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APPROXIMABILITY OF CONVEX BODIES
AND VOLUME ENTROPY IN HILBERT GEOMETRY

CONSTANTIN VERNICOS

The approximability of a convex body is a number which measures the dif-
ficulty in approximating that convex body by polytopes. In the interior of a
convex body one can define its Hilbert geometry. We prove on the one hand
that the volume entropy is twice the approximability for a Hilbert geometry
in dimension two or three, and on the other hand that in higher dimensions
the approximability is a lower bound of the entropy. As a corollary we
solve the volume entropy upper bound conjecture in dimension three and
give a new proof in dimension two different from the one given in (Pacific J.
Math. 245:2 (2010), 201–225). Moreover, our method allows us to prove the
existence of Hilbert geometries with intermediate volume growth on the one
hand, and that in general the volume entropy is not a limit on the other hand.

Introduction and statement of results

Hilbert geometries are all the metric spaces obtained by defining the so-called
Hilbert distance on open bounded convex sets in Rn. The definition of this distance
uses cross ratios in the same way as in the Klein projective model of the hyperbolic
geometry [Hilbert 1971]. These metric spaces are actually length spaces whose
structure is defined by a Finsler metric which is Riemannian if and only if the
underlying open bounded convex set is an ellipsoid [Kay 1967].

These geometries were introduced by D. Hilbert in a letter addressed to F. Klein
and have attracted a lot of interest lately. The studies of the shape of spheres in
[Busemann 1955, Chapter 18] and of perpendicularity in [Busemann and Kelly
1953, Chapter 28] seem to be among the first ones to appear. In the same period
P. J. Kelly and E. Straus [1958], Y. Nasu [1961] and D. C. Kay [1967] were looking
at characterisations of the hyperbolic geometry among them in terms of curvature,
transitive actions and the ptolemaic inequality, respectively. After a break of twenty
or so years, they started to be studied from the projective structure viewpoint by
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W. Goldman [1990] and by I. Kim [2005], and from the perspective of the group
acting on them by P. de la Harpe [1993]. At the start of the new millennium the
quest for characterisation of the Hilbert geometries being hyperbolic in the sense
of Gromov began with A. Karlsson and G. Noskov [2002] and more noticeably
with an equivalence between the hyperbolicity and a property of the boundary
called quasisymmetric convexity discovered by Y. Benoist [2003; 2008], who also
studied dynamical aspects of these geometries and clarified the fractal shape of
their boundary in dimension three. At the same time the infinite-dimensional ones
were studied from a functional-analytical point of view; see, for instance, [Lins and
Nussbaum 2008]. Lately, understanding the analogue of geometric finiteness in the
setting of projective structures has been at the centre of the works of L. Marquis
[2012], M. Crampon and Marquis [2014], and D. Cooper, D. Long and S. Tillman
[Cooper et al. 2015]. Other aspects of interest can be found in the recent Handbook
of Hilbert geometry [Papadopoulos and Troyanov 2014].

The present paper focuses on the volume growth of these geometries and more
specifically on the volume entropy.

Let � be a bounded open convex set in R endowed with its Hilbert geometry. If
we consider the Busemann volume Vol� and denote by B�(p, r) the metric ball of
radius r centred at the point p ∈�, then the lower and the upper volume entropies
of � will be defined respectively by

(1) Ent�= liminf
r→+∞

ln(Vol� B�(p,r))
r

and Ent�= limsup
r→+∞

ln(Vol� B�(p,r))
r

.

When the two limits coincide we denote their common limit by Ent� and call it
the volume entropy of �.

Let us stress that in this definition the upper and lower volume entropy of � do
not depend on the base point p and are actually projective invariants attached to �.

The question we address in this paper is twofold. On the one hand it is an inves-
tigation of the existence of an analogue, for all Hilbert geometries, of the relation
between the volume entropy and the Hausdorff dimension of the radial limit set on
the universal cover of a compact Riemannian manifold with nonpositive curvature.
On the other hand we focus on the volume entropy upper bound conjecture, which
states that if � is an open and bounded convex subset of Rn, then Ent� ≤ n− 1.
To put our work into perspective let us recall the main related results.

The first one is a complete answer to the conjecture in the two-dimensional
case by G. Berck, A. Bernig and C. Vernicos in [Berck et al. 2010], where the
authors actually obtained an upper bound as a function of d , the upper Minkowski
dimension (or ball-box dimension) of the set of extreme points of �, namely

(2) Ent�≤
2

3− d
≤ 1.
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The second result is a more precise statement with respect to the asymptotic
volume growth of balls. It involves another projective invariant introduced by
Berck, Bernig and Vernicos in the introduction of [Berck et al. 2010], called the
centroprojective area of � and defined by

(3) Ap(�) :=

∫
∂�

√
k(x)

〈n(x), x − p〉
1
2 (n−1)

(
2α(x)

1+α(x)

)1
2 (n−1)

dA(x),

where for any x ∈ ∂�, k(x) is the Gauss curvature, n(x) is the outward normal
and α(x) > 0 is the function defined by p−α(x)(x − p) ∈ ∂�. Let us recall here
that both k and n are defined almost everywhere as Alexandroff’s theorem states
[Alexandroff 1939].

Now, the second main theorem in [Berck et al. 2010] — which encompasses
previous results given by B. Colbois and P. Verovic [2004] — asserts that if ∂� is
C1,1 we have

(4) lim
r→+∞

Vol� B�(p, r)

sinhn−1 r
=

1
n− 1

Ap(�) 6= 0

and Ent� = n − 1 is a limit. Moreover, without any assumption on � we have
Ent�≥ n− 1 whenever Ap(�) 6= 0.

The third one — which is also a rigidity result — requires stronger assumptions
about �: it has to be divisible, meaning that it admits a compact quotient, and
its Hilbert metric has to be hyperbolic in the sense of Gromov, which implies its
boundary is C1 and strictly convex by [Benoist 2003]. Let us stress that the Hilbert
metric on such an � is the hyperbolic one if and only if � has a C1,1 boundary, and
that its volume entropy is positive since hyperbolicity implies the nonvanishing of
the Cheeger constant (see Theorem 1.5 in [Colbois and Vernicos 2007]). A result by
Crampon [2009] states that for a divisible open bounded convex set � in Rn whose
boundary is C1 we have Ent�≤ n−1 with equality if and only if � is an ellipsoid.

In the present paper we link the volume entropy to another invariant associated
with a convex body, called the approximability. This name was introduced by
R. Schneider and J. A. Wieacker [1981]. The approximability measures in some
sense how well a convex set can be approximated by polytopes. More precisely, let
N (ε,�) be the smallest number of vertices of a polytope whose Hausdorff distance
to� is less than ε>0. Then the lower and upper approximability of� are defined by

(5) a(�) := lim inf
ε→0

ln N (ε,�)
− ln ε

and a(�) := lim sup
ε→0

ln N (ε,�)
− ln ε

.

The key inequality which is of interest in our work — obtained by Fejes Tóth
[1948] in dimension two and by E. M. Bronshteyn and L. D. Ivanov [1975] in the
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general case — asserts that for any bounded convex set in Rn the following upper
bound on the upper approximability holds: a(�)≤ 1

2(n− 1).
Our main result is as follows.

Theorem 1 (main theorem). Given an open bounded convex set � in Rn, we have

(6) 2a(�)≤ Ent� and 2a(�)≤ Ent�,

with equality for n = 2 or n = 3.

The equality case in (6), together with the upper bound for the upper approxima-
bility, implies the following corollary.

Corollary 2 (volume entropy upper bound conjecture). For any open bounded
convex set � in R2 or R3 we have Ent�≤ n− 1.

The equality case in this main theorem heavily relies on the study of polytopal
Hilbert geometries. As it happens we get an optimal control of the volume of
metric balls in dimension two and three, for in those two cases the number of
edges of a polytope is bounded from above by the number of its vertices up to a
multiplicative and an additive constant. This does not hold in higher dimensions,
following McMullen’s upper bound theorem [McMullen 1971; McMullen and
Shephard 1971].

The second important result concerns the two-dimensional case, where we can
prove that there are Hilbert geometries with intermediate volume growth.

Theorem 3 (intermediate volume growth). Let f : R+ → R+ be an increasing
function that satisfies

lim inf
r→+∞

er

f (r)
> 0.

Then there exist an open bounded convex set � in R2 and a point o in � such that

(7) lim inf
r→+∞

Vol� B�(o, r)
f (r)

> 0 and lim sup
r→+∞

Vol� B�(o, r)
f (r)r2 <+∞,

and

(8) Ent�= lim inf
r→+∞

ln f (r)
r

and Ent�= lim sup
r→+∞

ln f (r)
r

.

