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SCOTT CARTER, ATSUSHI ISHII, MASAHICO SAITO AND KOKORO TANAKA

A quandle is a set that has a binary operation satisfying three conditions
corresponding to the Reidemeister moves. Homology theories of quandles
have been developed in a way similar to group homology, and have been
applied to knots and knotted surfaces. In this paper, a homology theory is
defined that unifies group and quandle homology theories. A quandle that
is a union of groups with the operation restricting to conjugation on each
group component is called a multiple conjugation quandle (MCQ, defined
rigorously within). In this definition, compatibilities between the group and
quandle operations are imposed which are motivated by considerations on
colorings of handlebody-links. The homology theory defined here for MCQs
takes into consideration both group and quandle operations, as well as their
compatibility. The first homology group is characterized, and the notion
of extensions by 2-cocycles is provided. Degenerate subcomplexes are de-
fined in relation to simplicial decompositions of prismatic (products of sim-
plices) complexes and group inverses. Cocycle invariants are also defined
for handlebody-links.

1. Introduction

In this paper, a homology theory is proposed that contains aspects of both group
and quandle homology theories, for algebraic structures that have both operations
and certain compatibility conditions between them.

The notion of a quandle [Joyce 1982; Matveev 1982] was introduced in knot
theory as a generalization of the fundamental group. Briefly, a quandle is a set
with a binary operation that is idempotent and self-distributive, and a bijective
corresponding right action. The axioms correspond to the Reidemeister moves,
and quandles have been used extensively to construct knot invariants. They have
been considered in various other contexts, for example as symmetries of geometric
objects [Takasaki 1943], and with different names, such as distributive groupoids
[Matveev 1982] and automorphic sets [Brieskorn 1988]. A typical example is a
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group conjugation a ∗ b = b−1ab which is an expression of the Wirtinger relation
for the fundamental group of the knot complement. The same structure but without
idempotency is called a rack, and is used in the study of framed links [Fenn and
Rourke 1992].

In [Fenn et al. 1995] a chain complex was introduced for racks. The resulting
homology theory was modified in [Carter et al. 2003] by defining a quotient complex
that reflected the quandle idempotence axiom. The motivation for this homology
was to construct the quandle cocycle invariants for links and surface-links. Since
then a variety of applications have been found. The quandle cocycle invariants
were generalized to handlebody-links in [Ishii and Iwakiri 2012]. When a set has
multiple quandle operations that are parametrized by a group, the structure is called
a G-family of quandles; this notion, with its associated homology theory, was intro-
duced in [Ishii et al. 2013] and it too was motivated from handlebody-knots. This
homology theory is called IIJO. In particular, cocycle invariants were introduced
that distinguished mirror images of some handlebody-knots. These G-families were
further generalized to an algebraic system called a multiple conjugation quandle
(MCQ) in [Ishii 2015b] for colorings of handlebody-knots. An MCQ has a quandle
operation and partial group operations, all linked by compatibility conditions.

This paper proposes to unify the group and quandle homology theories for MCQs.
The definition of an MCQ is recalled in Section 2 as a generalization of a G-family
of quandles. A homology theory is defined (in Section 3) that simultaneously
encompasses the group and quandle homologies of the interrelated structures. As
in the case of [Carter et al. 2003], some subcomplexes are defined in order to
compensate for the topological motivation of the theory. The first homology group
is characterized, and the notion of extensions by 2-cocycles is provided in Section 4.

The homology theory for MCQs is well suited for handlebody-links such that
each toroidal component has its core circle oriented, as defined in Section 5. When
considering colorings for unoriented handlebody-links, we also need to take into
consideration issues about the inverse elements in the group (Section 6). Prismatic
sets (products of simplices) are decomposed into subsimplices that are higher-
dimensional duals of graph moves; Section 7 defines a subcomplex that compensates
for these subdivisions. In Sections 8 and 9, we relate this homology theory with
group and quandle homology theories. Finally, in Section 10, we discuss approaches
to finding new 2-cocycles of our homology theory.

2. Multiple conjugation quandles

First, recall a quandle [Joyce 1982; Matveev 1982] is a nonempty set X with a
binary operation ∗ : X × X→ X satisfying the following axioms:

(1) For any a ∈ X , we have a ∗ a = a.
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(2) For any a ∈ X , the map Sa : X→ X defined by Sa(x)= x ∗ a is a bijection.

(3) For any a, b, c ∈ X , we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

Definition 1 [Ishii 2015b]. A multiple conjugation quandle (MCQ) X is the disjoint
union of groups Gλ, where λ is an element of an index set3, with a binary operation
∗ : X × X→ X satisfying the following axioms:

(1) For any a, b ∈ Gλ, we have a ∗ b = b−1ab.

(2) For any x ∈ X and a, b ∈ Gλ, we have x ∗ eλ = x and x ∗ (ab) = (x ∗ a) ∗ b,
where eλ is the identity element of Gλ.

(3) For any x, y, z ∈ X , we have (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

(4) For any x ∈ X and a, b ∈ Gλ, we have (ab) ∗ x = (a ∗ x)(b ∗ x) in some
group Gµ.

We call the group Gλ a component of the MCQ. An MCQ is a type of quandle
that can be decomposed as a union of groups, and the quandle operation in each
component is given by conjugation. Moreover, there are compatibilities, (2) and (4),
between the group and quandle operations.

Note that the quandle axiom a ∗ a = a follows immediately since the operation
in any component is given by conjugation. The second quandle axiom also follows,
since for the map Sa : X→ X defined by Sa(x)= x ∗ a, the inverse map is given
by Sa−1 . The second axiom of MCQs implies that the map φ : Gλ→ AutQnd X
defined by φ(a) = Sa is a group homomorphism, where AutQnd X is the set of
quandle automorphisms of X and is the group with the multiplication defined by
Sa Sb := Sb ◦ Sa . The last axiom (4) may be replaced by the following:

(4′) For any x ∈ X and λ ∈ 3, there is a unique element µ ∈ 3 such that
Sx(Gλ)= Gµ and that Sx : Gλ→ Gµ is a group isomorphism.

The axiom (4) immediately follows from (4′). Conversely, (4′) follows from (4):
the condition (4) contains the condition that for any a, b ∈ Gλ and x ∈ X , there
exists a unique µ ∈3 such that a ∗ x, b ∗ x ∈ Gµ. Hence we have Sx(Gλ)⊂ Gµ,
which implies that Sx : Gλ→ Gµ is a well-defined group homomorphism by the
condition (ab) ∗ x = (a ∗ x)(b ∗ x). The homomorphism Sx : Gλ→ Gµ is a group
isomorphism, since Sx−1 : Gµ→ Gλ gives its inverse.

A multiple conjugation quandle can be obtained from a G-family of quandles as
follows.

Example 2. Let G be a group with identity element e, let (M, {∗g
}g∈G) be a

G-family of quandles [Ishii et al. 2013]; i.e., a nonempty set M with a family of
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binary operations ∗g
: M ×M→ M (g ∈ G) satisfying

x ∗g x = x, x ∗gh y = (x ∗g y) ∗h y, x ∗e y = x,

(x ∗g y) ∗h z = (x ∗h z) ∗h−1gh (y ∗h z)

for x, y, z ∈M and g, h ∈G. Then
∐

x∈M{x}×G is a multiple conjugation quandle
with

(x, g) ∗ (y, h)= (x ∗h y, h−1gh), (x, g)(x, h)= (x, gh).

The following are specific examples of G-families of quandles.

(1) Let M be a group, and G be a subgroup of Aut M . Then for x, y∈M and g∈G,
x ∗ y= (xy−1)g y gives a G-family of quandles. Here xg denotes g acting on x .
The fact that this is a G-family was pointed out in [Przytycki 2011]; however,
that any specific automorphism g yields a quandle was earlier observed in
[Joyce 1982; Matveev 1982]. When M is abelian and an element g ∈ G is
fixed, the resulting quandle is called an Alexander quandle.

(2) Let (X, ∗) be a quandle. We denote Sn
b (a) by a ∗n b. Put Z := Z or Z/mZ,

where m :=min{i > 0 | x ∗i y = x for any x, y ∈ X}. Then (X, {∗n
}n∈Z ) is a

Z -family of quandles.

For a multiple conjugation quandle X =
∐
λ∈3 Gλ, an X-set is a nonempty set

Y with a map ∗ : Y × X → Y satisfying the following axioms, where we use the
same symbol ∗ as the binary operation of X .
• For any y ∈ Y and a, b ∈ Gλ, we have y ∗ eλ = y and y ∗ (ab) = (y ∗ a) ∗ b,

where eλ is the identity of Gλ.

• For any y ∈ Y and a, b ∈ X , we have (y ∗ a) ∗ b = (y ∗ b) ∗ (a ∗ b).

Any multiple conjugation quandle X itself is an X -set with its binary operation. Any
singleton set {y0} is also an X -set with the map ∗ defined by y0 ∗ x = y0 for x ∈ X ,
which is called a trivial X -set. The index set 3 is an X -set with the map ∗ defined
by λ ∗ x = µ when Sx(Gλ)= Gµ for λ,µ ∈3 and x ∈ X .

3. Homology theory

In this section, we define a chain complex for MCQs that contains aspects of
both group and quandle homology theories. A subcomplex is also defined that
corresponds to a Reidemeister move for handlebody-links.

Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y be an X -set.

