)/P→ H-MorphP which sends a module to a projective presentation.
We summarize these discussions with the following commutative diagram:

MorphP

��

† // Morph C

��
mod(R)/P

ρ // H-MorphP
† // H-Morph C coker // mod(R)/C

The composition of the bottom row is TrC . Since A is closed under † and is thick
in MCM, TrC fixes A. Thus, since P, C ⊆A, it follows that TrC induces a functor
mod(R)/A→mod(R)/A, as desired.

This approach has two deficiencies. First of all, we cannot compute TrC using
A-resolutions. We will use A-resolutions, for example in Lemma 5.4(4), to show
that TrA TrA X ∼ X. Second of all, if X and Y are isomorphic in mod(R)/A, it is
not clear if resA X = resAY. Because of these issues, TrC cannot take the place of
TrA in this work.

We proceed to show that A-equivalence is sufficient for our purposes.

Proposition 5.3. For a module X, the module TrAX is unique up to A-equivalence.

Proof. Let π be the projective presentation P1→ P0→ X → 0, and let ρ be the
A-presentation A1 → A0 → X → 0. Suppose there is an epimorphism π → ρ.



CLASSIFYING RESOLVING SUBCATEGORIES 419

Then there exists the commutative diagram

(2)

0

��

0

��
0 // B2 // B1 //

��

B0 //

��

0

P1 //

��

P0 //

��

X // 0

A1 //

��

A0 //

��

X // 0

0 0

whose columns are exact, with B0, B1, B2 in A. Applying † to the diagram yields

0

��

0

��

0

��
0 // X† // A†

0
//

��

A†
1

//

��

TrρAX //

��

0

0 // X† // P†
0

//

��

P†
1

//

��

TrπA X //

��

0

0 // B†
0

//

��

B†
1

//

��

B†
2

//

��

0

0 0 0

where TrρA X and TrπA X denote TrAX computed using ρ and π , respectively. Since
the rows are exact, and the middle two columns are exact, the snake lemma shows
the last column is exact. Since B†

2 ∈A, we see that TrρA X ∼ TrπA X.
Consider any two A-presentations, ρ and ρ ′. It is easy to construct projective

presentations ψ and ψ ′ with epimorphisms ψ→ ρ and ψ ′→ ρ ′. In the proof of
[Masek 1999, Proposition 4], it is shown that there is a projective presentation of
π and epimorphisms π → ψ and π → ψ ′. Using our work so far, we know that
TrρA X ∼ TrπA X ∼ Trρ

′

A . �

Lemma 5.4. For any X, Y ∈mod(R) such that X ∼ Y, the following are true:

(1) resA X = resAY,

(2) �X ∼�Y,

(3) TrA X ∼ TrAY,
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(4) TrA TrA X ∼ X.

Proof. It suffices to assume that 0→ X→ Y → A→ 0 with A ∈A. Proving (1) is
trivial. For suitable choices of syzygies, we have 0→�X→�Y→�A→0. Since
�A is in A, and since syzygies are unique up to stable, and hence A-equivalence,
this proves (2).

Now we show (3). Consider the diagram with exact rows

P1

��

// P0

��

// Y

��

// 0

0 // �A // Q // A // 0

with Q, P0, P1 projective and surjective vertical arrows. Using the snake lemma,
we can extend this to the diagram

0

��

0

��

0

��
B1

��

// B0

��

// X

��

// 0

P1

��

// P0

��

// Y

��

// 0

0 // �A

��

// Q

��

// A

��

// 0

0 0 0

such that B1, B0 are in A. Applying † to this diagram gives the following:

0

��

0

��
0 // A† // Q†

��

// (�A)†

��

// Ext1(A,C) //

��

0

0 // Y † // P†
0

��

// P†
1

��

// TrAY //

��

0

0 // X† // B†
0

��

// B†
1

��

// TrAX //

��

0

0 0 0
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Since Ext1(A,C)= 0, applying the snake lemma to the middle two columns yields
TrA X ∼= TrAY. This proves (3).

To see (4), consider the projective presentation

P1→ P0→ X→ 0.

Then
P†

0 → P†
1 → TrA X→ 0

is an A-presentation, which we use to compute TrA TrA X , giving the result. �

We close this section with an example of a property shared by TrA and Tr.

Lemma 5.5. Let 0→ X → Y → Z → 0 be an exact sequence in mod(R). For
suitable choices of TrA, we have the exact sequence

0→ Z†
→ Y †

→ X†
→ TrA Z→ TrAY → TrA X→ 0.

Furthermore, if Exti (X,C)= 0, then

0→ TrA�i Z→ TrA�i Y → TrA�i X→ 0.

Proof. Let θ denote the map from Y to Z . We have the short exact sequence

0→�i X→�i Y
�i θ
−−→�i Z→ 0

for all i ≥ 0. We can construct the following short exact sequence of A presentations.

0

��

0

��

0

��
A0

1

��

// A0
0

��

// �i X

��

// 0

A1
1

��

// A1
0

��

// �i Y

�i θ
��

// 0

A2
1

��

// A2
0

��

// �i Z

��

// 0

0 0 0

Applying † and also the snake lemma yields

0→ (�i Z)†
(�i θ)†

−−−→�i Y
λ
−→�i X† ε

−→ TrA�i Z
η
−→ TrA�i Y → TrA�i X→ 0.

Setting i = 0 at this stage gives us the first claim. The short exact sequence
0→ �i X → �i Y → �i Z → 0 gives the following long exact sequence of Ext
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modules:

0→(�i Z)†
(�i θ)†

−−−→�i Y
λ
−→�i X† δ

−→Ext1(�i Z ,C)
Ext1(�i θ,C)
−−−−−−→Ext1(�i Y,C)→· · · .

We also have

· · · → Exti (X,C)→ Exti+1(Z ,C)
Exti+1(θ,C)
−−−−−−→ Exti+1(Y,C)→ · · · .

Since Exti (X,C)= 0 by assumption, Exti+1(θ,C) and Ext1(�iθ,C) are injective,
forcing δ to be zero. Thus λ is surjective. Then the first long exact sequence shows
that ε is zero, and so η is injective, giving the desired result. �

6. Resolving subcategories which are maximal Cohen–Macaulay on the
punctured spectrum

We keep the same conventions used in the previous section, except we also assume
that (R,m, k) is a Noetherian local ring. Recall that since A is a thick subcategory
of GC, according to Proposition 3.6, dimension with respect to A satisfies the
Auslander–Buchsbaum formula. Set

resA M = res({M} ∪A),

1(A)0 = {M ∈1(A) | Mp ∈ addAp for all p ∈ spec R\m},

1(A)i0 = {M ∈1(A)0 |A-dim M ≤ i}.

This section is devoted to proving the following:

Theorem 6.1. If (R,m, k) is a local ring with dim R = d , the filtration

A=1(A)00 (1(A)
1
0 ( · · ·(1(A)

d
0 =1(A)0

is a complete list of the resolving subcategories of 1(A)0 containing A.

This theorem and its proof is a generalization of [Dao and Takahashi 2015,
Theorem 2.1]. We now use results from the previous section to make the building
blocks of the proof of Theorem 6.1.

Lemma 6.2. For any module X ∈mod(R) and for suitable choices of TrA X and
�TrA�X,

0→ Ext1(X,C)→ TrA X→�TrA�X→ 0.

Proof. With F0, F1, F2 projective, consider the sequence

F2
f
−→ F1

g
−→ F0→ X→ 0.
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We have coker g†
= TrA X. By the universal property of kernel and cokernel, we

have the following commutative diagram.

0 // Im g† //

ι

��

F†
1

// TrA X //

ε

��

0

0 // ker f † // F†
1

// Im f † // 0

The snake lemma yields the exact sequence

0→ ker ι→ 0→ ker ε→ Ext1(X,C)→ 0→ coker ε→ 0.

Thus ε is surjective and ker ε ∼= Ext1(X,C), giving the exact sequence

0→ Ext1(X,C)→ TrA X→ Im f †
→ 0.

It remains to show that Im f †
∼�TrA�X.

We have the short exact sequence 0→ Im f †
→ F†

2 → TrA�X→ 0. Consider
the pushout diagram

0

��

0

��
�TrA�X

��

�TrA�X

��
0 // Im f † // T //

��

G //

��

0

0 // Im f † // F†
2

//

��

TrA�X //

��

0

0 0

with G projective. We have Im f †
∼ T ∼�TrA�X , as desired. �

Lemma 6.3. If X ∈ 1(A)0, for all 0 ≤ i < depth C, for suitable choices of TrA,
the following is exact:

0→ TrA�i+1 TrA�i+1 X→ TrA�i TrA�i X→ TrA�i Exti+1(X,C)→ 0.

Proof. Using Lemma 6.2, we have

0→ Exti+1(X,C)→ TrA�i X→�TrA�i+1 X→ 0.

Since X ∈ 1(A)0, we have Exti+1(X,C)p = 0 for every nonmaximal prime p.
Thus Exti+1(X,C) has finite length, and so

Exti (Exti+1(X,C),C)= 0
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for all 0≤ i < depth C. Thus, we can apply Lemma 5.5. �

Lemma 6.4. Let X ∈1(A)0 and 0< n ≤ depth C. Then

resA
(
X,TrA Ext1(X,C), TrA�Ext2(X,C), · · · ,TrA�n−1 Extn(X,C)

)
= resA

(
TrA�n TrA�n X, TrA Ext1(X,C),

TrA�Ext2(X,C), · · · , TrA�n−1 Extn(X,C)
)

Proof. The previous lemma tells us that

resA
(
TrA TrA X, TrA Ext1(X,C)

)
= resA

(
TrA�TrA�X, TrA Ext1(X,C)

)
,

resA
(
TrA�TrA�X, TrA�Ext2(X,C)

)
= resA

(
TrA�2 TrA�2 X, TrA�Ext2(X,C)

)
,

...

resA
(
TrA�n−1 TrA�n−1 X, TrA�n−1 Extn(X,C)

)
= resA

(
TrA�n TrA�n X, TrA�n−1 Extn(X,C)

)
.

Since TrA TrA X ∼ X, the result is now clear. �

Lemma 6.5. Let 0≤n<depth R and L a nonzero finite length module. There exists
an A-resolution (G•, ∂L ,n) of TrA�n L such that Gi = 0 for all i > n+ 1 and

ker ∂L ,n
i = TrA�n−i L

for all 1 ≤ i ≤ n. In particular, TrA�i L ∈ resA(TrA�n L) for all 0 ≤ i ≤ n,
A-dim(TrA�n L)= n+ 1, and TrA�n L ∈1(A)n+1

0 .

Proof. Let (F•, ∂) be a free resolution of L . Then we have

Fn+1→ Fn→�n L→ 0

and

0→�n L→ Fn−1
∂n−1
−−→ · · ·

∂2
−→ F1

∂1
−→ F0→ L→ 0.

Because L has finite length, and since depth C = depth R by Proposition 3.6, we
have Exti (L ,C)= 0 for all 0≤ i ≤ n, and so we have the exact sequence

0→ L†
→ F†

0
∂

†
1
−→ F†

1
∂

†
2
−→ · · ·

∂
†
n−1
−−→ F†

n−1→ (�n L)†→ 0.

Note that L†
= 0 since L has finite length. Thus, splicing this exact sequence with

0→ (�n L)†→ F†
n
∂

†
n+1
−−→ F†

n+1→ TrA�n L→ 0,
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we create an A-resolution of TrA�n L . So we set Gi = F†
n+1−i for 0 ≤ i ≤ n+ 1

and Gi = 0 for i > n + 1. Set ∂L ,n
i = ∂

†
n+2−i for 1 ≤ i ≤ n + 1 and ∂L ,n

i = 0 for
all i > n + 1. Using our previous arguments for values less that n, we see that
ker ∂L ,n

i = TrA�n−i L for 0≤ i ≤ n. Showing the first two claims.
It is now apparent that A-dim TrA�n L ≤ n+1. If ker ∂L ,n

n = TrA L is in A, then
so is L since TrA TrA L ∼ L . However, this is impossible since L†

=Ext0(L ,C)= 0.
Therefore we have A-dim TrA�n L = n+ 1. �

Lemma 6.6. For all 0 ≤ n < depth R and all nonzero finite length modules L ,
resA TrA�n L = resA TrA�nk.

Proof. Let λ denote the length function for modules. If L 6= 0, then we can
write 0 → L ′ → L → k → 0 with λ(L ′) < λ(L). Since by Proposition 3.6
n < depth R = depth C, we have Extn(L ′,C)= 0, and so from Lemma 5.5,

0→ TrA�nk→ TrA�n L→ TrA�n L ′→ 0.

Thus, by induction, resA TrA�n L ⊆ resA TrA�nk.
Now we wish to show that TrA�nk ∈ resA TrA�n L . We proceed by double

induction, first on λ(L) and then on n. The case L = k is trivial, so suppose
λ(L) > 1. Write 0→ L ′→ L→ k→ 0 again. Since L ′ has depth zero, we can
use Lemma 6.5 to get the resolution (G•, ∂L ′). Thus we have the exact sequence

0→ ker ∂L ′,n
1 → G0→ TrA�n L→ 0.

Taking the pullback diagram with our last exact sequence yields the following:

0

��

0

��
ker ∂ L ′,n

1

��

ker ∂ L ′,n
1

��
0 // TrA�nk // T //

��

G0 //

��

0

0 // TrA�nk // TrA�n L //

��

TrA�n L ′ //

��

0

0 0

It is now easy to see that it suffices to show that ker ∂L ′,n
1 is in resA TrA�n L .

When n = 0, (G•, ∂L ′,n) is the resolution

0→ G1
∂

L′,0
1
−−→ G0→ TrA L ′→ 0,
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and we are done since ker ∂L ′,0
1 = G1 ∈ A ⊆ resA TrA L . So suppose n > 0. We

have ker ∂L ′,n
1 = TrA�n−1L ′, by Lemma 6.5. By induction, resA TrA�n−1L and

resA TrA�n−1L ′ are the same as resA TrA�n−1k. So we have

ker ∂L ′,n
1 ∈ resA TrA�n−1L ⊆ resA TrA�n L ,

where the inclusion follows from Lemma 6.5, and we are done. �

These next proofs are similar to those in [Dao and Takahashi 2015] with the
appropriate changes. They are included here for the sake of completeness.

Proposition 6.7. For every 0 < n ≤ depth R, we have 1(A)n0 = resA TrA�n−1L
for every nonzero finite length module L.

Proof. By Lemma 6.6, we may assume that L = k. By Lemma 6.5, we know
that A-dim(Tr�n−1k) = n. Since localization commutes with cokernels, duals
and syzygies, we have Tr�nk is in 1(A)0 and hence in 1(A)n0 . Suppose now
that X ∈ 1(A)n0 . Then �n X ∈ A, and so TrA�n TrA�n X ∈ A. Furthermore, for
each i ≥ 0, the module Exti+1(X,C) has finite length. Hence, Lemma 6.6 implies
that TrA�i Exti+1(X,C) is in resA TrA�i k ⊆ resA TrA�n−1k, where the inclusion
follows from Lemma 6.5. By Lemma 6.4, we therefore have

X ∈ resA
(
TrA�n TrA�n X, TrA Ext1(X,C),

TrA�Ext2(X,C), · · · , TrA�n−1 Extn(X,C)
)
⊆ resA TrA�n−1k

which concludes the proof. �

We now prove the main result of this section.

Proof of Theorem 6.1. We clearly have the chain

A=1(A)00 (1(A)
1
0 ( · · ·(1(A)

d
0 =1(A)0.

Take X ∈1(A)n0 \1(A)
n−1
0 for d ≥ n ≥ 1. We need to show that resA X =1(A)n0 ,

and we have resA X ⊆1(A)n0 . We proceed by induction. When n= 0, the statement
is trivial. So assume that n > 0 and resA�X = 1(A)n−1

0 . Since Extn(X,C) has
finite length, it suffices to show TrA�n−1 Extn(X,C) ∈ resA X, by Proposition 6.7.

Since �n X ∈ A, the short exact sequence 0→ �n X → P → �n−1 X → 0,
with P projective, is an A presentation of �n−1 X. Using this presentation to
compute TrA, we see that TrA�n−1 X ∼ Ext1(�n−1 X,C)∼= Extn(X,C). Therefore,
TrA�n−1 TrA�n−1 X ∼ TrA�n−1 Extn(X,C) by Lemma 5.4. Thus, it suffices to
show that TrA�n−1 TrA�n−1 X ∈ resA X, again by Lemma 5.4.

Let 0< i ≤ n− 1. Since Exti (X,C) has finite length, Lemma 6.5 implies

TrA�i−1 Exti (X,C) ∈1(A)i0 ⊆1(A)
n−1
0 = resA�X ⊆ resA X.
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Therefore, Lemma 6.4 implies that

TrA�n−1 TrA�n−1 X ∈ resA
(
X, TrA Ext1(X,C), TrA�Ext2(X,C),

· · · , TrA�n−2 Extn−1(X,C)
)
= resA(X)

as claimed. �

The following corollary is immediate from Theorem 6.1

Corollary 6.8. If X ∈1(A)n0 \1(A)
n−1
0 , then resA X =1(A)n0 .

7. Resolving subcategories and semidualizing modules

In this section, we keep the same notations and conventions as the previous sections,
except we do not assume that R is local. In this section, we classify the resolving
subcategories of 1(A) which contain A. Note that it is easy to check that Cp is a
semidualizing Rp-module for all p ∈ spec R. In Corollary 8.2, we will see that for
all p ∈ spec R, addAp is a thick subcategory of GCp closed under HomRp(−,Cp).
The following is a modified version of [Dao and Takahashi 2014, Lemma 4.6],
which is a generalization of [Takahashi 2009, Proposition 4.2]. For a module X, let
NA(X)= {p ∈ spec R | Xp /∈ addAp}.

Proposition 7.1. Suppose X ∈1(A). For every p ∈ NA(X), there is a Y ∈ resA X
such that NA(Y )= V(p) and addAπ -dim Yπ = addAπ -dim Xπ for all π ∈ V (p).

Proof. If NA(X)= V(p) we are done. So fix a q ∈ NA(X)\V(p). As in the proof
of [Dao and Takahashi 2014, Lemma 4.6], choose an x ∈ p\q and consider the
following pushout diagram.

0 // �X

x

��

// F

��

// X // 0

0 // �X // Y // X //// 0

with F projective. Immediately, we have Y ∈ resA X. Furthermore, Yq ′ ∈ res Xq ′

for all q ′ ∈ spec R. Therefore, we have NA(Y )⊆ NA(X). The proof of [Dao and
Takahashi 2014, Lemma 4.6] tells us that

depth(Yπ )=min{depth(Xπ ), depth(Rπ )}

for all π ∈ V (p). Thus, by Proposition 3.6, addAπ -dim Yπ = addAπ -dim Xπ , for
all π ∈ V (p). In particular, this shows that V (p) is contained in NA(Y ).

Localizing at q yields the following:

0 // �Xq

x

��

// Fq

��

// Xq // 0

0 // �Xq // Yq // Xq //// 0
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Note x is a unit in Rq . Thus, by the five lemma, Yq is isomorphic to Fp and therefore
is projective. So we have q /∈ NA(Y ) and hence NA(Y )( NA(X).

If NA(Y ) 6=V(p), then we may repeat this process and construct a Y ′ that, like Y,
satisfies all the desired properties except V(p)⊆NA(Y ′)(NA(Y )(NA(X). Since
spec R is Noetherian, this process must stabilize after some iteration, producing the
desired module. �

Lemma 7.2. Let V be a nonempty finite subset of spec R. Let M be a module and
X a resolving subcategory such that Mp ∈ addXp for some p ∈ spec R. Then there
exist exact sequences

0→ K → X→ M→ 0 and 0→ L→ M ⊕ K ⊕ Rt
→ X→ 0

with X ∈ X , NA(L)⊆ NA(M), and NA(L)∩ V =∅.

Proof. The result is essentially contained in the proof of [Takahashi 2010, Propo-
sition 4.7]. It shows the existence of the exact sequences and shows that V is
contained in the free locus of L and thus NA(L)∩ V =∅. Furthermore, the last
exact sequence in the proof shows that for any p ∈ spec R, Lp is in res Mp. Hence,
if Lp is not in a resolving subcategory, then Mp cannot be in that category either,
giving us NA(L)⊆ NA(M). �

These lemmas help to prove the following proposition which is a key component
of the proof of Theorem 7.4. This next result is also where we use Corollary 6.8 of
the last section.

Proposition 7.3. Consider a module M ∈ mod(R) and a resolving subcategory
X ∈R(A). If for every p ∈ spec R, there exists an X ∈ X such that

addAp-dim Mp ≤ addAp-dim Xp,

then M is in X .

Proof. Because of Lemma 2.12, we may assume (R,m, k) is local. We proceed
by induction on dim NA(M). If dim NA(M) = −∞, then M is in A and we are
done. Suppose dim NA(M) = 0. Then M is in 1(A)t0 where t = A-dim X. By
Proposition 7.1, there exists a Y ∈ resA X ⊆ X with A-dim Y = t and Y ∈1(A)0,
and thus Y ∈ 1(A)t0\1(A)

t−1
0 . By Corollary 6.8, resA Y = 1(A)t0, and thus

M ∈ resA(Y )⊆ X .
The rest of the proof uses Lemma 7.2 and is identical to [Dao and Takahashi

2015, Theorem 3.5], except one replaces the nonfree locus of M by NA(M) and
replaces projective dimension by A-dim. �

We come to the main theorem of this section. Recall that 0 is the set of grade
consistent functions.
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Theorem 7.4. Assume R is Noetherian. If A is a thick subcategory of GC which is
closed under †, then 3A and 8A are inverse functions giving a bijection between 0
and R(A).
Proof. The previous proposition shows that 3A8A is the identity on R(A). Let
f ∈ 0 and p ∈ spec R. Since addAp-dim Xp ≤ f (p) for every X ∈ 3A( f ), we
have 8A(3A( f ))(p)≤ f (p). However, by [Dao and Takahashi 2015, Lemma 5.1]
there is an M ∈1(P)⊆1(A) such that pdRp

Mp = f (p) and pdRq
Mq ≤ f (q) for

all q ∈ spec R. Since for all q ∈ spec R pdq Mq = addAq -dim Mq , M is in 3A( f ),
and we have 8A(3A( f ))(p)= f (p). Thus 8A3A is the identity on 0. �

8. Resolving subcategories that are closed under †

We wish to expand upon Theorem 7.4 using the results in Section 4. However, to use
Theorem 7.4, we need to understand which thick subcategories of GC containing C
are closed under duals. In this section, C is a semidualizing module. Since GC is
cogenerated by add C, as seen at the end of Section 3, it stands to reason that the
results of Section 4 are applicable.

Lemma 8.1. Suppose M⊆ GC is resolving with C ∈M. Then M is thick in GC if
and only if for every M ∈M, (�M†)† is in M. In particular, M is thick in GC if
any only if it is cogenerated by add C.

Since syzygies are unique up to projective summands, (�M†)† is unique up to
add C summands. Thus, for our purposes, our choice of syzygy is inconsequential.
When R = C, (�M†)† is the classical cosyzygy of a Gorenstein dimension zero
module M. Thus in this case, the lemma is equivalent to saying that a resolving
subcategory M of GR is thick if and only if it is closed under cosyzygies.

Proof. Assume M is thick, and let M ∈M. We have the following exact sequence.

0→�M†
→ Rn

→ M†
→ 0

Applying † yields
0→ M→ Cn

→ (�M†)†→ 0.

Since C ∈M, if M is thick in GC, (�M†)† is in M.
Conversely, suppose for every M ∈M, (�M†)† is in M. We wish to show that

M is thick in GC. Since M is resolving, it suffices to check that M† is also resolving,
since † is a duality on GC. It is also clear that M† is extension closed. Since C ∈M,
we have R ∈M†. Therefore it suffices to check that M† is closed under syzygies.
Take Z = M†

∈M†. Then since (�M†)† is in M, (�M†)†† ∼= �M†
= �Z is

in M†, as desired. �

The following corollary, although intuitive, is not obvious, and it is not clear if it
holds for other subcategories besides GC.
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Corollary 8.2. If M is thick in GC, then addMp is thick in GCp for all p ∈ spec R.

Proof. Take p ∈ spec R. From Lemma 2.11, we know that addMp is resolving.
By the previous lemma, it suffices to show that for all M ∈ addMp, (�Rp M†)† =

Hom(�Rp Hom(M,Cp),Cp) is in addMp. For every M ∈ addMp, there exists
an N such that M ⊕ N = Lp for some L ∈M. Consider the following:

(�L†)†p = Hom(�R Hom(L ,C), C)p

= Hom(�Rp Hom(Lp,Cp), Cp)

= Hom(�Rp Hom(M ⊕ N,Cp), Cp)

= Hom(�Rp Hom(M,Cp), Cp)⊕Hom(�Rp Hom(N,Cp), Cp)

By the previous lemma, (�L†)† is in M, and so (�Rp M†)† is in addMp. �

Proposition 8.3. Let A be the smallest thick subcategory of GC containing C. Then
A is closed under †.

Since the intersection of thick subcategories of GC is thick, it is clear that A exists.

Proof. First, let W be the set of modules obtained by applying † and � to R
successive times. Suppose for a moment that resW =A. Let A ∈A. We will show
that A†

∈ A by inducting on the number of steps needed to construct A from W.
See [Takahashi 2009] for a precise definition of the notion of steps with regards to a
resolving subcategory. If A takes 0 steps to construct, then A is either R or in W, and
the claim is clear. Suppose A is constructed in n> 0 steps. Then there exists B1 and
B0 which can be constructed in n−1 steps and satisfy one of the following situations.

(1) 0→ A→ B0→ B1→ 0

(2) 0→ B0→ A→ B1→ 0

(3) B0 = A⊕ B1

Therefore one of the following is true:

(a) 0→ B†
1 → B†

0 → A†
→ 0

(b) 0→ B†
1 → A†

→ B†
0 → 0

(c) B†
0 = A†

⊕ B†
1

By induction, B†
0 and B†

1 are in A. Since A is thick, each of these situations implies
that A† is in A.

Therefore, it suffices to show that resW =A. First, we show that resW is a thick
subcategory containing C. In light of Lemma 8.1, it suffices to show that for every
A ∈ resW, we have (�A†)† ∈ resW. We work as we did in the previous paragraph,
and we proceed by induction on the number of steps needed to construct A from W.
When it takes 0 steps, then A is either R or in W, in which case the claim is clear.
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Suppose A needs n > 0 steps to be constructed. Working as we did in the previous
paragraph, there exists modules B1 and B0 which can be constructed in n− 1 steps
and satisfy one of (1), (2), or (3) above. Therefore, one of the following is true:

(a) 0→ (�A†)†→ (�B†
0 )

†
→ (�B†

1 )
†
→ 0

(b) 0→ (�B†
0 )

†
→ (�A†)†→ (�B†

1 )
†
→ 0

(c) (�B†
1 )

†
= (�A†)†⊕ (�B†

0 )
†

By induction (�B†
0 )

† and (�B†
1 )

† are in resW. Since W is resolving, then so
is (�A†)† as desired.

It suffices now to show that resW ⊆A. To do this, we show that each W ∈W
is in A. We induct on c(W ), the smallest number of times it takes to apply � and †

to R to obtain W. If c(W )= 0, then W = R, and we are done. If c(W )= 1, then
W is either 0 or C which are both in A. Therefore, we may assume that c(W ) > 1.
Then one of the following situations must occur.

