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CALCULATING GREENE’S FUNCTION
VIA ROOT POLYTOPES AND SUBDIVISION ALGEBRAS

KAROLA MÉSZÁROS

Greene’s rational function 9P (x) is a sum of certain rational functions in
x = (x1, . . . , xn) over the linear extensions of the poset P (which has n
elements), which he introduced in his study of the Murnaghan–Nakayama
formula for the characters of the symmetric group. In recent work Boussi-
cault, Féray, Lascoux and Reiner showed that 9P (x) equals a valuation on a
cone and calculated 9P (x) for several posets this way. In this paper we give
an expression for 9P (x) for any poset P. We obtain such a formula using
dissections of root polytopes. Moreover, we use the subdivision algebra of
root polytopes to show that in certain instances 9P (x) can be expressed
as a product formula, thus giving a compact alternative proof of Greene’s
original result and its generalizations.

1. Introduction

Given a poset P on the set [n]= {1, . . . , n}, Greene’s rational function is defined by

(1-1) 9P(x)=
∑

w∈L(P)

w

(
1

(x1− x2)(x2− x3) · · · (xn−1− xn)

)
,

where L(P) denotes the set of linear extensions of P and for w ∈ L(P) and a
function f (x1, . . . , xn) we have that w( f (x1, . . . , xn)) = f (xw(1), . . . , xw(n)). It
was introduced by Greene [1992] in his work on the Murnaghan–Nakayama formula.
Boussicault, Féray, Lascoux and Reiner [Boussicault et al. 2012] showed that

(1-2) 9P(x)= s(K root
P ; x),

where

(1-3) K root
P = R+{ei − ej | i <P j} = R+{ei − ej | i lP j}
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and

(1-4) s(K ; x) :=
∫

K
e− spanR+

(x,v) dv,

for K a polyhedral cone in a Euclidean space V with inner product spanR+
( · , · ).

Next we explain two important results about calculating 9P(x). Further work
on 9P(x) appeared in [Boussicault 2007; 2009; Boussicault and Féray 2009; Ilyuta
2009].

Greene’s theorem. Let P be a strongly planar poset, meaning that the Hasse
diagram of P t{0̂, 1̂} has a planar embedding with all edges directed upward in the
plane. For a strongly planar poset P the edges of the Hasse diagram of P dissect
the plane into bounded regions ρ such that the set of vertices of P in the boundary
of ρ are two chains starting and ending at the same two elements, min(ρ) and
max(ρ), respectively. Denote by b(P) the set of bounded regions into which the
Hasse diagram of P dissects the plane.

Greene’s theorem [Greene 1992]. For any strongly planar poset P,

(1-5) 9P(x)=
∏
ρ∈b(P)(xmin(ρ)− xmax(ρ))∏

ilP j (xi − x j )
.

Boussicault’s, Féray’s, Lascoux’s and Reiner’s theorem. A beautiful theorem ap-
pearing in [Boussicault et al. 2012] gives an expression for9P(x) for some posets P
whose Hasse diagrams are bipartite graphs in terms of certain lattice paths. The
setup is as follows. Let D be a skew Ferrers diagram in English notation, and let
us labels its rows from top to bottom by 1, 2, . . . , r and its columns from right to
left by 1, 2, . . . , c. See the left of Figure 1. With this labeling the northeasternmost
point of D is (1, 1) and the southwesternmost is (r, c). The bipartite poset PD is a
poset on the set {x1, . . . , xr , y1, . . . , yc} with order relations xi <P yj if and only
if (i, j) ∈ D.

BFLR theorem [Boussicault et al. 2012]. For any skew diagram D,

(1-6) 9PD (x)=
∑
π

1∏
(i, j)∈π (xi − yj )

,

where the sum runs over all lattice paths π from (1, 1) to (r, c) inside D that take
steps either one unit south or one unit west.

Roadmap of the paper. The objective of this paper is to (1) give a combinatorial
expression of 9P(x) for any poset P, (2) give an alternative proof of the BFLR
theorem and (3) generalize Greene’s theorem. We accomplish (1) and (2) in
Section 2, while we do (3) in Sections 3 and 4. In Sections 3 and 4 we also study
the integer point transform of the root cone, which can be seen as a more refined
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invariant of the cone than Greene’s function. The integer point transform of the root
cone and generalizations of Greene’s theorem were also investigated in [Boussicault
et al. 2012]. Our tools will be root polytopes and their subdivision algebras, the
latter of which were introduced in [Mészáros 2011] and put to use in [Escobar and
Mészáros 2015a; 2015b; Mészáros 2015a; 2015b; 2016a; 2016b; Mészáros and
Morales 2015].

