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We prove a normal form theorem for Poisson structures around Poisson
transversals (also called cosymplectic submanifolds), which simultaneously
generalizes Weinstein’s symplectic neighborhood theorem from symplectic
geometry and Weinstein’s splitting theorem. Our approach turns out to be
essentially canonical, and as a byproduct, we obtain an equivariant version
of the latter theorem.
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1. Introduction

This paper is devoted to the study of semilocal properties of Poisson transversals.
These are submanifolds X of a Poisson manifold (M, i) that meet each symplectic
leaf of w transversally and symplectically. A Poisson transversal X carries a
canonical Poisson structure, whose leaves are the intersections of leaves of
with X, and are endowed with the pullback symplectic structure.

Even though this class of submanifolds has very rarely been dealt with in full
generality — much to our dismay and surprise — Poisson transversals permeate the
whole theory of Poisson manifolds, often playing a quite fundamental role. This lack
of specific attention is especially intriguing since they are a special case of several
distinguished classes of submanifolds which have aroused interest lately: Poisson
transversals are Lie—Dirac submanifolds [Xu 2003], Poisson—Dirac submanifolds
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[Crainic and Fernandes 2004], and also pre-Poisson submanifolds [Cattaneo and
Zambon 2009] (see also [Zambon 2011] for a survey on submanifolds in Poisson
geometry).

No wonder, then, that Poisson transversals have shown up already in the infancy
of Poisson geometry, in the foundational paper of Weinstein [1983]. Namely, if L
is a symplectic leaf and x € L, then a submanifold X that intersects L transversally
at x and has complementary dimension is a Poisson transversal, and its induced
Poisson structure governs much of the geometry transverse to L. In fact, a small
enough tubular neighborhood of L in M will have the property that all its fibers are
Poisson transversals. Such fibrations are nowadays called Poisson fibrations, and
were studied by Vorobjev [2001] — mostly in connection with the local structure
around symplectic leaves — and also by Fernandes and Brahic [2008]. That Poisson
fibrations are related to Haefliger’s formalism of geometric structures described
by groupoid-valued cocycles (see [Haefliger 1958] and also [Gromov 1986]) — of
which the “automatic transversality” of Lemma 7 is also reminiscent — should not
escape notice. In fact, in physics literature, Poisson fibrations have long been known
in the guise of second class constraints, and motivated the introduction by P. Dirac
[1950] of what we know today as the induced Dirac bracket, which in our language
is the induced Poisson structure on the fibers.

The role played by Poisson transversals in Poisson geometry is similar to that
played by symplectic submanifolds in symplectic geometry and by transverse
submanifolds in foliation theory (see the examples in the next section). The key
observation is that the transverse geometry around a Poisson transversal X is of
nonsingular and contravariant nature: it behaves more like a 2-form than as a
bivector in the directions conormal to X. This allows us to make particularly
effective use of the tools of “contravariant geometry”. In the core of our arguments
lies the fact that the contravariant exponential map exp, associated to a Poisson
spray X gives rise to a tubular neighborhood adapted to X C (M, ), in complete
analogy with the classical construction of a tubular neighborhood of a submanifold
X in a Riemannian manifold (M, g), thus effectively reducing many problems to
the symplectic case.

The main result of this paper is a local normal form theorem around Poisson
transversals, which simultaneously generalizes Weinstein’s splitting theorem [1983]
and Weinstein’s symplectic neighborhood theorem [1971]. At a Poisson transversal
X of (M, ), the restriction of the Poisson bivector 7|y € I'(A2TM |x) determines

e a Poisson structure on X, denoted 7y,

 a nondegenerate, fiberwise 2-form on the conormal bundle p : N*X — X,
denoted

wy € T(A2NX).
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Let & be a closed 2-form on N *X that extends o := —wy, i.e., which restricts on
T(N*X)|x =TX @& N*X to the trivial extension of o by zero.

To such an extension we associate a Poisson structure 7(G) on an open set
U(6) C N*X around X. The symplectic leaves of 77 () are in one-to-one correspon-
dence with the leaves of 7y ; namely if (L, wy) is a leaf of 7y, the corresponding
leaf of (&) is an open set L c p~Y(L) around L endowed with the 2-form
w7 := p*(wr) + &|7. The Poisson manifold (U(), 7(5)) is the local model of 7
around X. We will provide a more conceptual description of the local model using
Dirac geometry.

Theorem 1 (normal form theorem). Let (M, r) be a Poisson manifold and X C M
be an embedded Poisson transversal. An open neighborhood of X in (M, i) is Pois-
son diffeomorphic to an open neighborhood of X in the local model (U(G), 7(c)).

Under stronger assumptions (which always hold around points in X) we can
provide an even more explicit description of the normal form. Assuming symplectic
triviality of the conormal bundle to X, the theorem implies a generalized version
of the Weinstein splitting theorem, expressing the Poisson as a product, i.e., in the
form (1) below. This coincides with Weinstein’s setting when we look at (small)
Poisson transversals of complementary dimension to a symplectic leaf.

