
Pacific
Journal of
Mathematics

BERNSTEIN-TYPE THEOREMS FOR SPACELIKE
STATIONARY GRAPHS IN MINKOWSKI SPACES

XIANG MA, PENG WANG AND LING YANG

Volume 287 No. 1 March 2017



PACIFIC JOURNAL OF MATHEMATICS
Vol. 287, No. 1, 2017

dx.doi.org/10.2140/pjm.2017.287.159

BERNSTEIN-TYPE THEOREMS FOR SPACELIKE
STATIONARY GRAPHS IN MINKOWSKI SPACES

XIANG MA, PENG WANG AND LING YANG

For entire spacelike stationary 2-dimensional graphs in Minkowski spaces,
we establish Bernstein-type theorems under specific boundedness assump-
tions either on the W -function or on the total (Gaussian) curvature. These
conclusions imply the classical Bernstein theorem for minimal surfaces in
R3 and Calabi’s theorem for spacelike maximal surfaces in R3

1.

1. Introduction

The classical Bernstein theorem [1915] says that any entire minimal graph in R3

has to be an affine plane. In other words, suppose f : R2
→ R is an entire solution

to the minimal surface equation

(1-1) div
∇ f√

1+ |∇ f |2
= 0.

Then f has to be affine linear. This conclusion is generally not true in the
higher-codimensional case. The simplest counterexample is the minimal graph
M = graph f := {(x, f (x)) : x ∈ C} ⊂ R4 of an arbitrary nonlinear holomorphic
function f : C→ C.

To find a suitable generalization, usually we have to add some boundedness
assumptions on the growth rate of the function f . Chern and Osserman [1967] ob-
tained one such Bernstein-type theorem as follows. Suppose that f = ( f1, . . . , fm)

is a smooth vector-valued function from R2 to Rm . If M = graph f is a minimal
graph, and

(1-2) W :=
[

det
(
δi j +

∑
1≤α≤m

∂ fα
∂xi

∂ fα
∂x j

)]1/2

is uniformly bounded, then M has to be an affine plane.
This W -function is a significant quantity for various reasons.
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For any f :R2
→Rm , denote the metric on graph( f ) as g= gi j dxi dx j under the

global coordinate chart x = (x1, x2) 7→ (x, f (x)) ∈ graph f . Then the area element
is given by W dx1∧ dx2. Thus W is a geometric measure of the area growth of the
graph of f .

Secondly, Chern and Osserman’s theorem can be stated in the language of PDEs
as below. Namely, the entire solution to the PDE system

(1-3)

∑
1≤i≤2

∂

∂xi
(Wgi j )= 0, j = 1, 2,

∑
1≤i, j≤2

∂

∂xi

(
Wgi j ∂ fα

∂x j

)
= 0, α = 1, . . . ,m

has to be affine linear provided that W ≤ C for a positive constant C , where

(1-4) (gi j ) := I2+ J T
f E Jf

(I2 and E denote the identity matrices of size 2 and m separately and Jf is the
Jacobian matrix of f ), (gi j ) := (gi j )

−1 and W = det(gi j )
1/2. A key point from the

analytic viewpoint is that the boundedness of W ensures that (1-3) is a uniformly
elliptic PDE system.

For more work on the generalization of Chern and Osserman’s theorem in
relation to the W -function, see [Barbosa 1979], [Fischer-Colbrie 1980], [Jost et al.
2014; 2015].

Now we consider entire spacelike stationary graphs in Minkowski spaces. They
too correspond to solutions to (1-3), the differences being that f = ( f1, . . . , fm) is
now from R2 to m-dimensional Minkowski space Rm

1 , and the E appearing in (1-4)
should be replaced by the Minkowski inner product matrix diag(1, 1, . . . , 1,−1).
Here we need to assume that (gi j ) is positive definite everywhere.

When m = 1, M becomes a spacelike maximal graph in R3
1, which has to be an

affine plane. This is a well-known Bernstein-type result by E. Calabi [1970]. But
for higher-codimensional cases, the Bernstein-type result fails to be true even if the
W -function is uniformly bounded. Such a counterexample, which can be found in
[Ma et al. 2013], is given by the function

f (x1, x2)=
(
2 sinh(x1) cos

(
−

√
2

2 x2
)
, 2 cosh(x1) cos

(
−

√
2

2 x2
))
.

So it is a more subtle problem about the value distribution of the W -function for
entire spacelike stationary graphs in Minkowski spaces. This is the main topic of
the present paper.