2. Greene’s function for an arbitrary poset

The purpose of this section is twofold. First we show how to express 9P(x) for
any poset P in terms of 9P(x) for posets P whose Hasse diagrams are alternating
graphs. Then we give an expression for 9P(x) for posets whose Hasse diagrams
are alternating graphs, thereby also obtaining an expression for 9P(x) for any
poset P. Finally, we show that for certain posets P whose Hasse diagrams are
bipartite graphs we can write 9P(x) as a nice summation formula. The latter
result originally appeared in the work of Boussicault, Féray, Lascoux and Reiner
[Boussicault et al. 2012], who used triangulations of order polytopes in their proof.
We phrase our proof in terms of root polytopes. The point of view of this paper is
that (dissections of) root polytopes (and the root cone) are the unifying approach to
the calculation of 9P(x).

A root polytope (of type An−1) is the convex hull of the origin and some of the
points ei −ej for 1≤ i < j ≤ n. Given a graph G on the vertex set [n] we associate
to it the root polytope

(2-1) Q̃G = ConvHull
(
0, ei − ej | (i, j) ∈ E(G), i < j

)
.

It can be seen that Q̃G is a simplex if and only if G is acyclic and to emphasize this
we sometimes denote Q̃G for acyclic graphs G by 1̃G . In the proof of Lemma 4.2
we will also use the notation

(2-2) 1F = ConvHull
(
ei − ej | (i, j) ∈ E(F), i < j

)
for a forest F.

The posets P we work with in this section are on the set [n] and they are labeled
naturally; that is to say that if i <P j then i < j in the order of natural numbers.
Note that this does not pose a restriction on the results, it only makes them easier to
state. Denote by H(P) the graph of the Hasse diagram of P. The directed transitive
closure of a graph H is denoted by H, and it is the graph on vertex set V (G) with
edges (i, j) ∈ H if there is an increasing path from i to j in H.

9P(x) in terms of alternating posets. This subsection explains how to reduce the
computation of 9P(x) to the computation of 9P(x) for posets P whose Hasse
diagram is an alternating graph. A graph G on the vertex set [n] is called alternating
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if there are no edges (i, j) and ( j, k) in it with i < j < k. We call a poset on [n] an
alternating poset if its Hasse diagram is an alternating graph.

Proposition 2.1. For any naturally labeled poset P on [n] we can write

(2-3) 9P(x)=
∑
L ,R

9PL ,R (x),

where the summation runs over all L , R such that L t R = [n], and

GL ,R =
(
[n], {(i, j) ∈ E(G) | i ∈ L , j ∈ R, i < j}

)
is a connected graph, where G = H(P). Furthermore, H(PL ,R) = GL ,R for a
naturally labeled alternating poset PL ,R .

Proof. Recall that 9P(x) = s(K root
P ; x). If K root

P =
⋃l

i=1 Ki for interior disjoint
cones Ki with i ∈ [l] then s(K root

P ; x) =
∑l

i=1 s(Ki ; x). If Ki = K root
Pi

for some
posets Pi with i ∈ [l] then 9P(x) =

∑l
i=19Pi (x). Therefore, to prove (2-3), it

suffices to show that K root
P =

⋃
L ,R K root

PL ,R
, where the union runs over all L , R such

that L t R = [n], GL ,R is a connected graph (G =H(P)) and H(PL ,R)= GL ,R for
a naturally labeled poset PL ,R .

Since K root
P = R+{ei − ej | i <P j}, if Q̃G =

⋃
Q̃GL ,R (the Q̃GL ,R are interior

disjoint), where the union runs over all L , R such that L t R = [n], and GL ,R

is a connected graph, then we also obtain that K root
P =

⋃
L ,R K root

PL ,R
for interior

disjoint cones K root
PL ,R

. The equation Q̃G =
⋃

Q̃GL ,R follows from [Postnikov 2009,
Proposition 13.3] together with the observation that G = G for our choice of G. �

We note that the cones K root
PL ,R

are generally not simplicial. One way to compute
9PL ,R (x) would be to triangulate K root

PL ,R
into simplicial cones with rays of the form

ei−ej , since for such a cone the following simple lemma gives the value of Greene’s
function.

Lemma 2.2 [Boussicault et al. 2012]. The cone K root
P is simplicial if and only if the

Hasse diagram of P contains no cycles. In this case it is also unimodular and

9P(x)=
1∏

ilP j (xi − x j )
.

We remark that a proof of Lemma 2.2 different from that given in [Boussicault
et al. 2012] follows immediately using the subdivision algebra of root polytopes
defined in [Mészáros 2011].

