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VB-groupoids define a special class of Lie groupoids which carry a compati-
ble linear structure. We show that their differentiable cohomology admits a
refinement by considering the complex of cochains which are k-homogeneous
on the linear fiber. Our main result is a van Est theorem for such cochains.
We also work out two applications to the general theory of representations
of Lie groupoids and algebroids. The case k = 1 yields a van Est map for
representations up to homotopy on 2-term graded vector bundles and, more-
over, to a new proof of a rigidity conjecture posed by Crainic and Moerdijk.
Arbitrary k-homogeneous cochains on suitable VB-groupoids lead to a novel
van Est theorem for differential forms on Lie groupoids with values in a rep-
resentation.
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1. Introduction

The van Est theorem [1953a; 1953b; 1955a; 1955b] is a classical result relating
the differentiable cohomology associated to a Lie group with the underlying Lie
algebra cohomology. More precisely, given a Lie group G with Lie algebra g, the
van Est map is a map

VE : C p(G)= { f ∈ C∞(G p) : f (g1, . . . , gp)= 0 if gi = e} → CE(g)=3pg∗
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taking (normalized) differentiable p-cochains on G to Lie algebra p-cochains. It is
defined (up to sign) by

(1-1) VE( f )(u1, . . . , u p)=
∑
σ∈Sp

sgn(σ )Ruσ(1) . . . Ruσ(p) f,

where Ru :C p(G)→C p−1(G) is the operator which differentiates f ( · , g2, . . . , gp)

at the unit e with respect to the right-invariant vector field corresponding to u. The
map VE can be seen as a model for the pullback of functions along the projection
of the universal G-bundle EG → BG. The van Est theorem then states that if
G is (topologically) p0-connected, the map induced by VE in cohomology is an
isomorphism for p≤ p0 and injective for p= p0+1. In the setting of Lie groupoids,
the van Est theorem was first studied by A. Weinstein and P. Xu [1991] for p0 = 1
and later generalized for arbitrary degrees by M. Crainic [2003] (see also the more
recent work of D. Li-Bland and E. Meinrenken [2015]).

In this paper, we provide a refinement of this theorem for a particular class of
Lie groupoids endowed with a compatible linear structure, called VB-groupoids
[Pradines 1988] (see also [Bursztyn et al. 2016; Gracia-Saz and Mehta 2010; 2011]).
In this case, the linear structure allows us to refine the van Est theorem by looking
at homogeneous cochains, and we are able to derive several interesting applications
from this general result.

To illustrate our approach, we examine here a simple situation involving a Lie
group G and a linear representation ρG : G→ Aut(V ) on a (finite-dimensional)
real vector space V. The associated complex of differentiable cochains for G with
values in V is C p(G, V ) = { f : G p

→ V : f (g1, . . . , gp) = 0 if gi = e} with
a differential δ : C p(G, V )→ C p+1(G, V ) which encodes ρG (see Example 2.5
below for an explicit formula). Infinitesimally, associated to the induced Lie algebra
representation ρg : g→ End(V ), we have the Chevalley–Eilenberg complex of Lie
algebra cochains with values in V , namely CEp(g, V )=3pg∗⊗ V. In this setting,
there exists a natural analogue of the van Est map

(1-2) 9ρ : C p(G, V )→ CEp(g, V ).

How can one prove a van Est theorem for 9ρ? There are two approaches: the first
one is to re-prove the statement from scratch mimicking the proof of the standard
case. The second one is to deduce the desired result from the known van Est theorem
for Lie groupoids by relating the map (1-2) to the van Est map VE for the action
groupoid V = V ∗oG. It is the second approach that we pursue in this paper.

To relate VE and 9ρ , notice that both V and its space of p-composable arrows
BpV define vector bundles V→ G and BpV→ G p, respectively. (Actually, BpV
is isomorphic to V ∗ × G p.) One can then show that the differentiable cochains
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f ∈ C∞(BpV) which are fiberwise k-homogeneous define a subcomplex

C p
k-hom(V)⊂ C p(V).

Analogously, the Lie algebroid v= V ∗o g of V also defines a trivial vector bundle
v→ g and the fiberwise k-homogeneous cochains define a subcomplex

CEp
k-hom(v)⊂3

pv∗.

The key point is that VE preserves k-homogeneous cochains, thus restricting to a map

VEk-hom : C
p
k-hom(V)→ CEp

k-hom(v)

which, by a simple homological algebra argument (see page 307), is an isomorphism
(resp. injective) in cohomology whenever VE is. Finally, to obtain the van Est
theorem for V -valued cochains one has to verify that

H p(C•1-hom(V))' H p(C•(G, V )),

H p(CE•1-hom(v))' H p(3•g∗⊗ V ),

VE1-hom '9ρ .

In this paper, we follow the same reasoning but with V replaced by an arbi-
trary VB-groupoid. The main arguments follow directly as above but nontrivial
computational effort needs to go into the last ingredient of the argument, namely,
into relating the complexes of homogeneous (groupoid and algebroid) cochains to
certain complexes already introduced in the literature from different perspectives.
In particular, we obtain explicit formulas for the underlying van Est maps.

We work out two applications: in the first, we deduce a van Est theorem for repre-
sentations up to homotopy in 2-term graded vector bundles [Arias Abad and Crainic
2012; 2013; Gracia-Saz and Mehta 2010; 2011] by looking at 1-homogeneous
cochains and generalizing the case of ρ above, recovering results from [Arias Abad
and Schätz 2011]. Moreover, we prove a cohomological vanishing result for these
1-homogeneous cochains which, in the case of the adjoint representation, leads
to a realization of the original idea proposed in [Crainic and Moerdijk 2008] for
showing a rigidity result for certain proper groupoids. (This last result was also
proven in [Arias Abad and Schätz 2011] using different methods.) The second
application provides a new van Est theorem for differential forms on Lie groupoids
with coefficients in a representation, generalizing [Arias Abad and Crainic 2011]
on the Bott–Shulmann complex and [Crainic et al. 2015b] on Spencer operators. It
is interesting to notice that, in this second application, another idea is incorporated
(which has its roots in supergeometry and was used in a Lie-theoretic context
by Mehta [2009]): forms in 3k V ∗ are k-homogeneous functions on V k. For this
application, we need the refinement of the van Est theorem in its full extent (i.e., for
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k-homogeneous cochains, where k is arbitrary). Even in the particular case of differ-
ential forms with trivial coefficients, our proof of the corresponding van Est theorem
is new and can be seen as illustration of the usefulness of homogeneous cochains.

Outline of the paper.

• In Section 2 we set up some notation, introduce homogeneous cochains on VB-
groupoids and VB-algebroids and provide our main result: the corresponding
refinement of the van Est theorem.

• In Section 3, we specialize to 1-homogeneous cochains and deduce a van Est
result for representations up to homotopy. Along the way, we mention how this
argument can be used to provide an alternative proof of the rigidity conjecture
as originally proposed in [Crainic and Moerdijk 2008].

• In Section 4, by means of k-homogeneous cochains in suitable VB-groupoids
and VB-algebroids, we prove a van Est theorem for differential forms with
coefficients in a representation.

To keep the main text as simple as possible, we postpone to the Appendix some
of the more technical or computational parts of the arguments in Section 4. Most of
the explicit formulas contained in the Appendix follow from extensions of known
lift properties of vector fields to Lie groupoids (see [Mackenzie and Xu 1994;
1998]). We would like to mention that part of this paper grew out of the project of
understanding the Lie theory of multiplicative tensors on Lie groupoids [Bursztyn
and Drummond ≥ 2017].

2. Homogeneous cochains and the van Est map for VB-groupoids

In this section, we present a refinement of groupoid and algebroid cohomology the-
ory for VB-groupoids and VB-algebroids by considering k-homogeneous cochains.
We also show that an analogue of the van Est theorem holds for such homogeneous
cochains.

Homogeneous functions on vector bundles. Given any vector bundle π : V → B,
fiberwise multiplication by scalars h : R× V → V defines an action of the mul-
tiplicative monoid R which we shall call the homogeneous structure of V → B.
Following [Grabowski and Rotkiewicz 2009], we recall that the homogeneous
structure completely characterizes the underlying vector bundle structure and that, in
particular, a smooth map between the total spaces defines a vector bundle morphism
if and only if it commutes with the underlying R-actions. (See [Bursztyn et al.
2016] for applications of these ideas in a Lie-theoretic context.)

For each k ∈ N, we consider

C∞k-hom(V ) := { f ∈ C∞(V ) : h∗λ f = λk f ∀ λ ∈ R},
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the set of fiberwise k-homogeneous functions. Note that

C∞0-hom(V )= { f ∈ C∞(V ) : ∃ f0 ∈ C∞(B) such that f = f0 ◦π} ∼= C∞(B).

Multiplication of functions gives a map C∞k-hom(V )×C∞k′-hom(V )→ C∞k+k′-hom(V )
and, in particular, each C∞k-hom(V ) is a C∞(B)-module. In fact, C∞k-hom(V ) ∼=
0(B, Sk V ∗) for the symmetric algebra bundle Sk V ∗ → B. The isomorphism
0(B, V ∗)∼=C∞1-hom(V ) takes a section µ∈0(B, V ∗) to the fiberwise-linear function
`µ ∈ C∞1-hom(V ) given by

`µ(v)= 〈µ(b), v〉, v ∈ Vb, b ∈ B.

The k-th derivative along the fiber defines a projection Pk-hom :C∞(V )→C∞k-hom(V ),

(2-1) Pk-hom( f )=
1
k!

dk

dλk (h
∗

λ f )|λ=0.

If (x, ξ1, . . . , ξn) are trivializing coordinates on V , then

Pk-hom( f )(x, ξ)=
∑

k1+···+kn=k

1
k1! · · · kn!

∂k f

∂ξ
k1
1 · · · ∂ξ

kn
n
(x, 0) ξ k1

1 · · · ξ
kn
n .

Homogeneous groupoid cochains. Let G ⇒ M be a Lie groupoid with source and
target maps s, t : G→ M , unit 1 : M→ G, inversion ι : G→ G and multiplication
m :Gs×tG→G. We denote by BpG the manifold of composable p-tuples (B0G=M).
The nerve of G is the simplicial manifold whose space of p-simplices is BpG with
the simplicial structure given by the face maps ∂i : BpG→ Bp−1G, i = 0, . . . , p,
defined by

∂i (g1, . . . , gp)=


(g2, . . . , gp) if i = 0,
(g1, . . . , gi−1, gi gi+1, gi+2, . . . , gp) if 1≤ i ≤ p− 1,
(g1, . . . , gp−1) if i = p,

and the degeneracy maps si : Bp−1G→ BpG, i = 0, . . . , p− 1, defined by

si (g1, . . . , gp−1)= (g1, . . . , gi , 1t(gi+1), gi+1, . . . , gp−1).

For p = 1, ∂0 = s, ∂1 = t and s0 = 1.
The nerve defines a functor B• from the category of Lie groupoids to the category

of simplicial manifolds. For a groupoid morphism φ : G1 → G2, the morphism
Bφ : BG1→ BG2 is defined by Bpφ(g1, . . . , gp)= (φ(g1), . . . , φ(gp)).

The space of (normalized) p-cochains C p(G) on G consists of smooth functions
f : BpG → R such that s∗i f = 0 for i = 0, . . . , p − 1. These define a cochain
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complex with differential δ : C p−1(G)→ C p(G) defined by

(2-2) δ =

p∑
i=0

(−1)i∂∗i .

The differentiable cohomology of G is the cohomology of the complex (C•(G), δ)
and we denote it by H •(G). For f1 ∈C p(G), f2 ∈C p′(G), the cup product f1 ? f2 ∈

C p+p′(G) is defined by

(2-3) ( f1 ? f2)(g1, . . . , gp+p′)= f1(g1, . . . , gp) f2(gp+1, . . . , gp+p′).

It defines an algebra structure on C•(G) which passes to cohomology due to the
Leibniz formula

δ( f1 ? f2)= δ( f1) ? f2+ (−1)p f1 ? δ( f2).

In the following, we investigate how the differentiable cohomology of a VB-
groupoid interacts with its underlying homogeneous structure.