The proof of Theorem 1 relies on the symplectic realization constructed in
[Crainic and Marcut 2011] with the aid of global Poisson geometry, and on elemen-
tary Dirac-geometric techniques; the former is the crucial ingredient that allows
us to have a good grasp of directions conormal to the Poisson transversal, and the
latter furnishes the appropriate language to deal with objects which have mixed
covariant-contravariant behavior. As an illustration of the strength and canonicity
of our methods, we present as an application the proof of an equivariant version
of Weinstein’s splitting theorem. Other applications of the normal form theorem,
which reveal the Poisson-topological aspects of Poisson transversals, will be treated
elsewhere.

Theorem 2. Let (M, i) be a Poisson manifold and let G be a compact Lie group
acting by Poisson diffeomorphisms on M. If x € M is a fixed point of G, then

there are coordinates (P1, ..., Pnsqis---+sqns V1s+--»VYm) € R2"t™ congered at x
such that
n m
0 d 1 0 0
1 T=) —A+—+= w; — A,

and in these coordinates G acts linearly and keeps the subspaces R*" x {0} and
{0} x R™ invariant.
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This answers in the negative a question posed by Miranda and Zung [2006] about
the necessity of the “tameness” condition they assume in their proof of this result.
We wish to thank Miranda for bringing this problem to our attention.

We should probably also say a few words about terminology. Poisson transver-
sals are also referred to as cosymplectic submanifolds in the literature, and this
is motivated by the fact that the conormal directions to such a submanifold are
symplectic, i.e., the Poisson tensor is nondegenerate on the conormal bundle to
the submanifold. Even though this nomenclature is perfectly reasonable, there are
several reasons why we decided not to use this name. Foremost among these:

(1) There is already a widely used notion of a cosymplectic manifold, defined as a
manifold of dimension 2xn + 1, endowed with a closed 1-form 0 and a closed
2-form w such that & A ™ is a volume form.

(2) The general point of view of transverse geometric structures is of great insight
into Poisson transversals when we rephrase the problem in terms of Dirac
structures and contravariant geometry. Moreover, the proximity between the
dual pairs used in the proof of the normal form theorem, and the gadget of
Morita equivalence, which is known to govern the transverse geometry to the
symplectic leaves, is too obvious to ignore.

2. Some basic properties of Poisson transversals

Let (M, ) be a Poisson manifold. A Poisson transversal in M is an embedded
submanifold X C M that meets each symplectic leaf of & transversally and sym-
plectically. We translate both these conditions algebraically. Let x € X and let
(L, w) be the symplectic leaf through x. Transversality translates to

TxX + TxL = TxM.

Taking annihilators in this equation, we obtain that N} X N ker(nﬁ) = {0}, or
equivalently, that the restriction of 7% to N *X is injective:

8
2) 0—> NIX IS T M.

For the second condition, note that the kernel of wx |7, xn7,. L is Tx X N nﬁ (NFX).
So the condition that 7x X N 7T L be a symplectic subspace is equivalent to

(3) TeX Nah(NFX) = {0}.

Since TxX and N X have complementary dimensions, (2) and (3) imply the
following decomposition, which is equivalent to X being a Poisson transversal:

4) TX &n*(N*X)=TM|x.
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The decomposition of the tangent bundle (4) canonically gives an embedded
normal bundle, denoted

NX =" (N*X) C TM|x,
and a corresponding decomposition for the cotangent bundle
N*X®N°X=T"M|y.
For £ € N X and n € N7 X, we have that 7#(&) € Ny X, hence 7 (&, ) = 0. This
implies that 7|y has no mixed component in the decomposition
NTM|y = A2TX & (TX @ NX) ® A°NX.
Therefore 7|y splits as
nly =nx +wy, 7wy € T(A’TX), wy € T(A2NX).
It is well known that these two tensors satisfy the following properties, but for

completeness we include a proof.

Lemma 3. The bivector mx is Poisson and wy, regarded as a 2-form on N*X , is
fiberwise nondegenerate.

Proof. To prove that my is Poisson, we will use Dirac-geometric techniques (for
other approaches, see [Crainic and Fernandes 2004; Xu 2003]; for the basics of Dirac
geometry, see [Bursztyn and Radko 2003]). It suffices to show that the pullback
via the inclusion i : X — M of the Dirac structure L := {7#(§) +£:£ € T*M}
equals the almost Dirac structure L, 1= {n)ﬁ( E)+E:£€eT*X } since this makes
L, automatically involutive, and hence mx Poisson. But to show this it suffices
to prove the following inclusion:

Lny = {n§(5)+$:§e T*X} = {Jr)ﬁ((i*n)+i*n:n eN°X}
={7* ) +i*n:ne N°X} Ci*Ly,
where we used that wi (n=0,forne N°X.

The map wy : N*X — NX is just the restriction of 7, which, by the decompo-
sition (4), is a linear isomorphism. O
We recall three natural instances of Poisson transversals, which appear throughout

Poisson geometry:

Example 4. If 7 is nondegenerate then X is a Poisson transversal if and only if X
is a symplectic submanifold of (M, ).

Example 5. If L is the symplectic leaf of (M, ) through a point x € M, a sub-
manifold X that intersects L transversally at x and is of complementary dimension
is a Poisson transversal around x.
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Example 6. If (M, ) is a regular Poisson manifold with underlying foliation F
of codimension ¢, then every submanifold X of dimension ¢ that is transverse to
F is a Poisson transversal.