(1) A =�2 B

(2) A = B††

(3) A =�(B†)

(4) A = (�B)†

where c(B)= c(A)−2. By induction, B is in A. In cases (1) and (2), it is clear that
A is in A too. We have c(B†)≤ c(B)+ 1< c(A), and so B† is in A by induction.
Now in case (3), the result is clear. So we assume that we are in case (4). By
Lemma 8.1, (�(B††))† ∼= (�B)† = A must be in A. �

For the rest of this section, A will continue to be the smallest thick subcategory
of GC containing C. It is immediate that A satisfies the assumptions of Theorem 7.4.
We wish to apply the results from the beginning of the paper. Using the notation of
Section 4, set S(C)=S(A), i.e., let S(C) be the collection resolving subcategories
M ⊆ mod(R) such that A cogenerates M and addAp is thick in addMp for
every p ∈ spec R.

Lemma 8.4. Every thick subcategory of GC which contains C is in S(C). Further-
more, when R is Cohen–Macaulay, every element in S(C) is contained in MCM.
In particular, when C = D is a dualizing module, S(D) is the collection of thick
subcategories of MCM containing D.

Proof. Let M be a thick subcategory GC containing C. It is clear from the definition
of A that M contains A. By Lemma 8.1, M is cogenerated by add C , thus also by A.
By Corollary 8.2, addMp and addAp are thick in GCp for all primes p ∈ spec R.
Therefore, dimension with respect to each of these subcategories satisfies the
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Auslander–Buchsbaum formula. It follows from Lemma 2.14 that addAp is thick
in addMp

Now suppose that R is Cohen–Macaulay and X ∈S(C). Since A cogenerates X ,
for any X ∈X there exists 0→ X→ A0→· · ·→ Ad→ X ′→ 0 with each Ai ∈A
and d = depth R. Since A⊆MCM, X is in MCM. The last statement is now clear,
since in that case GD =MCM. �

We now come to the main results of the paper.

Theorem 8.5. Let A denote the smallest thick subcategory of GC containing C. For
any M ∈S(C) (e.g., M is a thick subcategory of GC containing C), 3M and 8M
give a bijection between R(M) and 0.

Furthermore, the following is a bijection:

3 :S(C)×0 −→
⋃

M∈S(C)

R(M)⊆R

For any M,N ∈S(C) with M⊆N, the following diagram commutes:

R(N )
8N

""
R(M)

8M //

ηNM

OO

0

R(A)
8A

<<

ηMA

OO

In particular, ρN
M and ηNM are inverse functions.

Proof. Proposition 8.3 states that A is a thick subcategory of GC which contains C
and is closed under †. Therefore, by Theorem 7.4, 3A and 8A give a bijection
between R(A) and 0. The first statement is an application of Theorem 4.2 and
Lemma 8.4. The rest follows from Theorem 4.4. �

A resolving subcategory X is dominant if for every p ∈ spec R, there is an n ∈N

such that �n
Rp

Rp/pRp ∈ addXp.

Corollary 8.6. Suppose R is Cohen–Macaulay and has a dualizing module. Then
there is a bijection between resolving subcategories containing MCM and grade
consistent functions. Furthermore, the following are equivalent for a resolving
subcategory X .

(1) X is dominant

(2) MCM⊆ X

(3) 1(X )=mod(R)
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Proof. Letting D be the dualizing module of R, MCM is the same as GD . Hence,
by the previous theorem, 3MCM : 0→R(MCM) is a bijection, showing the first
statement. From [Dao and Takahashi 2015, Theorem 1.3], the following is a
bijection:

ξ : 0→ {Dominant resolving subcategories of mod(R)}

f 7→ {X ∈mod(R) | depth Xp≥ ht p− f (p)}

It is clear that ξ(0)=MCM; hence, every dominant subcategory contains MCM.
Furthermore, we have mod(R)=1(MCM), and hence every dominant resolving
subcategory is an element of R(MCM). Then for any f ∈ 0,

ξ( f )= {X ∈mod(R) | depth Xp ≥ ht p− f (p)}

= {X ∈mod(R) | add MCMp -dim Xp ≤ f (p)} =3MCM( f ).

Thus ξ equals 3MCM, showing the equivalence of (1) and (2).
It is clear that (2) implies (3). Now assume (3) and take a p ∈ spec R. Then

X-dim R/p < ∞, and this implies that �n R/p ∈ X for some n. Therefore,
�n

Rp
Rp/pRp ∈ addXp, so X is dominant. �

9. Gorenstein rings and vanishing of Ext

In this section, (R,m, k) is a local Gorenstein ring. In this case, MCM is the
same as GR , and Lemma 8.4 implies that S(R) is merely the collection of thick
subcategories of MCM. This gives us the following which recovers [Dao and
Takahashi 2015, Theorem 7.4].

Theorem 9.1. If R is Gorenstein, then we have the following commutative diagram
of bijections:

{Thick subcategories of MCM}×0
3

,,
3P

��

{Z ∈R | Z ∩MCM is thick in MCM}

{Thick subcategories of MCM}×R(P)
4

33

where 4(M,X )= res(M∪X ).

Proof. Let Z be the collection of resolving subcategories whose intersection with
MCM is thick in MCM. As observed before the Theorem, S(R) is simply the thick
subcategories of MCM. Since for any M ∈S(R), 1(M)∩MCM is M, the image
of 3 lies in Z. Furthermore, for any Z ∈ Z, Z is in R(Z ∩MCM), thus the result
follows from Proposition 4.6 and Theorem 8.5. �



434 WILLIAM SANDERS

It is natural to ask when the image 3 is all of R. This happens precisely
when every resolving subcategory of MCM is thick. This occurs, by [op. cit.,
Theorem 6.4], when R is a complete intersection. We will give a necessary condition
for Im3=R by examining the resolving subcategories of the form

MB = {M ∈mod(R) | Ext>0(M, B)= 0 for all B ∈ B}

where B ⊆mod(R). Dimension with respect to this category can be calculated in
the following manner.

Lemma 9.2. For all B ⊆mod(R),

MB -dim M = inf{n | Ext>n(M, B)= 0 for all B ∈ B}

Proof. Let M ∈ mod(R). For all i > 0 and j ≥ 0 and each B ∈ B, we have
Exti+ j (M, B) = Exti (� j M, B). So Exti+n(M, B) = 0 for all i ≥ 0 if and only if
�n M is in MB. �

Lemma 9.3. For any B ⊆mod(R), we have MB ∩1(P)= P.

Proof. To prove this, it suffices to show that if pd(X)= n > 0, then Extn(X, B) 6= 0.
Take a minimal free resolution

0→ Fn
d
−→ Fn−1→ · · · → F0→ X→ 0.

Note that Im(d)⊆mFn−1. We then get the complex

0→ Hom(X, B)→ Hom(F0, B)→ · · · → Hom(Fn−1, B)
d∗
−→ Hom(Fn, B)→ 0.

Now Im(d∗) still lies in mHom(Fn, B), and thus by Nakayama, d∗ cannot be
surjective. Hence we have Extn(X, B)= coker d∗ 6= 0. �

Araya [2012] defined AB dimension by AB-dim M = max{bM ,GR-dim M},
where

bM =min{n | Ext�0(M, B)= 0 ⇒ Ext>n(M, B)= 0}.

Note that AB dimension satisfies the Auslander–Buchsbaum formula. Also, a ring
is AB if and only if every module has finite AB dimension.

Lemma 9.4. Taking B ⊆ mod(R), if AB-dim M <∞ for all M ∈ 1(MB), then
MB is a thick subcategory of MCM.

Proof. Suppose AB-dim1(MB) <∞. First, we show that MB is contained in
MCM. Take any M ∈MB. There is an exact sequence 0→M→ Y → X → 0
with pd(Y ) < ∞ and X ∈ MCM. We claim that X has AB dimension zero.
Suppose Ext�0(X, Z) = 0. Then Ext�0(Y, Z) = 0 and since pd Y = AB-dim Y,
Ext>pd Y (Y, Z) is zero. Then we have Ext�0(M, Z)=0 and thus Ext>bM (M, Z)=0.
Therefore Exti (X, Z)= 0 for all i >max{pd(Y ), bM}+ 1. Since R is Gorenstein,
that means that X has finite GR dimension, and thus X has finite AB dimension.
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But since AB dimension satisfies the Auslander Buchsbaum formula, AB-dim X
must be zero.

Since Y ∈ 1(MB), we have X ∈ 1(MB). So Ext�0(X, B) = 0 for all B ∈ B,
and we have Ext>0(X, B)= 0 for all B ∈ B. Hence X is in MB. Therefore, Y is
also in MB, which, by Lemma 9.3, means that Y is projective and hence in MCM,
forcing M to be in MCM as well.

Now to show that MB is thick in MCM, it suffices to show that MB is closed
under cokernels of surjections in MCM. So take 0→ L → M → N → 0 with
L ,M, N ∈MCM and L ,M ∈MB. Then N ∈ 1(MB) and so Ext�0(N , B) = 0
for all B ∈ B. But then N has finite AB dimension by assumption. Since AB
dimension satisfies the Auslander–Buchsbaum formula, AB-dim N is zero. So we
have Ext>0(N , B)= 0 for all B ∈ B, and hence, N is in MB. �

Now let d = dim R.

Theorem 9.5. If R is Gorenstein, then the following are equivalent.

(1) R is AB.

(2) MB is a thick subcategory of MCM for all B ⊆mod(R).

(3) MCM∩MB is thick in MCM for every B ⊆mod(R).

(4) 3MB gives a bijection between R(MB) and 0 for every B ⊆mod(R).

(5) For all B ⊆ mod(R) and M ∈MB, 0 contains the function f : spec R→ N

defined by

f (p)=min{n | Ext>n(Mp, Bp)= 0 for all B ∈ B}.

Proof. The previous lemma shows that (1) implies (2), and (2) implies (3) is trivial.
Assuming (3), we will show (1). Suppose Ext�0(M, B)= 0. Then M is in1(MB).
Letting dim R = d, we have �d M ∈ 1(MB)∩MCM. For some n ≥ d we have
�n M ∈MB ∩MCM. But then we have

0→�n M→ Fn−1→ · · · → Fd →�d M→ 0,

where each Fi is projective. By (3), �d M is in MB. So we have MB-dim M ≤ d ,
and so Ext>d(M, B)= 0.

Theorem 4.2 shows that (2) implies (4). Lemma 9.2 shows that (4) implies (5).
Since R is local, evaluating f at the maximal ideal shows that (5) implies (1). �

Corollary 9.6. Set r = d − depth M. If R is AB and Ext�0(M, B) = 0, then
Extr (M, B) 6= 0. Furthermore, if Extr (M, B) = 0 or Exti (M, B) 6= 0 for i > r ,
then Ext j (M, B) 6= 0 for arbitrarily large j .
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Proof. Suppose R is AB. Then (2) holds and so MB -dim satisfies the Auslander–
Buchsbaum formula. If Ext�0(M, B)= 0 then

r =MB-dim M =max{n | Extn(M, B) 6= 0}.

The second statement is just the contrapositive of the first statement. �

Corollary 9.7. If R is Gorenstein and every resolving subcategory of MCM is thick,
then R is AB.

Proof. The assumption implies (2) in Theorem 9.5. �

Thus if 3 in Theorem 8.5 is a bijection from S(R)× 0 to R, then R is AB.
Stevenson [2014a] shows that when R is a complete intersection, every resolving
subcategory of MCM is closed under duals. The following gives a necessary
condition for this property.

Corollary 9.8. If R is Gorenstein and every resolving subcategory of MCM is
closed under duals, then R is AB.

Proof. Suppose every resolving subcategory of MCM is closed under duals. Let
M⊆MCM be resolving. Let −∗ = Hom(−, R). Then for every M ∈ X , (�M∗)∗

is in M. By Lemma 8.1, M is thick. The result follows from the previous corollary.
�
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cotilting, and spectra of commutative Noetherian rings”, Trans. Amer. Math. Soc. 366:7 (2014),
3487–3517. MR Zbl

[Araya 2012] T. Araya, “A Homological dimension related to AB rings”, preprint, 2012. arXiv

[Auslander 1971] M. Auslander, “Representation theory of artin algebras”, lecture notes, Queen Mary
College, London, 1971.

[Auslander and Bridger 1969] M. Auslander and M. Bridger, “Stable module theory”, pp. 146
Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence,
1969. MR Zbl

[Auslander and Buchweitz 1989] M. Auslander and R.-O. Buchweitz, “The homological theory of
maximal Cohen–Macaulay approximations”, pp. 5–37 in Colloque en l’honneur de Pierre Samuel
(Orsay, 1987), Mém. Soc. Math. France (N.S.) 38, Marseille, 1989. MR Zbl

http://dx.doi.org/10.1007/s00209-014-1281-y
http://dx.doi.org/10.1007/s00209-014-1281-y
http://msp.org/idx/mr/3229968
http://msp.org/idx/zbl/1303.13015
http://dx.doi.org/10.1090/S0002-9947-2014-05904-7
http://dx.doi.org/10.1090/S0002-9947-2014-05904-7
http://msp.org/idx/mr/3192604
http://msp.org/idx/zbl/1291.13018
http://msp.org/idx/arx/1204.4513v1
http://dx.doi.org/10.1090/memo/0094
http://msp.org/idx/mr/0269685
http://msp.org/idx/zbl/0204.36402
http://www.numdam.org/item?id=MSMF_1989_2_38__5_0
http://www.numdam.org/item?id=MSMF_1989_2_38__5_0
http://msp.org/idx/mr/1044344
http://msp.org/idx/zbl/0697.13005


CLASSIFYING RESOLVING SUBCATEGORIES 437

[Auslander and Reiten 1991] M. Auslander and I. Reiten, “Applications of contravariantly finite
subcategories”, Adv. Math. 86:1 (1991), 111–152. MR Zbl

[Dao and Takahashi 2014] H. Dao and R. Takahashi, “The radius of a subcategory of modules”,
Algebra Number Theory 8:1 (2014), 141–172. MR Zbl

[Dao and Takahashi 2015] H. Dao and R. Takahashi, “Classification of resolving subcategories and
grade consistent functions”, Int. Math. Res. Not. 2015:1 (2015), 119–149. MR Zbl

[Foxby 1972] H.-B. Foxby, “Gorenstein modules and related modules”, Math. Scand. 31 (1972),
267–284. MR

[Gabriel 1962] P. Gabriel, “Des catégories abéliennes”, Bull. Soc. Math. France 90 (1962), 323–448.
MR Zbl

[Geng 2013] Y. Geng, “A generalization of the Auslander transpose and the generalized Gorenstein
dimension”, Czechoslovak Math. J. 63(138):1 (2013), 143–156. MR Zbl

[Gerko 2001] A. A. Gerko, “On homological dimensions”, Mat. Sb. 192:8 (2001), 79–94. In Russian;
translated at Sb. Mat. 192:8 (2001), 1165–1179. MR Zbl

[Hopkins 1987] M. J. Hopkins, “Global methods in homotopy theory”, pp. 73–96 in Homotopy theory
(Durham, 1985), edited by E. Rees and J. D. S. Jones, London Math. Soc. Lecture Note Ser. 117,
Cambridge Univ. Press, 1987. MR Zbl

[Huang 1999] Z. Huang, “On a generalization of the Auslander–Bridger transpose”, Comm. Algebra
27:12 (1999), 5791–5812. MR Zbl

[Masek 1999] V. Masek, “Gorenstein dimension of modules”, expository notes, 1999. arXiv

[Neeman 1992] A. Neeman, “The chromatic tower for D(R)”, Topology 31:3 (1992), 519–532. MR
Zbl

[Sather-Wagstaff 2009] S. Sather-Wagstaff, “Semidualizing modules”, course notes, North Dakota
State University, Fargo, ND, 2009, available at http://ssather.people.clemson.edu/DOCS/sdm.pdf.

[Stevenson 2014a] G. Stevenson, “Duality for bounded derived categories of complete intersections”,
Bull. Lond. Math. Soc. 46:2 (2014), 245–257. MR Zbl

[Stevenson 2014b] G. Stevenson, “Subcategories of singularity categories via tensor actions”, Compos.
Math. 150:2 (2014), 229–272. MR Zbl

[Takahashi 2009] R. Takahashi, “Modules in resolving subcategories which are free on the punctured
spectrum”, Pacific J. Math. 241:2 (2009), 347–367. MR Zbl

[Takahashi 2010] R. Takahashi, “Classifying thick subcategories of the stable category of Cohen–
Macaulay modules”, Adv. Math. 225:4 (2010), 2076–2116. MR Zbl

[Takahashi 2011] R. Takahashi, “Contravariantly finite resolving subcategories over commutative
rings”, Amer. J. Math. 133:2 (2011), 417–436. MR Zbl

[Takahashi 2013] R. Takahashi, “Classifying resolving subcategories over a Cohen–Macaulay local
ring”, Math. Z. 273:1-2 (2013), 569–587. MR Zbl

[Vasconcelos 1974] W. V. Vasconcelos, Divisor theory in module categories, North-Holland Mathe-
matics Studies 14, North-Holland, Amsterdam, 1974. MR Zbl

[White 2010] D. White, “Gorenstein projective dimension with respect to a semidualizing module”, J.
Commut. Algebra 2:1 (2010), 111–137. MR Zbl

[Yoshino 2005] Y. Yoshino, “A functorial approach to modules of G-dimension zero”, Illinois J. Math.
49:2 (2005), 345–367. MR Zbl

Received February 25, 2015. Revised June 9, 2016.

http://dx.doi.org/10.1016/0001-8708(91)90037-8
http://dx.doi.org/10.1016/0001-8708(91)90037-8
http://msp.org/idx/mr/1097029
http://msp.org/idx/zbl/0774.16006
http://dx.doi.org/10.2140/ant.2014.8.141
http://msp.org/idx/mr/3207581
http://msp.org/idx/zbl/1308.13015
http://dx.doi.org/10.1093/imrn/rnt141
http://dx.doi.org/10.1093/imrn/rnt141
http://msp.org/idx/mr/3340297
http://msp.org/idx/zbl/1314.13024
http://www.mscand.dk/index.php/math/article/view/11434/9451
http://msp.org/idx/mr/0327752
http://www.numdam.org/item?id=BSMF_1962__90__323_0
http://msp.org/idx/mr/0232821
http://msp.org/idx/zbl/0201.35602
http://dx.doi.org/10.1007/s10587-013-0009-1
http://dx.doi.org/10.1007/s10587-013-0009-1
http://msp.org/idx/mr/3035502
http://msp.org/idx/zbl/1274.13022
http://dx.doi.org/10.4213/sm587
http://dx.doi.org/10.1070/SM2001v192n08ABEH000587
http://msp.org/idx/mr/1862245
http://msp.org/idx/zbl/1029.13010
http://msp.org/idx/mr/932260
http://msp.org/idx/zbl/0657.55008
http://dx.doi.org/10.1080/00927879908826791
http://msp.org/idx/mr/1726277
http://msp.org/idx/zbl/0948.16007
http://msp.org/idx/arx/math/9809121v2
http://dx.doi.org/10.1016/0040-9383(92)90047-L
http://msp.org/idx/mr/1174255
http://msp.org/idx/zbl/0793.18008
http://ssather.people.clemson.edu/DOCS/sdm.pdf
http://dx.doi.org/10.1112/blms/bdt089
http://msp.org/idx/mr/3194744
http://msp.org/idx/zbl/1321.13008
http://dx.doi.org/10.1112/S0010437X1300746X
http://msp.org/idx/mr/3177268
http://msp.org/idx/zbl/1322.18004
http://dx.doi.org/10.2140/pjm.2009.241.347
http://dx.doi.org/10.2140/pjm.2009.241.347
http://msp.org/idx/mr/2507582
http://msp.org/idx/zbl/1172.13005
http://dx.doi.org/10.1016/j.aim.2010.04.009
http://dx.doi.org/10.1016/j.aim.2010.04.009
http://msp.org/idx/mr/2680200
http://msp.org/idx/zbl/1202.13009
http://dx.doi.org/10.1353/ajm.2011.0011
http://dx.doi.org/10.1353/ajm.2011.0011
http://msp.org/idx/mr/2797352
http://msp.org/idx/zbl/1216.13009
http://dx.doi.org/10.1007/s00209-012-1020-1
http://dx.doi.org/10.1007/s00209-012-1020-1
http://msp.org/idx/mr/3010176
http://msp.org/idx/zbl/1267.13024
http://dx.doi.org/10.1016/S0304-0208(08)70346-3
http://msp.org/idx/mr/0498530
http://msp.org/idx/zbl/0296.13005
http://dx.doi.org/10.1216/JCA-2010-2-1-111
http://msp.org/idx/mr/2607104
http://msp.org/idx/zbl/1237.13029
http://projecteuclid.org/euclid.ijm/1258138022
http://msp.org/idx/mr/2163939
http://msp.org/idx/zbl/1097.13019


438 WILLIAM SANDERS

WILLIAM SANDERS

DEPARTMENT OF MATHEMATICAL SCIENCES

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

7491 TRONDHEIM

NORWAY

william.sanders@math.ntnu.no

mailto:william.sanders@math.ntnu.no


PACIFIC JOURNAL OF MATHEMATICS
Vol. 286, No. 2, 2017

dx.doi.org/10.2140/pjm.2017.286.439

THE SYMPLECTIC PLACTIC MONOID,
CRYSTALS, AND MV CYCLES

JACINTA TORRES

We study cells in generalized Bott–Samelson varieties for type Cn. These
cells are parametrized by certain galleries in the affine building. We define
a set of readable galleries — we show that the closure in the affine Grassman-
nian of the image of the cell associated to a gallery in this set is an MV cycle.
This then defines a map from the set of readable galleries to the set of MV
cycles, which we show to be a morphism of crystals. We further compute
the fibers of this map in terms of the Littelmann path model.

1. Introduction

This paper is part of a project started by Gaussent and Littelmann [2005] the aim
of which is to establish an explicit relationship between the path model and the set
of MV cycles used by Mirković and Vilonen for the Geometric Satake equivalence
proven in [Mirković and Vilonen 2007].

1A. We consider a complex connected reductive algebraic group G and its affine
Grassmannian G = G(C((t)))/G(C[[t]]). We fix a maximal torus T ⊂ G. The
coweight lattice X∨ =Hom(C×,T) can be seen as a subset of G . For a coweight λ,
which we may assume dominant with respect to some choice of Borel subgroup
containing T, the closure Xλ of the G(C[[t]])-orbit of λ in G is an algebraic variety
which is usually singular. The Geometric Satake equivalence identifies the complex
irreducible highest weight module L(λ) for the Langlands dual group G∨ with
the intersection cohomology of Xλ, a basis of which is given by the classes of
certain subvarieties of Xλ called MV cycles. The set of these subvarieties is denoted
by Z (λ). The Geometric Satake equivalence implies that the elements of Z (λ)

are in one to one correspondence with the vertices of the crystal B(λ). Braverman
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and Gaitsgory [2001], endow the set Z (λ) with a crystal structure and show the
existence of a crystal isomorphism ϕ : B(λ)−→∼ Z (λ).

1B. Gaussent and Littelmann [2005] define a set 0(γλ)LS of LS galleries, which
are galleries in the affine building J aff associated to G, and they endow this set
with a crystal structure and an isomorphism of crystals B(λ) −→∼ 0(γλ)

LS. They
view the latter as a subset of the T-fixed points in a desingularization 6γλ

π
−→Xλ.

To each of these particular fixed points δ ∈0(γλ)LS corresponds a Białynicki-Birula
cell Cδ ⊂6γλ . Gaussent and Littelmann [2005] show that the closure π(Cδ) is an
MV cycle, and Baumann and Gaussent [2008] show that the map

0(γλ)
LS
→Z (λ), δ 7→ π(Cδ)

is a crystal isomorphism with respect to the crystal structure on Z (λ) described by
Braverman and Gaitsgory [2001]. It is natural to ask whether the closures π(Cδ)
are still MV cycles for a more general choice of fixed point δ.

1C. Gaussent and Littelmann [2012] consider one skeleton galleries, which are
piecewise linear paths in X∨⊗Z R. Such galleries can be interpreted in terms of
Young tableaux for types A, B and C. For G∨ = SL(n,C), Gaussent et al. [2013]
show that for any fixed point δ ∈ 6T

γλ
, the closure π(Cδ) is in fact an MV cycle.

They achieve this using combinatorics of Young tableaux such as word reading and
the well known Knuth relations, and by relating them to the Chevalley relations
for root subgroups which hold in the affine Grassmannian G . In [Torres 2016] it
is observed that word reading is a crystal morphism, and this allows one to prove
that in this case, the map from all galleries to MV cycles is in fact a morphism
of crystals. It was conjectured in [Gaussent et al. 2013] that generalizations of
their results hold for arbitrary complex semisimple algebraic groups, in terms of
the plactic algebra defined by Littelmann [1996]. It is with this in mind that we
formulate and state our results.

1D. Results. We work with G∨=Sp(2n,C). We define a set 0(γλ)R⊃0(γλ)LS of
readable galleries, which have an explicit formulation in terms of Young tableaux.
These galleries correspond to all galleries in type A. They are called keys in
[Gaussent et al. 2013]. Type C combinatorics related to LS galleries has been
developed by De Concini [1979], Kashiwara and Nakashima [1994], King [1976],
Lakshmibai [1987] (in the context of standard monomial theory), Proctor [1990],
Sheats [1999] and Lecouvey [2002], among others. We use the description of LS
galleries of fundamental type given by Lakshmibai in [1987; 1986]. We use the
formulation given by Lecouvey [2002]. There is a certain word reading described
in [Lecouvey 2002] which we show to be a crystal morphism when restricted to
readable galleries. We obtain results similar to those obtained in [Gaussent et al.
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2013] concerning the defining relations of the symplectic plactic monoid, described
explicitly by Lecouvey [2002], as well as words of readable galleries. These results
together with the work of Gaussent and Littelmann [2005; 2012], and Baumann
and Gaussent [2008] allow us to show in Theorem 6.2 that given a readable gallery
δ ∈ 0(γλ)

R there is an associated dominant coweight νδ ≤ λ such that:

(1) The closure π(Cδ) is an MV cycle in Xνδ .

(2) The map

0(γλ)
R ϕγλ
−→

⊕
δ∈0(γλ)R/∼

Z (µδ+), δ 7→ π(Cδ)

is a morphism of crystals.

Here 0(γλ)R/∼ is some set of representatives for a certain equivalence relation
on the set of readable galleries. We compute the fibers of this map in terms of
the Littelmann path model. Moreover, this map induces an isomorphism when
restricted to each connected component. We then provide some examples of galleries
δ ∈6T

γλ
−0(γλ)

R for which π(Cδ) is not an MV cycle in Z (νδ).

1E. This paper is organized as follows. In Section 2 we introduce our notation and
recall several general facts about affine Grassmannians, MV cycles, galleries in the
affine building, generalized Bott–Samelson varieties, and concrete descriptions of
the cells Cδ in them. In Section 3 we introduce the crystal structure on combinatorial
galleries, motivating our results with the Littelmann path model, and define readable
galleries as concatenations of LS galleries of fundamental type and “zero lumps.”
From Section 4 on we work with G∨ = Sp(2n,C), where we recall some type C
combinatorics and build up to our main result, which we state and prove in Section 6.
However, the main ingredients of the proof, stated in Section 5, are proven in
Section 7. In Section 8 we exhibit some examples in special cases where the image
of a certain cell cannot be an MV cycle. In the Appendix we show a technical result
that we need.