Definition 2.1. A VB-groupoid is given by a commutative square

(2-4)

V

�� ��

// G

�� ��

E // M ,

where the left and right sides are Lie groupoids and the top and bottom sides are
vector bundles satisfying the following compatibility condition:

(2-5)

V

�� ��

hG
λ
// V

�� ��

E
hλ
// E

defines a Lie groupoid morphism for each λ∈R, where hG
λ :V→V and hλ : E→ E

are the homogeneous structures corresponding to V→ G and E→ M , respectively.
We denote the structure maps of V ⇒ E by sV , tV , 1V , ιV ,mV .

Instead of looking at the homogeneous structure, VB-groupoids can be alterna-
tively defined by focusing on the fiberwise defined sum (see [Gracia-Saz and Mehta
2011]). Our choice of definition comes from [Bursztyn et al. 2016], where the two
definitions are shown to be equivalent (see Theorem 3.2.3 therein).

VB-groupoids have found several applications in recent years ([Bursztyn and
Cabrera 2012; Bursztyn et al. 2016; Bursztyn and Drummond ≥ 2017; Gracia-Saz
and Mehta 2011; Mackenzie and Xu 1994; 1998] to mention just a few). Natural
examples of VB-groupoids are given by the tangent TG ⇒ TM and cotangent
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T ∗G ⇒ Lie(G)∗ groupoids, which provide intrinsic versions of the adjoint and
coadjoint representations (up to homotopy; see Section 3 below) of a Lie groupoid G.
Ordinary representations also provide examples of VB-groupoids, as we shall see
in detail in Example 2.5 below.

From now on, we focus on introducing homogeneous cochains on a VB-groupoid
and to study their properties with respect to the van Est map, while having in mind
the applications to be developed in Sections 3 and 4. The first result states that B•
restricts to a functor from VB-groupoids to simplicial vector bundles.

Lemma 2.2. Let V⇒ E be a VB-groupoid over G⇒ M. The space of p-composable
arrows BpV is a vector bundle over BpG. Moreover, the face and degeneracy maps
are all vector bundle maps.

Proof. Consider V p
= V×· · ·×V as a vector bundle over G p. We shall present BpV

as a subbundle of V p restricted to BpG ⊂ G p. It follows from the commutativity
of (2-4) that BpV projects onto BpG. As BpV is a smooth submanifold of V p, it
remains to check that it is invariant by the homogeneous structure of the vector
bundle V p

→ G p (see [Grabowski and Rotkiewicz 2009]). This is a straightforward
consequence of the fact that (2-5) is a groupoid morphism. The statement regarding
the face and degeneracy maps follows now from the fact that the multiplication
mV : B2V→ V is a vector bundle map (see also [Bursztyn et al. 2016]). �

Note that the homogeneous structure hBpG
λ : BpV→ BpV of the vector bundle

BpV→ BpG satisfies

BphG
λ = hBpG

λ .

It is now a straightforward consequence of Lemma 2.2 that homogeneous cochains
define a subcomplex of the differentiable cohomology of V .

Proposition 2.3. Let V ⇒ E be a VB-groupoid. If

PG,p
k-hom : C

∞(BpV)→ C∞k-hom(BpV)

is the projection (2-1) induced by hBpG
λ , then

PG,p+1
k-hom ◦ δ = δ ◦ PG,p

k-hom.

In particular,
δ(C∞k-hom(BpV))⊂ C∞k-hom(Bp+1V).

Thus, for a VB-groupoid V ⇒ E , we define natural subcomplexes of (C•(V), δ)
by considering the set of fiberwise k-homogeneous functions:

C•k-hom(V) := C∞k-hom(V
(•)) and H •k-hom(V)= H(C•k-hom(V)).
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Remark 2.4. For k = 0, we have C•0-hom(V)' C•(G) and the cup product (2-3) on
C•(V) induces a right C•(G)-module (resp. H •(G)-module) structure on C•k-hom(V)
(resp. H •k-hom(V)).

Example 2.5. Let C→ M be a (left) representation of the Lie groupoid G ⇒ M .
The vector bundle V = t∗C∗ → G carries a VB-groupoid structure t∗C∗ ⇒ C∗

defined by

sV(g, ξ)=1∗g(ξ), tV(g, ξ)= ξ,

ιV(g, ξ)= (g−1,1∗g(ξ)), 1V(ξ)= (1π(ξ), ξ), mV((g, ξ1), (h, ξ2))= (gh, ξ1),

where 1g :Cs(g)→Ct(g) is the action of g ∈ G. Note that t∗C∗=C∗oG, the action
groupoid for the adjoint action of G on C∗. As vector bundles over BpG, one has
that Bp(t

∗C∗) = t∗pC∗, where tp : BpG→ M is given by tp(g1, . . . , gp) = t(g1)

and the isomorphism is given by ((g1, ξ1), . . . , (gp, ξp)) 7→ ((g1, . . . , gp), ξ1). In
particular,

C p
1-hom(V)∼= 0(BpG, t∗pC).

The right C•(G)-module structure on C•1-hom(V) corresponds to a right module
structure on 0(B•G, t∗•C) given by

(2-6) (φ ? f )(g1, . . . , gp+p′)= φ(g1, . . . , gp) f (gp+1, . . . , gp+p′),

f ∈ C p′(G), φ ∈ 0(BpG, t∗pC).

Further, the differential on C•1-hom(V) corresponds to the differential on 0(B•G, t∗•C)
given by

(δφ)(g1,...,gp+1)

=1g1(φ(g2,...,gp))+

p−1∑
i=1

(−1)iφ(g1,...,gi gi+1,...,gp)+(−1)pφ(g1,...,gp−1).

Hence, as H •(G)-modules, H •1-hom(V)∼= H •(G,C), the cohomology of G with coef-
ficients on the representation C (see [Crainic 2003]). More generally, H •k-hom(V)∼=
H •(G, SkC).

Homogeneous algebroid cochains. Given a VB-groupoid V⇒ E , its Lie algebroid
v→ E inherits the structure of a VB-algebroid; see [Bursztyn et al. 2016]. As for
VB-groupoids, we take our working definition from that paper.

Definition 2.6. A VB-algebroid is given by a commutative square

(2-7)

v

��

// g

��

E // M ,
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where the left and right sides are Lie algebroids and the top and bottom sides are
vector bundles satisfying the following compatibility condition:

(2-8)

v

��

hg
λ
// v

��

E
hλ
// E

defines a Lie algebroid morphism for each λ ∈ R, where hg
λ and hλ are the homoge-

neous structures of the vector bundles v→ g and E→ M , respectively.

Parallel to VB-groupoids, VB-algebroids together with Lie theory for VB-objects
have found several applications in recent years (again, we list just a few of the
available references: [Bursztyn and Cabrera 2012; Bursztyn et al. 2016; Bursztyn
and Drummond ≥ 2017; Gracia-Saz and Mehta 2010; Mackenzie and Xu 1994;
1998]). The tangent T A→ TM and the cotangent lift T ∗A→ A∗ define examples of
VB-algebroids corresponding to TG and T ∗G when A= Lie(G), providing intrinsic
versions of the adjoint and coadjoint representations (up to homotopy; see Section 3
below) of a Lie algebroid A. Ordinary representations of A also provide examples
of VB-groupoids, as explained in Example 2.9 below. We now investigate the
infinitesimal version of the notion of homogeneous cochains.

For any Lie algebroid A→ M , let CEp(A) := 0(M,3p A∗) and d : CEp(A)→
CEp+1(A) be the (Chevalley–Eilenberg) differential. The Lie algebroid cohomology
H •(A) is the cohomology of the complex (CE•(A), d). The wedge product on
0(M,3•A∗) induces a graded commutative algebra structure on H •(A).

When considering a VB-algebroid A = v, the dual v∗ is always taken with
respect to the Lie algebroid side v→ E , so that CEp(v)= 0(E,3pv∗). The space
of fiberwise (with respect to v→ g) k-homogeneous p-forms on v→ E is

(2-9) 0k-hom(E,3pv∗) := {α ∈ 0(E,3qv∗) : hg ∗
λ α = λ

kα ∀ λ ∈ R}.

The wedge product induces a map

· ∧ · : 0k-hom(E,3pv∗)×0k′-hom(E,3p′v∗)→ 0k+k′-hom(E,3p+p′v∗).

Similarly to equation (2-1), there exists a projection Pg,p
k-hom : 0(E,3

pv∗)→

0k-hom(E,3pv∗) defined by

(2-10) Pg,p
k-homα =

1
k!

dk

dλk (h
g ∗
λ α)|λ=0.

Proposition 2.7. Let v→ E be a VB-algebroid. For each k ∈ N0 and every p ≥ 0,

Pg,p+1
k-hom ◦ d = d ◦ Pg,p

k-hom.
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In particular,
d(0k-hom(E,3pv∗))⊂ 0k-hom(E,3p+1v∗).

Proof. Since the Chevalley–Eilenberg differential d is a local operator, we can
assume v→ E is trivial. By looking at hv ∗

λ α as a smooth 1-parameter family of
forms, one can see that d commutes with d/dλ. The statement then follows from
the fact that hv

λ is a Lie algebroid morphism and, hence, hv ∗
λ commutes with d . �

Thus, for each k ∈N0, the k-homogeneous forms define a subcomplex CE•k-hom(v)

of (CE•(v), d). The notation we use is

CEp
k-hom(v) := 0k-hom(E,3pv∗) and H •k-hom(v)= H(CE•k-hom(v)).

Remark 2.8. For k = 0, we have 00-hom(E,3pv∗)∼= 0(M,3pg∗) and the wedge
product turns 0k-hom(E,3•v∗) (resp. H •k-hom(v)) into a right 0(M,3•g∗)-module
(resp. H •(g)-module).

Example 2.9. Let C→ M be a representation of the Lie algebroid g→ M defined
by a flat g-connection ∇ : 0(g) × 0(C) → 0(C). Consider the vector bundle
v= C∗×M g→ C∗. Given u ∈ 0(g), let χu : C∗→ v be the section given by

(2-11) χu(ξ)= (ξ, u(m)) for ξ ∈ C∗m .

The sections χu with u varying on 0(g) generate 0(C∗, v) as a C∞(C∗)-module.
One can now show that the action algebroid structure C∗o g→ C∗, determined by

[χu1, χu2] = χ[u1,u2], u1, u2 ∈ 0(g),

ρv(χu1)(`µ)= `∇u1µ
, ρv(χu1)( f ◦π)= (Lρ(u1) f )◦π, f ∈ C∞(M), µ ∈ 0(C),

endows v→C∗ with a VB-algebroid structure, where π :C∗→M is the projection.
The chain complex CE•1-hom(v) is naturally isomorphic to 0(3•g∗⊗C) with the
Koszul differential

d∇γ (u1, . . . , u p+1)

=

p+1∑
i=1

(−1)i+1
∇uiγ (u1, . . . , ûi , . . . , u p+1)

+

∑
1≤i< j≤p+1

(−1)i+ jγ ([ui , u j ], u1, . . . , ûi , . . . , û j , . . . , u p+1),

where γ ∈ 0(3pg∗⊗C). More precisely, the evaluation map ev : CEp
1-hom(v)→

0(3pg∗⊗C), given by

〈ev(α)(u1, . . . , u p), ξ〉 = α(χu1(ξ), . . . , χu p(ξ)) for u1, . . . , u p ∈ 0(g), ξ ∈ C∗,

defines a chain isomorphism. The induced right 0(3•g∗)-module structure on
0(3•g∗⊗C) is wedge multiplication on the right in the 3•g∗ factor. In particular,
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as H(g)-modules, H •1-hom(v)
∼= H •(g,C), the cohomology of g with values in the

representation C . As for groupoids, H •k-hom(v)
∼= H •(g, SkC).

Van Est theorem for homogeneous cochains. Let G ⇒ M be a Lie groupoid with
Lie algebroid g. For every section u ∈ 0(g), consider the corresponding right
invariant vector field Eu ∈X(G). In the following, we denote by Bpu the vector field
on the space of p-composable arrows BpG given by

(2-12) Bpu(g1, . . . , gp)= (Eu(g1), 0g2, . . . , 0gp).

Let us now recall the definition of the van Est map. First, using the degeneracy
map s0 : Bp−1G→ BpG, we define Ru : C p(G)→ C p−1(G) by

Ru = s∗0 ◦LBpu .

The van Est map VE : C p(G)→ CEp(g) is defined (up to p-dependent sign) as
follows [Crainic 2003]: for a p-cochain f ∈ C p(G),

(2-13) VE( f )(u1, . . . , u p)=
∑
σ∈Sp

sgn(σ )Ruσ(1) . . . Ruσ(p)( f ).

