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VB-groupoids define a special class of Lie groupoids which carry a compati-
ble linear structure. We show that their differentiable cohomology admits a
refinement by considering the complex of cochains which are k-homogeneous
on the linear fiber. Our main result is a van Est theorem for such cochains.
We also work out two applications to the general theory of representations
of Lie groupoids and algebroids. The case k = 1 yields a van Est map for
representations up to homotopy on 2-term graded vector bundles and, more-
over, to a new proof of a rigidity conjecture posed by Crainic and Moerdijk.
Arbitrary k-homogeneous cochains on suitable VB-groupoids lead to a novel
van Est theorem for differential forms on Lie groupoids with values in a rep-
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1. Introduction

The van Est theorem [1953a; 1953b; 1955a; 1955b] is a classical result relating
the differentiable cohomology associated to a Lie group with the underlying Lie
algebra cohomology. More precisely, given a Lie group G with Lie algebra g, the
van Est map is a map

VE:CP(G)={f € C®(G"): f(g1.....8y) =0if g = e} - CE(g) = A’g"
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taking (normalized) differentiable p-cochains on G to Lie algebra p-cochains. It is
defined (up to sign) by

(1-1) VE(f)(u1, ... up) = Y sg0(0) Ruygy - - Ruyg /-

o€S,

where R, : CP(G) — CP~1(G) is the operator which differentiates f (-, g2,..., &p)
at the unit e with respect to the right-invariant vector field corresponding to u. The
map VE can be seen as a model for the pullback of functions along the projection
of the universal G-bundle EG — BG. The van Est theorem then states that if
G is (topologically) po-connected, the map induced by VE in cohomology is an
isomorphism for p < pg and injective for p = pg+ 1. In the setting of Lie groupoids,
the van Est theorem was first studied by A. Weinstein and P. Xu [1991] for pg =1
and later generalized for arbitrary degrees by M. Crainic [2003] (see also the more
recent work of D. Li-Bland and E. Meinrenken [2015]).

In this paper, we provide a refinement of this theorem for a particular class of
Lie groupoids endowed with a compatible linear structure, called VB-groupoids
[Pradines 1988] (see also [Bursztyn et al. 2016; Gracia-Saz and Mehta 2010; 2011]).
In this case, the linear structure allows us to refine the van Est theorem by looking
at homogeneous cochains, and we are able to derive several interesting applications
from this general result.

To illustrate our approach, we examine here a simple situation involving a Lie
group G and a linear representation pg : G — Aut(V) on a (finite-dimensional)
real vector space V. The associated complex of differentiable cochains for G with
values in V is CP(G, V) ={f : G’ — V : f(g,...,8p) =0if g; = e} with
a differential § : C”(G, V) — CP*(G, V) which encodes pg (see Example 2.5
below for an explicit formula). Infinitesimally, associated to the induced Lie algebra
representation pg : g — End(V'), we have the Chevalley—Eilenberg complex of Lie
algebra cochains with values in V, namely CE” (g, V) = A’g* ® V. In this setting,
there exists a natural analogue of the van Est map

(1-2) V,:CP(G,V)— CE”’(g, V).

How can one prove a van Est theorem for W,? There are two approaches: the first
one is to re-prove the statement from scratch mimicking the proof of the standard
case. The second one is to deduce the desired result from the known van Est theorem
for Lie groupoids by relating the map (1-2) to the van Est map VE for the action
groupoid V = V* x G. It is the second approach that we pursue in this paper.

To relate VE and W, notice that both V' and its space of p-composable arrows
B,V define vector bundles V — G and B,V — GP?, respectively. (Actually, B,V
is isomorphic to V* x G”.) One can then show that the differentiable cochains
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f € C*(B,V) which are fiberwise k-homogeneous define a subcomplex
ClhomW) CCP (V).

Analogously, the Lie algebroid v = V* x g of V also defines a trivial vector bundle
v — g and the fiberwise k-homogeneous cochains define a subcomplex

CE} jom (D) C AP0,
The key point is that VE preserves k-homogeneous cochains, thus restricting to a map
VEihom : Cf pom (V) = CEL4om (V)

which, by a simple homological algebra argument (see page 307), is an isomorphism
(resp. injective) in cohomology whenever VE is. Finally, to obtain the van Est
theorem for V-valued cochains one has to verify that

HP(C{hom(V) = HP(C*(G, V),
HP(CE} o (1)  HP (A'g"Q V),

1-hom

VEl-hom ~ \I’p.

In this paper, we follow the same reasoning but with V replaced by an arbi-
trary VB-groupoid. The main arguments follow directly as above but nontrivial
computational effort needs to go into the last ingredient of the argument, namely,
into relating the complexes of homogeneous (groupoid and algebroid) cochains to
certain complexes already introduced in the literature from different perspectives.
In particular, we obtain explicit formulas for the underlying van Est maps.

We work out two applications: in the first, we deduce a van Est theorem for repre-
sentations up to homotopy in 2-term graded vector bundles [Arias Abad and Crainic
2012; 2013; Gracia-Saz and Mehta 2010; 2011] by looking at 1-homogeneous
cochains and generalizing the case of p above, recovering results from [Arias Abad
and Schitz 2011]. Moreover, we prove a cohomological vanishing result for these
1-homogeneous cochains which, in the case of the adjoint representation, leads
to a realization of the original idea proposed in [Crainic and Moerdijk 2008] for
showing a rigidity result for certain proper groupoids. (This last result was also
proven in [Arias Abad and Schitz 2011] using different methods.) The second
application provides a new van Est theorem for differential forms on Lie groupoids
with coefficients in a representation, generalizing [Arias Abad and Crainic 2011]
on the Bott—Shulmann complex and [Crainic et al. 2015b] on Spencer operators. It
is interesting to notice that, in this second application, another idea is incorporated
(which has its roots in supergeometry and was used in a Lie-theoretic context
by Mehta [2009]): forms in A*V* are k-homogeneous functions on V*. For this
application, we need the refinement of the van Est theorem in its full extent (i.e., for
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k-homogeneous cochains, where k is arbitrary). Even in the particular case of differ-
ential forms with trivial coefficients, our proof of the corresponding van Est theorem
is new and can be seen as illustration of the usefulness of homogeneous cochains.

Outline of the paper.

« In Section 2 we set up some notation, introduce homogeneous cochains on VB-
groupoids and VB-algebroids and provide our main result: the corresponding
refinement of the van Est theorem.

« In Section 3, we specialize to 1-homogeneous cochains and deduce a van Est
result for representations up to homotopy. Along the way, we mention how this
argument can be used to provide an alternative proof of the rigidity conjecture
as originally proposed in [Crainic and Moerdijk 2008].

« In Section 4, by means of k-homogeneous cochains in suitable VB-groupoids
and VB-algebroids, we prove a van Est theorem for differential forms with
coefficients in a representation.

To keep the main text as simple as possible, we postpone to the Appendix some
of the more technical or computational parts of the arguments in Section 4. Most of
the explicit formulas contained in the Appendix follow from extensions of known
lift properties of vector fields to Lie groupoids (see [Mackenzie and Xu 1994;
1998]). We would like to mention that part of this paper grew out of the project of
understanding the Lie theory of multiplicative tensors on Lie groupoids [Bursztyn
and Drummond > 2017].

2. Homogeneous cochains and the van Est map for VB-groupoids

In this section, we present a refinement of groupoid and algebroid cohomology the-
ory for VB-groupoids and VB-algebroids by considering k-homogeneous cochains.
We also show that an analogue of the van Est theorem holds for such homogeneous
cochains.

Homogeneous functions on vector bundles. Given any vector bundle 7 : V — B,
fiberwise multiplication by scalars 4 : R x V — V defines an action of the mul-
tiplicative monoid R which we shall call the homogeneous structure of V. — B.
Following [Grabowski and Rotkiewicz 2009], we recall that the homogeneous
structure completely characterizes the underlying vector bundle structure and that, in
particular, a smooth map between the total spaces defines a vector bundle morphism
if and only if it commutes with the underlying R-actions. (See [Bursztyn et al.
2016] for applications of these ideas in a Lie-theoretic context.)
For each k € N, we consider

CE (V) :i={feC®V):hif=2Ff VreR),
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the set of fiberwise k-homogeneous functions. Note that
Cotom(V) ={f € C®(V):3fy € C*(B) such that f = fyon} = C*(B).

Multiplication of functions gives a map C5., (V) x C22 (V) — C22 k- hom (V)
and, in particular, each C25 (V) is a C*(B)-module. In fact, C5 (V) =
I'(B, S¥V*) for the symmetric algebra bundle S¥V* — B. The isomorphism
(B, V) =C50m (V) takes a section € I' (B, V*) to the fiberwise-linear function
£, € CY5. (V) given by

1-hom
L,(v) ={(ub),v), veV, beB.

The k-th derivative along the fiber defines a projection Pyphom : C*(V)— C25.,(V),

k
(2-1) Prhom(f) = Ed?(hxf)h:o'
If (x, &, ...,&,) are trivializing coordinates on V, then
1 o f k k
Pihom(f)(x,8) = (x,0)&"---&"
k1+~;cn—k kl!---kn!agfl...ag,’l‘n n

Homogeneous groupoid cochains. Let G = M be a Lie groupoid with source and
target maps s, t: G — M, unit 1 : M — G, inversion ¢ : G — G and multiplication
m:Gsx:G— G. We denote by B, G the manifold of composable p-tuples (ByG =M).
The nerve of G is the simplicial manifold whose space of p-simplices is B,G with

the simplicial structure given by the face maps 0; : B,G — B,_1G, i =0, ..., p,
defined by
(gZa"'agp) 1fl=0,
0i(g1s - 8p)=1(81,---,8—1,8i&+1,8i+2,---,8&p) f1=<i<p-—1,
(gla"'agp—l) 1fl=pa

and the degeneracy maps s; : B, 1G — B,G, i =0, ..., p—1, defined by

Si(g]a "'7gp—1) = (g]a "'7gi’ lt(gH.])? gi-i—]? "'agp—l)'

For p=1, dg=s, 91 =tand so = 1.

The nerve defines a functor B, from the category of Lie groupoids to the category
of simplicial manifolds. For a groupoid morphism ¢ : G; — G, the morphism
B¢ : BG) — BG, is defined by B,¢ (g1, ..., 8p) = (P(g1), ..., d(gp)).

The space of (normalized) p-cochains C?(G) on G consists of smooth functions
f :ByG — Rsuch that s7 f =0 fori =0,..., p— 1. These define a cochain
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complex with differential § : C? —1 (G) = CP(G) defined by
p .
(2-2) §= Z(—l)’a,.*.
i=0

The differentiable cohomology of G is the cohomology of the complex (C*(G), 8)
and we denote it by H*(G). For f; € CP(G), f> € C"/(g), the cup product fix f» €
CP+P'(G) is defined by

(2-3) (fix )81 &p+p) = [1(81, -+, 8p) 2(8p+1s - Ep+p!)-

It defines an algebra structure on C*(G) which passes to cohomology due to the
Leibniz formula

5(fix f2) =8(f1)* 2+ (=DP fix8(f2).

In the following, we investigate how the differentiable cohomology of a VB-
groupoid interacts with its underlying homogeneous structure.

Definition 2.1. A VB-groupoid is given by a commutative square
V——¢G

= I
E— M,

where the left and right sides are Lie groupoids and the top and bottom sides are
vector bundles satisfying the following compatibility condition:

(2-5) ﬂ ;

E—
hi
defines a Lie groupoid morphism for each A € R, where hf :V—>Vandh,:E—E
are the homogeneous structures corresponding to V — G and E — M, respectively.
We denote the structure maps of V = E by sy, ty, 1y, ty, my.

hg
A
—

Instead of looking at the homogeneous structure, VB-groupoids can be alterna-
tively defined by focusing on the fiberwise defined sum (see [Gracia-Saz and Mehta
2011]). Our choice of definition comes from [Bursztyn et al. 2016], where the two
definitions are shown to be equivalent (see Theorem 3.2.3 therein).

VB-groupoids have found several applications in recent years ([Bursztyn and
Cabrera 2012; Bursztyn et al. 2016; Bursztyn and Drummond > 2017; Gracia-Saz
and Mehta 2011; Mackenzie and Xu 1994; 1998] to mention just a few). Natural
examples of VB-groupoids are given by the tangent TG = TM and cotangent



VAN EST ISOMORPHISM FOR HOMOGENEOUS COCHAINS 303

T*G = Lie(G)* groupoids, which provide intrinsic versions of the adjoint and
coadjoint representations (up to homotopy; see Section 3 below) of a Lie groupoid G.
Ordinary representations also provide examples of VB-groupoids, as we shall see
in detail in Example 2.5 below.