2. Preliminaries

2A. Notation. Throughout this section, we consider G to be a complex connected
reductive algebraic group associated to a root datum (X,X∨,8,8∨), and we denote
its Langlands dual by G∨. Let T⊂G be a maximal torus of G with character group
X=Hom(T,C×) and cocharacter group X∨ =Hom(C×,T). We will call elements
of X weights, and elements of X∨ coweights. We identify the Weyl group W with
the quotient NG(T)/T, where NG(T) denotes the normalizer of T in G. We will
abuse notation by denoting a representative in NG(T) of an element w ∈W in the
Weyl group by the same symbol, w, that we use to denote the element itself. We fix
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a choice of positive roots 8+ (this determines a set 8∨,+ of positive coroots), and
denote the dominance order on X and X∨ determined by this choice by ≤. We will
denote the corresponding set of dominant weights and coweights by X+ ⊂ X and
X∨,+ ⊂ X∨ respectively. Let 1= {α1, . . . , αn} ⊂8

+ be the basis or set of simple
roots of 8 that is determined by 8+. The number n is called the rank of the root
datum. Then the set 1∨ of all coroots α∨i of elements αi ∈1 forms a basis of the
root system 8∨. Let 〈−,−〉 be the nondegenerate pairing between X and X∨, and
denote the half sum of positive roots and coroots by ρ and ρ∨ respectively. Note
that if λ =

∑
α∈1nαα, respectively λ =

∑
α∨∈1∨nαα∨, is a sum of positive roots

then 〈λ, ρ∨〉 =
∑

α∈1nα, respectively 〈ρ, λ〉 =
∑

α∨∈1∨nα).
Let B⊂ G be the Borel subgroup of G containing T that is determined by the

choice of positive roots 8+, and let U⊂ B be its unipotent radical. The group U is
generated by the elements Uα(b) for b ∈ C, α ∈8+, where for each root α, Uα is
the one-parameter group it determines. For each coweight λ∈X∨ and each nonzero
complex number a ∈ C×, we denote its image λ(a) ∈ T by aλ.

The following identities hold in G (See [Steinberg 1968, §6]):

• For any λ ∈ X∨, a ∈ C×, b ∈ C, and α ∈8,

(1) aλUα(b)= Uα(a〈α,λ〉b)aλ.

• (Chevalley’s commutator formula) Given linearly independent roots α, β ∈8,
there exist numbers ci, j

α,β ∈ {±1,±2,±3} such that, for all a, b ∈ C,

(2) Uα(a)−1Uβ(b)−1Uα(a)Uβ(b)=
∏

i, j∈N>0

Uiα+ jβ
(
ci, j
α,β(−a)i b j).

The product is taken in some fixed order. The ci, j
α,β are integers which apart

from depending on i and j depend also on α, β and on the chosen order in the
product.

2B. Affine Grassmannians. Let O = C[[t]] denote the ring of complex formal
power series and let K = C((t)) denote its field of fractions; it is the field of
complex Laurent power series. For any C-algebra R, we denote the set of R-valued
points of G by G(R). The set

G = G(K )/G(O)

is called the affine Grassmannian associated to G. We will denote the class in G

of an element g ∈ G(K ) by [g]. A coweight λ : C× → T ⊂ G determines a
point tλ ∈ G(K ) and hence a class [tλ] ∈ G . This map is injective, and we may
therefore consider X∨ as a subset of G .
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G(O)-orbits in G are determined by the Cartan decomposition

G =
⊔

λ∈X∨,+
G(O)[tλ].

Each G(O)-orbit has the structure of an algebraic variety induced from the progroup
structure of G(O) and for a dominant coweight λ ∈ X∨,+,

G(O)[tλ] =
⊔

µ∈X∨,+
µ≤λ

G(O)[tµ].

We call the closure G(O)[tλ] a generalized Schubert variety and we denote it by Xλ.
This variety is usually singular. We will review certain resolutions of singularities
of it in Section 2E. The U(K )-orbits in G are given by the Iwasawa decomposition

G =
⊔
λ∈X∨

U(K )[tλ].

These orbits are indvarieties, and their closures can be described by

U(K )[tλ] =
⋃
µ≤λ

U(K )[tµ]

for any λ ∈ X∨ (see Proposition 3.1(a) of [Mirković and Vilonen 2007]).

2C. MV cycles and crystals. Let λ ∈ X∨,+ and µ ∈ X∨ be a dominant integral
coweight and any coweight, respectively. Let L(λ) be the irreducible representation
of G∨ of highest weight λ. Then by Theorem 3.2 in [Mirković and Vilonen 2007], the
intersection U(K )[tµ]∩G(O)[tλ] is nonempty if and only if µ is a weight of L(λ),
and in that case its closure is pure dimensional of dimension 〈ρ, λ+µ〉 and has the
same number of irreducible components as the dimension of the µ-weight space
L(λ)µ [Mirković and Vilonen 2007, Corollary 7.4]. Moreover, X∨∼=Hom(T∨,C×),
where T∨ is the Langlands dual of T, which is a maximal torus of G∨ (see [Mirković
and Vilonen 2007, §7] ).

We denote the set of all irreducible components of a given topological space Y
by Irr(Y). Consider the sets

Z (λ)µ = Irr(U(K )[tµ] ∩G(O)[tλ]) and Z (λ)=
⊔
µ∈X∨

Z (λ)µ.

Elements of these sets are called MV cycles. Braverman and Gaitsgory [2001, §3.3]
have endowed the set Z (λ) with a crystal structure and have shown the existence
of an isomorphism of crystals B(λ) −→∼ Z (λ). We do not use the definition of
this crystal structure, but we denote by f̃αi (respectively ẽαi ) the corresponding
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root operators for i ∈ {1, . . . , n}, where n is the rank of the root system 8. See
Section 3A below for the definition of a crystal.

2D. Galleries in the affine building. Let J aff be the affine building associated
to G and K . It is a union of simplicial complexes called apartments, each of which
is isomorphic to the Coxeter complex of the same type as the extended Dynkin
diagram associated to G. We refer the reader to [Ronan 2009] for a thorough
account of building theory. The affine Grassmannian G can be G(K )-equivariantly
embedded into the building J aff, which also carries a G(K ) action. Denote by
8aff the set of real affine roots associated to 8; we identify it with the set 8×Z.

Let A = X∨⊗Z R. For each (α,m) ∈8aff, consider the associated hyperplane
and the positive and negative half spaces:

H(α,m) = {x ∈ A : 〈α, x〉 = m},

H+(α,m) = {x ∈ A : 〈α, x〉 ≥ m},

H−(α,m) = {x ∈ A : 〈α, x〉 ≤ m}.

The affine Weyl group Waff is generated by all the affine reflections s(α,m) with
respect to the affine hyperplanes H(α,m). We have an embedding W ↪→Waff given
by sα 7→ s(α,0), where sα ∈W is the simple reflection associated to α ∈8. (The Weyl
group W is minimally generated by the set {sαi : i ∈ {1, . . . , n}}.) The dominant
Weyl chamber is the set

C+ = {x ∈ A : 〈α, x〉 > 0 for all α ∈1},

and the fundamental alcove is in turn

1f
= {x ∈ C+ : 〈α, x〉 ≤ 1 for all α ∈8+}.

There is a unique apartment in the affine building J aff that contains the image
of the set of coweights X∨ ⊂ G under the embedding G ↪→J aff. This apartment
is isomorphic to the affine Coxeter complex associated to Waff; its faces are given
by all possible intersections of the hyperplanes H(α,m) and their associated (closed)
positive and negative half-spaces H±(α,m). It is called the standard ,apartment in
the affine building J aff. The action on the affine building J aff by Waff coincides,
when restricted to the standard apartment, with the one induced by the natural action
of Waff on A. The fundamental alcove is a fundamental domain for this action.

To each real affine root (α,m) ∈ 8aff is attached the one-parameter additive
root subgroup U(α,m) of G(K ) defined by b 7→ Uα(btm) for b ∈ C. Let λ ∈ X∨

and b ∈ C. Identity (1) implies that

(3) U(α,m)(b)[tλ] = [Uα(btm)tλ] = [tλUα(btm−〈α,λ〉)],
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and [tλUα(btm−〈α,λ〉)] = [tλ] if and only if Uα(btm−〈α,λ〉)⊂ G(O), or, equivalently,
〈α, λ〉 ≤m. Hence, the root subgroup U(α,m) stabilizes the point [tλ] ∈ G ↪→J aff if
and only if λ ∈H−(α,m). For each face F in the standard apartment, denote by PF, UF

and Waff
F its stabilizer in G(K ), U(K ) and Waff respectively. These subgroups

are generated by the torus T, and respectively by the root subgroups U(α,m) such
that F⊂ H−(α,m), the root subgroups U(α,m) ⊂ PF such that α ∈8+, and those affine
reflections s(α,m) ∈Waff such that F⊂ H(α,m) [Gaussent and Littelmann 2005, §3.3,
Example 3; Baumann and Gaussent 2008, Proposition 5.1].

Example 2.1. Let G∨ = Sp(4,C), then 8+ = {α1, α2, α1+ α2, α1+ 2α2}. In the
picture below the shaded region is the upper half-space H+(α2,0). Let F be the face in
the standard apartment that joins the vertices −(α1+α2) and −α1. This is depicted
here.

F

α1+α2
H(α2,0)

H(α2,1)

H(α2,−1)

α2 α1+ 2α2

α1

The subgroup PF is generated by the root subgroups associated to the following
real roots:

(α1,m) m ≥−1,

(α2,m) m ≥ 1,

(α1+α2,m) m ≥−1,

(α1+ 2α2,m) m ≥ 0,

(−α1,m) m ≥ 2,

(−α2,m) m ≥ 0,

(−(α1+α2),m) m ≥ 1,

(−(α1+ 2α2),m) m ≥ 1.

The stabilizer UF is generated by the root subgroups associated to those previously
stated roots (α,m) such that α ∈8+ is a positive root, and Waff

F = {s(α1+α2,−1), 1}.

A gallery is a sequence of faces in the affine building J aff,

(4) γ = (V0 = 0,E0,V1, . . . ,Ek,Vk+1),

satisfying these conditions:
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1. For each i ∈ {1, . . . , k}, Vi ⊂ Ei ⊃ Vi+1.

2. Each face labeled Vi has dimension zero (is a vertex) and each face labeled Ei

has dimension one (is an edge). In particular, each face in the sequence γ is
contained in the one-skeleton of the standard apartment.

3. The last vertex Vk+1 is a special vertex: its stabilizer in the affine Weyl
group Waff is isomorphic to the finite Weyl group W associated to G.

We denote the set of all galleries in the affine building by6. If, in addition, each face
in the sequence belongs to the standard apartment, then γ is called a combinatorial
gallery. We will denote the set of all combinatorial galleries in the affine building
by 0. In this case, the third condition is equivalent to requiring the last vertex Vk+1

to be a coweight. From now on, if γ is a combinatorial gallery we will denote the
coweight corresponding to its final vertex by µγ in order to distinguish it from the
vertex.

Remark 2.2. The galleries we defined are actually called one-skeleton galleries in
the literature. The word “gallery” was originally used to describe a more general
class of face sequences but since we only work with one-skeleton galleries in this
paper, we have left the word “one-skeleton” out.

2E. Bott–Samelson varieties. Let γ be a combinatorial gallery (as above). The
following lemma can be obtained from [Gaussent and Littelmann 2012, Lemma 4.8
and Definition 4.6].

Lemma 2.3. There exist a unique combinatorial gallery,

γ f
= (V f

0 ,E f
0 ,V f

1 , . . . ,V f
k+1),

with each one of its faces contained in the fundamental alcove, and elements
wj ∈ Waff

V f
j

for each j ∈ {1, . . . , k} such that w0 · · ·wr−1V f
r = Vr for each

r ∈ {0, . . . , k+ 1} and w0 · · ·wr E f
r = Er for each r ∈ {0, . . . , k}.

If two galleries γ and η have the same associated gallery ν = γ f
= η f we say

that the two galleries have the same type. We will denote the set of combinatorial
galleries that have the same type as a given combinatorial gallery γ by 0(γ ). The
map

Waff
V0
× · · ·×Waff

Vk
→ 0(γ ),(5)

(w0, . . . , wk) 7→ (V0, w0E0, w0V1, w0w1E1, . . . , w0 · · ·wkVk+1),(6)

induces a bijection between the set
∏r

i=0 Waff
Vi
/Waff

Ei
and 0(γ ); it is in particular

finite. For a proof see [Gaussent and Littelmann 2012, Lemma 4.8].
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Definition 2.4. The Bott–Samelson variety of type γ f is the quotient of

G(O)×PV f
1
× · · ·×PV f

k

by the following right action of PE f
0
× · · ·×PE f

k
:

(q0, . . . , qk) · (p0, p1, . . . , pk)= (q0 p0, p−1
0 q1 p1, . . . , p−1

k−1qk pk).

We will denote this quotient by 6γ f . The progroup structure of the groups PV f
i

and PE f
i

assures that 6γ f is in fact a smooth variety. To each point (g0, . . . , gk) in
G(O)×PV f

1
× · · ·×PV f

k
one can associate a gallery

(7) (V f
0 , g0E f

0 , g0V f
1 , g0g1V f

2 , . . . , g0 · · · gkV f
k+1).

This induces a well defined injective map i : 6γ f ↪→ 6. With respect to this
identification, the T-fixed points in 6γ f are in natural bijection with the set 0(γ f )

of combinatorial galleries of type γ f .
Let ω ∈ A be a fundamental coweight. We define a particular combinatorial

gallery, which starts at 0 and ends at ω. Let Vω
1 , . . . ,Vω

k be the vertices in the
standard apartment that lie on the open line segment joining 0 and ω, numbered
such that Vω

i+1 lies on the open line segment joining Vω
i and ω. Let further Eωi

denote the face contained in A that contains the vertices Vω
i and Vω

i+1. The gallery

γω = (0= Vω
0 ,Eω0 ,Vω

1 ,Eω1 , . . . ,Eωk ,Vω
k+1 = ω)

is called a fundamental gallery. Galleries of the same type as a fundamental gallery
γω will be called galleries of fundamental type ω.

Now let λ ∈ X∨,+ be a dominant integral coweight and let γλ be a gallery with
endpoint λ and expressible as a concatenation of fundamental galleries, where
concatenation of two combinatorial galleries γ1 ∗ γ2 is defined by translating γ2 to
the endpoint of γ1. (Note that it follows from the definition of type that if γ, ν are
two galleries of the same type as δ and η respectively, then γ ∗ ν has the same type
as δ ∗η. Actually, if γ = γ1 ∗ · · · ∗γr then 0(γ )= {δ1 ∗ · · · ∗ δr : δi ∈ 0(γi )}.) Then
the map

6
γ

f
λ

π
−→Xλ, [g0, . . . , gr ] 7→ g0 · · · gr [t

µ
γ f
](8)

is a resolution of singularities of the generalized Schubert variety Xλ.

Remark 2.5. That the above map is in fact a resolution of singularities is due to
the fact that the gallery γλ is minimal (see [Gaussent and Littelmann 2012, §5
and §4.3, Proposition 5]). This resembles the condition for usual Bott–Samelson
varieties associated to a reduced expression. See [Gaussent and Littelmann 2005,
§9, Proposition 7].
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Remark 2.6. The map (8) makes sense for any combinatorial gallery γ . In this
generality one has a map 6γ f

π
−→G sending [g0, . . . , gr ] to g0, . . . , gr [tµγ ], which

is not necessarily a resolution of singularities. From now on we will write (6γ f , π)

to refer to the Bott–Samelson variety together with its map 6γ f
π
−→G to the affine

Grassmannian.

2F. Cells and positive crossings. Let r∞ :J aff
→ A be the retraction at infinity

(see [Gaussent and Littelmann 2005, Definition 8]). It extends to a map

rγ f :6γ f → 0(γ f ).

To a combinatorial gallery δ ∈ 0(γ f ) is associated the cell Cδ = r−1
γ f (δ) which

was explicitly described in [Gaussent and Littelmann 2005; 2012; Baumann and
Gaussent 2008]. In this subsection we recollect their results; we will need them
later. They are originally formulated in terms of galleries of the same type as γλ;
we formulate them for any combinatorial gallery. The proofs remain the same,
and therefore we do not provide them all, but refer the reader to [Gaussent and
Littelmann 2005; 2012].

First consider the subgroup U(K ) of G(K ). It is generated by the elements of
the root subgroups U(α,n) for α ∈ 8+ a positive root and n ∈ Z. Let V ⊂ E be a
vertex and an edge (respectively) in the standard apartment, the vertex contained in
the edge. Consider the subset of affine roots

8+(V,E) = {(α, n) ∈8aff
: α ∈8+,V ∈ H(α,n),E * H−(α,n)},

and let U(V,E) denote the subgroup of U(K ) generated by U(α,n) for all (α, n) ∈
8+(V,E). The following proposition will be very useful in Section 7. It is stated and
proven in [Baumann and Gaussent 2008, Proposition 5.1].

Proposition 2.7. Let V⊂ E be a vertex and an edge in the standard apartment as
above. Then U(V,E) is a set of representatives for the right cosets of UE in UV. For
any total order on the set 8+(V,E), the map

(aβ)β∈8+(V,E) 7→
∏

β∈8+(V,E)

Uβ(aβ)

is a bijection from C
|8+(V,E)| onto U(V,E). The order in the product is the same as the

one on the set 8+(V,E).

Now let γ be a combinatorial gallery with notation as in (4). For each i ∈ {1, . . . , k},
let U

γ

Vi
= U(Vi ,Ei ). For later use we fix the notation 8γi =8

+

(Vi ,Ei )
.

Example 2.8. Let G∨= Sp(4,C) as in Example 2.1, and γω1 be as in Definition 2.4.
Then U

γω1
V0

is generated by the root subgroups associated to the real roots (α1, 0),
(α1+α2, 0), and (α1+2α2, 0). Let δ be the gallery with one edge and endpoint α2.
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Then UδV0
is generated by the groups associated to (α2, 0), (α1+ 2α2, 0), as seen

here.

γω1

H(α2,0)

δ

H(α1+α2,0) H(α1+2α2,0)H(α1,0)

Now write δ= (V0,E0, . . . ,Ek,Vk+1)∈0(γ
f ) in terms of (7) as δ=[δ0, . . . , δk].

This means δi ∈Waff
V f

i
and δ0 · · · δ j E

f
j = E j . A beautiful exposition of the following

description (Theorem 2.9) of the cell Cδ can be found in [Gaussent and Littelmann
2012, Proposition 4.19]. We provide an outline of the proof for the benefit of the
reader and in order to state Corollary 2.10, which is actually a corollary to its proof.

Theorem 2.9. The map ϕ : Uδ = UδV0
×UδV1

× · · ·×UδVk
→6γ f given by

(v0, . . . , vk) 7→ [v0δ0, δ
−1
0 v1δ0δ1, . . . , (δ0 · · · δk−1)

−1vkδ0 · · · δk]

is injective and has image Cδ.

Proof. Let Ũ= UV0 × · · ·×UVk/UE0 × · · ·×UEk where

(e0, . . . , εk) · (v0, . . . , vk)= (v0e0, e−1
0 v1e1, . . . , e−1

k−1vkek).

The map (v0, . . . , vk) 7→ [v1, . . . , vk] defines a bijection φ : Uδ→ Ũ. Indeed, by
[Gaussent and Littelmann 2012, Proposition 4.17], UVi is a set of representatives
for right cosets of UE j in UVj , and hence for [a0, . . . , ak] ∈ Ũ there is a unique
(v0, . . . , vk) ∈ U such that (for some e j ∈ UE j ) v0e0 = a0, and v j e j = e j−1a j ,
i.e., φ((v0, . . . , vk)) = [a0, . . . , ak]. We use this bijection and consider instead
the map ϕ̃ := ϕ ◦ φ−1. Fix [v0, . . . , vk] ∈ Ũ. The map ϕ̃ is well defined because
(δ0 · · · δj−1)

−1vi j (δ0 · · · δ j )∈PV f
j
, and if ej ∈UEj then(δ0 · · · δj )

−1ej (δ0 · · · δj )∈UE f
j
.

Since by [Gaussent and Littelmann 2005, Proposition 1] the fibers of r∞ are U(K )-
orbits, an element p = [p0, . . . , pk] ∈6γ f belongs to Cδ if and only if there exist
elements u0, . . . , uk ∈ U(K ) such that

(1) p0 · · · pj E
f
j = u j E j and

(2) u j−1Vj = u j Vj .

Define u0 = v0 and u j = v0 · · · vj . Then conditions (1) and (2) above hold for

pj = (δ0 · · · δj−1)
−1vj (δ0 · · · δj ).

Hence the image of the map is contained in the cell Cδ. For the other inclusion,
define vj =u−1

j−1u j (see [Gaussent and Littelmann 2012, Proposition 4.19]). To show
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injectivity assume ϕ̃([v0, . . . , vk]) = ϕ̃([v
′

0, . . . , v
′

k]). Then there exist elements
ej ∈ UEj such that v0 · · · vj = v

′

0 · · · v
′

j ej , this implies injectivity. �

The following corollary can be found in [Gaussent et al. 2013, Corollary 3]
for G∨ = SL(n,C). Note that in particular it implies that uπ(Cδ)= π(Cδ) for all
u ∈ UV0 .

Corollary 2.10. π(Cδ)= UδV0
· · ·UδVk

[tµδ ] = UV0 · · ·UVk [t
µδ ].

Proof. By the arguments in the proof of Theorem 2.9 the image of the map

UV0 × · · ·×UVk →6γ f

(v0, . . . , vk) 7→ [v0δ0, δ
−1
0 v1δ0δ1, . . . , δ0 · · · δ

−1
r−1vkδ0 · · · δk]

is contained in and is surjective onto the cell Cδ . In particular conditions (1) and (2)
above are satisfied for pj = (δ0 · · · δj−1)

−1vj (δ0 · · · δj ). The corollary follows since
δ0 · · · δjµγ f = µδ. �

3. Crystal structure on combinatorial galleries, the Littelmann path model,
and Lakshmibai–Seshadri galleries

Let λ ∈ X+,∨ be a dominant integral coweight and let L(λ) be the corresponding
simple module of G∨. To L(λ) is associated a certain graph B(λ) that is its “combi-
natorial model”. It is a connected highest weight crystal, which means that there
exists bλ ∈ B(λ) such that eαi (bλ)= 0 for all i ∈ {1, . . . , n}, where n is the rank of
the corresponding root datum. The crystal B(λ) also has the characterizing property
that

dim(L(λ)µ)= #{b ∈ B(λ) : wt(b)= µ}.

See below for definitions. After recalling the notion of a crystal we review the
crystal structure on the set 0 of combinatorial galleries.

3A. Crystals. A crystal is a set B together with maps

eαi , fαi : B→ B∪ {0} (the root operators),

wt : B→ X∨ (the weight function),

for i ∈ {1, . . . , n}, such that for every b, b′ ∈B; b′= eαi (b) if and only if b= fαi (b
′),

and, in this case, setting

εi (b′′)=max{n : en
αi
(b′′) 6= 0} and φi (b′′)=max{n : f n

αi
(b′′) 6= 0}

for any b′′ ∈ B, we have

wt(b′)= wt(b)+α∨i and φi (b)= εi (b)+〈αi ,wt(b)〉.



THE SYMPLECTIC PLACTIC MONOID, CRYSTALS, AND MV CYCLES 451

A crystal is in particular a graph, which we may decompose into the disjoint union of
its connected components. Each element b∈B lies in a unique connected component
which we will denote by Conn(b). A crystal morphism is a map F :B→B′ between
the underlying sets of crystals B and B′ such that wt(F(b)) = wt(b) and such
that it commutes with the action of the root operators. A crystal morphism is an
isomorphism if it is bijective.

3B. Crystal structure on combinatorial galleries.

Definition 3.1. For each i ∈ {1, . . . , n} and each simple root αi , we recall the
definition of the root operators fαi and eαi on the set of combinatorial galleries 0
and endow this set with a crystal structure. We follow [Gaussent and Littelmann
2005, §6; Braverman and Gaitsgory 2001, §1], and refer the reader to [Kashiwara
1995] for a detailed account of the theory of crystals.

Let γ = (V0,E0,V1,E1, . . . ,Ek,Vk+1) be a combinatorial gallery. Define a
weight function by wt(γ )=µγ . Let mαi =m ∈Z be minimal such that Vp ∈H(αi ,m)

for some p ∈ {0, . . . , k+ 1}. Note that m ≤ 0.

Definition of fαi . Suppose 〈αi , µγ 〉 ≥ m + 1. Let j be maximal such that V j ∈

H(αi ,m) and let j < r ≤ k+ 1 be minimal such that Vr ∈ H(αi ,m+1). Let

E′p =


Ep if p < j,
s(αi ,m)(Ep) if j ≤ p < r,
t−α∨i (Ep) if r ≤ p.

Define V′0 = 0, and for 1≤ p≤ k, set V′p = E′p−1∩E′p, and let V′k+1 be the extreme
point of the line segment E′k that is not V′k . Define

fαi (γ )= (V
′

0,E′0,V′1,E′1, . . . ,E′k,V′k+1),

and if 〈αi , µγ 〉< m+ 1, then fαi (γ )= 0.

Definition of eαi . Suppose m ≤−1. Let r be minimal such that the Vr ∈ H(αi ,m)

and let 0≤ j < r be maximal such that V j ∈ H(αi ,m+1). Let

E′p =


Ep if p < j,
s(αi ,m+1)(Ep) if j ≤ p < r,
tα∨i (Ep) if r ≤ p,

define V′p as above and define

eαi (γ )= (V
′

0,E′0,V′1,E′1, . . . ,E′k,V′k+1).

If m = 0 then eαi (γ )= 0.

Remark 3.2. It follows from the definitions that the maps eαi , fαi and wt define a
crystal structure on 0. Note as well that if γ is a combinatorial gallery then fαi (γ )
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and eαi (γ ) are combinatorial galleries of the same type as γ (as long as they are
not zero). We say that the root operators are type preserving. See also [Gaussent
and Littelmann 2005, Lemma 6].

3C. The Littelmann path model and Lakshmibai–Seshadri galleries; readable
galleries. Let γ be a combinatorial gallery that has each one of its faces contained
in the fundamental chamber. We call such galleries dominant and denote the set of
all dominant combinatorial galleries by 0dom. By [Littelmann 1995, Theorem 7.1]
the crystal of galleries P(γ ) generated by γ is isomorphic to the crystal B(µγ )
associated to the irreducible highest weight representation L(µγ ) of G∨. In its
original context [Littelmann 1995] it is known as a Littelmann path model for the
representation L(µγ ). We say that a combinatorial gallery γ is a Littelmann gallery
if there exist indices i1, . . . , ir such that eαi1

· · · eαir
(γ )= γ+ is a dominant gallery.

If µγ+ = µδ+ , eαi1
· · · eαir

(γ ) = γ+ and eαi1
· · · eαir

(δ) = δ+ for two Littelmann
galleries γ and δ, we say that they are equivalent. This defines an equivalence
relation on the set of Littelmann galleries.

Let λ ∈ X∨,+ be a dominant integral coweight and γλ a gallery that is a con-
catenation of fundamental galleries and that has endpoint λ (as above). We denote
by 0(γλ)LS the set of combinatorial LS galleries of the same type as γλ. (LS is
short for Lakshmibai–Seshadri. All LS galleries are Littelmann — see [Littelmann
1995, §4] — and Littelmann galleries generalize LS galleries enormously.) The
set 0(γλ)LS is stable under the root operators and has the structure of a crystal
isomorphic to B(λ). It was proven by Gaussent and Littelmann [2005] that the
resolution in (8) induces a bijection 0(γλ)LS ∼=Z (λ). This bijection was shown to
be a crystal isomorphism by Baumann and Gaussent [2008]. We use this heavily in
the proof of Theorem 6.2. In [Gaussent and Littelmann 2005] see Definition 18
for a geometric definition of LS galleries, and Definition 23 for an equivalent
combinatorial characterization that for one skeleton galleries agrees with the original
definition by Lakshmibai, Musili and Seshadri (see [Lakshmibai et al. 1998], for
example) in the context of standard monomial theory. We will give a combinatorial
characterization of LS galleries of fundamental type in the case G∨ = Sp(2n,C),
omitting therefore the most general definitions.