In [Crainic 2003] it is shown that it induces a map in cohomology which preserves
the corresponding product structures. We also need the following naturality result
about VE.

Lemma 2.10. Let H1,H2 be Lie groupoids with Lie algebroids h1, h2, respectively.
If φ :H1→H2 is a Lie groupoid morphism with the corresponding Lie algebroid
morphism Lie(φ) : h1→ h2, then

VE(Bpφ
∗ f )= Lie(φ)∗VE( f ) ∀ f ∈ C p(H2).

Proof. For any χ ∈ 0(h1) we can write

Lie(φ)(χ)=
∑

i

γi (χ̃i ◦φ0) ∈ 0(φ
∗

0h2),

where φ0 = B0φ : M1 → M2 denotes the map between objects induced by φ,
γi ∈ C∞(M1) and χ̃i ∈ 0(h2). A direct computation shows that

Rχ ((Bpφ)
∗ f )=

∑
i

(t∗p−1γi )(Bp−1φ)
∗(Rχ̃i f ) ∀ f ∈ C p(H2).

If we apply the above formula p times, we notice that most of the terms in
Rχ1 . . . Rχp(Bpφ)

∗ f will vanish since VE is defined on normalized cochains (namely,
s∗i f = 0). The only remaining terms are∑

i1,...,i p

γi1 . . . γi pφ
∗

0(Rχ̃1 . . . Rχ̃p f ),

and we thus get the statement of the lemma. �
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The main result about the van Est map in the present context is as follows.

Theorem 2.11 [Crainic 2003]. Let G be a Lie groupoid and let g be its Lie algebroid.
The van Est map (2-13) induces an algebra homomorphism

VE : H •(G)→ H •(g).

Moreover, if G has p0-connected source fibers, then VE is an isomorphism in
degrees p ≤ p0, and it is injective for p = p0+ 1.

To get our refinement of Theorem 2.11 for homogeneous cochains on VB-
groupoids and algebroids, we first state a simple homological algebra fact.

Homological lemma. Let (C•i , δi ) be differential complexes, i = 1, 2, endowed
with projections Pi : C•i → C•i (i.e., Pi ◦ δi = δi ◦ Pi and P2

i = Pi ). If F : C•1→ C•2
is a morphism satisfying F ◦ P1 = P2 ◦ F , then for each p such that F : H p(C1)→

H p(C2) is injective (resp. surjective) its restriction Fr : H p(S1)→ H p(S2) is also
injective (resp. surjective), where S•i = Pi (C•i ).

We are thus left with studying the behavior of the projections onto homogeneous
cochains under the van Est map. To that end, let V ⇒ E be a VB-groupoid over
G ⇒ M and let v→ E be its Lie algebroid.

Proposition 2.12. For each k ∈ N0 and every p ≥ 0,

VE ◦ PG,p
k-hom = Pg,p

k-hom ◦VE .

In particular, VE(C∞k-hom(BpV))⊂ 0k-hom(3
pv∗).

Proof. Let hG
λ : V→ V and hg

λ : v→ v be the homogeneous structures of the vector
bundles V → G and v→ g, respectively. By Lemma 2.10, the fact that hG

λ is a
groupoid homomorphism with Lie(hG

λ )= hg
λ implies that

VE ◦ hG ∗
λ = hg ∗

λ ◦VE ∀ λ.

Hence, by applying d
dλ

∣∣
λ=0 on both sides, one obtains the commutation relation

between VE and the projections P ·,phom,k . The result now follows directly. �

The restriction of the van Est map to the subcomplex of k-homogeneous cochains
shall be denoted by

VEk-hom := VE|C p
k-hom(V)

: C p
k-hom(V)→ CEp

k-hom(v).

Example 2.13 (0-homogeneous cochains). For k = 0, using the isomorphisms
C p

0-hom(V) ∼= C p(G) and CEp
0-hom(v)

∼= CEp(g), one can check that VE0-hom ∼=

VEG : C p(G)→ CEp(g). To see this, take f ∈ C p
0-hom(V) and χ1, . . . , χp ∈ v, and

notice that VE0-hom( f )(χ1, . . . , χp) only depends on the projections ui ∈ g of χi ,
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i = 1, . . . , p. Hence, to compute VE0-hom, it suffices to take χ1, . . . , χp linear
sections1 of v covering u1, . . . , u p ∈ 0(g). In this case,

VE0-hom( f )(χ1, . . . , χp)= π
∗

E VEG( f0)(u1, . . . , u p),

where f =π∗BpG f0, f0∈C∞(BpG), and where πE : E→M , πBpV : BpV→ BpG are
the vector bundle projections.

We are now ready to state and prove our main theorem.

Theorem 2.14. Let G ⇒ M be a Lie groupoid with Lie algebroid g. For a VB-
groupoid V ⇒ E over G with underlying VB-algebroid v→ E , the van Est map on
k-homogeneous cochains induces a module homomorphism

VEk-hom : H •k-hom(V)→ H •k-hom(v)

covering the algebra homomorphism VEG : H •(G)→ H •(g). Moreover, if G has
p0-connected source fibers, then VEk-hom is an isomorphism for all p ≤ p0 and it is
injective for p = p0+ 1.

Proof. The H •(G)-module structure on H •k-hom(v) comes from the cup product of
C•k-hom(V) and C•0-hom(V)∼=C•(G). So, the first statement follows from the fact that
VEk-hom is the restriction of the van Est map of V to homogeneous cochains and
that VE0-hom ∼= VEG .

Let us now assume that G has p0-connected source fibers. First note that this
implies that V ⇒ E is also source p0-connected. Indeed, a source fiber of V ⇒ E
is an affine bundle over the corresponding source fiber of G ⇒ M. So, the van Est
theorem (Theorem 2.11) implies that VE : H p(V)→ H p(v) is an isomorphism for
p ≤ p0 and injective for p = p0+ 1. The result now follows from Proposition 2.12
by applying the homological lemma to F = VE, (C•1, δ1) = (C∞(B•V), δ) and
(C•2, δ2)= (0(E,3•v∗), d)with projections P1= PG,•

k-hom :C
∞(B•V)→C∞k-hom(B•V)

and P2 = Pg,•
k-hom : 0(E,3

•v∗)→ 0k-hom(E,3•v∗). �

3. 1-homogeneous cochains and representations up to homotopy

In [Gracia-Saz and Mehta 2010; 2011], it was shown that VB-groupoids and VB-
algebroids provide an intrinsic version of the notion of (2-term) representation up to
homotopy, generalizing the example given in the introduction, as well as Examples
2.5 and 2.9 above. In this section, we show how Theorem 2.14, when applied
to 1-homogeneous cochains, recovers a van Est result for the underlying 2-term
representations up to homotopy [Arias Abad and Schätz 2011]. We also outline a
new proof, realizing an original proposal [Crainic and Moerdijk 2008] of a rigidity
conjecture involving the deformation cohomology underlying proper groupoids.

1A linear section χ of v is a section χ : E→ v which is a vector bundle homomorphism covering
a section u : M→ g (see [Gracia-Saz and Mehta 2010]).
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VB-groupoid and VB-algebroid cohomology. Following [Gracia-Saz and Mehta
2011], given a VB-groupoid π : V → G we define C p

VB(V) to be the space of
1-homogeneous cochains φ ∈ C∞1-hom(BpV) satisfying the two additional conditions

(1) φ(0g, ξ1, . . . , ξp−1)= 0,

(2) φ(0g · ξ1, . . . , ξp)= φ(ξ1, . . . , ξp)

for all (ξ1, . . . , ξp) ∈ BpV and g ∈ G such that (0g, ξ1) ∈ B2V . As observed in
[Gracia-Saz and Mehta 2011], condition (1) above implies that φ(ξ1, ξ2, . . . , ξp)

only depends on ξ1 and on the projections gi = π(ξi ) ∈ G, i = 1, . . . , p, while
condition (2) is a left-invariance property.

It is shown in that paper that C•VB(V) defines a subcomplex of C•1-hom(V). More-
over, the cup product with C•0-homV ∼= C•(G) defines a right C•(G)-submodule
structure on C•VB(V). The next lemma relates the cohomology of the two complexes.

Lemma 3.1. The inclusion ι : C•VB(V) ↪→ C•1-hom(V) induces an isomorphism of
right H •(G)-modules in cohomology.

Proof. It is enough to show that for every φ ∈ C p
1-hom(V) with δφ ∈ C p+1

VB (V) there
exists a ψ ∈ C p−1

1-hom(V) so that φ + δψ ∈ C p
VB(V). To that end, first notice that

if an arbitrary φ is such that both φ and δφ satisfy condition (1), then φ satisfies
condition (2). This follows directly from evaluating

0= (δφ)(0g, ξ1, . . . , ξp).

We are thus left with showing that for each φ∈C∞1-hom(BpV) such that δφ satisfies (1)
there exists aψ ∈C∞1-hom(Bp−1V) such that φ+δψ satisfies (1). This, in turn, follows
by applying recursively the following claim: if δφ satisfies (1) and

(3-1) φ(ξ0, . . . , ξp−1)= 0

for all (ξ0, . . . , ξp−1)∈ BpV such that ξi =0gi , i =0, . . . , l≤ p−1, then there exists
a ψ ∈ C∞1-hom(Bp−1V) such that φ+ δψ satisfies (3-1) for all (ξ0, . . . , ξp−1) ∈ BpV
such that ξi = 0gi , i = 0, . . . , l− 1. Notice that for l = p− 1, (3-1) follows from φ

being homogeneous of degree 1. To prove this claim for l < p− 1, one chooses
any ψ ∈ C∞1-hom(Bp−1V) such that

ψ(ξ1, . . . , ξp−1)=−φ(0π(ξp−1)−1···π(ξ1)−1, ξ1, . . . , ξp−1)

for all (ξ1, . . . , ξp−1) ∈ Bp−1V such that tV(ξ1)= 0t(π(ξ1)). This is always possible
since the subset of such elements in Bp−1V is a smooth embedded submanifold
since the target map is a submersion. What needs to be shown now is

(φ+ δψ)(ξ0, . . . , ξp−1)= 0 ∀ (ξ0, . . . , ξp−1) ∈ BpV, ξi = 0gi , i = 0, . . . , l − 1.
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Finally, this last identity follows by evaluating

0= (δφ)(0π(ξp−1)−1···π(ξ0)−1, ξ0, . . . , ξp−1)

and using the recursion hypothesis. �

For a VB-algebroid v→ A, the VB-algebroid cochain complex is defined exactly
as the complex of 1-homogeneous cochains

CEk
VB(v) := CEk

1-hom(v).

The restriction of the van Est map to 1-homogeneous cochains as on page 307
provides a map VE1-hom : C•1-hom(V)→ CE•VB(v). Its restriction to the subcomplex
C•VB(V)⊂ C•1-hom(V) will be denoted by

VEVB : C•VB(V)→ CE•VB(v).

Corollary 3.2. With the notations above, the van Est map

VEVB : H •(CVB(V))→ H •(CEVB(v))

is a right-module homomorphism over VEG : H •(G)→ H •(g). Moreover, if G is
source p0-connected, then VEVB is an isomorphism in degree p for all p ≤ p0 and
it is injective for p = p0+ 1.

Cohomological vanishing for proper groupoids. The VB-groupoid cohomology
can be shown to be trivial in several cases as shown by the following proposition.

Proposition 3.3. When G is a proper groupoid or, more generally, admits a Haar
system dµ together with a cutoff function c ∈ C∞(M) (see, e.g., [Arias Abad and
Crainic 2013] and the proof below), then

H p(C•VB(V))= 0, p ≥ 2.