In particular there are open bounded convex sets �⊂ R2 with

• maximal volume entropy and zero centroprojective area,

• zero volume entropy which are not polytopes.

This theorem is a consequence of our method for proving the equality in di-
mension two in the main theorem (see Section 2) and Schneider and Wieacker’s
results [1981] on the approximability in dimension two. The last statement follows
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from our work [Vernicos 2009], where we showed that polytopes have polynomial
growth of order r2 in dimension two.

The intermediate volume growth theorem allows us to settle in a quite definite
way the question of whether the entropy is a limit or not.

Corollary 4. The volume entropy is not a limit in general. More precisely, for any α
and β with 0≤ α ≤ β ≤ 1 there exist an open bounded convex set � in R2 such that

Ent�= α and Ent�= β.

The equalities and inequalities also imply the following new results:

Corollary 5. Given an open bounded convex set � in Rn, we have

• dH ≤ Ent�, where dH is the Hausdorff dimension of the set of farthest points
of �;

• if n = 2 or 3 then a(�) is a projective invariant of � and Ent� = Ent�∗,
where �∗ is the polar dual of �;

• if n = 2, then a(�)≤ 1/(3− d).

Section 1 presents the various lemmas and notions needed in Section 2 to prove
the main theorem, and in Section 3 we present the proof of the intermediate volume
growth theorem.

1. Preliminaries on Hilbert geometries and convex bodies

1.1. Notations and definitions. A proper open set in Rn is a set that does not
contain a whole line. A nonempty proper open convex set in Rn will be called a
proper convex domain. The closure of a bounded convex domain is usually called a
convex body.

A Hilbert geometry (�, d�) is a proper convex domain � in Rn endowed with
its Hilbert distance d� defined as follows: for any two distinct points p and q in �,
the line passing through p and q meets the boundary ∂� of � at two points a and b
such that a, p, q, b appear in that order on the line. We denote by [a, p, q, b] the
cross ratio of (a, p, q, b), i.e.,

[a, p, q, b] =
qa
pa
×

pb
qb

> 1,

where for any two points x , y in Rn, xy is their distance with respect to the standard
Euclidean norm ‖ · ‖. Should a or b be at infinity, the corresponding ratio will be
considered equal to 1. Then we define

d�(p, q)= 1
2 ln[a, p, q, b].
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Note that the invariance of the cross ratio by a projective map implies the
invariance of d� by such a map.

The proper convex domain � is also naturally endowed with the C0 Finsler
metric F� defined as follows: given p ∈ � and v ∈ Tp� = Rn with v 6= 0, the
straight line passing through p with direction vector v meets ∂� at two points p+�
and p−� such that p+�− p−� and v have the same direction. Then let t+ and t− be the
two positive numbers such that p+ t+v = p+� and p− t−v = p−� (in other words,
these numbers correspond to the amount of time needed to reach the boundary of �
when starting at p with the velocities v and −v, respectively). Then we define

F�(p, v)=
1
2

(
1
t+
+

1
t−

)
and F�(p, 0)= 0.

Should p+� or p−� be at infinity, then the corresponding ratio will be taken to be
equal to 0.

The Hilbert distance d� is the length distance associated to F�. We shall denote
by B�(p, r) the metric ball of radius r centred at the point p ∈� and by S�(p, r)
the corresponding metric sphere.

Thanks to that Finsler metric, we can make use of two important Borel measures
on �. The first one, which coincides with the Hausdorff measure associated to the
metric space (�, d�) (see Example 5.5.13 in [Burago et al. 2001]), is the Busemann
volume, denoted by Vol� and defined as follows. Given any point p in �, let
β�(p)= {v ∈ Rn

| F�(p, v) < 1} be the open unit ball in Tp�= Rn with respect
to the norm F�(p, · ) and let ωn be the Euclidean volume of the open unit ball of
the standard Euclidean space Rn. Then given any Borel set A in �, its Busemann
volume Vol� is defined by

Vol� A =
∫

A

ωn

λ(β�(p))
dλ(p),

where λ denotes the standard Lebesgue measure on Rn.
The second one is the Holmes–Thompson volume on �, which we will denote

by µH T,�. Given any Borel set A in�, its Holmes–Thompson volume is defined by

µH T,�(A)=
∫

A

λ(β∗�(p))
ωn

dλ(p),

where β∗�(p) is the polar dual of β�(p).
We can actually consider a whole family of measures as follows. Let En be the

set of pointed proper open convex sets in Rn. These are the pairs (ω, x) such that
ω is a proper open convex set and x is a point in ω. We shall say that a function
f : En → R is a proper density if it is positive and satisfies the three following
properties:
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• Continuity with respect to the Hausdorff pointed topology on En .

• Monotone decreasing with respect to the inclusion; i.e., if x ∈ ω ⊂ � then
f (�, x)≤ f (ω, x).

• Chain rule compatibility: for any projective transformation T one has

f
(
T (ω), T (x)

)
Jac(T, x)= f (ω, x).

We will say that f is a normalised proper density if f (ω, x) dλ(x) is the Riemannian
volume when ω is an ellipsoid. Let us denote by PDn the set of proper densities
over En .

A result of Benzécri [1960] states that the action of the group of projective
transformations on En is cocompact. Therefore, for any pair f, g in PDn , there exists
a constant C>0 (C≥1 for the normalised ones) such that for any (ω, x)∈En one has

(9)
1
C
≤

f (ω, x)
g(ω, x)

≤ C.

Given a density f in PDn there is a natural Borel measure associated to any
open bounded convex set �, denoted by µ f,� and defined as follows: for any Borel
subset A of � we let

µ f,�(A)=
∫

A
f (�, p) dλ(p).

Integrating the inequalities (9) we obtain that for any two proper densities f, g
in PDn , there exists a constant C > 0 such that for any Borel set A ⊂� we have

(10)
1
C
µg,�(A)≤ µ f,�(A)≤ Cµg,�(A).

We call the family of measures obtained in this way proper measures with density.
To a proper density g ∈ PDn−1 we can also associate an (n−1)-dimensional

measure, denoted by µ·,g,�, on hypersurfaces in � as follows. Let 6 be a smooth
hypersurface, and consider for a point p in the hypersurface 6 its tangent hyper-
plane H(p). Then the measure will be given by

(11)
dµ6,g,�

dσ
(p)=

dµg,�∩H(p)

dσ
(p),

where σ denotes the Hausdorff (n−1)-dimensional measure associated with the
standard Euclidean distance. In Section 2 we will simply denote by Voln−1,� and
Area� the (n−1)-dimensional measures associated with the Holmes–Thompson
and the Busemann measures, respectively.
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Let now µ f,� be a proper measure with density over �. Then the volume
entropies of � are defined by

(12)
Ent�= lim inf

r→+∞

lnµ f,�(B�(p, r))
r

,

Ent�= lim sup
r→+∞

lnµ f,�(B�(p, r))
r

.

These numbers do not depend on either f nor p, and are equal to the spherical
entropies (see Theorem 2.14 of [Berck et al. 2010]):

(13)
Ent�= lim inf

r→+∞

ln(Area� S�(p, r))
r

,

Ent�= lim sup
r→+∞

ln(Area� S�(p, r))
r

.

1.2. Properties of the Holmes–Thompson and the Busemann measures.

Lemma 6 (monotonicity of the Holmes–Thompson measure). Let (�, d�) be a
Hilbert geometry in Rn. The Holmes–Thompson area measure is monotonic on the
set of convex bodies in �; that is, for any pair of convex bodies K1 and K2 in �
such that K1 ⊂ K2 one has

(14) Voln−1,� ∂K1 ≤ Voln−1,� ∂K2.

Proof. If ∂� is C2 with everywhere-positive Gaussian curvature then the tangent
unit spheres of the Finsler metric are quadratically convex.

According to Álvarez Paiva and Fernandes [1998, Theorem 1.1 and Remark 2]
there exists a Crofton formula for the Holmes–Thompson area, from which the
inequality (14) follows.

Such smooth convex bodies are dense in the set of all convex bodies for the
Hausdorff topology. By approximation, it follows that (14) is valid for any �. �

Lemma 6 associated with the Blaschke–Santaló inequality and the inequality (10)
immediately implies the following result (see also [Berck et al. 2010, Lemma 2.12]).

Lemma 7 (rough monotonicity of the Busemann measure). Let (�, d�) be a Hilbert
geometry, and let p be a point in �. There exists a monotonic function f� and a
constant Cn < 1 such that for all r > 0

(15) Cn f�(r)≤ Area� S�(p, r)≤ f�(r),

where f�(r) is the Holmes–Thompson area of the sphere S�(p, r).