As the first step, we generalize Osserman’s result [1969, §5] to entire spacelike
stationary graphs in the Minkowski space. They are still conformally equivalent to
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the complex plane (see Theorem 3.1), and have an explicit simple representation
formula. Based on these formulas, we establish the following results:

• Let M be an entire spacelike stationary graph in R4
1. Then the W -function is

either constant, or takes each value in [r−1, r ] infinitely often, where r can be
any positive number strictly bigger than 1. Moreover, W is a constant if and
only if M is a flat surface (see Theorem 4.1).

• For any entire spacelike stationary graph M in R4
1, if W ≤ 1 (or W ≥ 1)

always holds true on M , then M has to be flat (see Corollary 4.2). Note that
Calabi’s theorem [1970] and the classical Bernstein theorem [1915] can easily
be deduced from the above two conclusions, respectively.

• For any entire spacelike stationary graph M in Rn
1 (n ≥ 4), if W ≤ 1, then M

must be flat (see Theorem 5.1). (On the contrary, the same conclusion does
not necessarily hold true in the case W ≥ 1; see Proposition 5.2.)

Another measure of the complexity of a complete stationary surface is its total
Gaussian curvature

∫
M |K | dM . This is closely related with its end behavior at

infinity; see the generalized Jorge–Meeks formula in [Ma et al. 2013]. Using the
Weierstrass representation formula given in the same work, one can compute the
integral of the Gauss curvature and the normal curvature of an arbitrary spacelike sta-
tionary surface in R4

1. A Bernstein-type theorem (Theorem 6.1) follows immediately,
which states that an entire spacelike stationary graph in R4

1 has to be flat, provided
that

∫
M |K | dM <∞. (This result cannot be generalized to higher-codimensional

cases.)

2. Entire graphs in Minkowski spaces and the W -function

Let Rm
1 denote the m-dimensional Minkowski space. The Minkowski inner product

of any u = (u1, . . . , um−1, um) and v = (v1, . . . , vm−1, vm) ∈ Rm
1 is given by

(2-1) 〈u, v〉 = u1v1+ · · ·+ um−1vm−1− umvm .

Let f : R2
→ Rm

1

(2-2) (x1, x2) 7→ f (x1, x2)= ( f1(x1, x2), . . . , fm(x1, x2))

be a smooth vector-valued function. As in §3 of [Osserman 1969], we introduce
the vector notation

(2-3) p :=
∂ f
∂x1

, q :=
∂ f
∂x2

.
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Let M = graph f := {(x, f (x)) : x ∈ R2
} be the entire graph in R2+m

1 generated
by f . Then the metric on M is

(2-4) g = gi j dxi dx j ,

with

(2-5) g11 = 1+〈p, p〉, g22 = 1+〈q, q〉, g12 = g21 = 〈p, q〉.

According to the properties of positive definite matrices, M is a spacelike surface
if and only if 1+〈p, p〉> 0 and det(gi j ) > 0. Hence

(2-6) W = det(gi j )
1/2 > 0

for any spacelike graph.
Denote by P0 the orthogonal projection of R2+m

1 onto R2. Then w := W−1 is
equivalent to the Jacobian determinant of P0|M . Thus W ≤ 1 (resp., ≡ 1, ≥ 1)
is equivalent to saying that P0|M is an area-increasing (resp., area-preserving,
area-decreasing) map.

For entire graphs in Euclidean space, it is well known that the orthogonal pro-
jection onto the coordinate plane is a length-decreasing map, which becomes an
isometry if and only if the graph is parallel to the coordinate plane. Therefore every
entire graph in Euclidean space must be complete. But the following examples
show these properties cannot be generalized to entire graphs in Minkowski spaces.

Examples. • Let y0 be a nonzero lightlike vector in Rm
1 , h be a smooth real-

valued function on R2 and f := h y0. Then

p =
∂h
∂x1

y0 and q =
∂h
∂x2

y0,

and hence gi j = δi j , which implies the projection of M = graph f onto R2 is
an isometry, but M cannot be an affine plane of R2+m

1 whenever h is nonlinear.

• Let t ∈ R 7→ θ(t) ∈ (−π/2, π/2) be a smooth odd function which satisfies
limt→+∞ θ(t)= π/2 and π/2− θ(t)= O(t−2). Denote

h(t) :=
∫ t

0
sin θ(t) dt.

Then h is a smooth even function on R. Define

f (x1, x2)= (0, . . . , 0, h(r))
(
r =

√
x2

1 + x2
2
)
.
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Then p=∂ f/∂x1= (0, . . . , 0, h′(r)x1/r), q=∂ f/∂x2= (0, . . . , 0, h′(r)x2/r)
and hence

g11 = 1+〈p, p〉 = 1−
h′(r)2x2

1

r2 ≥ 1− h′(r)2 = cos2 θ(t) > 0,

det(gi j )= det

1−
h′(r)2x2

1
r2

−
h′(r)2x1x2

r2

−
h′(r)2x1x2

r2
1−

h′(r)2x2
2

r2

= 1− h′(r)2 > 0.