Proof. The idea is to define a map C p
VB(V) 3 φ 7→ κ(φ) ∈ C p−1

VB (V) for p ≥ 2 by
the formula

κ(φ)(ξ1, . . . , ξp−1)=

∫
t−1(s(gp−1))

φ
(
ξ1, . . . , ξp−1, σ (h, sV(ξp−1))

)
c(s(h)) dµ(h),

where gi = π(ξi ) ∈ G, i = 1, . . . , p− 1, as before and σ : t∗E → V is any linear
splitting of the epimorphism tV : V → t∗E . Notice that the right-hand side in
the formula above is independent of the choice of σ since φ only depends on
(g1, . . . , gp−1, h) and ξ1. The key point is that, for δφ = 0, φ ∈C p

VB(V), p ≥ 2, we
have δκ(φ)= (−1)pφ, hence leading to the above cohomological vanishing. This
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statement can be checked by direct computation: let us write ξp+1(h)=σ(h, sV(ξp))

for h ∈ t−1(s(gp)) and ηp(k)= σ(k, sV(ξp−1)) for k ∈ t−1(s(gp−1)). Then

δκ(φ)(ξ1, . . . , ξp)

=

∫
t−1(s(gp))

[
φ(ξ2, . . . , ξp, ξp+1(h))

+

p−1∑
i=1

(−1)iφ(ξ1, . . . , ξiξi+1, . . . , ξp, ξp+1(h))
]

c(s(h)) dµ(h)

+ (−1)p
∫
t−1(s(gp−1))

φ(ξ1, . . . , ξp−1, ηp(k)) c(s(k)) dµ(k)

= (−1)p
∫
t−1(s(gp))

[
−φ(ξ1, . . . , ξp−1, ξpξp+1(h))+φ(ξ1, . . . , ξp)

]
c(s(h)) dµ(h)

+ (−1)p
∫
t−1(s(gp−1))

φ(ξ1, . . . , ξp−1, ηp(k)) c(s(k)) dµ(k)

= (−1)pφ(ξ1, . . . , ξp).

Above, the first equality follows from the definitions of δ and κ , the second equality
follows by applying δφ = 0 inside the square brackets and, finally, the third equality
follows by the normalization condition

∫
t−1(x) c(s(h)) dµ(h) = 1 and by the left

invariance of the measure
∫
t−1(s(g)) f (gh) dµ(h) =

∫
t−1(t(g)) f (k) dµ(k) together

with the independence of φ(ξ1, . . . , ξp) on the ξ j for j > 1, as was mentioned
before. �

Let us now mention an application of the above general vanishing result, following
[Crainic and Moerdijk 2008]. Given a Lie algebroid g→ M , there exists a complex
C•def(g) controlling the deformations of g and which is related to VB-cohomology as
follows. Consider the induced linear Poisson structure on g∗, π ∈ 0(32 Tg∗). The
cotangent Lie algebroid T ∗g→ g∗ has the property that its Chevalley–Eilenberg
complex (CE(T ∗g), d) is isomorphic to the Poisson complex (X(g∗), [π, · ]); see
[Mackenzie and Xu 1994]. Under this isomorphism, the subcomplex CE•VB(T

∗g)⊂

CE•(T ∗g) corresponds to the so-called linear Poisson complex Xlin(g
∗) of g∗. On

the other hand, Proposition 7 in [Crainic and Moerdijk 2008] shows that X•lin(g
∗)∼=

C•def(g), so that
CE•VB(T

∗g)∼= X•lin(g
∗)∼= C•def(g).

On the groupoid side, for a Lie groupoid G ⇒ M , the complex CVB(T ∗G) was
shown in [Crainic et al. 2015a] to be isomorphic to the complex Cdef(G) controlling
deformations of the Lie groupoid structure.

In this context, Corollary 3.2 recovers a result from [Crainic et al. 2015a]: the map

VEdef : H •def(G)→ H •def(g)
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defines a (graded) module homomorphism covering VEG : H •(G)→ H •(g) which
induces isomorphisms in degrees p≤ p0 and a monomorphism in degree p= p0+1
when G is source p0-connected.

By combining this result with our general vanishing criteria (Proposition 3.3
above), we further obtain an independent proof of the (cohomological) rigidity
conjecture of [Crainic and Moerdijk 2008]: if G is proper and source 2-connected,
then H 2

def(g)= 0. Note that the map VEdef is the “lin version” of the van Est map
which was assumed to exist by Crainic and Moerdijk [2008] as a step towards
proving their conjecture.

Remark 3.4. The conjecture was originally proved in [Arias Abad and Schätz
2011] using a van Est result for representations up to homotopy. In particular, they
used a vanishing result for cohomologies with coefficients in representations up to
homotopy established in [Arias Abad and Crainic 2013]. Our vanishing result should
be considered as a geometric counterpart to theirs in the 2-term case (see below).

Splittings and representations up to homotopy. VB-groupoids and VB-algebroids
can be (noncanonically) split into the base Lie groupoid and Lie algebroid data and
representation-like information on the fibers (recall Examples 2.5 and 2.9). It turns
out that the correct notion encoding this split data is that of (2-term) representations
up to homotopy [Arias Abad and Crainic 2012; 2013; Gracia-Saz and Mehta 2010;
2011], which we now recall.

Let G ⇒ M be a Lie groupoid with Lie algebroid g→ M and E = C[1]⊕ E a
graded vector bundle over M with C in degree−1 and E in degree 0. The associated
space of E-valued (normalized) p-cochains is defined as

C(G, E)p

:= {µ := (µE , µC) ∈0(BpG; t∗p E)⊕0(Bp+1G; t∗p+1C) | s∗i µE = 0, s∗i µC = 0},

where si : B•G→ B•+1G is the i-th degeneracy map. There is a (right) C•(G)-module
structure on C(G, E)• defined by µ? f = (µE ? f, µC ? f ), where each component
is given by formula (2-6). A representation up to homotopy of G on E is an R-linear
map DG : C(G, E)• → C(G, E)•+1 satisfying D2

G = 0 and

DG(µ ? f )= DG(µ) ? f + (−1)pµ? (δ f ), µ ∈ C(G, E)p, f ∈ C p′(G).

The resulting cohomology is denoted by H(G, E). Note that ? defines a right
H(G)-module structure on H(G, E).

A representation up to homotopy on E can be alternatively given by quasiactions
1E and 1C of G on E and C , respectively, a bundle map ∂ : C → E and a
smooth correspondence which, for each (g1, g2)∈ B2G, gives a linear map �(g1,g2) :

E |s(g2)→C |t(g1) satisfying certain structural equations (see [Arias Abad and Crainic
2013; Gracia-Saz and Mehta 2011]). Moreover, in analogy with the case of an
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ordinary representation (cf. Example 2.5), a representation up to homotopy of G on
E endows V = s∗E∗⊕G t∗C∗⇒ C∗ with a VB-groupoid structure [Gracia-Saz and
Mehta 2011]. The structure maps are given by

(3-2)
sV(ξ, g, η)= (1C

g )
∗ξ − ∂∗η, tV(ξ, g, η)= ξ, ξ ∈ C∗|t(g), η ∈ E∗|s(g),

(ξ1, g1, η1) · (ξ2, g2, η2)=
(
ξ1, g1g2, �

∗

(g1,g2)
ξ1+ (1

E
g2
)∗η1+ η2

)
for compatible arrows and 1V(ξ) = (ξ, 1m, 0) for ξ ∈ C∗|m . Finally, in [Gracia-
Saz and Mehta 2011] the authors show that every VB-groupoid can be presented
(noncanonically) in this form, thus establishing a correspondence between VB-
groupoids and 2-term representations up to homotopy of G.

The above correspondence between VB-groupoid structures and representations
up to homotopy can be understood from the following relation between the cochain
complex associated to E and that of 1-homogeneous cochains on V . Consider the
map 9 : C(G, E)p

→ C∞1-hom(Bp+1V) defined by

(3-3) 9(µ)((ξ1, g1, η1), . . . , (ξp+1, gp+1, ηp+1))

= 〈η1, µE(g2, . . . , gp+1)〉+ 〈ξ1, µC(g1, . . . , gp+1)〉.

In [Gracia-Saz and Mehta 2011] (see Theorem 5.6), it is proven that9 :C(G, E)•→
C•+1

1-hom(V) is a monomorphism of graded C(G)-modules satisfying

9 ◦ (−DG)= δ ◦9

whose image coincides with the VB-groupoid cochain complex C•VB(V)⊂C•1-hom(V)
(shifted by one, hence the minus sign in the equation above). We then obtain the
next lemma as a direct consequence of Lemma 3.1.

Lemma 3.5. The map 9 : H •(G, E)→ H •+1
1-hom(V) induced in cohomology is an

isomorphism of right H •(G)-modules.

Infinitesimal counterpart. Let g be a Lie algebroid and E be as before, and consider

�(g, E)p
= 0(3pg∗⊗ E)⊕0(3p+1g∗⊗C).

The space �(g, E) is a right 0(3•g∗)-module with multiplication defined by wedge
product on the right on the 3•g∗ factor. A representation up to homotopy of g on E
is an R-linear map Dg :�(g, E)• →�(g, E)•+1 satisfying D2

g = 0 and

Dg(ω∧β)= Dg(ω)∧β + (−1)pω∧ dβ, ω ∈�(g, E)p, β ∈ 0(3g∗).

We denote the cohomology of (�(g, E),Dg) by H(g, E).
As in the VB-groupoid case, VB-algebroid structures on v=C∗×M g×M E∗→C∗

are in one-to-one correspondence with representations up to homotopy of g on
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E = C[1]⊕ E (see [Gracia-Saz and Mehta 2010]). We recall here how this corre-
spondence can be seen from the cohomological perspective. The space of sections
0(C∗, v) is generated, as a C∞(C∗)-module, by sections:

χu(ξ)= (ξ, u(m), 0), ϒη(ξ)= (ξ, 0, η(m))

for ξ ∈ C∗|m , u ∈ 0(g), η ∈ 0(E∗). Define a map

(3-4) ev : CEp+1
1-hom(v)→�(g, E)p, ev(α)= (α̂E , α̂C),

where α̂E ∈ 0(3
pg∗⊗ E) and α̂C ∈ 0(3

p+1g∗⊗C), by

〈α̂E(u1, . . . , u p), η〉 = α(ϒη, χu1, . . . , χu p) ∈ C∞0-hom(C
∗)∼= C∞(M),

α̂C(u1, . . . , u p+1)= α(χu1, . . . , χu p+1) ∈ C∞1-hom(C
∗)∼= 0(C)

for u1, . . . , u p+1 ∈ 0(g), η ∈ 0(E∗).

Lemma 3.6. Under the identification 0(3•g∗)∼=CEhom,0(v), the map ev is a (right)
0(3•g∗)-module isomorphism.

Proof. Let {ξ k
}

rank(C∗)
k=1 , {γ j

}
rank(g∗)
j=1 and {ei }

rank(E)
i=1 be local frames for C∗, g∗ and E

respectively. We identify ei (resp. γ j ) with the corresponding section of v∗: C∗|m 3
ξ 7→ (ξ, 0, ei (m)) (resp. ξ 7→ (ξ, γ j (m), 0)). Locally, any element α ∈ CEp+1

1-hom(v)

is written as

α(m, ξ)= ak Ak
j1... jp+1

(m)γ j1 ∧ · · · ∧ γ jp+1 + Bi
j1... jp

(m)ei ∧ γ
j1 ∧ · · · ∧ γ jp,

where ξ = ak ξ
k(m). From the definition, one sees that

Ak
j1... jp+1

(m)= 〈α̂C(u j1, . . . , u jp+1), ξ
k(m)〉,

Bi
j1... jp

(m)= 〈α̂E(u j1,...,u jp
), ηi (m)〉,

where {u j }, {ηi
} are local frames for g and E∗ dual to {γ j

}, {ei }, respectively. It is
now straightforward to prove the statement. �

Hence, the operator Dg defined by Dg◦ev= ev◦(−d), where d is the Chevalley–
Eilenberg differential of v, defines a representation up to homotopy of g on E . (Note
that ev shifts degree by minus one, hence the sign in the definition of Dg.) It is
shown in [Gracia-Saz and Mehta 2010] that, moreover, every VB-algebroid can be
split as v' C∞∗×M g×M E∗→ C∗, thus establishing a correspondence between
VB-algebroids and 2-term representations up to homotopy of g.

Given a representation up to homotopy DG : C(G, E)→ C(G, E) of G on E , the
VB-groupoid V ⇒ C∗ defined by (3-2), seen as a Lie groupoid over C∗, has a Lie
algebroid whose underlying bundle is precisely v = C∗ ×M g×M E∗→ C∗. In
this case, the above construction of Dg can understood as the differentiation of the
representation DG , namely, Dg=Lie(DG). (See also [Arias Abad and Schätz 2011].)
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Remark 3.7. A representation up to homotopy of g on E can be alternatively
described by a map ∂ :C→ E , g-connections ∇E and ∇C on E and C , respectively,
and a curvature term R ∈0(32g∗⊗Hom(E,C)) satisfying some compatibility equa-
tions (see [Arias Abad and Crainic 2012; Gracia-Saz and Mehta 2010]). We refer to
[Brahic et al. 2014] for the formulas of the operators (∂,∇E,∇C, R) corresponding
to Lie(DG) in terms of the data defining DG .