We finish this section with a question. Let γ be a dominant gallery (see
Section 3C). Consider the map 6γ f → G defined by [g0, . . . , gr ] 7→ g0 · · · gr [t

µ
γ f
]

(see Remark 2.6).

Question. Does this map induce a crystal isomorphism P(γ )∼=Z (µγ )?

This question was answered positively in [Gaussent et al. 2013; Torres 2016]
for G∨ = SL(n,C). In the rest of this paper we do so as well for G∨ = Sp(2n,C)

and γ a readable gallery. For G∨ = SL(n,C) all galleries are readable. This is due
to the well known fact that in this case fundamental coweights are all minuscule. In
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the next sections we will describe readable galleries explicitly for G∨ = Sp(2n,C)

and show that they are Littelmann galleries. Moreover, we will see there exist
readable galleries that are not of the same type as any concatenation of fundamental
galleries γλ (see Remark 4.9).

Definition 3.3. A readable gallery is a concatenation of its parts. Its parts are either
LS galleries of fundamental type or galleries of the form (V0,E0,V1,E1,V2) (we
call them zero lumps) such that both edges E0 and E1 are contained in the dominant
chamber and such that the endpoint V2 is equal to zero. We denote the set of all
readable galleries by 0R, and if a combinatorial gallery γ is fixed, by 0(γ )R, the
set of all readable galleries of same type as γ .

Remark 3.4. It follows from [Gaussent and Littelmann 2005, Lemma 8] that
readable galleries are stable under root operators.

4. “Type C” combinatorics

4A. Weights and coweights. Consider Rn with canonical basis {ε1, . . . , εn} and
standard inner product 〈−,−〉. In particular 〈εi , ε j 〉= δi j . From now on we consider
the root datum (X,8,X∨,8∨) defined by

8= {±εi , εi ± ε j }i, j∈{1,...,n},

8∨ =
{
α∨ = 2α

〈α,α〉
: α ∈8

}
,

X= {v ∈ Rn
: 〈v, α∨〉 ∈ Z},

X∨ = {v ∈ Rn
: 〈α, v〉 ∈ Z}.

Indeed the sets X and X∨ are free abelian groups which form a root datum together
with the pairing 〈−,−〉 between them and the subsets 8 ⊂ X and 8∨ ⊂ X∨. We
choose a basis 1⊂8 given by

1= {αi = εi − εi+1 : i ∈ {1, . . . , n−1}} ∪ {αn = εn},

hence the set

1∨ = {α∨i = εi − εi+1 : i ∈ {1, . . . , n− 1}} ∪ {α∨n = 2εn}

is a basis for the root system 8∨. Then X∨ has a Z-basis given by the set of
corresponding fundamental coweights {ωi }i∈{1,...,n}, where

ωi = ε1+ · · ·+ εi 1≤ i ≤ n.

Then G = SO(2n + 1,C) and G∨ = Sp(2n,C). For later use we introduce the
notation εī =−εi .
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4B. Symplectic keys and words. Let p ∈ Z≥1 be an integer, greater than or equal
to 1. To it we associate a sequence of positive integers p as follows:

p =
{
(1) if p = 1,
(p, p) if p ≥ 2.

Given two sequences of integers a= (a1, . . . , ar ) and b= (b1, . . . , bs) we denote
the associated merged list by a∗b= (a1, . . . , ar , b1, . . . , bs). A symplectic shape d
is a sequence of natural numbers of the form d = p1 ∗ · · · ∗ pl , where pi ∈ Z≥1. An
arrangement of boxes of symplectic shape d is an arrangement of as many columns
of boxes as elements in the sequence d such that column j (read from right to left)
has p j boxes.

Example 4.1. An arrangement of boxes of symplectic shape 1 ∗ 1 ∗ 2 ∗ 1.

Consider the ordered alphabet Cn = {1< 2< · · ·< n−1< n < n̄ < n−1< · · ·< 1̄}.
A symplectic key of (symplectic) shape d= p1∗· · ·∗ pl is a filling of an arrangement
of boxes of symplectic shape d with letters of the alphabet Cn in such a way that
the entries are strictly increasing along each column and such that p j ≤ n for
j ∈ {1, . . . , l}.

Example 4.2. A symplectic key, for n ≥ 5, of symplectic shape 1 ∗ 2 ∗ 1.

1̄ 1 2 3

5 2̄

We denote the word monoid on Cn by WCn . To a word w = w1 · · ·wk in WCn we
associate a symplectic key Kw that consists of only one row of length k, and with
the boxes filled in from right to left with the letters of w read in turn from left to
right. For example, the word 12 corresponds to the key 2 1 .

4C. Readable keys: symplectic keys associated to readable galleries. The aim of
this section is to assign a symplectic key to every readable gallery. For a subset
Y⊆ Cn , we denote the corresponding subset of barred elements by Y= {ȳ : y ∈Y},
where, for i unbarred, ¯̄i = i .

Definition 4.3. Let B be a symplectic key. We call B an LS block if it is of shape p
for p ∈ Z≥1 and such that if p ≥ 2 (which means that B consists of two columns
of size p) there exist positive integers k, r , s with 2k+ r + s ≤ n and disjoint sets
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of positive integers

A= {ai : 1≤ i ≤ r, a1 < · · ·< ar },

B= {bi : 1≤ i ≤ s, b1 < · · ·< bs},

Z= {zi : 1≤ i ≤ k, z1 < · · ·< zk},

T= {ti : 1≤ i ≤ k, t1 < · · ·< tk},

such that the right column of B (respectively the left one) is the column with
entries the ordered elements of the set T∪Z∪A∪B (respectively Z∪T∪A∪B),
Z=∅ if and only if T=∅, and such that if Z 6=∅ the elements of T are uniquely
characterized by the properties

tk =max{t ∈ Cn : t < zk, t /∈ Z∪A∪B},(9)

t j−1 =max{t ∈ Cn : t <min(z j−1, t j ), t /∈ Z∪A∪B} for j ≤ k.(10)

We say that B is a zero block if it is of shape k for k ∈ Z≥1 and such that its
right column is filled in with the ordered letters 1< · · ·< k and its left one, with
k̄< · · ·< 1̄. A symplectic key is called a readable block if it is either an LS block or
a zero block. Note that a readable block has symplectic shape p, where p ∈ Z≥1. A
readable key is a concatenation of readable blocks. Now assume that d= p1∗· · ·∗ pl

is such that p1 ≤ · · · ≤ pl . A symplectic key of shape d is called an LS symplectic
key if its entries are weakly increasing in rows and if it is a concatenation of LS
blocks. We denote the set of LS symplectic keys of shape d by 0(d)LS.

Example 4.4. The symplectic key

1 2

3 3

5 5

4̄ 4̄

2̄ 1̄

is an LS block of shape 5= (5, 5), with A= {3, 4}, B= {4}, Z= {2} and T= {1}.
The first symplectic key immediately below is not an LS block; the second is a zero
block.

1 2̄

2 1̄

2̄ 1

1̄ 2

Remark 4.5. A pair of columns that form an LS block is sometimes called a pair
of admissible columns. The original definition of admissible columns was given
by De Concini [1979], using a slightly different convention than Kashiwara and
Nakashima’s, which is the one we use here. The map that translates the two can be
found in [Lecouvey 2002, §2.2].
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To a readable block B we assign a gallery γB as follows. If B consists of
only one box filled in with the letter l ∈ Cn , then we define VB

0 = 0, VB
1 = εl ,

EB
0 = {tV

B
1 : t ∈ [0, 1]}, and

γB = (V
B
0 ,EB

0 ,VB
1 ).

If the readable block B has at least two boxes, then its columns are filled in with
the letters l1

1 < · · ·< l1
d (right column) and l2

1 < · · ·< l2
d (left column) respectively.

We then define

VB
0 = 0,

VB
1 =

1
2(εl1

1
+ · · ·+ εl1

d
),

EB
0 = {tV

T
1 : t ∈ [0, 1]},

VB
2 = εl1

1
+ · · ·+ εl1

d
+ εl2

1
+ · · ·+ εl2

d
,

EB
1 = {V

T
1 +

1
2 t (εl2

1
+ · · ·+ εl2

d
) : t ∈ [0, 1]},

γB = (V
B
0 ,EB

0 ,VB
1 ,EB

1 ,VB
2 ).

Note that (9) implies that VB
1 +

1
2(εl2

1
+ · · · + εl2

d
) = VB

2 and therefore that EB
1 is

the line segment joining VB
1 and VB

2 .

Example 4.6. Let n=2 and γ = (V0,E0,V1,E1,V2)where V0=0, V1=
1
2(ε1+ε2),

V2 = ε1+ ε2 and the edges are the line segments joining the vertices in order. See
below for a picture of the gallery γB associated to the symplectic key B.

VK
0

VK
2

VK
1

ε1

ε2

1 1

2 2

γK = (V
K
0 ,EK

0 ,VK
1 ,EK

1 ,VK
2 )

K

To a readable key K =B1 · · ·Bk we associate the concatenation

γK = γBk
∗ · · · ∗ γB1

of the galleries of each of the readable blocks B j , for j ∈ {1, . . . , k}, that it is a
concatenation of (from right to left). To a symplectic shape d = p1 ∗ · · · ∗ pl such
that pj ≤ n for j ∈ {1, . . . , l} (once n is fixed, we will only consider such shapes)
we associate the dominant coweight λd = ωp1 + · · · + ωpl . For example, to the
shape (2, 2) is associated the coweight ω2. We will denote the set of all readable
keys of shape d by 0(d)R.
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Remark 4.7. The set 0(d)R is nonempty: since pj ≤ n, there is a natural readable
key of symplectic shape d whose columns are filled in with consecutive integers,
starting with 1 at the top. For example, if d = 3= (3, 3) and n ≥ 3, this is the key

1 1

2 2

3 3

.

It is an LS block, with A= {1, 2, 3} and B= Z= T=∅.

The following proposition follows directly from [Gaussent and Littelmann 2012,
Lemma 2].

Proposition 4.8. The map⋃
d=p1···pl

p j≤n

0(d)R→ 0R, K 7→ γK

is well defined and is a bijection. Moreover, if p1 ≤ · · · ≤ pl then this map induces
a bijection

0(d)LS
←→ 0(γωp1

∗ · · · ∗ γωpm
)LS.

Remark 4.9. Zero lumps are not necessarily of fundamental type: this follows
from [Gaussent and Littelmann 2012, Lemma 2] for a zero lump with odd k in the
above description. This is why readable galleries are not necessarily of the same
type as a concatenation of fundamental galleries. This also means that there can be
two readable keys of the same shape but such that their associated galleries are not
of the same type! For example, take n > 3, and consider the keys

T =

1̄ 1̄

2 2

3 3

and K =

1 1̄

2̄ 2

3̄ 3

.

The first is LS and γT is of fundamental type ω3. The second key is a zero block.
Its associated gallery, γK , is not of fundamental type.

5. The word of a readable gallery

To a readable key K we assign a word w(K ). The first aim of this section is to
state Proposition 5.5, which says that the closure in the affine Grassmannian of the
image π(CγK )⊂ G considered in Section 2F depends only on the word w(K ).

Definition 5.1. The word of a readable block, B = CLCR (CL is the left column,
CR the right), is obtained by reading first the unbarred entries in CR and then the
barred entries in CL. We denote it by w(B) ∈WCn .
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Remark 5.2. For an LS block this is the word of the associated single admissible
column defined by Kashiwara and Nakashima [Lecouvey 2002, Example 2.2.6].

Definition 5.3. Let γK be the readable gallery associated to the key K . As before,
we may write K as a concatenation of blocks K =B1 · · ·Bk . The word of γK
(or of K ) is w(Bk) · · ·w(B1). We denote it by w(γK ) (or w(K )).

Example 5.4. Let

B1 =
1 2

2̄ 1̄
, B2 = 1 , and K =B1B2 =

1 2 1

2̄ 1̄
.

Then w(B1)= 22̄, w(B2)= 1, and w(K )= 122̄.

We have the following result about words of readable galleries, which we prove
in Section 7. We will use it in Theorem 6.2. It is in this sense that such galleries
are called readable.

Proposition 5.5. Let γ and ν be combinatorial galleries and K be a readable
key. Consider the combinatorial galleries γ ∗ γw(K ) ∗ ν and γ ∗ γK ∗ ν. Let
(6(γ ∗γw(K )∗ν) f , π) and (6(γ ∗γK ∗ν) f , π ′) be the Bott–Samelson varieties together
with their maps to the affine Grassmannian G (as in Remark 2.6). Then

π(Cγ ∗γw(K )∗ν)= π
′(Cγ ∗γK ∗ν).

5A. Word galleries. We associate a (readable!) gallery γw of the same type as the
m-fold product γω1 ∗ · · ·∗γω1 to a word w ∈WCn of length m — it is the gallery γKw

associated to the readable key Kw. We denote the set of word galleries in this
case by 0WCn

. Below we recall the crystal structure on the set WCn as described
by Kashiwara and Nakashima [1994, Proposition 2.1.1]. The set of words WCn ,
just like the set Wn , is in one-to-one correspondence with the set of vertices of the
crystal of the representation

⊕
l∈Z≥0

V⊗l
n , where Vn is the natural representation

L(ω1) and hence inherits its crystal structure. Proposition 5.7 says that this structure
is compatible with the crystal structure defined on galleries in Section 3.

Definition 5.6. Let w = w1 · · ·wl ∈ Cn be a word and i ∈ {1, . . . , n}. Define
wt(w)=

∑l
i=1 εi . To apply the root operators eαi and fαi to w one first obtains a

word consisting of letters in the alphabet {+,−,∅}. The word will be obtained
from w by replacing every occurrence of i or i+1 by “+”, every occurrence of i+1
or ī by “−” and all other letters by “∅”. This word, which we denote by si (w) is
sometimes called the i-signature of w. To proceed, erase all symbols ∅ and then all
subwords of the form “+−”. Repeat this process until the i-signature si (w) of w
has been reduced to a word of the form

si (w)
′
= (−)r (+)s .
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To apply fαi (respectively eαi ) to w, change the letter whose tag corresponds to the
leftmost “+” (respectively to the rightmost “−”) from i to i+1 and from i+1 to ī
(respectively from i+1 to i and from ī to i+1). If s = 0, respectively r = 0, then
fαi (w)= 0, respectively eαi (w)= 0.

Proposition 5.7. The crystal structure on words from Definition 5.6 coincides with
the one induced from Definition 3.1.

For a proof, see [Littelmann 1996, §13]. It also follows directly from the
definitions.

Example 5.8. Let n = 2 and w = 11212̄. We first consider i = 1, for which
s1(w) = ++−++, and therefore s ′1(w) = +++. Hence fα1(w) = 21212̄ and
eα1(w)= 0. For i = 2 we have s2(w)=∅∅+∅−. Therefore s ′2 is the empty word
and fα2(w)= eα2(w)= 0. Now consider the readable gallery γKw

associated to w.
Explicitly we write it as

γw = (V0,E0,V1,E1,V2,E2,V3,E3,V4,E4,V5),

where V0 = 0, V1 = ε1, V2 = 2ε1, V3 = 2ε1+ ε2, V4 = 3ε1+ ε2, V5 = 3ε1 and E j

is the line segment joining V j to V j+1 for j ∈ {0, . . . , 4}. We have mα1 = 0, so
by Definition 3.1, eα1(γw)= 0. We have s(α1,0)(E0)= {tε2 : t ∈ [0, 1]}, see below.
Then j = 1 (Definition 3.1) and hence

fα1(γw)= (V
′

0,E′0,V′1,E′1,V′2,E′2,V′3,E′3,V′4,E′4,V′5),

where V′0= 0, V′1= ε2, V′2= ε2+ε1, V′3= 2ε2+ε1, V′4= 2ε2+2ε1, V′5= ε2+2ε1

and E′j is the line segment joining V′j and V′j+1 for j ∈ {0, . . . , 4}. For i = 2 we
have mα2=0, which implies that eα2(γw)=0. We also haveµγw =3ε1, and therefore
〈α2, µγw〉 = 0<mα2 + 1= 1, so that fα2(γw)= 0 as well. Then fα1(γw)= γ fα1 (w)

,
eα1(γw)= γeα1 (w)

, fα2(γw)= γ fα2 (w)
and eα2(γw)= γeα2 (w)

.

H(α1,0)

ε1

ε2

0

γw

fα1(γw)

5B. Word reading is a crystal morphism. This subsection is the “symplectic” ver-
sion of [Torres 2016, Proposition 2.5]. Since the root operators are type preserving
(see Definition 3.1), the set of words WCn is naturally endowed with a crystal
structure. The following proposition will be useful in Theorem 6.2. This result was
shown for LS blocks by Kashiwara and Nakashima [1994, Proposition 4.3.2]. They
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show that word reading induces an isomorphism of crystals from B(ωk) onto the
subcrystal of

⊔
l∈Z≥0

B(ω1)
⊗l generated by the tensor product k ⊗ · · ·⊗ 1 . We

show that for readable galleries the proof is reduced to this case.

Proposition 5.9. The map

0R w
−→0WCn

, γK 7→ γw(K )

is a crystal morphism.

Proof. First note that the map is weight preserving. This follows from the definitions
and from the fact that in the definition of a readable block, the sets Z and T do not
contribute to the endpoint of the associated gallery. Let γ be a readable gallery and
let

γB = (V
B
0 ,EB

0 ,VB
1 ,EB

1 ,VB
2 )

be one of its parts, associated to some readable block B. We write

γw(B) = (V
Kw(B)

0 ,EKw(B)

0 , . . . ,VKw(B)

r+s ).

If

w(B)= g1 · · · gs h̄k · · · h̄1,

for gi and hi unbarred, then VKw(B)

0 = 0 and VKw(B)

j =
∑ j

i=1 εxi for 1≤ j ≤ s+ r ,
where xi = gi for 1≤ i ≤ s and xs+i = h̄i for 1≤ i ≤ k. Let

h( j)= 〈α,VB
j 〉 and h′( j)= 〈α,VKw(B)

j 〉,

for 1≤ j ≤ k+s+1. Then there exist d1, d2 with d1 ≤ s < d2 ≤ s+k and such that

h′( j)=


h(0) for 0≤ j < d1,

h(1) for d1 ≤ j < d2,

h(2) for d2 ≤ j ≤ k+ s+ 1.

From this we conclude that it is enough to consider readable blocks. As mentioned
previously, this was shown in [Kashiwara and Nakashima 1994] for LS blocks.
Hence let L be a zero lump — it has word w(L )= 1 · · · kk̄ · · · 1̄ — and let αi be a
simple root. Then, since the galleries associated to L and w(L ) are both dominant,
fαi (L )= eαi (L )= fαi (w(L ))= eαi (w(L ))= 0. �

Example 5.10. Let n = 2 and B be the readable block
1 2

2̄ 1̄
. Then w(B)= 22̄.

To calculate fα1(γB), first consider the gallery,

γB = (V0,E0,V1,E1,V2),
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where V0 = 0, V1 =
1
2(ε2 − ε1), V2 = 0 and Ei is the line segment joining Vi

and Vi+1 for i ∈ {0, 1}. Note that mα1 =−1, j = 1, and r = 2 (see Definition 3.1).
Therefore

fα1(γB)= (V
′

0,E′0,V′1,E′1,V′2),

where V′0= 0, E′0=E0, V′1=V1, E′1= s(α1,−1)(E1) and V′2= s(α1,−1)(V2)= ε2−ε1.
Then fα1(γB)= γB′ , where

B′ =
2 2

1̄ 1̄
.

Similarly, fα1(w(B))= 21̄= w( fα1(γB)).

5C. Readable galleries are Littelmann galleries. We begin with a lemma.

Lemma 5.11. Let γK be the readable gallery associated to a readable key K .
Then γK is dominant if and only if γw(K ) is dominant.

Proof. Since the entries in the columns of symplectic keys are strictly increasing, it
follows from the definition of word reading (Definition 5.1 and Definition 5.3) that
if γ is a dominant readable gallery then γw(γ ) is also dominant. Now let γ be a
nondominant readable gallery. Then there is a readable block B = CLCR such that
γ = η1 ∗ γB ∗ η2 with η1 dominant and η1 ∗ γB not dominant. This block can’t be a
zero lump (they are dominant) — so it must be LS. Let A, B, Z and T be the sets
from Definition 4.3 that define the LS block B: The entries of its right column CR

are the letters in A∪Z∪B∪T and the entries its left column CL are the letters in
A∪T∪B∪Z. Now, µη1∗γB

may or may not be dominant. If it is not, then, since
µγw(η1∗γB)

= µη1∗γB
, the word gallery γw(η1∗γB) is not dominant, and this implies

that γw(K ) is not dominant either. Now assume that the coweight

µη1∗γB
= µη1 +

∑
a∈A

εa −
∑
b∈B

εb

is dominant, but that the gallery η1 ∗γB is not. The last three vertices of this gallery
are

Vl−1 = µη1 ∈ C+,(11)

Vl = µη1 +
1
2

(∑
a∈A

εa +
∑
z∈Z

εz −
∑
b∈B

εb−
∑
t∈T

εt

)
/∈ C+,(12)

Vl+1 = µη1 +

∑
a∈A

εa −
∑
b∈B

εb ∈ C+,(13)

for some d ≥ 1. Let d1 < · · · < dr+k be the ordered elements of A ∪ Z and let
f1 < · · ·< fs+k be the ordered elements of B∪Z. We have

w(B)= d1 · · · dr+k f̄s+k · · · f̄1.
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We claim that the weight

µη1 +

r+k∑
i=1

εdi = µη1 +

∑
a∈A

εa +
∑
z∈Z

εz,

which is the endpoint of η1 ∗ γd1···dr+k and therefore a vertex of η ∗ γw(B), is not
dominant. To see this, assume otherwise:

µη1 +

∑
a∈A

εa +
∑
z∈Z

εz ∈ C+.

Since the dominant Weyl chamber C+ is convex, this means that the line segment
that joins µη1 and µη1 +

∑
a∈A εa +

∑
z∈Z εz is contained in C+, in particular the

point

(14) µη1 +
1
2

(∑
a∈A

εa +
∑
z∈Z

εz

)
∈ C+

belongs to the dominant Weyl chamber. We will now show

Vl = µη1 +
1
2

(∑
a∈A

εa +
∑
z∈Z

εz −
∑
b∈B

εb−
∑
t∈T

εt

)
∈ C+.

This would contradict (12) and therefore complete the proof.
Set µη1 =

∑n
i=1 qiεi . Recall that a1 < · · · < ar , b1 < · · · < bs , z1 < · · · < zk ,

and t1 < · · ·< tk are the ordered elements of the sets A, B, Z and T, respectively.
The dominant Weyl chamber has, in this case, the following description in the
coordinates ε1, . . . , εn:

(15) C+ =
{ n∑

i=1

piεi : pi ∈ R≥0 and p1 ≥ · · · ≥ pn

}
.

This description allows us to make the following conclusions. For every i∈{1,· · ·, r},
we have ti < zi < j for every j ∈ {1, . . . , n} such that ti < j . It follows from (15)
and (14) that

(16) q j ≤ qzi +
1
2 ≤ qti ,

which implies, since q j , qti , qzi ∈ Z, that

q j ≤ q j +
1
2 ≤ qzi +

1
2 ≤ qti −

1
2 .

Now let b ∈ B, and let j ∈ {1, . . . , n} such that b < j . By (13),

Vl+1 = µη1 +

∑
a∈A

εa −
∑
b∈B

εb ∈ C+.
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Together with (15) this implies

q j ≤ q j +
1
2 ≤ qb−

1
2 ,

particularly so if j ∈ (Z∪T)c. If j ∈ Z∪T then, as before, by (16) we may assume
that j = t ∈ T. But this means qt ≤ qb, therefore qt −

1
2 ≤ qb −

1
2 . All of these

arguments, together with (15), imply

µη1 +
1
2

(∑
a∈A

εa +
∑
z∈Z

εz −
∑
b∈B

εb−
∑
t∈T

εt

)
∈ C+,

which contradicts (12). �

Lemma 5.12. A readable gallery ν is dominant if and only if eαi (ν) = 0 for all
i ∈ {1, . . . , n}.

Proof. First notice that it follows directly from Definition 5.6 that for a wordw∈WCn

and αi a simple root, eαi (w)= 0 if and only if γw is dominant. Lemma 5.12 then
follows from Lemma 5.11 and Proposition 5.9. �

Proposition 5.13. Every readable gallery is a Littelmann gallery.

Proof. Let Vn be the vector representation of Sp(2n,C). Then the crystal of
words WCn is isomorphic to the crystal associated to T(Vn) =

⊕
l∈Z≥0

V⊗l
n , see

for example [Lecouvey 2002, §2.1]. Now let γ be any readable gallery. Then
there exist indices i1, . . . , ir such that eαir

· · · eαi1
(γw(γ )) is a highest weight vertex,

hence dominant by Lemma 5.12. Since word reading is a morphism of crystals by
Proposition 5.9, γw(eαir

···eαi1
(γ )) = eαir

· · · eαi1
(γw(γ )). It follows from Lemma 5.11

that eαir
· · · eαi1

(γ ) is dominant. �

Definition 5.14. The symplectic plactic monoid PCn is the quotient of the word
monoid WCn by the ideal generated by the following relations:

R1. For z 6= x̄ :
y x z ≡ y z x for x ≤ y < z,

x z y ≡ z x y for x < y ≤ z.

R2. For 1< x ≤ n and x ≤ y ≤ x̄ :

y x−1 x−1≡ y x x̄,

x−1 x−1 y ≡ x x̄ y.

R3. For ai , bi ∈ {1, . . . , n}, i ∈ {1, . . . ,max{s, r}} such that a1 < · · · < ar and
b1 < · · ·< bs , and such that the left-hand side of the next expression is not the
word of an LS block:

a1 · · · ar z z̄ b̄s · · · b̄1 ≡ a1 · · · ar b̄s · · · b̄1.
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If two words w1, w2 ∈ WCn are representatives of the same class in WCn we say
they are symplectic plactic equivalent.

Example 5.15. We have the following equivalences of words:

122̄1̄≡ 11̄≡∅,
112≡ 121.

Remark 5.16. Relations R1 are the Knuth relations in type A, while relation
R3 may be understood as the general relation that specializes to 11̄ ≡ ∅. Note
that the gallery γw associated to w = 11̄ is a zero lump. This definition of the
symplectic plactic monoid is the same as [Lecouvey 2002, Definition 3.1.1] except
for relation R3. The equivalence between the relation R3 above and the one in
[Lecouvey 2002] is given in the Appendix.

The following Theorem is proven in [Lecouvey 2002].

Theorem 5.17. Two words w1, w2 ∈ WCn are symplectic plactic equivalent if and
only if their associated galleries γw1 and γw2 are equivalent.

Together with the results we have recollected in this section, Theorem 5.17
implies the following proposition.

Proposition 5.18. Two readable galleries γ and ν are equivalent if and only if the
words w(γ ) and w(ν) are symplectic plactic equivalent.