Calculating 9P(x) for an alternating poset P. In light of Proposition 2.1, if we
can calculate 9P(x) for an alternating poset P, then we can in turn calculate 9P(x)
for any poset P. In this section we accomplish the former, building on the results of
Li and Postnikov [2015]. The next paragraph follows the exposition of that paper.
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Given an alternating graph G on the vertex set [n], pick a linear order O on the
edges of G. Let T be a spanning tree of G, and let e be an edge that does not belong
to T. Let C be the unique cycle contained in the graph ([n], E(T )∪ {e}). Let e∗

be the maximal edge in the cycle C in the linear ordering O of the edges. We say
that an edge e is externally semiactive if either e = e∗ or there is an odd number
of edges in C between e and e∗. (Since G is alternating, all cycles in G have an
even length.) Let extOG(T ) be the number of externally semiactive edges of G with
respect to a spanning tree T.

Theorem 2.3 [Li and Postnikov 2015]. Given an alternating graph G and a linear
ordering O of its edges, let T O

G be the set of spanning trees T with extOG(T ) = 0.
Then

(2-4) Q̃G =
⋃

T∈T O
G

1̃T ,

where the simplices 1̃T are interior disjoint.

Corollary 2.4. For any naturally labeled poset P on [n] we can write

(2-5) 9P(x)=
∑
L ,R

∑
T∈T

OL ,R
GL ,R

1∏
(i, j)∈E(T ),i< j (xi − x j )

,

where the summation runs over all L , R such that L t R = [n], and

GL ,R =
(
[n], {(i, j) ∈ E(G) | i ∈ L , j ∈ R, i < j}

)
is a connected graph, where G =H(P). Furthermore, OL ,R is an arbitrary linear
order of the edges of GL ,R .

Proof. The proof follows from Proposition 2.1, Lemma 2.2 and Theorem 2.3. �

We remark that we obtained Corollary 2.4 from a particular dissection of the
root polytope ConvHull(0, ei −ej | ei <P ej ) into simplices. Such a dissection then
induced a dissection of K root

P =R+{ei−ej | ei <P ej } into simplicial cones. Since we
know that K root

P =R+{ei − ej | ei lP ej }, instead of ConvHull(0, ei − ej | ei <P ej )

one could also dissect ConvHull(0, ei − ej | ei lP ej ) into simplices and obtain an
expression with fewer terms for9P(x). However, since such a dissection also would
not in general yield significantly fewer terms, we find the expression presented
in Corollary 2.4 a fine representative of what a general formula for 9P(x) for an
arbitrary poset P can look like. We devote the next section to particularly nice
formulas for9P(x) for special posets P, also demonstrating that in certain instances
we can expect the formula presented in Corollary 2.4 to be far better than the formula
given in (1-1), although this is not always the case.
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An alternative proof of the BFLR theorem. Let PD be the poset of a connected
skew diagram D as in the BFLR theorem. Let GD be the graph H(PD) drawn on a
line with vertices from left to right, xr , . . . , x1, y1, . . . , yc, and with edges as arcs
above this line. Note that the condition that GD comes from PD can be translated
into the conditions that GD is bipartite on parts {x1, . . . , xr } and {y1, . . . , yc} and
for each i ∈ [r ], xi is connected to yj for j ∈ [ai , bi ], i ∈ [r ], where a1 ≤ · · · ≤ ar

and b1 ≤ · · · ≤ br and [1, c] =
⋃r

i=1[ai , bi ].
Given a drawing of a graph G such that its vertices v1, . . . , vn are arranged in

this order on a horizontal line and its edges are drawn above this line, we say that G
is noncrossing if it has no edges (vi , vk) and (vj , vl) with i < j < k < l. A vertex vi

of G is said to be nonalternating if it has both an incoming and an outgoing edge;
it is called alternating otherwise. The graph G is alternating if all its vertices are
alternating.

Lemma 2.5. The root polytope Q̃GD decomposes into Q̃GD =
⋃

T 1̃T , where the
union runs over all noncrossing alternating trees of GD and the simplices 1̃T are
interior disjoint.

Since noncrossing depends on the drawing of the graph it is essential that we
remember that we drew GD with vertices from left to right: xr , . . . , x1, y1, . . . , yc.

