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Let L be the sublaplacian and T the partial laplacian with respect to central
variables on H-type groups. We investigate a class of invariant differen-
tial operators by the joint functional calculus of L and T . We establish
Stein–Tomas type restriction theorems for these operators. In particular,
the asymptotic behaviors of restriction estimates are given.

1. Introduction

The restriction theorem for the Fourier transform plays an important role in harmonic
analysis as well as in the theory of partial differential equations. The original version
is credited to E. M. Stein and P. A. Tomas, and states that the transform of an Lp-
function on Rn has a well-defined restriction to the unit sphere Sn�1 which is
square integrable on Sn�1. The result is listed as follows:

Theorem 1.1 [Stein 1993; Tomas 1975]. Let 1� p � 2nC2
nC3

. Then the estimate

k Of kL2.Sn�1/ � Ckf kLp.Rn/(1-1)

holds for all functions f 2 Lp.Rn/.

A simple duality argument shows that the estimate (1-1) is equivalent to the
following estimate:

kf �bd�rkp0 � Crkf kp(1-2)

for all Schwartz functions f on Rn, where 1=pC 1=p0 D 1 and d�r is the surface
measure on the sphere with radius r .
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Moreover, according to the Knapp example [Stein 1993], the estimates (1-1) and
(1-2) fail if .2nC 2/=.nC 3/ < p � 2.

Many authors have worked on the topic and various new restriction theorems
have been proved. The study of restriction theorems has recently obtained more
and more attention. A survey of recent progress on restriction theorems can be
found in [Tao 2004]. To generalize the restriction theorem on the Heisenberg
group, D. Müller [1990] established the boundedness of the restriction operator
with respect to the mixed Lp-norm and also gave a counterexample to show that
the estimate between Lebesgue spaces for the restriction operator was necessarily
trivial, due to the fact that the center of the Heisenberg group was of dimension one.
Some extensions have been treated by S. Thangavelu [1991a; 1991b]. Restriction
theorems have been also studied in the case of the Heisenberg motion group by
P. K. Ratnakumar, R. Rawat and S. Thangavelu [Ratnakumar et al. 1997], where
groups with center with dimension higher than one were first considered.

On an H-type group, let T be the laplacian on the center and L the sublaplacian.
It is well known that L is positive and essentially self-adjoint. Let LD

R1
0 �dE.�/

be the spectral decomposition of L. Then the restriction operator can be formally
written P�f D ı�.L/f D lim�!1 �.���;�C�/.L/f which is well defined for a
Schwartz function f , where �.���;�C�/ is the characteristic function of the interval
.�� �; �C �/. Liu and Wang [2011] investigated the restriction theorem for the
sublaplacian L on H-type groups with center whose dimension was greater than
one. They gave the following result:

Theorem 1.2. Let G be an H-type group with the underlying manifold R2nCm,
where m > 1 is the dimension of the center. Suppose 1 � p � .2mC 2/=.mC 3/.
Then the following estimate

kP�f kp0 � C�
2.nCm/

�
1
p�

1
2

�
�1
kf kp; � > 0

holds for all Schwartz functions f on G.

V. Casarino and P. Ciatti [2013a; 2013b] extended the results of Müller, Liu and
Wang to Métivier groups. They proved the restriction theorem for the sublaplacian
and the full laplacian on Métivier groups. In fact, they also investigated the joint
functional calculus of L and T . The invariant differential operators related to the
joint functional calculus of L and T on H-type groups do not have the homogeneous
properties in general. Thus the asymptotic behaviors of restriction estimates for these
operators are also interesting. Casarino and Ciatti [2013a; 2013b] did not discuss
the asymptotic behavior of the full laplacian. In this article we will show restriction
estimates for these operators on H-type groups. In particular, the asymptotic
behaviors of restriction estimates are given.
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The outline of the paper is as follows. In the second section, we provide the
necessary background for the H-type group. In the third section, by introducing
the joint functional calculus of L and T , the restriction operator can be computed
explicitly. In the fourth section, we prove the restriction theorem on H-type groups.
In the fifth section, we describe the restriction theorems for other operators with
the form of the joint functional calculus of L and T . Finally, in the last section, we
show that the range of p in the restriction theorem is sharp.