Therefore M = graph f is an entire spacelike graph. Define γ : R→ R3 by
γ (t)= (t, 0, f (t, 0)). Then γ is a smooth curve in M tending to infinity. Since
f (t, 0)= (0, . . . , 0, h(t)),

L(γ )=
∫
∞

−∞

√
1− h′(t)2 dt =

∫
∞

−∞

cos θ(t) dt.

But cos θ(t)∼ π/2− |θ(t)| ∼ |t |−2 when t→∞. Therefore L(γ ) <∞ and
hence M cannot be complete.

3. Isothermal parameters of spacelike stationary graphs

Let x :M→R2+m
1 be a spacelike surface in Minkowski space. If the mean curvature

vector field H vanishes everywhere, then M is said to be stationary. M is stationary
if and only if the restriction of any coordinate function on M is harmonic. Namely,
1xl ≡ 0 for each 1≤ l ≤ 2+m, with 1 the Laplace–Beltrami operator with respect
to the induced metric on M ; see [Ma et al. 2013]. Now we additionally assume M
to be an entire graph over R2. More precisely, there exists f : R2

→ Rm
1 , such that

M = graph f := {(x, f (x)) : x ∈ R2
}. The denotation of p, q, gi j ,W is the same

as in Section 2. For an arbitrary smooth function F on M ,

(3-1) 1F =W−1∂i (Wgi j∂ j F),

where

(3-2) (gi j )= (gi j )
−1
=W−2

(
1+〈q, q〉 −〈p, q〉
−〈p, q〉 1+〈p, p〉

)
.

The stationarity of M implies x1 and x2 are both harmonic functions on M , hence

(3-3) 0=W1x1 = ∂i (Wgi j∂ j x1)= ∂i (Wgi jδ1 j )= ∂i (Wgi1)

=
∂

∂x1

(1+〈q, q〉
W

)
−

∂

∂x2

(
〈p, q〉

W

)
,
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and similarly,

(3-4) 0=W1x2 = ∂i (Wgi2)=−
∂

∂x1

(
〈p, q〉

W

)
+

∂

∂x2

(1+〈p, p〉
W

)
.

The above two equations imply the existence of smooth functions ξ1 and ξ2 such
that

(3-5)
∂ξ1

∂x1
=

1+〈p, p〉
W

,
∂ξ1

∂x2
=
〈p, q〉

W
,

∂ξ2

∂x1
=
〈p, q〉

W
,

∂ξ2

∂x2
=

1+〈q, q〉
W

.

As in §5 of [Osserman 1969], one can define the Lewy’s transformation L :R2
→R2,

L : (x1, x2) 7→ (η1, η2) by

(3-6) ηi = xi + ξi (x1, x2), i = 1, 2.

Since the Jacobi matrix of L ,

(3-7) JL = I2+

(
∂ξi

∂x j

)
= I2+W−1(gi j ),

is positive definite, L is a local diffeomorphism. Again based on the fact that(
∂ξi/∂x j

)
is positive definite, one can proceed as in [Lewy 1937] or §5 of [Osserman

1969] to show that L is length-increasing, thus L is injective. Let � be the image of
L . Then� is open. If� 6=R2, take η in the complement of� that is nearest to L(0),
and find a sequence of points {η(k) : k ∈ Z+} such that |η(k)− L(0)|< |η− L(0)|
and limk→∞ η

(k)
= η. Then there exists x (k) ∈ R2 such that η(k) = L(x (k)). Since

L is length-increasing, {x (k) : k ∈ Z+} lies in a bounded domain of R2, so there
exists an subsequence converging to x ∈ R2, which implies L(x)= η and causes a
contradiction. Therefore �= R2 and then L is a diffeomorphism of R2 onto itself.

Denote by λ2
1, λ

2
2 (where λ1, λ2 > 0) the eigenvalues of (gi j ). Then W =

det(gi j )
1/2
= λ1λ2, and there exists an orthogonal matrix O , such that

(gi j )= OT
(
λ2

1
λ2

2

)
O.

Hence,

JL = I2+W−1(gi j )= OT

1+ λ1
λ2

1+ λ2
λ1

 O = (λ−1
1 + λ

−1
2 )OT

(
λ1

λ2

)
O,

and furthermore,

dη2
1+ dη2

2 =
(
dη1 dη2

) (dη1

dη2

)
=
(
dx1 dx2

)
J T

L JL

(
dx1

dx2

)
= (λ−1

1 + λ
−1
2 )2

(
dx1 dx2

)
OT
(
λ2

1
λ2

2

)
O
(

dx1

dx2

)
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= (λ−1
1 + λ

−1
2 )2

(
dx1 dx2

)
(gi j )

(
dx1

dx2

)
= (λ−1

1 + λ
−1
2 )2(gi j dxi dx j ),

i.e.,

(3-8) g = gi j dxi dx j = (λ
−1
1 + λ

−1
2 )−2(dη2

1+ dη2
2).