Let us finish by recalling one last statement also proved in [Berck et al. 2010,
Lemma 2.13].
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�

q ′

p′

o

pρ qρ

p

q

Figure 1. The area of the triangle (opρ, qρ) is bounded by Cρ2.

Lemma 8 (coarea inequalities). For all r > 0

1
2
ωn

ωn−1
Area� S�(p, r)≤

∂

∂r
Vol� B�(p, r)≤

n
2
ωn

ωn−1
Area� S�(p, r).

1.3. Upper bound on the area of triangles. In this section we bound from above
independently of the two-dimensional Hilbert geometries the area of affine triangles
which are subset of a metric ball, when one of the vertices is the centre of that ball.
We also give a lower bound on the length of some metric segments, when their
vertices go to the boundary of the Hilbert geometry.

Lemma 9. Let (�, d�) be a two-dimensional Hilbert geometry. Then there exists a
constant C independent of � such that for any point o in � and any pair of points
pρ and qρ in the metric ball B�(o, ρ), the area of the affine triangle (opρqρ) is less
than Cρ2.

Proof. Given pρ and qρ in B�(o, ρ), let p and q be the intersections of the boundary
∂�with the half-lines [o, pρ) and [o, qρ) respectively. Let p′ and q ′ be, respectively,
the intersections of the half-lines [pρ, o) and [qρ, o) with the boundary ∂�. (See
Figure 1.)

Then the volume of the triangle (opρqρ) with respect to the Hilbert geometry
of � is less than or equal to its volume with respect to the Hilbert geometry of
the quadrilateral (pqp′q ′). However, the distances of pρ and qρ from o remain the
same in both Hilbert geometries.

Up to a change of chart, we can suppose that this quadrilateral is actually a
square. This allows us to use Theorem 1 from [Vernicos 2015], which states that
the Hilbert geometry of the square is bi-Lipschitz to the product of the Hilbert
geometries of its sides, using the identity as a map. In other words it is bi-Lipschitz
to the Euclidean plane, with a Lipschitz constant equal to C0 > 1, independent of
our initial conditions.
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q

b

b′(r)

B

a

p′
c

c′(r)

C

d

b(r)

c(r)

p

Figure 2. Distance estimate of Claim 10.

Thus our affine triangle is inside a Euclidean disc of radius C0ρ, which implies
that its area with respect to the Hilbert geometry of � is less than C4

0 ×π × ρ
2. �

To prove that the volume entropy is bounded from below by the approximability
we will need to bound from below the length of certain segments in a given Hilbert
geometry �. To do so we will compare their length in the initial convex domain
with their length in a convex domain projectively equivalent to a triangle, and
containing the initial convex domain �.

Let us make this precise. Consider four points a, b, c and d in the Euclidean
plane (R2, 〈 · 〉) such that Q= (abcd) is a convex quadrilateral. We assume that the
scalar products 〈

−−→

ab,
−−→

bc〉 and 〈
−−→

bc,
−−→

cd〉 are positive and we let q be the intersection
point between the straight lines (ab) and (cd).

Suppose that � is a convex domain such that the segments [a, b], [b, c] and
[c, d] belong to its boundary. Given p a point in the convex domain � we denote
by p′ the intersection between the straight line (pq) and the segment [b, c], and
we define s = bp′/bc.

We then denote by [b(r), c(r)] the image of the segment [b, c] under the dilation
centred at p with ratio 0< tanh r < 1. The image of the segment [b, c] under the
dilation centred at q sending p′ to p will be denoted by [B,C].

Claim 10. Under the above assumption,

(16) d�
(
b(r), c(r)

)
≥

1
2 ln

(
bc

s · BC
tanh r

1− tanh r
+ 1

)
+

1
2 ln

(
bc

(1− s) · BC
tanh r

1− tanh r
+ 1

)
.
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Proof. Straightforward computation, using the fact that the convex domain � is
inside the convex domain Q obtained as the intersection of the half-planes defined
by the lines (ab), (bc) and (cd), and therefore

d�
(
b(r), c(r)

)
≥ dQ

(
b(r), c(r)

)
.

Let b′(r) be the intersection of the lines (ab) and
(
b(r)c(r)

)
, and let c′(r) be the

intersection of the lines (cd) and
(
b(r)c(r)

)
. (See Figure 2.) Then we have

dQ
(
b(r), c(r)

)
=

1
2 ln

(
b(r)c′(r)
c(r)c′(r)

·
c(r)b′(r)
b(r)b′(r)

)
.

Let us focus on the first ratio. On the one hand b(r)c′(r) = b(r)c(r)+ c(r)c′(r),
and on the other hand following Thales’ theorem

(17)
b(r)c(r)= tanh(r)bc,

c(r)c′(r)= (1− tanh r)pC.

But pC = BC · (p′c/bc)= (1− s)BC , and therefore we obtain

ln
(

b(r)c′(r)
c(r)c′(r)

)
= ln

(
bc

(1− s) · BC
tanh r

1− tanh r
+ 1

)
.

The second ratio is treated in the same way. �

1.4. Intrinsic and extrinsic Hausdorff topologies of Hilbert geometries. We de-
scribe the link between the Hausdorff topology induced by a Euclidean metric with
the Hausdorff topology induced by the Hilbert metric on a compact subset of an
open convex set.

We recall that the Löwner ellipsoid of a compact set is the ellipsoid with least
volume containing that set. In this section we will suppose, without loss of generality,
that � is a bounded open convex set whose Löwner ellipsoid E is the Euclidean unit
ball with centre o. It is a standard result that (1/n)E is then contained in �; i.e.,

(18)
1
n
E ⊂�⊂ E .

Definition 11 (asymptotic ball and sphere). The asymptotic ball of radius R centred
at o is the image of � by the dilation of ratio tanh R centred at o, and we denote it
by AsB(o, R). The image of the boundary ∂� by the same dilation will be called
the asymptotic sphere of radius R centred at o and denoted by AsS(o, R).

Recall that the Hausdorff distance is the distance between nonempty compact
subsets in a metric space. We shall use both the Euclidean and Hilbert distance
and we will use the terminology Hausdorff–Euclidean and Hausdorff–Hilbert to
distinguish both cases.
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∂�
AsB(o, R)

o

1
2n E

p

ϕt (p)

Figure 3. Illustration of Proposition 12’s proof.

We would like to relate the Hausdorff–Hilbert neighbourhoods of the asymptotic
ball AsB(o, R) with its Hausdorff–Euclidean neighbourhoods.

Proposition 12. Let � be a convex domain and let o be the centre of its Löwner
ellipsoid, which we assume to be the unit Euclidean ball.

(1) The (1− tanh R)/(2n)-Hausdorff–Euclidean neighbourhood of the asymptotic
ball AsB(o, R) is contained in its

(1
2 ln 3

)
-Hausdorff–Hilbert neighbourhood.

(2) For any K > 0, the K-Hausdorff–Hilbert neighbourhood of the asymptotic
ball AsB(o, R) is contained in its (1− tanh R)-Hausdorff–Euclidean neigh-
bourhood.

Proof. For any point p ∈ ∂� on the boundary of � and for 0< t < 1 let ϕt(p)=
o+ t · −−→op. This map sends ∂� bijectively to the asymptotic sphere AsS(o, arctanh t)
centred at o with radius arctanh t . (See Figure 3.)

Proof of part (1). Any point of a compact set in the (1− tanh R)/(2n)-Hausdorff–
Euclidean neighbourhood of AsB(o, R), either lies inside AsB(o, R) or is contained
in a Euclidean ball of radius (1− tanh R)/(2n) centred on a point of AsB(o, R).

We recall that the ball of radius 1/n is a subset of �, and thus so is the ball of
radius 1/(2n); that is,

1
2n

E ⊂
1
n
E ⊂�.

Let p ∈ ∂� be a point on the boundary. By convexity, the interior of K (p), the
convex hull of p and (1/n)E , is a subset of �— it is the projection of a cone of
basis (1/n)E . Hence Ep,α, the image of (1/n)E by the dilation of ratio 0< α < 1
centred at p, lies in the “cone” K (p). The set Ep,α is therefore a Euclidean ball of
radius α/n centred at ϕ1−α(p), and it is a subset of �.
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A point in the Euclidean ball of radius α/(2n) centred at ϕ1−α(p) is at a distance
less than or equal to 1

2 ln 3 from ϕ1−α(p) with respect to the Hilbert distance of Ep,α .
Now a standard comparison argument states that for any two points x and y in

Ep,α ⊂�,
d�(x, y)≤ dEp,α (x, y).