In what follows, we denote a sequence of elements of X by a bold symbol such
as a, and denote by |a| the length of a sequence a. For example, (a), 〈a〉, (y; a; b)
respectively denote

(a1, . . . , a|a|), 〈a1, . . . , a|a|〉, (y; a1, . . . , a|a|; b1, . . . , b|b|).
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Let Pn(X)Y be the free abelian group generated by the elements

(y; a1,1, . . . , a1,n1; . . . ; ak,1, . . . , ak,nk ) ∈
⋃

n1+···+nk=n

Y ×
k∏

i=1

⋃
λ∈3

Gni
λ

if n ≥ 0, and let Pn(X)Y = 0 otherwise. The elements of Pn(X)Y are called
prismatic chains and Pn(X)Y is called the prismatic chain group. Note that for
each j , the elements a j,1, . . . , a j,n j belong to one of the Gλ. For example, P3(X)Y
is generated by the elements (y; a; b; c), (y; a; e, f ), (y; d, e; c) and (y; d, e, f )
(where a, b, c ∈ X , d, e, f ∈ Gλ, y ∈ Y ). Here a, b, c may or may not belong to
the same Gµ (µ ∈3), but d, e, f belong to the same Gλ. All may belong to the
same Gλ.

We represent (y; a1; . . . ; ak) using the noncommutative multiplication form

〈y〉〈a1〉 · · · 〈ak〉.

We define 〈y〉〈a1〉 · · · 〈ak〉 ∗ b := 〈y ∗ b〉〈a1 ∗ b〉 · · · 〈ak ∗ b〉, where 〈a ∗ b〉 denotes
〈a1 ∗ b, . . . , a|a| ∗ b〉. We set |〈y〉〈a1〉 · · · 〈ak〉| := |a1| + · · · + |ak |.

We define a boundary homomorphism ∂n : Pn(X)Y → Pn−1(X)Y by

∂
(
〈y〉〈a1〉 · · · 〈ak〉

)
=

k∑
i=1

(−1)|〈y〉〈a1〉···〈ai−1〉|〈y〉〈a1〉 · · · ∂〈ai 〉 · · · 〈ak〉,

where

∂〈a1, . . . , am〉 = ∗a1〈a2, . . . , am〉+

m−1∑
i=1

(−1)i 〈a1, . . . , ai ai+1, . . . , am〉

+(−1)m〈a1, . . . , am−1〉.

The resulting terms ∂(〈a〉)= ∗a〈 〉− 〈 〉 for m = 1 in the above expression mean
that the formal symbol 〈 〉 is deleted. For n = 0, we define ∂〈y〉 = 0.

Example 3. The boundary maps in two and three dimensions are computed as
follows.

∂2(〈y〉〈a〉〈b〉)= 〈y ∗ a〉〈b〉− 〈y〉〈b〉− 〈y ∗ b〉〈a ∗ b〉+ 〈y〉〈a〉,

∂2(〈y〉〈a, b〉)= 〈y ∗ a〉〈b〉− 〈y〉〈ab〉+ 〈y〉〈a〉,

∂3(〈y〉〈a〉〈b〉〈c〉)= 〈y ∗ a〉〈b〉〈c〉− 〈y〉〈b〉〈c〉− 〈y ∗ b〉〈a ∗ b〉〈c〉

+ 〈y〉〈a〉〈c〉+ 〈y ∗ c〉〈a ∗ c〉〈b ∗ c〉− 〈y〉〈a〉〈b〉,

∂3(〈y〉〈a〉〈b, c〉)= 〈y ∗ a〉〈b, c〉− 〈y〉〈b, c〉− 〈y ∗ b〉〈a ∗ b〉〈c〉

+ 〈y〉〈a〉〈bc〉− 〈y〉〈a〉〈b〉,

∂3(〈y〉〈a, b〉〈c〉)= 〈y ∗ a〉〈b〉〈c〉− 〈y〉〈ab〉〈c〉+ 〈y〉〈a〉〈c〉

+ 〈y ∗ c〉〈a ∗ c, b ∗ c〉− 〈y〉〈a, b〉,

∂3(〈y〉〈a, b, c〉)= 〈y ∗ a〉〈b, c〉− 〈y〉〈ab, c〉+ 〈y〉〈a, bc〉− 〈y〉〈a, b〉.
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Proposition 4. P∗(X)Y = (Pn(X)Y , ∂n) is a chain complex.

Proof. The Leibniz rule

∂(στ)= (∂σ )τ + (−1)|σ |σ(∂τ)

is a restatement of the definition when k = 2. In fact, the general definition follows
from this by induction. Also ∂(σ ∗ a)= (∂σ ) ∗ a, and ∂ ◦ ∂ = 0 follows from these
two facts. �

We will later define a degeneracy subcomplex that is analogous (albeit more
complicated) to the subcomplex of degeneracies for quandle homology. Before
its definition, we give a description of simplicial decompositions of products of
simplices for motivation. We identify an n-simplex 1n with the set

{(x1, x2, . . . , xn) ∈ [0, 1]n : 0≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1},

called the right n-simplex. Then the n-cube [0, 1]n can be decomposed into n! sets
each of which is congruent to this right n-simplex that has n edges of length 1, and
has (n−k+1) edges of length

√
k for k=1, . . . , n. More specifically, for Ex ∈[0, 1]n

consider the permutation σ ∈6n such that 0≤ xσ(1)≤ xσ(2)≤ · · · ≤ xσ(n)≤ 1. If the
coordinates of Ex are all distinct, then there is a unique such σ and an n-simplex 1n

σ

congruent to the right n-simplex such that Ex lies in the interior of 1n
σ . Otherwise Ex

lies in the boundary of more than one such simplex. Now consider the product of
right simplices

1s
×1t

=

{
(Ex, Ey) ∈ [0, 1]s+t

∣∣∣∣ 0≤ x1 ≤ x2 ≤ · · · ≤ xs ≤ 1
0≤ y1 ≤ y2 ≤ · · · ≤ yt ≤ 1

}
,

where the notation (Ex, Ey) represents (x1, . . . , xs, y1, . . . , yt). This can be decom-
posed as a union of simplices of the form given above. For

Ez = (Ex, Ey) ∈1s
×1t

⊂ [0, 1]n,

where n = s+ t , there is an associated simplex 1n
σ that contains the point (Ex, Ey).

Suppose all coordinates of Ez are distinct, and let σ ∈ 6n be a permutation such
that 0< zσ(1) < · · ·< zσ(n). Then the subset {i1, i2, . . . , is} ⊂ {1, 2, . . . , s+ t} with
i1 < i2 < · · · < is is determined from the positions of coordinates of Ex , so that
zik = xk for k = 1, . . . , s. Thus a given subset {i1, i2, . . . , is} ⊂ {1, 2, . . . , s + t}
where i1 < i2 < · · ·< is determines an n-simplex in the decomposition of 1s

×1t .
We proceed to the definition of the degeneracy subcomplex.

For an expression of the form 〈a〉〈b〉 in a chain in Pn(X)Y , where 〈a〉 =
〈a1, . . . , as〉 and 〈b〉 = 〈b1, . . . , bt 〉 satisfy ai , b j ∈ Gλ for all i = 1, . . . , s and
j = 1, . . . , t , let the notation 〈〈a〉〈b〉〉i1,...,is represent (−1)

∑s
k=1(ik−k)

〈c1, . . . , cs+t 〉,



HOMOLOGY FOR QUANDLES WITH PARTIAL GROUP OPERATIONS 25

where 1≤ i1 < · · ·< ik < · · ·< is ≤ s+ t , and

ci =

{
ak ∗ (b1 · · · bi−k) if i = ik,

bi−k if ik < i < ik+1.

If i = k in the first case, then we regard (b1 · · · bi−k) to be empty. For example,
〈〈a〉〈b〉〉1 = 〈a, b〉, 〈〈a〉〈b〉〉2 =−〈b, a ∗b〉, and 〈〈a, b〉〈c〉〉1,3 =−〈a, c, b ∗ c〉. We
also define the notation 〈〈a〉〈b〉〉 by

〈〈a〉〈b〉〉 :=
∑

1≤i1<···<is≤s+t

〈〈a〉〈b〉〉i1,...,is .

Define Dn(X)Y to be the subgroup of Pn(X)Y generated by the elements of the
form

〈y〉〈a1〉 · · · 〈a〉〈b〉 · · · 〈ak〉− 〈y〉〈a1〉 · · · 〈〈a〉〈b〉〉 · · · 〈ak〉,

where we implicitly assume the linearity of the notations 〈〈a〉〈b〉〉i1,...,is and 〈〈a〉〈b〉〉,
that is,

〈y〉〈a1〉 · · · 〈〈a〉〈b〉〉 · · · 〈ak〉=
∑

1≤i1<···<i|a|≤|〈a〉〈b〉|

〈y〉〈a1〉 · · · 〈〈a〉〈b〉〉i1,...,i|a| · · · 〈ak〉.

The chain group Dn(X)Y is called the group of decomposition degeneracies. We
will see that D∗(X)Y = (Dn(X)Y , ∂n) is a subcomplex of P∗(X)Y in Section 7.

We remark that the elements of the form

〈y〉〈a1〉 · · · 〈a〉〈a〉 · · · 〈ak〉

belong to Dn(X)Y .
For example, D2(X)Y is generated by the elements of the form

〈y〉〈a〉〈b〉− 〈y〉〈a, b〉+ 〈y〉〈b, a ∗ b〉,

and D3(X)Y is generated by the elements of the form

〈y〉〈a〉〈b〉〈x〉− 〈y〉〈a, b〉〈x〉+ 〈y〉〈b, a ∗ b〉〈x〉,

〈y〉〈x〉〈b〉〈c〉− 〈y〉〈x〉〈b, c〉+ 〈y〉〈x〉〈c, b ∗ c〉,

〈y〉〈a, b〉〈c〉− 〈y〉〈a, b, c〉+ 〈y〉〈a, c, b ∗ c〉− 〈y〉〈c, a ∗ c, b ∗ c〉,

〈y〉〈a〉〈b, c〉− 〈y〉〈a, b, c〉+ 〈y〉〈b, a ∗ b, c〉− 〈y〉〈b, c, a ∗ (bc)〉

for a, b, c ∈ Gλ, x ∈ X .