A very useful — and somewhat surprising — fact about Poisson transversals is
that they behave well with respect to Poisson maps:

Lemma 7. Let ¢ : (Mg, m9) — (M1, 1) be a Poisson map and X1 C My be a
Poisson transversal. Then:

(1) @ is transverse to X.
(2) Xo:= ¢~ Y(X1) is also a Poisson transversal.
(3) ¢ restricts to a Poisson map ¢|x, : (Xo, wx,) = (X1, mx,).

(4) The differential of ¢ along X restricts to a fiberwise linear isomorphism
between embedded normal bundles ¢«|nx, : NXo — NXi.

(5) Themap F : N*Xog — N*X1, F(§) = (¢*)"1(§), £ € N*Xy is a fiberwise
linear symplectomorphism between the symplectic vector bundles

F: (N*Xo,wx,) = (N*X1, wx,).

Corollary 8. Let (M, i) be a Poisson manifold, X C M be a Poisson transversal
and W C M be a Poisson submanifold. Then W and X intersect transversally, and
XNWis

e a Poisson transversal in (W, 7 |w), and
e a Poisson submanifold of (X, mx).
Proof of Lemma 7. Consider x € X¢ and let y := ¢(x) € X;. Since ¢ is a Poisson

map we have:
Jrf(n) = Q4 (ng(go*n)), for all n € T, M,

therefore nf (T My) C o« (Tx Mo). But X; being a Poisson transversal now implies
that ¢ is transverse to X:

TyMy = Ty X1 + 7} (T My) = Ty X1 + 9u(Tx Mo).

In particular, X¢ is a submanifold of Mg. To show that Xy is a Poisson transversal,
we will prove that the decomposition 7Xo & ng (N*Xo) = TMy|x, holds. Note
first that

TxXo = (¢+) ' (TyX1) and NjXo=¢*(NyX1).

Letv e TxMo, and decompose ga*v =u + my (r;) withu € T, X1 and n € Nj X;.
Then ¢*n e NfXo and w :=v —no(go n) projects to u, hence w € Ty Xp. ThlS
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shows that v = w + ng(go*n) €TxXo+ ﬂg(N;:X()), hence
TeMo = Ty Xo + 75 (N} Xo).

Counting dimensions, we conclude that this is a direct sum decomposition, and
therefore X is a Poisson transversal.
Note, moreover, that ¢, preserves the embedded normal bundles

0+ (N2 Xo) = 0u (1 (NI X0)) = gu (mh (0™ (N X1))) = 7] (N X1) = Ny X1,

and because they have the same rank, ¢«|yx, is a fiberwise isomorphism. Since
we also have ¢« (Tx Xo) C Ty X1, the Poisson condition ¢« (o x) = 71,y implies
that ¢« (x,,x) = mx,,y and @«(wx,,x) = Wx,,y. This implies (3) and (4). O

3. The local model

The local model around a Poisson transversal depends on an extra choice:

Definition 9. Let (E, o) be a symplectic vector bundle over X. A closed extension
of o is a closed 2-form & defined on a neighborhood of X in E, such that its
restriction to TE |y = TX & E equals the trivial extension of o to TE|y. We
denote the space of all closed extensions by T(E, o).

Closed extensions always exist, and can be constructed employing the standard
de Rham homotopy operator (see, e.g., the extension theorem in [Weinstein 1977]).

In the warm-up for the construction below of the local model, let us revisit the
three instances which are generalized by our main result.

Example 10 (Weinstein’s symplectic neighborhood theorem [1971]). Let (M, w)
be a symplectic manifold, and (X, wy) C M be a symplectic submanifold. The
symplectic orthogonal of 77X, denoted by E := T X?, is a symplectic vector bundle
with bilinear form o := w|g. The local model around X is given by the closed
2-form ¢ + p*(wx) on E, where p : E — X is the projection and & € Y (E, 0).
Weinstein’s symplectic neighborhood theorem says that a neighborhood of X in
(M, w) is symplectomorphic to a neighborhood of X in (E,7 + p*(wx)).

Example 11 (Weinstein’s splitting theorem [1983]). Let (M, ) be a Poisson man-
ifold and let x € M. Let also (L, w) be the symplectic leaf through x € M, and
(X, mx) a Poisson transversal at x, of complementary dimension. The local model
around x is given by the product of Poisson manifolds

(TXL’Q);I) X (Xy T[X)

Weinstein’s splitting theorem (or Darboux—Weinstein theorem) asserts that (M, )
is Poisson diffeomorphic around x to an open set around (0, x) in the local model.
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Example 12 (transversals to foliations). Let M be a manifold carrying a smooth
(regular) foliation F, and let X C M be a submanifold transverse to F,

TxX+TF=TyM, forall x € X.