From this inequality it follows that any point in the Euclidean ball of radius α/(2n)
centred at ϕ1−α(p) is in the Hilbert metric ball centred at ϕ1−α(p) of radius 1

2 ln 3.
Now for any 1≥ α > 1− tanh R, the Euclidean ball of radius α/(2n) contains

the Euclidean ball of radius (1− tanh R)/(2n).
This implies that for any point x in the asymptotic ball AsB(o, R), the Euclidean

ball of radius (1− tanh R)/(2n) centred at x is contained in the Hilbert ball of
radius 1

2 ln 3 centred at x , which allows us to obtain the first part of our claim.

Proof of part (2). This follows from the fact that under our assumptions, � itself
is in the (1− tanh R)-Hausdorff–Euclidean neighbourhood of the asymptotic ball
AsB(o, R). �

Corollary 13. Let � be a convex domain and let o be the centre of its Löwner
ellipsoid, which we assume to be the unit Euclidean ball.

(1) The (1− tanh(R+ ln 2))/(2n)-Hausdorff–Euclidean neighbourhood of B(o, R)
is contained in its ln(3(n+1))-Hausdorff–Hilbert neighbourhood.

(2) For any K > 0, the K-Hausdorff–Hilbert neighbourhood of B(o, R) is con-
tained in its (1− tanh(R+K− ln(n+1)))-Hausdorff–Euclidean neighbourhood.

The proof of this corollary is a straightforward consequence of the following
lemma applied to the conclusion of the Proposition 12.

Lemma 14. Let � be a convex domain, and suppose that o is a point in the interior
of � such that the unit Euclidean open ball centred at o contains�, and� contains
the Euclidean closed ball centred at o of radius 1/(2n). Then we have

(19) B(o, R)⊂ AsB(o, R+ ln 2) and AsB(o, R)⊂ B(o, R+ ln(n+ 1)).

This lemma is a refinement of a result of [Colbois and Verovic 2004] in our case.

Proof of Lemma 14. Let x be a point on the boundary ∂� of �, and let x∗ be the
second intersection of the straight line (ox) with ∂�. Then our assumption implies

(20)
1

2n
< xo ≤ 1 and

1
2n
< ox∗ ≤ 1.

Actually the first inclusion is always true. Indeed suppose y is on the half-line
[ox) such that d�(o, y)≤ R, which in other words implies that we have

ox
yx

yx∗

ox∗
≤ e2R

;
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therefore

ox ≤ e2R ox∗

yx∗
(ox − oy)≤ e2R(ox − oy),

which implies in turn that

oy ≤
e2R
− 1

e2R ox ≤ (1− e−2R)ox ≤ tanh(R+ ln 2)ox .

Now regarding the second inclusion: consider a point y on the half-line [ox)
such that oy ≤ tanh(R)ox . On the one hand we have

ox
yx
=

ox
ox − oy

≤
1

1− tanh R
=

e2R
+ 1

2
,

and, on the other hand, thanks to the inequalities (20) we get

(21)
yx∗

ox∗
≤

ox + ox∗

ox∗
≤ 1+

ox
ox∗
≤ 1+ 2n,

which implies that

(22)
ox
yx

yx∗

ox∗
≤

e2R
+ 1

2
(1+ 2n)≤ (1+ 2n)e2R

≤ (1+ n)2e2R.

The conclusion follows. �

1.5. Distance function to a sphere in a Hilbert geometry. This section is an adap-
tation in the realm of Hilbert geometries of a result concerning the spheres in a
Minkowski space provided to the author by A. Thompson [2012].

Let us first start by recalling the following important fact regarding the distance
of a point to a geodesic in a Hilbert geometry (see [Busemann 1955, Chapter II,
Section 18, page 109]):

Proposition 15. Let (�, d�) be a Hilbert geometry. The distance function of a
straight geodesic (that is, given by an affine line) to a point is a peakless function;
i.e., if γ : [t1, t2] → � is a geodesic segment, then for any x ∈ � and t1 ≤ s ≤ t2
one has

d�
(
x, γ (s)

)
≤max

{
d�
(
x, γ (t1)

)
, d�

(
x, γ (t2)

)}
.

Let us now turn our attention to metric spheres in a two-dimensional Hilbert
geometry.

Proposition 16. Let (�, d�) be a two-dimensional Hilbert geometry. Suppose o is
a point of �, and p and q are two points on the intersection of the metric sphere
S(o, R) centred at o and of radius R with a line passing by o. If C denotes one of
the arcs of the sphere S(o, R) from p to q, then for any point p′ on the half-line
[o, p), the function ϕ(x)= d�(p′, x) is monotonic on C.
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Figure 4. Monotonicity of the distance of a point to a sphere.

Proof. Let p, x, y, q be points in that order on C. We have to show that

d�(p′, x)≤ d�(p′, y).

Suppose first that the line segments [o, x] and [p′, y] intersect at a point z. (See
Figure 4.) Hence we have

d�(o, x)+ d�(p′, y)=
(
d�(o, z)+ d�(z, x)

)
+
(
d�(p′, z)+ d�(z, y)

)
=
(
d�(p′, z)+ d�(z, x)

)
+
(
d�(o, z)+ d�(z, y)

)
≥ d�(p′, x)+ d�(o, y).

Now, as d�(o, y)= d�(o, x)= R, the result follows.
Suppose now that [o, x] and [p′, y] do not intersect, which implies that p′ is

outside the ball B(o, R). Then the line (yx) intersects (op) at z. Because x and y
lie on the sphere of radius R, we have d�(o, z) > R. Also, as p is one of the nearest
points to p′ on C , we have d�(p′, z) ≤ d�(p′, p) ≤ d�(p′, y). Hence if we apply
Proposition 15 to the segment [z, y] and p′, as x ∈ [z, y] we get

d�(p′, x)≤max{d�(p′, z), d�(p′, y)} = d�(p′, y). �

2. Volume entropy and approximability

This section is devoted to the proof of the main theorem. This is done in two
steps. The first step consists in bounding the entropy from above in dimension
two and three by the approximability thanks to the study of the volume growth in
polytopes. The second step is to bound the entropy from below. This is done by
exhibiting a separated subset of the Hilbert geometry whose growth is bigger than
the approximability. We conclude this section with the various corollaries implied.

Theorem 17. Let � be a bounded convex domain in R2 or R3. The doubles of the
approximabilities of � are bigger than the volume entropies; i.e.,

Ent�≤ 2a(�) and Ent�≤ 2a(�).
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The proof of this theorem relies on the following stronger statement which is
a sort of uniform bound on the volume of metric balls and metric spheres in a
polytopal Hilbert geometry. The key fact is that this bound depends, in a coarse
sense, linearly on the number of vertices of the polytope.

Theorem 18. Let n = 2 or n = 3. There are affine maps an, bn from R to R

and polynomials qn, pn−1 of degree n and n − 1 such that for any open convex
polytope PN with N vertices inside the unit Euclidean ball of Rn and containing
the ball of radius 1/(2n), one has

(23)
Voln−1,PN SPN (o, R)≤ an(N )pn−1(R),

VolPN BPN (o, R)≤ bn(N )qn(R).

The same result holds for the asymptotic balls.

Let us stress that our method also yields a control in terms of the vertices in
higher dimensions as well, using the so-called upper bound conjecture proved by
McMullen [McMullen 1971; McMullen and Shephard 1971], but alas a polynomial
of degree strictly bigger than 1 replaces the affine functions an and bn . This is why
we can’t state the equality in the main theorem in higher dimensions.

Notice that this theorem is still valid if we replace the Hausdorff measures by
any measures defined by a pair of proper densities f ∈ PDn and g ∈ PDn−1. The
change of measures will only impact the values of the constants.

Proof of Theorem 18. We will have to deal with dimension two and dimension three
separately, even though both cases follow the same main steps.

The first step of our proof consists in proving the first inequality of (23) for the
Holmes–Thompson measure and for an asymptotic sphere. The uniform inclusion
of metric balls into asymptotic balls (19) then implies the result for the metric
spheres thanks to the monotonicity of the Holmes–Thompson measure (Lemma 6).

The second step is an integration using the coarea inequality (25), which allows
us to get the second inequality of (23) for metric balls with respect to the Busemann
measure.

Let us now make all this more precise. We fix a polytope PN with N vertices
and for any real R > 0 we let PR be the asymptotic ball of radius R centred at o,
and let ∂PR be the associated asymptotic sphere. We also introduce the constant
cn = ln(n+ 1).

Two-dimensional case. The idea is to find an upper bound on the length of each
edge of the asymptotic sphere ∂PR , depending only on R.