This means that (η1, η2) are global isothermal parameters on M . Define

(3-9) ζ := η1+
√
−1η2

and

(3-10) βl :=
∂xl

∂ζ
=

1
2

(
∂xl

∂η1
−
√
−1

∂xl

∂η2

)
for l = 1, . . . , 2+m.

Then the harmonicity of coordinate functions implies

0=
∂2xl

∂ζ∂ζ
=
∂βl

∂ζ
,

i.e., β1, . . . , β2+m are all holomorphic functions on M . A straightforward calcula-
tion shows −4 Im(β1β2) equals the Jacobian of the inverse of Lewy’s transforma-
tion, which is positive everywhere, thus β2/β1 = β1β2/|β1|

2 is an entire function
whose imaginary part is always negative. The classical Liouville’s theorem implies
β2/β1≡c :=a−b

√
−1, where a, b∈R and b>0. In conjunction with (3-10) we get

(3-11) ∂x2
∂η1
= a ∂x1

∂η1
− b ∂x1

∂η2
and ∂x2

∂η2
= b ∂x1

∂η1
+ a ∂x1

∂η2
.

Let (u1, u2) be global parameters of M , satisfying x1 = u1 and x2 = au1 + bu2.
Then (3-11) tells us

(3-12) ∂u2
∂η1
=−

∂u1
∂η2

and ∂u2
∂η2
=
∂u1
∂η1

.

This means the one-to-one map (η1, η2) ∈ R2
7→ (u1, u2) ∈ R2 is biholomorphic.

Thereby we arrive at the following conclusion:

Theorem 3.1. Let f : R2
→ Rm

1 be a smooth vector-valued function such that
M = graph f := {(x, f (x)) : x ∈ R2

} is a spacelike stationary surface. Then there
exists a nonsingular linear transformation

(3-13)
x1 = u1,

x2 = au1+ bu2 (b > 0),

such that (u1, u2) are global isothermal parameters for M.
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Now we introduce the complex coordinate z := u1+
√
−1u2 and define

(3-14) α = (α1, . . . , α2+m) :=
∂x
∂z
=

1
2

(
∂x
∂u1
−
√
−1 ∂x
∂u2

)
.

Then α is a holomorphic vector-valued function. The induced metric on M can be
written as

g =
〈
∂x
∂z
,
∂x
∂z

〉
dz2
+

〈
∂x
∂z
,
∂x
∂z

〉
dz2
+ 2

〈
∂x
∂z
,
∂x
∂z

〉
|dz|2

= 2 Re
(
〈α, α〉 dz2)

+ 2〈α, α〉|dz|2.

Here |dz|2 := 1
2(dz⊗ dz + dz⊗ dz) = du2

1+ du2
2. Since (u1, u2) are isothermal

parameters for M ,

(3-15) 〈α, α〉 = 0,

and hence

(3-16) g = 2〈α, α〉|dz|2.

Noting that α1 = ∂x1/∂z = 1
2 , α2 = ∂x2/∂z = 1

2(a − b
√
−1) = 1

2 c, (3-15) is
equivalent to

(3-17) α2
2+m = α

2
1 + · · ·+α

2
1+m =

1+c2

4
+α2

3 + · · ·+α
2
1+m .

Thus

〈α, α〉 = |α1|
2
+ · · ·+ |α1+m |

2
− |α2+m |

2

=
1+|c|2

4
+ |α3|

2
+ · · ·+ |α1+m |

2
−

∣∣∣1+c2

4
+α2

3 + · · ·+α
2
1+m

∣∣∣
≥

1+|c|2−|1+c2
|

4
,

and moreover,

(3-18) g ≥ 1+|c|2−|1+c2
|

2
|dz|2.

Observing that 1+ |c|2 − |1+ c2
| > 0 is a direct corollary of b > 0, we get a

conclusion as follows.

Corollary 3.2. Let M = graph f := {(x, f (x)) : x ∈ R2
} be a spacelike stationary

graph generated by f : R2
→ Rm

1 . Then the induced metric on M is complete.

Remark. As shown in [Cheng and Yau 1976], if M is a spacelike hypersurface
in Rn+1

1 with constant mean curvature, so that M is a closed subset of Rn+1
1 with

respect to the Euclidean topology, then M is complete with respect to the induced
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Lorentz metric. It is natural to raise the following problem. Let M be an n-
dimensional spacelike submanifold in Rn+m

1 with parallel mean curvature, so that
M is a closed subset of Rn+m

1 . Is M a complete Riemannian manifold? Corollary 3.2
gives a partial positive answer to the above problem.