From now on, we focus on introducing homogeneous cochains on a VB-groupoid
and to study their properties with respect to the van Est map, while having in mind
the applications to be developed in Sections 3 and 4. The first result states that B,
restricts to a functor from VB-groupoids to simplicial vector bundles.

Lemma 2.2. Let V = E be a VB-groupoid over G = M. The space of p-composable
arrows B,V is a vector bundle over B,G. Moreover, the face and degeneracy maps
are all vector bundle maps.

Proof. Consider V¥ =V x - -- x )V as a vector bundle over G”. We shall present B, )
as a subbundle of V? restricted to B,G C GP. It follows from the commutativity
of (2-4) that B,V projects onto B,G. As B,V is a smooth submanifold of V7, it
remains to check that it is invariant by the homogeneous structure of the vector
bundle V? — G” (see [Grabowski and Rotkiewicz 2009]). This is a straightforward
consequence of the fact that (2-5) is a groupoid morphism. The statement regarding
the face and degeneracy maps follows now from the fact that the multiplication
my : B,V — V is a vector bundle map (see also [Bursztyn et al. 2016]). O

B
Note that the homogeneous structure /2, " 9.B »V — B,V of the vector bundle

B,V — B, satisfies
B,h =hore.

Itis now a straightforward consequence of Lemma 2.2 that homogeneous cochains
define a subcomplex of the differentiable cohomology of V.

Proposition 2.3. Let V = E be a VB-groupoid. If
g,
Piom : CT(BpV) = Cliom(BpV)
is the projection (2-1) induced by hf” g’ then

G,p+1 _ G.p
Pk—hom 0d=480 Pk—hom'

In particular,
8 (Cl??hom(BPV)) C Cl??hom(BP'H V) :

Thus, for a VB-groupoid V = E, we define natural subcomplexes of (C*(V), §)
by considering the set of fiberwise k-homogeneous functions:

Cl:-hom(v) = Cl(:?hom(v(.)) and Hk.-hom(v) = H(Clz-hom(v))'
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Remark 2.4. For k =0, we have C, (V) >~ C*(G) and the cup product (2-3) on
C*(V) induces a right C*(G)-module (resp. H*(G)-module) structure on C; (V)
(resp. HY o V)).

Example 2.5. Let C — M be a (left) representation of the Lie groupoid G =2 M.
The vector bundle V = t*C* — G carries a VB-groupoid structure t*C* = C*
defined by

sv(g.6) = ALE).  t(g.§) =6,

w(g, &) =" A58, WE) =Ure), 8, mu((g &), (h &) = (gh, &),

where A, : Csq) —> Cy(g) is the action of g € G. Note that t*C* = C* x G, the action
groupoid for the adjoint action of G on C*. As vector bundles over B,§, one has
that B,(t*C*) = t;C*, where t, : B,G — M is given by t,(g1, ..., gp) = t(g1)
and the isomorphism is given by ((g1, §1), ..., (gp,&p)) — ((g1, ..., &p),&1). In
particular,

ClromWV) =T (B,G, t50).

The right C*(G)-module structure on C;, (V) corresponds to a right module
structure on I'(B,G, tfC) given by

(2-6) (¢*f)(glv ] gp+p’) - ¢(g17 sy gp)f(gp-Ha ] gp+p’)’
feCP (@), ¢ €T(ByG.t50).
Further, the differential on C? (V) corresponds to the differential on I'(B,G, t¥C)

1-hom

given by
((Sd))(glv ~--7g17+1)
p—1

=Ag (@820 8D+ D (DG (81, 8igit 1o 8p) T (= DPP (g1, ... 8p 1)
i=1

Hence, as H*(G)-modules, H;, (V) = H*(G, C), the cohomology of G with coef-

ficients on the representation C (see [Crainic 2003]). More generally, Hy , (V) =

-hom
H*(G, SkC).

Homogeneous algebroid cochains. Given a VB-groupoid V = E, its Lie algebroid
v — E inherits the structure of a VB-algebroid; see [Bursztyn et al. 2016]. As for
VB-groupoids, we take our working definition from that paper.

Definition 2.6. A VB-algebroid is given by a commutative square
bp——

g
]
M

E——

>
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where the left and right sides are Lie algebroids and the top and bottom sides are
vector bundles satisfying the following compatibility condition:

s
o]
(2-8) J
E

defines a Lie algebroid morphism for each A € R, where /] and h; are the homoge-
neous structures of the vector bundles v — g and E — M, respectively.

Parallel to VB-groupoids, VB-algebroids together with Lie theory for VB-objects
have found several applications in recent years (again, we list just a few of the
available references: [Bursztyn and Cabrera 2012; Bursztyn et al. 2016; Bursztyn
and Drummond > 2017; Gracia-Saz and Mehta 2010; Mackenzie and Xu 1994;
1998]). The tangent TA — TM and the cotangent lift 7*A — A* define examples of
VB-algebroids corresponding to TG and 7*G when A = Lie(G), providing intrinsic
versions of the adjoint and coadjoint representations (up to homotopy; see Section 3
below) of a Lie algebroid A. Ordinary representations of A also provide examples
of VB-groupoids, as explained in Example 2.9 below. We now investigate the
infinitesimal version of the notion of homogeneous cochains.

For any Lie algebroid A — M, let CE?(A) :=T'(M, A’ A*) and d : CE?(A) —
CEP*!(A) be the (Chevalley—Eilenberg) differential. The Lie algebroid cohomology
H*(A) is the cohomology of the complex (CE*(A), d). The wedge product on
(M, A°A*) induces a graded commutative algebra structure on H*(A).

When considering a VB-algebroid A = v, the dual v* is always taken with
respect to the Lie algebroid side v — E, so that CE” (v) = I'(E, APv*). The space
of fiberwise (with respect to v — g) k-homogeneous p-forms on v — E is

(29)  Tinom(E, AP0*) :={a € T(E, A%0*) : h{*a = 2a V1 € R).
The wedge product induces a map
A Thnom (E, AP0*) X Tnom (E, AP 0*) = Tip-nom (E, AP 0*%).

Similarly to equation (2-1), there exists a projection P2" : I'(E, APv*) —
Ckhom (E, APU*) defined by
1 d*
g, —
(2-10) Peiom® = Em(hg*a)hzo-

Proposition 2.7. Let v — E be a VB-algebroid. For each k € Ny and every p > 0,

g,p+1 _ 9,p
Pk-hom od=do Pk-hom'
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In particular,
d(Tichom (E, AP0%) C Ticpom(E, AP 0%).

Proof. Since the Chevalley—FEilenberg differential d is a local operator, we can
assume v — E is trivial. By looking at 4} *« as a smooth 1-parameter family of
forms, one can see that d commutes with d/dX. The statement then follows from
the fact that A} is a Lie algebroid morphism and, hence, /}* commutes with 4. O

Thus, for each k € N, the k-homogeneous forms define a subcomplex CEg ., (b)
of (CE*(v), d). The notation we use is
CE} 1om (®) 1= Tihom(E, APv*) and  Hp . (0) = H(CE} o (0)).

Remark 2.8. For k =0, we have I'g.hom (E, AP0*) ZT'(M, APg*) and the wedge
product turns ['ihom(E, A®0*) (resp. HZ, . (0)) into a right I'(M, A*g*)-module
(resp. H*(g)-module).

hom

Example 2.9. Let C — M be a representation of the Lie algebroid g — M defined
by a flat g-connection V : I'(g) x I'(C) — I'(C). Consider the vector bundle
v=C"xpyg— C* Given u € I'(g), let x, : C* — v be the section given by

(2-11) xu(€) = (&, u(m)) for§ e Cy,.

The sections y, with u varying on I'(g) generate I'(C*, v) as a C*°(C*)-module.
One can now show that the action algebroid structure C* x g — C*, determined by
[Xurs Xuxd = Xty ,un)s w1, u2 €T(9),

Po(Xu) () = €9, s Po(Xu))(f o) = (Lpwp flom, feCP(M), pel(0),

endows v — C* with a VB-algebroid structure, where 7 : C* — M is the projection.
The chain complex CEj ,,(v) is naturally isomorphic to I'(A*g* ® C) with the
Koszul differential

dVJ/(ul, s up-‘rl)
p+1
=2 DV y )
i=1 L
+ Z (_1)1+J)/([I/li,uj],l/l],...,Mi,...,Mj,...,up+]),
I<i<j<p+l
where y € I'(APg* ® C). More precisely, the evaluation map ev : CE‘{’_hom (0) —>

['(APg*® C), given by
(ev(@)(ui, ..., up), &) = a(xu, (§), ..., xu,(§)) foruy,...,u, el (g), & €C,

defines a chain isomorphism. The induced right I'(A®g*)-module structure on
'(A’g* ® C) is wedge multiplication on the right in the A°g* factor. In particular,
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as H(g)-modules, H", (v) = H*(g, C), the cohomology of g with values in the

1-hom

representation C. As for groupoids, Hy, (v) = H*(g, SkC).

Van Est theorem for homogeneous cochains. Let G = M be a Lie groupoid with
Lie algebroid g. For every section u € I'(g), consider the corresponding right
invariant vector field u € X(G). In the following, we denote by B,u the vector field
on the space of p-composable arrows B,G given by

(2-12) Byu(gi, ..., 8p) = (u(g1),0g, ..., 0g,).
Let us now recall the definition of the van Est map. First, using the degeneracy
map o : B,—1G — B,G, we define R, : C”(G) — cr~1g) by

Ru = Sg O LB,,u-
The van Est map VE : C?(G) — CE”(g) is defined (up to p-dependent sign) as
follows [Crainic 2003]: for a p-cochain f € CP(G),
(2-13) VE(f) i, ... up) = Y sgn(o) Ry, .- - Ry, (f).

o€eS),

In [Crainic 2003] it is shown that it induces a map in cohomology which preserves
the corresponding product structures. We also need the following naturality result
about VE.

Lemma 2.10. Let H,, H, be Lie groupoids with Lie algebroids b1, b, respectively.
If ¢ : H1 — H» is a Lie groupoid morphism with the corresponding Lie algebroid
morphism Lie(¢) : by — by, then

VE(B,¢" f) =Lie(¢)"VE(f) Vf € Cl(Ha).
Proof. For any x € I'(h;) we can write

Lie(@)(x) = ) _ % (%i o o) € T(¢5h2),

where ¢9 = Bo¢p : M| — M, denotes the map between objects induced by ¢,
y; € C*°(M7) and x; € I'(h2). A direct computation shows that

Ry((Bp)* f) = (65 7)) (Bp19)* (R f) Vf € CP(Hy).
i
If we apply the above formula p times, we notice that most of the terms in

Ry, ... Ry, (B,¢)* f will vanish since VE is defined on normalized cochains (namely,
s} f = 0). The only remaining terms are

> Vi i, 8 Ry, Ry, ),

and we thus get the statement of the lemma. (]
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The main result about the van Est map in the present context is as follows.

Theorem 2.11 [Crainic 2003]. Let G be a Lie groupoid and let g be its Lie algebroid.
The van Est map (2-13) induces an algebra homomorphism

VE: H*(G) — H*(g).

Moreover, if G has pg-connected source fibers, then VE is an isomorphism in
degrees p < po, and it is injective for p = po+ 1.

To get our refinement of Theorem 2.11 for homogeneous cochains on VB-
groupoids and algebroids, we first state a simple homological algebra fact.

Homological lemma. Let (C;, §;) be differential complexes, i = 1,2, endowed
with projections P; : C; — C? (i.e., P; 0 §; = §; o P; and Pi2 =P).If F:C; — C5
is a morphism satisfying F o P = P, o F, then for each p such that F : HP (Cy) —
HP(Cy) is injective (resp. surjective) its restriction F, : HP(S1) — HP(S,) is also
injective (resp. surjective), where S? = P;(C?).

We are thus left with studying the behavior of the projections onto homogeneous
cochains under the van Est map. To that end, let V = E be a VB-groupoid over
G = M and let v — E be its Lie algebroid.

Proposition 2.12. For each k € Ny and every p > 0,

g, g,
VEo P}P = P%P oVE.

In particular, VE(CS,o (BpV)) C Tihom (AP 07).

Proof. Let h{ : V — V and h : v — v be the homogeneous structures of the vector
bundles V — G and v — g, respectively. By Lemma 2.10, the fact that hf is a
groupoid homomorphism with Lie (hf) = hi implies that

VEoh{*=h{*oVE Vi.