Proof of Lemma 2.5. Consider the following ordering O on the edges of GD . The
edges incident to yi precede the edges incident to yj in the ordering O if 1≤ i< j ≤c.
Moreover, if edges (xa, yk) and (xb, yk) are incident to yk for some k ∈ [c] with
1≤ a < b≤ r , then (xa, yk) precedes (xb, yk) in the ordering O. We claim that then
the spanning trees T of GD with extOGD

= 0 are exactly the noncrossing alternating
trees of GD and then the lemma follows from Theorem 2.3. Indeed, note that
given any noncrossing alternating tree T of GD and an edge e ∈ E(GD)− E(T ),
in the unique cycle C of the graph T with the edge e adjoined, the edge e is
always 0 edges away from the largest edge of C in the ordering O. Thus, for any
noncrossing alternating tree T of GD we have extOGD

= 0. On the other hand, given
a crossing alternating spanning tree T ′ of GD (note that all spanning trees of GD

are alternating) let the edges (xi , yj ) and (xk, yl) cross with k > i and l < j . Since
D is a connected skew diagram, both of the edges (xk, yj ) or (xi , yl) are contained
in GD . Since T ′ is a spanning tree of GD , it follows that exactly one of the edges
from {(xk, yj ), (xi , yl)} is in it. Adjoining the other edge as edge e we see that it is
an externally semiactive edge for T , concluding the proof. �

Lemma 2.6. The noncrossing alternating spanning trees of GD are in bijection
with the lattice paths π from (1, 1) to (r, c) inside D that take steps either one unit
south or one unit west.
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y6 y5 y4 y3 y2 y1
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x3

x4

x5 x5 x4 x3 x2 x1 y1 y2 y3 y4 y5 y6

⇐⇒

Figure 1. The correspondence between noncrossing alternating
spanning trees of GD and lattice paths from (1, 1) to (r, c) inside D
that take steps either one unit south or one unit west.

Proof. The bijection is given by the map that takes a noncrossing alternating
spanning tree T =

(
{xr , . . . , x1, y1, . . . , yc}, {(xi , yj ) | (i, j) ∈ S(T )}

)
of GD to the

path π = S(T ). See Figure 1. �

Given a graph G on the vertex set [n] such that if (i, j) ∈ E(G) then the only
increasing path from i to j in G is the edge (i, j) itself, we can define the naturally la-
beled poset PG to be one on the set [n]with Hasse diagram given by (the edges of) G.

Corollary 2.7 (BFLR theorem). For any skew diagram D,

(2-6) 9PD (x)=
∑
π

1∏
(i, j)∈π (xi − yj )

,

where the sum runs over all lattice paths π from (1, 1) to (r, c) inside D that take
steps either one unit south or one unit west.

Proof. By Lemma 2.5 we have that the cone K root
PD

is triangulated into simplicial
cones K root

PT
, where the T ’s run over all noncrossing alternating spanning trees

of GD. By Lemma 2.6 the latter trees are in bijection with lattice paths π from
(1, 1) to (r, c) inside D that take steps either one unit south or one unit west, and
thus by Lemma 2.2 we obtain the corollary. �

Our proof for Corollary 2.7 is a special case of the proof of Corollary 2.4. We
note that the formula for 9PD (x) given in Corollary 2.7 is substantially different
from the expression given in (1-1). We can see this for example by looking at the
number of terms that can appear in each. When D is a diagram in the shape of
an r × c rectangle, then in (1-1) we are summing over all linear extensions of the
poset PD yielding r !c! terms. In comparison, in Corollary 2.7 we have

(r+c−2
r−1

)
terms corresponding to the lattice paths from (1, 1) to (r, c) inside D. The latter
in general can be larger than the former. However, if instead we take D to be the
skew shape D = (n, n− 1, . . . , 1) \ (n− 2, n− 3, . . . , 1), then in Corollary 2.7 we
have a single term and in (1-1) we are summing over all linear extensions of the
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zigzag poset PD . In this case the number of terms in (1-1) is larger than n!(n− 1)! ,
which is many more than the one term in Corollary 2.7.

3. Lifting Greene’s theorem to the subdivision algebra

The objective of this section is to generalize Greene’s theorem to a relation in the
subdivision algebra of root polytopes. Subdivision algebras of root polytopes were
introduced and studied in [Mészáros 2011], where they were used for triangulating
root polytopes. Subdivision algebras were also utilized for subword complexes and
flow polytopes in [Escobar and Mészáros 2015a; Mészáros 2015a; 2015b; 2016a;
2016b; Mészáros and Morales 2015]. We will see in this section that both Greene’s
theorem and an analogous one for the integer point transform of the root cone are
special cases of a relation in the subdivision algebra.

We begin by explaining how to use subdivision algebras to subdivide root
cones K root

P . Since Greene’s function of a poset P is a valuation on a root cone K root
P

and we know its expression for unimodular root cones, if we triangulate K root
P into

unimodular root cones, then we obtain a way to calculate Greene’s function of P.

Root cones C(G) and their subdivisions. We establish a simpler notation for root
cones here. For an arbitrary loopless graph G, define the root cone

(3-1) C(G) := spanR+

(
ei − ej | (i, j) ∈ E(G), i < j

)
.