Van Est theorem for representations up to homotopy. Define VErep :C(G, E)p
→

�(g, E)p by VErep := ev ◦VE1-hom ◦9. Diagrammatically,

(3-5)

C(G, E)k C∞1-hom(V
(k+1))

�(g, E)k CEk+1
1-hom(v)

9
//

VE1-hom
��

oo
ev

VErep

��

It is clear from the previous discussion that VErep induces a map in cohomology.

Theorem 3.8. The van Est map VErep : H •(G, E)→ H •(g, E) is a right module
homomorphism over VEG : H •(G)→ H •(g). Moreover, if G is source p0-connected,
then the induced map in cohomology VErep : H p(G, E)→ H p(g, E) is an isomor-
phism for −1≤ p ≤ p0− 1 and it is injective for p = p0.

Proof. This is a straightforward consequence of Theorem 2.14 and Lemmas 3.5
and 3.6. Notice the shift in grading for which one has isomorphisms. This arises
because one has to apply Theorem 2.14 to C∞1-hom(Bk+1V)→ CEk+1

1-hom(v) in order
to analyze C(G, E)k→�k(g, E). �

The fact that the above cohomology groups are isomorphic was also proven
in [Arias Abad and Schätz 2011] using different techniques (in the more general
setting of representations on arbitrarily graded vector bundles). Notice that, from
our perspective, it just arises as a refinement of the usual van Est map for V for
1-homogeneous cochains.

Remark 3.9 (formulas for VErep). For u ∈ 0(g), define the map Ru : C p(G, E)→
C p−1(G, E) by

(RuµC)(g1, . . . , gp)=
d
dε

∣∣∣∣
ε=0
1C
φu
ε (t(g1))−1µC(φ

u
ε (t(g1)), g1, . . . , gp),

where φu
ε : M → G is the flow of the right-invariant vector field Eu and the defi-

nition RuµE is analogous. Note that our conventions are different from those in
[Arias Abad and Schätz 2011]. One can now check the identities

Rχu9(µ)=9(RuµC , 0), Rϒη9(µ)= q∗〈µE , η〉,

Rχv Rϒη9(µ)= q∗〈RvµE , η〉, Rϒη Rχv9(µ)= 0,
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where q : B•V → B•G is the projection map. Using these identities, it is now
straightforward to check that

VErep(µ)= (µ̂E , µ̂C) ∈ 0(3
pg∗⊗ E)⊕0(3p+1g∗⊗C)

is given by

µ̂E(u1, . . . , u p)= (−1)p
∑
σ∈Sp

sgn(σ )Ruσ(1) . . . Ruσ(p)µ0,

µ̂C(u1, . . . , u p+1)=
∑
σ∈Sp+1

sgn(σ )Ruσ(1) . . . Ruσ(p+1)µC .

4. Differential forms with values in a representation

In this section, we study differential forms on a Lie groupoid G with values in a
representation C → M . These objects were introduced in [Crainic et al. 2015b]
together with their infinitesimal counterparts, the Spencer operators. We here
provide a van Est theorem for them as an application of our main result. The key
idea is to reinterpret forms as homogeneous functions.

Van Est theorem for differential forms with coefficients. We start this section by
formally defining the ingredients entering the van Est theorem for forms with
coefficients (Theorem 4.4 below) without any reference to the VB-groupoids and
algebroids. Later, we show how VB-groupoids and VB-algebroids provide a use-
ful framework for interpreting many of the definitions and for giving a proof of
Theorem 4.4.

Let G ⇒ M be a Lie groupoid and C→ M be a representation of G and consider
the map tp : BpG→ M , tp(g1, . . . , gp) = t(g1). When no confusion arises, we
omit the reference to p and simply denote tp by t. The space of q-differential forms
on the nerve of G with coefficients in C is �q(B•G, t∗C). It carries a differential
δ :�q(Bp−1G, t∗C)→�q(BpG, t∗C) defined by

δω|(g1,...,gp) =1g1 ◦ ∂
∗

0ω+

p∑
i=1

(−1)i∂∗i ω for p ≥ 2,

δω|g =1g ◦ s
∗ω− t∗ω for p = 1.

It is straightforward to check that δ2
= 0.

Note that, for ω ∈�q(G, t∗C),

δω|(g1,g2) =1g1 ◦ pr∗2ω−m∗ω+ pr∗1ω,

where pri (g1, g2) = gi for i = 1, 2. In this case, a form ω ∈ �q(G, t∗C) which
satisfies δω = 0 is called multiplicative (see [Crainic et al. 2015b]). Note that
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�q(B•G, t∗C) is a right dg-module for C•(G) with the module structure defined as
usual by

(ω? f )|(g1,...,gp+p′ )
=ω|(g1,...,gp) f (gp+1, . . . ,gp+p′), ω∈�

q(BpG, t∗C), f ∈C p′(G).

Remark 4.1. In the case of trivial coefficients (i.e., when C is the trivial line bundle),
the de Rham differential turns �q(BpG, t∗C)=�q(BpG) into a double complex
known as the Bott–Shulman double complex associated to G (see [Arias Abad
and Crainic 2011]). In the remainder of this paper, we focus on the cohomology
of δ alone and leave the investigation of compatible double complex structures
(corresponding to “multiplicative linear flat connections”) for future work.

Let g→ M be the Lie algebroid of G. Similarly to [Arias Abad and Crainic
2011], we define the Weil complex W p,q(g,C) to be the space of sequences c =
(c0, c1, . . . ), where each

ck : 0(g)× · · ·×0(g)︸ ︷︷ ︸
p−k times

→�q−k(M, Skg∗⊗C)

is an R-linear skew-symmetric map whose failure at being C∞(M)-linear is con-
trolled by

(4-1) ck( f u1, . . . , u p−k | · )

= f ck(u1, . . . , u p−k | · )+d f∧ck+1(u2, . . . , u p−k |u1, · ) ∀ f ∈C∞(M).

For each q, the complex W •,q(g,C) carries a differential dW : W p,q(g,C) →
W p+1,q(g,C), which we now define. First, note that �i (M, S jg∗⊗C) is a module
for the Lie algebra 0(g). Indeed, for α ∈�i (M) and P ∈ 0(S jg∗⊗C),

u · (α⊗ P)= (Lρ(u)α)⊗ P +α⊗ (u · P), u ∈ 0(g),

defines an action of 0(g) on �i (M, S jg∗⊗C), where

(u · P)(v1, . . . , vk)=∇u P(v1, . . . , vk)−

k∑
i=1

P(v1, . . . , [u, vi ], . . . , vk),

and ∇ :0(g)×0(C)→0(C) is the g-connection giving the representation C . Now,
dW is defined by

(4-2) dW (c)k(u1, . . . , u p−k+1|v1, . . . , vk)

= (−1)k
(

dCE(ck)(u1, . . . , u p−k+1|v1, . . . , vk)

−

k∑
j=1

iρ(vj )ck−1(u1, . . . , u p−k+1|v1, . . . , v̂j , . . . , vk)

)
,
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where dCE is the Chevalley–Eilenberg differential on C•(0(g),�q−k(M, Skg∗⊗C)).
There is a right 0(3•g∗)-module structure on W •,q(g,C). It is defined, for β ∈
0(3p′g∗) and c ∈W p,q(g,C), by

(c∧β)k(u1, . . . , u p+p′−k | · )

=

∑
σ∈S(p−k,p′)

sgn(σ )ck(uσ(1), . . . , uσ(p−k))β(uσ(p−k+1), . . . , uσ(p+p′−k)),

where S(p− k, p′) is the space of (p−k, p′)-unshuffles.

Proposition 4.2. W •,q(g,C) is a right dg-module for 0(3•g∗).

This result will follow from an evaluation isomorphism similar to (3-4) (see
Proposition 4.12 below) between W •,q(g,C) and another right dg-module for
0(3•g∗). It is important to remark that all the signs appearing in the above formula
for dW , as well as in formula (4-4) below, are natural consequences of a simple
ordering convention in the definition of this evaluation isomorphism.

Remark 4.3. For p = 0 we have W 0,q(g,C) = �q(M,C). In this case, for c ∈
W 0,q(g,C) we have dW (c)= (dW (c)0,dW (c)1), where dW (c)0 :0(g)→�q(M,C)
and dW (c)1 ∈�q−1(M,g∗⊗C) are given by

dW (c)0(u)= u · c and dW (c)1(v)= iρ(v)c.

For W 1,q(g,C), its elements are c= (c0, c1), where c0 : 0(g)→�q(M,C) and
c1 ∈�

q−1(M, g∗⊗C)∼= Hom(g,3q−1T ∗M ⊗C). In this case,

dW (c)0(u1, u2)= u1 · c0(u2)− u2 · c0(u1)− c0([u1, u2]),

dW (c)1(u|v)= iρ(v)c0(u)− u · c1(v)+ c1([u, v]),

dW (c)2(v1, v2)=−iρ(v1)c1(v2)− iρ(v2)c1(v2).

Note that, in the case p = 1, the equation d(c)= 0 is equivalent to (c0, c1) being
a C-valued Spencer operator on g [Crainic et al. 2015b] and, thus, in particular, to
(c0, c1) being an infinitesimally multiplicative form [Arias Abad and Crainic 2011]
when C = R, with the trivial representation.

Van Est map. Given u ∈ 0(g), let φu
ε : G→ G be the flow of the right-invariant

vector field Eu. The flow of the corresponding vector field Bpu ∈X(BpG) is given by

ψu
ε (g1, . . . , gp)= (φ

u
ε (g1), g2, . . . , gp).

Define operators Ru :�
q(BpG, t∗C)→�q(Bp−1G, t∗C) and Ju :�

q(BpG, t∗C)→
�q−1(Bp−1G, t∗C) by

(4-3)
Ruω|(g1,...,gp−1) = s∗0

(
d
dε

∣∣∣∣
ε=0
1φu

ε (t(g1)))−1 ◦ψu ∗
ε ω

)
,

Juω = s∗0 iBpuω.
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The van Est map VE� : �q(BpG, t∗C)→ W p,q(g,C), defined by VE�(ω) =
(c0(ω), c1(ω), . . . ), has each ck(ω) given by

(4-4) ck(ω)(u1, . . . , u p−k |v1, . . . , vk)

= (−1)k(k−1)/2
∑
σ∈S(p)

sgn(σ )(−1)ε(σ,k)Dσ(1) . . . Dσ(p)ω,

where

(4-5) D j =

{
Jv j if j ∈ {1, . . . , k},
Ru j−k if j ∈ {k+ 1, . . . , p},

and

ε(σ, k)= #{(i, j) ∈ {1, . . . , k}× {1, . . . , k} | i < j and σ−1(i) > σ−1( j)}.

Theorem 4.4. VE� induces a map on cohomology VE� : H •(�q(B•G, t∗C))→
H •(W •,q(g,C)) which is a right module homomorphism over VEG : H •(G) →
H •(g). Moreover, if G is source p0-connected, then

V E� : H p(�q(B•G, t∗C))→ H p(W •,q(g,C))

is an isomorphism for p ≤ p0 and it is injective for p = p0+ 1, for each fixed q.

In the remainder of the paper, we prove Theorem 4.4 by showing how it can
be framed as a van Est result for a class of VB-groupoids. Notice that the above
theorem recovers Theorem 5.1 of [Arias Abad and Crainic 2011] (up to some sign
conventions) when C = M ×R with the trivial representation. It is interesting that,
even in this particular case, our proof is independent of the one given in that paper.

Forms as functions. The key idea in the proof of Theorem 4.4 is that differential
forms can be seen as homogeneous functions on an appropriate space. In this
subsection, we elaborate on this classical viewpoint.

Let V1, . . . , Vq+1 be vector bundles over B and consider the fiber product∏q+1
j=1 V j = V1 ×B · · · ×B Vq+1 with the natural vector bundle structure over B

(the Whitney sum V1⊕ · · ·⊕ Vq+1→ B).

Simple functions. For i = 1, . . . , q + 1, let 0i :
∏

j 6=i V j →
∏

j V j be the inclusion
which puts a zero in the i-th coordinate. Then a function f ∈ C∞

(∏
j V j

)
is said

to be simple if

0∗i f = 0 ∀ i = 1, . . . , q + 1.

