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COMAN CONJECTURE FOR THE BIDISC

ŁUKASZ KOSIŃSKI, PASCAL J. THOMAS AND WŁODZIMIERZ ZWONEK

We show the equality between the Lempert function and the Green function
with two poles with equal weights in the bidisc, thus giving the positive an-
swer to a conjecture of Coman in the simplest unknown case. Actually, we
prove a slightly more general equality which in some sense is natural when
studied from the point of view of the Nevanlinna–Pick problem in the bidisc.

1. Presentation of the problem and its history

Let D be a domain in Cn and let ∅ 6= P := {p1, . . . , pN } ⊂ D where pj 6= pk ,
j 6= k. Let also ν : P→ (0,∞). Denote νj := ν(pj ). Let z ∈ D.

Define lD(z; P; ν) := lD(z; (p1, ν1), . . . , (pN , νN )) as the infimum of the num-
bers

N∑
j=1

νj log |λ j |

such that there is an analytic disc ψ : D → D with ψ(0) = z, ψ(λ j ) = pj,
j = 1, . . . , N.

Recall that lD(z; P; ν) = min{lD(z; A; ν|A) : ∅ 6= A ⊂ P} (see [Nikolov and
Pflug 2006] for arbitrary D or [Wikström 2001] for D convex). The last equality
will be of interest for us since in the case of taut domains (convex and bounded
domains are taut) the infimum in the definition of lD(z; P; ν) will be attained by
some analytic disc defining lD(z; A; ν|A) for some ∅ 6= A ⊂ P.

The function lD( · ; P; ν) is called the Lempert function with the poles at P and
with the weight function ν (or weights νj ).

Analoguously we define the pluricomplex Green function gD(z; P; ν) with the
poles at P and the weight function ν as the supremum of numbers u(z) over all
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412 ŁUKASZ KOSIŃSKI, PASCAL J. THOMAS AND WŁODZIMIERZ ZWONEK

negative plurisubharmonic functions u : D→[−∞, 0) with logarithmic poles at P,
i.e., such that

u( · )− νj log ‖ · −pj‖

is bounded above near pj, j = 1, . . . , N.
It is trivial that gD(z; P; ν) ≤ lD(z; P; ν). D. Coman [2000] conjectured the

equality lD( · ; P; ν)= gD( · ; P; ν) for all convex domains D.
The conjecture has an obvious motivation in the Lempert Theorem [1981] which

implies the equality in the case N = 1, and in the fact that the equality in the case
of the unit ball and two poles with equal weights (D = Bn , N = 2, ν1 = ν2) holds
(see [Coman 2000] and also [Edigarian and Zwonek 1998]).

The conjecture turned out to be false. The first counterexample was found in
[Carlehed and Wiegerinck 2003] (D := D2, N = 2 and different weights). Later a
counterexample was found in the case of the bidisc (D = D2) with N = 4 and all
weights equal (see [Thomas and Trao 2003]).

The simplest nontrivial case that was not clear yet was the case of the bidisc, two
poles and equal weights. Recall that a partial positive answer in this case was found
in [Carlehed 1999] (see also [Edigarian and Zwonek 1998]) in the case the poles
were lying on D×{0}. In [Wikström 2003] numerical computations were carried
out which strongly suggested that the equality in the case D =D2, N = 2, ν1 = ν2

should hold. The aim of this paper is to show that actually the Coman conjecture
holds in the bidisc (D = D2), N = 2, two arbitrary poles and ν1 = ν2. In our proof
we show even more: the equality of the Carathéodory function (defined below) and
the Lempert function with two poles and equal weights in the bidisc. The methods
we use originated with the study of the Nevanlinna–Pick problem for the bidisc.

2. Nevanlinna–Pick problem, m-complex geodesics, formulation of the
solution

As already mentioned, the aim of the paper is to show a more general result than
one claimed in the Coman conjecture for the bidisc, two poles and equal weights.
To formulate the main result we need to introduce a new function. Since we shall
be interested in equal weights we restrict ourselves from now on to the case when
ν ≡ 1. To make the presentation clearer we adopt the notation

dD(z, {p1, . . . , pN }) := dD(z; {(p1, 1), . . . , (pN , 1)})

(d = l or g) where the pj ∈ D are pairwise disjoint, j = 1, . . . , N.
Let us recall the definition of the Carathéodory function with the poles at pj

(with weights equal to one)

(1) cD(z, p1,..., pN ) := sup{log|F(z)| : F ∈O(D,D),F(pj )= 0, j = 1,...,N }.



COMAN CONJECTURE FOR THE BIDISC 413

It is simple to see that

cD( · , p1, . . . , pN )≤ gD( · , p1, . . . , pN )≤ lD( · , p1, . . . , pN ).