Definition 5. The quotient complex of P∗(X)Y modulo decomposition degeneracies
D∗(X)Y is denoted by C∗(X)Y = (Cn(X)Y , ∂n), where Cn(X)Y = Pn(X)Y /Dn(X)Y .
For an abelian group A, define the cochain complex C∗(X; A)Y =Hom(C∗(X)Y , A).
Denote by Hn(X)Y the n-th homology group of C∗(X)Y .
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4. Algebraic aspects of the homology

In this section we study algebraic aspects of the homology theory we defined.
Specifically, we characterize the first homology group, and show that a 2-cocycle
defines an extension. For simplicity we consider the case Y = {y0} is a singleton,
and we suppress the symbols 〈y0〉 whenever possible.

Let X be a multiple conjugation quandle, and Y = {y0} be a singleton. Then
P0(X)Y is infinite cyclic, generated by 〈y0〉, and ∂1(〈y0〉〈a〉) = 〈y0 ∗ a〉 − 〈y0〉

for a ∈ X . Hence H0(X)Y = Z. If X is a multiple conjugation quandle consisting
of a single group, H1(X)Y ∼= X ab, since P1(X)Y is the free abelian group generated
by the elements 〈y0〉〈a〉 (a ∈ X ), and

∂2(〈y0〉〈a, b〉)= 〈y0〉〈b〉− 〈y0〉〈ab〉+ 〈y0〉〈a〉,

∂2(〈y0〉〈a〉〈b〉)=−〈y0〉〈a ∗ b〉+ 〈y0〉〈a〉 = ∂2(〈y0〉〈a, b〉)− ∂2(〈y0〉〈b, b−1ab〉).

Proposition 6. Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, let Y = {y0}

be a singleton, and A an abelian group. A map φ : P2(X)Y → A is a 2-cocycle of
C∗(X)Y if and only if X × A =

∐
λ∈3(Gλ× A) with

(a, s) ∗ (b, t) :=
(
a ∗ b, s+φ(〈a〉〈b〉)

)
for (a, s), (b, t) ∈ X × A,

(a, s)(b, t) :=
(
ab, s+ t +φ(〈a, b〉)

)
for (a, s), (b, t) ∈ Gλ× A

is a multiple conjugation quandle, where φ(〈y0〉〈a〉〈b〉) and φ(〈y0〉〈a, b〉) are re-
spectively denoted by φ(〈a〉〈b〉) and φ(〈a, b〉) for short. Further,

(
eλ,−φ(〈eλ, eλ〉)

)
is the identity of the group Gλ× A, and

(
a−1,−s − φ(〈a, a−1

〉)− φ(〈eλ, eλ〉)
)

is
the inverse of (a, s) ∈ Gλ× A.

Proof. We show correspondences between cocycle conditions and MCQ conditions
for the extension.

(1) The correspondence between the cocycle condition φ
(
∂3(〈a, b, c〉)

)
= 0 and the

associativity of a group.
For (a, s), (b, t), (c, u)∈Gλ×A, φ(〈a, b〉)+φ(〈ab, c〉)=φ(〈b, c〉)+φ(〈a, bc〉)

if and only if
(
(a, s)(b, t)

)
(c, u)= (a, s)

(
(b, t)(c, u)

)
, since(

(a, s)(b, t)
)
(c, u)=

(
abc, s+ t + u+φ(〈a, b〉)+φ(〈ab, c〉)

)
,

(a, s)
(
(b, t)(c, u)

)
=
(
abc, s+ t + u+φ(〈b, c〉)+φ(〈a, bc〉)

)
.

We note that φ(〈a, b〉) + φ(〈ab, c〉) = φ(〈b, c〉) + φ(〈a, bc〉), or equivalently(
(a, s)(b, t)

)
(c, u) = (a, s)

(
(b, t)(c, u)

)
implies that φ(〈a, eλ〉) = φ(〈eλ, c〉) and

that φ(〈b−1, b〉)= φ(〈b, b−1
〉). These equalities respectively imply

(a, s)= (a, s)
(
eλ,−φ(〈eλ, eλ〉)

)
= (eλ,−φ(〈eλ, eλ〉))(a, s)

and
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eλ,−φ(〈eλ, eλ〉)

)
= (a, s)

(
a−1,−s−φ(〈a, a−1

〉)−φ(〈eλ, eλ〉)
)

=
(
a−1,−s−φ(〈a, a−1

〉)−φ(〈eλ, eλ〉)
)
(a, s).

It follows that
(
eλ,−φ(〈eλ, eλ〉)

)
is the identity of the group Gλ × A, and that(

a−1,−s−φ(〈a, a−1
〉)−φ(〈eλ, eλ〉)

)
is the inverse of (a, s) ∈ Gλ× A.

(2) The correspondence between the degeneracy of φ on D2(X)Y and the first axiom
of MCQs.

For (a, s), (b, t) ∈ Gλ× A, φ(〈a〉〈b〉)+φ(〈b, a ∗b〉)= φ(〈a, b〉) if and only if
(b, t)

(
(a, s) ∗ (b, t)

)
= (a, s)(b, t), since

(b, t)
(
(a, s) ∗ (b, t)

)
=
(
b(a ∗ b), s+ t +φ(〈a〉〈b〉)+φ(〈b, a ∗ b〉)

)
,

(a, s)(b, t)=
(
ab, s+ t +φ(〈a, b〉)

)
.

(3) The correspondence between the cocycle condition φ
(
∂3(〈x〉〈a, b〉)

)
= 0 and

the second axiom of MCQs.
For (x, r) ∈ X × A and (a, s), (b, t) ∈ Gλ× A,

φ(〈x〉〈ab〉)= φ(〈x〉〈a〉)+φ(〈x ∗ a〉〈b〉)

if and only if (x, r) ∗
(
(a, s)(b, t)

)
=
(
(x, r) ∗ (a, s)

)
∗ (b, t), since

(x, r) ∗
(
(a, s)(b, t)

)
=
(
x ∗ (ab), r +φ(〈x〉〈ab〉)

)
,(

(x, r) ∗ (a, s)
)
∗ (b, t)=

(
(x ∗ a) ∗ b, r +φ(〈x〉〈a〉)+φ(〈x ∗ a〉〈b〉)

)
.

Note φ(〈x〉〈ab〉)=φ(〈x〉〈a〉)+φ(〈x∗a〉〈b〉), or equivalently (x, r)∗
(
(a, s)(b, t)

)
=(

(x, r) ∗ (a, s)
)
∗ (b, t), implies that φ(〈x〉〈eλ〉)= 0. Then we have

(a, s) ∗
(
eλ,−φ(〈eλ, eλ〉)

)
= (a, s).

(4) The correspondence between the cocycle condition φ
(
∂3(〈a〉〈b〉〈c〉)

)
= 0 and

the third axiom of MCQs.
For (a, s), (b, t), (c, u) ∈ X × A,

φ(〈a〉〈b〉)+φ(〈a ∗ b〉〈c〉)= φ(〈a〉〈c〉)+φ(〈a ∗ c〉〈b ∗ c〉)

if and only if
(
(a, s) ∗ (b, t)

)
∗ (c, u)=

(
(a, s) ∗ (c, u)

)
∗
(
(b, t) ∗ (c, u)

)
, since(

(a, s)∗(b, t)
)
∗(c, u)=

(
(a∗b)∗c, s+φ(〈a〉〈b〉)+φ(〈a∗b〉〈c〉)

)
,(

(a, s)∗(c, u)
)
∗
(
(b, t)∗(c, u)

)
=
(
(a∗c)∗(b∗c), s+φ(〈a〉〈c〉)+φ(〈a∗c〉〈b∗c〉)

)
.

(5) The correspondence between the cocycle condition φ
(
∂3(〈a, b〉〈x〉)

)
= 0 and

the last axiom of MCQs.
For (x, r) ∈ X × A and (a, s), (b, t) ∈ Gλ× A,

φ(〈a, b〉)+φ(〈ab〉〈x〉)= φ(〈a〉〈x〉)+φ(〈b〉〈x〉)+φ(〈a ∗ x, b ∗ x〉)
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R1
←→

R1
←→

R2
←→

R3
←→

R4
←→

R4
←→

R5
←→

R5
←→

R6
←→

Figure 1. Reidemeister moves for handlebody-links.

if and only if
(
(a, s)(b, t)

)
∗ (x, r)=

(
(a, s) ∗ (x, r)

)(
(b, t) ∗ (x, r)

)
, since(

(a,s)(b,t)
)
∗(x,r)=

(
(ab)∗x,s+t+φ(〈a,b〉)+φ(〈ab〉〈x〉)

)
,(

(a,s)∗(x,r)
)(
(b,t)∗(x,r)

)
=
(
(a∗x)(b∗x),

s+t+φ(〈a〉〈x〉)+φ(〈b〉〈x〉)+φ(〈a∗x,b∗x〉)
)
.

Therefore φ is a 2-cocycle if and only if X×A is a multiple conjugation quandle. �

5. Quandle cocycle invariants for handlebody-links

The definition of a multiple conjugation quandle is motivated from handlebody-
links and their colorings [Ishii 2015b]. A handlebody-link is a disjoint union of
handlebodies embedded in the 3-sphere S3. A handlebody-knot is a one component
handlebody-link. Two handlebody-links are equivalent if there is an orientation-
preserving self-homeomorphism of S3 which sends one to the other. A diagram of a
handlebody-link is a diagram of a spatial trivalent graph whose regular neighborhood
is the handlebody-link, where a spatial trivalent graph is a finite trivalent graph
embedded in S3. In this paper, a trivalent graph may contain circle components.
Two handlebody-links are equivalent if and only if their diagrams are related by a
finite sequence of R1–R6 moves depicted in Figure 1 [Ishii 2008].