2. Preliminaries

Definition 2.1 (H-type group). Let g be a two step nilpotent Lie algebra endowed
with an inner product h � ; � i. Its center is denoted by z. The algebra g is said to be
of H-type if Œz?; z?�D z and for every t 2 z, the map Jt W z?! z? defined by

hJtu;wi WD ht; Œu; w�i for all u;w 2 z?

is an orthogonal map whenever jt j D 1.
An H-type group is a connected and simply connected Lie group G whose Lie

algebra is of H-type.

For a given 0¤ a 2 z�, the dual of z, we can define a skew-symmetric mapping
B.a/ on z? by

hB.a/u;wi D a.Œu; w�/ for all u;w 2 z?:

We denote by za the element of z determined by

hB.a/u;wi D a.Œu; w�/D hJzau;wi:

Since B.a/ is skew-symmetric and nondegenerate, the dimension of z? is even, i.e.,
dim z? D 2n.

For a given 0¤ a 2 z�, we can choose an orthonormal basis

fE1.a/; E2.a/; : : : ; En.a/; E1.a/; E2.a/; : : : ; En.a/g

of z? such that
B.a/Ei .a/D jzajJ za

|za |
Ei .a/D jajEi .a/

and
B.a/Ei .a/D�jajEi .a/:

We set mD dim z. Throughout this paper we assume that m> 1. We can choose
an orthonormal basis f�1; �2; : : : ; �mg of z such that a.�1/ D jaj and a.�j / D 0,
j D 2; 3; : : : ; m. Then we can denote the elements of g by

.z; t/D .x; y; t/D

nX
iD1

.xiEi CyiEi /C

mX
jD1

tj �j :
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We identify G with its Lie algebra g via the exponential map. The group law on
H-type group G has the form

.z; t/.z0; t 0/D .zC z0; t C t 0C 1
2
Œz; z0�/;(2-1)

where Œz; z0�j Dhz; Uj z0i for a suitable skew-symmetric matrixUj , j D1; 2; : : : ; m.

Theorem 2.2. G is an H-type group with underlying manifold R2nCm, with the
group law (2-1) and the matrix Uj , j D 1; 2; : : : ; m satisfies the following condi-
tions:

(i) Uj is a 2n� 2n skew-symmetric and orthogonal matrix, j D 1; 2; : : : ; m.

(ii) U iUj CUjU i D 0, where i; j D 1; 2; : : : ; m with i ¤ j .

Proof. See [Bonfiglioli and Uguzzoni 2004]. �

Remark 2.3. In particular, hz; U 1z0i D
Pn
jD1.x

0
jyj �y

0
jxj /.

Remark 2.4. All the above expressions depend on a given 0¤ a 2 z�, but we will
suppress a from them for simplification.

Remark 2.5. It is well know that H-type algebras are closely related to Clifford
modules [Reimann 2001]. H-type algebras can be classified by the standard theory
of Clifford algebras. Especially, on the H-type group G, there is a relation between
the dimension of the center and its orthogonal complement space. That ismC1�2n
(see [Kaplan and Ricci 1983]).

The left invariant vector fields which agree respectively with @=@xj , @=@yj at
the origin are given by

Xj D
@

@xj
C
1

2

mX
kD1

� 2nX
lD1

zlU
k
l;j

�
@

@tk
;

Yj D
@

@yj
C
1

2

mX
kD1

� 2nX
lD1

zlU
k
l;jCn

�
@

@tk
;

where zl D xl , zlCn D yl , l D 1; 2; : : : ; n.
The vector fields Tk D @=@tk , k D 1; 2; : : : ; m correspond to the center of G. In

terms of these vector fields, we introduce the sublaplacian L and full laplacian �
respectively

LD�

nX
jD1

.X2j CY
2
j /D��zC

1
4
jzj2T �

mX
kD1

hz; U krziTk;(2-2)