In order for C(G) and C(H) to be distinct for distinct graphs G and H , we will
mostly consider good graphs G, which are loopless graphs such that if there is an
increasing path from vertex i to vertex j in G, which is not the edge (i, j), then the
edge (i, j) is not present in G. (In particular, G contains no multiple edges.) Given
a graph H let g(H) be the unique good graph on the vertex set V (H) such that
C(H)= C(g(H)). The graph g(H) can be obtained from H by repeated removal
of edges (i, j) for which there is an increasing path between i and j other than the
edge (i, j). In particular, all multiple edges are removed in order to obtain g(H).
An important property of root cones is given in the cone reduction lemma below,
which can be expressed through reduction rules on graphs, as we now explain.

The reduction rule for graphs: given a graph G0 on the vertex set [n] and
(i, j), ( j, k) ∈ E(G0) for some i < j < k, let G1,G2,G3 be graphs on the vertex
set [n] with edge sets

(3-2)

E(G1)= E(G0) \ {( j, k)} ∪ {(i, k)},

E(G2)= E(G0) \ {(i, j)} ∪ {(i, k)},

E(G3)= E(G0) \ {(i, j), ( j, k)} ∪ {(i, k)}.

We say that G0 reduces to G1,G2 and G3 under the reduction rules defined by
equations (3-2).
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For a good graph G we define two edges (i, j), ( j, k) ∈ E(G), i < j < k, to be
a good pair of edges of G if they belong to a common cycle in G, or if neither of
them belongs to any cycle in G.

Lemma 3.1 (cone reduction lemma; cf. [Mészáros 2011]). Given a good graph G0

let (i, j), ( j, k) ∈ E(G0) be a good pair of edges of G0 for some i < j < k and
G1,G2 as described by equations (3-2). Then

(3-3) C(G0)= C(G1)∪ C(G2)

and

(3-4) C(G3)= C(G1)∩ C(G2),

where the cones C(G0), C(G1), C(G2) are of the same dimension and C(G3) is a
facet of both C(G1) and C(G2).

For convenience we include a proof of Lemma 3.1 here. It is an adaptation of
the proof from [Mészáros 2011], where it was written for acyclic graphs.

Proof. Let the edges of G0 be f1= (i, j), f2= ( j, k), f3, . . . , fk . Let v( f1), v( f2),

v( f3), . . . , v( fk) denote the vectors that the edges of G0 correspond to under the
correspondence v : (i, j) 7→ ei − ej , where i < j . By equations (3-2),

C(G0)= spanR+
(v( f1), v( f2), v( f3), . . . , v( fk)),

C(G1)= spanR+
(v( f1), v( f1)+v( f2), v( f3), . . . , v( fk)),

C(G2)= spanR+
(v( f1)+v( f2), v( f2), v( f3), . . . , v( fk)),

C(G3)= spanR+
(v( f1)+v( f2), v( f3), . . . , v( fk)).

Thus, if C(G0) is d-dimensional, so are the cones C(G1) and C(G2), while cone
C(G3) is at least (d−1)-dimensional (and at most d-dimensional). We note that
dim(C(G3)) 6= d because G0 is a good graph and f1 and f2 are a good pair of edges.

Clearly, C(G1)∪C(G2)⊂ C(G0). Given an expression of a vector v ∈ C(G0) as a
nonnegative linear combination of the vectors v( f1), v( f2), v( f3), . . . , v( fk) it sat-
isfies either that the coefficient of v( f1) in such an expression is greater than or equal
to the coefficient of v( f2) in the expression, or it is not. In the former case we see
that v ∈ C(G1) and in the latter case v ∈ C(G2). Therefore, C(G0)= C(G1)∪C(G2).

Clearly, C(G3)⊂ C(G1)∩ C(G2). Given an expression of a vector v ∈ C(G1) as
a nonnegative linear combination of the vectors v( f1), v( f2), v( f3), . . . , v( fk), the
coefficient of v( f1) is greater than or equal to the coefficient of v( f2). Similarly,
given an expression of a vector v ∈ C(G2) as a nonnegative linear combination of
the vectors v( f1), v( f2), v( f3), . . . , v( fk), the coefficient of v( f1) is less than or
equal to the coefficient of v( f2). Thus, there is an expression of v ∈ C(G1)∩C(G2)

as a nonnegative linear combination of the vectors v( f1), v( f2), v( f3), . . . , v( fk)
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such that the coefficient of v( f1) is equal to the coefficient of v( f2). Therefore,
C(G1)∩ C(G2)⊂ C(G3), leading to C(G1)∩ C(G2)= C(G3). �

The subdivision algebra, Greene’s theorem and the integer point transform of a
root cone. In this subsection we explain the subdivision algebra and show how it
yields a slick proof for Greene’s theorem and its generalization.