An S1-orientation of a handlebody-link is an orientation of all genus 1 compo-
nents of the handlebody-link, where an orientation of a solid torus is an orientation

��
�











HH
H

J
J
J
JJ

-*

�

Y
]

6

Y-orientation
��

�










HH
H

J
J
J
JJ

-*

�

Y
]

6

non-Y-orientation

Figure 2. Y-orientation.
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of its core S1. Two S1-oriented handlebody-links are equivalent if there is an
orientation-preserving self-homeomorphism of S3 which sends one to the other
preserving the S1-orientation. A Y-orientation of a spatial trivalent graph is an
orientation of the graph without sources and sinks with respect to the orientation (see
Figure 2). We note that the term Y-orientation is a symbolic convention, and has no
relation to an X -set Y . A diagram of an S1-oriented handlebody-link is a diagram of
a Y-oriented spatial trivalent graph whose regular neighborhood is the S1-oriented
handlebody-link where the S1-orientation is induced from the Y-orientation by
forgetting the orientations except on circle components of the Y-oriented spatial
trivalent graph. Y-oriented R1–R6 moves are R1–R6 moves between two diagrams
with Y-orientations which are identical except in the disk where the move applied.
Two S1-oriented handlebody-links are equivalent if and only if their diagrams are
related by a finite sequence of Y-oriented R1–R6 moves [Ishii 2015a]. Note that
in Figure 1 (R6), if all end points are oriented downward, then either choice of
the two possible orientations of the middle edge makes the diagram Y-oriented
locally. Thus reversing an orientation of this edge can be regarded as applying
Y-oriented R6 moves twice. This is the case whenever both orientations of an edge
give Y-orientations.

Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y be an X -set. Let

D be a diagram of an S1-oriented handlebody-link H . We denote by A(D) the
set of arcs of D, where an arc is a piece of a curve each of whose endpoints is an
undercrossing or a vertex. We denote by R(D) the set of complementary regions
of D. In this paper, an orientation of an arc is represented by the normal orientation
obtained by rotating the usual orientation counterclockwise by π/2 on the diagram.
An X-coloring C of a diagram D is an assignment of an element of X to each arc
α ∈A(D) satisfying the conditions depicted in the left three diagrams in Figure 3 at
each crossing and each vertex of D. An XY -coloring C of D is an extension of an
X -coloring of D which assigns an element of Y to each region R ∈R(D) satisfying
the condition depicted in the rightmost diagram in Figure 3 at each arc. We denote
by ColX (D) (resp. ColX (D)Y ) the set of X -colorings (resp. XY -colorings) of D.
Then we have the following proposition.

→

b

a a ∗ b

?

@
@

�
�

↗ ↘

→

a b

ab

a, b ∈ Gλ

�
�
@

@
↘ ↗

→

a b

ab

a, b ∈ Gλ

→

a

x x ∗ a

?

Figure 3. Rules of a coloring.
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↑

→

a

b
y

〈y〉〈a〉〈b〉

↓

→

a

b
y

−〈y〉〈a〉〈b〉

@
@
�
�

↗ ↘

a b

y

〈y〉〈a, b〉

�
�
@

@
↘ ↗

a b

y

−〈y〉〈a, b〉

Figure 4. Local chains represented by crossings and vertices.

Proposition 7 [Ishii 2015a]. Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle,

and let Y be an X-set. Let D be a diagram of an S1-oriented handlebody-link H.
Let D′ be a diagram obtained by applying one of the Y-oriented R1–R6 moves to
the diagram D once. For an X-coloring (resp. XY -coloring) C of D, there is a
unique X-coloring (resp. XY -coloring) C ′ of D′ which coincides with C except near
a point where the move applied.

For an XY -coloring C of a diagram D of an S1-oriented handlebody-link, we
define the local chains w(ξ ;C) ∈ C2(X)Y at each crossing ξ and each vertex ξ of
D as depicted in Figure 4. We define a chain W (D;C) ∈ C2(X)Y by

W (D;C)=
∑
ξ

w(ξ ;C),

where ξ runs over all crossings and vertices of D. This is similar to the definitions
found in [Carter et al. 2001] for links and surface-links, and in [Ishii and Iwakiri
2012] for handlebody-links.

Lemma 8. The chain W (D;C) is a 2-cycle of C∗(X)Y . Further, for cohomologous
2-cocycles θ, θ ′ of C∗(X; A)Y , we have

θ
(
W (D;C)

)
= θ ′

(
W (D;C)

)
.

Proof. It is sufficient to show that W (D;C) is a 2-cycle of C∗(X)Y . We denote
by SA(D) the set of semiarcs of D, where a semiarc is a piece of a curve each
of whose endpoints is a crossing or a vertex. We denote by SA(D; ξ) the set of
semiarcs incident to ξ , where ξ is a crossing or a vertex of D.

For a semiarc α, there is a unique region Rα facing α such that the normal
orientation of α points from the region Rα to the opposite region with respect to α.
For a semiarc α incident to a crossing or a vertex ξ , we define

ε(α; ξ) :=

{
1 if the orientation of α points to ξ ,
−1 otherwise.

Let χ1, . . . , χ4 and ω1, ω2, ω3 be the semiarcs incident to a crossing χ and a vertex
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χ1 χ2
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χ1 χ2
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@
↘ ↗

→

ω1 ω2

ω3

Figure 5. Semiarcs near crossings and vertices.

ω as depicted in Figure 5. From

∂2
(
w(χ;C)

)
=

∑
α∈SA(D;χ)

ε(α;χ)〈C(Rα)〉〈C(α)〉,

∂2
(
w(ω;C)

)
=

∑
α∈SA(D;ω)

ε(α;ω)〈C(Rα)〉〈C(α)〉,

it follows that

∂2
(
W (D;C)

)
=
∑
χ

∂2
(
w(χ;C)

)
+
∑
ω

∂2
(
w(ω;C)

)
= 0,

where χ and ω, respectively, run over all crossings and vertices of D. �

Lemma 9. Let D be a diagram of an S1-oriented handlebody-link H. Let D′ be a
diagram obtained by applying one of the Y-oriented R1–R6 moves to the diagram
D once. Let C be an XY -coloring of D, let C ′ be the unique XY -coloring of D′

such that C and C ′ coincide except near a point where the move applied. Then we
have [W (D;C)] = [W (D′;C ′)] in H2(X)Y .

Proof. We have the invariance under the Y-oriented R1 and R4 moves, since the
difference between [W (D;C)] and [W (D′;C ′)] is an element of D2(X)Y . The
invariance under the Y-oriented R2 move follows from the signs of the crossings
which appear in the move. We have the invariance under the Y-oriented R3, R5, and
R6 moves, since the difference between [W (D;C)] and [W (D′;C ′)] is an image
of ∂3. See Figure 6 for Y-oriented R6 moves, where all arcs are directed from top
to bottom. �

For a 2-cocycle θ of C∗(X; A)Y , we define

H(D) := {[W (D;C)] ∈ H2(X)Y | C ∈ ColX (D)Y },

8θ (D) := {θ(W (D;C)) ∈ A | C ∈ ColX (D)Y }

as multisets. By Lemmas 8 and 9, we have the following theorem.

Theorem 10. Let D be a diagram of an S1-oriented handlebody-link H. Then
H(D) and 8θ (D) are invariants of H.
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Figure 6. Chains for Y-oriented R6 moves.

→a = ←
a−1

Figure 7. (X,↑)-color.

For an S1-oriented handlebody-link H , let H∗ be the mirror image of H , and−H
be the S1-oriented handlebody-link obtained from H by reversing its S1-orientation.
Then we also have

H(−H∗)=−H(H), 8θ (−H∗)=−8θ (H),

where −S = {−a | a ∈ S} for a multiset S. It is desirable to further study these
invariants and applications to handlebody-links.

6. For unoriented handlebody-links

Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y be an X -set. Let

D be a diagram of an (unoriented) handlebody-link H . An (X,↑)-color Cα of an
arc α ∈A(D) is a map Cα from the set of orientations of the arc α to X such that
Cα(−o)= Cα(o)−1, where −o is the inverse of an orientation o. An (X,↑)-color
Cα is represented by a pair of an orientation o of α and an element Cα(o) ∈ X on
the diagram D. Two pairs (o, a) and (−o, a−1) represent the same (X,↑)-color
(see Figure 7).
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Figure 8. Rules of an unoriented coloring.

An (X,↑)-coloring C of a diagram D is an assignment of an (X,↑)-color Cα
to each arc α ∈ A(D) satisfying the conditions depicted in the left two diagrams
in Figure 8 at each crossing and each vertex of D. An (X,↑)Y -coloring C of
D is an extension of an (X,↑)-coloring of D which assigns an element of Y to
each region R ∈R(D) satisfying the condition depicted in the rightmost diagram
in Figure 8 at each arc. We denote by Col(X,↑)(D) (resp. Col(X,↑)(D)Y ) the set
of (X,↑)-colorings (resp. (X,↑)Y -colorings) of D. The well-definedness of an
(X,↑)-coloring (resp. (X,↑)Y -coloring) follows from

(a−1)−1
= a, a−1

∗ b = (a ∗ b)−1, (a ∗ b) ∗ b−1
= a,

b(ab)−1
= a−1, (ab)−1a = b−1.