To do so, we can use the fact that each edge belongs to the triangle defined by
joining its extremities to the point o. Hence, thanks to the triangle inequality its
length is less than the sum of these two other segments. However, using the second
inclusion (19) of Lemma 14, we know that the asymptotic ball PR is inside the
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Hilbert ball of radius R + c2 centred at o of the convex polygon PN . Hence the
length of each edge is less than 2 ·(R+c2). Therefore the length of the polygon ∂PR

is less than N · 2 · (R+ c2).
Following the first inclusion (19) of Lemma 14, the metric ball of radius r centred

at o is a subset of the asymptotic ball of radius r + ln 2 centred at o. Therefore, we
can use the monotonicity of the Holmes–Thompson length (see Lemma 6) to get
for all r > 0,

(24) LengthPN
SPN (o, r)≤ LengthPN

∂Pr+ln 2 ≤ N · 2(r + ln 2+ c2).

Now using the coarea inequality of Lemma 8, taking into account that the Busemann
length is equal to the Holmes–Thompson length one gets

(25) ∂

∂r
VolPN BPN (o, r)≤

π

4
· N · 2(r + ln 2+ c2).

Hence, integrating the inequality (25) over the interval [0, R], we finally obtain the
following inequality for the ball of radius R > 0:

(26) VolPN BPN (o, R)≤ π
4
· N · (R2

+ 2(ln 2+ c2)R).

The inequalities (24) and (26) are the expected results in dimension two.

Three-dimensional case. Once again the idea is to find an upper bound on the area
of faces of the asymptotic sphere ∂PR . Alas, contrary to the two-dimensional case,
there is not a unique type of faces, and it is therefore pointless to look for an upper
bound depending only on the radius R.

However, each face can be seen as the basis of a pyramid with apex the point o.
All other faces are then triangles, whose areas can be bounded thanks to Lemma 9.
An analogue of the triangle inequality is available in the form of the minimality
of the Holmes–Thompson area (see Berck [2009]). In other words, the Holmes–
Thompson area of each face of ∂PR is less than the sum of the Holmes–Thompson
areas of the triangles obtained as the convex hull of o and an edge of the given face
of ∂PR . Let us call To such a triangle (the subscript o is to stress the fact that the
point o is one of its vertices).

To bound the area of the triangle To it suffices to focus on the intersection
of the polytope PN with the affine plane containing the triangle To. This is a
polygon P̃, to which we can apply Lemma 9, which bounds from above the area
of a two-dimensional triangle inside a metric ball centred on one of its vertices.
This is exactly the situation of our triangle To with respect to the Hilbert geometry
associated to the polygon P̃. Indeed it is included in the asymptotic ball of radius R,
and again thanks to Lemma 14 we know that it is inside the metric ball of radius
R+ c3 with respect to the Hilbert geometry of PN ∈ R3. As P̃ is a plane section
of PN ∈ R3, this still holds for To seen as a subset of P̃. Hence Lemma 9 implies
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that the area of the triangle To is less than C(R + c3)
2, for some constant C > 1

independent of R.
Therefore, if e(N ) is the number of edges of PN , the area of the asymptotic

sphere ∂PR is less than 2e(N )C(R+ c3)
2.

Let f (N ) be the number of faces of PN and let us recall Euler’s formula:

N − e(N )+ f (N )= 2.

Each face being surrounded by at least three edges and each edge belonging to two
faces, one has the classical inequality (where equality is obtained in a simplex)

3 f (N )≤ 2e(N ).

Combining the previous two inequalities we get a linear upper bound on the number
of edges by the number of vertices:

2≤ N − 1
3 e(N ) ⇒ e(N )≤ 3N − 6.

Hence the area of the asymptotic sphere ∂PR is less than (3N − 6) · 2C · (R+ c3)
2.

We can now conclude almost as in the two-dimensional case. Following the first
inclusion (19) of Lemma 14, the metric ball of radius r centred at o is a subset
of the asymptotic ball of radius r + ln 2 centred at o. Therefore, we can use the
monotonicity of the Holmes–Thompson area measure (see Lemma 6) to get for all
r > 0,

(27) Vol2,PN SPN (o, r)≤ Vol2,PN ∂Pr+ln 2 ≤ (3N − 6) · 2C · (r + ln 2+ c3)
2.

Notice that this inequality (27) corresponds to the first part of the inequality (23).
The rough monotonicity of the Busemann measure (see the right-hand side of

the inequality (15) in Lemma 7) states that the Busemann area is smaller than the
Holmes–Thompson one, hence combined with the inequality (27) above, we get
that for all r > 0

(28) AreaPN SPN (o, r)≤ (3N − 6) · 2C · (r + ln 2+ c3)
2.

Taking into account the coarea inequality (see Lemma 8) in conjunction with the
inequality (28) leads to the differential inequality

(29) ∂

∂r
VolPN BPN (o, r)≤ 2 · (3N − 6) · 2C · (r + ln 2+ c3)

2,

which we can integrate over the interval [0, R] to finally obtain that for all R > 0

(30) VolPN BPN (o, R)≤ 2 · (N − 2) · 2C ·
(
(r + ln 2+ c3)

3
− c3

3
)
.

This concludes our proof in the three-dimensional case. �
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Let us remark that if we link this to our study of the asymptotic volume of the
Hilbert geometry of polytopes [Vernicos 2013] we obtain the following corollary:

Corollary 19. Let PN be an open convex polytope with N vertices in Rn, for n = 2
or 3. Then there are three constants αn , βn and γn such that for any point p ∈ PN

one has
αn · N ≤ lim inf

R→+∞

VolPN BPN (p, R)
Rn ≤ βn · N + γn.

Now let us come back to our initial problem and see how Theorem 18 implies
Theorem 17.

Proof of Theorem 17. We remind the reader that Voln−1,� stands for the (n−1)-
dimensional Holmes–Thompson measure. Let o be the centre of the Löwner
ellipsoid of �, which we assume to be the unit Euclidean ball. We consider R
large enough in order to have the Euclidean ball of radius 1/(2n) inside all the
asymptotic balls involved in the sequel.

The idea of the proof consists in replacing for all R large enough the convex
set � by a convex polytope PR such that

• PR is a subset of �;

• the asymptotic ball PR of the polytope PR is inside the (1− tanh R)/(2n)-
Euclidean neighbourhood of the corresponding asymptotic ball AsB�(o, R)
of �;

• the exponential volume growth, with respect to the geometry of �, of the two
families of asymptotic balls (PR)R∈R and (AsB�(o, R))R∈R is the same.

Let us insist on the fact that the convex polytope PR depends on R.
Then using Theorem 18 we will bound from above the area in dimension three or

the perimeter in dimension two of the convex polytope PR by a function depending
linearly on the number of vertices of PR and polynomially on R. This will allow
us to conclude.

Fix R. Among all polytopes included in both the asymptotic ball AsB�(o, R)
and its (1− tanh R)/(2n)-Hausdorff–Euclidean neighbourhood pick a polytope PR

with the minimal number of vertices N (R). Notice that we have

(31) N (R)= N
(

1− tanh R
2n tanh R

, �

)
.

Claim. There exists a constant C > 0 such that for all R,

(32) AsB�(o, R−C)⊂ PR ⊂ AsB�(o, R).

To prove this claim, on the one hand we deduce from the first inclusion of
Lemma 14 that

B�(o, R− ln 2)⊂ AsB�(o, R).
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AsB(o, R)

PR
PR

�

Figure 5. The asymptotic ball and an approximating polytope.

On the other hand the comparison of both Hausdorff–Hilbert and Hausdorff–
Euclidean neighbourhoods, as stated in Proposition 12, implies that the convex
polytope PR lies in the

( 1
2 ln 3

)
-Hausdorff–Hilbert neighbourhood of the asymptotic

ball AsB�(o, R). From these we deduce the inclusion

(33) B�(o, R− ln 6)⊂ PR ⊂ AsB�(o, R).

Taking into account the second inclusion of Lemma 14 we get

(34) AsB�(o, R− ln 6− ln(n+ 1))⊂ PR ⊂ AsB�(o, R),

which proves our claim with C = ln 6+ ln(n+ 1).
Thanks to the monotonicity of the Holmes–Thompson measure (see Lemma 6)

we know that the area of the boundary ∂PR is less than the area of the asymptotic
sphere AsS�(o, R), but larger than the area of the asymptotic sphere of radius
R−C ; that is,

(35) Voln−1,� AsS�(o, R−C)≤ Voln−1,� ∂PR ≤ Voln−1,� AsS�(o, R).