Let Fx be the induced foliation on X . The local model of the foliation F around
X is (NX, p*Fx), where p : NX — X is the normal bundle to X; note that the
leaves of the local model are of the form p~1(L), for L a leaf of Fx. To build an
isomorphism between F and its model around X, consider a metric g on 7' F and let
expg : TF DU — M denote the leafwise exponential map of g, i.e., for each leaf L,
expg : (TL NU) — L is the (Levi-Civita) exponential map of the Riemannian
manifold (L, g|z). Then T]-")J(- C T Flx is a complement to 7X in TM |y, and
the composition
NX 25 TFF 225 m

pulls the foliation F to the local model.

The idea for constructing the local model around a Poisson transversal is to
put the foliation in normal form in the sense of Example 12, and then perform
Weinstein’s construction of Example 10 along all symplectic leaves simultaneously.

Let (E, o) be a symplectic vector bundle over a Poisson manifold (X, wx) with
projection p : E — X and consider a closed extension & € Y (E, o). As mentioned
in the introduction, the symplectic leaves of the local model are (Z, wy), for (L, wr)
a symplectic leaf of (X, my), where Lc p~ (L) is an open set containing L and

w7 =057 + p*(wr).
To show this construction yields a smooth Poisson bivector around X, we rewrite it
using the language of Dirac geometry. Let L, be the Dirac structure corresponding
to ;x . Dirac structures can be pulled back along submersions. The pullback of L,
to E, denoted by p*(Ly, ), has presymplectic leaves (p~!(L), p*(wr)), where

(L,wr) is a symplectic leaf of my. Finally, the gauge transform by &, denoted
by p*(Lxy)?, has the required effect: it adds to each leaf the restriction of G.

Lemma 13. Let (E,0) be a symplectic vector bundle over a Poisson manifold
(X, tx),andlet & € Y(E,0) be a closed extension of 6. On a neighborhood U(G)
of X in E, we have that the Dirac structure

L@):= p*(Ly)°
corresponds to a Poisson structure (G ) that decomposes along X as
n@)|x =nx +0 ' € T(A’TX) & (AZE).

Equivalently, (X, x) is a Poisson transversal for w (o), the canonical normal

bundle is E C TE|x, and the induced nondegenerate bivector is wx = o L
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Proof. The condition that L(¢') be Poisson is open, thus it suffices to show that
L () has the expected form along X. This can be easily checked, since

P*(La)lx = {nh @ +Y +6:6€T*X, Y € E},
and therefore
L(@)lx = {n)ﬂ((é) +Y+E+wyo:E€T*X, Y € E}
= {2h @+ 0V ) +E+n:EeT*X, ne E*)
={(zx +0 ) @) +0:0 e T*Elx). O

Definition 14. The Poisson manifold (U(¢), 7(¢)) from the lemma is called the
local model associated to (E,0) and (X, my).

If X is a Poisson transversal of a Poisson manifold (M, ), mx is the induced
Poisson structure on X, E = N*X is the conormal bundle to X and

o =—-wy = —(7|n*x),
then (U(G), 7(6)) is called the local model of w around X .

Remark 15. We point out that there is a choice in having the local models of &
around X live in the conormal bundle to X, as opposed to its normal bundle N X,
as is typically the case for normal form theorems. In fact, since

wy : (N*X,—wy) = (NX, w}}l)

is an isomorphism of symplectic vector bundles, we can translate canonically all
our constructions to NX via wy.

That we chose N*X instead of NX is meant to emphasize that we regard
the conormal N*X as the more appropriate notion of “contravariant normal”,
an opinion which is corroborated by the scheme of proof of Theorem 1, where
we spread out a tubular neighborhood of X by following contravariant geodesics
starting in directions conormal to X .

The construction of the local model depends on the choice of a closed exten-
sion. A Poisson version of the Moser argument, which first appeared in [Alekseev
and Meinrenken 2007] (see also [Alekseev and Meinrenken 2016]) will be later
employed to prove that different extensions induce isomorphic local models.

Lemma 16 (Moser lemma). Suppose we are given a path of Poisson structures
of the form t — m; := 7'%% where 7 is a Poisson structure and a € QY (M).
Then the isotopy ¢)th generated by the time-dependent vector field V; := —nf(oz)
stabilizes m;:
t,s
¢V* ]TS - JTI )

whenever this is defined.
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Proof. Recall that Poisson cohomology is computed by the complex (X*(M), dy),
where d : X*(M) — X*T1(M) is defined by d := [r,-] and [-, -] stands for
the Schouten bracket on multivector fields. Moreover, w, regarded as a map
7% T*M — TM, induces a chain map

(D)L A7 (Q(M), d) — (X°(M), dx),

from the de Rham complex of differential forms, see, e.g., [Dufour and Zung 2005].
In particular,

Ly, = [0, 7} (@)] = dr, 7} (@) = = A? f (do0).
As maps, this can be written as
(Ly,w0)* = 7} o (da)’ o 7],

where (da)’ : TM — T* M stands for do regarded as a map. Also, by the very def-
inition of gauge transformation, we have the identity nh = nf ) (id +1(da)’ o n#),
whence

dn# dT[ b b
0="0r="a° (id +1(de)’ o %) + 7f o (da)’ o ¥
#
= (dd& —l—JTfO(dot)bO?Ttn) o (id +t(de)’ o %)

#
(ddj? + Ly, n,) o (id +t(a’oe)b o nﬂ).

Finally, we obtain
d dm
Sy T = @) (Lvom + L) =0,
showing that (¢f;s)*nt = 75. O

Next, we show that different choices of closed extensions yield isomorphic local
models.