The first three equalities are the defining conditions of a good involution considered
in [Kamada 2007; Kamada and Oshiro 2010]. They used the notion of a good
involution precisely to allow for appropriate changes of orientations. Following their
arguments, we can show the following proposition in the same way as Proposition 7.

Proposition 11. Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y

be an X-set. Let D be a diagram of a handlebody-link H. Let D′ be a diagram
obtained by applying one of the R1–R6 moves to the diagram D once. For an
(X,↑)-coloring (resp. (X,↑)Y -coloring) C of D, there is a unique (X,↑)-coloring
(resp. (X,↑)Y -coloring) C ′ of D′ which coincides with C except near a point where
the move applied.

Let D↑n (X)Y be the subgroup of Pn(X)Y generated by the elements of the form

〈y〉〈a1〉 · · · 〈a〉 · · · 〈ak〉+ 〈y〉〈a1〉 · · · 〈a〉−1
i · · · 〈ak〉,

where 〈a1, . . . , am〉
−1
i denotes

∗a1〈a−1
1 , a1a2, a3, . . . , am〉 if i = 1,

〈a1, . . . , ai−2, ai−1ai , a−1
i , ai ai+1, ai+2, . . . , am〉 if i 6= 1,m,

〈a1, . . . , am−2, am−1am, a−1
m 〉 if i = m.
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The chain group D↑n (X)Y will be called the group of orientation degeneracies. For
example, D↑1 (X)Y is generated by the elements of the form

〈y〉〈a〉+ 〈y ∗ a〉〈a−1
〉,

and D↑2 (X)Y is generated by the elements of the form

〈y〉〈a〉〈b〉+ 〈y ∗ a〉〈a−1
〉〈b〉, 〈y〉〈a〉〈b〉+ 〈y ∗ b〉〈a ∗ b〉〈b−1

〉,

〈y〉〈a, b〉+ 〈y ∗ a〉〈a−1, ab〉, 〈y〉〈a, b〉+ 〈y〉〈ab, b−1
〉.

We remark that the elements of the form

〈y〉〈a1〉···〈a1,...,am〉···〈ak〉−(−1)m(m+1)/2
〈y〉〈a1〉···∗(a1···am)〈a−1

m ,...,a−1
1 〉···〈ak〉

belong to D↑n (X)Y . Furthermore, we can prove that the elements of the form

〈y〉〈a1〉···〈a1,...,am〉···〈ak〉−(−1)i(i+1)/2
〈y〉〈a1〉···

∗(a1···ai )〈a−1
i ,...,a−1

1 ,a1···ai+1,ai+2,...,am〉···〈ak〉

belong to D↑n (X)Y by induction.

Lemma 12. D↑∗ (X)Y = (D
↑
n (X)Y , ∂n) is a subcomplex of P∗(X)Y .

Proof. We have ∂n(D
↑
n (X)Y )⊂ D↑n−1(X)Y , since

∂(〈a1, . . . , am〉+ ∗a1〈a−1
1 , a1a2, a3, . . . , am〉)

= 〈a1, a2a3, a4, . . . , am〉+ ∗a1〈a−1
1 , a1a2a3, a4, . . . , am〉

+

m−1∑
i=3

(−1)i
(
〈a1, . . . , ai ai+1, ai+2, . . . , am〉

+ ∗a1〈a−1
1 , a1a2, a2, . . . , ai ai+1, ai+2, . . . , am〉

)
+ (−1)m(〈a1, . . . , am−1〉+ ∗a1〈a−1

1 , a1a2, a3, . . . , am−1〉)

and
∂(〈a1, . . . , am〉+ 〈a1, . . . , ai−1ai , a−1

i , ai ai+1, ai+2, . . . , am〉)

=∗ a1〈a2, . . . , am〉+ ∗a1〈a2, . . . , ai−1ai , a−1
i , ai ai+1, ai+2, . . . , am〉

+

i−2∑
j=1

(−1) j(
〈a1, . . . , a j a j+1, a j+2, . . . , am〉

+ 〈a1, . . . , a j a j+1, a j+2, . . . , ai−1ai , a−1
i , ai ai+1, ai+2, . . . , am〉

)
+

m−1∑
j=i+1

(−1) j(
〈a1, . . . , a j a j+1, a j+2, . . . , am〉

+ 〈a1, . . . , ai−1ai , a−1
i , ai ai+1, ai+2, . . . , a j a j+1, . . . , am〉

)
+ (−1)m(〈a1, . . . , am−1〉+ 〈a1, . . . , ai−1ai , a−1

i , ai ai+1, ai+2, . . . , am−1〉).

Thus D↑∗ (X)Y is a subcomplex of P∗(X)Y . �
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Figure 9. Well-definedness of local chains for unoriented handle-
body-links.

Definition 13. We set C↑n (X)Y = Pn(X)Y /(Dn(X)Y + D↑n (X)Y ). The quotient
complex (C↑n (X)Y , ∂n) is denoted by C↑∗ (X)Y . For an abelian group A, we define
the cochain complex C∗

↑
(X; A)Y = Hom(C↑∗ (X)Y , A). We denote by H↑n (X)Y the

n-th homology group of C↑∗ (X)Y .

For an (X,↑)Y -coloring C of a diagram D for a handlebody-link, we define
the local chains w(ξ ;C) at each crossing ξ and each vertex ξ of D as depicted in
Figure 4. The local chain is well-defined, since

−〈y ∗ a〉〈a−1
〉〈b〉 = 〈y〉〈a〉〈b〉 = −〈y ∗ b〉〈a ∗ b〉〈b−1

〉,

−〈y ∗ a〉〈a−1, ab〉 = 〈y〉〈a, b〉 = −〈y〉〈ab, b−1
〉

in C↑2 (X)Y (see Figure 9). Then we can define the chain W (D;C) ∈ C↑2 (X)Y in
the same way as W (D;C) ∈ C2(X)Y , and obtain invariants H(H), 8θ (H) for an
(unoriented) handlebody-link H .

7. Simplicial decomposition

The goal of this section is to prove Lemma 15 stating that D∗(X)Y is a subcomplex.
The formula of D2(X)Y , when 〈y〉 is omitted, is written as

〈a〉〈b〉− 〈a, b〉+ 〈b, a ∗ b〉,

and its geometric interpretation is depicted in Figure 10. In (A), a colored triangle
representing 〈a, b〉 is depicted, as well as its dual graph with a trivalent vertex.



36 SCOTT CARTER, ATSUSHI ISHII, MASAHICO SAITO AND KOKORO TANAKA

(A) (B) (C)

HH ��

�
�
�
�
��

S
S
S
S
SS

7 w

-

a b

ab

〈a, b〉

�
�
�
�

@
@

@
@

@
@
@

@

�
�
�
�

�
�
�

�

@
@
@
@

R

�

�

R
a b

b a ∗ b

〈a〉〈b〉

H
H
�
�

�
�
H
H

@
@

@
@

�
�
�
�

�
�

�
�

@
@
@
@

R

�

-

�

R
a b

b a ∗ b

ab

〈a, b〉− 〈b, a ∗ b〉

Figure 10. Dividing a square into triangles.

The colorings of such a graph were discussed in Section 5. A colored square
representing 〈a〉〈b〉 is depicted in (B), with the dual graph that corresponds to a
crossing. In (C), a triangulation of the square is depicted, and after triangulation
it represents 〈a, b〉 − 〈b, a ∗ b〉. Thus the triangulation corresponds to the above
formula. This decomposition is found in [Carter et al. 2003].

At the same time, this equation corresponds to Y-oriented R4 moves in Figure 1
as follows. In Figure 11, colored diagrams of Y-oriented R4 moves are depicted. In
the left diagram, the left-hand side represents the chain 〈a〉〈b〉+ 〈b, a ∗ b〉 and the
right-hand side represents 〈a, b〉. In the right diagram, the left-hand side represents
the chain −〈a〉〈b〉 − 〈b, a ∗ b〉 and the right-hand side represents −〈a, b〉. Thus
the above equality is needed for colored diagrams to define equivalent chains in
the quotient complex. A geometric interpretation of the last expression of D3(X)Y
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Figure 11. Colors for Y-oriented R4 moves.
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Figure 12. Decomposition of a prism into tetrahedra.
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omitting 〈y〉,

〈a〉〈b, c〉− 〈a, b, c〉+ 〈b, a ∗ b, c〉− 〈b, c, a ∗ (bc)〉

is found in Figure 12. The symbol 〈a〉 is represented by the horizontal 1-simplex,
〈b, c〉 is represented by the right triangular face, and 〈a〉〈b, c〉 is represented by
a prism. The term 〈a, b, c〉 corresponds to the right top tetrahedron in the prism.
The expressions of the form 〈〈a〉〈b, c〉〉i provides a triangulation of a product of
simplices. Each term corresponds to

〈a, b, c〉 = 〈〈a〉〈b, c〉〉1,

〈b, a ∗ b, c〉 = −〈〈a〉〈b, c〉〉2,

〈b, c, a ∗ (bc)〉 = 〈〈a〉〈b, c〉〉3.

Below we use the notation

∂(0)〈x1, . . . , xm〉 = ∗x1〈x2, . . . , xm〉,

∂(i)〈x1, . . . , xm〉 = (−1)i 〈x1, . . . , xi xi+1, . . . , xm〉,

∂(m)〈x1, . . . , xm〉 = (−1)m〈x1, . . . , xm−1〉.