From (35) we deduce that the logarithms of the areas of ∂PR and AsS�(o, R)
are asymptotically the same in the following sense:

(36) lim
R→+∞

ln(Voln−1,� AsS�(o, R))
ln(Voln−1,� ∂PR)

= 1.

Let us denote by PR the image of PR by the dilation of ratio 1/ tanh R. This
is the dilation sending AsB�(o, R) to �. (See Figure 5.) Hence, by construction,
PR ⊂� and therefore we have

(37) Voln−1,� ∂PR ≤ Voln−1,PR ∂PR.
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Now thanks to Theorem 18, for n = 2 or n = 3 and R > 0 such that tanh R > 3
4 ,

there are two constants an, bn and a polynomial Qn of degree n such that

(38) Voln−1,� ∂PR ≤ (an N (R)+ bn)Qn(R).

To conclude we remark that

lim inf
R→+∞

ln N (R)
R

= 2a(�) and lim sup
R→+∞

ln N (R)
R

= 2a(�),

and use it with the inequality (38) to get for instance

lim sup
R→+∞

ln(Voln−1,� ∂PR)

R
≤ 2a(�).

Finally the limit (36) implies that

lim sup
R→+∞

ln(Voln−1,� AsS�(o, R))
R

≤ 2a(�).

The left-hand side of this last inequality is easily seen to be the spherical entropy
(see (13)), which ends our proof. �

The next corollary follows from a result of Bronshteyn and Ivanov (Theorem 31)
which states that 2a ≤ n− 1.

Corollary 20. Let � be an open bounded convex set in Rn for n = 2 or 3. Then

Ent�≤ n− 1.

We are now going to study the reverse inequality.

Theorem 21. Let� be a bounded convex domain in Rn. The volume entropies of �
are greater than or equal to twice the approximabilities of �; i.e.,

2a(�)≤ Ent� and 2a(�)≤ Ent�.

Proof. Without loss of generality we suppose that the Euclidean unit ball is the
Löwner ellipsoid of � and that o is the centre of that ball.

The idea of the proof is the following:

• We will show that for a good positive δ and any positive real number R there
exists a δ-separated set SR in the metric ball of radius B(o, R+ 2δ) such that
the convex closure PR of that set contains the ball B(o, R).

• We will then use the fact that the cardinality of this δ-separated set will be
larger than the cardinality of the set of vertices of a vertex-minimising convex
polytope included in the annulus B(o, R+ 2δ) \ B(o, R).
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In other words, the number of points in the δ-separated set will be bounded
from below by the number N (ε(R),�) from the introduction. Here ε will be
a function of R.

• To conclude we will take into account that the union of the open metric balls
of radius 1

2δ centred at the point of the δ-separated set SR is disjoint and is
in the ball B(o, R + 3δ). Thus we get a lower bound on the volume of the
ball B(o, R+ 3δ) in terms of N (ε(R),�) times a constant depending on the
dimension.

Let us now start the proof. Consider the
( 1

2 ln 3
)
-Hilbert neighbourhood of the

metric ball B(o, R), that is,

V (R)= B
(
o, R+ 1

2 ln 3
)
,

and take a maximal (δ = 1
4 ln 3)-separated set SR on its boundary. This set contains

#SR points. Now let us take the convex hull CR of these points. This is a polytope
with N2(R)≤ #SR vertices.

Claim 22. The polytope CR is included in the 2δ-Hilbert neighbourhood of B(o, R)
and contains B(o, R).

Notice that if the claim holds, then for some real constant c independent of R
(see Corollary 13 once again), we have

(39) #SR ≥ N2(R)≥ Ñ (R− c) := N
( 1

4(1− tanh(R− c)),AsB(o, R− c)
)
.

Proof of Claim 22. First notice that V (R) is a convex set (see Busemann [1955,
Chapter II, Section 18, page 105]). Therefore the convex hull is inside the 2δ-Hilbert
neighbourhood of B(o, R), that is, V (R).

Now let us suppose by contradiction that CR does not contain B(o, R). Hence
there exists some point q in B(o, R) which is not in CR . We will show that we can
find a point on the sphere S(o, R+ 2δ) which is at a distance bigger than δ from
all points of SR , which will contradict its maximality.

Under our assumption, the Hahn–Banach separation theorem asserts that there
exists a linear form a, some constant c and a hyperplane H = {x | a(x)= c} which
separates q and CR , i.e., a(q) > c and a(x) < c for all x ∈ CR . Consider then
Hq = {x | a(x)= a(q)}, the hyperplane parallel to H containing q. Let us say that
a point x such that a(x)≥ a(q) is above the hyperplane Hq .

Then let us define by V ′o = {x ∈ ∂V (R) | a(x)≥ a(q)} the part of the boundary
of V (R) which is above Hq . Now we want to metrically project each point of V ′o
onto Hq , that is to say that to each point of V ′o we associate its closest point on Hq .
However if � is not strictly convex, the projection might not be unique (see the
Appendix); that is why we are going to distinguish two cases.
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First case: the convex set � is strictly convex. Then the metric projection is a
map from V ′o to Hq and it is continuous; furthermore the points on Hq ∩ V ′o are
fixed and by convexity Hq ∩ V ′o is homeomorphic to an (n−2)-dimensional sphere.
Therefore by the Borsuk–Ulam theorem (or a version of it known as the antipodal
map theorem), there is a point p on V ′o whose metric projection is q.

Now as p is on the boundary of V (R), that is, the sphere B(o, R+ 2δ), and q is
in B(o, R) we necessarily have

d�(p, q)≥ 1
2 ln 3.

Hence for all points x in Hq ∩ V ′o , we have

d�(p, x)≥ d�(p, q)≥ 1
2 ln 3.

Second case: the convex set � is not strictly convex. Then let us approximate it by
a smooth and strictly convex set �′ such that � ⊂ �′, and for all pairs of points
x, y ∈ V (R),

(40) 2
3 × d�′(x, y)≥ d�(x, y)≥ d�′(x, y).

Then metrically project V ′o onto Hq with respect to �′. By the same argument
as in the first case, we obtain a point p such that for all x in Hq ∩ V ′o we have

d�′(p, x)≥ d�′(p, q)≥ 3
2 d�(p, q)≥ 3

4 ln 3,

which also implies by the inequalities (40) that for all x in Hq ∩ V ′o we have

d�(p, x)≥ 3
4 ln 3.

In either case, using Proposition 16 of Section 1.5, we deduce that all points on
∂VR at distance less than or equal to 1

4 ln 3 from p are above Hq and are therefore
contained in V ′o . We then infer that there are no points of SR at distance less than
or equal to 1

4 ln 3 from p, which contradicts the maximality of the set SR . �

Now consider the union of the balls of radius 1
2δ centred at the points of SR . This

union is a subset of the ball B(o, R+ 3δ) and the balls are mutually disjoint. Now
following our paper [Vernicos 2013], there exists a constant an such that for any
open proper convex set � and x ∈�, the volume of the ball of radius r centred at x
is at least anrn. Hence from this fact and the inequality (39) we get that for all R> 0,

(41) Vol� B(o, R+ 3δ)≥ #SR · anδ
n

≥ N
( 1

4(1− tanh(R− c)),AsB(o, R− c)
)
· anδ

n.

Now if we take the logarithm of the previous inequalities, divide by R and take
either the lim inf or the lim sup we conclude the proof of Theorem 21. �
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The proof of the main theorem (Theorem 1) is now complete, and we turn to its
corollaries.

A point x of a convex body K is called a farthest point of K if and only if,
for some point y ∈ Rn, x is farthest from y among the points of K . The set of
farthest points of K , which are special exposed points, will be denoted by exp∗ K .
Thus a point x ∈ K belongs to exp∗ K if and only if there exists a ball which
circumscribes K and contains x in its boundary.

In dimension two we get the following corollary:

Corollary 23. Let � be a plane Hilbert geometry, and let dM be the Minkowski
dimension of extremal points and dH the Hausdorff dimension of the set exp∗� of
farthest points. Then we have

(42) dH ≤ Ent�≤ Ent�≤
2

3− dM
.

The inequality on the left remains valid for higher-dimensional Hilbert geometries.

Proof. The inequality on the left of (42) comes from [Schneider and Wieacker 1981],
whereas the one on the right is the first main theorem in [Berck et al. 2010]. �

Remark 24. Inequality (42) induces a new result concerning the approximability
in dimension two, as it implies that

a(�)≤
1

3− d
.

Lastly we are also able to prove the following result, which relates the entropy
of a convex set and the entropy of its polar body.

Corollary 25. Let � be a Hilbert geometry of dimension two or three. Then

Ent�= Ent�∗ and Ent�= Ent�∗.