Hence, by applying ¢ | ,—o On both sides, one obtains the commutation relation

between VE and the projections Ph The result now follows directly. ([

om,k*

The restriction of the van Est map to the subcomplex of k-homogeneous cochains
shall be denoted by

VEihom 1= VElcr (1) 1 Cf o (V) = CEf 1, (0).

Example 2.13 (0-homogeneous cochains). For £k = 0, using the isomorphisms
Cghom(V) = CP(G) and CE0 hom(®) = CE”(g), one can check that VEq.hom =
VEg : C?(G) — CE?(g). To see this, take f € CO hom W) and xi, ..., xp € b, and
notice that VEonom(f) (X1, - .., Xp) only depends on the projections u; € g of x;,
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i =1,..., p. Hence, to compute VEgnom, it suffices to take xi, ..., x, linear
sections! of b covering u1, ..., u, € I'(g). In this case,

VEq.hom (f)(X1s -+ +» Xp) =T VEg(fo)(ui, ..., up),

where f =n§pgf0, fo€ C>(B,G),and where rg : E — M, 7p,y: ByV — B,G are
the vector bundle projections.

We are now ready to state and prove our main theorem.

Theorem 2.14. Let G = M be a Lie groupoid with Lie algebroid g. For a VB-
groupoid V = E over G with underlying VB-algebroid v — E, the van Est map on
k-homogeneous cochains induces a module homomorphism

VEk—hom : Hk.-hom(v) - Hk.-hom(n)

covering the algebra homomorphism VEg : H*(G) — H*(g). Moreover, if G has
po-connected source fibers, then VEy non is an isomorphism for all p < po and it is
injective for p = po + 1.

Proof. The H*(G)-module structure on H;, (v) comes from the cup product of
CihomW) and Cg (V) = C*(G). So, the first statement follows from the fact that
VE.hom 1S the restriction of the van Est map of V to homogeneous cochains and
that VEg.hom = VEg.

Let us now assume that G has pg-connected source fibers. First note that this
implies that ¥V =3 E is also source pg-connected. Indeed, a source fiber of V = E
is an affine bundle over the corresponding source fiber of G = M. So, the van Est
theorem (Theorem 2.11) implies that VE : H? (V) — H?(v) is an isomorphism for
P < po and injective for p = po + 1. The result now follows from Proposition 2.12
by applying the homological lemma to F' = VE, (C?%, ;) = (C*(B,V), §) and
(C5,8)={(E, A°v*), d) with projections P, = Pkg_;;om :C®(BYV) = Chom(BYV)
and P, = Py :T(E, A0*) = Tihom(E, A®0¥). O

3. 1-homogeneous cochains and representations up to homotopy

In [Gracia-Saz and Mehta 2010; 2011], it was shown that VB-groupoids and VB-
algebroids provide an intrinsic version of the notion of (2-term) representation up to
homotopy, generalizing the example given in the introduction, as well as Examples
2.5 and 2.9 above. In this section, we show how Theorem 2.14, when applied
to 1-homogeneous cochains, recovers a van Est result for the underlying 2-term
representations up to homotopy [Arias Abad and Schitz 2011]. We also outline a
new proof, realizing an original proposal [Crainic and Moerdijk 2008] of a rigidity
conjecture involving the deformation cohomology underlying proper groupoids.

1A linear section x of visasection x : E — v which is a vector bundle homomorphism covering
a section u : M — g (see [Gracia-Saz and Mehta 2010]).
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VB-groupoid and VB-algebroid cohomology. Following [Gracia-Saz and Mehta
2011], given a VB-groupoid 7 : V — G we define CGB (V) to be the space of
1-homogeneous cochains ¢ € C{5 . (B,V) satisfying the two additional conditions

(1) ¢(0g9 51’ '“’Sp—l) =0,
2) ¢Og-&1,....8)=0E1,....5p)

for all (§1,...,§,) € B,V and g € G such that (Og, &) € B,V. As observed in
[Gracia-Saz and Mehta 2011], condition (1) above implies that ¢ (&1, &, ...,&))
only depends on &; and on the projections g; = n(§) € G, i =1,..., p, while
condition (2) is a left-invariance property.

It is shown in that paper that Cy5()) defines a subcomplex of C7, (V). More-
over, the cup product with C5, VvV = C*(G) defines a right C*(G)-submodule
structure on Cy5 (V). The next lemma relates the cohomology of the two complexes.

1-hom

Lemma 3.1. The inclusion  : C35(V) — Cj
right H*(G)-modules in cohomology.

! hom (V) induces an isomorphism of

Proof. Tt is enough to show that for every ¢ € C? Lhom (V) With 6¢ € C p H(V) there
exists a € C! I hOm(V) so that ¢ + 8¢ € Ch vg (V). To that end, first notice that
if an arbitrary ¢ is such that both ¢ and 3¢ satisfy condition (1), then ¢ satisfies
condition (2). This follows directly from evaluating

0=(8¢)(0g, &1, ....5p).

We are thus left with showing that for each ¢ € CT5, (B, V) such that 8¢ satisfies (1)
there exists a ¢ € CT5, ., (Bp—1V) such that $+35 satisfies (1). This, in turn, follows
by applying recursively the following claim: if §¢ satisfies (1) and

(3-1) ¢(§0""7sp—1):0

forall (&, ...,&,-1) € BV suchthat§; =0,i=0, ...,/ < p—1, then there exists
ay € CYSom(Bp—1V) such that ¢ + 8y satisfies (3-1) for all (&, ...,&,-1) € B,V
such that § =0, i =0, ...,/ — 1. Notice that for / = p — 1, (3-1) follows from ¢
being homogeneous of degree 1. To prove this claim for [ < p — 1, one chooses
any ¥ € C75,.,,(Bp—1V) such that

1-hom

w(él, ey gp—l) - _¢(07[(§],,1)_'~--7[(§1)_] ) Elv e sp—l)

forall (§1,...,8,-1) € Bp_1V such that ty)(§1) = O¢(r(¢,)). This is always possible
since the subset of such elements in B,_V is a smooth embedded submanifold
since the target map is a submersion. What needs to be shown now is

(@+6v)&o,....6p-1)=0 V(,....5p-1)€BV, §=0,,i=0,...,[—1.
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Finally, this last identity follows by evaluating

0=(60)On(t,_,)1-mEo)-1> 505 - - -» Ep—1)
and using the recursion hypothesis. U

For a VB-algebroid v — A, the VB-algebroid cochain complex is defined exactly
as the complex of 1-homogeneous cochains

k(o) :=CE, (v).

The restriction of the van Est map to 1-homogeneous cochains as on page 307
provides a map VEhom : C} (V) — CE{p(v). Its restriction to the subcomplex
Cyg(V) C Ct 4oy V) will be denoted by

1-hom

VEyp : Cyg(V) — CEyg(v).
Corollary 3.2. With the notations above, the van Est map
VEyp : H*(Cvg(V)) — H*(CEyg(b))

is a right-module homomorphism over VEg : H*(G) — H*(g). Moreover, if G is
source po-connected, then VEvyg is an isomorphism in degree p for all p < py and
it is injective for p = po + 1.

Cohomological vanishing for proper groupoids. The VB-groupoid cohomology
can be shown to be trivial in several cases as shown by the following proposition.

Proposition 3.3. When G is a proper groupoid or, more generally, admits a Haar
system du together with a cutoff function ¢ € C*°(M) (see, e.g., [Arias Abad and
Crainic 2013] and the proof below), then

HP(Cyp(V) =0, p=2.

Proof. The idea is to define a map ch vBOW) 2o = k(9) € C{;B (V) for p =2 by
the formula

K(d))(él,---,ép—l):f “ ))(b(él,---,ép—l,G(h,Sv(ép—l)))C(S(h))dM(h),
- s(8p-1

where g, =n(§)€G,i=1,..., p—1, as before and o : t*E — V is any linear
splitting of the epimorphism ty, : ¥V — t*E. Notice that the right-hand side in
the formula above is independent of the choice of o since ¢ only depends on
(81, ..., 8p—1,h) and &;. The key point is that, for §¢ =0, ¢ € C{’,B(V), p=>2,we
have 5k (¢) = (—1)P¢, hence leading to the above cohomological vanishing. This
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statement can be checked by direct computation: let us write §,1(h) =0 (h, sy (§)))
for h € t7'(s(g,)) and n, (k) = o (k, sy(§,—1)) for k € t~1(s(gp—1)). Then

Sk (@)1, ..., 8p)
=/ |:¢(§2,---,§p,§p+1(h))
til(s(gp))

p—1
YD PEL . EEir sp+1(h))] c(s(h)) duu(h)

i=1

+(—1)p/ “ ))45(-‘:'1,---,§p—1,np(k))C(S(k))dM(k)

t=(s 8p-1

= (—l)p/ “ ))[—¢(§1, b1 EpEpr (M) + @61, . Ep) ] c(s(h) du(h)
t=1(s(g,

+(—1)p/ “ ))¢(§17---:ép—l’np(k))c(s(k))dﬂ(k)
t1(s(gp—1

=(=DP¢ (&1, ....&p).
Above, the first equality follows from the definitions of § and «, the second equality
follows by applying 8¢ = 0 inside the square brackets and, finally, the third equality
follows by the normalization condition ft’l(x) c(s(h))du(h) =1 and by the left
invariance of the measure ft_l(s(g)) f(gh)du(h) = ft—l(t(g)) f(k)du(k) together
with the independence of ¢ (&, ...,&,) on the &; for j > 1, as was mentioned
before. (]

Let us now mention an application of the above general vanishing result, following
[Crainic and Moerdijk 2008]. Given a Lie algebroid g — M, there exists a complex
C3.¢(9) controlling the deformations of g and which is related to VB-cohomology as
follows. Consider the induced linear Poisson structure on g*, 7 € I'(A2Tg*). The
cotangent Lie algebroid 7*g — g* has the property that its Chevalley—Eilenberg
complex (CE(T*g), d) is isomorphic to the Poisson complex (X(g*), [, - ]); see
[Mackenzie and Xu 1994]. Under this isomorphism, the subcomplex CE3,5(T*g) C
CE*(T*g) corresponds to the so-called linear Poisson complex Xiin(g*) of g*. On
the other hand, Proposition 7 in [Crainic and Moerdijk 2008] shows that X7, (g*) =
Cier(9), so that

CEV(T"g) = Xjin(87) = Cler(@)-

On the groupoid side, for a Lie groupoid G = M, the complex Cyg(T*G) was
shown in [Crainic et al. 2015a] to be isomorphic to the complex Cg.r(G) controlling
deformations of the Lie groupoid structure.

In this context, Corollary 3.2 recovers a result from [Crainic et al. 2015a]: the map

VEqer : Hiot(G) — Hius(9)
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defines a (graded) module homomorphism covering VEg : H*(G) — H*(g) which
induces isomorphisms in degrees p < pg and a monomorphism in degree p = pg+1
when G is source py-connected.

By combining this result with our general vanishing criteria (Proposition 3.3
above), we further obtain an independent proof of the (cohomological) rigidity
conjecture of [Crainic and Moerdijk 2008]: if G is proper and source 2-connected,
then Hdzef(g) = 0. Note that the map VEg is the “lin version” of the van Est map
which was assumed to exist by Crainic and Moerdijk [2008] as a step towards
proving their conjecture.

Remark 3.4. The conjecture was originally proved in [Arias Abad and Schitz
2011] using a van Est result for representations up to homotopy. In particular, they
used a vanishing result for cohomologies with coefficients in representations up to
homotopy established in [Arias Abad and Crainic 2013]. Our vanishing result should
be considered as a geometric counterpart to theirs in the 2-term case (see below).

Splittings and representations up to homotopy. VB-groupoids and VB-algebroids
can be (noncanonically) split into the base Lie groupoid and Lie algebroid data and
representation-like information on the fibers (recall Examples 2.5 and 2.9). It turns
out that the correct notion encoding this split data is that of (2-term) representations
up to homotopy [Arias Abad and Crainic 2012; 2013; Gracia-Saz and Mehta 2010;
2011], which we now recall.

Let G = M be a Lie groupoid with Lie algebroid g - M and £ =C[1]D E a
graded vector bundle over M with C in degree —1 and E in degree 0. The associated
space of £-valued (normalized) p-cochains is defined as

C(G,&or
i={n = (e, nc) €T(BLG; t,E) BT (Bp11G; t,,C) |5/ e =0, si e =0},

where s; : B,G — B,11G is the i-th degeneracy map. There is a (right) C*(G)-module
structure on C (G, £)* defined by ux f = (ug * f, uc x f), where each component
is given by formula (2-6). A representation up to homotopy of G on & is an R-linear
map Dg : C(G, £)* — C(G, )**! satisfying DF = 0 and

Dg(u* f)=Dg(u) * f + (=) ux(8f)., neC(G.EP, feCr Q).