Then the boundaries of 〈〈a〉〈b, c〉〉i are computed as

〈〈a〉〈b, c〉〉i ∂
7−→∂(0)〈〈a〉〈b, c〉〉i+∂(1)〈〈a〉〈b, c〉〉i+∂(2)〈〈a〉〈b, c〉〉i+∂(3)〈〈a〉〈b, c〉〉i

and the right-hand sides for i = 1, 2, 3 are computed as follows:

〈〈a〉〈b, c〉〉1 ∂
7−→∗a〈b, c〉− 〈ab, c〉+ 〈a, bc〉− 〈a, b〉

= 〈(∂(0)〈a〉)〈b, c〉〉1+ ∂(1)〈〈a〉〈b, c〉〉1−〈〈a〉∂(1)〈b, c〉〉1−〈〈a〉∂(2)〈b, c〉〉1,

〈〈a〉〈b, c〉〉2 ∂
7−→−∗ b〈a ∗ b, c〉+ 〈b(a ∗ b), c〉− 〈b, (a ∗ b)c〉+ 〈b, a ∗ b〉

= −〈〈a〉∂(0)〈b, c〉〉1− ∂(1)〈〈a〉〈b, c〉〉1− ∂(2)〈〈a〉〈b, c〉〉3−〈〈a〉∂(2)〈b, c〉〉2,

〈〈a〉〈b, c〉〉3 ∂
7−→∗b〈c, a ∗ (bc)〉− 〈bc, a ∗ (bc)〉+ 〈b, c(a ∗ (bc))〉− 〈b, c〉

= −〈〈a〉∂(0)〈b, c〉〉2−〈〈a〉∂(1)〈b, c〉〉2+ ∂(2)〈〈a〉〈b, c〉〉3+〈(∂(1)〈a〉)〈b, c〉〉1,

where 〈(∂(i)〈a〉)〈b, c〉〉1 is regarded as (∂(i)〈a〉)〈b, c〉. The canceling terms of the
form ∂(i)〈〈a〉〈b, c〉〉 j in the above boundaries correspond to internal triangles in
Figure 12 that are shared by a pair of tetrahedra. Other terms are of the form
〈∂(i)〈a〉〈b, c〉〉 j or 〈〈a〉∂(i)〈b, c〉〉 j , and they are outer triangles that constitute the
boundary of the prism. The expression 〈∂(i)〈a〉〈b, c〉〉 j represents the two triangles
on the right and the left in Figure 12, since this represents

(boundary of the interval represented by 〈a〉)×(the triangle represented by 〈b, c〉).

Thus the outer boundary follows the pattern of Leibniz rule.



38 SCOTT CARTER, ATSUSHI ISHII, MASAHICO SAITO AND KOKORO TANAKA

In terms of the coloring invariant of graphs, as in the case of the preceding
relation for the Y-oriented R4 move, this relation corresponds to an equivalence of
colored 2-complexes called foams, which are higher-dimensional analogues of the
move depicted in Figure 11. See [Carter and Ishii 2012] for more on colored foams.

Lemma 14. For 〈a〉 = 〈a1, . . . , as〉 and 〈b〉 = 〈b1, . . . , bt 〉 where ai , b j ∈ Gλ, we
have

∂〈〈a〉〈b〉〉 = 〈(∂〈a〉)〈b〉〉+ (−1)|a|〈〈a〉(∂〈b〉)〉,

where 〈〈 · 〉〈 · 〉〉 is linearly extended.

Proof. By definition, we have

∂〈〈a〉〈b〉〉 =
s+t∑
i=0

∂(i)〈〈a〉〈b〉〉 =
s+t∑
i=0

∑
1≤i1<···<is≤s+t

∂(i)〈〈a〉〈b〉〉i1,...,is .

Direct computations show that

∂(0)〈〈a〉〈b〉〉i1,...,is

=

{
〈(∂(0)〈a〉)〈b〉〉i2−1,...,is−1 if (i1 = 1),
(−1)s〈〈a〉(∂(0)〈b〉)〉i1−1,...,is−1 if (i1 > 1),

∂(i)〈〈a〉〈b〉〉i1,...,is

=


〈(∂(k)〈a〉)〈b〉〉i1,...,ik ,ik+2−1,...,is−1 if (ik = i < i + 1= ik+1),

−∂(i)〈〈a〉〈b〉〉i1,...,ik−1,ik+1,ik+1,...,is if (ik = i < i + 1< ik+1),

−∂(i)〈〈a〉〈b〉〉i1,...,ik ,ik+1−1,ik+2,...,is if (ik < i < i + 1= ik+1),

(−1)s〈〈a〉(∂(i−k)〈b〉)〉i1,...,ik ,ik+1−1,...,is−1 if (ik < i < i + 1< ik+1),

∂(s+t)〈〈a〉〈b〉〉i1,...,is

=

{
〈(∂(s)〈a〉)〈b〉〉i1,...,is−1 if (is = s+ t),
(−1)s〈〈a〉(∂(t)〈b〉)〉i1,...,is if (is < s+ t).

The terms of the form −∂(i)〈〈a〉〈b〉〉i1,...,ik−1,ik+1,ik+1,...,is (ik = i < i + 1< ik+1)
and −∂(i)〈〈a〉〈b〉〉i1,...,ik ,ik+1−1,ik+2,...,is (ik < i < i + 1 = ik+1) cancel in pairs. The
other terms are organized as∑

1≤i1<···
<is−1≤s+t−1

s∑
i=0

〈(∂(i)〈a〉)〈b〉〉i1,...,is−1 +

∑
1≤i1<···

<is≤s+t−1

t∑
i=0

(−1)s〈〈a〉(∂(i)〈b〉)〉i1,...,is

=

∑
1≤i1<···

<is−1≤s+t−1

〈(∂〈a〉)〈b〉〉i1,...,is−1 +

∑
1≤i1<···

<is≤s+t−1

(−1)s〈〈a〉(∂〈b〉)〉i1,...,is

= 〈(∂〈a〉)〈b〉〉+ (−1)s〈〈a〉(∂〈b〉)〉,

where 〈 · 〉i1,...,is is linearly extended. �
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Since the Leibniz rule holds (by the preceding Lemma 14), we have the following.

Lemma 15. D∗(X)Y = (Dn(X)Y , ∂n) is a subcomplex of P∗(X)Y .

8. Chain map for simplicial decomposition

In this section we examine relations between group and MCQ homology theories.

8.1. Simplicial decomposition (general case). We observe an associativity of the
notation 〈〈a〉〈b〉〉 defined in Section 3, and extend the notation to multi-tuples. For
an expression of the form 〈a〉〈b〉〈c〉 in a chain in P∗(X)Y , where a, b, c∈

⋃
m∈N Gm

λ ,
it is easy to see that we have the following.

Lemma 16. 〈〈〈a〉〈b〉〉〈c〉〉 = 〈〈a〉〈〈b〉〈c〉〉〉.
By Lemma 16, we can define 〈〈a〉〈b〉〈c〉〉 by 〈〈〈a〉〈b〉〉〈c〉〉 = 〈〈a〉〈〈b〉〈c〉〉〉.

Moreover, for an expression of the form 〈a1〉 · · · 〈ak〉 in a chain in P∗(X)Y , where
a1, . . . , ak ∈

⋃
m∈N Gm

λ , we can define 〈〈a1〉 · · · 〈ak〉〉 inductively. By Lemma 14,
this notation is compatible with the boundary homomorphism ∂ in the following
sense.

Lemma 17. ∂〈〈a1〉 · · · 〈ak〉〉 = 〈∂(〈a1〉 · · · 〈ak〉)〉.

We give a direct formula (instead of induction) for the notation 〈〈a1〉 · · · 〈ak〉〉

later in Section 8.3.

8.2. Chain map (from MCQ to group). Let X =
∐
λ∈3 Gλ be a multiple conju-

gation quandle, and let Y be an X -set. Let PG
n (X)Y be the subgroup of Pn(X)Y

generated by the elements of the form 〈y〉〈a〉. Let DG
n (X)Y and DG,↑

n (X)Y be
respectively PG

n (X)Y ∩ Dn(X)Y and PG
n (X)Y ∩ D↑n (X)Y , which are the subgroups

of PG
n (X)Y . Note that DG

n (X)Y = PG
n (X)Y ∩ Dn(X)Y is the trivial group. We put

CG
n (X)Y := PG

n (X)Y /DG
n (X)Y = PG

n (X)Y ,

CG,↑
n (X)Y := PG

n (X)Y /(D
G
n (X)Y + DG,↑

n (X)Y )= PG
n (X)Y /DG,↑

n (X)Y .

Then CG
∗
(X)Y = (CG

n (X)Y , ∂n) and CG,↑
∗ (X)Y = (C

G,↑
n (X)Y , ∂n) are chain com-

plexes. If X is a group (regarded as X =
∐
λ∈3 Gλ with 3 a singleton) and Y is a

singleton, CG
∗
(X)Y is essentially the same as the chain complex of the usual group

homology. For an abelian group A, we define the cochain complexes

C∗G(X; A)Y = Hom(CG
∗
(X)Y , A) and C∗G,↑(X; A)Y = Hom(CG,↑

∗
(X)Y , A).

When X is a multiple conjugation quandle consisting of a single group, define
homomorphisms 1 : P∗(X)Y → PG

∗
(X)Y by

1(〈a1〉 · · · 〈am〉) := 〈〈a1〉 · · · 〈am〉〉.

Then by Lemma 17 and from these definitions, we have the following.
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Proposition 18. The homomorphisms 1 : P∗(X)Y → PG
∗
(X)Y give rise to a chain

homomorphism. Furthermore,1 induces the chain homomorphisms1 :C∗(X)Y →
CG
∗
(X)Y and 1 : C↑∗ (X)Y → CG,↑

∗ (X)Y .