Equation (3-13) implies dx1 ∧ dx2 = b du1 ∧ du2, and hence

dM = 2〈α, α〉 du1 ∧ du2

= 2b−1
〈α, α〉 dx1 ∧ dx2

=
1+|c|2+4(|α3|

2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b
dx1 ∧ dx2,

with dM the area element of M . In other words,

(3-19) W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b
.

4. On W -functions for entire stationary graphs in R4
1

Theorem 4.1. Let f : R2
→ R2

1 be a smooth function, such that M = graph f is
a spacelike stationary graph. Then one and only one of the following three cases
occurs:

(i) f is affine linear and W ≡ r , where r is an arbitrary positive constant.

(ii) f = h y0 + y1 with h a nonlinear harmonic function on R2, y0 a nonzero
lightlike vector in R2

1 and y1 a constant vector, and W ≡ 1.

(iii) W takes each value in [r−1, r ] infinitely often, where r is an arbitrary number
in (1,∞).

Proof. Equation (3-15) is equivalent to

(4-1) α2
3 −α

2
4 =−(α

2
1 +α

2
2)=−

1+c2

4
,

and (3-19) gives

(4-2) W = 1+|c|2+4(|α3|
2
−|α4|

2)

2b
.

If α3 is a constant function, then (4-1) shows α4 is also constant, and

xa(z)= Re
∫ z

0
αa dz+ xa(0) for all a = 3, 4

is affine linear. Hence f is affine linear and W ≡ r , where r can be taken to be any
value in (0,∞). This is case (i).

Now we assume α3 is nonconstant. Then (4-1) implies α4 is also nonconstant.
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If c =−
√
−1, then (4-1) gives

0= α2
3 −α

2
4 = (α3+α4)(α3−α4).

Noting that the zeros of a nonconstant holomorphic function have to be isolated,
we get α3+α4 = 0 or α3−α4 = 0. Thus |α3| = |α4| and then (4-2) shows W ≡ 1.
Let β be the unique holomorphic function such that β ′ = α3 and β(0)= 0. Then
α3±α4 = 0 implies

f (x1, x2)= (x3(u1, u2), x4(u1, u2))= (x3(z), x4(z))

= Re
∫ z

0
(α3, α4) dz+ (x3(0), x4(0))

= Reβ(z)(1,∓1)+ f (0, 0).

Now we put h := Reβ(z), y0 := (1,∓1) and y1 := f (0, 0). Then h is a nonlinear
harmonic function, y0 is a lightlike vector and f = h y0+ y1. This is case (ii).

Otherwise c 6= −
√
−1 and hence −(1 + c2)/4 6= 0. Let µ 6= 0 such that

µ2
= −(1 + c2)/4, and h1, h2 be holomorphic functions such that α3 = µh1,

α4 = µh2. Then µ2(h2
1− h2

2)= α
2
3 −α

2
4 = µ

2 gives

1= h2
1− h2

2 = (h1+ h2)(h1− h2),

which implies h1+ h2 is an entire function containing no zero. Hence there exists
an entire function β, such that h1+ h2 = eβ , then h1− h2 = e−β and hence

(4-3) h1 = coshβ, h2 = sinhβ.

By computing,

|h1|
2
− |h2|

2
= | coshβ|2− | sinhβ|2

=
1
2(e

β−β
+ e−β+β)= 1

2

(
e2 Imβ

√
−1
+ e−2 Imβ

√
−1)

= cos(2 Imβ),

and hence

(4-4) W = 1+|c|2+4(|α3|
2
−|α4|

2)

2b
=

1+ |c|2+ 4|µ|2(|h1|
2
− |h2|

2)

2b

=
1+ |c|2+ |1+ c2

| cos(2 Imβ)

2b
.

Set

r1 := inf W = 1+|c|2−|1+c2
|

2b
and r2 := sup W = 1+|c|2+|1+c2

|

2b
.

Due to Picard’s theorem, W takes each value in [r1, r2] infinitely often. Noting that



BERNSTEIN-TYPE THEOREMS FOR SPACELIKE STATIONARY GRAPHS 169

c = a− b
√
−1, one computes

r1r2 =
(1+|c|2)2−|1+c2

|
2

4b2 =
1+2|c|2+|c|4−(1+c2

+c 2
+|c|4)

4b2 =
4b2

4b2 = 1.