The resulting cohomology is denoted by H(G, £). Note that x defines a right
H (G)-module structure on H (G, £).

A representation up to homotopy on £ can be alternatively given by quasiactions
Af and A€ of G on E and C, respectively, a bundle map d : C — E and a
smooth correspondence which, for each (g1, g2) € B»>G, gives a linear map Q4 ¢,) :
Els(g,) = Cli(q,) satisfying certain structural equations (see [Arias Abad and Crainic
2013; Gracia-Saz and Mehta 2011]). Moreover, in analogy with the case of an
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ordinary representation (cf. Example 2.5), a representation up to homotopy of G on
& endows V = s*E* @g t*C* = C* with a VB-groupoid structure [Gracia-Saz and
Mehta 2011]. The structure maps are given by

sp(€,8,m) = (A E— 0%, (&, g M =E &€ Cly, n€E s,
(&1, 81,m) - (&2, 82, m2) = (61, 8182, yy o0&l + (D) 11 +m2)

for compatible arrows and 1y,(¢§) = (&, 1,,, 0) for & € C*|,,. Finally, in [Gracia-
Saz and Mehta 2011] the authors show that every VB-groupoid can be presented
(noncanonically) in this form, thus establishing a correspondence between VB-
groupoids and 2-term representations up to homotopy of G.

The above correspondence between VB-groupoid structures and representations
up to homotopy can be understood from the following relation between the cochain
complex associated to £ and that of 1-homogeneous cochains on V. Consider the
map ¥ : C(G, &) — CTY,.,,(Bp+1V) defined by

1-hom

(3-3) W), 81,15 -y Epr1s &pr1s Mpt1))
= (N1, we(g2, -5 &p+1)) + (61, k(815 - - -5 &p+1))-

In [Gracia-Saz and Mehta 2011] (see Theorem 5.6), it is proven that W : C(G, £)°* —
c:tl (V)isa monomorphism of graded C(G)-modules satisfying

1-hom
Vo (—Dg)=6860W

whose image coincides with the VB-groupoid cochain complex C,5 (V) C Cy ., (V)
(shifted by one, hence the minus sign in the equation above). We then obtain the

next lemma as a direct consequence of Lemma 3.1.

Lemma 3.5. The map ¥ : H*(G, &) — HH (V) induced in cohomology is an

1-hom

isomorphism of right H*(G)-modules.

Infinitesimal counterpart. Let g be a Lie algebroid and £ be as before, and consider
Q(g. )’ =T (A’g" @ E) T (A" 'g" ® O).

The space (g, £) is a right I'(A®g*)-module with multiplication defined by wedge
product on the right on the A®g* factor. A representation up to homotopy of g on £
is an R-linear map Dy : Q2 (g, £)* — Q (g, £)**! satisfying D§ =0 and

Dy(@ A B) =Dy(@) AB+ (—D)PwrdB, weQ(g &), BeT(AgH.

We denote the cohomology of (2(g, £), Dy) by H(g, £).
As in the VB-groupoid case, VB-algebroid structureson v =C*x yy g x yy E*— C*
are in one-to-one correspondence with representations up to homotopy of g on
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E =CJ[1]6® E (see [Gracia-Saz and Mehta 2010]). We recall here how this corre-
spondence can be seen from the cohomological perspective. The space of sections
['(C*, v) is generated, as a C*°(C*)-module, by sections:

Xu() = (&, u(m),0), Y,(&)=(,0,n(m))
for &£ € C*|,,, u € T'(g), n € I'(E™). Define a map

(3-4) ev:CE’™! (1) > Q(g, )7, ev(e) = (@, &c),

1-hom

where @ € T'(APg* ® E) and a¢ € T (AP g* ® C), by

(@i, ....oup),n) =Ty, Xus -+ Xup) € Copom(CT) = CZ (M),
ac@uri, ..o tpr) =(Xuys -+ Xupyy) € Clhom(CHET(C)
foruy,...,upr1 €I'(g), n e D'(EY).

Lemma 3.6. Under the identification I' (A°g*) = CEjom.0(b), the map ev is a (right)
"' (A*g*)-module isomorphism.

Proof. Let {& }mnk(c )y }ra‘"k(g ) and {el}fdn}((E) be local frames for C*, g* and E
respectively. We identify e; (resp y7) with the corresponding section of v*: C*|,,
£+ (£,0, e;(m)) (resp. & — (£, y/(m), 0)). Locally, any element « € CEfﬁ;m(n)
is written as

)y A Ayt £ BE L (mYei Ay A Ay,

a(m, é)_akA terd

Jledpt1

where & = a; £¥(m). From the definition, one sees that
AL ,+,(m)=<&c<ujl,...,ujp+1),sk(m>>,
B, j,(m) = (GEWj, ;) 0" (m)),

where {u;}, {n'} are local frames for g and E* dual to {y/}, {e;}, respectively. It is
now straightforward to prove the statement. U

Hence, the operator Dy defined by Dgoev =evo(—d), where d is the Chevalley—
Eilenberg differential of v, defines a representation up to homotopy of g on £. (Note
that ev shifts degree by minus one, hence the sign in the definition of Dy.) It is
shown in [Gracia-Saz and Mehta 2010] that, moreover, every VB-algebroid can be
split as v >~ C™* x g x y E* — C*, thus establishing a correspondence between
VB-algebroids and 2-term representations up to homotopy of g.

Given a representation up to homotopy Dg : C(G, £) — C(G, E) of G on &, the
VB-groupoid V = C* defined by (3-2), seen as a Lie groupoid over C*, has a Lie
algebroid whose underlying bundle is precisely v = C* xp g Xy E* — C* In
this case, the above construction of Dy can understood as the differentiation of the
representation Dg, namely, Dy =Lie(Dg). (See also [Arias Abad and Schitz 2011].)
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Remark 3.7. A representation up to homotopy of g on £ can be alternatively
described by amap 9 : C — E, g-connections VX and V€ on E and C, respectively,
and a curvature term R € I'(A?g*®Hom(E, C)) satisfying some compatibility equa-
tions (see [Arias Abad and Crainic 2012; Gracia-Saz and Mehta 2010]). We refer to
[Brahic et al. 2014] for the formulas of the operators (9, VE , VE R) corresponding
to Lie(Dg) in terms of the data defining Dg.

Van Est theorem for representations up to homotopy. Define VE,,: C(G, £)P —
(g, £)? by VE,¢p :=ev o VE .pom 0 W. Diagrammatically,

14
C(G, &) ——— Cliom

(3-5) VErepl lVEl-hcm

ev
Q(g, O)F ———— CEXL! (v

(V(k+l))

It is clear from the previous discussion that VE, induces a map in cohomology.

Theorem 3.8. The van Est map VE, : H*(G, &) — H*(g, &) is a right module
homomorphism over VEg : H*(G) — H*(g). Moreover, if G is source po-connected,
then the induced map in cohomology VE., : H? (G, ) — HP(g, £) is an isomor-
phism for —1 < p < po — 1 and it is injective for p = py.

Proof. This is a straightforward consequence of Theorem 2.14 and Lemmas 3.5
and 3.6. Notice the shift in grading for which one has isomorphisms. This arises
because one has to apply Theorem 2.14 to CT5 (Br+1V) — CEll‘_J[lz)m(n) in order
to analyze C(G, ) — Q*(g, &). ([l

The fact that the above cohomology groups are isomorphic was also proven
in [Arias Abad and Schitz 2011] using different techniques (in the more general
setting of representations on arbitrarily graded vector bundles). Notice that, from
our perspective, it just arises as a refinement of the usual van Est map for V for
1-homogeneous cochains.

Remark 3.9 (formulas for VE). For u € I'(g), define the map R, : C?(G, £) —
cr=1(g, &) by

d
(Ruptc) (g1, - 8p) = =2 Agg(t(gl))_nMc(¢?(t(81)), 8ls -1 8p)s
=0

where ¢! : M — G is the flow of the right-invariant vector field # and the defi-
nition R, g is analogous. Note that our conventions are different from those in
[Arias Abad and Schéitz 2011]. One can now check the identities

Ry, V(1) =W (Rypc, 0), Ry, W(w) =q" (e, 1),
Ry, Ry, V() =q"(Rypr,n), Ry,R,,¥(u) =0,
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where ¢ : B,V — B.,G is the projection map. Using these identities, it is now
straightforward to check that

VErep() = (g, fic) e T(APg* @ E) @ T(APTg* ® C)

is given by
REG. ... up) = (=17 Y sgn(0)Ru,q - - - Ruyg tho-
o€S,
[lc(bt], ey up_H) = Z sgn(a)Ruﬁ(]) . Ru(,(p_,_.)/LC-

O’ESP+1

4. Differential forms with values in a representation

In this section, we study differential forms on a Lie groupoid G with values in a
representation C — M. These objects were introduced in [Crainic et al. 2015b]
together with their infinitesimal counterparts, the Spencer operators. We here
provide a van Est theorem for them as an application of our main result. The key
idea is to reinterpret forms as homogeneous functions.

Van Est theorem for differential forms with coefficients. We start this section by
formally defining the ingredients entering the van Est theorem for forms with
coefficients (Theorem 4.4 below) without any reference to the VB-groupoids and
algebroids. Later, we show how VB-groupoids and VB-algebroids provide a use-
ful framework for interpreting many of the definitions and for giving a proof of
Theorem 4.4.

Let G = M be a Lie groupoid and C — M be a representation of G and consider
the mapt, : B,G — M, t,(g1,...,8p) =t(g1). When no confusion arises, we
omit the reference to p and simply denote t,, by t. The space of g-differential forms
on the nerve of G with coefficients in C is Q4(B.,G, t*C). It carries a differential
8:Q4(B,-1G,t*C) — Q4(B,G, t*C) defined by

p

.....

i=1
Swlg=Agos*w—t'w for p=1.

It is straightforward to check that 82 = 0.
Note that, for w € Q9(G, t*C),

8w|(g,,0:) = Ag 0 pr30 —m*w + priw,

where pr; (g1, g2) = g; for i = 1, 2. In this case, a form w € Q9(G, t*C) which
satisfies w = 0 is called multiplicative (see [Crainic et al. 2015b]). Note that
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Q4(B,G, t*C) is a right dg-module for C*(G) with the module structure defined as
usual by

(@* ) (g1,8ps ) = @ligrng) [ (8p+15 -5 8p+p)s weQ!(B,G,t*C), feCP ().

Remark 4.1. In the case of trivial coefficients (i.e., when C is the trivial line bundle),
the de Rham differential turns Q4(B,G, t*C) = Q4(B,G) into a double complex
known as the Bott—Shulman double complex associated to G (see [Arias Abad
and Crainic 2011]). In the remainder of this paper, we focus on the cohomology
of & alone and leave the investigation of compatible double complex structures
(corresponding to “multiplicative linear flat connections”) for future work.

Let g — M be the Lie algebroid of G. Similarly to [Arias Abad and Crainic
2011], we define the Weil complex W79 (g, C) to be the space of sequences ¢ =
(co, c1, ...), where each

e T(g) x -~ xT(g) — QI %M, Skg* ® C)

p—k times

is an R-linear skew-symmetric map whose failure at being C°°(M)-linear is con-
trolled by

@-1) a(fur,...,upxl-)
= fox(ui, ... upkl ) FdfAckpi(ua, .. upgluy, o) VfeC®(M).

For each ¢, the complex W*4(g, C) carries a differential dy : W?P4(g, C) —
Wprtlda(g, C), which we now define. First, note that Q' (M, S/g* ® C) is a module
for the Lie algebra I'(g). Indeed, for « € Q' (M) and P e T'(S/g* ® C),

u-(@P)=Lyuwa) P +a®@wm-P), uecl(y),

defines an action of I'(g) on Q(M, Sjg* ® C), where

k
- PYwr1, ., v) =V Pr, . v) = Y Pn, . [, v, v,
i=1

and V:T'(g) xI'(C) — I'(C) is the g-connection giving the representation C. Now,
dw is defined by

(4_2) dW(C)k(ulv"'7Mp*k+l|vl9"'vvk)
= (-D* <dCE(Ck)(M1, oo Up—kt1]VL, -, VE)

k
= ippChr W, Uyt V1L T vk)>,
j=1
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where dcg is the Chevalley—Filenberg differential on C*(I"(g), Qi—k(Mm, Sk g 0C)).
There is a right I'(A*g*)-module structure on W*4(g, C). It is defined, for 8 €
I'(A?'g*) and ¢ € WP4(g, C), by

(C/\ﬂ)k(ulv ) M[)er/—kl )
= Z sgn(o) ek (Ug (1), -+ - s Uo(p—k)) BUo (p—k+1)s - - s Ua(p+p'—k)) s
oeS(p—k,p’)

where S(p —k, p’) is the space of (p—k, p’)-unshuffles.
Proposition 4.2. W*9(g, C) is a right dg-module for I (A*g*).