Lemma 17. If (E, 0) is a symplectic vector bundle over a Poisson manifold (X, wx),
then all corresponding local models are isomorphic around X by diffeomorphisms
that fix X up to first order.

Proof. If 61 € T(E,0) is a second extension, 6; — & is a closed 2-form on E
that vanishes on TE|y. Since the inclusion X C E is a homotopy equivalence,
&1 — 0 is exact, and one can choose a primitive 7 € Q! (E) that vanishes on TE|x.
Actually, by the relative Poincaré lemma in [Weinstein 1977], one may choose
with vanishing first derivatives along X. Denote () and 7 (¢ + dn) by 7o and 71,
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respectively. Then sy is the gauge transform by dn of mg, denoted 7; = ng T,
These bivectors can be interpolated by the family of Poisson structures

Ty = n(t)d”, t €[0,1].
Now, 7, corresponds to the smooth family of Dirac structures L; := p* (L )‘A"‘H dn,
and the set U C R x E of those points (¢, x) where L;, , is Poisson is open. Since
[0,1]x X C U, there is an open neighborhood V of X in E such that [0, []xV C U.
Thus, 7; is defined on V for all ¢ € [0, 1]. By the Moser lemma (Lemma 16), we
see that the flow of the time-dependent vector field

=T (77)

trivializes the family, i.e., (d);,s) (7s) = s whenever it is defined. Since 7 and its
first derivatives vanish along X, it follows that ¢Y fixes X and that its differential
is the identity on TE|yx. Arguing as before, the set where ¢Y is defined up
to # = 1 contains an open neighborhood V' C V of X, so we obtain a Poisson
diffeomorphism

oy (V' m0) = (o3 (V') 1). 0
4. The normal form theorem

The normal form theorem (Theorem 1) for a Poisson structure (M, 7r) around
a Poisson transversal X states that 7 and its local model (built out of 7 |x) are
isomorphic around X . In the symplectic case, this follows from the Moser argument
in a straightforward manner. For general Poisson manifolds, the proof is more
involved. The main difficulty is to put the foliation in normal form; namely, to find
a tubular neighborhood of X along the leaves of . If the foliation is regular, such
a construction can be performed by restricting a metric to the leaves and taking
leafwise the Riemannian exponential (cf. Example 12). If 7 is not regular, it is not
a priori clear if these maps glue to a smooth tubular neighborhood of X in M. We
will use instead a contravariant version of this argument in which we replace the
classical exponential from Riemannian geometry by its Poisson-geometric analog:
the contravariant exponential. The more surprising outcome is that a contravariant
exponential not only puts the foliation in normal form, but also provides a closed
extension and the required isomorphism to the local model. A funny consequence
is that a choice of Poisson spray X" for (M, ) puts all of its Poisson transversals
in normal form canonically and simultaneously!
We start by recalling some notions and results from contravariant geometry.

Definition 18. A Poisson spray X € ¥'(T*M) on a Poisson manifold (M, 7r) is a
vector field on 7*M such that

(1) pxX () =n¥(&), forall § € T*M,
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(2) myX =tX,forallt >0,

where p: T*M — M is the projection and m, : T*M — T* M is the multiplication
by 7. The flow ¢, of X is called the geodesic flow.
The contravariant exponential of X is the map

expy:U—M. £ pogi(§),

on an open set U C T*M where the geodesic flow is defined up to time 1. By
abuse of notation, we will write exp, : T*M — M, as if it were defined on 7* M.

Poisson sprays exist on every Poisson manifold. For example, if V is a connection
on T*M, then the map that associates to § € T*M the horizontal lift of 7#(£) is a
Poisson spray.

The main feature of Poisson sprays is that they produce symplectic realizations.

Theorem 19 [Crainic and Marcut 2011]. Given (M, ) a Poisson manifold and X
a Poisson spray, there exists an open neighborhood ¥ C T* M of the zero section,
on which the average of the canonical symplectic structure wean € Q2(T* M) under
the geodesic flow

1
(5) QX :=/ (d)f\()*wcan dta
0
is a symplectic structure on X, and the projection p : (X,Qy) — (M, m) is a
symplectic realization (i.e., a surjective Poisson submersion).

Let X C (M, ) be a Poisson transversal. As before, we denote by mx the
induced Poisson structure on X, and by wy := 7| y+*x. We are ready to state the
main result of this paper.

Theorem 20 (detailed version of Theorem 1). Let (M, ) be a Poisson manifold
and let X C M be a Poisson transversal. A Poisson spray X induces a closed
extension of 0 := —wy in a neighborhood of X in N*X, given by

Oy .= _QX|N*X S T(N*X,U).

The corresponding local model w(Gy) is isomorphic to & around X. Explicitly, a
Poisson diffeomorphism between open sets around X is given by the map

expy [N+x 1 (N X, 7(Gx)) => (M, ).