Hence r1 ∈ (0, 1) and r2 ∈ (1,∞).
Now we take b := 1. Then c = a −

√
−1 and r2 =

1
2(2+ a2

+ |a|
√

a2+ 4).
Denote µ : t ∈R+ 7→µ(t)= 1

2(2+ t2
+|t |
√

t2+ 4). Then µ is a strictly increasing
function and limt→0 µ(t)=1, limt→+∞ µ(t)=+∞. Hence for an arbitrary number
r ∈ (1,∞), one can find a ∈ R+, such that r2 = r and then W takes each value in
[r−1, r ] infinitely often. This is case (iii). �

Corollary 4.2. Let M be an entire spacelike stationary graph in R4
1 generated by

a smooth function f = ( f1, f2) : R
2
→ R2

1. If W ≤ 1 (or W ≥ 1), then f is affine
linear or f = h y0+ y1, with h a nonlinear harmonic function, y0 a nonzero lightlike
vector and y1 a constant vector. Moreover, W > 1 (or W < 1) forces f to be affine
linear, representing an affine plane in R4

1.

Remark. If f2 ≡ 0, then M = graph f is a minimal entire graph in R3 and W ≥ 1.
By Corollary 4.2, f is affine linear or f = h y0+ y1, where h is a nonlinear harmonic
function and y0 is a nonzero lightlike vector. But f2 ≡ 0 precludes the latter case.
Hence f is an affine linear function and so the classical Bernstein theorem [1915]
can be derived from Corollary 4.2. Similarly, Corollary 4.2 implies any spacelike
maximal entire graph in R3

1 has to be affine linear. This is Calabi’s theorem [1970].

5. Bernstein-type theorems for entire stationary graphs in R2+m
1

It is natural to ask whether one can generalize the conclusion of Corollary 4.2 to
higher-codimensional cases.

For the first statement, i.e., W ≤ 1, the answer is “yes”:

Theorem 5.1. Let f : R2
→ Rm

1 be a smooth function, such that M = graph f :=
{(x, f (x)) : x ∈ R2

} is a spacelike stationary graph in R2+m
1 . If the orthogonal

projection P0 of M onto the coordinate plane R2 is area-increasing (i.e., W ≤ 1),
then f is affine linear or f = h y0 + y1, with h a nonlinear harmonic function,
y0 a nonzero lightlike vector and y1 a constant vector. Moreover, if P0 is strictly
area-increasing (i.e., W < 1), then f has to be affine linear and M is an affine plane.

Proof. We shall consider the problem in the following four cases.

Case I. α3, . . . , α2+m are all constant functions. As in the proof of Theorem 4.1,
one can show f is an affine linear function.

Case II. α2+m is a constant function, but αl is nonconstant for some 3≤ l ≤ 1+m.
By the classical Liouville Theorem, there exists a point in C, such that

|αl |
2
≥ |α2+m |

2
+ b− 1

4(1+ |c|
2)
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at this point. Combing with (3-19) gives

W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b

≥
1+|c|2+4(|αl |

2
−|α2+m |

2)

2b
≥ 2.

This gives a contradiction to the assumption that W ≤ 1 everywhere. Hence this
case cannot occur.

Case III. α2+m is nonconstant and c 6= −
√
−1. Then c 6=

√
−1 implies

1+|c|2

2b
=

1+b2
+a2

2b
> 1.

Denote δ := (1+ |c|2)/(2b)− 1. Again the classical Liouville theorem implies the
existence of a point such that |α2+m |

2 < 1
2 bδ at this point. Hence

W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b

≥
1+|c|2−4|α2+m |

2

2b
> 1+ δ−

4 · 1
2 bδ

2b
= 1,

which causes a contradiction and therefore this case cannot happen.

Case IV. α2+m is nonconstant and c =−
√
−1. Let h3, . . . , h1+m be meromorphic

functions such that

α2
3 = h3α

2
2+m, . . . , α

2
1+m = h1+mα

2
2+m .

Then (3-17) tells us

α2
2+m =

1+c2

4
+α2

3 + · · ·+α
2
1+m = α

2
3 + · · ·+α

2
1+m

= (h3+ · · ·+ h1+m)α
2
2+m .

Since α2+m is a nonconstant function, we have

h3+ · · ·+ h1+m ≡ 1.

Due to the triangle inequality,

W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b
= 1+ 2(|α2

3| + · · · + |α
2
1+m | − |α

2
2+m |)

= 1+ 2(|h3| + · · · + |h1+m | − 1)|α2+m |
2
≥ 1,

and the equality holds if and only if the functions h3, . . . , h1+m all take values
in R+ ∪ {0,∞}. Again using the Liouville Theorem, we know that h3, . . . , h1+m
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are all constant real functions. Therefore, there exist v3, . . . , v1+m ∈ R, such that
v2

3 + · · ·+ v
2
1+m = 1 and

(α3, . . . , α1+m, α2+m)= (v3, . . . , v1+m, 1)α2+m .