This result will follow from an evaluation isomorphism similar to (3-4) (see
Proposition 4.12 below) between W*9(g, C) and another right dg-module for
['(A*g*). It is important to remark that all the signs appearing in the above formula
for dw, as well as in formula (4-4) below, are natural consequences of a simple
ordering convention in the definition of this evaluation isomorphism.

Remark 4.3. For p = 0 we have W%9(g, C) = Q4(M, C). In this case, for ¢ €
W04 (g, C) we have dy (c) = (dw (c)o, dw (c)1), where dyw (c)o : T'(g) — Q4(M,C)
and dy (c); € Q471 (M, g* ® C) are given by

dw(c)ow) =u-c and dw(c)i(v) =i,wc.
For W4(g, C), its elements are ¢ = (¢, ¢1), where ¢ : T'(g) — Q4(M, C) and
c1 € QY (M, g*®C) =ZHom(g, A~'T*M ® C). In this case,
dw(c)o(ui, uz) =uy - couz) —uz-co(ur) — co([ur, uzl),
dw ()1 (u|v) = ip@ycom) —u-c1(v) +c1([u, v]),
dw (€)2(v1, V2) = —ip@)C1(V2) —ipwyC1(V2).

Note that, in the case p = 1, the equation d(c) = 0 is equivalent to (cg, c1) being
a C-valued Spencer operator on g [Crainic et al. 2015b] and, thus, in particular, to
(co, c1) being an infinitesimally multiplicative form [Arias Abad and Crainic 2011]
when C = R, with the trivial representation.

Van Est map. Given u € I'(g), let ¢! : G — G be the flow of the right-invariant
vector field u. The flow of the corresponding vector field B,u € X(B,G) is given by
Ve (8.0 8p) = (9£(81). 82, -+ 8p)-

Define operators R, : Q4(B,G,t*C) — Q4(B,_1G,t*C) and J, : Q4(B,G,t*C) —
Q171 (B,-1G, t*C) by

d
=S* —_— Ay -10 "*a) ,
wy  ele gpot) 0( de | _, Do Ve )

£
Juw = syip,uw.

€=
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The van Est map VEq : Q4(B,G,t*C) — WP4(g, C), defined by VEq(w) =
(co(w), c1(w), ...), has each cx(w) given by

(4-4)  cr(@)(up, ... upklvr, ..., vr)
= (—l)k(k—l)/2 Z sgn(a)(_l)e(a,k)DJ(]) ... Doy,
oeS(p)
where
(4-5) D.:{Jv_,- it je{l,... kb
' Ry, ifjefk+1,...,p}
and

elo, k) =#{, ye{l,....k}x{1,....k}|i<jand o' (i)) > o~ ())}.

Theorem 4.4. VEq, induces a map on cohomology VEq : H*(24(B.G, t*C)) —
H*(W*i(g, C)) which is a right module homomorphism over VEg : H*(G) —
H*(g). Moreover, if G is source py-connected, then

VEq: H(Q1(B.G,t"C)) — HP(W*(g, C))
is an isomorphism for p < pg and it is injective for p = po + 1, for each fixed q.

In the remainder of the paper, we prove Theorem 4.4 by showing how it can
be framed as a van Est result for a class of VB-groupoids. Notice that the above
theorem recovers Theorem 5.1 of [Arias Abad and Crainic 2011] (up to some sign
conventions) when C = M x R with the trivial representation. It is interesting that,
even in this particular case, our proof is independent of the one given in that paper.

Forms as functions. The key idea in the proof of Theorem 4.4 is that differential
forms can be seen as homogeneous functions on an appropriate space. In this
subsection, we elaborate on this classical viewpoint.

Let Vi, ..., V441 be vector bundles over B and consider the fiber product
31:} Vi = Vi xp -+ xp Vy41 with the natural vector bundle structure over B

(the Whitney sum Vi @ --- @ V, 41 — B).

Simple functions. Fori=1,...,q+1,1et0; : []; V; — []; V; be the inclusion
which puts a zero in the i-th coordinate. Then a function f € C*°([] j V;) is said
to be simple if

0Ff=0 Vi=1,....q+1.

Forasubset I C{l, ..., g+1}, denote by || its cardinality and by Oy : ng[ Vi—
I1 ; V;j the inclusion which puts a zero in the entries indicated by the elements of /.



VAN EST ISOMORPHISM FOR HOMOGENEOUS COCHAINS 321

Define Py : C*([1; V;) = C>(I1; V;), I=—1,0,1,...,4, by

Pen(f) =1,
(4-6) Poy(f)=Pu—iy(f)— Y OjPe_p(f) forl=0,....q.
| |=q+1-1
Each P, [=0,..., g, is a projection onto the space of functions of [] j V; which

vanishes whenever g +1—1 entries are zero. In particular, Pgp := P(,) is a projection
onto the space of simple functions.

Multilinearity and skew-symmetry. The map

DB Vi®- - ® Vi) — C([T1 V).
nw - ®Mq+l e (Zm Oprl) (L Mg+l Oprq-‘,—l)

is a monomorphism of C*°(B)-modules, where pr; : ]_[q+1 Vi V; is the projection
onto the i-th summand. It follows from Taylor’s theorem that its image is the space
of simple (¢g+1)-homogeneous functions.

We are mainly interested in the case V; = --- =V, =V and V4| = W*
and we denote the g-fold fiber product V xp --- xp V by X% V. A function
f€C®(X 5V xp W¥) is said to be skew-symmetric if

f(va(l)’ -5 Vo(q)» g) = Sgn(o)f(vl, ey vq’g) Vv eV, S € W*, (oS! Sq-
The map Py : COO(XqB V xp W*) — COO(X% V xp W*), defined by
1
(4-7) Pi(f)=— ) sgn(o) f oo,
q: oES,

is a projection onto the space of skew-symmetric functions, where S, is the sym-
metric group and o : X GV xg W* - X%V xpg W* is the permutation of the
first ¢ entries belonging to V according to o. Let us define
“48) F:T(B, AV QW) —> C®(XEV x W),

©= (1 A Atg) ®E > g1 Pac((€y 0 pry) -+ (€, 0 Pry) (G 0 pryy ).

It is straightforward to check that § is a monomorphism of C*°(B)-modules whose
image is the space of simple, skew-symmetric (¢+1)-homogeneous functions. We
denote the image of § by C5, (X % V x W*). The projections Py, Pepi and Py i-hom
commute with each other, and so

(4-9) Pexi := Pok 0 Papi 0 Pypihom : CZ(X 5V xg W¥) = CoH (X5 V x5 W)

is a projection onto C35( X %V x g W*).
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Example 4.5. For V = B x R", let {6;,...,0,} be a local frame for W and
{e!,...,e"} bea global frame for V*. A point p € X% V xg W¥ g < n, has
coordinates

p:(x’)ﬂ"'~’)ﬁvél"°'7€m)7 XEBv)Lj:(yl,jv""yn,j)ERn’ %.IG[R'

For a function f € C°°(X% V xp W*), we have Pe f = l'%(a)f), where wy €
['(B, A9V*® W) is given by h

wr(p) 1
+
~ Y Y e AR (1,001 A - A ekt @6 (x).

I <k < <ky<n i=1 oS, Vo) 17" BVko ). 08

The VB-groupoid behind the curtains. We define here the VB-groupoid whose
differentiable cochain complex contains the complex of differential forms with
coefficients. Later on, we show how the Weil complex is embedded in the Chevalley—
Eilenberg complex of its Lie algebroid.

Differential forms with coefficients. Let TG = TM be the tangent groupoid, ob-
tained by taking the derivative of all the structure maps defining G. Let us introduce
the VB-groupoid G, = M, defined by

Gy =TG xg-+xgTG xgt"C*———— ¢

q times

. I

Mq=TMXM~-'XMTMXM cCr—M

q times

where the structure maps are defined’ componentwise and t*C* = C* is the
action groupoid corresponding to the right action of G (see Example 2.5) on C*
obtained by taking adjoints. We frequently omit the subscript ¢ when no confusion
arises. The g-fold fiber products on (4-10) are also denoted as X‘é TG xgt*C*
and X%,, TM x 3 C*.

Lemma 4.6. The space of p-composable arrows B,G is isomorphic as a vector
bundle over BG to the q-fold fiber product TB,G xp,g - -+ Xp,g TBpG X p,g t*C™.
More concisely,

(4-11) ByG = B,(X§TG xgt"C*) = (X 6 TByG) xp,gt"C™.

2There is a more general fact playing a role here: Whitney sums of VB-groupoids yield VB-
groupoids (see [Bursztyn and Cabrera 2012]).
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The proof consists in simply defining the isomorphism
B,G>W",...,u")
= (O, U U U, (g1 g ED),
where each U®) = (Ul(i), el Uq(i), (gi,&)) e G.
One important consequence of the isomorphism (4-11) is that the space of

differential forms Q9(B,G, t*C) can be identified with a subspace of C*°(B,G),
which we denote by CZ(B,G). It is the image of the map (4-8):

ext
(4-12)  §:Q9(B,G,t°C) — cm((xgpg TB,G) x,g t*"C*) = C*(B,0).

In order to characterize Cg (B,G) more explicitly, note that, given a permutation

o € §,, the permutation map
0g: X§TGxgt*C — XETG xgt*C
is a groupoid morphism and, under the isomorphism (4-11),
(4-13) B,0og =03,
for the corresponding permutation map
08,6 Xp,6TBpG xp,gt"C — X3 5TB,G xgt"C.

Similarly, the zero maps Ol.g G641 —> Gy (i=1,...,g9)and Ogﬂ : Xg TG — G,
are groupoid morphisms and

(4-14) B09 =07 Vi=1,...,g+1.

Hence,

CX(BpG) = {f € CL 1) nom(BpG) | (Bpog)* f =sgn(o) f. (B,09)* f =0
VoeS, i=1,....,q+1}.

Note that the projection (4-9) gives here, under the isomorphism (4-11), a projection

Peig : C¥(B,G) — CZ(B,G).

ext

Proposition 4.7. The projection Pex g satisfies

Pext,g od=348o PCXI,Q'

o]
ext

Proof. The result follows directly from (4-13), (4-14) and the fact that

(Bp119)"0f =86(Bpp)" f
for an arbitrary groupoid morphism ¢ : H; — H> and f € C?(Hy). (]

In particular, C35.(B,G) is a subcomplex.
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In the following, we denote by C¢,,(G) and HZ,(G) the complex (CZL(B.G), )
and its cohomology, respectively.

Proposition 4.8. The map § : Q4(B,G,t*C) — C P (G) is a dg-module isomor-

ext
phism.
Proof. Let d; : B,11G — BpG and §; : B,11G — B,G,i=0,..., p+1, be the
face maps and let s; : B,_1G — B,G ands; : B, 1G— B,G, j=0,...,p—1,be
the degeneracy maps for G and G, respectively. The result follows from the fact that

agga) = Sgl.a;;w, a;k%’w = Sai*a)’ Sj%’a) = %'s;‘w Vo e Q! (Bpga t*C),
when restricted to the fiber over (g1, ..., gp) € B,G. O

Remark 4.9. The framework presented here can be used to define multiplicativity
for differential forms on a Lie groupoid with values in a 2-term representation
up to homotopy. This was done in [Egea 2016] by simply changing t*C* to
V =s*E* @ t"C* with the VB-groupoid structure defined by (3-2).

Weil complex. The Lie algebroid A, — M of the Lie groupoid (4-10) G, = M is
the g-fold fiber-product® X § Tg xq 7*C* — X3, TM xy C*, where 7 : g — M
denotes the projection map of the Lie algebroid of G.

Definition 4.10. Let « € I'(M, A*A*). We say that « is skew-symmetric with
respect to A — g if

(4-15) O'g*Ol =sgn(oc)a Voes,

where o4 : A, — A, permutes the g-coordinates on X g T g according to o. Similarly,
« is multilinear with respect to A — g if

(4-16) hi*a = A0ty

4-17) ON'a=0 Vi=1,...,q+1,

where b} : A, — A, is the homogeneous structure of the vector bundle A, — g,
and O? :Ay_1 — A, and 03+1 : Xg Tg— A, i=1,...,q,are the zero maps.