Proof. Two readable galleries γ and ν are equivalent if and only if, by definition,
there exist indices i1, . . . , ir such that the galleries eαi1

· · · eαir
(γ ) and eαi1

· · · eαir
(ν)

are both dominant and have the same endpoint, i.e., µeαi1
···eαir

(γ ) = µeαi1
···eαir

(ν).
By Lemma 5.11 and Proposition 5.9 this is true if and only if γw(eαi1

···eαir
(γ )) and

γw(eαi1
···eαir

(ν)) are also both dominant with the same endpoint. By Proposition 5.9,
we have w(eαi1

· · · eαir
(δ)) ≡ eαi1

· · · eαir
(w(γδ)) for any readable gallery δ. This

means that the previous sequence of equivalences is also equivalent to γw(γ )∼ γw(ν)
which by Theorem 5.17 is equivalent to w(γ )≡ w(ν). �

The following theorem is originally due to Kashiwara and Nakashima (see
[Kashiwara and Nakashima 1994]). For this particular formulation, see [Lecouvey
2002, Proposition 3.1.2].

Theorem 5.19. For each word w in WCn there exists a unique symplectic LS key T

such that w ≡ w(T ).

The following proposition will be proven in Section 7. Along with Proposition 5.5
it will play a fundamental role in the proof of Theorem 6.2.

Proposition 5.20. Let γ and ν be combinatorial galleries and let w1, w2 ∈ WCn be
two plactic equivalent words. Consider the combinatorial galleries γ ∗ γw1 ∗ ν and
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γ ∗γw2 ∗ν as well as their associated Bott–Samelson varieties (6(γ ∗γw1∗ν)
f , π) and

(6(γ ∗γw2∗ν)
f , π ′) together with their maps to the affine Grassmannian G . Then

π(Cγ ∗γw1∗ν
)= π ′(Cγ ∗γw2∗ν

).

6. Readable galleries and MV cycles

The following result holds in greater generality than is stated here: part (a) is an
instance of [Gaussent and Littelmann 2005, Theorem C], and part (b) is an instance
of [Baumann and Gaussent 2008, Theorem 5.8].

Theorem 6.1. Let d = p1 ∗ · · · ∗ pl be a symplectic shape such that p1 ≤ · · · ≤ pl

and consider the desingularization π :6d → Xλd .

(a) If δ ∈ 0(d)LS is a symplectic LS key, the closure π(Cδ) is an MV cycle in
Z (λd). This induces a bijection 0(d)LS ϕd

−→Z (λd).

(b) The bijection ϕd is an isomorphism of crystals.

To formulate our main result we need the following additional notation. Given a
readable gallery γ and a dominant coweight λ ∈ X∨,+, let

nλ
γ f = #{ν ∈ 0dom

∩0(γ f ) : µν = λ},

and let
X∨,+
γ f = {λ ∈ X∨,+ : nλ

γ f 6= 0}.

Further, let 0(γ f )R/∼ be a set of representatives of the classes for the equivalence
relation on Littelmann galleries (and hence on readable galleries by Remark 3.4
and Proposition 5.13) defined in Section 3C.

Theorem 6.2. Let δ ∈ 0(γ f )R be a readable gallery. Consider the corresponding
Bott–Samelson variety (6γ f , π) together with its map π to the affine Grassmannian
as in Remark 2.6. Let δ+ be the gallery that is the highest weight vertex in Conn(δ).
(This gallery is dominant and readable by Lemma 5.12 and Remark 3.4, respectively.)
Then:

(a) The closed set π(Cδ) is an MV cycle in Z (µδ+)µδ .

(b) The map
0(γ f )R

ϕ
γ f
−→

⊕
ν∈0(γ f )R/∼

Z (µν+), δ 7→ π(Cδ)

is a surjective morphism of crystals. The direct sum on the right-hand side is a
direct sum of abstract crystals.

(c) If C is a connected component of 0(γ f )R, then ϕ|C is an isomorphism onto its
image.
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(d) The number of connected components C of 0R(γ f ) such that ϕγ f (C)=Z (λ)

is equal to nλ
γ f .

(e) Given an MV cycle Z ∈Z (λ)µ, the fiber ϕ−1
γ f (Z) is given by

ϕ−1
γ f (Z)= {δ ∈ 0R(γ f ) : ϕγ f (δ)= Z} = {δ ∈ 0R(γ f ) : γ ∼ γ λµ,Z},

where γ λµ,Z is the unique LS key which exists by Theorem 6.1.

Proof. Let δ be a readable gallery. Then by Theorem 5.19 there exists a (unique) LS
key ν such that δ ∼ ν. By Proposition 5.18, the words w(δ) and w(ν) are plactic
equivalent. Propositions 5.20 and 5.5 together with Theorem 5.17 then imply that

π(Cδ)= π(Cν),

which, by Theorem 6.1 implies that π(Cδ) is an MV cycle in Z (µδ+)µδ . The
map ϕγ f in (b) is surjective by Theorems 5.19 and 6.1 above. Now let r be a root
operator, and let r̃ be the corresponding root operator that acts on the set of MV
cycles. Then by Propositions 5.5, 5.9, 5.20, and Theorem 6.1 we have

π(Cr(γ ))= π(Cγw(r(γ )))= π(Cγw(r(ν)))= π(Cr(ν))= r̃(π(Cν))= r̃(π(Cγ )).

This completes the proof of (b). Part (c) follows immediately, since every connected
component C is crystal isomorphic to the corresponding component consisting of
the LS galleries equivalent to those in C. Parts (d) and (e) follow from [Littelmann
1995, Theorem 7.1] (see Section 3C). �

7. Counting positive crossings

We provide proofs of Propositions 5.5 and 5.20. We begin by analyzing the tail of
a gallery in Section 7A. In Example 7.3 we calculate an example in which it can be
seen how to use this proposition. Then in Section 7B we prove Proposition 5.5 and
in Section 7C we prove Proposition 5.20. We also wish to establish some notation
that we will use throughout. Recall our convention εl̄ =−εl for l ∈ Cn unbarred.
For l, s, d,m ∈ Cn we will write ci, j

ls,dm for the constant ci, j
εl+εs ,εd+εm

in Chevalley’s
commutator formula (2). Additionally we will write ci, j

l,dm , and respectively ci, j
ls,d ,

for ci, j
εl ,εd+εm

, and ci, j
εl+εs ,εd

. (Each time we use such notation a total order will be
fixed on the set of positive roots.) If Y ⊆ Cn and y ∈ Cn then we will write Y≤y

(respectively Y<y , Y≥y , Y>y) for the subset of elements x ∈ Y such that x ≤ y
(respectively x < y, x ≥ y, x > y).

7A. Truncated images and tails. Let γ be a combinatorial gallery with notation
as in (4) with endpoint the coweight µγ and let 1 ≤ r ≤ k + 1 such that Vr is a
special vertex; we denote it by µr ∈X∨. By Corollary 2.10 we know that the image
π(Cγ ) is stable under U0.
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Proposition 7.1. The r-truncated image of γ ,

T≥r
γ = U

γ

Vr
U
γ

Vr+1
· · ·U

γ

Vk
[tµγ ],

is Uµr-stable, i.e., for any u ∈ Uµr , it follows that uT≥r
γ = T≥r

γ .

Proof. By (3) we know that tµr U0t−µr = Uµr . We consider the r-truncated gallery

γ≥r
= (V′0,E′0, . . . ,V′k−r+1),

which is the combinatorial gallery obtained from the sequence

(Vr ,Er ,Vr+1, . . . ,Ek,Vk+1),

by translating it to the origin. Since Vr is a special vertex, tµr U
γ≥r

Vi
t−µr = U

γ

Vi+r
.

This gallery has endpoint µγ −µr and is in turn a T-fixed point of a Bott–Samelson
variety (6, π ′). Let u ∈ Uµr and u′ = t−µr utµr ∈ U0. Then

uT≥r
γ = uU

γ

Vr
U
γ

Vr+1
· · ·U

γ

Vk
[tµγ ]

= tµr u′Uγ
≥r

V0
· · ·U

γ≥r

Vk−r
[tµγ−µr ]

= tµr U
γ≥r

V0
· · ·U

γ≥r

Vk−r
[tµγ−µr ] = T≥r

γ .

Where the final equality follows from Corollary 2.10. �

For later use let us fix the notation

T<r
γ = U

γ

V0
· · ·U

γ

Vr−1
,

so that
π(Cγ )= T<r

γ T≥r
γ .

Remark 7.2. This Proposition is proven for SL(n,C) in [Gaussent et al. 2013,
Proposition 3]. The proof we have provided is exactly the same, except for the
restriction of only being able to truncate at special vertices.

Example 7.3. Let n = 2. Consider the symplectic keys

K1 =
1 1 1̄

2 2
and K2 =

2 1 2

2̄ 1̄
,

and their words
w(K1)= 1̄12 and w(K2)= 22̄2.

Note that γω1 ∗ γω2 ∼ γω2 ∗ γω1 , since both γω1 ∗ γω2 and γω2 ∗ γω1 are contained in
the fundamental chamber and have the same endpoint ω1+ω2. One checks that

fα1 fα2 fα1(γω1 ∗ γω2)= γK1
and fα1 fα2 fα1(γω2 ∗ γω1)= γK2

.
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Therefore γK1
∼ γK2

. Lemma 5.11 and Proposition 5.9 imply that γw(K1) ∼ γw(K2)

(it can also be checked directly using Relation R2 in Theorem 5.17 with y = x = 2).
Now consider combinatorial galleries γ and ν. The galleries γ ∗γK1

∗ν and γ ∗γK2
∗ν

are T-fixed points in the Bott–Samelson varieties (6(γ ∗γK1
∗ν) f , π), respectively

(6(γ ∗γK2
∗ν) f , π ′). The galleries γw(K1) and γw(K2) that correspond to their words

are T-fixed points in (6(γ ∗γω1∗γω1∗γω1∗ν)
f , π ′′). We show that

π(Cγ ∗γK1
∗ν)= π ′′(Cγ ∗γw(K1)∗ν

)= π ′(Cγ ∗γw(K2 )∗ν
).

We use the same notation as in (4) for γ . Since for any combinatorial gallery η,
(α, n) ∈ 8γ ∗ηk+1 if and only if (α, n − 〈α,µγ 〉) ∈ 8

γ

0 , we may assume that γ = ∅.
Since γK1

, γK2
, γw(K1) and γw(K2) have the same endpoint ε2, this also implies that

T≥2
γK1
∗ν = T≥2

γK2
∗ν = T≥3

γw(K2)∗ν
= T≥3

γw(K1)∗ν
. By Proposition 2.7, for a′, b′, c′, d ′ ∈ C,

π(CγK1∗ν
)= U(ε1,−1)(a′)U(ε1+ε2,−1)(b′)U(ε2,0)(c

′)U(ε1+ε2,0)(d
′)T≥2

γK1
∗ν .

By Chevalley’s commutator formula (2) and an application of Proposition 7.1 to
U(ε1−ε2,−1)(e) ∈ Uε2 , we obtain

π ′′(Cγw(K1)∗ν
)

= U(ε1,−1)(a) ·U(ε1+ε2,−1)(b) ·U(ε1−ε2,−1)(e) ·U(ε2,0)(c) ·U(ε1+ε2,0)(d)T
≥3
γw(K1)∗ν

= U(ε1,−1)
(
a+ c1,1

12̄,2
(−e)c

)
·U(ε1+ε2,−1)

(
b+ c1,1

12̄,2
(−e)c2)

·U(ε2,0)(c) ·U(ε1+ε2,0)(d) ·U(ε1−ε2,−1)(e)T≥2
γK1
∗ν

= U(ε1,−1)
(
a+ c1,1

12̄,2
(−e)c

)
·U(ε1+ε2,−1)

(
b+ c1,1

12̄,2
(−e)c2)
·U(ε2,0)(c) ·U(ε1+ε2,0)(d)T

≥2
γK1
∗ν

⊂ π(CγK1
∗ν),

for a, b, c, d, e ∈ C. Choosing a = a′, b = b′, c = c′, d = d ′, and e = 0, we have
π(CγK1

)⊂ π ′′(Cγw(K1)
). Hence, in this case π(CγK1

)= π ′′(Cγw(K1)
). Similarly, for

a′′, b′′, c′′, d ′′, e′′ ∈ C,

π ′′(Cγw(K2)∗ν
)

= U(ε2,0)(a
′′) ·U(ε1+ε2,0)(b

′′) ·U(ε1−ε2,−1)(e′′) ·U(ε2,0)(c
′′) ·U(ε1+ε2,0)(d

′′)T≥3
γw(K2)∗ν

= U(ε1,−1)
(
c12̄,2

1,1 (−e′′)c′′
)
·U(ε1+ε2,−1)

(
c12̄,2

1,2 (−e′′)c′′2
)

·U(ε2,0)(a
′′
+c′′) ·U(ε1+ε2,0)(b

′′
+d ′′)T≥3

γw(K2)∗ν

⊂ π(CγK1∗ν
).

Hence the open subset of π(CγK1∗ν
) given by a 6= 0, b 6= 0, c 6= 0, d 6= 0 is contained

in π ′′(Cγw(K2)∗ν
).
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7B. Proof of Proposition 5.5. It is enough to show that if γ and ν are combinatorial
galleries and K is a readable block, then

(17) π(Cγ ∗γK ∗ν)= π
′(Cγ ∗γw(K )∗ν),

where (6(γ ∗γK ∗ν) f , π) and (6(γ ∗γw(K )∗ν) f , π ′) are the Bott–Samelson varieties
associated to the galleries γ ∗ γK ∗ ν and γ ∗ γw(K ) ∗ ν respectively.

Proof. We assume γ =∅; we may do so by the argument given at the beginning of
Example 7.3. Let K be an LS block and let A = {a1, . . . , ar }, B = {b1, . . . , bs},
Z={z1, . . . , zk} and T={t1, . . . , tk} be the subsets of {1, . . . , n} from Definition 4.3
that determine K . We will use the notation d1 < · · ·< dr+k to denote the ordered
elements of Z∪A and f1 < · · · < fs+k the ordered elements of B∪ Z. We also
write

γK = (V0,E0,V1,E1,V2).

The proof is divided into Lemmas 7.4 and 7.5 below.

Lemma 7.4. Let ν be a combinatorial gallery and K be a readable block. Then

π ′(Cγw(K )∗ν)⊆ π(CγK ∗ν).

Proof. We first show that

(18) π ′(Cγw(K )∗ν)⊂ U0P′′′f̄k+s
· · ·P′′′f̄1

T≥2k+r+s
γw(K )∗ν

,

where

P′′′b̄ =
∏

l /∈Z∪A∪B∪T
l<b

U(εl−εb,0)(klb̄)
∏

t∈T<b

U(εt−εb,0)(kt b̄)
∏

a∈A<b

U(εa−εb,1)(kab̄),(19)

P′′′z̄ =
∏

l /∈Z∪A∪B∪T;
l<z

U(εl−εz,−1)(kl z̄)
∏

t∈T<z

U(εt−εz,−1)(kt z̄)
∏

b∈B<z

U(εb−εz,−1)(kbz̄),(20)

for b ∈ B, z ∈ Z and ki j ∈ C. Indeed, the points of π ′(Cγw(K )∗ν) are of the form

(21) Pd1 · · ·Pdr+k P f̄k+s
· · ·P f̄1

T≥2k+r+s
γw(K )∗ν

,

where

Pd = U(εd ,0)(gd)
∏

d<l≤n

U(εd−εl ,0)(gdl̄)
∏

l /∈(Z∪A)<d

U(εd+εl ,0)(gdl)
∏

l∈(Z∪A)<d

U(εd+εl ,1)(g
1
dl),

Pb̄ = Sb̄Piv
b̄ with Sb̄ =

∏
b′∈B<b

U(εb′−εb,0)(gb′b̄)
∏

z∈Z<b

U(εz−εb,1)(g
1
zb̄) ∈ U0 and

Piv
b̄ =

∏
l /∈Z∪A∪B∪T

l<b

U(εl−εb,0)(glb̄)
∏

t∈T<b

U(εt−εb,0)(gt b̄)
∏

a∈A<b

U(εa−εb,1)(gab̄),
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and finally

Pz̄ = Jz̄Piv
z̄ with Jz̄ =

∏
a∈A<z

U(εa−εz,0)(gaz̄)
∏

z′∈Z<z

U(εz′−εz,0)(gz′ z̄) ∈ U0 and

Piv
z̄ = Jz̄

∏
l /∈Z∪A∪B∪T

l<z

U(εl−εz,−1)(gl z̄)
∏

t∈T<z

U(εt−εz,−1)(gt z̄)
∏

b∈B<z

U(εb−εz,−1)(gbz̄),

for d ∈A∪Z, z∈Z, b∈B, and gi j ∈C. All terms in Jz̄ commute with Piv
z′ for z′∈Z>z

and with Piv
b̄

for b ∈ B>z . All terms in Sb̄ commute with Piv
b̄′

for b′ ∈ B>b. For
z′ > b it commutes with all terms of Piv

z̄′ except for the term U(εb−εz′ ,−1)(gbz̄′). But
commuting Sb̄ with this term (using Chevalley’s commutator formula (2)) produces
terms U(εz−εz′ ,0)(∗) and U(εb′−εz′ ,−1)(∗), of these terms, U(εz−εz′ ,0)(∗) commutes
with Piv

z′ for z′ ∈ Z>z and with Piv
b̄

for b ∈ B>z , and U(εb′−εz′ ,−1)(∗) is a term of the
form of those appearing in Piv

z̄ .
Since the terms that appear in Piv

b̄
and Piv

z̄ are the same as those in P
′′

b̄
and P

′′

z̄
respectively, this justifies (18), concluding the first step in the proof of Lemma 7.4.
The second step is this:

Claim. There is a dense subset of P′′′
f̄k+s
· · ·P′′′

f̄1
T≥2k+r+s
γw(K )∗ν

contained in the subset

(22) PT,BPK , f̄s
· · ·PK , f̄s

T≥2k+r+s
γw(K )∗ν

⊂ π(CγK ∗ν),

where

PT,B =
∏

l /∈Z∪A∪B∪T
t∈T,l<t

U(εl−εt ,0)(vl t̄)
∏

l /∈Z∪A∪B∪T
b∈B,l<b

U(εl−εb,0)(vlb̄) ∈ UV0,

PK ,b̄ =
∏
b∈B

t∈T<b

U(εt−εb,0)(vt b̄)
∏

a∈A<b

U(εa−εb,1)(vab̄) ∈ UV1,

PK ,z̄ =
∏

t∈T<z

U(εt−εz,−1)(vt z̄)
∏

b∈B<z

U(εb−εz,−1)(vbz̄) ∈ UV1,

for vi j ∈ C, b ∈ B and z ∈ Z. (The inclusion in (22) holds by Corollary 2.10.)

To prove this we start by noting that T≥2k+r+s
γw(K )∗ν

= T≥2
γK ∗ν

and that

(23) u =
∏

l /∈Z∪A∪B∪T
t∈T,l<t

U(εl−εt ,0)(vl t̄) ∈ UµγK
.

We have the equalities

(24) PT,BPK , f̄s
· · ·PK , f̄s

T≥2k+r+s
γw(K )∗ν

= P′′f̄s
· · ·P′′f̄s

uT≥2
γK ∗ν
= P′′f̄s

· · ·P′′f̄s
T≥2
γK ∗ν

,

where we have introduced symbols analogous to those of (19) and (20); namely,
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for z ∈ Z and b ∈ B,

P′′b̄ =
∏

l /∈Z∪A∪B∪T
l<b

U(εl−εb,0)(ξlb̄)
∏

t∈T<b

U(εt−εb,0)(ξt b̄)
∏

a∈A<b

U(εa−εb,1)(ξab̄),

P′′z̄ =
∏

l /∈Z∪A∪B∪T
l<b

U(εl−εz,−1)(ξl z̄)
∏

t∈T<z

U(εt−εz,−1)(ξt z̄)
∏

b∈B<z

U(εb−εz,−1)(ξbz̄)

with ξt z̄ = vt z̄ , ξbz̄ = vbz̄ , ξt b̄ = vt b̄,

ξlb̄ = vlb̄+
∑

l<b<b
t∈T

c1,1
st̄,t b̄

(−vl t̄)vt b̄,

ξl z̄ = ρl z̄ +
∑
z′∈Z

c1,1
l z̄′,z′ z̄(−ρl z̄′)vz′ z̄ +

∑
l<b<z

b∈B

c1,1
lb̄,bz̄

(−ξlb̄)vbz̄ for

ρl z̄ =
∑

l<t<z
t∈T

c1,1
l t̄,t z̄(−vl t̄)vt z̄ (for z ∈ Z).

To complete the proof of the Claim we must set open conditions on the parameters
ki j such that the system of equations defined by vi j = ξi j has a solution in the
variables vi j . Setting vt z̄ := kt z̄ and vbz̄ := kbz̄ this is reduced to setting conditions
on the ki j so that the following system can be solved:

klb̄ = vlb̄+
∑

l<t<b
t∈T

c1,1
l t̄,t b̄

(−vl t̄)kt b̄,(25)

kl z̄ = ρl z̄ −
∑

l<b<z
b∈B

c1,1
lb̄,bz̄

(
vlb̄+

∑
l<t<b

t∈T

c1,1
l t̄,t b̄

(−vl t̄)kt b̄

)
kbz̄,(26)

ρl z̄ =
∑

l<t<z
t∈T

c1,1
l t̄,t z̄(−vl t̄)kt z̄.(27)

Lines (25) and (26) define a linear system of as many equations as variables. The
variables are {vlb̄}l /∈A∪B∪T,b∈B>l∪{vl t̄ }l /∈A∪B∪Z∪T,t∈T>l ; there is one equation for each
lb̄ such that l /∈A∪B∪T and b∈B>l , and one for each l z̄ such that l /∈A∪B∪T and
z ∈ Z>l . Note that by definition of an LS block the sets {l z̄, l /∈ A∪B∪T; z ∈ Z>l

}

and {l t̄, s /∈A∪B∪T; b ∈B>l
} have the same cardinality (ti is the maximal element

of the set {l /∈ A∪B∪T, s < ti+1, s < zi }). Therefore the system has a solution as
long as the matrix of coefficients has nonzero determinant, which imposes open
conditions on the k ′i j s. Hence the Claim is proven.
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To finish the proof of Lemma 7.4, note that if the k ′i j s satisfy the open conditions
established by the Claim, then

P′′′f̄k+s
· · ·P′′′f̄1

T≥2k+r+s
γw(K)∗ν

⊆ π(CγK ∗ν),

and therefore Proposition 7.1 implies that

U0P′′′f̄k+s
· · ·P′′′f̄1

T≥2k+r+s
γw(K)∗ν

⊆ π(CγK ∗ν),

which implies Lemma 7.4. �

Lemma 7.5. Let ν be a combinatorial gallery and K be an LS block. Then

(28) π(CγK ∗ν)⊆ π
′(Cγw(K )∗ν).

Proof. Recall that
π(CγK ∗ν)= U

γK ∗ν

V0
U
γK ∗ν

V1
T≥2
γK ∗ν

.

Notice that U
γK ∗ν

V0
⊂ U0 and that all generators of U

γK ∗ν

V1
also belong to U0 except

for those of the form U(εt−εz,−1)(vt z̄) or U(εt+εt ′ ,−1)(vt t ′) for t, t ′ ∈ T, z ∈ Z>t , and
vt z̄, vt t ′ ∈ C. Hence, since T≥2

γK ∗ν
= T≥2k+r+s

γw(K )∗ν
, all elements of π(CγK ∗ν) belong to

(29) U0
∏
t∈T

z∈Z>t

U(εt−εz,−1)(vt z̄)
∏

t,t ′∈T

U(εt+εt ′ ,−1)(vt t ′)T≥2k+r+s
γw(K )∗ν

.

Now consider ∏
t∈T
z∈Z

U(εz+εt ′ ,0)(kzt ′)
∏

t∈Tz∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

,

which is a subset of π ′(Cγw(K )∗ν) by virtue of Proposition 7.1 and because∏
z∈Z
t∈T

U(εz+εt ,0)(kzt) ∈ U0 and
∏
t∈T
z∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

⊂ π ′(Cγw(K )∗ν).

We have∏
t ′∈T
z∈Z

U(εz+εt ′ ,0)(kzt ′)
∏
t∈T

z∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

(30)

=

∏
t,t ′∈T
t 6=t ′

U(εt+εt ′ ,−1)(ξt t ′)
∏
t∈T

z∈Z>t

U(εt−εz,−1)(kt z̄)
∏
t ′∈T
z∈Z

U(εz+εt ′ ,0)(kzt ′)T≥2k+r+s
γw(K )∗ν

(31)

=

∏
t,t ′∈T
t 6=t ′

U(εt+εt ′ ,−1)(ξt t ′)
∏
t∈T

z∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

,(32)
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where

(33) ξt t ′ =
∑

z∈Z>t ′

c1,1
zt,t ′ z̄(−kzt)kt ′ z̄ +

∑
z∈Z>t

c1,1
zt ′,t z̄(−kzt ′)kt z̄.

The equality between (30) and (31) is due to Chevalley’s commutator formula (2)
and the equality between (31) and (32) is obtained by using Proposition 7.1 and
U(εz+εt ′ ,0)(kzt ′) ∈ UµγK

. Now fix an element in (29). Setting kt z̄ = vt z̄ defines the
linear equations

vt t ′ =
∑

z∈Z>t ′

c1,1
zt,t ′ z̄(−kzt)vt ′ z̄ +

∑
z∈Z>t

c1,1
zt ′,t z̄(−kzt ′)vt z̄,

in the variables kzt , for z ∈ Z and t ∈ T. There are more variables than equations.
For each equation indexed by a nonordered pair (ti , t j ) there are the variables vzti
and vz′t j for z > t ′ and z′ > t (which always exist by definition of an LS block),
hence the system has solutions as long as the matrix of coefficients has nonzero
determinants. This imposes an open condition on the parameters vt z̄ . Hence for
such vt z̄ , vt t ′ , kt z̄ = vt z̄ , and solutions ki j , for the latter equations we have∏

t∈T
z∈Z>t

U(εt−εz,−1)(vt z̄)
∏

t,t ′∈T

U(εt+εt ′ ,−1)(vt t ′)T≥2k+r+s
γw(K )∗ν

=

∏
t ′∈T
z∈Z

U(εz+εt ′ ,0)(kzt ′)
∏
t∈T

z∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

⊂ π ′(Cγw(K )∗ν).

Proposition 7.1 then implies,

U0
∏
t∈T

z∈Z>t

U(εt−εz,−1)(vt z̄)
∏

t,t ′∈T

U(εt+εt ′ ,−1)(vt t ′)T≥2
γK ∗ν
⊂ π ′(Cγw(K )∗ν).

This completes the proof of Lemma 7.5 and hence of (17) for K an LS block. �

Now let K be a zero lump. This means there exists k > 1 such that the right
(respectively left) column of K has as entries the integers 1< · · ·< k (respectively
k̄ < · · ·< 1̄), its word is therefore w(K )= 1 · · · kk̄ · · · 1̄. This means, in particular,
that the truncated images T≥2k

γw(K )∗ν
=T≥2

γK ∗ν
are stabilized by U0, by Proposition 7.1.

We have
π ′(Cγw(K )∗ν)= U

γw(K )∗ν

V0
· · ·U

γw(K )∗ν

V2k−1
T≥2k
γw(K )∗ν

,

by Theorem 2.9. Clearly all of the subgroups U
γw(K )∗ν

Vl
⊂ U0, for 1 ≤ l ≤ k.