For the proof of Theorem 20, we need some properties of dual pairs. Recall
from [Weinstein 1971]:

Definition 21. A dual pair consists of a symplectic manifold (X, 2), two Poisson
manifolds (My, o) and (M7, 1), and two Poisson submersions

(Mo, m9) <= (2, Q) = (M1, m1)
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with symplectically orthogonal fibers:
ker ds® = ker dt.

The pair is called a full dual pair, if s and ¢ are surjective.
Dual pairs and Poisson transversals interact pretty well, as the following shows:

Lemma 22. Let (Mg, 79)<2-(2, Q)—> (M1, m1) be a dual pair, and let Xo C My
and X1 C M be Poisson transversals. Then ¥ :=s~1(Xo)Nt~1(X1) is a symplectic
submanifold that fits into the dual pair

(Xo, mx,) <= (2, Ql5) > (X1, 7x,).

Proof. First note that X is the inverse image of the Poisson transversal Xo x X1
under the Poisson map

(s5,1) 1 (2, Q) = (Mo, mo) x (M1, my).

By Lemma 7, (s, t) is transverse to Xo X X1, X is a symplectic manifold and (s, 7)
restricts to a Poisson map

(s,0): (Z,Q]s) > (Xo, wx,) X (X1, 7x,).
It remains to show that the maps
Si=slg:Z—>Xo and 7:=t|5:Z—> X,

are submersions with symplectically orthogonal fibers. Let m; := dim(M;) and
x; :=dim(X;). The fact that s and ¢ are submersions with orthogonal fibers implies
that dim(X) = mg + m;. By transversality of (s, ) and Xo x X1, we have that
codim(X) = codim(Xg x X1); thus dim(X) = x¢ + x;. Now, for a point p € X,
one clearly has kerd,f C (ker dpE)Qlf, and since X is symplectic, it follows that

dim(ker d,5) + dim(ker dp7) < dim(Z) = xo + x1.

On the other hand, we have that dim(ker d,5) > dim(Z) — dim(Xo) = x1, and
similarly dim(ker dj1) > x0, so we obtain dim(ker d,,5) = x1 and dim(ker dpt) = xo.
This implies that d,5 and dpt are surjective, and that ker d,s and kerd,t are
symplectically orthogonal. O

Lemma 23 shows how g, 71 and €2 are related.

Lemma 23. Let (My, ) <2 (2, Q) - (M1, m1) be a dual pair. Then the Dirac
structures Ly, corresponding to ; satisfy the following relation:

$*(Lrg) % = t*(L—g,).
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Proof. An element y € s*(L,m)_Q is of the form
A=Y +s"E—1yQ, where £ € T*My, s+ = Jrg(S).
Then, since s, Q7! (s*§) = ng (&), we have that
Y —(Q7H (s*E) ekerds = (Q HF(*T* My).

Hence there is n € T*M; such that

Y =@ D ") — (@ D).
Applying ¢, and €2 (separately) to both sides, we find that

.Y = —1,(Q H¥r*n) = —nf(n) and s*E—1yQ =1"n,
and hence
(=Y +sE—yQ=Y +t*net*(L_g).

This shows one inclusion; the other follows by symmetry. O

As a first step towards the proof of Theorem 20, we analyze what happens
infinitesimally.

Lemma 24. We have that Gy extends o, 6x € Y(N*X,0), and that exp is a
diffeomorphism between open sets around X .

Proof. We identify the zero section of T*M with M, and for x € M, we identify
Tx(T*M) = TyM & Ty M. The properties of the Poisson spray imply that the
geodesic flow fixes M, and that its differential along M is given (see [Crainic and
Marcut 2011]) by

Aty M ®TIM > TeM @ TEM,  (V,6) > (Y +17¥(§), 8).

In particular, exp, = p o ¢}( is a diffeomorphism around X, restricting to the
identity along X, and the following formula for €2y holds along M :

Qx((Y1.61), (Y2, £2)) = &2(Y1) —§1(Y2) + (51, 62).
Taking (Y;, &) € Tx X @ N; X = Tx(N*X), for x € X, we obtain
Qu((Y1.61). (Y2.62)) = 7 (1. 62) = wx (61, 62),
showing that 6y € T(N*X, —wy). O
Next, we observe that Theorem 19 implies the existence of self-dual pairs.

Lemma 25. Let X be a Poisson spray on the Poisson manifold (M, v), and denote
by Q x the symplectic form from Theorem 19. On an open neighborhood of the zero
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section X C T*M we have a full dual pair:
(M, 1) <2 (2, Q) 225 (M, —7).

Proof. Let X be an open neighborhood of the zero section on which the geodesic
flow ¢, is defined for all 7 € [0, 1], and on which €2y is nondegenerate. In the proof
of Theorem 19 from [Crainic and Marcuf 2011] it is shown that the symplectic
orthogonals of the fibers p are the fibers of exp,. To show that exp, pushes Q;l
down to a bivector on M, one could invoke Libermann’s theorem, and then, using
the formulas from the proof of Lemma 24, one could check that along the zero
section this bivector is indeed —m. We adopt a more direct approach. First, note
that —X is a Poisson spray for —m, and that on X_ := q&},((E), the geodesic flow
of —X is defined up to time 1. Moreover, 2_y is nondegenerate on 3_, because

1 1 1
L) 0y = /O L) (B! 1) e di = /0 ON ) e di = /O (64)* wean di
=Qx.