Let Tex (M, AI’A;) be the subspace of I'(M], APA\;) of skew-symmetric multi-
linear forms with respect to A — g. In particular, [ex (M, AI’A;‘) is a subset of
I (g+1)-hom(M, APA,). In the following, we frequently omit the reference to g on the
Lie algebroid A,. There exists a projection Pex¢ g : I'(M, APA) — [ex (M, APA*)
obtained exactly as (4-9) composing the projection P(gq’ _’il)_hom (2-10) with the ones
constructed from the zero maps 0? and permutations o9 exactly as in (4-6) and

(4-7), respectively.

3 As with VB-groupoids, Whitney sums of VB-algebroids yield VB-algebroids. Moreover, Whitney
sums are preserved by the Lie functor (see [Bursztyn and Cabrera 2012]).
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Proposition 4.11. The projection Pey g satisfies
Pext,god =d o Pexg.
In particular, Uex (M, A°A*) is a subcomplex of CE*(A).

Proof. The result follows from the fact that the maps hi, O? , 04 are all Lie algebroid
morphisms. In fact,

(4-18) hd =Lie(hy), 0f =Lie(0f), o, =Lie(og)
for the corresponding maps hf, Oig, og on the Lie groupoid G. ([

In the following, we shall denote by CEZ, (A) and by H¢Z(A) the complex
(Text(M, A*A*), d) and its cohomology, respectively. Note that CEg,,(A) is a right
dg-module for I"(A*g) = 'o.hom (M, A*A*) by considering the wedge product.

Proposition 4.12. There exists a right I’ (A*g*)-module isomorphism ev : CE?
— W*i(g, C) satisfying

A)

ext

evod =dwy oev.

We refer to the Appendix (see Proposition A.3) for a proof. It is important to
note that Proposition 4.12 implies that W*4(g, C) is a right dg-module for I"(A*g*)
as stated in Proposition 4.2. It is also worth noting that ev is a map defined similarly
to (3-4) (i.e., it evaluates an element o € [exi (M, APA*) on a set of generators of
(M, A) to give the sequence (cg, ¢1,...) € WP4(g, C)).

Remark 4.13. An alternative characterization of 'ex((M, A?A*) can be given by
seeing vector bundles as Lie groupoids (With multiplication given by addition on the
fibers). Set AP) = X A and g'») = X g. One has AP = B,A and gP = B,g.
In particular, the 1somorph1sm “4-11) 1mphes that

(4-19) AP =1, ) X THCH

as vector bundles over g”, where 7 : g»» — M is defined (following the previous
convention for ¢ : GP) — M) as w(uy, ..., u,) = w(uy). Hence, Q4(g”, n*C),
the space of differential forms on g(l’) with values on C, can be embedded as a
subspace of C*®°(A(P)) via (4-8). Similarly, I'(M, A?A) can also be embedded as a
subspace of C*®(A(P)). One can now check that

Cext (M, APA*) = T(M, APA)N Q4 (gP, 7*C).

In the case where C = R, with the trivial representation, Li-Bland and Meinrenken
[2015] gave a similar characterization of the Weil algebra as a subspace of differential
forms on g. In this context, the case p = 1 was already studied by Bursztyn, Cabrera
and Ortiz [Bursztyn and Cabrera 2012; Bursztyn et al. 2009].
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Proof of the van Est theorem for differential forms with coefficients. Let VE :
(C*(G), 8g) — (I'(M, A*A*), d) be the van Est map (2-13) for the groupoid G = M.

Proposition 4.14. We have
VEo PSP = P3P o VE.

ext T ©ext

In particular, VE(C (B, 5)) C I'ext (M, APA¥).

Proof. From Proposition 2.12, one already has that VE satisfies VE o qu Jj hom =
qu +pl hom © VE. It remains to show that VE commutes with the projections asso-
ciated to the skew-symmetry and the simplicity properties. But this follows from

Lemma 2.10 together with the relations (4-13), (4-14) and (4-18). U

Let VEey : Coq(BpG) — Texo (M, APA™) be the restriction of the van Est map.

ext
Lemma 4.15. The following diagram commutes:

QI (B,G.t"C) —> 4 C%(B,G)

(4-20) VES{ lVE
WP4(g, C) +———— Texr(M, APA¥)

The proof of Lemma 4.15 consists of a direct but technical verification that
we postpone until the Appendix (see page 328). Finally, we are ready to prove
Theorem 4.4.

Proof of Theorem 4.4. As ev and § are dg-module isomorphisms, it remains to
show that VE.y; induces isomorphisms on the cohomology H?(C(B.G)) —
HP (Text(M, A*A*)) for p < pg and a monomorphism for p = pg + 1. Since the
ordinary van Est map VEg for G satisfies the above, the theorem then follows from
the homological lemma by means of the underlying projections exactly as in the
proof of Theorem 2.14. ]

Remark 4.16. The space Q°(B,G, t*C) is a bigraded right module for the bigraded
algebra Q°*(B,G) with the cup product [Dupont 1978]. The multiplication is given by

wolUn= (—l)qp/Pr*a)/\Pr/*ﬂ, we QI(B,G,t*C), n e Qq/(Bp’g)’

where pr: B4 ,G — B,G (resp. pr’: By G — B,/G) is the projection onto the first
p arrows (resp. last p” arrows). It is interesting to note that such module structure
can also be described within the VB-groupoid context. Indeed, by considering
the projections pr : G474 — G and pt’ : G414 — X G ' TG, one can check that
Sowun € C®(Bpyp /G974 can be obtained from (B,p1)*Fp € C®(B), G9+4') and
(Bypr')*§, € C*(ByG? +4") by skew-symmetrizing their cup product

(Bppt) "o * (ByPr) g, € COO(Bp+p’Gq+q/).
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Similarly, one can define a bigraded module structure on W**(g, C) for the Weil al-
gebra W**(g) [Arias Abad and Crainic 2011] using the wedge product for their mod-
els as subcomplexes of the Chevalley—Eilenberg complexes. These bigraded module
structures should be useful for studying “multiplicative linear flat” connections on C.

Appendix: Formulas for the evaluation map

We turn to the proof of Lemma 4.15 relating the formula for VEq with the standard
van Est map for G and A. In the process, we also give a detailed description (see
(A-8) below) of the map ev : I'ext (M, APA;‘) — WP4(g, C), making use of special
sections of A,.

Special sections. Let TB — B be the tangent bundle of B. Given a vector field
X € X(B), let XT, XV € X(TB) be its tangent and vertical lift respectively.* Define

vector fields X7+ and X (V]()f, j=1,...,q, on the manifold XqB TB as follows:

(A-1) Xty v = (X (1), ., X (vy)),
(A-2) X(Vja;f(vl, i 0g) =0y XY (), 1, Oy,

Let now G = M be a Lie groupoid with Lie algebroid 7 : ¢ — M. For a
representation C — M of G, consider the Lie groupoid (4-10), X‘é TGxgxt'C*=
X %, TM x y C*, with corresponding Lie algebroid Xg T'g xg*C* For a section
u:M— g,let Tu:TM — Tg be its derivative and y, : C* - 7*C*=C* x 1 g
the section defined by (2-11). The expressions

Tu(xr, ..., xq,8) = (Tux1), ..., Tu(xg), xu(§)),

(eu(m)), ..., TO(xy), Og),
=0

€=

d
Ziu(xy, ..., x4,8) = <T0(x1), e, TO(M)-FE

fori=1,...,q9, x1,...,x, € T,M, & € C;; and m € M, define sections of the Lie

algebroid A = X § Tg xg*C* — M= X, TM xy C* It is known that Tu and
Ziu,i=1,...,q, generate '(M, A) as a C*°(M) module.’

Lemma A.1. As vector fields on B ( Xg TG xgt"C*H=E X qug TB,G xp,g t*C*,
the following identities hold:
(A-3) B,(Tu) = ((B,w)"?, X,,),
(A-4) B,(Ziv) = ((Bpv)!;7, 0),

4The flow at time € of X7 (resp. XV) is the derivative of the flow at time € of X (resp. translation
by €X).

SThis follows from a general result regarding core and linear sections of double vector bundles
(see [Mackenzie 2011]).
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where X,, € X(t*C*) is the vector field whose time-€ flow is given by

(gh ] gpv %‘) = (W;(gl» ] gp), A*Z(t(gl))_] (g))

In particular, for w € Q4(B,G, t*C),

(A-5) SoLB,Tuw)Sw = S Ryws

(A-6) 5L, 20%0 = (=1 '§r00prl

where R, and J, were defined in (4-3),

pr('l?;’ : X%_g TB.G xggt'C* - X qB;]l TB.G xpgt*C*

is the projection which forgets the i-th component and S is the first degeneracy map

for G.

Proof. For u € I'(g), consider the sections Zu, Tu of Tg — TM, where
d

Zu(x) =TO0(x)+ — (eu(m)), xeTl,M.

de e=0

One has that Tu = &7 and Zu = ii" as vector fields on TG = TM (see [Mackenzie
and Xu 1994]). Also, the flow of the right invariant vector field x, € X(t*C*) is
given by

(g, &) = (@5(2), p5(t(g) " - &).

The identities (A-3) and (A-4) now follow from analyzing the flows together with
the rearrangement isomorphism (4-11). Hence, for o € Q4(B,G, t*C),

(L8, @8 (T),...T, (81108060

d - —
= | So(Tvi@n..... TV, (Wi 8p), (gt £)
e=0

=& o te)) ™" - (W) W1, ...,Uy))

Now, (A-5) follows from the commutation relations on Proposition 4.8. The identity
(A-6) follows similarly. O

The evaluation map. We now describe the chain isomorphism ev: ey (M, APA*) —
WP (g, C). First, for a € Cexe(M, APA*) C T'(M, APA*), define

&) : (X" (@) x (X T(g)) = C®(X %, TM x5, C¥)

as

Ek(a)(ul, ey up_k|v1, ey vk) =Ot(le)1, ey Zkvk,Tul, .. .,'I]'up_k).
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Lemma A.2. There exists a map ci(a) : X T'(g) = Q4%(M, C) such that
(A-7) k(@) =Fe@ 0Py Yoo € Fexd (M, APAY),

where pryy 410 X Z,, TM xy C*— X f{/,_k TM x p; C* is the projection which forgets
the first k entries.
Proof. The multilinearity with respect to both vector bundle structures, A — M

and A — g, implies that ¢i(a)(uy, ..., up_glvi,...,00) = Fy 0 pryy 4, Where
Fy € C"O(quk TM xy C*) is given by

Fa(yla "'7yq—k7§)

=cr(@) @i, . upg|vr, o, V) Oy ooy Oy Y15 - - Yg—ks 6).
—_————

k times

We now have to check that F, € ngt(x"*" TM xy C*), ie., Fis (g—k+1)-
homogeneous, simple and skew-symmetric. The homogeneity of F,, follows from
the homogeneity of « together with the linearity of the sections Tu and the properties

of the section Z ;v:

1
Z;i () Op.....0m Ay qufk,m:h?i(Zj(xv)

Z;(w) =1-Z;(v),

where A > 0 and - stands for the multiplication for A — M. The simplicity of Fy
follows from the identity

(Fa o()l') opr[l’k] = ((OgH)*a)(Z]v], ey Zkvk, Tul, ey Tup_k) =0
fori=1,...,g—k+1. Finally, leto € S,_x C S, seen as the subgroup acting as
the identity on {1, ..., k}. One can check that

(Fa OOM) opr[l’k] = (O’JO[)(Z]U], ey Zkvk, Tul, ey Tup_k)

= sgn(a)a(Zlvl, ey Zkvk, —ﬂ—u1, ey Tup_k)
=sgn(o) Fy o pryy 4

This shows that F, € CZ,( X TR TM x C*) and, therefore, there exists ¢k (o) :

ext

Xp F(g) - quk(M’ C) SUCh that Fy = ka(a)(ul ----- ”p*k|Ul ----- vk) - U
Our aim is to prove that
(A-8) ev(a) = (co(a), ci(@), ...)

defines a map from e (M, APA*) into W?-49(g, C). First note that the sequence
(co(@), c1(e), ...) completely determines o € I'ex( (M, A?A*). Indeed, as ['(M, A)
is generated as a C*°(M))-module by sections of the type Tu, Z;v, any element of
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'(M, APA*) is determined by its values on these sections. Now, one can check
that, for a € [ext (M, APA™*),

(A-9) izviz;wee =0 forj=1,...,q,
and, for a permutation o € S,
(A-lO) Ol(ZJ(l)Ul, ey Zo'(k)vk, Tul, ey _H_Mp_k)
=sgn(o)oy(a(Zvy, ..., Zrve, Tuy, ..., Tup_p)).