�D LCT;(2-3)
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where

�z D

2nX
jD1

@2

@z2j
; T D�

mX
kD1

@2

@t2
k

; rz D
�
@

@z1
;
@

@z2
; : : : ;

@

@z2n

�t
:

3. The restriction operator

First we recall some results about the scaled special Hermite expansion. We refer the
reader to [Thangavelu 1993, 2004] for details. Letting � > 0, the twisted laplacian
(or the scaled special Hermite expansion) L� is defined by

L� D��zC
�2jzj2

4
� i�

nX
jD1

�
xj

@

@yj
�yj

@

@xj

�
;

where we identify z D xC iy 2 Cn with z D .x; y/ 2 R2n.
For f; g 2 L1.Cn/, we define the �-twisted convolution by

f �� g D

Z
Cn
f .z�w/g.w/e

1
2
i� Im z�w dw:

Set Laguerre function '�
k
.z/D Ln�1

k

�
1
2
�jzj2

�
e�

1
4
�jzj2 , k D 0; 1; 2; : : :, where

Ln�1
k

is the Laguerre polynomial of type .n� 1/ and degree k.
For any Schwartz function f on Cn, we have the scaled special Hermite expansion

f .z/D
�
�

2�

�n 1X
kD0

f �� '
�
k .z/;(3-1)

which is an orthogonal form. We also have

kf k2 D
�
�

2�

�n 1X
kD0

kf �� '
�
k k
2:(3-2)

Moreover, f ��'�k is an eigenfunction of L� with the eigenvalue .2kCn/� and

kf �� '
�
k k2 � .2kCn/

n
�
1
p�

1
2

�
�1
2�

n
�
1
p�

3
2

�
kf kp for 1� p < 6nC2

3nC4
(3-3)

(see [Thangavelu 1991b]).
Now we turn to the expression for the restriction operator. We may identify z�

with z. Therefore, we will write ha; ti instead of a.t/ for a 2 z� and t 2 z.

Lemma 3.1. Let 0¤ a 2 z�. If f .z; t/D e�iha;ti'.z/, then

Lf .z; t/D e�iha;tiLjaj'.z/:

Proof. Because ha; tiD jajt1 and hz; U 1rziD
Pn
jD1.yj

@
@xj
�xj

@
@yj
/, Lemma 3.1

is easily deduced from the expression (2-2). �
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Set ea
k
.z; t/D e�iha; ti'

jaj

k
.z/. For f 2S .G/, let

f a.z/D

Z
Rm
f .z; t/eiha; ti dt

be the Fourier transform of f with respect to the central variable t . It is easy to
obtain

f � eak.z; t/D e
�iha; tif a �jaj '

jaj

k
.z/:(3-4)

Note that f � ea
k

is an eigenfunction of T with the eigenvalue jaj2. Furthermore, it
follows from Lemma 3.1 that f � ea

k
is an eigenfunction of L with the eigenvalue

.2kCn/jaj. Thus f � ea
k

is a joint eigenfunction of the operators L and T .
For a Schwartz function f on an H-type group, using the inversion formula for

the Fourier transform together with (3-1) and (3-4), we have

f .z; t/D
1

.2�/m

Z
Rm
f a.z/e�iha; ti da

D
1

.2�/m

Z
Rm

�
jajn

.2�/n

1X
kD0

f a �jaj '
jaj

k
.z/

�
e�iha; ti da

D
1

.2�/nCm

Z
Rm

1X
kD0

f � eak.z; t/jaj
n da

D

Z 1
0

�
1

.2�/nCm

1X
kD0

�nCm�1
Z
Sm�1

f � e�Qak .z; t/ d�. Qa/

�
d�:

The operators L and T extend to a pair of strongly commuting self-adjoint
operators. Therefore, they admit a joint spectral decomposition. By the spectral
theorem, we can define the joint functional calculus ofL and T . The joint functional
calculus ofL and T was investigated in [Casarino and Ciatti 2013a]. As in that paper,
we define the operator ı�.h.L; T // for a suitable function h W RC �RC! R as

h.L; T /f .z; t/DZ 1
0

�
1

.2�/nCm

1X
kD0

h
�
.2kCn/�; �2

�
�nCm�1

Z
Sm�1

f � e�Qak .z; t/ d�. Qa/

�
d�;

where we make the assumption on h that the expression on the right-hand side
is a well-defined distribution for all Schwartz functions f . We also suppose
h..2kCn/�; �2/ is a strictly monotonic differentiable positive function of � on RC,
with the domain .A;B/ where 0 � A < B �1. Then for each � 2 .A;B/, the
equation

h..2kCn/�; �2/D �
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may be solved for each k. We denote the solution by �D �k.�/ and �0
k

denotes
the derivative of �k . Replacing � with � in the integral, we obtain

h.L; T /f .z; t/DZ B

A

�

�
1

.2�/nCm

1X
kD0

�nCm�1
k

.�/j�0k.�/j

Z
Sm�1

f � e
�k.�/Qa

k
.z; t/ d�. Qa/

�
d�;

which is the spectral decomposition of h.L; T /.
Thus, given a Schwartz function f , the spectral decomposition with respect to

h.L; T / is

f .z;t/D

Z B

A

�
1

.2�/nCm

1X
kD0

�nCm�1
k

.�/j�0k.�/j

Z
Sm�1

f �e
�k.�/Qa

k
.z;t/d�. Qa/

�
d�:

We can also use this equation to introduce the spectral resolution of h.L; T /, which
is defined by

(3-5) Ph�f .z; t/D ı�.h.L; T //f .z; t/D lim
�!0C

1

2�
�.���;�C�/.h.L; T //f;

where f is a Schwartz function and �.���;�C�/ is the characteristic function of the
interval .�� �; �C �/. We easily find

Ph�f .z; t/D
1

.2�/nCm

1X
kD0

�nCm�1
k

.�/j�0k.�/j

Z
Sm�1

f � e
�k.�/Qa

k
.z; t/ d�. Qa/:

Specifically, for the full laplacian�, h.�; �/D �C�, so we have�D .2kCn/�C�2,
which yields

(3-6) �k.�/D
1

2

q
4�C .2kCn/2�

2kCn

2
and �0k.�/D

1p
4�C.2kCn/2

:

Therefore,

P��f .z; t/D
1

.2�/nCm

1X
kD0

�nCm�1
k

.�/�0k.�/

Z
Sm�1

f � e
�k.�/Qa

k
.z; t/ d�. Qa/:

4. The restriction theorem

Our main result is the following theorem.

Theorem 4.1. Let G be an H-type group with the underlying manifold R2nCm,
where m> 1 is the dimension of the center. Let h.�; �/D �˛C �ˇ , ˛; ˇ > 0. Then



298 HEPING LIU AND MANLI SONG

for 1� p � .2mC 2/=.mC 3/, we have for all Schwartz functions f :

if ˛ < 2ˇ

8<:kPh�f kp0 � C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ > 2ˇ

8<:kPh�f kp0 � C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ D 2ˇ
n
kPh�f kp0 � C�

2
˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < � <1:

First, we have the following abstract statement.

Proposition 4.2. The function h..2k C n/�; �2/ is a strictly monotonic differen-
tiable positive function of � on RC, with the domain .A;B/ where 0�A<B �1.
Then for 1� p � .2mC 2/=.mC 3/, the estimate

kPh�f kp0 � C�kf kp

holds, where

C� � C

1X
kD0

.2kCn/
2n
�
1
p�

1
2

�
�1
�
2.nCm/

�
1
p�

1
2

�
�1

k
.�/j�0k.�/j(4-1)

for all Schwartz functions f and all positive � 2 .A;B/.