A graph G can be encoded by the monomial m[G] =
∏
(i, j)∈E(G),i< j xi j and the

reduction rule going from G0 to G1, G2 and G3 can be encoded by the equation
xi j x jk = xik(xi j + x jk +β). We define the subdivision algebra Sn of root polytopes
as the commutative algebra generated by the variables xi j , 1≤ i < j ≤ n, subject
to the relations xi j x jk = xik(xi j + x jk +β) for 1≤ i < j < k ≤ n.

Let us explain the connection of the subdivision algebra to Greene’s function.
If we set β = 0, then the relation xi j x jk = xik(xi j + x jk) of Sn is satisfied by
xi j := 1/(xi − x j ), which are the kind of terms appearing in Greene’s function. If
instead, we set β =−1, then the relation xi j x jk = xik(xi j+x jk−1) of Sn is satisfied
by xi j := 1/(1− xi/x j ). The latter will play a part in calculating the integer point
transform σK root

P
(x) of the root cone K root

P ⊂ Zd defined as

(3-5) σK root
P
(x) :=

∑
m∈K root

P ∩Zd

xm.

The function σK root
P
(x) can be seen as a finer invariant of the cone than 9P(x), as

explained in [Boussicault et al. 2012, Section 2.4]. We note that in that paper the
integer point transform σK root

P
(x) is denoted as H(K root

P ; X) and is referred to as
the Hilbert series of the affine semigroup ring of the root cone. We chose to follow
the more geometric name and notation of [Beck and Robins 2007, Section 3.2].

We are now ready to prove the following generalization of Greene’s theorem via
the subdivision algebra, which first appeared in [Boussicault et al. 2012]:

Theorem 3.2 [Boussicault et al. 2012, Corollary 8.10]. For any (connected) strongly
planar poset P on [n] we have

(3-6) σK root
P
(x)=

∏
ρ∈b(P)(1− xmin(ρ)/xmax(ρ))∏

ilP j (1− xi/x j )

and

(3-7) 9P(x)=
∏
ρ∈b(P)(xmin(ρ)− xmax(ρ))∏

ilP j (xi − x j )
,

where ρ runs through all bounded regions of the Hasse diagram.

Proof. Since P is a connected strongly planar poset, it follows that its Hasse
diagram is a good graph on the vertex set [n] such that for every cycle C of G
the only alternating vertices of C (considered within C), that is vertices that have
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Figure 2. In reducing an increasing path we always pick the top-
most leftmost edges in the path and its offsprings to do reductions
on. For a graph G0 the arrow to the left points to G1, the middle
arrow to G3, and the right arrow to G2, as in equations (3-2).

only incoming or only outgoing edges, are its minimal and maximal vertices. Thus
we have that K root

P = C(G) for a good graph G. Note that a root cone C(H) is
unimodular if and only if g(H) is acyclic. We will use the cone reduction lemma
to write C(G) as a union of unimodular cones. Note that the cone reduction lemma
applies to good graphs, and thus if we want to repeatedly apply it to the outcome
cones C(Gi ), i ∈ [3], we need to apply it to g(Gi ), i ∈ [3].

We claim that we can apply the cone reduction lemma repeatedly in such a
fashion that at the end we have trees T1, . . . , Tk (with n − 1 edges), and forests
F j

n−i , 2≤ i ≤ n− 1, j ∈ In−i (for some index sets In−i ), with n− i edges, where
C(T1), . . . , C(Tk) are unimodular cones triangulating C(G) and the C(F j

n−i ) are their
intersections.

We now prove the above claim. When G has no cycles, the claim is obvious.
Suppose that G has m > 0 linearly independent cycles. Fix a strongly planar
drawing of P. In it there are m bounded regions, and the boundaries of these regions
are m linearly independent cycles in G. Let C be one of these cycles, such that
it bounds a region in the drawing of P which is adjacent to the infinite region.
The cycle C consists of two increasing paths p and p′ from i to j for some i < j .
Let p = (i = i0 → i1 → i2 → · · · → il = j) be the path bordering the infinite
region in the drawing of P. We can perform consecutive reductions on the edges
of the path p and its offsprings, ultimately obtaining all noncrossing alternating
forests on the vertices {i0, i1, . . . , il} containing the edge (i0, il). We do this by
picking the topmost leftmost edges that we can do a reduction on in p and its
offsprings in the reduction process. See Figure 2 for an illustration. (A proof of the
previous claim can be obtained by induction on the length of the path and is given
in detail in [Mészáros 2011].) Until we arrive at the aforementioned noncrossing
alternating forests on the vertices {i0, i1, . . . , il} containing the edge (i0, il) all
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6

4 5

23

1 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

P

G

G1 G3 G2

g(G1) g(G3) g(G2)