Proof. It suffices to prove that the approximability of a convex body � containing
the origin and its polar �∗ are equal. Without loss of generality we can assume
that the unit ball is �’s John ellipsoid. Hence � is contained in the ball of radius
the dimension and its polar contains the ball of radius the inverse of the dimension
and is included in the unit ball. Now, notice that for ε small enough, if Pk is
a polytope with k vertices inside the ε-Hausdorff neighbourhood of �, then its
polar P∗k is a polytope with k faces containing �∗ and contained in its (ε · C)-
Hausdorff neighbourhood for some constant C depending only on the dimension.
A known fact (see Gruber [2007, Section 11.2] ) states that the approximability can
be computed by minimising either the vertices or the faces. Hence a(�)= a(�∗)
and a(�)= a(�∗). The statement therefore follows from the main theorem. �
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3. Intermediate growth

In this section we focus on the two-dimensional case. The intermediate volume
growth will follow from Theorem 18 and the following proposition, which allows
us to control both the length of sphere and its volume in dimension two from below,
thanks to the number of vertices of an ad hoc approximating polytope, in the fashion
of Theorem 18, except that here the lower bounds depend on �.

Proposition 26. Let� be an open bounded convex set in R2 whose Löwner ellipsoid
is the Euclidean unit ball centred at o ∈ �. Let N (ε,�) be the minimal number
of vertices of a polygon containing � at Hausdorff–Euclidean distance less than ε
from �, and for any positive real number R let

N (R) := N
(

1− tanh R
4 tanh R

, �

)
.

Then there exist three constants R2, K2 and C2 independent of � such that for
all real numbers R > R2 we have

(43)
Length� S�(o, R)≥

(
N
(
R− 3

2 ln 3
)
− 2

)
K2,

Vol� B�
(
o, R+ 1

2 K2
)
≥
(
N
(
R− 3

2 ln 3
)
− 2

)
C2(K2)

2.

The same result holds for the asymptotic balls with R > R2+ ln 2.

We want to stress once again that there is actually no loss in generality in
supposing the Euclidean unit ball to be the Löwner ellipsoid of �.

Proof. For any positive real number R let ε(R)= 1
4(1− tanh R). The idea is to build

a convex polygon in the ε(R)-neighbourhood of an asymptotic ball of radius R in
such a way that we can control uniformly from below the length of the edges. More
precisely we have the following.

Claim 27. There exists a convex polygon PR such that

• PR contains the asymptotic ball AsB(o, R) and is in its ε(R)-Hausdorff–
Euclidean neighbourhood;

• all the edges of PR but one are tangent to AsB(o, R) and all its vertices
belong to the boundary ∂R AsB of the ε(R)-Hausdorff neighbourhood of the
asymptotic ball AsB�(o, R).

This claim is a consequence of the following algorithm:

Step 1 Draw one tangent to AsB�(o, R). It will meet the boundary ∂R AsB of its
ε(R)-Hausdorff neighbourhood at two points x1 and x2, where −−−→ox1 and −−−→ox2

are positively oriented.

Step 2 We start from x2 and draw the second tangent to AsB�(0, R) passing by x2.
This second tangent will meet the boundary ∂R AsB at a second point x3.
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Step 3 For k > 2, if the second tangent tk+1 to AsB�(0, R) passing by xk has its
second intersection with ∂R AsB on the arc from x1 to xk (in the orientation of
the construction), we stop and consider for PR the convex hull of x1, . . . , xk ;
otherwise we take for xk+1 that second intersection of the tangent tk+1 with
∂R AsB and start that step again.

This algorithm will necessarily finish, because by convexity the arclength of
xi xi+1 on ∂R AsB built this way is bigger than 2ε(R). At the end of this algorithm we
obtain, by minimality, a polygon which has at least N (R)=N

(
ε(R),AsB�(o, R)

)
=

N
(
ε(R)/ tanh R, �

)
edges.

Recall that Proposition 12 guarantees us that the ε(R)-Euclidean neighbourhood
of the asymptotic ball AsB�(o, R) is included in its

( 1
2 ln 3

)
-Hausdorff–Hilbert

neighbourhood and therefore, taking into account the inclusions (19), we obtain

B�(o, R− ln 2)⊂ AsB�(o, R)⊂ PR ⊂ B�
(
o, R+ 3

2 ln 3
)
.

Moreover, the length coincides with the Holmes–Thompson one-dimensional
measure. Therefore, the monotonicity of the latter, as seen in Lemma 6, implies the
following inequalities:

(44) Length� S�(o, R− ln 2)≤ Length� ∂AsB�(o, R)

≤ Length� ∂PR

≤ Length� S�
(
o, R+ 3

2 ln 3
)
.

Now let PR be the image of PR under the dilation of ratio 1/ tanh R centred at o.
By construction PR contains �, which implies

LengthPR
∂PR ≤ Length� ∂PR.

Therefore it suffices to prove the following claim:

Claim 28. Let I (R) ∈ ∂R AsB be a vertex of PR such that the two edges con-
taining I (R) are tangent to AsB�(o, R) at b(R) and c(R). Then for any R >

tanh−1(1
2

)
= R2,

d�
(
b(R), c(R)

)
≥ dPR

(
b(R), c(R)

)
≥ ln 6

5 = K2.

Indeed, let us assume that Claim 28 is true, and for R > r2 consider a vertex v of
PR whose incident edges are tangent to AsB(o, R). Let b and c be the two points
of tangency. Then by the triangle inequality,

d�(b, v)+ d�(c, v)≥ d�(b, c)≥ K2.

Therefore the length of PR is bigger than (Ñ (R)−2)K2, where Ñ (R) is the number
of edges of PR (because of the possible exception at x1 and the last point of the
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construction above). Hence taking R2=r2+
3
2 ln 3, thanks to (44), we get for R> R2

(45) Length� S�(o, R)≥
(
Ñ
(
R− 3

2 ln 3
)
− 2

)
K2,

and as Ñ
(
R− 3

2 ln 3
)
≥ N

(
R− 3

2 ln 3
)

the first inequality in (43) is proved.
Now concerning the volume of the ball, Claim 28 and Proposition 16 imply

that the contact points of the edges of PR with AsB�(o, R) form a K2-separated
set. Hence we can conclude in the same way as we did during the proof of
Theorem 21; i.e., the balls of radius 1

2 K2 centred at those points are disjoint and
included in the metric ball B�

(
o, R + 3

2 ln 3+ 1
2 K2

)
. Now following [Vernicos

2013], there exists a constant C depending only on the dimension such that the
volume of the ball of radius r is at least C · r2. Hence we obtain that

(46) Vol� B�
(
o, R+ 3

2 ln 3+ 1
2 K2

)
≥
(
Ñ (R)− 2

)
·C ·

(1
2 K2

)2
,

and the last inequality (43) follows once again from the inequality Ñ (R)≥ N (R).

Proof of Claim 28. Let a(R) (respectively d(R)) be the vertex opposite I (R) on
the edge containing b(R) (respectively c(R)).

Now let us consider the images I, a, b, c and d of the five points I (R), a(R),
b(R), c(R) and d(R) by the dilation of ratio 1/ tanh R centred at o. Then we are
in the same configuration as in Claim 10, with PR instead of �. Let

u(R)=
bc
BC

tanh R
1− tanh R

;

then following (16) we have

dPR

(
b(R), c(R)

)
≥

1
2 ln

(
1+

u(R)+ u(R)2

s(1− s)

)
.

Therefore we need to obtain a lower bound for u(R). To do this, let p be the inter-
section of the line oI with the lines (bc). Then thanks to Thales’ theorem we have

BC
bc
=

oI
pI
=

op+ pI
pI

= 1+
op
pI
.

Concerning the distance op, recall that the unit ball centred at o is the Löwner
ellipsoid of � and therefore we get op ≤ 1/tanh R, because by convexity p is
in �. Regarding the distance pI , as I (R) is on the boundary of the 1

4(1− tanh R)-
Euclidean neighbourhood of AsB(o, R), we have that I is on the boundary of the
(1− tanh R)/(4 tanh R)-neighbourhood of �. Hence we obtain

pI ≥
1− tanh R
4 tanh R

,
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because the segment [p, I ] intersects �. In this way we obtain

BC
bc
≤ 1+

4
1− tanh R

,

which in turn implies that

1≤
5− tanh R
1− tanh R

bc
BC
≤

5
1− tanh R

bc
BC

.

Hence

(47) 1
5 tanh R ≤ u(R).

Therefore if tanh R2 =
1
2 then for all R > R2 we get 10u(R) > 1.