The proof of Proposition 4.2 coincides essentially with Theorem 4.1 in [Casarino
and Ciatti 2013a] and we omit it. To obtain our Theorem 4.1, it suffices to show
the convergence of the series in (4-1). Next we will exploit the following estimates,
which can be easily proved by comparing the sums with the corresponding integrals:

Lemma 4.3. Fix � 2 R. There exists C� > 0 such that for A > 0 and n 2 ZC,
we have X

m2N
2mCn�A

.2mCn/� � C�A
�C1; � < �1I(4-2)

X
m2N

2mCn�A

.2mCn/� � C�A
�C1; � > �1:(4-3)

Now Theorem 4.1 follows from the result in the following lemma.

Lemma 4.4. Let h.�; �/D �˛C �ˇ , ˛; ˇ > 0. The series in (4-1) has the estimate
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if ˛ < 2ˇ

8<:C� � C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
; � > 1;

C� � C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
; 0 < �� 1;

if ˛ > 2ˇ

8<:C� � C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
; � > 1;

C� � C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
; 0 < �� 1;

if ˛ D 2ˇ
n
C� � C�

2
˛ .nCm/

�
1
p�

1
2

�
�1
; 0 < � <1:

Proof. The function h.�; �/D �˛C�ˇ , ˛; ˇ >0, so �D .2kCn/˛�˛
k
.�/C�

2ˇ

k
.�/,

which yields

�0k.�/D
1

˛.2kCn/˛�˛�1
k

.�/C2ˇ�
2ˇ�1

k
.�/

:

To study the convergence of this series, we need to distinguish three cases according
to the relation of ˛ and 2ˇ: ˛ < 2ˇ, ˛ > 2ˇ and ˛ D 2ˇ. In order not to burden
the exposition, we only prove the case ˛ < 2ˇ, and the other cases are analogous.

If ˛ < 2ˇ, then when � � 1, it is easy to see that �k.�/ � �
1
˛ =.2kCn/ and

�0
k
.�/� �

1
˛�1=.2kCn/, so that the series

(4-4)

C� � C

1X
kD0

.2kCn/
2n
�
1
p�

1
2

�
�1
�
2.nCm/

�
1
p�

1
2

�
�1

k
.�/j�0k.�/j

� C

1X
kD0

.2kCn/
2n. 1p�

1
2
/�1

�
�
1
˛

2kCn

�2.nCm/� 1p�12��1 � 1
˛
�1

2kCn

� C�
2
˛ .nCm/

�
1
p�

1
2

�
�1
1X
kD0

1

.2kCn/
2m
�
1
p�

1
2

�
C1

� C�
2
˛ .nCm/

�
1
p�

1
2

�
�1

converges.
When � > 1, we split the sum into two parts, the sum over those k such that

.2kC n/˛�˛
k
.�/� �2ˇ .�/ and those such that .2kC n/˛�˛

k
.�/ < �2ˇ .�/. They

are denoted by I and II respectively.
For the first part, .2kCn/˛�˛

k
.�/� �2ˇ .�/ implies

�k.�/�
�
1
˛

2kCn
; �0k.�/�

�
1
˛�1

2kCn
; and 2kCn� �

2ˇ�˛
2˛ˇ :
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Then we control the first part I by

I� C
X

2kCn��
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1
�
2.nCm/

�
1
p�

1
2

�
�1

k
.�/j�0k.�/j

� C
X

2kCn��
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1

�
�
1
˛

2kCn

�2.nCm/� 1p�12��1 � 1˛�1
2kCn

� C�
2
˛ .nCm/

�
1
p�

1
2

�
�1

X
2kCn��

2ˇ�˛
2˛ˇ

1

.2kCn/
2m
�
1
p�

1
2

�
C1
:

By (4-2), we have

I� C�
2
˛ .nCm/

�
1
p�

1
2

�
�1 1

�
2ˇ�˛
2˛ˇ

�
2m
�
1
p�

1
2

�� � C� 2˛ �nC ˛
2ˇ
m
��
1
p�

1
2

�
�1
:(4-5)

For the second part, .2kCn/˛�˛
k
.�/ < �2ˇ .�/ implies

�k.�/� �
1
2ˇ ; �0k.�/� �

1
2ˇ
�1
; and 2kCn < �

2ˇ�˛
2˛ˇ :