This also finishes the proof, since exp, is the composition of Poisson maps:

1
(2, Qx) 25 (3, Q_x) 2> (M, 7). 0
We are ready to conclude the proof.

Proof of Theorem 20. We use the self-dual pair from Lemma 25, which, by abuse
of notation, we write as if it were defined on the entire 7* M :

(M, 1) <2 (T*M, Qx) 225 (M, —7).

Using Lemma 22, we take the preimage under (p, exp,) of X x M to obtain a new
dual pair (again, the maps are defined only around X),

expy

|7
(X, mx) <2 (T*M|x, Q|7+ ply) ———2% (M, —11).

By Lemma 23, we have the following equality of Dirac structures:

—Q *
P (L) ¥ 00x = (expy |70 ar1y ) (L)

Since the left-hand side restricts along N*X to the Dirac structure of the local
model 7(Gy), we have

L@y = (€xpy IN+x)*(Ly).

Since expy |n*x is a diffeomorphism around X (Lemma 24), we see that it is a
Poisson diffeomorphism around X:

expy [n+x : (N* X, 7(Gx)) == (M, 7). 0
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5. Application: equivariant Weinstein splitting theorem

As an application of the normal form theorem (or rather of its proof), we obtain an
equivariant version of Weinstein’s splitting theorem around fixed points. A version
of this result with extra assumptions was obtained in [Miranda and Zung 2006].

Theorem 26 (detailed version of Theorem 2). Let (M, ) be a Poisson manifold
and G a compact Lie group acting by Poisson diffeomorphisms on M. If x € M is a
fixed point of G, then there are coordinates (P1, ..., Pnsq1s---qns V1s---»Vm) €
R2%+™ centered at x such that

n m
9 9 1 5 . 9
=Y At Y k(s A, @ix(0)=0,
=TT ijzle’k(y)ayj TG

and in these coordinates G acts linearly and keeps the subspaces R*" x {0} and
{0} x R™ invariant.

In other words, (M, ) is G-equivariantly Poisson diffeomorphic around x to an
open set around (0, x) in the product

(6) (TxL, ;") x (X, mx),

where (L, w) is the symplectic leaf through x, X is a G-invariant Poisson transver-
sal of complementary dimension, and G acts diagonally on (6).

On equivariant symplectic trivializations. In the proof of Theorem 26 we will use a
lemma on equivariant trivializations of symplectic vector bundles, which we present
here. We start with a result about symplectic vector spaces:

Lemma 27. Let (V, wg) be a symplectic vector space. There exist an open neigh-
borhood U(wg) of wg in A2V*, invariant under the group Sp(V, wo) of linear
symplectomorphisms of g, and a smooth map

b:U(wo) — GI(V), wr> by,

satisfying
bE(wo) = w, by, =id, s obyos =bhbg(y),

forall w € U(wo) and all s € Sp(V, wyp).
Proof. On the open set O := C\ (—o0, 0] consider the holomorphic square root,
V() :0—>C, Veatit .= /2402 4 cR e (-7, 7).

Denote the set of linear isomorphisms of V' with eigenvalues in O by O(V') C GI(V).
By holomorphic functional calculus [Wikipedia 2013], there is an “extension” of
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the square root to O(V'), which satisfies

(V) =x, Vo T=(Vx)7 J(roxoy ) =yoyroy~!, Var=(Vx)",

for every x € O(V) and every linear isomorphism y : V' — W.
Consider U(wg) := {wp o x | x € O(V)}, and define the map

b:U(wo) = Gl(V), by:=/wy'ow.

Note that via the identification A2V* C Hom(V, V*), the action of GI(V) on
A2V* becomes y*(w) = y*owoy. Let w = wg o x € U(wg), with x € O(V) and
s € Sp(V, wp). The following shows that U/ (wg) is Sp(V, wg)-invariant:

1

s*(w) =s*owgoxos = (s*owgos)o(s Loxos)=wpos oxosel(wy).

For the next condition, note first that
* / 1
b;:( a)aloa)) = a)oa)alza)OObwoa)o_,

b (wo) = b owyoby =wpob? =w.

therefore

Finally, for s € Sp(V, wg), we have that

sTlobyos= \/s_loa)gloa)OSZ \/s_loa)(jlo(s*)_los*oa)os

= \/(5* (@) 05* (@) = by+(u). H

Remark 28. The lemma can also be proved using the Moser argument. First
note that U/ (wp) can be described as the set of 2-forms w € A2V* for which
w; = twgy + (1 —t)w is nondegenerate for all ¢ € [0, 1]. The 2-form @ — wp has a
canonical primitive given by n:= %L g(w—wp), where £ is the Euler vector field of V.
Let X (w) be the time-dependent vector field defined by the equation tx, () @w: = 7.
The Moser argument shows that the time ¢ flow of X;(w) pulls twg + (1 —1)w to w,
and one can easily check that b, is the time-one flow of X;(w).