For a subset I ⊂{1, . . . , q+1}, denote by |I | its cardinality and by 0I :
∏

j /∈I V j→∏
j V j the inclusion which puts a zero in the entries indicated by the elements of I .
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Define P(l) : C∞
(∏

j V j
)
→ C∞

(∏
j V j

)
, l =−1, 0, 1, . . . , q, by

(4-6)
P(−1)( f )= f,

P(l)( f )= P(l−1)( f )−
∑

|I |=q+1−l

0∗I P(l−1)( f ) for l = 0, . . . , q.

Each P(l), l = 0, . . . , q , is a projection onto the space of functions of
∏

j V j which
vanishes whenever q+1−l entries are zero. In particular, Pspl := P(q) is a projection
onto the space of simple functions.

Multilinearity and skew-symmetry. The map

0(B, V ∗1 ⊗ · · ·⊗ V ∗q+1)→ C∞
(∏q+1

j=1 V j
)
,

µ1⊗ · · ·⊗µq+1 7→ (`µ1 ◦ pr1) · · · (`µq+1 ◦ prq+1),

is a monomorphism of C∞(B)-modules, where pri :
∏q+1

j=1 V j 7→Vi is the projection
onto the i-th summand. It follows from Taylor’s theorem that its image is the space
of simple (q+1)-homogeneous functions.

We are mainly interested in the case V1 = · · · = Vq = V and Vq+1 = W ∗

and we denote the q-fold fiber product V ×B · · · ×B V by×
q
B V. A function

f ∈ C∞
(
×

q
B V ×B W ∗

)
is said to be skew-symmetric if

f (vσ(1), . . . , vσ(q), ξ)= sgn(σ ) f (v1, . . . , vq , ξ) ∀ vi ∈ V, ξ ∈W ∗, σ ∈ Sq .

The map Psk : C∞
(
×

q
B V ×B W ∗

)
→ C∞

(
×

q
B V ×B W ∗

)
, defined by

(4-7) Psk( f )=
1
q!

∑
σ∈Sq

sgn(σ ) f ◦ σ,

is a projection onto the space of skew-symmetric functions, where Sq is the sym-
metric group and σ :×

q
B V ×B W ∗→×

q
B V ×B W ∗ is the permutation of the

first q entries belonging to V according to σ . Let us define

(4-8)
F : 0(B,3q V ∗⊗W )→ C∞

(
×

q
B V ×W ∗

)
,

ω = (µ1 ∧ · · · ∧µq)⊗ ξ 7→ q!Psk
(
(`µ1 ◦ pr1) · · · (`µq ◦ prq)(`ξ ◦ prq+1)

)
.

It is straightforward to check that F is a monomorphism of C∞(B)-modules whose
image is the space of simple, skew-symmetric (q+1)-homogeneous functions. We
denote the image of F by C∞ext

(
×

q
B V×W ∗

)
. The projections Psk, Pspl and Pq+1-hom

commute with each other, and so

(4-9) Pext := Psk ◦ Pspl ◦ Pq+1-hom : C∞
(
×

q
B V ×B W ∗

)
→ C∞ext

(
×

q
B V ×B W ∗

)
is a projection onto C∞ext

(
×

q
B V ×B W ∗

)
.
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Example 4.5. For V = B × Rn , let {θ1, . . . , θm} be a local frame for W and
{e1, . . . , en

} be a global frame for V ∗. A point p ∈×
q
B V ×B W ∗, q ≤ n, has

coordinates

p = (x, y1, . . . , yq , ξ1, . . . , ξm), x ∈ B, y j = (y1, j , . . . , yn, j ) ∈ Rn, ξl ∈ R.

For a function f ∈ C∞
(
×

q
B V ×B W ∗

)
, we have Pext f = 1

q!
F(ω f ), where ω f ∈

0(B,3q V ∗⊗W ) is given by

ω f (p)

=

∑
1≤k1<···<kq≤n

m∑
i=1

∑
σ∈Sq

sgn(σ )
∂q+1 f

∂ykσ(1),1 · · ·∂ykσ(q),q ∂ξi
(x,0)ek1∧·· ·∧ekq ⊗θi (x).

The VB-groupoid behind the curtains. We define here the VB-groupoid whose
differentiable cochain complex contains the complex of differential forms with
coefficients. Later on, we show how the Weil complex is embedded in the Chevalley–
Eilenberg complex of its Lie algebroid.

Differential forms with coefficients. Let TG ⇒ TM be the tangent groupoid, ob-
tained by taking the derivative of all the structure maps defining G. Let us introduce
the VB-groupoid Gq ⇒ Mq defined by

(4-10)

Gq = TG×G · · · ×G TG︸ ︷︷ ︸
q times

×G t∗C∗ G

Mq = TM ×M · · · ×M TM︸ ︷︷ ︸
q times

×M C∗ M

//

//

�� �� ����

where the structure maps are defined2 componentwise and t∗C∗ ⇒ C∗ is the
action groupoid corresponding to the right action of G (see Example 2.5) on C∗

obtained by taking adjoints. We frequently omit the subscript q when no confusion
arises. The q-fold fiber products on (4-10) are also denoted as×

q
G TG ×G t∗C∗

and×
q
M TM ×M C∗.

Lemma 4.6. The space of p-composable arrows BpG is isomorphic as a vector
bundle over BpG to the q-fold fiber product TBpG×BpG · · · ×BpG TBpG×BpG t∗C∗.
More concisely,

(4-11) BpG= Bp
(
×

q
G TG×G t∗C∗

)
∼=
(
×

q
BpG TBpG

)
×BpG t∗C∗.

2There is a more general fact playing a role here: Whitney sums of VB-groupoids yield VB-
groupoids (see [Bursztyn and Cabrera 2012]).
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The proof consists in simply defining the isomorphism

BpG 3 (U (1), . . . ,U (p))

7→
(
(U (1)

1 , . . . ,U (p)
1 ), . . . , (U (1)

q , . . . ,U (p)
q ), (g1, . . . , gp, ξ1)

)
,

where each U (i)
= (U (i)

1 , . . . ,U (i)
q , (gi , ξi )) ∈ G.

One important consequence of the isomorphism (4-11) is that the space of
differential forms �q(BpG, t∗C) can be identified with a subspace of C∞(BpG),
which we denote by C∞ext(BpG). It is the image of the map (4-8):

(4-12) F :�q(BpG, t∗C)→ C∞
((
×

q
BpG TBpG

)
×BpG t∗C∗

)
∼= C∞(BpG).

In order to characterize C∞ext(BpG)more explicitly, note that, given a permutation
σ ∈ Sq , the permutation map

σG :×
q
G TG×G t∗C→×

q
G TG×G t∗C

is a groupoid morphism and, under the isomorphism (4-11),

(4-13) BpσG ∼= σBpG

for the corresponding permutation map

σBpG :×
q
BpG TBpG×BpG t∗C→×

q
BpG TBpG×G t∗C.

Similarly, the zero maps 0Gi :Gq−1→Gq (i = 1, . . . , q) and 0Gq+1 :×
q
G TG→Gq

are groupoid morphisms and

(4-14) Bp0G
i
∼= 0BpG

i ∀ i = 1, . . . , q + 1.

Hence,

C∞ext(BpG)=
{

f ∈ C∞(q+1)-hom(BpG) | (BpσG)
∗ f = sgn(σ ) f, (Bp0G

i )
∗ f = 0

∀ σ ∈ Sq , i = 1, . . . , q + 1
}
.

Note that the projection (4-9) gives here, under the isomorphism (4-11), a projection
Pext,G : C∞(BpG)→ C∞ext(BpG).

Proposition 4.7. The projection Pext,G satisfies

Pext,G ◦ δ = δ ◦ Pext,G .

In particular, C∞ext(B•G) is a subcomplex.

Proof. The result follows directly from (4-13), (4-14) and the fact that

(Bp+1φ)
∗δ f = δ(Bpφ)

∗ f

for an arbitrary groupoid morphism φ :H1→H2 and f ∈ C p(H2). �
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In the following, we denote by C•ext(G) and H •ext(G) the complex (C∞ext(B•G), δ)
and its cohomology, respectively.

Proposition 4.8. The map F : �q(BpG, t∗C)→ C p
ext(G) is a dg-module isomor-

phism.

Proof. Let ∂i : Bp+1G→ BpG and /∂ i : Bp+1G→ BpG, i = 0, . . . , p+ 1, be the
face maps and let sj : Bp−1G→ BpG and s j : Bp−1G→ BpG, j = 0, . . . , p−1, be
the degeneracy maps for G and G, respectively. The result follows from the fact that

/∂
∗

0Fω = Fg1·∂
∗

0ω
, /∂

∗

i Fω = F∂∗i ω, s∗jFω = Fs∗j ω ∀ω ∈�q(BpG, t∗C),

when restricted to the fiber over (g1, . . . , gp) ∈ BpG. �

Remark 4.9. The framework presented here can be used to define multiplicativity
for differential forms on a Lie groupoid with values in a 2-term representation
up to homotopy. This was done in [Egea 2016] by simply changing t∗C∗ to
V = s∗E∗⊕ t∗C∗ with the VB-groupoid structure defined by (3-2).

Weil complex. The Lie algebroid Aq →M of the Lie groupoid (4-10) Gq ⇒ Mq is
the q-fold fiber-product3×

q
g Tg×g π

∗C∗→×
q
M TM ×M C∗, where π : g→ M

denotes the projection map of the Lie algebroid of G.

Definition 4.10. Let α ∈ 0(M,3•A∗). We say that α is skew-symmetric with
respect to A→ g if

(4-15) σ ∗g α = sgn(σ )α ∀ σ ∈ Sq ,

where σg :Aq→Aq permutes the q-coordinates on×
q
g Tg according to σ. Similarly,

α is multilinear with respect to A→ g if

hg ∗
λ α = λ

q+1α,(4-16)

(0gi )
∗α = 0 ∀ i = 1, . . . , q + 1,(4-17)

where h
g
λ : Aq → Aq is the homogeneous structure of the vector bundle Aq → g,

and 0gi : Aq−1→ Aq and 0gq+1 :×
q
g Tg→ Aq , i = 1, . . . , q , are the zero maps.

Let 0ext(M,3
pA∗q) be the subspace of 0(M,3pA∗q) of skew-symmetric multi-

linear forms with respect to A→ g. In particular, 0ext(M,3
pA∗q) is a subset of

0(q+1)-hom(M,3
pAq). In the following, we frequently omit the reference to q on the

Lie algebroid Aq . There exists a projection Pext,g : 0(M,3
pA)→ 0ext(M,3

pA∗)

obtained exactly as (4-9) composing the projection Pg,p
(q+1)-hom (2-10) with the ones

constructed from the zero maps 0gi and permutations σ g exactly as in (4-6) and
(4-7), respectively.

3As with VB-groupoids, Whitney sums of VB-algebroids yield VB-algebroids. Moreover, Whitney
sums are preserved by the Lie functor (see [Bursztyn and Cabrera 2012]).
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Proposition 4.11. The projection Pext,g satisfies

Pext,g ◦ d = d ◦ Pext,g.

In particular, 0ext(M,3
•A∗) is a subcomplex of CE•(A).

Proof. The result follows from the fact that the maps hg
λ, 0gi , σg are all Lie algebroid

morphisms. In fact,

(4-18) hg
λ = Lie(hGλ ), 0gi = Lie(0G

i ), σg = Lie(σG)

for the corresponding maps hGλ , 0G
i , σG on the Lie groupoid G. �

In the following, we shall denote by CE•ext(A) and by H •ext(A) the complex
(0ext(M,3

•A∗), d) and its cohomology, respectively. Note that CE•ext(A) is a right
dg-module for 0(3•g)∼= 00-hom(M,3

•A∗) by considering the wedge product.

Proposition 4.12. There exists a right 0(3•g∗)-module isomorphism ev : CE•ext(A)

→W •,q(g,C) satisfying
ev ◦ d = dW ◦ ev.

We refer to the Appendix (see Proposition A.3) for a proof. It is important to
note that Proposition 4.12 implies that W •,q(g,C) is a right dg-module for 0(3•g∗)
as stated in Proposition 4.2. It is also worth noting that ev is a map defined similarly
to (3-4) (i.e., it evaluates an element α ∈ 0ext(M,3

pA∗) on a set of generators of
0(M,A) to give the sequence (c0, c1, . . . ) ∈W p,q(g,C)).