For 0 ≤ j ≤ k − 1, the generators of U
γw(K )∗ν

Vk+ j
are all of the form U(εs−εk− j ,nk− j )

for l < k − j . In particular the gallery γ1···kk̄···k− j−1 has crossed the hyperplanes
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H(εs−εk− j ,m) once positively at m = 0 and once negatively at m = 1, which means
that nk− j = 0, and U(εs−εk− j ,nk− j )(a)= U(εs−εk− j ,0)(a) ∈ U0, for all a ∈ C. Hence

π ′(Cγw(K )∗ν)= U
γw(K )∗ν

V0
· · ·U

γw(K )∗ν

V2k−1
T≥2k
γw(K )∗ν

= T≥2k
γw(K )∗ν

= T≥2
γK ∗ν

.

In
π(CγK ∗ν)= U

γK ∗ν

V0
U
γK ∗ν

V1
T≥2
γK ∗ν

we have U
γK ∗ν

V1
= {Id} and U

γK ∗ν

V0
⊂ U0, therefore

π(CγK ∗ν)= T≥2
γK ∗ν
= T≥2k

γw(K )∗ν
,

since µγK = µγw(K )
. This finishes the proof of (17) and that of Proposition 5.5. �

7C. Proof of Proposition 5.20. The remainder of this section, through page 494,
is devoted to the proof of Proposition 5.20. Let ν be a combinatorial gallery.

Relation R1. For z 6= x̄ :

y x z ≡ y z x for x ≤ y < z,

x z y ≡ z x y for x < y ≤ z.

Lemma 7.6. Let w1 = y x z, w2 = y z x , w3 = x z y, and w4 = z x y for z 6= x̄ .

(a) π(Cγw1∗ν
)= π(Cγw2∗ν

).

(b) π(Cγw3∗ν
)= π(Cγw4∗ν

).

Proof. Recall the notation εā =−εa and ¯̄i = i for any i ∈ {1, . . . , n}. Note that the
T≥3
γwi ∗ν

all coincide for i ∈ {1, 2, 3, 4}; we will denote them by Tw. We divide the
proof of Lemma 7.6 into three cases.

Case 1: x < y < z. We claim that if z 6= ȳ and y 6= x̄ , the following equalities hold:

i. π(Cγw1∗ν
)= U0U(εx−εy ,−1)(vx ȳ)Tw.

ii. π(Cγw2∗ν
)= U0U(εx−εy ,−1)(vx ȳ)U(εx−εz,−1)(vx z̄)Tw.

iii. π(Cγw3∗ν
)= U0U(εy−εz,−1)(vyz̄)Tw.

iv. π(Cγw4∗ν
)= U0U(εx−εz,−1)(vx z̄)U(εy−εz,−1)(vyz̄)Tw.

Before proving this we remark that, regardless of whether x , y, and z are barred
or unbarred, the roots εx − εz , εy − εz , and εx − εy are positive. Now we recall the
notation from Theorem 2.9:

π(Cγw1∗ν
)= U

γwi ∗ν

V0
U
γwi ∗ν

V1
U
γwi ∗ν

V2
Tw.

Assume that z 6= ȳ and y 6= x̄ .
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i. We have U(εx−εy ,−1)(vx ȳ) ∈ U
γw1∗ν

1 for any vx ȳ ∈ C, hence

U0U(εx−εy ,−1)(vl ȳ)Tw ⊆ π(Cγw1∗ν
).

Out of all generators of U
γw1∗ν

Vi
for i ∈ {0, 1, 2}, the only one that does not belong

to U0 is of the form U(εx−εy ,−1)(vx ȳ) ∈ U
γw1∗ν

V1
, and the ones from U

γw1∗ν

V2
that do

not commute with it are those of the form U(εy+εz,1)(a), but in that case Chevalley’s
commutator formula produces a term U(εx+εz,0)(c

1,1
x ȳ,yz(−vx ȳ)a) ∈ U0. This implies

the other inclusion, together with Proposition 2.7, which allows us to write down
the generators of each U

γw1∗ν

Vi
in any order.

ii. The only generators of U
γw2∗ν

Vi
, for i ∈ {0, 1, 2}, that do not belong to U0 are

those of the form U(εx−εy ,−1)(vx ȳ) ∈ U
γw2∗ν

V2
or the form U(εx−εz,−1)(vx z̄) ∈ U

γw2∗ν

V2
.

The equality follows by Proposition 2.7, Theorem 2.9, and Proposition 7.1.

iii. All the generators of U
γw3∗ν

V0
and U

γw3∗ν

V1
belong to U0, and the only generators

of U
γw3∗ν

V2
that do not are U(εy−εz,−1). Thus iii follows by Proposition 7.1 and

Theorem 2.9.

iv. As in the previous cases, we have

π(Cγw4∗ν
)= U

γw4∗ν

V0
U
γw4∗ν

V1
U
γw4∗ν

V2
Tw,

and U
γw4∗ν

V0
⊂ U0. All generators of U

γw4∗ν

V1
and U

γw4∗ν

V2
, respectively, belong to U0

except for U(εx−εz,−1)(a) ∈ U
γw4∗ν

V1
and U(εy−εz,−1)(b) ∈ U

γw4∗ν

V2
, respectively, for

{a, b}⊂C. To prove iv we observe that U(εx−εz,−1)(a) commutes with all generators
of U

γw4∗ν

V2
except for U(εz+εy ,1)(d), with d ∈ C. However, commuting the latter two

terms produces elements U(εx+εy ,0)(c
1,1
x z̄,zy(−a)d) ∈ U0. Therefore

π(Cγw4∗ν
)⊆ U0U(εx−εz,−1)(vx z̄)U(εy−εz,−1)(vyz̄)Tw,

and the other inclusion is clear by Proposition 7.1 and the above discussion. This
finishes the proof of our claim.

Now we use this to prove Lemma 7.6, assuming z 6= ȳ and y 6= x̄ . For both
conclusions (a) and (b) of the lemma, our equalities i–iv immediately imply

π(Cγw1∗ν
)⊆ π(Cγw2∗ν

) and π(Cγw3∗ν
)⊆ π(Cγw4∗ν

).

Next we will show that

π(Cγw2∗ν
)⊆ π(Cγw1∗ν

).
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For this, let vyz̄ ∈C and vx ȳ ∈C with vx ȳ 6= 0. Then since U(εy−εz,0)(vyz̄)∈Uµw∩U0

for any vyz̄ ∈ C Chevalley’s commutator formula, and Proposition 7.1 imply

π(Cγw1∗ν
)⊃ U(εy−εz,0)(vyz̄)U(εx−εy ,−1)(vx ȳ)Tw

= U(εx−εz,−1)(c
1,1
yz̄,v ȳ(−vyz̄)vx ȳ)U(εx−εy ,−1)(vx ȳ)U(εy−εz,0)(vyz̄)Tw

= U(εx−εz,−1)(c
1,1
yz̄,v ȳ(−vyz̄)vx ȳ)U(εx−εy ,−1)(vx ȳ)Tw.

Therefore

U(εx−εy ,−1)(vx ȳ)U(εx−εz,−1)(vx z̄)Tw ⊂ π(Cγw1∗ν
),

as long as vx ȳ 6= 0, since in that case c1,1
yz̄,v ȳ(−vyz̄)vx ȳ = vx z̄ has a solution in vyz̄ .

Hence Proposition 7.1 implies

U0U(εx−εy ,−1)(vx ȳ)U(εx−εz,−1)(vx z̄)Tw ⊂ π(Cγw1∗ν
).

Equalities i and ii then imply that a dense subset of π(Cγw2∗ν
) is contained in

π(Cγw1∗ν
), which implies Lemma 7.6(a). To finish the proof of Lemma 7.6(b), let

vx ȳ ∈ C and vyz̄ ∈ C with vyz̄ 6= 0. Then, just as for (a),

π(Cγw3∗ν
)⊃ U(εx−εy ,0)(vx ȳ)U(εy−εz,−1)(vyz̄)Tw(34)

= U(εx−εz,−1)
(
c1,1

x ȳ,yz̄(−vx ȳ)vyz̄
)
U(εy−εz,−1)(vyz̄)U(εx−εy ,0)(vyz̄)Tw(35)

= U(εx−εz,−1)(c
1,1
x ȳ,yz̄(−vx ȳ)vyz̄)U(εy−εz,−1)(vyz̄)Tw.(36)

Therefore the elements of the set

U(εx−εz,−1)(vx z̄)U(εy−εz,−1)(vyz̄)Tw

such that vyz̄ 6= 0 are contained in (36). By items iii and iv and Proposition 7.1
there is a dense subset of

π(Cγw4∗ν
)= U0U(εx−εz,−1)(vx z̄)U(εy−εz,−1)(vyz̄)Tw

that is contained in π(Cγw3∗ν
).

The cases z = ȳ and y = x̄ are missing so far. (Note that z 6= x̄ is not allowed.
Also note that if y = x̄ then x must be unbarred and if z = ȳ then y must be
unbarred.)

Now assume z = ȳ. To prove Lemma 7.6(a) in this case, we first show that

(37) π(Cγw1∗ν
)⊆ π(Cγw2∗ν

).

All of the generators of U
γw1∗ν

V1
belong to U0 except for U(εx−εy ,−1)(vx ȳ), for

vx ȳ ∈ C. The generators of U
γw1∗ν

V1
are U(εl−εy ,−1)(vl ȳ) for l 6= x and vl ȳ ∈ C, and
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U(εx−εy ,0)(vx ȳ) for vx ȳ ∈ C. This last term commutes with U(εx−εy ,−1)(vx ȳ). There-
fore, by parallel arguments to those given in the proof of equalities i–iv on page 474,

π(Cγw1∗ν
)= U0U(εx−εy ,−1)(vx ȳ)

∏
l<y
l 6=x

U(εl−εy ,−1)(vl ȳ)Tw.

All terms in the product

U(εx−εy ,−1)(vx ȳ)
∏
l<y
l 6=x

U(εl−εy ,−1)(vl ȳ)

are at the same time generators of U
γw2
V1

as well. Therefore, by Proposition 7.1,

π(Cγw1∗ν
)⊆ π(Cγw2∗ν

),

as wanted. Next we would like to show

(38) π(Cγw2∗ν
)⊆ π(Cγw1∗ν

).

To do so we will make use of Proposition 5.5. Let

K1 =
x x y

ȳ ȳ
and K2 =

x y−1 y

ȳ y−1
.

Then we have w1 = y x ȳ =w(K1) and w2 = y ȳ x =w(K2). By Proposition 5.5
it then suffices to show

π ′′(CγK2
)⊆ π ′(CγK1

).

First assume y− 1 6= x . In this case U
γK2
∗ν

V1
is generated by terms U(εy−1−εy ,−1)(a)

with a ∈C, and all generators of U
γK2
∗ν

V0
and U

γK2
∗ν

V2
belong to U0. Out of these, the

only ones in U
γK2
∗ν

V2
that do not commute with U(εy−1−εy ,−1)(a) are U(εx+εy ,0)(b)

and U(εx−εy−1,0)(d). Then for every element in π(CγK2
∗ν) there is a u ∈ U0 such

that it belongs to

uU(εy−1−εy ,−1)(a)u′Tw = uu′U(εy−1+εx ,−1)
(
c1,1

y−1ȳ,xy(−a)b
)

·U(εx−εy ,−1)
(
c1,1

y−1ȳ,x y−1
(−a)d

)
U(εy−1−εy ,−1)(a)Tw,

where u′ = U(εx+εy ,0)(b)U(εx−εy−1,0)(d).
Fix u, a, b, and d such that abd 6= 0. Such elements form a dense subset

of π ′′(CγK2
∗ν). We will show that

U(εy−1+εx ,−1)
(
c1,1

y−1ȳ,xy(−a)b
)
U(εx−εy ,−1)

(
c1,1

y−1ȳ,x y−1
(−a)d

)
U(εy−1−εy ,−1)(a)Tw

is contained in π ′(CγK1
∗ν). If this is true, then (38) is implied by Proposition 7.1

applied to uU(εx+εy ,0)(b)U(εx−εy−1,0)(d) ∈ U0.
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First note that for any {ax ȳ, ay−1ȳ, ayy−1} ⊂ C, both U(εy−1−εy ,−1)(ay−1y) and

U(εx−εy ,−1)(ax ȳ) belong to U
γK1
∗ν

V1
, and v=U(εy+εy−1,0)(ayy−1)∈Uεx ∩U0 stabilizes

the truncated image Tw as well as the whole image π ′(CγK1
∗ν). Therefore all

elements of

v−1U(εx−εy ,−1)(ax ȳ)U(εy−1−εy ,−1)(ay−1ȳ)vTw =

U(εx+εy−1,−1)(c
1,1
x ȳ,yy−1(−ax ȳ)ayy−1)U(εx−εy ,−1)(ax ȳ)U(εy−1−εy ,−1)(ay−1ȳ)Tw

belong to π ′(CγK1
∗ν) and, since abd 6= 0, we may find ax ȳ , ay−1ȳ , and ayy−1 such

that

ax ȳ = c1,1
y−1ȳ,x y−1

(−a)d, c1,1
x ȳ,yy−1(−ax ȳ)ayy−1 = c1,1

y−1ȳ,xy(−a)b, ay−1ȳ = a.

This concludes the proof if y 6= x − 1. Now assume that y = x − 1. In this case all
generators of U

γK2∗ν

V2
commute with U(εy−1−εy ,−1)(ay−1ȳ), and therefore all elements

in π ′′(CγK2
∗ν) belong to

uU(εy−1−εy ,−1)(a)Tw,

for some u ∈U0 and a ∈ C — but U(εy−1−εy ,−1)(a) ∈ U
γK1
∗ν

V1
, which implies (38) by

applying Proposition 7.1 to u ∈ U0.

Next we prove Lemma 7.6(b), still assuming z = ȳ. We now have

w3 = x ȳ y = w(K3) and w4 = ȳ x y = w(K4),

where

K3 =
y x x

ȳ ȳ
and K4 =

x x ȳ
y y

.

We want to show
π ′′′(CγK3

∗ν)= π ′′′′(CγK4
∗ν).

First U
γK3
∗ν

V0
and U

γK3
∗ν

V1
are both contained in U0. The generators of U

γK3
∗ν

V2
that

do not belong to U0 are U(εy ,−1)(αy), U(εy+εl ,−1)(βyl), and U(εy−εs ,−1)(γys̄) for
{αy, βyl, γys̄} ⊂ C and l ≤ n, l 6= x , y < s ≤ n. All of these are also generators

of U
γK4
∗ν

V1
, hence by Proposition 7.1 and Theorem 2.9 we have

π ′′′(CγK3
∗ν)⊂ π

′′′′(CγK4
∗ν).

The discussion above also implies the equality

(39) π ′′′(CγK3
∗ν)= U0U(εy ,−1)(αy)

∏
l≤n
l 6=x

U(εy+εl ,−1)(βyl)
∏

y<s≤n

U(εy−εs ,−1)(γys̄)Tw.

There is one more generator of U
γK4
∗ν

V1
not mentioned above, U(εx+εy ,−1)(dxy).
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Since all generators of U
γK4
∗ν

V2
(which are U(εx+εy ,0)(d

′) ∈ U0 for d ′ ∈ C) commute
with those of U

γK3
∗ν

V1
, we have by Proposition 7.1,

π ′′′′(CγK4
∗ν)=

U0U(εx+εy ,−1)(dxy)U(εy ,−1)(ay)
∏
l≤n
l 6=x

U(εy+εl ,−1)(byl)
∏
s≤n
s>y

U(εy−εs ,−1)(cys̄)Tw.

We now would like to show

π ′′′′(CγK4
∗ν)⊂ π ′′′(CγK3

∗ν).

To do this we will see that for complex numbers ay , byl , cys̄ , and dxy , with ay 6= 0,

(40) U(εx+εy ,−1)(dxy)U(εy ,−1)(ay)
∏
l≤n
l 6=x

U(εy+εl ,−1)(byl)
∏
s≤n
s>y

U(εy−εs ,−1)(cys̄)Tw

⊂ π ′′′(CγK3
∗ν).

By (39) we conclude that for any complex numbers αy, βyl, γys̄ , and δ the following
set is contained in π ′′′(CγK3

∗ν):

(41) v−1U(εx−εy ,1)(δ)U(εy ,−1)(αy)
∏
l≤n
l 6=x

U(εy+εl ,−1)(βyl)
∏
s≤n
s>y

U(εy−εs ,−1)(γys̄)Tw

= v−1vU(εx+εy ,−1)(ρxy)U(εy ,−1)(αy)
∏
l≤n
l 6=x

U(εy+εl ,−1)(βyl)
∏
s≤n
s>y

U(εy−εs ,−1)(γys̄)Tw,

where

v=U(εx ,0)
(
c1,1

x ȳ,y(−δ)αy
)∏

l≤n
l 6=x

U(εx+εl ,0)
(
c1,1

x ȳ,yl(−δ)βyl
)∏

s≤n
s>y

U(εx−εs ,0)
(
c1,1

x ȳ,ys̄(−δ)γys̄
)

and ρxy = c1,2
x ȳ,y(−δ)α

2
y, and where the equality in (41) is obtained by applying

Chevalley’s commutator formula (2) and Proposition 7.1 to U(εx−εy ,1)(δ), which
stabilizes the truncated image Tw. We will have shown our claim in (40) if we find
complex numbers αy , βyl , γys̄ , and δ such that

c1,2
x ȳ,y(−δ)α

2
y = dxy, αy = ay, βyl = byl,

which we may obtain since ay 6= 0. This concludes the proof in case z = ȳ.

Lastly assume y = x̄ . This means that x is necessarily unbarred and therefore
z = b̄ for some b < x .

To prove Lemma 7.6(a) in this case, as before, we use Proposition 5.5. We have

w1 = x̄ x b̄ = w(K1) and w2 = x̄ b̄ x = w(K2),
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where

K1 =
x x x̄
b̄ b̄

and K2 =
x x̄ x̄

b̄ b̄
.

First we show

(42) π ′(CγK1
∗ν)⊆ π ′′(CγK2

∗ν).

To do this, we claim that

(43) π ′(CγK1
∗ν)= U0U(εx ,−1)(ax)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(axs)Tw.

Indeed, U(εx ,−1)(ax) and U(εx+εs ,−1)(axs) for s∈Cn such that s 6=b are the generators
of U

γK1
∗ν

V1
that do not belong to U0, and U

γK1
∗ν

V2
is the identity, because εx−εb is not a

positive root. Therefore (43) follows by Proposition 7.1. The aforementioned terms
are also generators (but not all!) of U

γK2
∗ν

V2
; therefore (42) follows. Now we show

(44) π ′′(CγK2
∗ν)⊆ π ′(CγK1

∗ν).

To do this, let us first analyze the image

π ′′(CγK2
∗ν)= U

γK2
∗ν

V0
U
γK2
∗ν

V1
U
γK2
∗ν

V2
Tw.

In this case U
γK2
∗ν

V0
⊂ U0 and U

γK2
∗ν

V1
is the identity, because −(εx + εb) is not

a positive root. The generators of U
γK2
∗ν

V2
are U(εx ,−1)(αx), U(εx+εs ,−1)(αxs) and

U(εx+εb,−2)(αxb) for s ∈ Cn such that s 6= b and complex numbers αx , αxs , and αxb.
Therefore

(45) π(CγK2
∗ν)= U0U(εx ,−1)(αx)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(αxs)U(εx+εb,−2)(αxb)Tw.

Let us fix complex numbers αx , αxs , and αxb, such that αx 6= 0. We will show, as
for (43), that

(46) U(εx ,−1)(αx)
∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(αxs)U(εx+εb,−2)(αxb)Tw ⊂ π ′(CγK1
∗ν).

To do this we will use Corollary 2.10, which says, in particular, that if we write

γK1
= (V0,E0,V1,E1,V2,E2,V3),

then
π ′(CγK1

)⊃ UV0UV1UV2Tw.
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Therefore, since u = U(εb−εx ,0)(a) ∈ UV2 ∩U0 for all a ∈ C, and since U(εx ,−1)(ax)

and U(εx+εs ,−1)(axs), for s ∈ Cn and s 6= b, are the generators of U
γK1
∗ν

1 ⊂ UV1 , by
using Proposition 7.1 applied to u ∈ U0 and v ∈ UV3 (V3 stabilizes the truncated
image Tw, see below for a definition of v), we have the following. For any complex
numbers axs and ax ,

π ′(CγK1
∗ν)⊃ u−1U(εx ,−1)(ax)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(axs)uTw

= u−1uU(εx+εb,−2)
(
c2,1

x,bx̄(a
2
x)b
)
U(εx ,−1)(ax)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(axs)vTw

= U(εx+εb,−2)
(
c2,1

x,bx̄(a
2
x)b
)
U(εx ,−1)(ax)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(axs)Tw,

where

v = U(εb,−1)
(
c1,1

x,bx̄(−ax)b
) ∏

s 6=b
εx+εs∈8

+

U(εb+εs ,−1)
(
c1,1

x,bs(−axs)b
)
∈ UV3 .

In order to show (46) it suffices to find complex numbers ax , axs , and b such that

c2,1
x,bx̄(a

2
x)b = αxb, ax = αx , axs = αxs,

and we may do this, since αx 6= 0.

For (b), we again use Proposition 5.5. We have

w3 = x b̄ x̄ = w(K3) and w4 = b̄ x x̄ = w(K4),

where

K3 =
x̄ x x

b̄ b̄
and K4 =

x−1 x b̄

x̄ x−1
.

By Proposition 5.5 it is enough to show

(47) π ′′′(CγK3
∗ν)= π ′′′′(CγK4

∗ν) .

We analyze both images π ′′′(CγK3
∗ν) and π ′′′′(CγK4

∗ν) separately and then show (47).
First we observe that U

γK3
∗ν

V0
⊂U0 and U

γK3
∗ν

V1
is the identity (this is because εx−εb

is not a positive root). Hence

(48) π ′′′(CγK3
∗ν)= U0

∏
l<x
l 6=b

U(εl−εx ,−1)(al x̄)U(εb−εx ,−2)(abx̄)Tw.

Now, U
γK4
∗ν

V2
is generated by elements U(εx−1−εx ,−1)(αx−1x) for αx−1x ∈C, and U

γK4
∗ν

V1

is generated by U(εb−εx−1,−1)(αbx−1) for αbx−1 ∈ C, by U(εl−εx−1,0)(αlx−1) for
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l < x − 1 and αlx−1 ∈ C (this last element stabilizes the truncated image Tw),
and by other elements of U0. Therefore

π ′′′′(CγK4
∗ν)(49)

= U0
∏
l<x
l 6=b

U(εl−εx−1,0)(αlx−1)U(εb−εx−1,−1)(αbx−1)U(εx−1−εx ,−1)(αx−1x̄)Tw(50)

= U0
∏

l<x,l 6=b
l 6=x−1

U(εl−εx ,−1)(ξl x̄)U(εx−1−εx ,−1)(αx−1x̄)U(εb−εx ,−2)(ξbx̄)Tw,(51)

where

ξbx̄ = c1,1
bx−1,x−1x̄

(−αbx−1αx−1x̄
), ξl x̄ = c1,1

lx−1,x−1x̄
(−αlx−1αx−1x̄

),

and where the equality between (50) and (51) arises by using (2) and Proposition 7.1
applied to

U(εl−εx−1,0)(αlx−1)U(εb−εx−1,−1)(αbx−1) ∈ UµγK4
.

The sets displayed in (48) and (51) are equal as long as all the parameters are nonzero.

Case 2: x = y < z and z 6= x̄ . In this case we have w1= y y z and w2= y z y. We
want to look at

π(Cγw1∗ν
)= U

γw1∗ν

V0
U
γw1∗ν

V1
U
γw1∗ν

V2
Tw,

π(Cγw2∗ν
)= U

γw2∗ν

V0
U
γw2∗ν

V1
U
γw2∗ν

V2
Tw.

In this case all generators of U
γw1∗ν

Vi
and of U

γw2∗ν

Vi
belong to U0 for i ∈ {1, 2, 3}.

Therefore Proposition 7.1 implies in this case that

π(Cγw1∗ν
)= U0Tw = π(Cγw2∗ν

).

Case 3: x < y = z and z 6= x̄ . Here it will be convenient to use Proposition 5.5. Let

K1 =
y x

y
and K2 =

x y
y

.

It is then enough to show (by Proposition 5.5) that

π ′(CγK1
∗ν)= π ′′(CγK2

∗ν),

since

w1 = x y y = w(K1) and w2 = y x y = w(K2).
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However, this case is now the same as the previous one: all generators of U
γK1
∗ν

Vi

and U
γK2
∗ν

Vi
belong to U0, therefore, as before,

π ′(CγK1
∗ν)= U0Tw = π ′′(CγK2

∗ν).

With this case we conclude the proof of Lemma 7.6. �

Relation R2. For 1< x ≤ n and x ≤ y ≤ x̄ :

y x−1 x−1≡ y x x̄,

x−1 x−1 y ≡ x x̄ y.

Lemma 7.7. Let

w1 = y x−1 x−1, w2 = y x x̄, w3 = x−1 x−1 y, w4 = x x̄ y,

then

(a) π(Cγw1∗ν
)= π(Cγw2∗ν

),

(b) π(Cγw3∗ν
)= π(Cγw4∗ν

).

Proof. As usual, the proof is divided in some cases. We first consider the case
where y /∈ {x, x̄} and then we analyze y = x and y = x̄ separately.

Case 1: y /∈ {x, x̄}.

Note that

w1 = y x − 1 x − 1= w

(
x−1 y y

x−1 x−1

)
, w2 = y x x̄ = w

(
x−1 x y

x̄ x−1

)
.

Hence by Proposition 5.5, to show (a) it is enough to show that

π ′(CγK1
∗ν)= π ′′(CγK2

∗ν),

where

K2 =
x−1 x y

x̄ x−1
and K1 =

x−1 y y

x−1 x−1
.

First we check that
π ′′(CγK2

∗ν)⊆ π ′(CγK1
∗ν).

Clearly U
γK2
∗ν

V0
⊂ U0. The only generators of U

γK2
∗ν

V1
that do not belong to U0 are

those of the form U(εx−εy ,−1)(a), for a ∈C, and those in U
γK2
∗ν

V2
are U(εx−1−εx ,−1)(b),

for b ∈ C. This means that every element in π ′′(CγK2
∗ν) belongs to

uU(εx−εy ,−1)(a)U(εx−1−εx ,−1)(b)Tw,



484 JACINTA TORRES

for some u ∈ U0. Both U(εx−εy ,−1)(a) and U(εx−1−εx ,−1)(b) belong to Uεy−εx−1 , and
this implies the contention by Proposition 7.1 and Corollary 2.10. Now we want to
show

π ′(CγK1
∗ν)⊆ π ′′(CγK2

∗ν).

By Theorem 2.9, all elements of π ′(CγK1
∗ν) belong to the set

(52) uU(εx−1−εy ,−2)(vx−1ȳ)U(εx−1,−1)(vx−1)

·

∏
l≥x
l 6=y

U(εx−1−εl ,−1)(vx−1l̄)
∏
s 6=y

U(εx−1+εs ,−1)(vx−1s)Tw,

for u ∈ U0 and vx−1 j ∈ C. This is because both U
γK1
∗ν

V0
and U

γK1
∗ν

V1
are contained

in U0. Fix such an element such that vx−1x̄ 6= 0. We know that

U(εx−1−εx ,−1)(vx−1x̄) ∈ U
γK2
∗ν

V2
,

and that for any ax ȳ ∈ C, U(εx−εy ,−1)(ax ȳ) ∈ Uεy . This means that these elements
stabilize both the truncated images T≥3

γK2
∗ν and T≥1

γK2
∗ν . Hence the elements in

(53) U(εx−1−εx ,−1)(vx−1x̄)U(εx−εy ,−1)(vx ȳ)Tw

= U(εx−εy ,−1)(vx ȳ)U(εx−1−εy ,−2)
(
c1,1

x−1x̄,x ȳ(−vx−1x̄)ax ȳ
)

·U(εx−1−εx ,−1)(vx−1x̄)Tw

all belong to π ′′(CγK2
∗ν). More they belong to precisely to U

γK1
∗ν

V2
Tw ⊂ T≥1

γK1
∗ν ,

hence by Proposition 7.1, we may multiply the right side of equation (53) by
U(εx−εy ,−1)(−vx ȳ) on the left and the product still belongs to π ′′(CγK2

∗ν), hence

U(εx−1−εy ,−2)
(
c1,1

x−1x̄,x ȳ(−vx−1x̄)ax ȳ
)
U(εx−1−εx ,−1)(vx−1x̄)Tw ⊂ π ′′(CγK2

∗ν).