When n = 0, 1, the induced homomorphisms 1 : Cn(X)Y → CG
n (X)Y and

1 : C↑n (X)Y → CG,↑
n (X)Y are identities. Furthermore Hn(X)Y ∼= H G

n (X)Y and
H↑n (X)Y ∼= H G,↑

n (X)Y for n = 0, 1. We note that the chain homomorphisms 1 are
defined only for an MCQ consisting of a single group. In this case, we also have the
cochain homomorphisms 1 : C∗G(X; A)Y → C∗(X; A)Y and 1 : C∗G,↑(X; A)Y →
C∗
↑
(X; A)Y for an abelian group A. Hence, for a given cocycle of group homology

theory, we can obtain that of our theory through 1. This approach will be discussed
in Section 10.

Remark 19. We point out here that for a group X = Z3 and a trivial X -set Y ,
there is a group 2-cocycle η that satisfies the conditions in C2

G,↑(X)Y (coming from
DG,↑

n (X)Y ),

η〈a, b〉+ η〈a−1, ab〉 = 0 and η〈a, b〉+ η〈ab, b−1
〉 = 0.

Specifically, let η : Z3×Z3→ Z3 denote the function that has values η(1, 1)= 1,
η(2, 2)= 2 and η(g, h)= 0 otherwise. It is a direct calculation that the condition
above is satisfied. Furthermore, to see that η is a cocycle, consider the generating
cocycle over G = Zp where p is a prime that is defined by

η0(x, y)= (1/p)(x + y− x + y ) (mod p),

where x is an integer 0 ≤ x < p such that x = x (mod p). It is known that η0

is a generating 2-cocycle for H 2
G(Zp;Zp) for prime p. For p = 3, let ζ be a

1-chain defined by ζ(0) = 0 and ζ(1)+ ζ(2) = 2. Then one can easily compute
that η = η0+ δζ . Hence there is a 2-cocycle η ∈ C2

G,↑(X)Y of our theory that is
cohomologous to the standard group 2-cocycle η0.

8.3. Simplicial decomposition (direct formula). We give a direct formula (instead
of induction) for the notation 〈〈a1〉 · · · 〈ak〉〉. To the term 〈〈a〉〈b〉〉i1,...,is , we associate
a vector v = (v1, . . . , vn) ∈ {1, 2}n by defining vi = 1 if i = i j for some j , and
otherwise vi = 2, where n = s+ t . In the term

ci =

{
ak ∗ (b1 · · · bi−k) if i = ik ,
bi−k if ik < i < ik+1,

the first entry with ak in it corresponds to vi = 1 and the second with bi−k to vi = 2.
We note that the term ak came from the first part 〈a〉 in 〈〈a〉〈b〉〉i1,...,is so that vi = 1
is assigned, and the term bi−k belongs to the second part 〈b〉 receiving vi = 2.

Example 20. For the term 〈a〉〈b, c〉 discussed for Figure 12, the terms 〈a, b, c〉,
−〈b, a ∗ b, c〉, and 〈b, c, a ∗ (bc)〉 correspond to the vectors (1, 2, 2), (2, 1, 2), and
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(2, 2, 1), respectively. Note that (2, 1, 2) is obtained from (1, 2, 2) by a transposition
of the first two entries, and this is reflected in Figure 12 by the fact that the tetrahedra
represented by these vectors share a triangular internal face. We indicate by an
edge between two vectors when one is obtained from the other by a transposition
of consecutive entries. In this case we draw the graph:

(1, 2, 2) −−(2, 1, 2) −−(2, 2, 1).

For 〈a, b〉〈c, d〉, the terms 〈〈a〉〈b〉〉i1,...,is are listed as 〈a, b, c, d〉,−〈a, c, b∗c, d〉,
〈c, a∗c, b∗c, d〉, 〈a, c, d, b∗(cd)〉,−〈c, a∗c, d, b∗(cd)〉, 〈c, d, a∗(cd), b∗(cd)〉,
and these correspond to vectors

(1, 1, 2, 2), (1, 2, 1, 2), (2, 1, 1, 2), (1, 2, 2, 1), (2, 1, 2, 1), (2, 2, 1, 1),

respectively. They are connected by edges as

(2, 1, 1, 2)
� �

(1, 1, 2, 2)− (1, 2, 1, 2) (2, 1, 2, 1)− (2, 2, 1, 1)
� �
(1, 2, 2, 1)

indicating which simplices share internal faces. Note that from a vector v =

(v1, . . . , vn) ∈ {1, 2}n the subscripts i1, . . . , is in 〈〈a〉〈b〉〉i1,...,is are recovered by
the condition vi j = 1.

For an expression of the form 〈a1〉 · · · 〈ak〉 in a chain in P∗(X)Y , where

a1, . . . , ak ∈
⋃
m∈N

Gm
λ ,

we put n = |a1| + · · · + |ak | and consider vectors v = (v1, . . . , vn) ∈ {1, . . . , k}n ,
and denote by #i

jv the number of j’s in v1, . . . , vi . Then for a given v define
i( j, 1) < · · ·< i( j, n j ) by the condition that vi( j,1) = · · · = vi( j,n j ) = j .

With these notations in hand, we temporarily define 〈〈a1〉 · · · 〈ak〉〉
′ by∑

v∈{1,...,k}n
#n

j v=n j ( j=1,...,k)

(−1)
∑k−1

j=1
∑n j

t=1(i( j,t)−t−
∑ j−1

s=1 ns)〈c1, . . . , cn〉

for 〈a1〉 · · · 〈ak〉 = 〈a1,1, . . . , a1,n1〉 · · · 〈ak,1, . . . , ak,nk 〉, where

ci = avi ,#i
vi

v ∗

k∏
s=vi+1

#i
s v∏

t=1

as,t .

Then we have 〈〈a1〉 · · · 〈ak〉〉
′
= 〈〈a1〉 · · · 〈ak〉〉, from the fact that simplices of both
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(1,2,2,3)
� �

(2,1,2,3) (1,2,3,2)
� � � �

(2,2,1,3) (2,1,3,2) (1,3,2,2)
| | |

(2,2,3,1) (2,3,1,2) (3,1,2,2)
� � � �

(2,3,2,1) (3,2,1,2)
� �
(3,2,2,1)

Figure 13. Boundaries of 〈a〉〈b, c〉〈d〉.

sides are in one-to-one correspondence with vectors v = (v1, . . . , vn) ∈ {1, . . . , k}n ,
and the signs correspond to the number of transpositions, modulo 2, of a given
vector v from the vector (1, . . . , 1, 2, . . . , 2, . . . , k, . . . , k).

Example 21. The terms of 〈〈a〉〈b, c〉〈d〉〉 consist of

〈a, b, c, d〉, 〈b, a ∗ b, c, d〉, 〈a, b, d, c ∗ d〉,
〈b, c, a ∗ (bc), d〉, 〈b, a ∗ b, d, c ∗ d〉, 〈a, d, b ∗ d, c ∗ d〉,
〈b, c, d, a ∗ (bcd)〉, 〈b, d, a ∗ (bd), c ∗ d〉, 〈d, a ∗ d, b ∗ d, c ∗ d〉,
〈b, d, c ∗ d, a ∗ (bcd)〉, 〈d, b ∗ d, a ∗ (bd), c ∗ d〉, 〈d, b ∗ d, c ∗ d, a ∗ (bcd)〉,

which, respectively, correspond to the vectors

(1, 2, 2, 3), (2, 1, 2, 3), (1, 2, 3, 2),

(2, 2, 1, 3), (2, 1, 3, 2), (1, 3, 2, 2),

(2, 2, 3, 1), (2, 3, 1, 2), (3, 1, 2, 2),

(2, 3, 2, 1), (3, 2, 1, 2), (3, 2, 2, 1).

The graph representing shared faces is depicted in Figure 13.

9. Relationship between MCQ and IIJO

Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y be an X -set. Let

P IIJO
n (X)Y be the subgroups of Pn(X)Y generated by the elements of the form
〈y〉〈a1〉 · · · 〈an〉. Then P IIJO

∗
(X)Y = (P IIJO

n (X)Y , ∂n) is a subcomplex of P∗(X)Y .
Let DIIJO

n (X)Y be the subgroup of P IIJO
n (X)Y generated by the elements of the

forms

〈y〉〈a1〉 · · · 〈b1〉〈b2〉 · · · 〈an〉, 〈y〉〈a1〉 · · · ∂〈b1, b2〉 · · · 〈an〉
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IIJO 2-boundary degenerate DIIJO
2 (X)Y cancelled by sign zero by definition

moves R3 R4( R1), R5( ori.) R2 R6

MCQ 2-boundary degenerate D2(X)Y degenerate D↑2 (X)Y cancelled by sign

moves R3, R5, R6 R4( R1) orientation R2

Table 1. Comparison between IIJO theory and MCQ theory

for a1, . . . , an ∈ X and b1, b2 ∈ Gλ. We note that the former elements relate to the
invariance under the R1 and R4 move, and that the latter elements relate to the
invariance under the R5 move and reversing orientation.

Lemma 22. DIIJO
∗

(X)Y = (DIIJO
n (X)Y , ∂n) is a subcomplex of P IIJO

∗
(X)Y .

Proof. This follows from

∂(〈b1〉〈b2〉)= ∂〈b1, b2〉− ∂〈b2, b1 ∗ b2〉, ∂(∂〈b1, b2〉)= 0

for b1, b2 ∈ Gλ. �

We put
C IIJO

n (X)Y = P IIJO
n (X)Y /DIIJO

n (X)Y .