Hence, to recover o from its values on the sections Tu, Z; v, it suffices to know the
values of o encoded on the sequence (co(x), ci(e), ...). The next result gives the
desired proof of Proposition 4.12.

Proposition A.3. Given a € I'ex((M, APA*), one has that
(1) cx (@) is skew-symmetric on the u entries;

(2) cx () is symmetric on the v entries;

(3) given f € C*(M),

@)y, .. upglor, ..o, for) = fer()wr, ... up—glvr, ..o, ve),
ck@(fur, ... ,up—glvr, ..., v) = fer(a) Uy, ..., up—glvr, ..., vg)
+df/\ck+1(a)(u25 ey up—klvlv cooy Uk, Ml)-

In particular, each ci can be viewed as an R-linear skew-symmetric map cy :
X pk I'(g) — QI %M, S g* ® C). Moreover, the map ev : Tet(M, APA*) —
WP (g, C) defined by (A-8) is a right T (A*g*)-module isomorphism satisfying

evodex = dw oev.
Proof.

(1) This follows directly from the skew-symmetry of « with respect to A — M.

(2) Leto € S C S, seen as the subgroup acting as the identity on {k+ 1, ..., g}.
From (A-10) and the skew-symmetry of o with respect to A — M),

a(Zlva(l), ey Zkvo'(k), —I]—I/tl, ey Tup_k)

=sgn(0) a(Zs(1)Vo(1)s - - > Lo (k) Vo k> Tttty .oy Tup_g)
= (sgn(0) > a(Zyvy, ..., Zyvg, Ty, ..., Tup—p).

In the second equality we have used the fact that
oe(TTul, ey Tup_k, Zo‘(l)vg(l), ey Zo(k)vo'(k)) S Coo(Xt] ™ XM C*)

does not depend on the first k£ coordinates.
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(3) One can check that
Zi(fv)y=(fom)-LZv,

q
T(fuy=(fom) -Tu+Y (Layopr;)-Zju,
j=1
where all the sums and scalar multiplications are with respect to 7 : A — M,
pr;: XX,, TM xpy C* — TM is the projection onto the j-th factor and £, €
C*(TM) is the linear function corresponding to df € Q' (M). To simplify notation,
we identify Q4~%(M, C) with its image on C*°( X TRTM x C*) under § in the
following. The first equation of (3) is now straightforward to check. As for the
second, it follows from (A-9) and (A-10) that

ce(a)(fur, ... up—k|vr, ..., V) OPIY
=(fom)a(Z\vy,...,Zxvk, Tuy, ..., Tup_g)
q
+ Y Wapoprpa@vy..... Zivg. Zjuy, Tus, ..., Tup )
j=k+1
= (fom)ck(@)(up, ..., Up—k|V1, ..., V) OPIpy g

q
+ Z (=17 1ty opry)a(Zivy, ..., Livi, Lgwiur, Tuz, ..., Tup_i) oo,
j=k+1

()

where o/ € Sy is the cycle (j j—1--- k+2 k+1), for k +1 < j < g, which
has sign equal to (—1)/ %=1, It is now straightforward to check that (x) equals
df Nexgr(ua, oo up ilvr, .., Vg, ) oIy 4]

It remains to prove that ev is a dg-module isomorphism. Let us first prove that
ev commutes with the multiplication. Let 8 € F(AP/ %) = T'ochom (M, AP/A*) and
consider ev(a A B) = (co(a A B), c1(a A B), ...). By definition,

c(a ABYur, .oy tpqp—k|VLs - ., V) 0PI g
= (a /\ﬁ)(Zﬂ)l, L] Zkvk5 —l]—ula L] —l]—up+p’—k)

= Z sgn(a)a(Zlvl, ...,Zkvk,TTua(l), ...,Tua(p_k))
o€S(p—k,p) % ﬂ(—”—ua(p—k—i-l)a o —l]—ua(p-i-p/—k))s
where S(p—k, p’) is the space of (p—k, p’)-unshuffles and the last equality follows
from the fact that the contraction of 8 with any section of type Z.v. is zero. The
result now follows easily.
Finally, to prove that ev intertwines the differential, consider

ev(da) = (cop(da), ..., c(da), ...),
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where

ce(da)(uy, ..., Upyp1—k|V1, oo, UE) O PIy g

:da(Zlvl, e ,Zkvk,Tul, .. .,—l]—up+1_k)

k
= Z(—l)j+1ﬁp(zjvj)ot(zlv1, e Zjvj, L)
j=1

(4)
p—k+1
+ Z (—1)‘+k+1£pqu,)a(llv1, ey Tu,-, .. )

i=1

(B)

+ Y DHa(Tu, Tul. ... Ty, ... T, ...
I<i<j<p+l—k

©)
p+l—k k
+ >0 Y 0z Tug) L Zyyy . T ).
i=1 j=1

(D)
Notice that there are no terms containing [Z v}, Z;,v},] since these brackets are
all zero. To study the remaining terms, we use some properties of the tangent Lie
algebroid Tg — TM (see [Mackenzie and Xu 1994]) and the action algebroid
C*xyg— C*
(A): From (A-10),
a(Zlvl, ey Zjvj, ey Zkvk, Tul, ey Tup+k_1)
P
= (_1) JO—]TJ(‘SCkfl(O[)(ul ,,,,, up+1,k|v1,...,vj,1,vj+1 ..... Uk) Opr[],k—l])s

where 0 = (j k)(j k—1)---(j j+1) € S;. Now,

pr[l’kfl]OO—M(xl9 --.,Xq,§) = (xjvxk+17 --'7xq7§)7

p(Zjvj) = (,O(Uj)Z}g, 0)
and

E(XZ;?,O)gw:ginopr(l) VXE%(M), a)EQq(M, C)?

where pr(;y @ X TTM xy C* — X =Ty x m C* is the projection which forgets
the first component. These facts imply that

k
(A) = (=) Z(ip(vj)ck—l(a)(ul’ e Up kUL VL Vg,
j:] ey Uk)) opr“,k].
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(B): The fact that p(Tu;) = (p(u;)", p(x.)), where (-)7 stands for tangent lift,
implies that, for w € Q9(M, C), L,Tu;)Sw =Su;-0> Where u-(BOu) = L,w) B U+
BRV,u, BeQi(M), wel(C)andV is the g-connection on C defining the
representation of g on C. Hence,

p—k+1
(B)=(=DF Y (=D (wi - cxur, ooy @iy ttprr 01, -, 00)) 0PIy .

i=1
(C) and (D): From the identities [Tu;, Tu;] = T[u;, u;], [Tu;, Zjv;1=Z;lu;, vjl,

it is straightforward to check that

©)==DF Y D () iy i) w187y

1<iy <ij<p—k+1 e Ut 1 VL, o UR)) 0PI s
p—k+1 k
(D)= (=D* 3" > (=D (@), ...,
i=1 j=1 e Ut —kV1, o [, 0] ) 0PI -

Hence,
(A)+(B) + (C) + (D) =dw(c(@)k(ur, ..., up—k+1|v1, - .., Vk) OPIpy g
= c(da); =dw(c(a))k,

as we wanted. O

Proof of Lemma 4.15.

Lemma 4.15 rephrased. Let o be an element of Q4(B,G,t"C) and consider
VEq(w) = (cp(w), c1(w), ...) as defined in (4-4). Also, let @ = VEx(Fw) €
Cext(M, APA*) and consider ev(a) = (co(), c1(), . ..) defined by (A-7). Then

cr(w) =cp(a) Yk=0.
Proof. From (2-13),

{S:ck(a)(ul ..... Up—|v1,..svx) © PI1 k] = VEex((Sw)(Z1v1, ..., Zyvg, Tuy, --~,_]]—up—k)
= sgn(0) Ry, - - Ry, S

o€S),

where y; = Z;v; (resp. Tu;—p)ifi € {1,...,k} (resp.ifi e {k+1,..., p}). The
main ingredients of the proof are the identities from Lemma A.1:

RTu,-%w = SSEB,,TLliSw = gRuiwv

P _]’
RZ,‘U,‘S&):(_I)l 13'Jv,-wopr(pi) q’
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where pr&l?;’ : X%.g TB.G xpgt"C* — X%L} TB.G x g g t*C* is the projection
which forgets the i-th component. In the rest of the proof, the difficulty lies in the
combinatorics needed to count the number of —1’s appearing due to the presence
of the sections Z;v;.

LetO<r<p,1<s<gandl<i, j<s. ForneQ (B.G, t*C), one can
check that

Ry (Fy o pris}) = Sron o priy,
and
j— - 1, cp s .
(=10’ 11'3:]”; oprE) Opl‘fl) s ifi > j,
Rz, opiy) = { —(=1) 1§y opry) o)1 ifi < j,
0 ifi =j.

Let us now fix a permutation o € S,. For 1 </ <k, let j; = o~ 1(1) for I > 1 and set
Jo =0. Denote by 7 the permutation of {0, 1, ..., k} such that j; ) <:-- < jr).
One can now prove by induction that, for j.¢y <r < jra+1),

,q—k+l )
(A-11) Ryyiiry - - RXa(p)%’w =4(k, 1) (gDo()‘+l)~~'Da(p)w Oprzi?) o oprzif_”),

where the D; are the operators (4-5), {iy <--- <iy}={r(+1),...,t(k)} and
(k. 1) = (—1)k~! (= 1)TU+D++T®) )N (E.D)
with
N D =#{G j)ell+1,... .k x{I{+1,....k}|i<jand o' () >0 ()}
Note that, for / =0,
5(k,0) = (—D)k(=1)! 7+ (Z1)e@h) — (_1)kk=D/2(_1ye(@k)
In particular, when r = 0, we have

Ser@ i, .. up—klvr,..,ve) © PI[1 &)

= Z sgn(o) Ry, ) - - - Ry, () Sw

o€eS),
k(k—1)/2 k ?
= (=1) (k—1)/ Z sgn(o)(— 1)6(5 )%’Da(l) Da(p)wopr(l) o . opr(k’)]
o€S)
zgck(w)(ul ..... Up—ilvr,..,vr) © PI[L k- H

Acknowledgments

We would like to thank H. Bursztyn and O. Brahic for useful discussions. Cabrera
would also like to thank R. Mehta for his insightful ideas in the early stages of this



VAN EST ISOMORPHISM FOR HOMOGENEOUS COCHAINS 335

work. The authors are also especially grateful to Matias del Hoyo for pointing out
an incompleteness in the proof of Lemma 3.1 and for helping to complete it.

References

[Arias Abad and Crainic 2011] C. Arias Abad and M. Crainic, “The Weil algebra and the Van Est
isomorphism”, Ann. Inst. Fourier (Grenoble) 61:3 (2011), 927-970. MR Zbl

[Arias Abad and Crainic 2012] C. Arias Abad and M. Crainic, “Representations up to homotopy of
Lie algebroids”, J. Reine Angew. Math. 663 (2012), 91-126. MR Zbl

[Arias Abad and Crainic 2013] C. Arias Abad and M. Crainic, “Representations up to homotopy and
Bott’s spectral sequence for Lie groupoids”, Adv. Math. 248 (2013), 416-452. MR Zbl

[Arias Abad and Schitz 2011] C. Arias Abad and F. Schitz, “Deformations of Lie brackets and
representations up to homotopy”, Indag. Math. (N.S.) 22:1-2 (2011), 27-54. MR Zbl

[Brahic et al. 2014] O. Brahic, A. Cabrera, and C. Ortiz, “Obstructions to the integrability of VB-
algebroids”, preprint, 2014. arXiv

[Bursztyn and Cabrera 2012] H. Bursztyn and A. Cabrera, “Multiplicative forms at the infinitesimal
level”, Math. Ann. 353:3 (2012), 663—-705. MR Zbl

[Bursztyn and Drummond > 2017] H. Bursztyn and T. Drummond, “Lie theory of multiplicative
tensors”, work in progress.