Remark 4.13. An alternative characterization of 0ext(M,3
pA∗) can be given by

seeing vector bundles as Lie groupoids (with multiplication given by addition on the
fibers). Set A(p)

=×
p
M A and g(p) =×

p
M g. One has A(p)

= BpA and g(p) = Bpg.
In particular, the isomorphism (4-11) implies that

(4-19) A(p) ∼=×
q
g(p)

Tg(p)×g(p) π
∗C∗

as vector bundles over g(p), where π : g(p)→ M is defined (following the previous
convention for t : G(p)→ M) as π(u1, . . . , u p) = π(u1). Hence, �q(g(p), π∗C),
the space of differential forms on g(p) with values on C , can be embedded as a
subspace of C∞(A(p)) via (4-8). Similarly, 0(M,3pA) can also be embedded as a
subspace of C∞(A(p)). One can now check that

0ext(M,3
pA∗)= 0(M,3pA)∩�q(g(p), π∗C).

In the case where C = R, with the trivial representation, Li-Bland and Meinrenken
[2015] gave a similar characterization of the Weil algebra as a subspace of differential
forms on g. In this context, the case p= 1 was already studied by Bursztyn, Cabrera
and Ortiz [Bursztyn and Cabrera 2012; Bursztyn et al. 2009].
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Proof of the van Est theorem for differential forms with coefficients. Let VE :
(C•(G), δG)→ (0(M,3•A∗), d) be the van Est map (2-13) for the groupoid G⇒M.

Proposition 4.14. We have

VE ◦ PG,p
ext = Pg,p

ext ◦VE .

In particular, VE(C∞ext(BpG))⊂ 0ext(M,3
pA∗).

Proof. From Proposition 2.12, one already has that VE satisfies VE ◦ PG,p
q+1-hom =

Pg,p
q+1-hom ◦VE. It remains to show that VE commutes with the projections asso-

ciated to the skew-symmetry and the simplicity properties. But this follows from
Lemma 2.10 together with the relations (4-13), (4-14) and (4-18). �

Let VEext : C∞ext(BpG)→ 0ext(M,3
pA∗) be the restriction of the van Est map.

Lemma 4.15. The following diagram commutes:

(4-20)

�q(BpG, t∗C) C∞ext(BpG)

W p,q(g,C) 0ext(M,3
pA∗)

F
//

VEext
��

ev
oo

VE�
��

The proof of Lemma 4.15 consists of a direct but technical verification that
we postpone until the Appendix (see page 328). Finally, we are ready to prove
Theorem 4.4.

Proof of Theorem 4.4. As ev and F are dg-module isomorphisms, it remains to
show that VEext induces isomorphisms on the cohomology H p(C∞ext(B•G)) →
H p(0ext(M,3

•A∗)) for p ≤ p0 and a monomorphism for p = p0+ 1. Since the
ordinary van Est map VEG for G satisfies the above, the theorem then follows from
the homological lemma by means of the underlying projections exactly as in the
proof of Theorem 2.14. �

Remark 4.16. The space �•(B•G, t∗C) is a bigraded right module for the bigraded
algebra�•(B•G)with the cup product [Dupont 1978]. The multiplication is given by

ω∪ η = (−1)qp′pr∗ω∧ pr′∗η, ω ∈�q(BpG, t∗C), η ∈�q ′(Bp′G),

where pr : Bp+p′G→ BpG (resp. pr′ : Bp+p′G→ Bp′G) is the projection onto the first
p arrows (resp. last p′ arrows). It is interesting to note that such module structure
can also be described within the VB-groupoid context. Indeed, by considering
the projections p̃r : Gq+q ′

→ Gq and p̃r′ : Gq+q ′
→×

q ′
G TG, one can check that

Fω∪η ∈ C∞(Bp+p′G
q+q ′) can be obtained from (Bpp̃r)∗Fω ∈ C∞(BpGq+q ′) and

(Bp′ p̃r′)∗Fη ∈ C∞(Bp′G
q+q ′) by skew-symmetrizing their cup product

(Bpp̃r)∗Fω ? (Bp′ p̃r′)∗Fη ∈ C∞(Bp+p′G
q+q ′).
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Similarly, one can define a bigraded module structure on W •,•(g,C) for the Weil al-
gebra W •,•(g) [Arias Abad and Crainic 2011] using the wedge product for their mod-
els as subcomplexes of the Chevalley–Eilenberg complexes. These bigraded module
structures should be useful for studying “multiplicative linear flat” connections on C.

Appendix: Formulas for the evaluation map

We turn to the proof of Lemma 4.15 relating the formula for VE� with the standard
van Est map for G and A. In the process, we also give a detailed description (see
(A-8) below) of the map ev : 0ext(M,3

pA∗q)→W p,q(g,C), making use of special
sections of Aq .

Special sections. Let TB→ B be the tangent bundle of B. Given a vector field
X ∈X(B), let X T, Xv

∈X(TB) be its tangent and vertical lift respectively.4 Define
vector fields X T,q and Xv,q

( j) , j = 1, . . . , q, on the manifold×
q
B TB as follows:

X T,q(v1, . . . , vq)= (X T (v1), . . . , X T (vq)),(A-1)

Xv,q
( j) (v1, . . . , vq)= (0v1, . . . , Xv(vj ), . . . , 0vq ).(A-2)

Let now G ⇒ M be a Lie groupoid with Lie algebroid π : g → M . For a
representation C→M of G, consider the Lie groupoid (4-10),×

q
G TG×G×t

∗C∗⇒
×

q
M TM×M C∗, with corresponding Lie algebroid×

q
g Tg×gπ

∗C∗. For a section
u : M→ g, let T u : TM→ Tg be its derivative and χu : C∗→ π∗C∗ = C∗×M g

the section defined by (2-11). The expressions

Tu(x1, . . . , xq , ξ)= (T u(x1), . . . , T u(xq), χu(ξ)),

Zi u(x1, . . . , xq , ξ)=

(
T 0(x1), . . . , T 0(xi )+

d
dε

∣∣∣∣
ε=0
(εu(m)), . . . , T 0(xq), 0ξ

)
,

for i = 1, . . . , q , x1, . . . , xq ∈ Tm M, ξ ∈C∗m and m ∈ M, define sections of the Lie
algebroid A=×

q
g Tg×g π

∗C∗→M=×
q
M TM×M C∗. It is known that Tu and

Zi u, i = 1, . . . , q , generate 0(M,A) as a C∞(M) module.5

Lemma A.1. As vector fields on Bp(×
q
G TG×G t∗C∗)∼=×

q
BpG TBpG×BpG t∗C∗,

the following identities hold:

Bp(Tu)= ((Bpu)T,q , Xu),(A-3)

Bp(Ziv)= ((Bpv)
v,q
(i) , 0),(A-4)

4The flow at time ε of X T (resp. Xv) is the derivative of the flow at time ε of X (resp. translation
by εX ).

5This follows from a general result regarding core and linear sections of double vector bundles
(see [Mackenzie 2011]).
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where Xu ∈ X(t
∗C∗) is the vector field whose time-ε flow is given by

(g1, . . . , gp, ξ) 7→ (ψεu (g1, . . . , gp),1
∗

φεu(t(g1))−1(ξ)).

In particular, for ω ∈�q(BpG, t∗C),

s∗0LBp(Tu)Fω = FRuω,(A-5)

s∗0LBp(Zi u)Fω = (−1)i−1FJuω ◦ prp−1,q
(i) ,(A-6)

where Ru and Ju were defined in (4-3),

pr·,q(i) :×
q
B·G TB·G×B·G t∗C∗→×

q−1
B·G TB·G×B·G t∗C∗

is the projection which forgets the i-th component and s0 is the first degeneracy map
for G.

Proof. For u ∈ 0(g), consider the sections Zu, T u of Tg→ TM , where

Zu(x)= T 0(x)+
d
dε

∣∣∣∣
ε=0
(εu(m)), x ∈ Tm M.

One has that
−−→

T u = EuT and
−−→

Zu = Euv as vector fields on TG ⇒ TM (see [Mackenzie
and Xu 1994]). Also, the flow of the right invariant vector field −→χu ∈ X(t

∗C∗) is
given by

(g, ξ) 7→ (φεu(g), φ
ε
u(t(g))

−1
· ξ).

The identities (A-3) and (A-4) now follow from analyzing the flows together with
the rearrangement isomorphism (4-11). Hence, for ω ∈�q(BpG, t∗C),

(LBp(Tu)Fω)|(U 1,...,U q ,(g1,...,gp,ξ))

=
d
dε

∣∣∣∣
ε=0

Fω
(
Tψεu (U 1), . . . , Tψεu (U q), (ψ

ε
u (g1, . . . , gp), φ

ε
u(t(g1))

−1
· ξ)
)

=
〈
ξ, φ(t(g1))

−1
· (ψεu )

∗ω(U 1, . . . ,U q)
〉
.

Now, (A-5) follows from the commutation relations on Proposition 4.8. The identity
(A-6) follows similarly. �

The evaluation map. We now describe the chain isomorphism ev:0ext(M,3
pA∗)→

W p,q(g,C). First, for α ∈ 0ext(M,3
pA∗)⊂ 0(M,3pA∗), define

c̃k(α) :
(
×

p−k
0(g)

)
×
(
×

k
0(g)

)
→ C∞

(
×

q
M TM ×M C∗

)
as

c̃k(α)(u1, . . . , u p−k |v1, . . . , vk)= α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k).
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Lemma A.2. There exists a map ck(α) :×
p
0(g)→�q−k(M,C) such that

(A-7) c̃k(α)= Fck(α) ◦ pr[1,k] ∀α ∈ 0ext(M,3
pA∗q),

where pr[1,k] :×
q
M TM×M C∗→×

q−k
M TM×M C∗ is the projection which forgets

the first k entries.

Proof. The multilinearity with respect to both vector bundle structures, A→M

and A → g, implies that c̃k(α)(u1, . . . , u p−k |v1, . . . , vk) = Fα ◦ pr[1,k], where
Fα ∈ C∞

(
×

q−k TM ×M C∗
)

is given by

Fα(y1, . . . , yq−k, ξ)

= c̃k(α)(u1, . . . , u p−k |v1, . . . , vk)(0m, . . . , 0m︸ ︷︷ ︸
k times

, y1, . . . , yq−k, ξ).

We now have to check that Fα ∈ C∞ext
(
×

q−k TM ×M C∗
)
, i.e., F is (q−k+1)-

homogeneous, simple and skew-symmetric. The homogeneity of Fα follows from
the homogeneity of α together with the linearity of the sections Tu and the properties
of the section Z jv:

Z j (v)|(0m ,...,0m ,λy1,...,λyq−k ,λξ) = hg
λ

(
Z j

(1
λ
v
)∣∣∣
(0m ,...,0m ,y1,...,yq−k ,ξ)

)
,

Z j (λv)= λ ·Z j (v),

where λ > 0 and · stands for the multiplication for A→M. The simplicity of Fα
follows from the identity

(Fα ◦ 0i ) ◦ pr[1,k] = ((0
g
k+i )

∗α)(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)= 0

for i = 1, . . . , q− k+ 1. Finally, let σ ∈ Sq−k ⊂ Sq , seen as the subgroup acting as
the identity on {1, . . . , k}. One can check that

(Fα ◦ σM) ◦ pr[1,k] = (σ
∗

g α)(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)

= sgn(σ )α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)

= sgn(σ )Fα ◦ pr[1,k].

This shows that Fα ∈ C∞ext
(
×

q−k TM ×M C∗
)

and, therefore, there exists ck(α) :

×
p
0(g)→�q−k(M,C) such that Fα = Fck(α)(u1,...,u p−k |v1,...,vk). �

Our aim is to prove that

(A-8) ev(α)= (c0(α), c1(α), . . . )

defines a map from 0ext(M,3
pA∗) into W p,q(g,C). First note that the sequence

(c0(α), c1(α), . . . ) completely determines α ∈0ext(M,3
pA∗). Indeed, as 0(M,A)

is generated as a C∞(M)-module by sections of the type Tu, Ziv, any element of
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0(M,3pA∗) is determined by its values on these sections. Now, one can check
that, for α ∈ 0ext(M,3

pA∗),

(A-9) iZ jviZ jwα = 0 for j = 1, . . . , q,

and, for a permutation σ ∈ Sq ,

(A-10) α(Zσ(1)v1, . . . ,Zσ(k)vk,Tu1, . . . ,Tu p−k)

= sgn(σ )σ ∗M(α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)).