Figure 3. Top left shows a strongly planar drawing of our poset, with
the cycle C in bold. The path p is (1→ 3→ 4) and p′ is (1→ 2→ 4).
Top right shows the graph G. Below are the graphs G1,G3,G2

obtained by applying the reduction on the topmost leftmost edges of p,
which are (1, 3), (3, 4). The last row shows g(G1), g(G3), g(G2)

(which are G1,G3,G2 with the edge (1, 4) removed since there is
an increasing path 1→ 2→ 4), on which we can keep applying the
cone reduction lemma as in the proof of Theorem 3.2.

graphs obtained in this fashion from G are good graphs. We can see that once we
obtain the noncrossing alternating forests on the vertices {i0, i1, . . . , il} containing
the edge (i0, il) the offspring of G is not good anymore, as there is still p′ in it,
which is an increasing path between the vertices i0 and il . We need to now remove
the edge (i0, il)= (i, j) from all the aforementioned offsprings in order to obtain
good graphs and be able to apply the cone reduction lemma further. However, once
we remove the edge (i, j) from all these offsprings we will have good graphs with
the number of bounded regions one less than it was for G. We can now repeat the
same process we just described for each of these graphs and their offsprings until
they are all acyclic. We demonstrate the basic idea of this argument in Figure 3.

If we inspect what edges we had to drop in the process to make sure we always
apply the cone reduction lemma to good graphs and obtain the acyclic graphs
described in the previous paragraph, we find the following relation in the subdivision
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algebra:

(3-8) m[G] =
∏

ρ∈b(P)

xmin(ρ),max(ρ)

(∑
Ti

m[Ti ] +
∑
F j

n−i

β i−1m[F j
n−i ]

)
.

Note that

(3-9) σK root
P
(x)=

(∑
Ti

m[Ti ] +
∑
F j

n−i

(−1)i−1m[F j
n−i ]

)∣∣∣∣
xi j=1/(1−xi x j−1)

and

(3-10) 9P(x)=
∑

Ti

m[Ti ]

∣∣∣
xi j=1/(xi−x j )

.

Equations (3-8), (3-9) and (3-10) together with the observations that xi j =

1/(1 − xi x j
−1) satisfies xi j x jk = xik(xi j + x jk − 1) and that xi j = 1/(xi − x j )

satisfies xi j x jk = xik(xi j + x jk) immediately yield equations (3-6) and (3-7). �

We can see (3-8) is the main theorem of this section, so we bestow it with that title:

Theorem 3.3. Let G = H(P) for a naturally labeled connected strongly planar
poset P. Then, using the notation of the proof of Theorem 3.2, we have that

m[G] =
∏

ρ∈b(P)

xmin(ρ),max(ρ)

(∑
Ti

m[Ti ] +
∑
F j

n−i

β i−1m[F j
n−i ]

)

holds in the subdivision algebra.

Both statements of Theorem 3.2 are special cases of Theorem 3.3 as shown in
the proof of Theorem 3.2.

4. Generalizing Greene’s theorem beyond strongly planar posets

In this section we will examine a special family of posets for which Greene’s
function factors linearly. These posets were first identified by Boussicault, Féray,
Lascoux and Reiner [Boussicault et al. 2012], who proved the aforementioned
result by studying the affine semigroup ring of the root cone. We will give a short
alternative proof via root polytopes.

We give some definitions following the exposition of [Boussicault et al. 2012].
In a finite poset P, say that a triple of elements (a, b, c) forms a notch of ∨ shape
(dually, a notch of ∧ shape) if a lP b, c (dually, b, clP a), and in addition, b, c lie
in different connected components of the poset P \ P≤a (dually, P \ P≥a). When
(a, b, c) forms a notch of either shape in a poset P, say that the quotient poset P :=
P/{b= c}, having one fewer element and one fewer Hasse diagram edge, is obtained
from P by closing the notch, and that P is obtained from P by opening a notch.
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Theorem 4.1. Let P be a connected poset in which (a, b, c) forms a notch, and let
P := P/{b = c}. We assume without loss of generality that P and P are naturally
labeled. Then the root polytope Q̃H(P) has a triangulation with top-dimensional
simplices 1̃T1, . . . , 1̃Tk , and Q̃H(P) has a triangulation with top-dimensional sim-
plices 1̃T ′1 , . . . , 1̃T ′k , where (a, b) ∈ T ′i , (a, b), (a, c) ∈ Ti , i ∈ [k], and moreover
Ti |b=c = T ′i (we ignore multiple edges).

To prove Theorem 4.1 we use the following criterion.

Lemma 4.2 (cf. [Postnikov 2009, Lemma 12.6]). For two trees T and T ′ on the
vertex set [n], the intersection 1̃T ∩ 1̃T ′ is a common face of the simplices 1̃T and
1̃T ′ if and only if the directed graph

U (T, T ′)=
(
[n],

{
(i, j) | (i, j) ∈ E(T ), i < j

}
∪
{
( j, i) | (i, j) ∈ E(T ′), i < j

})
has no directed cycles of length at least 3.