Lemma 29. Let (E,0) — X be a symplectic vector bundle, and let G be a compact
group acting on E by symplectic vector bundle automorphisms. If x € X is a
fixed point, there exist an invariant open set U C X around x and a G-equivariant
symplectic vector bundle isomorphism,

(E,UlU) l> (Ex X U9 Ux),

where the action of G on Ey x U is the product one.
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Proof. We first construct a G-equivariant product decomposition. Let U be a G-
invariant open set over which FE trivializes, and fix a trivialization E |y =~ E, x U.
The action of G on Ex x U is of the form g(e,y) = (py(g)e, gy). To make the
action diagonal, we apply the vector bundle isomorphism,

a:ExxU-—=ExxU, (e,y)r—(Ay(e),y), Ay:=/pr(g)_1py(g)du(g),

where p is the Haar measure on G. Note that A, is a linear isomorphism for y
near x, and that it satisfies

Agy o py(g) = px(g) o Ay.

Thus, by shrinking U, we may assume that the action on Ex X U is the product
action, which we simply denote by g(e, y) = (ge, gy).

The symplectic structures are given by a smooth family {0y },ey of bilinear
forms on E. This family is G-invariant, in the sense that it satisfies

Ogy = (g_l)*(Uy), geqG, yel.

Consider the open set U(ox) C A2E¥ and the map b : U(0y) — GI(Ey) from the
previous lemma. By shrinking U, we may assume that oy, € U(0x), forall y € U.
Since b:’;y (0x) = 0y, we have a “canonical” symplectic trivialization:

B:ExxU-—>ExxU, (e, y)r>(bg,e.y).

1

Now g~ ' : Ex — E preserves 0y, SO

bog, = b(g_l)*Uy =g0ba, og_l‘

Equivalently, the map S is G-equivariant:

B(ge,gy) = (bs,, ge,8y) = (gbs e, gy) = gP(e, y).

Thus, B o« is an isomorphism of symplectic vector bundles that trivializes the
symplectic structure, and turns the G-action into the product one. O

Proof of Theorem 26. We split the proof into four steps.

Step 1: a G-invariant transversal. Let (L, w) denote the leaf through x. Since x is
a fixed point, it follows that G preserves L. Thus G acts by symplectomorphisms
on (L, w).

We fix X C M, a G-invariant transversal through x such that dim(L)+dim(X) =
dim(M). The existence of such a transversal follows from Bochner’s linearization
theorem: the action around x is isomorphic to the linear action of G on T M ; by
choosing a G-invariant inner product on 7 M, we let X be an invariant ball around
the origin in the orthogonal complement of T L.
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Let 7|y = mxy + wy denote the decomposition of 7 along X. Then G acts by
Poisson diffeomorphisms on (X, my ), and by symplectic vector bundle automor-
phisms on (N*X, —wy).

Step 2: the G-invariant spray. Let X be a G-invariant Poisson spray. Such a vector
field can be constructed by averaging any Poisson spray; the conditions that a
vector field on T*M be a Poisson spray are affine. The flow of X is therefore
G-equivariant. By Theorem 20, and with the notations used there, we obtain a
G-equivariant Poisson diffeomorphism around X,

expy : (N*X,7(Gx)) = (M, 7),

where Gy € T(N*X, —wy) is automatically G-invariant.

Step 3: a G-equivariant symplectic trivialization. Note first that wy, regarded as a
map N*X — TM |y, yields a symplectic isomorphism,

wX,X . (N;Xi _wX,X) l> (TXL’a)X)‘

This remark and Lemma 29 imply that around the fixed point x, by shrinking X if
necessary, we can simultaneously trivialize the bundle (N * X, —wy) symplectically
and turn the action to a product action, hence, we obtain a G-equivariant symplectic
vector bundle isomorphism

W (pry: (TeL,wx) X X - X) =5 (p: (N*X, —wyx) > X),

where the action on Ty L x X is the product action. Therefore, @y := ¥*(Gy) is a
closed G-invariant extension of wy, i.e., ®x € Y (Tx L X X, wx). Moreover, the map

W (TxLx X, w(@x)) > (N*X, 7(Gx))
is a G-equivariant Poisson diffeomorphism, where 7 (@x) denotes the Poisson

structure around X corresponding to the Dirac structure pr5 (L )EX.

Step 4: the G-equivariant Moser argument. Note that w, has a second extension
to Ty L x X given by @, := prj (wx). The corresponding local model is the Poisson
structure from the statement

(TyL x X, (@) = (Tx L, ;1) x (X, 7x).

By Steps 2 and 3, we are left to find a G-equivariant diffeomorphism around X
that sends 7 (@) to 7 (@y). For this we need the equivariant version of Lemma 17,
whose proof can be easily adapted to this setting: first, note that the 2-form @, — @y
has a primitive

ne QY Tyl x X)
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such that 7,,) = 0 for all y € X. Since both @, and @y are G-invariant, by
averaging, we can make n G-invariant as well. Consider the time-dependent
vector field,

Y; = —”f(ﬂ),

where 77; := (@ )'?". The time-one flow d)ll,’o sends g = w(wy) to w1 = 7w (wy).
Since both 7; and n are G-invariant, it follows that d))l,’o is G-equivariant as well.
This concludes the proof. O
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