Then we control the second part II by

II� C
X

2kCn<�
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1
�
2.nCm/

�
1
p�

1
2

�
�1

k
.�/j�0k.�/j

� C
X

2kCn<�
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1

�
�
1
2ˇ

�2.nCm/� 1p�12��1
�
1
2ˇ
�1

� C�
1
ˇ
.nCm/

�
1
p�

1
2

�
�1 X

2kCn<�
2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1
:

Because 1 � p � .2mC 2/=.mC 3/, we obtain 2n
�
1
p
�
1
2

�
� 1 � �1. Hence, by

(4-3) we getX
2kCn<�

2ˇ�˛
2˛ˇ

.2kCn/
2n
�
1
p�

1
2

�
�1 . �

2ˇ�˛
2˛ˇ

�
2n
�
1
p�

1
2

��
D �

�
2
˛�

1
ˇ

�
n
�
1
p�

1
2

�
:

Thus, for the second part we also have

(4-6) II� C�
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
:
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Finally, the estimate for the case ˛ < 2ˇ follows from (4-4), (4-5) and (4-6).
This completes the proof of the first case.

Combining Proposition 4.2 and Lemma 4.4, Theorem 4.1 comes out easily. �

Especially, in the case �D LC T , h.�; �/D � C �, we obtain the restriction
theorem associated with the full laplacian on H-type groups.

Corollary 4.5. For 1� p � .2mC 2/=.mC 3/, the estimates

kP��f kp0 � C�
.2nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1

and

kP��f kp0 � C�
2.nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1

hold for all Schwartz functions f .

5. Examples

Similarly to what we have done so far in Theorem 4.1, we now discuss other
operators with the form of the joint functional calculus of L and T . We obtain
the following results. We omit the arguments which are really similar to that of
Theorem 4.1.

Example 5.1. Let h.�; �/D .�˛C�ˇ /�1, ˛; ˇ >0. For 1�p� .2mC2/=.mC3/,
we have for all Schwartz functions f :

if ˛ < 2ˇ

8<:kPh�f kp0 � C�
� 2˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
� 2˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ > 2ˇ

8<:kPh�f kp0 � C�
� 2˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
� 2˛ .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ D 2ˇ
n
kPh�f kp0 � C�

� 2˛ .nCm/
�
1
p�

1
2

�
�1
kf kp; 0 < � <1:

Example 5.2. Let h.�; �/D .1C�/�1. For 1�p� .2mC2/=.mC3/, the estimates

kPh�f kp0 � C�
�2.nCm/

�
1
p�

1
2

�
�1
kf kp; when �! 0C;

and

kPh�f kp0 � C.1��/
2.nCm/

�
1
p�

1
2

�
�1
kf kp; when �! 1�;

hold for all Schwartz functions f .

More generally, we have:
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Example 5.3. Let h.�; �/D .�˛C�ˇ /
 , ˛; ˇ; 
 >0. For 1�p� .2mC2/=.mC3/,
we have for all Schwartz functions f :

if ˛ < 2ˇ

8<:kPh�f kp0 � C�
2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ > 2ˇ;

8<:kPh�f kp0 � C�
2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ D 2ˇ
n
kPh�f kp0 � C�

2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < � <1:

Example 5.4. Letting h.�; �/ D .�˛ C �ˇ /�
 , ˛; ˇ; 
 > 0, then for 1 � p �
.2mC 2/=.mC 3/, we have for all Schwartz functions f :

if ˛ < 2ˇ

8<:kPh�f kp0 � C�
� 2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
� 2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ > 2ˇ

8<:kPh�f kp0 � C�
� 2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp; � > 1;

kPh�f kp0 � C�
� 2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < �� 1;

if ˛ D 2ˇ
n
kPh�f kp0 � C�

� 2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp; 0 < � <1:

Example 5.5. Let h.�; �/ D .1C �˛ C �ˇ /�
 , ˛; ˇ; 
 > 0. Then for 1 � p �
.2mC 2/=.mC 3/, we have for all Schwartz functions f :

if ˛ � 2ˇ

8<:kPh�f kp0 � C�
� 2
˛


�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp when �! 0C;

kPh�f kp0 � C.1��
1

 /
2
˛ .nCm/

�
1
p�

1
2

�
�1
kf kp when �! 1�;

if ˛ > 2ˇ

8<:kPh�f kp0 � C�
� 2
˛
 .nCm/

�
1
p�

1
2

�
�1
kf kp when �! 0C;

kPh�f kp0 � C.1��
1

 /
2
˛

�
nC ˛

2ˇ
m
��
1
p�

1
2

�
�1
kf kp when �! 1�:

6. Sharpness of the range p

In this section we only give an example to show that the range of p in the restriction
theorem associated with the full laplacian � is sharp. The example is constructed
similarly to the counterexample of Müller [1990], which shows that the estimates
between Lebesgue spaces for the operators P�� are necessarily trivial.

Let '2C1c .R
m/ be a radial function such that '.a/D .jaj/, where 2 C1c .R/,

with  D 1 on a neighborhood of the point n and  D 0 near 0. Let h be a Schwartz
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function on Rm and define

f .z; t/D

Z
Rm
'.a/ Oh.a/e

�
jaj
4
jzj2
e�iha;tijajn da:

Denote

g.z; t/D

Z
Rm
'.a/e

�
jaj
4
jzj2
e�iha;tijajn da

D

Z
RmC2n

'.a/e
�
j�j2

jaj e�i.ha;tiCh�;zi/ d� da:

Hence 2g.�; a/D '.a/e�
j�j2

jaj , which shows that Og and consequently g are Schwartz
functions. On the other hand, we have f D h �t g, where �t denotes the involu-
tion about the central variable. By Lemma 3.1, we have �

�
e�iha;tie�

1
4
jajjzj2

�
D

.n�C�2/e�iha;tie�
1
4
jajjzj2 . Therefore, we write f by the integration with polar

coordinates as

f .z; t/D

Z 1
0

�
�nCm�1 .�/e

��
4
jzj2

Z
Sm�1

Oh.�w/e�i�hw;ti d�.w/

�
d�

D

Z 1
0

�
��.�/

nCm�1�0�.�/ .��.�//e
�
��.�/
4
jzj2

Z
Sm�1

Oh.��.�/w/e
�i��.�/hw;ti d�.w/

�
d�

D

Z 1
0

P��f .z; t/ d�;

where

P��f .z; t/D ��.�/
nCm�1�0�.�/ .��.�//e

�
��.�/

4
jzj2

�

Z
Sm�1

Oh.��.�/w/e
�i��.�/hw;ti d�.w/;

��.�/D

p
n2C 4��n

2
:

Therefore, letting �D 2n2, we have ��.2n2/D n, �0�.2n
2/D 1=.3n/ and

P�
2n2
f .z; t/D 1

3
nnCm�2e�

njzj2

4

Z
Sm�1

Oh.nw/e�inhw;ti d�.w/

D
1
3
nn�1e�

njzj2

4 h�bd�n.t/:
From the restriction theorem associated the full laplacian on H-type groups, we
have the estimate kP�

2n2
f kLp0 .G/ � Ckf kLp.G/.
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Because of

kP�
2n2
f kLp0 .G/ D Ckh�

bd�nkLp0 .Rm/(6-1)

and

kf kLp.G/ � khkLp.Rm/kgkL1tL
p
z
. khkLp.Rm/;(6-2)

where the mixed Lebesgue norm is defined by

kgkL1tL
p
z
D

�Z
R2n

�Z
Rm
jf .z; t/j dt

�p
dz

� 1
p

;

we have kh�bd�nkLp0 .Rm/ � CkhkLp.Rm/.
From the sharpness of the Stein–Tomas theorem which is guaranteed by the

Knapp counterexample, this would imply p � .2mC 2/=.mC 3/. Hence the range
of p can not be extended. With the same tricks we can prove the range of p for the
restriction theorem associated with the functional calculus is also sharp.
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