Then C IIJO
∗
(X)Y = (C IIJO

n (X)Y , ∂n) is a chain complex. If X is obtained from a
G-family of quandles as in Example 2, C IIJO

∗
(X)Y is the chain complex defined in

[Ishii et al. 2013]. For an abelian group A, we define the cochain complexes

C∗IIJO(X; A)Y = Hom(C IIJO
∗
(X)Y , A).

We note that a natural projection pr∗ : P∗(X)Y → P IIJO
∗

(X)Y does not induce
a chain homomorphism pr∗ : C∗(X)Y → C IIJO

∗
(X)Y , since IIJO homology theory

is invariant under the invariance for reversing orientations. (See Table 1.) It is
seen, however, that this map induces the chain homomorphism pr∗ : C

↑

∗ (X)Y →
C IIJO
∗
(X)Y and the cochain homomorphism pr∗ : C∗IIJO(X; A)Y → C∗

↑
(X; A)Y for

an abelian group A. Hence, for a given cocycle of IIJO homology theory (with
some modification for a multiple conjugation quandle as above), we can obtain that
of our theory through pr∗. This implies that our invariant is a generalization of the
IIJO quandle cocycle invariant.

10. Towards finding 2-cocycles

We discuss approaches to finding 2-cocycles that are not induced from the IIJO
(co)homology theory. Let G be a group, M a right G-module, and A an abelian
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group. The module M and the set X =M×G (=
∐

x∈M{x}×G) can be considered
as a G-family of quandles and a multiple conjugation quandle as in Example 2,
respectively.

We take an X -set Y as a singleton {y0} and suppress the notation 〈y0〉. For a
2-cocycle ψ ∈ P2(X; A)Y , we denote ψ

(
〈(x, g)〉〈(y, h)〉

)
by φ

(
(x, g), (y, h)

)
, and

ψ
(
〈(x, g), (x, h)〉

)
by ηx(g, h). Then the 2-cocycle conditions are written as

(1) ηx(g, h)+ ηx(gh, k)= ηx(h, k)+ ηx(g, hk),

(2) φ((x, g), (y, k))+φ((x, h), (y, k))−φ((x, gh), (y, k))
= ηx(g, h)− ηx∗k y(g ∗ k, h ∗ k),

(3) φ((x, g), (y, h))+φ((x ∗h y, g ∗ h), (y, k))= φ((x, g), (y, hk)),

(4) φ((x, g), (y, h))+φ((x ∗h y, g ∗ h), (z, k))

= φ((x, g), (z, k))+φ((x ∗k z, g ∗ k), (y ∗k z, h ∗ k)),

where x, y, z ∈ M and g, h, k ∈ G. Furthermore, for a 2-cochain ψ ∈ P2(X; A)Y ,
the condition that ψ is a 2-cochain in C2(X; A)Y is written as

(5) φ((x, g), (x, h))= ηx(g, h)− ηx(h, g ∗ h),

where x ∈ M and g, h ∈ G.
Towards constructing MCQ 2-cocycles that are not from the IIJO homology, first

we note that if φ above is an IIJO 2-cocycle, then φ satisfies the conditions (3),(4),
and the condition that the LHS of (2) vanishes. By considering ψ ′ = ψ − φ, we
obtain an MCQ 2-cocycle ψ ′ that consists only of terms of ηx for x ∈ M . Thus
we first consider such a case in Example 23 below. In this case, we can take an
approach described in Section 8 for finding MCQ cocycles from group cocycles.

Example 23. For a 2-cochain ψ ∈ P2(X; A)Y with the assumption

(0) ψ(〈(x, g)〉〈(y, h)〉) (= φ((x, g), (y, h))) = 0,

we discuss what conditions are needed for the 2-cochain ψ being a 2-cocycle
in P2(X; A)Y . When we use the notation ηx(g, h) for ψ(〈(x, g), (x, h)〉), the
2-cocycle conditions are written as

(1) ηx(g, h)+ ηx(gh, k)= ηx(h, k)+ ηx(g, hk),

(2′) ηx(g, h)− ηx∗k y(g ∗ k, h ∗ k)= 0,

where x, y ∈ M and g, h, k ∈ G. We note that the condition (0) implies (3) and
(4). Furthermore, for a 2-cochain ψ ∈ P2(X; A)Y with the assumption (0), the
condition that ψ is a 2-cochain in C2(X; A)Y are written as

(5′) ηx(g, h)− ηx(h, g ∗ h)= 0,
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where x ∈ M and g, h ∈ G. Hence if ψ satisfies (0),(1), (2′) and (5′), then ψ is a
2-cocycle in C2(X; A)Y and defines an invariant for handlebody-knots.

If y = x , then (2′) implies ηx(g ∗k, h ∗k)= ηx(g, h), called the right invariance
of ηx . If x = 0, then (2′) with right invariance implies ηy·(1−k) ≡ η0, which is
another necessary condition for the condition (2′). Hence if any element in M
can be represented by the form y · (1− k) for some y ∈ M and k ∈ G, then we
have ηx ≡ η0 for any x ∈ M . In this case, we can check that the 2-cocycle ψ in
C2(X; A)Y comes from the dual of the composition of the chain homomorphisms

C∗(X)Y
pr2
−→C∗(G)Y

1
−→CG

∗
(G)Y ,

where a chain homomorphism pr2 is induced from a natural projection into the
second factor and the chain homomorphism 1 was defined in Section 8.2. In this
case, ψ assigned at a crossing is decomposed into a pair of weights η corresponding
to trivalent vertices as depicted in Figure 10 (B) and (C). Hence the resulting
invariant is equivalent to the invariant of the trivalent graph obtained by replacing
all crossings with vertices, that is, embedded in the 2-sphere without crossing. Such
an embedded graph is equivalent to a circle with small bubbles, and has trivial
invariant value (W (D;C)= 0 for any coloring C). Thus, in this case, ψ defines a
trivial invariant for handlebody-knots by the group 2-cocycle η0, whose cohomology
class may not be zero in H 2

G(G; A)Y .
If the condition that any element in M can be represented by the form y · (1− k)

for some y ∈ M and k ∈ G is not satisfied, then ψ satisfying (0), (1), (2′) and (5′)
may give rise to a nontrivial invariant for handlebody-links.

Example 24. In contrast to Example 23, next we consider the case when φ is not
an IIJO 2-cocycle, so that the LHS of (2) does not vanish for φ.

For any G-invariant A-bilinear map f :M2
→ A, Theorem 5.2 of [Nosaka 2013]

claimed that the map φ f : X2
→ A defined by

φ f ((x, g), (y, h)) := f (x − y, y · (1− h−1))

satisfies the conditions (3) and (4) above. For the G-invariant A-bilinear map f ,
if we can find maps ηx such that the conditions (1) and (2) are also satisfied, then
we obtain a 2-cocycle, which may be new. We remark here that φ f itself can be
modified as in [Nosaka 2013, Corollary 4.7] (by using an additive homomorphism
form G to some commutative ring) so that the conditions (1) and (2) are also
satisfied under the assumption ηx ≡ 0 for any x ∈ M .

The condition (1) merely says that ηx is a usual group 2-cocycle for any x ∈ M .
The condition (2) is equivalent to

(2′′) f (x − y, y · (1− k−1))= ηx(g, h)− ηx∗k y(g ∗ k, h ∗ k)
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from the definition of f . If y = x , then (2′′) implies that ηx is right invariant in the
sense that ηx(g ∗ k, h ∗ k) = ηx(g, h) as above. If y = 0, then (2′′) with the right
invariance implies ηx ·k ≡ ηx , called the orbit dependence of ηx . Thus we obtain
these two necessary conditions for the condition (2′′).

We examine the following specific examples. For a prime number p, let G denote
SL(2,Zp) that acts on M = (Zp)

2 from the right. For A=Zp, the map f :M2
→ A

defined by f (x, y) := det
( x

y
)

is a G-invariant A-bilinear map, where x, y ∈ M are
row vectors on which G acts on the right, and det denotes the determinant. This
setting is motivated from [Nosaka 2013, Proposition 4.5].

First, we consider the case where p = 2. Define m : M→ A by

m(x) :=
{

0 if x = 0,
1 if x 6= 0.

Then we can check that

φ f
(
(x, g), (y, h)

)
=−m(x)+m(x ∗h y)

for any x, y ∈M and g, h ∈G. Take ηx(g, h) to be m(x) for any x ∈M and g, h ∈G.
Then we can show that the 2-cochain ψ , defined by φ f and ηx , is a 2-coboundary
as follows. Define a 1-cochain m̃ ∈ P1(X; A) by m̃(〈(x, g)〉) := m(x). Then the
2-coboundary δm̃ ∈ P2(X; A) is written as

(δm̃)(〈(x, g)〉〈(y, h)〉)=−m(x)+m(x ∗h y),

(δm̃)(〈(x, g), (x, h)〉)= m(x),

where x, y ∈ M and g, h ∈ G. This implies that ψ = δm̃.

Second, we consider the case where p > 2. If x = (0, 0) and k =
(
−1 0

0 −1

)
, the

condition (2′′) implies η2y(g, h)= η0(g, h) for any y ∈ M and g, h ∈G. Since p is
odd, we have that ηx ≡ η0 for any x ∈M . If we substitute y= (1, 0) and k =

( 1 −1
0 1

)
for (2′′), then LHS is 1 and RHS is 0, which turns out to be a contradiction. Hence
there is no choice of ηx such that the conditions (1) and (2′′) are satisfied.

Although our attempts have not resulted in new nontrivial 2-cocycles, it appears
useful to record our approaches and facts we have found, for future endeavors
towards constructing new cocycles using these approaches. Further studies are
desirable on this homology theory, as it unifies group and quandle homology theories
for a structure of multiple conjugation quandles, which have ample interesting
examples and applications to handlebody-links.
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