Now consider the product

u = U(εy+εx ,1)(ayx)U(εx ,0)(ax)
∏
l>x
l 6=y

U(εx−εl ,0)(axl̄)
∏
s 6=y

U(εx+εs ,0)(axs) ∈ Uεy ∩U0.

Proposition 7.1 then implies that

π(CγK2
∗ν)⊃ u−1U(εx−1−εy ,−2)(c

1,1
x−1x̄,x ȳ(−vx−1x̄)ax ȳ)U(εx−1−εx ,−1)(vx−1x̄)uTw

= U(εx−1+εx ,−1)(ρx−1x)U(εx−1,−1)(ρx−1)U(εx−1−εy ,−2)(ρx−1y)

·

∏
l>x
l 6=y

U(εx−1−εl ,−1)(ρx−1l)

·

∏
s 6=y

U(εx−1+εs ,−1)(ρx−1s)U(εx−1−εx ,−1)(vx−1x̄)Tw,
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with

ρx−1x = c1,2
x−1x̄,x(−vx−1x̄)a2

x − c1,1
x−1y,yx c1,1

x−1x̄,x ȳ(vx−1x̄)ax ȳayx ,

ρx−1 j = c1,1
x−1x̄,x j (−vx−1x̄)ax j j 6= y, j ∈ {l̄ : l > x} ∪ {s : εx−1+ εs ∈8

+
},

ρx−1 = c1,1
x−1x̄,x(−vx−1x̄)ax .

The system of equations defined by vx−1 = ρx−1 and vx−1 j = ρx−1 j does have
solutions (the variables are ax , ayx , axl̄ , and axs) since vx−1,x 6= 0. This means that
for such solutions we have (see (52))

U(εx−1−εy ,−2)(vx−1ȳ)U(εx−1,−1)(vx−1)

·

∏
l≥x
l 6=y

U(εx−1−εl ,−1)(vx−1l̄)
∏
s 6=y

U(εx−1+εs ,−1)(vx−1s)Tw

= U(εx−1+εx ,−1)(ρx−1x)U(εx−1,−1)(ρx−1)U(εx−1−εy ,−2)(ρx−1y)

·

∏
l>x
l 6=y

U(εx−1−εl ,−1)(ρx−1l)
∏
s 6=y

U(εx−1+εs ,−1)(ρx−1s) ·U(εx−1−εx ,−1)(vx−1x̄)Tw

⊂ π(CγK2
∗ν),

and so by Proposition 7.1 we get that all elements in (52) belong to π ′′(CγK2
∗ν).

All such elements of π ′(CγK1
∗ν) form a dense open subset. This finishes the proof

in this case.

We turn to (b). Let

K3 =
x−1 x−1 x−1

y y
and K4 =

y x−1 x

x̄ x−1
.

Then w3 = x − 1 x − 1 y = w(K3) and w4 = x x̄ y = w(K4). As in (a), by
Proposition 5.5, it is enough to show that

π ′′′(CγK3
∗ν)= π ′′′′(CγK4

∗ν).

To show
π ′′′′(CγK4

∗ν)⊂ π ′′′(CγK3
∗ν),

note first that the only generator of U
γK4
∗ν

Vi
that does not belong to U0 is

U(εx−1−εx,−1)(a) ∈ U
γK4
∗ν

V1
, for a ∈ C.

Of U
γK4
∗ν

V2
, the only generators that do not commute with U(εx−1−εx ,−1)(a) are

U(εy+εx ,0)(b), with b ∈ C. Then Chevalley’s commutator formula (2) implies that
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all elements of π ′′′′(CγK4
∗ν) belong to the set

(54) U0U(εx−1+εy ,−1)
(
c1,1

x−1x̄,xy(−a)b
)
U(εx−1−εx ,−1)(a)Tw.

Since both U(εx−1+εy ,−1)
(
c1,1

x−1x̄,xy(−a)b
)

and U(εx−1−εx ,−1)(a) belong to U
γK3
∗ν

V1
,

the desired contention follows by Proposition 7.1. Now we show

(55) π ′′′(CγK3
)⊂ π ′′′′(CγK4

).

The proof is similar to that of (a), but there are some subtle differences. First we
look at the image π ′′′(CγK3

∗ν). Out of all the generators of U
γK3
∗ν

Vi
, the only ones

that do not belong to U0 belong to U
γK3
∗ν

V1
: U(εx−1,−1)(vx), U(εx−1−εs ,−1)(vx−1s), and

U(εx−1+εl ,−1)(vx−1l) for l 6= x − 1, s > x, s 6= y, and complex numbers vx−1, vx−1s ,
and vx−1l . The group U

γK3
∗ν

V2
has as generators the terms U(εx−1+εy ,0)(a) (only),

and these commute with all the latter terms. Therefore all elements of π ′′′(CγK3
∗ν)

belong to

(56) uU(εx−1,−1)(vx)
∏

s>x−1
s 6=y

U(εx−1−εs ,−1)(vx−1s)
∏

l 6=x−1

U(εx−1+εl ,−1)(vx−1l)Tw,

for some u ∈U0. Fix such a u, and assume vx−1x̄ 6= 0 and vx−1y 6= 0. Such elements
as (56) form a dense open subset of π ′′′(CγK3

∗ν). Now, for all complex numbers
a, axy , and ax ȳ we have U(εx−1−εx ,−1)(a) ∈ UγK4

∗ν
1 , U(εx+εy ,0)(axy) ∈ UγK4

∗ν
1 , and

U(εx−εy ,0)(ax ȳ)∈U0, which stabilizes the truncated image T≥2
γK4
∗ν . Therefore, setting

c = U(εx+εy ,0)(axy)U(εx−εy ,0)(ax ȳ) ∈ U0, all elements in

c−1U(εx−1−εx ,−1)(a)cTw = U(εx−1+εx ,−1)(ρx−1x)U(εx−1+εy ,−1)(ρx−1y)

·U(εx−1−εy ,−1)
(
c1,1

x−1x,x ȳ(−a)ax ȳ
)
U(εx−1−εx ,−1)(a)Tw

= U(εx−1+εx ,−1)(ρx−1x)U(εx−1+εy ,−1)(ρx−1y)U(εx−1−εx ,−1)(a)

·U(εx−1−εy ,−1)
(
c1,1

x−1x,x ȳ(−a)ax ȳ
)
Tw

= U(εx−1+εx ,−1)(ρx−1x)U(εx−1+εy ,−1)(ρx−1y)

·U(εx−1−εx ,−1)(a)Tw

belong to π ′′′′(CγK4
∗ν), where

ρx−1x = c1,1
x−1y,x ȳc1,1

x−1x̄,xyaaxyax ȳ,

ρx−1y = c1,1
x−1x̄,xy(−a)axy,

and where the last equality holds because U(εx−1−εy ,−1)
(
c1,1

x−1x,x ȳ(−a)ax ȳ
)
∈ Uεy ,

and all elements of the latter stabilize the truncated image Tw by Proposition 7.1.
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Now let

c′ = U(εx ,0)(ax)
∏
s>x
s 6=y

U(εx−εs ,0)(axs̄)
∏

l 6=x−1
l 6=y

U(εx+εl ,0)(axl) ∈ Uεy ∩U0,

for ax , axs̄ , and axl complex numbers; by Proposition 7.1 this element stabilizes
the truncated image Tw and the image π ′′′′(CγK4

∗ν). Therefore the following are
contained in π ′′′′(CγK4

),

c′−1U(εx−1+εx ,−1)(ρx−1x)U(εx−1+εy ,−1)(ρx−1y)U(εx−1−εx ,−1)(a)c′Tw

= U(εx−1,−1)(ρx)(57)

·

∏
s>x−1

s 6=y
s 6=x

U(εx−1−εs ,−1)(ρx−1s)U(εx−1−εx ,−1)(a)U(εx−1+εx ,−1)(ρ
′

x−1x)

·

∏
l /∈{x−1,x}

U(εx−1+εl ,−1)(ρx−1l)Tw,(58)

where

ρx−1 = c1,1
x−1x,x(−a)ax ,

ρ ′x−1x = ρx−1x + c1,2
x−1x,x(−a)a2

x ,

ρx−1l = c1,1
x−1x̄,xl(−a)axl,

ρx−1s̄ = c1,1
x−1x̄,xs̄(−a)axs̄ .

We want to show that

U(εx−1,−1)(vx−1)
∏

s>x−1
s 6=y

U(εx−1−εs ,−1)(vx−1s)
∏

l 6=x−1

U(εx−1+εl ,−1)(vx−1l)Tw

is equal to the product in the last lines (57) and (58) above (see (56)), for some
ax , axl , and axs̄ . This determines a system of equations:

vx−1x̄ = a,

vx−1x = c1,1
x−1y,x ȳc1,1

x−1x̄,xyaaxyax ȳ + c1,2
x−1x,x(−a)a2

x ,

vx−1 = c1,1
x−1x,x(−a)ax ,

vx−1s̄ = c1,1
x−1x̄,xs̄(−a)axs̄,

vx−1l = c1,1
x−1x̄,xl(−a)axl,

vx−1y = c1,1
x−1x̄,xy(−a)axy .
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which can always be solved since vx−1y 6= 0 and vxx−1 6= 0. This completes the
proof of (b) in this case. �

Case 1. y = x .

Proof. As in Case 1, we will make use of Proposition 5.5. Let

K1 =
x−1 x x

x−1x−1
and K2 =

x−1 x x

x̄ x−1
.

Then
w1 = x x − 1 x − 1= w(K1) and w2 = x x x̄ = w(K2).

By Proposition 5.5 it is enough to show

π ′(CγK1
∗ν)= π ′′(CγK2

∗ν).

First we show

(59) π ′′(CγK2
∗ν)⊆ π ′(CγK1

∗ν).

Since U
γK2
∗ν

V2
is generated by elements of the form U(εx−1−εx ,−2)(a), for a ∈ C, and

the generators of U
γK2
∗ν

Vi
belong to U0, for i ∈ {1, 2}, all elements of π ′′(CγK2

∗ν)

are of the form
uU(εx−1−εx ,−2)(a)Tw

for some u ∈ U0. Since U(εx−1−εx ,−2)(a) ∈ U
γK1
∗ν

V2
, (59) follows by applying

Proposition 7.1 to u. To finish the proof in this case it remains to show

(60) π ′(CγK1
∗ν)⊆ π ′′(CγK2

∗ν).

The generators of U
γK1
∗ν

Vi
belong to U0, for i ∈ {0, 1}, and the generators that do not

are U(εx−1,−1)(vx), U(εx−1−εl ,−1)(vx−1l̄), U(εx−1+εs ,−1)(vx−1s), and U(εx−1−εx ,−2)(vx−1x̄),
for n ≥ l > x , s /∈ {x, x − 1}, and complex numbers vx , vx−1l̄ , vx−1s , and vx−1x̄ .
Therefore all elements of π ′(CγK1

∗ν) belong to

uU(εx−1,−1)(vx)U(εx−1−εl ,−1)(vx−1l̄)U(εx−1+εs ,−1)(vx−1s)U(εx−1−εx ,−2)(vx−1x̄)Tw.

Fix such u ∈ U0 and vx , vx−1l̄ , vx−1s , and vx−1x̄ complex numbers such that
vx−1x̄ 6= 0. We know for any a ∈ C, that U(εx−1−εx ,−2)(a) ∈ U

γK2
∗ν

V2
. Let

q = U(εx ,1)(ax)
∏
s>x

U(εx−εs ,1)(axs̄)
∏
l 6=x

U(εx+εl ,1)(axl) ∈ U(εx ,1) ∩U0

for any complex numbers ax , axs̄ , and axl . Then by Proposition 7.1,

(61) q−1U(εx−1−εx ,−2)(a)qTw ⊂ π ′′(CγK2
∗ν).
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As in the previous cases, we want to find a, ax , axs̄ , and axl such that

tU(εx−1,−1)(vx)U(εx−1−εl ,−1)(vx−1l̄)U(εx−1+εs ,−1)(vx−1s)U(εx−1−εx ,−2)(vx−1x̄)Tw

equals (61), for some t ∈ U0. But

q−1U(εx−1−εx ,−2)(a)qTw

= t−1U(εx−1,−1)(ρx)U(εx−1−εl ,−1)(ρx−1l̄)U(εx−1+εs ,−1)(ρx−1s)U(εx−1−εx ,−2)(a)Tw,

where

t−1
= U(εx+εx−1,0)(c

1,2
x−1x̄,x)(−a)a2

x ∈ U0,

ρx = c1,1
x−1x̄,x(−a)ax ,

ρx−1l̄ = c1,1
x−1x̄,xl̄

(−a)axl̄,

ρx−1s = c1,1
x−1x̄,xs(−a)axs .

The system

vx−1x̄ = a,

vx−1l̄ = ρx−1l̄,

vx−1s = ρx−1s

always has a solution since vx−1x̄ 6= 0. This concludes the proof of Case 2. �

Let

K3 =
x−1x−1x−1

x x
and K4 =

x x−1 x

x x−1
.

Then

w3 = x − 1 x − 1 x = w(K3) and w4 = x x̄ x = w(K4).

By Proposition 5.5 it is enough to show

π ′′′(CγK3
∗ν)= π ′′′′(CγK4

∗ν).

To do this we will describe a common dense subset of π ′′′(CγK3
∗ν) and π ′′′′(CγK4

∗ν).

Consider first π ′′′(CγK3
∗ν) = U

γK3
∗ν

V0
U
γK3
∗ν

V1
U
γK3
∗ν

V2
Tw. We have U

γK3
∗ν

V0
⊂ U0

and also U
γK3
∗ν

V2
⊂ U0, since it is generated by the terms U(εx−1+εx ,0)(d), for d ∈

C. These commute with all generators of U
γK3
∗ν

V1
, out of which U(εx−1,−1)(vx−1),

U(εx−1+εs ,−1)(vx−1s), and U(εx−1−εl ,−1)(vx−1l̄), (for s≤ n, s 6= x−1, l > x , and vx−1,
vx−1s and vx−1l̄ complex numbers) do not belong to U0. Therefore π ′′′(CγK3

∗ν)
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coincides with

(62) U0U(εx−1,−1)(vx−1)
∏
s≤n

s 6=x−1

U(εx−1+εs ,−1)(vx−1s)
∏

x<l≤n

U(εx−1−εl ,−1)(vx−1l̄)T
w,

for complex numbers vx−1, vx−1s and vx−1l̄ . Now we look at elements of

π ′′′′(CγK4
∗ν)= U

γK4
∗ν

V0
U
γK4
∗ν

V1
U
γK4
∗ν

V2
Tw.

Both U
γK4
∗ν

V0
and U

γK4
∗ν

V2
are contained in U0, and U

γK4
∗ν

V1
is generated by the

elements U(εx−1−εx ,−1)(d), which belong to Uεx and therefore stabilize the truncated
image Tw by Proposition 7.1. Now, by Proposition 2.7, we may write any element
k of U

γK4
∗ν

V2
as

k = U(εx ,0)(kx)
∏

x<l≤n

U(εx−εl ,0)(kxl̄)
∏
s≤n
s 6=x

U(εx+εs ,0)(kxs) ∈ U0

for some complex numbers kx , kxl̄ , and kxs . Theorem 2.9 and Proposition 7.1 imply
that

(63) π ′′′′(CγK4
∗ν)= U0U(εx−1−εx ,−1)(d)kTw

= U0kU(εx−1,−1)(σx−1)U(εx−1+εx ,−1)(σx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(σx−1l̄)

·

∏
s≤n
s 6=x

U(εx−1+εs ,0)(σx−1s)U(εx−1−εx ,−1)(d)Tw,

for k ∈ U
γK4
∗ν

V2
and d ∈ C, where

σx−1 = c1,1
x−1x̄,x(−d)kx ,

σx−1x = c1,2
x−1x̄,x(−d)k2

x ,

σx−1l̄ = c1,1
x−1x̄,xl̄

(−d)kxl̄,

σx−1s = c1,1
x−1x̄,xs(−d)kxs .

The set (63) is clearly contained in (62). Moreover, the system

vx−1 = σx−1,

vx−1x = σx−1x ,

vx−1l̄ = σx−1l̄,

vx−1s = σx−1s,
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has solutions for d, kx , kxl̄ , and kxs as long as {vx−1, vx−1x , vx−1l̄, vx−1s} ⊂ C×.
Proposition 7.1 then implies that a dense subset of π ′′′(CγK3

∗ν) is contained in
π ′′′′(CγK4

∗ν), which finishes the proof of Case 1.

Case 2. y = x̄ .

Proof. Let

K1 =
x−1 x̄ x̄

x−1x−1
and K2 =

x−1 x x̄

x̄ x−1
.

Then
w1 = x̄ x − 1 x − 1= w(K1) and w2 = x̄ x x̄ = w(K2).

By Proposition 5.5 it is enough to show

π ′(CγK1
∗ν)= π ′′(CγK2

∗ν).

In this case we have U
γK1
∗ν

0 = 1= U
γK1
∗ν

V0
. Proposition 2.7 and Theorem 2.9 then

say,

(64) π ′(CγK1
∗ν)= U(εx−1−εx ,0)(vx−1x)U(εx−1,−1)(vx−1)U(εx−1+εx ,−2)(vx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(vx−1l)
∏
s≤n

s 6=x−1
x 6=x

U(εx−1+εs)(vx−1s)Tw,

for complex numbers vx−1x , vx−1, vx−1x , vx−1l , and vx−1s . Fix such complex
numbers. Now we look at π ′′(CγK2

). We have that U
γK2
∗ν

V0
and U

γK2
∗ν

V2
are both

contained in U0, and the latter is generated by elements U(εx−1−εx ,0)(a), for a ∈ C.
Out of the generators of U

γK2∗ν

V1
, the ones that do not belong to U0 are U(εx ,−1)(ax),

U(εx+εs ,−1)(axs), and U(εx−εl ,−1)(axl̄). Therefore, if

A= U(εx ,−1)(ax)U(εx+εs ,−1)(axs)U(εx−εl ,−1)(axl̄) ∈ Uεx̄ ,

we conclude that

(65)

π ′′(CγK2
∗ν)= U0AU(εx−1−εx ,0)(a)T

w

= U0U(εx−1−εx ,0)(a)U(εx−1,−1)(ξx−1)U(εx−1+εx ,−2)(ξx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(ξx−1l)
∏
s≤n

s 6=x−1
s 6=x

U(εx−1+εs)(ξx−1s)ATw

= U0U(εx−1,−1)(ξx−1)U(εx−1+εx ,−2)(ξx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(ξx−1l)
∏
s≤n

s 6=x−1
s 6=x

U(εx−1+εs)(ξx−1s)Tw,



492 JACINTA TORRES

where

ξx−1 = c1,1
x,x−1x̄(−ax)a,

ξx−1x = c2,1
x,x−1x̄(a

2
x)a,

ξx−1l̄ = c1,1
xl̄,x−1x̄

(−axl̄)a,

ξx−1s = c1,1
xs,x−1x̄(−axs)a.

Therefore it follows directly that in fact

π ′′(CγK2
∗ν)⊆ π

′(CγK1
∗ν).

Now, the system of equations

vx−1 = ξx−1,

vx−1x = ξx−1x ,

vx−1l̄ = ξx−1l̄,

vx−1s = ξx−1s,

has solutions as long as {vx−1, vx−1x , vx−1l̄, vx−1s}⊂C×. For such a set of solutions
we conclude

U(εx−1,−1)(vx−1)U(εx−1+εx ,−2)(vx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(vx−1l)
∏
s≤n

s 6=x−1
s 6=x

U(εx−1+εs)(vx−1s)

= U(εx−1,−1)(ξx−1)U(εx−1+εx ,−2)(ξx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(ξx−1l)
∏
s≤n

s 6=x−q
s 6=x

U(εx−1+εs)(ξx−1s),

and therefore we conclude by Proposition 7.1 (applied to U(εx−1−εx ,0)(vx−1x) in (64))
that a dense subset of π ′(CγK1

∗ν) is contained in π ′′(CγK2
∗ν) (see (64), (65)). �

Proof. To prove (b) let

K3 =
x−1x−1x−1

x̄ x̄
and K4 =

x̄ x−1 x

x̄ x−1
,

then
w3 = x − 1 x − 1 x̄ = w(K3) and w4 = x x̄ x̄ = w(K4).

By Proposition 5.5 it is enough to show

π ′′′(CγK3
)= π ′′′′(CγK4

).
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First we claim

π ′′′′(CγK4
∗ν)⊆ π

′′′(CγK3
∗ν).

Note that the terms U(εx−1−εx ,−1)(b), for b ∈ C, generate both U
γK4
∗ν

V1
and are

contained in U
γK3
∗ν

V1
. Also, the terms U(εl−εx ,0), which generate U

γK4
∗ν

V2
, commute

with U(εx−1−εx ,−1)(b). Therefore

π ′′′′(CγK4
)= U0U(εx−1−εx ,−1)(b)Tw ⊆ π ′′′(CγK3

),

where the last contention follows by Proposition 7.1. Now we will show

π ′′′(CγK3
∗ν)⊆ π ′′′′(CγK4

∗ν).

We claim that

(66) π ′′′(CγK3
∗ν)

= U0U(εx−1,−1)(vx−1)U(εx−1−εx ,−1)(vx−1x̄)
∏
s 6=x

εs+εx−1∈8
+

U(εx−1+εs ,−1)(vx−1s)Tw,

for complex numbers vx−1, vx−1x̄ , and vx−1s . Let us fix such complex numbers.
Let

D = U(εx ,0)(ax)
∏
s 6=x

εs+εx−1∈8
+

U(εx+εs ,−1)(ax−1s) ∈ U0,

then by the usual arguments (note that U0 stabilizes both the image π ′′′′(CγK4
) and

the truncated image T≥2
γK4
∗ν),

D−1U(εx−1−εx ,−1)(b)DTw ⊂ π ′′′′(CγK4
),

and

D−1U(εx−1−εx ,−1)(b)DTw = U(εx−1,−1)(ρx−1)U(εx−1−εx ,−1)(b)

·

∏
s 6=x

εs+εx+1∈8
+

U(εx−1+εs ,−1)(ρx−1s)U(εx+εx−1,−1)(ρxx−1),

where

ρx−1 = c1,1
x−1x̄,x(−b)ax ,

ρx−1x = c2,1
x−1x̄,x(−b)a2

x ,

ρx−1s = c1,1
x−1x̄,xs(−b)axs .



494 JACINTA TORRES

As usual by requiring that vx−1, vx−1x̄ , vx−1x , and ρx−1s be nonzero we may find
suitable complex numbers b, ax , axs such that

U(εx−1,−1)(vx−1)U(εx−1−εx ,−1)(vx−1x̄)
∏
s 6=x

εs+εx−1∈8
+

U(εx−1+εs ,−1)(vx−1s)

= D−1U(εx−1−εx ,−1)(b)DTw.

Therefore Proposition 7.1 (see (66)) implies that a dense open subset of π ′′′(CγK3
∗ν)

is contained in π ′′′′(CγK4
∗ν). This completes the proof of Lemma 7.7. �

Relation R3.

Lemma 7.8. Let w ∈WCn be a word and let w1 be a word that is not of an LS block,
and such that it has the formw1=a1 · · · ar zz̄b̄s · · · b̄1, and letw2=a1 · · · ar b̄s · · · b̄1

with a1 < · · · ar < z > bs > · · ·> b1. Then π(Cγw1w
)= π ′(Cγw2w

).

Proof. Let A= {a1, . . . , ar }. We have

π(Cγw1w
)= Pa1 · · ·Par PzPz̄Pb̄s

· · ·Pb̄1
T≥r+s+2
γw1w

,

where

Pz = U(εz,0)(vz)
∏
l>z

U(εz−εl ,0)(vzl̄)
∏
l /∈A

U(εz+εl ,0)(vzl)
∏
ai∈A

U(εz+εai ,1)(vzai ),

Pz̄ =
∏
ai∈A

U(εai−εz,0)(vai z̄),

and note that µγw1
= µγw2

=
∑

i∈Ir
εai −

∑
j∈Is

εb j . The terms that appear in Pz all
stabilize µγw1

and commute with Pb̄ j
, while the terms in Pz̄ all appear in Pai and

commute with Pal , for l > i . This concludes the proof of Lemma 7.8 with the usual
arguments, and therefore of Proposition 5.20. �

8. Nonexamples for nonreadable galleries

Let n = 2 and λ= ε1+ ε2, and (6γλ, π) the corresponding Bott–Samelson variety,
as in (8). Let γ be the gallery corresponding to the block

1 2̄

2 1̄
.

Then points in π(Cγ ) are of the form

U(ε1+ε2,−1)(b)[t0
],

for b ∈C, hence form an affine set of dimension 1. We claim that the set Z= π(Cγ )
cannot be an MV cycle in Z (µ) for any dominant coweight µ. First note that for
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any u ∈U(K ) a necessary condition for ut0 to lie in the closure U(K )tν ∩G(O)tµ

is that 0≤ ν, since it would in particular imply that ut0
∈ U(K )tν . Also note that

it is necessary for ν ≤µ in order for the set Z (µ)ν not to be empty. Any MV cycle
in Z (µ)ν has dimension 〈ρ,µ+ ν〉, and the only possibility for the latter to be
equal to 1 (since µ+ ν is a sum of positive coroots) is for either µ= 0 and ν = α∨i ,
or ν = 0 and µ = α∨i , for some i ∈ I, and both options are impossible: the first
contradicts ν ≤ µ, and the second contradicts the dominance of µ. Note that γ is
not a Littelmann gallery.

Appendix

Here we show that relation R3 in Theorem 5.17 is equivalent to relation R3 in
[Lecouvey 2002, Definition 3.1]. For a word w ∈WCn and m ≤ n define N(w,m)=
|{x ∈w : x ≤m or m̄ ≤ x}|. Lecouvey’s relation R3 is: “Let w be a word that is not
the word of an LS block and such that each strict subword is. Let z be the lowest
unbarred letter such that the pair (z, z̄) occurs in w and N(w, z) = z + 1. Then
w ∼= w′, where w′ is the subword obtained by erasing the pair (z, z̄) in w.” The
following Lemma is a translation between R3 and R3.

Lemma 8.1. Let w be a word that is not the word of an LS block and such that each
strict subword is. Thenw=a1 · · · ar zz̄b̄s · · · b̄1 for ai , bi unbarred and a1< · · ·<ar ,
b1 < · · ·< bs .