Let β be the unique holomorphic function such that β ′ = α2+m and β(0) = 0.
Denote h :=Reβ, y0 := (v3, · · · , v1+m, 1) and y1 := f (0, 0). Then h is a nonlinear
harmonic function and y0 is a lightlike vector. We can proceed as in the proof of
Theorem 4.1 to show f = h y0+ y1. Note that in this case W ≡ 1. �

But our answer is “no” for the second statement, i.e., W ≥ 1. In fact, we have
the following result:

Proposition 5.2. For any real number C ≥ 1 and ε > 0, there exists an entire
spacelike stationary graph in R2+m

1 (m ≥ 3) generated by f : R2
→ Rm

1 such that
inf W · sup W = C and 0< sup W − inf W < ε.

Proof. Now we put c := −b
√
−1 and let d be a real number to be chosen. Let µ

be a complex number such that

µ2
=−

1+c2
+d2

4
=−

1−b2
+d2

4
.

Denote
α1 =

1
2
, α2 =

c
2
=−

b
2
√
−1, α3 = · · · = αm−1 = 0,

αm =
d
2
, α1+m = µ cosh z, α2+m = µ sinh z.

Since
〈α, α〉 = α2

1 +α
2
2 +α

2
m +α

2
1+m −α

2
2+m = 0

and 〈α, α〉 is positive, z 7→ x(z)=
∫ z

0 α(z) gives an entire spacelike stationary graph
in R2+m

1 .
As in the proof of Theorem 4.1, a similar calculation shows

W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b

=
1+b2

+d2
+|1−b2

+d2
| cos(2 Im z)

2b
.

Denote r1 := inf W , r2 := sup W . Then r1 = (1+ b2
+ d2
− |1− b2

+ d2
|)/(2b),

r2 = (1+ b2
+ d2
+ |1− b2

+ d2
|)/(2b) and

r1r2 =
(1+b2

+d2)2−(1−b2
+d2)2

4b2 = 1+ d2, r2− r1 =
|1−b2

+d2
|

b
.

Now we put d :=
√

C − 1. Then r1r2 = C , and one can choose b sufficiently close
to
√

C , such that r2− r1 = |1− b2
+ d2
|/b = |C − b2

|/b ∈ (0, ε). �
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Remark. Calabi’s theorem has been generalized to higher-dimensional cases.
Namely, if f is a smooth real function on Rn , so that M = graph f := {(x, f (x)) :
x ∈ Rn

} is an entire maximal hypersurface in Rn+1
1 , then f has to be affine linear.

This is a well-known Bernstein-type result by Cheng and Yau [1976]. Observing
that any maximal n-dimensional graph in Rn+1

1 can be regarded as a stationary
graph in Rn+m

1 which satisfies W ≤ 1, we raise a conjecture:

Conjecture 5.3. Let f :Rn
→Rm

1 be a smooth function, such that M = graph f :=
{(x, f (x)) : x ∈ Rn

} is a spacelike stationary graph in Rn+m
1 . If W ≤ 1, then M has

to be a flat manifold. Moreover, W < 1 forces f to be affine linear and hence M
has to be an affine n-plane.

6. Stationary graphs with finite total curvature

As demonstrated in [Ma et al. 2013], the Bernstein theorem can not be generalized
directly to stationary graphs in R4

1, because one can easily construct complete
stationary graphs in R4

1 which are not flat. Interestingly, these examples have
infinite total curvature.

On the other hand, examples of complete stationary surfaces with finite total
curvature are abundant, and there holds a generalized Jorge–Meeks formula about
their total Gaussian curvature (and the total normal curvature) provided that they
are algebraic [Ma et al. 2013]. Thus one is naturally interested to know whether
there could be a stationary graph with finite total curvature. The answer to this
question is the following Bernstein type theorem. (Note that here we do not need
the algebraic assumption.)

Theorem 6.1. Let f = ( f1, f2) : R2
→ R2

1 be a smooth function, such that
M = graph f := {(x, f (x)) : x ∈ R2

} is a spacelike stationary graph in R4
1 whose

curvature integral
∫

M |K | dM converges absolutely. Then f is affine linear or
f = h y0+ y1, with h a nonlinear harmonic function, y0 a nonzero lightlike vector
and y1 a constant vector. In both cases, M is flat, i.e., K ≡ 0.

Proof. Denote z = u1+
√
−1u2 as before. As in the proof of Theorem 4.1, if M is

not a flat surface as we claimed, then the holomorphic differential ∂x/∂z can be
expressed as

(6-1) (α1, α2, α3, α4)=
( 1

2 ,
1
2 c, µ coshβ,µ sinhβ

)
,

where c = a − b
√
−1 is a complex constant with b > 0, µ2

= −
1
4(1+ c2), and

β = β(z) is a nonconstant holomorphic function defined on C. We will derive a
contradiction from this assumption.