Hence, to recover α from its values on the sections Tu,Ziv, it suffices to know the
values of α encoded on the sequence (c0(α), c1(α), . . . ). The next result gives the
desired proof of Proposition 4.12.

Proposition A.3. Given α ∈ 0ext(M,3
pA∗), one has that

(1) ck(α) is skew-symmetric on the u entries;

(2) ck(α) is symmetric on the v entries;

(3) given f ∈ C∞(M),

ck(α)(u1, . . . , u p−k |v1, . . . , f vk)= f ck(α)(u1, . . . , u p−k |v1, . . . , vk),

ck(α)( f u1, . . . , u p−k |v1, . . . , vk)= f ck(α)(u1, . . . , u p−k |v1, . . . , vk)

+ d f ∧ ck+1(α)(u2, . . . , u p−k |v1, . . . , vk, u1).

In particular, each ck can be viewed as an R-linear skew-symmetric map ck :

×
p−k

0(g)→ �q−k(M, Skg∗ ⊗ C). Moreover, the map ev : 0ext(M,3
pA∗)→

W p,q(g,C) defined by (A-8) is a right 0(3•g∗)-module isomorphism satisfying

ev ◦ dext = dW ◦ ev.

Proof.

(1) This follows directly from the skew-symmetry of α with respect to A→M.

(2) Let σ ∈ Sk ⊂ Sq , seen as the subgroup acting as the identity on {k+ 1, . . . , q}.
From (A-10) and the skew-symmetry of α with respect to A→M,

α(Z1vσ(1), . . . ,Zkvσ(k),Tu1, . . . ,Tu p−k)

= sgn(σ )α(Zσ(1)vσ(1), . . . ,Zσ(k)vσ(k),Tu1, . . . ,Tu p−k)

= (sgn(σ ))2α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k).

In the second equality we have used the fact that

α(Tu1, . . . ,Tu p−k,Zσ(1)vσ(1), . . . ,Zσ(k)vσ(k)) ∈ C∞
(
×

q TM ×M C∗
)

does not depend on the first k coordinates.
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(3) One can check that

Zi ( f v)= ( f ◦π) ·Ziv,

T( f u)= ( f ◦π) ·Tu+
q∑

j=1

(`d f ◦ pr j ) ·Z j u,

where all the sums and scalar multiplications are with respect to π : A → M,
pr j :×

q
M TM ×M C∗ → TM is the projection onto the j-th factor and `d f ∈

C∞(TM) is the linear function corresponding to d f ∈�1(M). To simplify notation,
we identify �q−k(M,C) with its image on C∞

(
×

q−k TM ×M C∗
)

under F in the
following. The first equation of (3) is now straightforward to check. As for the
second, it follows from (A-9) and (A-10) that

ck(α)( f u1, . . . ,u p−k |v1, . . . ,vk) ◦ pr[1,k]

= ( f ◦π)α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)

+

q∑
j=k+1

(`d f ◦ pr j )α(Z1v1, . . . ,Zkvk,Z j u1,Tu2, . . . ,Tu p−k)

= ( f ◦π)ck(α)(u1, . . . ,u p−k |v1, . . . ,vk) ◦ pr[1,k]

+

q∑
j=k+1

(−1) j−k−1(`d f ◦ pr j )α(Z1v1, . . . ,Zkvk,Zk+1u1,Tu2, . . . ,Tu p−k) ◦ σ
j

M︸ ︷︷ ︸
(∗)

,

where σ j
∈ Sq is the cycle ( j j−1 · · · k+2 k+1), for k + 1 ≤ j ≤ q, which

has sign equal to (−1) j−k−1. It is now straightforward to check that (∗) equals
d f ∧ ck+1(u2, . . . , u p−k |v1, . . . , vk, u1) ◦ pr[1,k].

It remains to prove that ev is a dg-module isomorphism. Let us first prove that
ev commutes with the multiplication. Let β ∈ 0(3p′g∗)∼= 00-hom(M,3

p′A∗) and
consider ev(α∧β)= (c0(α∧β), c1(α∧β), . . . ). By definition,

ck(α∧β)(u1, . . . , u p+p′−k |v1, . . . , vk) ◦ pr[1,k]
= (α∧β)(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p+p′−k)

=

∑
σ∈S(p−k,p′)

sgn(σ )α(Z1v1, . . . ,Zkvk,Tuσ(1), . . . ,Tuσ(p−k))

×β(Tuσ(p−k+1), . . . ,Tuσ(p+p′−k)),

where S(p−k, p′) is the space of (p−k, p′)-unshuffles and the last equality follows
from the fact that the contraction of β with any section of type Z·v· is zero. The
result now follows easily.

Finally, to prove that ev intertwines the differential, consider

ev(dα)= (c0(dα), . . . , ck(dα), . . . ),
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where

ck(dα)(u1, . . . , u p+1−k |v1, . . . , vk) ◦ pr[1,k]

= dα(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p+1−k)

=

k∑
j=1

(−1) j+1Lρ(Z jvj )α(Z1v1, . . . , Ẑ jvj , . . . )︸ ︷︷ ︸
(A)

+

p−k+1∑
i=1

(−1)i+k+1Lρ(Tui )α(Z1v1, . . . , T̂ui , . . . )︸ ︷︷ ︸
(B)

+

∑
1≤i< j≤p+1−k

(−1)i+ jα([Tui ,Tu j ], . . . , T̂ ui , . . . , T̂ u j , . . . )︸ ︷︷ ︸
(C)

+

p+1−k∑
i=1

k∑
j=1

(−1) j+(k+i)α([Z jvj ,Tui ], . . . , Ẑ jvj , . . . , T̂ui , . . . )︸ ︷︷ ︸
(D)

.

Notice that there are no terms containing [Z j1v j1,Z j2v j2] since these brackets are
all zero. To study the remaining terms, we use some properties of the tangent Lie
algebroid Tg→ TM (see [Mackenzie and Xu 1994]) and the action algebroid
C∗×M g→ C∗.

(A): From (A-10),

α(Z1v1, . . . , Ẑ jvj , . . . ,Zkvk,Tu1, . . . ,Tu p+k−1)

= (−1)k− jσ ∗M(Fck−1(α)(u1,...,u p+1−k |v1,...,v j−1,v j+1,...,vk) ◦ pr[1,k−1]),

where σ = ( j k)( j k−1) · · · ( j j+1) ∈ Sq . Now,

pr[1,k−1] ◦ σM(x1, . . . , xq , ξ)= (x j , xk+1, . . . , xq , ξ),

ρ(Z jvj )= (ρ(vj )
v,q
( j) , 0)

and
L(Xv,q

(1) ,0)
Fω = FiXω ◦ pr(1) ∀ X ∈ X(M), ω ∈�q(M,C),

where pr(1) :×
q TM ×M C∗→×

q−1 TM ×M C∗ is the projection which forgets
the first component. These facts imply that

(A)= (−1)k+1
k∑

j=1

(
iρ(vj )ck−1(α)(u1, . . . , u p+1−k |v1, . . . , v j−1, v j+1,

. . . , vk)
)
◦ pr[1,k].
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(B): The fact that ρ(Tui ) = (ρ(ui )
T , ρ(χu)), where ( · )T stands for tangent lift,

implies that, for ω∈�q(M,C), Lρ(Tui )Fω=Fui ·ω, where u ·(β⊗µ)=Lρ(u)β⊗µ+
β ⊗∇uµ, β ∈ �q(M), µ ∈ 0(C) and ∇ is the g-connection on C defining the
representation of g on C . Hence,

(B)= (−1)k
p−k+1∑

i=1

(−1)i+1(ui · ck(u1, . . . , ûi , . . . , u p+1−k |v1, . . . , vk)
)
◦ pr[1,k].

(C) and (D): From the identities [Tui ,Tu j ] =T[ui , u j ], [Tui ,Z jvj ] =Z j [ui , vj ],
it is straightforward to check that

(C)= (−1)k
∑

1≤i1<i j≤p−k+1

(−1)i1+i2
(
ck(α)([ui1,ui2],u1, . . . , ûi1, . . . , ûi2,

. . . ,u p−k+1|v1, . . . ,vk)
)
◦pr[1,k],

(D)= (−1)k
p−k+1∑

i=1

k∑
j=1

(−1)i
(
ck(α)(u1, . . . , ûi ,

. . . ,u p+1−k |v1, . . . , [ui ,vj ], . . . ,vk)
)
◦pr[1,k].

Hence,

(A)+ (B)+ (C)+ (D)= dW (c(α))k(u1, . . . , u p−k+1|v1, . . . , vk) ◦ pr[1,k]
H⇒ c(dα)k = dW (c(α))k,

as we wanted. �

Proof of Lemma 4.15.

Lemma 4.15 rephrased. Let ω be an element of �q(BpG, t∗C) and consider
VE�(ω) = (c0(ω), c1(ω), . . .) as defined in (4-4). Also, let α = VEext(Fω) ∈

0ext(M,3
pA∗) and consider ev(α)= (c0(α), c1(α), . . .) defined by (A-7). Then

ck(ω)= ck(α) ∀ k ≥ 0.

Proof. From (2-13),

Fck(α)(u1,...,u p−k |v1,...,vk) ◦ pr[1,k] = VEext(Fω)(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)

=

∑
σ∈Sp

sgn(σ )Rχσ(1) . . . Rχσ(p)Fω,

where χi = Zivi (resp. Tui−k) if i ∈ {1, . . . , k} (resp. if i ∈ {k + 1, . . . , p}). The
main ingredients of the proof are the identities from Lemma A.1:

RTuiFω = s∗0LBpTuiFω = FRui ω
,

RZiviFω = (−1)i−1FJvi ω ◦ prp−1,q
(i) ,
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where pr·,q(i) :×
q
B·G TB·G ×B·G t∗C∗ →×

q−1
B·G TB·G ×B·G t∗C∗ is the projection

which forgets the i-th component. In the rest of the proof, the difficulty lies in the
combinatorics needed to count the number of −1’s appearing due to the presence
of the sections Zivi .

Let 0 ≤ r ≤ p, 1 ≤ s ≤ q and 1 ≤ i, j ≤ s. For η ∈ �s−1(BrG, t∗C), one can
check that

RTu(Fη ◦ prr,s
(i))= FRuη ◦ prr−1,s

(i)

and

RZ jv(Fη ◦ prr,s
(i))=


(−1) j−1FJvη ◦ prr−1,s−1

( j) ◦ prr−1,s
(i) if i > j,

−(−1) j−1FJvη ◦ prr−1,s−1
(i) ◦ prr−1,s

( j) if i < j,

0 if i = j.

Let us now fix a permutation σ ∈ Sq . For 1≤ l ≤ k, let jl = σ−1(l) for l ≥ 1 and set
j0 = 0. Denote by τ the permutation of {0, 1, . . . , k} such that jτ(0) < · · ·< jτ(k).
One can now prove by induction that, for jτ(l) ≤ r < jτ(l+1),

(A-11) Rχσ(r+1) . . . Rχσ(p)Fω = δ(k, l)
(
FDσ(r+1)...Dσ(p)ω ◦ prr,q−k+l

(i1)
◦ · · · ◦ prr,q

(ik−l)

)
,

where the D j are the operators (4-5), {i1 < · · ·< ik−l} = {τ(l + 1), . . . , τ (k)} and

δ(k, l)= (−1)k−l(−1)τ(l+1)+···+τ(k)(−1)N (τ,l)

with

N (τ, l)= #
{
(i, j) ∈ {l+ 1, . . . , k}× {l+ 1, . . . , k} | i < j and σ−1(i) > σ−1( j)

}
.

Note that, for l = 0,

δ(k, 0)= (−1)k(−1)1+···+k(−1)ε(σ,k) = (−1)k(k−1)/2(−1)ε(σ,k).

In particular, when r = 0, we have

Fck(α)(u1,...,u p−k |v1,...,vk) ◦ pr[1,k]

=

∑
σ∈Sp

sgn(σ )Rχσ(1) . . . Rχσ(p)Fω

= (−1)k(k−1)/2
∑
σ∈Sp

sgn(σ )(−1)ε(σ,k)FDσ(1)...Dσ(p)ω ◦ pr0,q−k
(1) ◦ · · · ◦ pr0,q

(k)

= Fck(ω)(u1,...,u p−k |v1,...,vk) ◦ pr[1,k]. �
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