Proof. By [Lecouvey 2002, Remark 2.2.2], w is the word of an LS block if and only
if N(w,m)≤ m for all m ≤ n. Let w be as in the statement of Lemma 8.1. Then
there exists in w a pair (z, z̄) such that N(w, z) > z. Let z be minimal with this
property. In particular N(w, z)= z+ 1 since if w′′ is the word obtained from w by
erasing z, then z ≥N(w′′, z)=N(w, z)−1. We claim that z is the largest unbarred
letter to appear in w. If there was a larger letter y then N(w′′′, z)=N(w, z)= z+1
where w′′′ denotes the word obtained from w by deleting y. This is impossible
since by assumption w′′′ is the word of an LS block. Likewise z̄ is the smallest
unbarred letter to appear in w. The a′i s and b′i s are then those from Definition 4.3
for the word obtained from w by deleting z, z̄ from it. �

Acknowledgements

The author would like to thank Peter Littelmann for his encouragement and his
advice, and Stephane Gaussent for many discussions, especially during the author’s
visits to Saint Étienne, as well as for proof reading. She would also like to thank
the referee for his or her useful comments. Special thanks go to Michael Ehrig for
his comments, advice, questions, answers, time, patience and proof reading as well
as for many enjoyable discussions.



496 JACINTA TORRES

References

[Baumann and Gaussent 2008] P. Baumann and S. Gaussent, “On Mirković–Vilonen cycles and
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A NOTE ON TORUS ACTIONS AND THE WITTEN GENUS

MICHAEL WIEMELER

We show that the Witten genus of a string manifold M vanishes if there is an
effective action of a torus T on M such that dim T > b2(M). We apply this
result to study group actions on M×G/T , where G is a compact connected
Lie group and T a maximal torus of G.

Moreover, we use the methods which are needed to prove these results to
the study of torus manifolds. We show that up to diffeomorphism there are
only finitely many quasitoric manifolds M with the same cohomology ring
as #k

i=1±CPn with k < n.

1. Introduction

In this note we prove a vanishing result for the Witten genus of a string manifold
on which a high dimensional torus acts effectively. Concerning the Witten genus
of string manifolds on which a compact connected Lie group acts the following is
known:

• It has been shown by Liu [1995, discussion after Theorem 4, page 370] that
the Witten genus of a string manifold M with b2(M)= 0 vanishes if there is a
nontrivial action of S1 on M .

• Dessai [1999] showed that the Witten genus of a string manifold M vanishes
if there is an almost effective action of SU(2) on M .

Moreover we showed in [Wiemeler 2013] the following stabilizing result: if
there is an effective action of a semisimple compact connected Lie group G with
rank G > rank H on M× H/T , where H is a semisimple compact connected Lie
group with maximal torus T , then the Witten genus of M vanishes.

In this note we generalize the first statement in the following way:

Theorem 3.2. Let M be a spin manifold such that p1(M) is torsion. If there is an
almost effective action of a torus T with rank T > b2(M) on M then the Witten
genus of M vanishes.

Part of the research for this article was supported by DFG Grant HA 3160/6-1.
MSC2010: 57S15, 58J26.
Keywords: torus actions, Witten genus, quasitoric manifolds, torus manifolds, rigidity.
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The main new ingredient to prove this theorem is a spectral sequence argument
for actions of tori T on manifolds M with b2(M) < rank T (see Lemma 3.1).

If b1(M)= 0, this theorem allows the following generalization, which is also a
generalization of the third statement from above.

Theorem 3.3. Let M be a spin manifold such that p1(M) is torsion and b1(M)= 0.
Moreover, let M ′ be a 2n-dimensional spinc manifold, n > 0, with b1(M ′)= 0 such
that there are x1, . . . , xn ∈ H 2(M ′;Z) with

(1)
∑n

i=1 xi = cc
1(M

′) modulo torsion,

(2)
∑n

i=1 x2
i = p1(M ′) modulo torsion,

(3)
〈∏n

i=1 xi , [M ′]
〉
6= 0.

If there is an almost effective action of a torus T on M × M ′ such that rank T
is greater than b2(M × M ′), then the Witten genus of M vanishes. Here cc

1(M
′)

denotes the first Chern class of the line bundle associated to the spinc structure
on M ′.

To deduce Theorem 3.2 from Theorem 3.3 in the case that b1(M) = 0, let M ′

be S2 and x1 be the Euler class of M ′. Then M ′ satisfies all the assumptions from
Theorem 3.3. Moreover there is an almost effective action of T × S1 on M×M ′

which is induced from the T-action on M and the S1-action on M ′ given by rotation.
Hence, the Witten genus of M vanishes, because

rank(T × S1)= rank T + 1> b2(M)+ 1= b2(M×M ′).

If H is a semisimple compact connected Lie group with maximal torus T ′, then
the tangent bundle of H/T ′ splits as a sum of complex line bundles and H/T ′ has
positive Euler characteristic. Therefore H/T ′ satisfies the assumptions on M ′ in
the above theorem. Hence, we get:

Corollary 4.1. Let M be a spin manifold with p1(M)= 0 and b1(M)= 0 and H a
semisimple compact connected Lie group with maximal torus T ′ and dim H > 0. If
there is an almost effective action of a torus T on M× H/T ′ such that rank T is
greater than rank H + b2(M), then the Witten genus of M vanishes.

A torus manifold is a 2n-dimensional orientable manifold M with an effective
action of an n-dimensional torus T such that MT

6= ∅. A torus manifold M is
called locally standard, if each orbit in M has an invariant neighborhood which is
weakly equivariantly diffeomorphic to an open invariant subset of Cn . Here Cn is
equipped with the action of T = (S1)n given by componentwise multiplication. If
this condition is satisfied, the orbit space of M is naturally a manifold with corners.

A quasitoric manifold is a locally standard torus manifold whose orbit space
M/T is face-preserving homeomorphic to a simple convex polytope P . Quasitoric
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manifolds were introduced by Davis and Januszkiewicz [1991]. Torus manifolds
were introduced by Masuda [1999] and Masuda and Hattori [2003].

By combining our results with results of Dessai [1999, 2000] and a recent result
of the author [Wiemeler 2015a] on the rigidity of certain torus manifolds, we also
get the following finiteness result for simply connected torus manifolds:

Theorem 5.1. Up to homeomorphism (diffeomorphism, respectively) there are
only finitely many simply connected torus manifolds M (quasitoric manifolds,
respectively) such that H∗(M;Z)∼= H∗

(
#k

i=1±CPn
;Z
)

with k < n.

For an application of our methods to the study of torus actions on complete inter-
sections and homotopy complex projective spaces, see [Dessai and Wiemeler 2016].

This article is structured as follows. In Section 2 we describe background
material on vanishing results for indices of certain twisted Dirac operators on Spinc

manifolds. In Section 3 we prove Theorems 3.2 and 3.3. Then in Section 4 we
deduce Corollary 4.1 and give some applications to computations of the degree of
symmetry of certain manifolds. In Section 5 we prove Theorem 5.1.

2. Preliminaries

In this section we recall some properties of 2n-dimensional spinc manifolds and
certain twisted Dirac operators defined on them. For more details on this subject
see [Atiyah et al. 1964; Petrie 1972; Hattori 1978; Dessai 1999; 2000].

A spinc manifold M is an orientable manifold such that the second Stiefel–
Whitney classw2(M) is the reduction of an integral class c∈H 2(M;Z). If this is the
case then the tangent bundle of M admits a reduction of structure group to the group
Spinc(2n). We call such a reduction a spinc structure on M . Associated to a spinc

structure there is a complex line bundle. We denote by cc
1(M) the first Chern class

of this line bundle. Its reduction modulo 2 is w2(M). For each class c ∈ H 2(M;Z)
with c ≡ w2(M) mod 2, there is a spinc structure on M with cc

1(M)= c.
Now let M be a 2n-dimensional Spinc manifold. We assume that S1 acts on M

and that the S1-action lifts into the spinc structure. This is the case if and only if
the S1-action lifts into the line bundle associated to the spinc structure [Wiemeler
2013, Lemma 2.1].

Then we have an S1-equivariant spinc Dirac operator ∂c. Its S1-equivariant index
is an element of the representation ring of S1 and is defined as

indS1(∂c)= ker ∂c− coker ∂c ∈ R(S1).

We will discuss certain indices of twisted Dirac operators which are related to
generalized elliptic genera. Generalized elliptic genera of the type which we discuss
here were first studied by Witten [1988].
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Let V be an S1-equivariant complex vector bundle over M and W an even-
dimensional S1-equivariant spin vector bundle over M . From these bundles we
construct a power series R ∈ KS1(M)[[q]] defined by
∞⊗

k=1

Sqk (T̃M⊗R C)⊗3−1(V ∗)⊗
∞⊗

k=1

3−qk (Ṽ ⊗R C)⊗1(W )⊗

∞⊗
k=1

3qk (W̃⊗R C).

Here q is a formal variable, Ẽ denotes the reduced vector bundle E−dim E , 1(W )

is the full complex spinor bundle associated to the spin vector bundle W , and
3t (resp. St ) denotes the exterior (resp. symmetric) power operation. The tensor
products are, if not indicated otherwise, taken over the complex numbers.

We extend indS1 to power series. Then we can define:

Definition 2.1. Let ϕc(M; V,W )S1 be the S1-equivariant index of the spinc Dirac
operator twisted with R:

ϕc(M; V,W )S1 = indS1(∂c⊗ R) ∈ R(S1)[[q]].

We denote by ϕc(M; V,W ) the nonequivariant version of this index:

ϕc(M; V,W )= ind(∂c⊗ R) ∈ Z[[q]].

With the Atiyah–Singer index theorem [1968], we can calculate ϕc(M; V,W )

from cohomological data:

ϕc(M; V,W )= 〈ecc
1(M)/2 ch(R) Â(M), [M]〉.

Here the Chern character of R is a product,

ch(R)= Q1(TM)Q2(V )Q3(W ),

with

Q1(TM)= ch
( ∞⊗

k=1

Sqk (T̃M ⊗R C)

)
=

∏
i

∞∏
k=1

(1− qk)2

(1− exi qk)(1− e−xi qk)
,

Q2(V )= ch
(
3−1(V ∗)⊗

∞⊗
k=1

3−qk (Ṽ ⊗R C)

)

=

∏
i

(1− e−vi )

∞∏
k=1

(1− evi qk)(1− e−vi qk)

(1− qk)2
,

Q3(W )= ch
(
1(W )⊗

∞⊗
k=1

3qk (W̃ ⊗R C)

)

=

∏
i

(ewi/2+ e−wi/2)

∞∏
k=1

(1+ ewi qk)(1+ e−wi qk)

(1+ qk)2
,
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where ±xi (resp. vi and ±wi ) denote the formal roots of TM (resp. V and W ). If
cc

1(M) coincides with c1(V ), then we have

ecc
1(M)/2 Q2(V )= e(V )

1

Â(V )

∏
i

∞∏
k=1

(1− evi qk)(1− e−vi qk)

(1− qk)2
= e(V )Q′2(V ).

Note that if M is a spin manifold, then there is a canonical spinc structure on M .
With respect to this spinc structure the twisted index ϕc(M; 0, TM) is equal to the
elliptic genus of M . Moreover, our definition of ϕc(M; 0, 0) coincides with the
index-theoretic definition of the Witten genus of M .

To prove our results we need the following theorem. It was proven first by Liu
[1995] for certain twisted elliptic genera of spin manifolds and almost complex
manifolds. Later the more general version for spinc manifolds has been proven
by Dessai.

Theorem 2.2 [Dessai 2000, Theorem 3.2, p. 243]. Assume that the equivariant
Pontrjagin class pS1

1 (V +W − TM) restricted to M S1
is equal to π∗S1(I x2) modulo

torsion, where πS1 : BS1
× M S1

→ BS1 is the projection on the first factor, x ∈
H 2(BS1

;Z) is a generator and I is an integer. Assume, moreover, that cc
1(M) and

c1(V ) are equal modulo torsion. If I < 0, then ϕc(M; V,W )S1 vanishes identically.

3. Torus actions and the Witten genus

In this section we prove Theorems 3.2 and 3.3. Our methods here are similar to
those which were used in Section 4 of [Wiemeler 2013]. We start with a lemma.

Lemma 3.1. Let M be a T-manifold with rank T > b2(M) and a ∈ H 4
T (M;Q) such

that ι∗a = 0 ∈ H 4(M;Q). Then there is a nontrivial homomorphism ρ : S1
→ T

such that ρ∗a ∈ π∗S1 H 4(BS1
;Q).

Proof. From the Serre spectral sequence for the fibration M→ MT → BT we have
the following direct sum decomposition of the Q-vector space H 4

T (M;Q),

H 4
T (M;Q)∼= E0,4

∞
⊕ E2,2

∞
⊕ E4,0

∞
.

Moreover, we have

E0,4
∞
⊂ H 4(M;Q), E2,2

∞
⊂ E2,2

2 /d2(E
0,3
2 ), E4,0

∞
= π∗S1 H 4(BT ;Q).

Let a0,4, a2,2, a4,0 be the components of a according to this decomposition. Then
a0,4 = 0 by assumption. Moreover, there is an ã2,2 ∈ E2,2

2 such that a2,2 = [ã2,2].
Now it is sufficient to find a nontrivial homomorphism ρ : S1

→ T such that
ρ∗ã2,2 = 0. We have isomorphisms

E2,2
2
∼= H 2(BT ;Q)⊗ H 2(M;Q)∼= (H 2(BT ;Q))b2(M).
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Since rank T > b2(M), we can find a nontrivial homomorphism φ : H 2(BT ;Q)→
H 2(BS1

;Q) = Q such that all components of ã2,2 according to the above de-
composition of E2,2

2 are mapped to zero by φ. After scaling, we may assume
that φ is induced by a surjective homomorphism H 2(BT ;Z)→ H 2(BS1

;Z). By
dualizing we get a homomorphism φ̂ : H2(BS1

;Z)→ H2(BT ;Z). Since for any
torus, H2(BT ;Z) is naturally isomorphic to the integer lattice in the Lie algebra
LT of T , φ̂ defines the desired homomorphism. �

By combining this lemma with the above result of Liu and Dessai (Theorem 2.2),
we get the following theorem.

Theorem 3.2. Let M be a spin manifold such that p1(M) is torsion. If there is an
almost effective action of a torus T with rank T > b2(M) on M then the Witten
genus ϕc(M; 0, 0) of M vanishes.

Proof. First note that, by replacing the T-action by the action of a double covering
group of T , we may assume that the T-action lifts into the spin structure of M .

Therefore, by Theorem 2.2, it is sufficient to show that there is a homomorphism
ρ : S1 ↪→ T such that ρ∗ pT

1 (−TM)= ax2, where x ∈ H 2(BS1
;Z) is a generator

and a ∈ Z, a < 0. By Lemma 3.1, there is a homomorphism ρ : S1
→ T such that

pS1

1 (−TM)= ρ∗ pT
1 (−TM)= ax2 with a ∈ Z.

Moreover, we have

ax2
= pS1

1 (−TM)|y =−
∑

v2
i ,

where y ∈ MT is a T fixed point and the vi ∈ H 2(BS1
;Z) are the weights of the

S1-representation Ty M . We may assume that such a fixed point y exists because
otherwise the Witten genus of M vanishes by an application of the Lefschetz fixed
point formula.

Not all of the vi vanish because the T-action on M is almost effective, which
implies that the S1-action on M is nontrivial. Therefore the theorem is proved. �

We can also deduce the following partial generalization of the above result. Its
proof is similar to the proof of Theorems 4.1 and 4.4 in [Wiemeler 2013]. These
theorems are concerned with actions of semisimple and simple compact connected
Lie groups, whereas the theorem which we present here deals with torus actions.

Theorem 3.3. Let M be a spin manifold such that p1(M) is torsion and b1(M)= 0.
Moreover, let M ′ be a 2n-dimensional spinc manifold, n > 0, with b1(M ′)= 0 such
that there are x1, . . . , xn ∈ H 2(M ′;Z) with

(1)
∑n

i=1 xi = cc
1(M

′) modulo torsion,

(2)
∑n

i=1 x2
i = p1(M ′) modulo torsion,

(3)
〈∏n

i=1 xi , [M ′]
〉
6= 0.
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If there is an almost effective action of a torus T on M× M ′ such that rank T is
greater than b2(M×M ′), then the Witten genus ϕc(M; 0, 0) of M vanishes.

Proof. Let L i , i = 1, . . . , n, be the line bundle over M ′ with c1(L i )= xi . Because
b1(M × M ′) = 0, the natural map ι∗ : H 2

T (M × M ′;Z) → H 2(M × M ′;Z) is
surjective.

Therefore by Corollary 1.2 of [Hattori and Yoshida 1976, page 13] the T-action
on M×M ′ lifts into p′∗(L i ), i = 1, . . . , n. Here p′ :M×M ′→M ′ is the projection.
We can choose these lifts in such a way that the torus action on the fibers of p′∗(L i ),
i = 1, . . . , n, over a fixed point y ∈ (M×M ′)T are trivial. Moreover, by the above
cited corollary and Lemma 2.1 of [Wiemeler 2013], the action of every S1

⊂ T
lifts into the spinc structure on M×M ′ induced by the spin structure on M and the
spinc structure on M ′.

By Lemma 3.1 of [Wiemeler 2013], we have

ϕc
(

M×M ′;
n⊕

i=1

p′∗L i , 0
)
= ϕc(M; 0, 0)ϕc

(
M ′;

n⊕
i=1

L i , 0
)
.

By condition (3), we have

ϕc
(

M ′;
n⊕

i=1

L i , 0
)
=

〈
Q1(TM ′)

n∏
i=1

xi Q′2

( n⊕
i=1

L i

)
Â(M ′), [M ′]

〉

=

〈 n∏
i=1

xi , [M ′]
〉
6= 0.

Hence, ϕc(M; 0, 0) vanishes if and only if ϕc
(
M×M ′;

⊕n
i=1 p′∗L i , 0

)
vanishes.

By Theorem 2.2, it is sufficient to show that there is a homomorphism ρ : S1 ↪→ T
such that ρ∗ pT

1

(⊕n
i=1 p′∗L i − T (M × M ′)

)
= ax2, where x ∈ H 2(BS1

;Z) is a
generator and a ∈ Z, a < 0. By Lemma 3.1, there is a homomorphism ρ : S1

→ T
such that

pS1

1

( n⊕
i=1

p′∗L i − T (M×M ′)
)
= ρ∗ pT

1

( n⊕
i=1

p′∗L i − T (M×M ′)
)
= ax2,

with a ∈ Z.
Moreover, we have

ax2
= pS1

1

( n⊕
i=1

p′∗L i − T (M×M ′)
)∣∣∣∣

y
=

n∑
i=1

a2
i −

∑
v2

i ,

where the ai ∈ H 2(BS1
;Z), i = 1, . . . , n, are the weights of the S1-representations

p′∗L i |y and the vi ∈H 2(BS1
;Z) are the weights of the S1-representation Ty(M×M ′).

By our choice of the lifted actions the ai vanish. Not all of the vi vanish because
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the T-action on M is effective, which implies that the S1-action on M is nontrivial.
Therefore the theorem is proved. �

Examples of manifolds M ′ to which the above theorem applies are manifolds
whose tangent bundles split as Whitney sums of complex line bundles and which
have nonzero Euler characteristic. In particular, if H is a semisimple compact
connected Lie group with maximal torus T ′ and dim H > 0, then M ′ = H/T ′

satisfies these assumptions. We deal with this case in the following section.

4. Torus actions and stabilizing with G/T

In this section we deal with applications of Theorem 3.3 to the particular case where
M ′ is a homogeneous space H/T ′ with H a semisimple compact connected Lie
group and T ′ a maximal torus of H and dim H > 0.

It has already been noted that the tangent bundle of H/T ′ splits as a sum of
complex line bundles. Therefore H/T ′ satisfies all the assumptions on M ′ from
Theorem 3.3. Hence we immediately get the following corollary.

Corollary 4.1. Let M be a spin manifold with p1(M)= 0 and b1(M)= 0 and H a
semisimple compact connected Lie group with maximal torus T ′ and dim H > 0. If
there is an almost effective action of a torus T on M× H/T ′ such that rank T is
greater than rank H + b2(M), then the Witten genus of M vanishes.

The degree of symmetry N (M) of a manifold M is the maximum of the dimen-
sions of compact connected Lie groups G which act smoothly and almost effectively
on M . By combining the above corollary with Corollary 4.2 of [Wiemeler 2013] we
get the following bounds for the degree of symmetry of the manifolds M× H/T ′.
To state our result we have to introduce some notation. For l ≥ 1 let

αl =max
{ dim G

rank G |G a simple compact Lie group with rank G ≤ l
}
.

The values of the αl are listed in Table 1.

Corollary 4.2. Let M be a spin manifold with p1(M) = 0 and b1(M) = 0, such
that the Witten-genus of M does not vanish and let H1, . . . , Hk be simple compact
connected Lie groups with maximal tori T1, . . . , Tk . Then we have

k∑
i=1

dim Hi ≤ N
(

M×
k∏

i=1

Hi/Ti

)
≤ αl

k∑
i=1

rank Hi + b2(M),

where l =max{rank Hi | i = 1, . . . , k} and αl is defined as above.

Proof. Let G be a compact connected Lie group which acts almost effectively on
M×

∏k
i=1 Hi/Ti . We may assume that G = Gss× Z with a semisimple Lie group

Gss and a torus Z .
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l αl Gl

1 3 Spin(3)
2 7 G2

3 7 Spin(7),Sp(3)
4 13 F4

5 13 none
6 13 E6,Spin(13),Sp(6)
7 19 E7

8 31 E8

9≤ l ≤ 14 31 none
l ≥ 15 2l + 1 Spin(2l + 1),Sp(l)

Table 1. The values of αl and the simply connected compact simple
Lie groups Gl of rank l with dim Gl = αl · l.

By Corollary 4.1, rank G is bounded from above by
∑k

i=1 rank Hi + b2(M). By
Corollary 4.2 of [Wiemeler 2013], rank Gss is bounded from above by

∑k
i=1 rank Hi .

Moreover, by the proof of Corollary 4.6 of [Wiemeler 2013] the dimension of Gss

is bounded from above by αl rank Gss. Since αl > 1, it follows that

dim G = dim Gss+ dim Z = dim Gss+ rank G− rank Gss

≤ (αl − 1) rank Gss+

k∑
i=1

rank Hi + b2(M)

≤ αl

k∑
i=1

rank Hi + b2(M).

This proves the second inequality. The first inequality is trivial. �

Note that if in the situation of Corollary 4.2 the groups Hi are all equal to one of
the groups listed in Table 1 and are all isomorphic and b2(M)= 0, then the left and
right hand sides of the inequality in Corollary 4.2 are equal. Therefore in this case
the degree of symmetry of M×

∏k
i=1 Hi/T is equal to dim

∏k
i=1 Hi . This leads to

the following corollary.

Corollary 4.3. Let G be Spin(2l + 1), Sp(l) with l ≥ 15, or an exceptional simple
compact connected Lie group with maximal torus T . Moreover, let M be a two-
connected manifold with p1(M)= 0 and nonzero Witten genus. Then we have

N
(

M×
k∏

i=1

G/T
)
= k dim G.
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5. An application to torus manifolds

In this section we prove the following theorem.

Theorem 5.1. Up to homeomorphism (diffeomorphism, respectively) there are
only finitely many simply connected torus manifolds M (quasitoric manifolds,
respectively) such that H∗(M;Z)∼= H∗

(
#k

i=1±CPn
;Z
)

with k < n.

Note that if dim M < 6 then this theorem follows directly from the classification
of simply connected torus manifolds of dimension four given by Orlik and Raymond
[1970] and the fact that the sphere is the only two-dimensional torus manifold.

In higher dimensions the proof of the theorem is subdivided into two lemmas.

Lemma 5.2. Let M be a simply connected torus manifold (a quasitoric manifold,
respectively) with H∗(M;Z) ∼= H∗

(
#k

i=1±CPn
;Z
)
, k ∈ N, n ≥ 3. Then up to

finite ambiguity the homeomorphism type (diffeomorphism type, respectively) is
determined by the first Pontrjagin class of M.

Proof. By Theorem 1.1 of [Wiemeler 2015a], Theorem 2.2 of [Wiemeler 2012]
and Theorem 3.6 of [Wiemeler 2015b], it is sufficient to prove that the Poincaré
duals of the characteristic submanifolds of M are determined up to finite ambiguity
by p1(M). The characteristic submanifolds of M are codimension two submanifolds
which are fixed by circle subgroups of the torus which acts on M . Let

u1, . . . , um ∈ H 2
( k

#
i=1
±CPn

;Z

)
be their Poincaré duals. Moreover, we have

H∗ := H∗
( k

#
i=1
±CPn

;Z

)
= Z[v1, . . . , vk]/(viv j , v

n
i ± v

n
j | 1≤ i < j ≤ k)

with deg vi = 2 for i = 1, . . . , k.
Therefore there are αi j ∈ Z such that ui =

∑k
j=1 αi jv j .

Since M is equivariantly formal, it follows from localization in equivariant
cohomology that

p1(M)=
m∑

i=1

u2
i =

k∑
j=1

( m∑
i=1

α2
i j

)
v2

j .

Because the v2
j form a basis of H 4 it follows that for fixed p1(M) there are only

finitely many possibilities for the αi j . Therefore the ui are contained in a finite set
which only depends on p1(M). This proves the lemma. �

Lemma 5.3. Let M be a torus manifold such that H∗(M;Z)∼=H∗
(
#k

i=1±CPn
;Z
)
,

with k < n and n ≥ 3. Then with the notation from the proof of the previous lemma
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we have

p1(M)=
k∑

i=1

βiv
2
i , with 0< βi ≤ n+ 1.

Proof. The inequality 0<βi follows from the formula for p1(M) given in the proof
of the previous lemma. Therefore we only have to show that for all i , βi ≤ n+ 1.

Assume the contrary, i.e., βi0 > n+1 for some i0 ∈ {1, . . . , k}. Since the natural
map H 2(M;Z)→ H 2(M;Z2) is surjective, M is a Spinc manifold. Let αi ∈ {0, 1},
i = 1, . . . , k such that w2(M)≡

∑k
i=1 αivi mod 2.

Then there are two cases, αi0 ≡ n+ 1 mod 2 and αi0 ≡ n mod 2.
We first deal with the first case. Choose a Spinc structure on M such that

cc
1(M)= (n+ 1)vi0 +

∑
i 6=i0

αivi . Because b1(M)= 0 every S1-action on M lifts
into this spinc structure and into all line bundles over M . We can choose these
lifts in such a way that the actions on the fiber of a line bundle over a given fixed
point y ∈ M S1

is trivial. By the relation w2(M)2 ≡ p1(M) mod 2, we know that
βi ≡ α

2
i mod 2. Therefore we have βi0 ≥ n+ 3. Now for x ∈ H 2(M;Z) let L(x)

be the line bundle over M with first Chern class x .
Moreover, let

V = L(2vi0)⊕ L
(
vi0 +

∑
i 6=i0

αivi

)
⊕ (n− 2)L(vi0),

W =
⊕
i 6=i0

(βi −αi )L(vi )⊕ (βi0 − n− 3)L(vi0).

Then we have c1(V )= cc
1(M), p1(V ⊕W 	 TM)= 0 and W is a spin bundle.

Therefore, as in the proof of Theorem 3.3, it follows from Theorem 2.2 and
Lemma 3.1, that ϕc(M; V,W ) = 0 if k < n. This gives a contradiction since a
direct computation shows that

ϕc(M; V,W )= 〈e(V ), [M]〉 = ±2 6= 0.

The case where αi0 ≡ n mod 2 is similar. In this case one has to choose a spinc

structure on M such that cc
1(M)= nvi0+

∑
i 6=i0

αivi . Moreover one has to consider
the bundles

V = L
(
vi0 +

∑
i 6=i0

αivi

)
⊕ (n− 1)L(vi0),

W =
⊕
i 6=i0

(βi −αi )L(vi )⊕ (βi0 − n)L(vi0).

The details are left to the reader. �

Now Theorem 5.1 follows directly from Lemmas 5.2 and 5.3.
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