Finally, using the fact that s(1− s)≤ 1
4 and taking R > R2 we get

dPR

(
b(R), c(R)

)
≥

1
2 ln

(
1+ 2

5 +
1

25

)
= ln 6

5 > 0.18. �

Proof of Theorem 3 (intermediate volume growth theorem). Following Theorem 4 of
[Schneider and Wieacker 1981, page 154] and its proof, for any increasing function
f : R+→ R+ such that

lim inf
r→+∞

er

f (r)
> 0

there exists a convex set � f such that

(48) 0< lim inf
r→+∞

N (1− tanh r, � f )

f (r)
≤ lim sup

r→+∞

N (1− tanh r, � f )

f (r)
<+∞.

In the sequel we will write N (r)= N (1− tanh r, � f ) and drop the subscript � f in
the notation of metric and asymptotic balls.

Now let o be the centre of the Löwner ellipsoid of � f . Following Proposition 26
for K2 = ln 6

5 and r > 0 satisfying

tanh
(
r − 3

2 ln 3− 1
2 K2

)
≥

1
2 ,

we have that

(49) Vol� f B(o, r)≥
(
N
(
r − 3

2 ln 3− 1
2 K2

)
− 2

)
C(K2)

2.

This inequality implies that

(50) lim inf
r→+∞

Vol� f B(o, r)
f (r)

≥ C(K2)
2 lim inf

r→+∞

N
(
r − 3

2 ln 3− 1
2 K2

)
− 2

f (r)
.

Now using inequalities (35) to (38) from the proof of Theorem 17 we get the
existence of three constants a, b and c such that if K = ln 18 and r > 0 is a real
number satisfying tanh(r −C) > 3

4 then

(51) Vol� f AsB(o, r −C)≤ N
(

1− tanh r
4 tanh r

, � f

)
(ar2
+ br + c).
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The inclusion B(o, r− ln 2−C)⊂AsB(o, r−C) given by (19) in Corollary 13’s
proof allows us to obtain

(52) Vol� f B(o, r −C − ln 2)≤ N
(

1− tanh r
4 tanh r

, � f

)
(ar2
+ br + c),

which in turn implies that

(53) lim sup
r→+∞

Vol� f B(o, r)
r2 f (r)

≤ a× lim sup
r→+∞

N
(

1−tanh r
4 tanh r , � f

)
f (r)

.

Combining inequalities (49) and (51) and using the asymptotic comparison (48)
we finally conclude that

lim inf
r→+∞

ln(Vol� f B(o, r))
r

= lim inf
r→+∞

ln f (r)
r

.

In the above proofs we can replace lim inf by lim sup.
To obtain the penultimate statement consider f (r)= er/r3, and apply our result

to get a convex set � f whose entropy is 1. However, by the definition of the
centroprojective area and our result in the two-dimensional case [Berck et al. 2010]
we have

(54) Ao(� f )= lim
Vol� f B(o, r)

sinh r
= lim sup

Vol� f B(o, r)
sinh r

= lim sup
Vol� f B(o, r)

err−1 ×
er

r sinh r
= 0.

For the last statement take f (r)= r3 and apply our result to get a convex set � f

such that

lim sup
Vol� f B(o, r)

r2 = lim sup
r Vol� f B(o, r)

r3 =+∞;

hence, following our paper [Vernicos 2013], � f is not a polytope. Furthermore the
entropy of such a convex set is zero as we have lim sup∞ ln(r3)/r = 0. �

To conclude this section let us show how Corollary 4, related to the values
attained by the lower and upper volume entropies, easily follows: Suppose first
that 0< α ≤ β ≤ 1, and start by considering a sequence (Un)n∈N defined for some
x > 0 by U0 = ebx, and for all k ≥ 0 by

U2k+1 = eαU2k and U2k+2 = eβU2k+1.

Then take an increasing function f : R+→ R+ such that for all r ∈ R,

eαr
≤ f (r)≤ eβr,

and f (Un)=Un+1 for all n ≥ 0. We can define such a function piecewise linearly.
If α = 0, replace r 7→ eαr by r 7→ 2r above and take U2k+1 = 2U2k for all k ≥ 0.
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Figure 6. Metric projection of p on H.

Appendix: Metric projection in a Hilbert geometry

The following is a reformulation and a detailed proof of a statement found in
[Busemann and Kelly 1953, Sections 21 and 28] in any dimension.

Proposition 29. Let (�, d�) be a Hilbert geometry in Rn. Let p be a point of �
and H a hyperplane intersecting �. Then q ∈ H ∩� is a metric projection of p
onto H , i.e.,

d�(p, H)= d�(p, q),

if and only if ∂� has, at its intersection with the straight line (pq), supporting
hyperplanes concurrent with H (the intersection of these three hyperplanes is an
(n−2)-dimensional affine space).

Proof. Let us suppose first that such concurrent support hyperplanes exist. Let
x and y be the intersections of the line (pq) with ∂�. Assume that ξ and η are
supporting hyperplanes of ∂� respectively at x and y whose intersection with H is
the (n−2)-dimensional affine space W. (See Figure 6.) Let us show that for any
p′ ∈ (pq) and any q ′ ∈ H we have

(55) d�(p′, q ′)≥ d�(p′, q).

Let us suppose that x is on the half-line [qp′) and y on the half-line [p′q) and
denote by x ′ and y′ the intersections of ∂� with the half-lines [q ′p′) and [p′q ′)
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respectively. Then let x0 be the intersection of ξ with the line (p′q ′) and y0 the
intersection of (p′q ′) with η. By Thales’ theorem, the cross ratio of [x0, p′, q ′, y0]

is equal to the cross ratio of [x, p′, q, y] and standard computation shows that

[x0, p′, q ′, y0] ≤ [x ′, p′, q ′, y′],

with equality if and only if x0 = x ′ and y′ = y0. Hence the inequality (55) holds,
and if the convex set is strictly convex, this inequality is always strict, for q ′ 6= q .

Reciprocally: recall that when a point q ′ of � goes to the boundary, its distance
to p goes to infinity. Hence by continuity of the distance and compactness there
exists a point q on H∩� such that d�(p, H)= d�(p, q). Now consider the Hilbert
ball B�(p, r) of radius r = d�(p, H) centred at p. Let once more x , y, ξ and η be
defined as before, and let H ′ be the hyperplane passing by q and ξ ∩ η =W. Then
this hyperplane has to be tangent to the ball B�(p, r); otherwise one can find a
point q ′ on H ′ inside the open ball (i.e., d(p, q ′) < r). However, by the reasoning
done in our first step we would conclude that this point is at a distance greater than
or equal to r , which would be a contradiction. By minimality of the point q, H
is also a supporting hyperplane of B�(p, r) at q. Hence we have to distinguish
between two cases. If � is C1, then by the uniqueness of the tangent hyperplanes
at every point, H = H ′. Otherwise, � is not C1 at x or y. In that case it is possible
to replace one of the hyperplanes, say ξ , with ξ ′ passing by x and H ∩ η (which
might be at infinity, which would mean that we consider parallel hyperplanes). �

Notice that there is no uniqueness of the metric projections (also called “foot”
by Busemann). However, if the convex set is strictly convex, then we will have a
unique projection, and if furthermore the convex set is C1, this projection will be
given by a unique pair of supporting hyperplanes.

A.1. Approximability of convex bodies seen as a dimension. In this section we
relate our definition of approximability with the definition given in [Schneider and
Wieacker 1981].

Recall that for a convex body � and ε > 0, N (ε,�) denotes the smallest number
of vertices of a polytope whose Hausdorff distance to � is less than ε.

Theorem 30 [Schneider and Wieacker 1981]. Let as := lim infε→0+ N (ε,�)εs.
Then s→ as admits a critical value a(�), called the approximability number of �,
such that if s > a(�) then as(�)= 0, and if s < a(�) then as(�)=∞.

In the same way, we can introduce the upper approximability number of �,
denoted by a(�), as the critical value of s 7→ as(�), where

as(�) := lim sup
ε→0+

N (ε,�)εs.
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The reader familiar with the definition of the ball-box dimension (also known
as the Minkowski dimension) will have no difficulty seeing that this definition
coincides with the one given in the Introduction.

Now the main result in [Bronshteyn and Ivanov 1975] asserts that for any convex
set� inscribed in the unit Euclidean ball, there are no more than c(n)ε(1−n)/2 points
whose convex hull is no more than ε away from � in the Hausdorff topology, which
gives the next result.

Theorem 31 [Bronshteyn and Ivanov 1975]. Let � be a convex body in Rn. Then

a(�)≤ 1
2(n− 1).
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