The following proof of Lemma 4.2 is a straightforward adaptation of the proof
of [Postnikov 2009, Lemma 12.6] to our more general setting. We include the proof
here for convenience.

Proof of Lemma 4.2. Suppose that U (T, T ′) has a directed cycle C of length at
least 3. Let E be the set of edges of T in C and E ′ be the set of edges of T ′ in C .
Then

∑
(i, j)∈E(ei − ej )=

∑
(i, j)∈E ′(ei − ej ). Let k =max(|E |, |E ′|). Then

x := 1
k

∑
(i, j)∈E

(ei − ej )=
1
k

∑
(i, j)∈E ′

(ei − ej ) ∈ 1̃T ∩ 1̃T ′ .

However, the minimal face of the simplex 1̃T containing x is 1([n],E) if k = |E |
and 1̃([n],E) if k > |E |. Similarly, the minimal face of the simplex 1̃T ′ containing
x is 1([n],E ′) if k = |E ′| and 1̃([n],E ′) if k > |E ′|. In any case, the minimal faces of
1̃T and 1̃T ′ containing x are not equal. Thus, 1̃T ∩ 1̃T ′ is not their common face.

Next, assume that U (T, T ′) has no directed cycles of length at least 3. Let
F = ([n], E(T ) ∩ E(T ′)). Since U (T, T ′) has no directed cycles of length at
least 3 we can find a function h : [n] → R such that (1) h is constant on connected
components of F ; and (2) for any directed edge (a, b) ∈U (T, T ′) that joins two
different components of F we have h(a) < h(b). Thus, if (a, b) is the edge (i < j)
of T then h(i) < h( j), and if (a, b) is the edge (i < j) of T then h(i) > h( j).
The function h defines a linear form fh on the space Rn with the coordinates
h(1), . . . , h(n) in the standard basis. The above conditions imply (1) for any vertex
in the common face 1̃F of 1̃T and 1̃T ′ we have fh(x) = 0; (2) for any vertex
x ∈ 1̃T \ 1̃F we have fh(x) < 0; and (3) for any vertex x ∈ 1̃T ′ \ 1̃F we have
fh(x) > 0. Thus, the hyperplane fh(x)= 0 intersects 1̃T and 1̃T ′ at their common
face 1̃F as desired. �
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Proof of Theorem 4.1. The criterion of Lemma 4.2 is sufficient to establish the above
theorem, since we also have that Q̃H(P) has a triangulation with top-dimensional
simplices 1̃T ′1 , . . . , 1̃T ′k , where (a, b) ∈ T ′i , as ea − eb is a vertex of Q̃H(P). �

When we calculate σK Proot (x) and 9P(x) using triangulations of the root cones
as implied by Theorem 4.1, we immediately get:

Corollary 4.3 [Boussicault et al. 2012, Theorem 8.6]. When P is obtained from P
by closing a ∨-shaped notch (a, b, c), then

σK Proot (x)= (1− xaxb
−1)σK Proot (x)|xb=xc and 9P(x)= (xa − xb)9P(x)|xb=xc .

A consequence of Theorem 4.1 is the following generalization of Greene’s
theorem pertaining to posets P to which we can repeatedly apply the opening notch
operation and obtain a poset whose Hasse diagram has only cycles as biconnected
components. Such posets P we call admissible. We now recall the definition
of biconnected components following [Boussicault et al. 2012]. Given a graph
G = (V, E) we say that two edges of it are cycle-equivalent if there is a cycle
which contains both edges. Let Ei be the equivalence classes of this relation. Let
Vi be the set of vertices which are the endpoint of at least one edge in Ei . Then the
biconnected components of G are the graphs Gi = (Vi , Ei ).

Theorem 4.4. Let P be an admissible planar poset. Then, we have

σK root
P
(x)=

∏
ρ∈b(P)

(
1−

∏
i∈min(ρ) xi

∏
j∈max(ρ) x−1

j

)∏
ilP j (1− xi x j

−1)

and

9P(x)=
∏
ρ∈b(P)

(∑
i∈min(ρ) xmin(i)−

∑
j∈max(ρ) x j

)∏
ilP j (xi − x j )

,

where ρ runs through all bounded regions of the Hasse diagram of P.

Proof. This theorem can be deduced from Corollary 4.3 together with Corollaries
8.2 and 8.3 in [Boussicault et al. 2012]. We note that the latter corollaries also have
simple proofs using the root polytope considerations of this paper, and we leave
such alternative proofs as an exercise for the interested reader. �
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