By the Weierstrass representation formula given in [Ma et al. 2013], ∂x/∂z can
be expressed in terms of a pair of meromorphic functions φ, ψ (the Gauss maps)
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and a holomorphic differential dh = h′(z) dz (the height differential) as below:

(6-2) (α1, α2, α3, α4)= (φ+ψ,−
√
−1(φ−ψ), 1−φψ, 1+φψ)h′.

Comparing these two formulas, we obtain

h′ = µ
2

eβ, φ =
1+c
√
−1

2µ
e−β, ψ =

1−c
√
−1

2µ
e−β .

Note that 1+c
√
−1

2µ
·

1−c
√
−1

2µ
=−1, and b > 0 implies∣∣∣∣1+c
√
−1

2µ

∣∣∣∣> ∣∣∣∣1+c
√
−1

2µ

∣∣∣∣.
Denote (1+ c

√
−1)/(2µ) := re

√
−1θ with r > 1 and θ ∈ R. Then

1− c
√
−1

2µ
=−r−1e−

√
−1θ .

In [Ma et al. 2013] the Gaussian curvature and the normal curvature of a stationary
surface were unified in a single formula in terms of φ, ψ and the Laplacian with
respect to the induced metric g := e2ω

|dz|2 as follows:

(6-3) −K +
√
−1K⊥ =1 ln(φ−ψ)= 4e−2ω φzψ z

(φ−ψ)2
.

Set β := v1+
√
−1v2, where v1, v2 are both real functions on C. Then

(6-4) |K |e2ω
= 4

∣∣∣∣Re
φzψ z

(φ−ψ)2

∣∣∣∣= 4
∣∣∣∣Re e2

√
−1θe−β−β

(re
√
−1θe−β+r−1e

√
−1θe−β)2

∣∣∣∣|β ′(z)|2
= 4

∣∣∣∣Re
(

1
(re(β−β)/2+r−1e(β−β)/2)2

)∣∣∣∣|β ′(z)|2
=

4
(
2+(r2

+r−2)cos 2v2
)

|re−
√
−1v2+r−1e

√
−1v2 |4

|β ′(z)|2≥
4
(
2+(r2

+r−2)cos 2v2
)

|r+r−1|4
|β ′(z)|2.

Thus the assumption of finite total curvature is equivalent to saying that

(6-5) ∞>

∫
M
|K | dM =

∫
C

|K |e2ω du1 ∧ du2

≥

∫
C

4[2+(r2
+r−2) cos(2v2)]

|r+r−1|4
|β ′(z)|2 du1 ∧ du2

≥

∫
C

4[2+(r2
+r−2) cos(2v2)]

|r+r−1|4
dv1 ∧ dv2,

where the final inequality follows from the assumption that β is a nonconstant entire
function over C, which takes almost every value of C at least one time. It is easily
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seen that the right-hand side of (6-5) is divergent, contradicting the finiteness of the
total curvature. �

Remarks. • Taking the imaginary part of (6-3), one can proceed as in (6-4)–
(6-5) to get a contradiction when the condition “

∫
M |K | dM <∞” is replaced

by “
∫

M |K
⊥
| dM <∞”. Therefore, if M ⊂ R4

1 is an entire spacelike stationary
graph over R2, whose normal curvature integral converges absolutely, then M
has to be a flat surface.

• Let M be a noncompact surface with a complete metric. If
∫

M |K | dM <∞,
then there is a compact Riemann surface M , such that M is conformally
equivalent to M \ {p1, p2, . . . , pr }, with p1, . . . , pr ∈ M . This is a purely
intrinsic result, discovered by A. Huber [1957]. Moreover, if we additionally
assume M to be a minimal surface in R2+m (m is arbitrary), then the Gauss map
of M is algebraic, and vice versa; see Theorem 1 of [Chern and Osserman 1967].
But this conclusion is no longer true for spacelike stationary surfaces in R4

1,
due to the examples with finite total curvature and essential singularities; see
[Ma et al. 2013]. Hence, unlike the R4 case [Osserman 1969], the conclusion
of Theorem 6.1 cannot be deduced directly from (6-1).

• Combining Theorem 1 of [Chern and Osserman 1967] and §5 of [Osserman
1969], it is easy to conclude that M = graph f := {(x, f (x)) : x ∈ R2

} is
a minimal surface in R4 with finite total curvature if and only if f = p(z)
or p(z), with p an arbitrary polynomial. Noting that any minimal graph in
R4 over R2 can be regarded as a spacelike stationary graph in Rn

1 (n ≥ 5),
the conclusion of Theorem 6.1 can not be generalized to spacelike stationary
graphs in higher-dimensional Minkowski spaces.
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