[Bursztyn et al. 2009] H. Bursztyn, A. Cabrera, and C. Ortiz, “Linear and multiplicative 2-forms”,
Lett. Math. Phys. 90:1-3 (2009), 59-83. MR Zbl

[Bursztyn et al. 2016] H. Bursztyn, A. Cabrera, and M. del Hoyo, “Vector bundles over Lie groupoids
and algebroids”, Adv. Math. 290 (2016), 163-207. MR Zbl

[Crainic 2003] M. Crainic, “Differentiable and algebroid cohomology, van Est isomorphisms, and
characteristic classes”, Comment. Math. Helv. 78:4 (2003), 681-721. MR Zbl

[Crainic and Moerdijk 2008] M. Crainic and I. Moerdijk, “Deformations of Lie brackets: cohomolog-
ical aspects”, J. Eur. Math. Soc. (JEMS) 10:4 (2008), 1037-1059. MR Zbl

[Crainic et al. 2015a] M. Crainic, J. N. Mestre, and I. Struchiner, “Deformations of Lie groupoids”,
preprint, 2015. arXiv

[Crainic et al. 2015b] M. Crainic, M. A. Salazar, and I. Struchiner, “Multiplicative forms and Spencer
operators”, Math. Z. 279:3-4 (2015), 939-979. MR Zbl

[Dupont 1978] J. L. Dupont, Curvature and characteristic classes, Lecture Notes in Mathematics
640, Springer, 1978. MR Zbl

[Egea 2016] L. Egea, VB-groupoid cocycles and their applications to multiplicative structures, Ph.D.
thesis, Instituto Nacional de Mathematica Pura e Aplicada, 2016.

[van Est 1953a] W. T. van Est, “Group cohomology and Lie algebra cohomology in Lie groups, I,
Nederl. Akad. Wetensch. Proc. Ser. A. 15 (1953), 484-492. MR Zbl

[van Est 1953b] W. T. van Est, “Group cohomology and Lie algebra cohomology in Lie groups, II”,
Nederl. Akad. Wetensch. Proc. Ser. A. 15 (1953), 493-504. MR Zbl

[van Est 1955a] W. T. van Est, “On the algebraic cohomology concepts in Lie groups, I”’, Nederl.
Akad. Wetensch. Proc. Ser. A. 17 (1955), 225-233. MR Zbl

[van Est 1955b] W. T. van Est, “On the algebraic cohomology concepts in Lie groups, 11", Nederl.
Akad. Wetensch. Proc. Ser. A. 17 (1955), 286-294. MR Zbl

[Grabowski and Rotkiewicz 2009] J. Grabowski and M. Rotkiewicz, “Higher vector bundles and
multi-graded symplectic manifolds”, J. Geom. Phys. 59:9 (2009), 1285-1305. MR Zbl


http://dx.doi.org/10.5802/aif.2633
http://dx.doi.org/10.5802/aif.2633
http://msp.org/idx/mr/2918722
http://msp.org/idx/zbl/1237.58021
http://dx.doi.org/10.1515/CRELLE.2011.095
http://dx.doi.org/10.1515/CRELLE.2011.095
http://msp.org/idx/mr/2889707
http://msp.org/idx/zbl/1238.58010
http://dx.doi.org/10.1016/j.aim.2012.12.022
http://dx.doi.org/10.1016/j.aim.2012.12.022
http://msp.org/idx/mr/3107517
http://msp.org/idx/zbl/1284.55018
http://dx.doi.org/10.1016/j.indag.2011.07.003
http://dx.doi.org/10.1016/j.indag.2011.07.003
http://msp.org/idx/mr/2853613
http://msp.org/idx/zbl/1235.53085
http://msp.org/idx/arx/1403.1990
http://dx.doi.org/10.1007/s00208-011-0697-5
http://dx.doi.org/10.1007/s00208-011-0697-5
http://msp.org/idx/mr/2923945
http://msp.org/idx/zbl/1247.58014
http://dx.doi.org/10.1007/s11005-009-0349-9
http://msp.org/idx/mr/2565034
http://msp.org/idx/zbl/1206.58005
http://dx.doi.org/10.1016/j.aim.2015.11.044
http://dx.doi.org/10.1016/j.aim.2015.11.044
http://msp.org/idx/mr/3451921
http://msp.org/idx/zbl/06538715
http://dx.doi.org/10.1007/s00014-001-0766-9
http://dx.doi.org/10.1007/s00014-001-0766-9
http://msp.org/idx/mr/2016690
http://msp.org/idx/zbl/1041.58007
http://dx.doi.org/10.4171/JEMS/139
http://dx.doi.org/10.4171/JEMS/139
http://msp.org/idx/mr/2443928
http://msp.org/idx/zbl/1159.58011
http://msp.org/idx/arx/1510.02530
http://dx.doi.org/10.1007/s00209-014-1398-z
http://dx.doi.org/10.1007/s00209-014-1398-z
http://msp.org/idx/mr/3318255
http://msp.org/idx/zbl/06422645
http://dx.doi.org/10.1007/BFb0065364
http://msp.org/idx/mr/0500997
http://msp.org/idx/zbl/0373.57009
http://dx.doi.org/10.1016/S1385-7258(53)50061-7
http://msp.org/idx/mr/0059285
http://msp.org/idx/zbl/0051.26001
http://dx.doi.org/10.1016/S1385-7258(53)50062-9
http://msp.org/idx/mr/0059285
http://msp.org/idx/zbl/0051.26001
http://dx.doi.org/10.1016/S1385-7258(55)50029-1
http://msp.org/idx/mr/0070959
http://msp.org/idx/zbl/0067.26202
http://dx.doi.org/10.1016/S1385-7258(55)50040-0
http://msp.org/idx/mr/0070959
http://msp.org/idx/zbl/0067.26202
http://dx.doi.org/10.1016/j.geomphys.2009.06.009
http://dx.doi.org/10.1016/j.geomphys.2009.06.009
http://msp.org/idx/mr/2541820
http://msp.org/idx/zbl/1171.58300

336 ALEJANDRO CABRERA AND THIAGO DRUMMOND

[Gracia-Saz and Mehta 2010] A. Gracia-Saz and R. A. Mehta, “Lie algebroid structures on double
vector bundles and representation theory of Lie algebroids”, Adv. Math. 223:4 (2010), 1236-1275.
MR Zbl

[Gracia-Saz and Mehta 2011] A. Gracia-Saz and R. A. Mehta, “VB-groupoids and representation
theory of Lie groupoids”, preprint, 2011. arXiv

[Li-Bland and Meinrenken 2015] D. Li-Bland and E. Meinrenken, “On the van Est homomorphism
for Lie groupoids”, Enseign. Math. 61:1-2 (2015), 93-137. MR Zbl

[Mackenzie 2011] K. C. H. Mackenzie, “Ehresmann doubles and Drinfel’d doubles for Lie algebroids
and Lie bialgebroids”, J. Reine Angew. Math. 658 (2011), 193-245. MR Zbl

[Mackenzie and Xu 1994] K. C. H. Mackenzie and P. Xu, “Lie bialgebroids and Poisson groupoids”,
Duke Math. J. 73:2 (1994), 415-452. MR Zbl

[Mackenzie and Xu 1998] K. C. H. Mackenzie and P. Xu, “Classical lifting processes and multiplica-
tive vector fields”, Quart. J. Math. Oxford Ser. (2) 49:193 (1998), 59-85. MR Zbl

[Mehta 2009] R. A. Mehta, “Q-groupoids and their cohomology”, Pacific J. Math. 242:2 (2009),
311-332. MR Zbl

[Pradines 1988] J. Pradines, “Remarque sur le groupoide cotangent de Weinstein—Dazord”, C. R.
Acad. Sci. Paris Sér. I Math. 306:13 (1988), 557-560. MR Zbl

[Weinstein and Xu 1991] A. Weinstein and P. Xu, “Extensions of symplectic groupoids and quantiza-
tion”, J. Reine Angew. Math. 417 (1991), 159-189. MR Zbl

Received May 14, 2016. Revised June 28, 2016.

ALEJANDRO CABRERA

DEPARTAMENTO DE MATEMATICA APLICADA, INSTITUTO DE MATEMATICA
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CAIXA POSTAL 68530

21941-909 R10 DE JANEIRO-RJ

BRAZIL

acabrera@labma.ufrj.br

THIAGO DRUMMOND

DEPARTAMENTO DE MATEMATICA, INSTITUTO DE MATEMATICA
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CAIXA POSTAL 68530

21941-909 RIO DE JANEIRO-RJ

BRAZIL

drummond @im.ufrj.br


http://dx.doi.org/10.1016/j.aim.2009.09.010
http://dx.doi.org/10.1016/j.aim.2009.09.010
http://msp.org/idx/mr/2581370
http://msp.org/idx/zbl/1183.22002
http://msp.org/idx/arx/abs/1007.3658v4
http://dx.doi.org/10.4171/LEM/61-1/2-5
http://dx.doi.org/10.4171/LEM/61-1/2-5
http://msp.org/idx/mr/3449284
http://msp.org/idx/zbl/1337.55017
http://dx.doi.org/10.1515/CRELLE.2011.092
http://dx.doi.org/10.1515/CRELLE.2011.092
http://msp.org/idx/mr/2831518
http://msp.org/idx/zbl/1246.53112
http://dx.doi.org/10.1215/S0012-7094-94-07318-3
http://msp.org/idx/mr/1262213
http://msp.org/idx/zbl/0844.22005
http://dx.doi.org/10.1093/qjmath/49.193.59
http://dx.doi.org/10.1093/qjmath/49.193.59
http://msp.org/idx/mr/1617335
http://msp.org/idx/zbl/0926.58015
http://dx.doi.org/10.2140/pjm.2009.242.311
http://msp.org/idx/mr/2546715
http://msp.org/idx/zbl/1185.22002
http://msp.org/idx/mr/941624
http://msp.org/idx/zbl/0659.18009
http://dx.doi.org/10.1515/crll.1991.417.159
http://dx.doi.org/10.1515/crll.1991.417.159
http://msp.org/idx/mr/1103911
http://msp.org/idx/zbl/0722.58021
mailto:acabrera@labma.ufrj.br
mailto:drummond@im.ufrj.br

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Robert Finn
Department of Mathematics
Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius @math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Igor Pak
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
pak.pjm@gmail.com

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang @math.princeton.edu

PRODUCTION

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper @math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY UNIV.
INST. DE MATEMATICA PURA E APLICADA UNIV.
KEIO UNIVERSITY UNIV.
MATH. SCIENCES RESEARCH INSTITUTE UNIV.
NEW MEXICO STATE UNIV. UNIV.
OREGON STATE UNIV. UNIV.

UNIV.

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

STANFORD UNIVERSITY

OF BRITISH COLUMBIA

OF CALIFORNIA, BERKELEY
OF CALIFORNIA, DAVIS

OF CALIFORNIA, LOS ANGELES

. OF CALIFORNIA, RIVERSIDE

OF CALIFORNIA, SAN DIEGO
OF CALIF., SANTA BARBARA

UNIV.
UNIV.
UNIV.
UNIV.
UNIV.
UNIV.

OF CALIF., SANTA CRUZ

OF MONTANA

OF OREGON

OF SOUTHERN CALIFORNIA
OF UTAH

OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no

responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2017 is US $450/year for the electronic version, and $625/year for print and electronic.

Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PIM peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY

:- mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2017 Mathematical Sciences Publishers


http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:pak.pjm@gmail.com
mailto:yang@math.princeton.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/

an

Some closure results for ‘6-approximable groups
DEREK F. HOLT and SARAH REES

Coman conjecture for the bidisc
LUKASZ KOSINSKI, PASCAL J. THOMAS and WEODZIMIERZ
ZWONEK
Endotrivial modules: a reduction to p~central extensions
CAROLINE LASSUEUR and JACQUES THEVENAZ
Infinitely many positive solutions for the fractional
Schrodinger—Poisson system
WEIMING L1U
A Gaussian upper bound of the conjugate heat equation along
Ricci-harmonic flow
XIAN-GAO L1U and KU1 WANG

Approximation to an extremal number, its square and its cube
JOHANNES SCHLEISCHITZ

393

411

423

439

465

485



	1. Introduction
	2. Homogeneous cochains and the van Est map for VB-groupoids
	Homogeneous functions on vector bundles
	Homogeneous groupoid cochains
	Homogeneous algebroid cochains
	Van Est theorem for homogeneous cochains

	3. 1-homogeneous cochains and representations up to homotopy
	VB-groupoid and VB-algebroid cohomology
	Splittings and representations up to homotopy
	Van Est theorem for representations up to homotopy

	4. Differential forms with values in a representation
	Van Est theorem for differential forms with coefficients
	Forms as functions
	The VB-groupoid behind the curtains
	Proof of the van Est theorem for differential forms with coefficients

	Appendix: Formulas for the evaluation map
	Special sections
	The evaluation map
	Proof of Lemma 4.15

	Acknowledgments
	References
	
	