Our main result is the following:

Theorem 1. Let p, q ∈ D2 be two distinct points. Then

cD2(z; p; q)= lD2(z; p; q) for z ∈ D2.

Note that the function F for which the supremum in the definition of the
Carathéodory function is attained always exists. On the other hand, in the case
where D is a taut domain, for a point z ∈ D and pole set P there are always a
set ∅ 6= Q = {q1, . . . , qM} ⊂ P and a mapping f ∈ O(D, D), λ j ∈ D such that
f (0) = z, f (λ j ) = q j, j = 1, . . . ,M and lD(z; P) = lD(z; Q) =

∑M
j=1 log |λ j |.

Consequently, in case the equality cD(z; p1, . . . , pN ) = lD(z; p1; . . . ; pN ) holds,
there exist f ∈O(D, D), F ∈O(D,D) such that f (0)= z, f (λ j )= q j, F(q j )= 0,
|F(0)| =

∏M
j=1 |λ j |, j = 1, . . . ,M, and (thus) F ◦ f is a finite Blaschke product

of degree M ≤ N. This observation leads us to introduce and consider the notions
of m-extremals and m-geodesics.

First recall that given a system of m pairwise different numbers (λ1, . . . , λm),
λ j ∈D and a domain D⊂Cn , a holomorphic mapping f :D→ D is called a (weak)
m-extremal for (λ1, . . . , λm) if there is no holomorphic mapping g : D→ D such
that g(D) b D and g(λ j ) = f (λ j ), j = 1, . . . ,m. In case f is m-extremal with
respect to any choice of m pairwise different arguments the mapping f is called
m-extremal. A holomorphic mapping f : D→ D is called an m-geodesic if there
is an F ∈O(D,D) such that F ◦ f is a finite Blaschke product of degree at most
m− 1. The function F will be called the left inverse to f . It is immediate to see
that any m-geodesic is an m-extremal.

The notions of (weak) m-extremals and m-geodesics, which have clear origin
in Nevanlinna–Pick problems for functions in the unit disk, have been recently
introduced and studied in [Agler et al. 2013; 2015], [Kosiński and Zwonek 2016a],
[Kosiński 2014] and [Warszawski 2015]. It is worth recalling that the description of
m-extremals in the unit disc is classical and well known. The mapping h ∈O(D,D)

is m-extremal for (λ1, . . . , λm), λ j ∈D if and only if h is a finite Blaschke product
of degree at most m − 1. Moreover, in such a case the interpolating function is
uniquely determined (see [Pick 1915]).

The remark after Theorem 1 on the form of functions for which the extremum
in the definition of the Lempert function may be attained may be formulated as
follows. For any taut domain D, for any system of poles P = {p1, . . . , pN } ⊂ D
and any z ∈ D \ P there are a subset Q = {q1, . . . , qM} ⊂ P and f ∈O(D, D) such
that f (λ j )= q j, j = 1, . . . ,M, f (0)= z, and f is a weak (M + 1)-extremal for
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(0, λ1, . . . , λM). Assuming additionally the equality cD(z; P) = lD(z; P) would
then imply the existence of a special (M+1)-geodesic, the one having some subset
Q ⊂ P in its image but such that the left inverse F maps the whole set P to 0.
Consequently a necessary (but not sufficient!) condition for having the desired
equality at z for the set of poles P is the existence of some (M + 1)-geodesic
passing through a subset Q ⊂ P and mapping 0 to z.

Below we present a result on uniqueness of left inverses for m-geodesics in
convex domains in C2 which we shall use in a (very special) case of the bidisc.
The result is a simple generalization of a similar result formulated for 2-geodesics
that can be found in [Kosiński and Zwonek 2016b] (however, for the clarity of the
presentation we restrict ourselves to dimension two). We also present its proof here
for the sake of completeness.

Lemma 2. Let D be a convex domain in C2, λ j ∈ D, j = 1, . . . ,m, m ≥ 2, be
pairwise different and let f, g : D→ D be such that f (λ j ) = g(λ j ) =: z j and
f 6≡ g. Assume additionally that F,G ∈ O(D,D) are such that F ◦ f and G ◦ g
are Blaschke products of degree at most m − 1. Then F ≡ G. Moreover, for any
µ ∈ C and λ ∈ D such that µ f (λ)+ (1−µ)g(λ) ∈ D we have the equality

F(µ f (λ)+ (1−µ)g(λ))= F( f (λ)).

Proof. For t ∈ [0, 1] define ht := t f + (1− t) f ∈ O(D, D). Then ht(λ j ) = z j,
j = 1, . . . ,m, so, due to the uniqueness of the solution of the extremal problem in
the disk, we get that F ◦ ht ≡ G ◦ ht =: B, t ∈ [0, 1], is a finite Blaschke product
of degree ≤ m− 1. Consequently, we get the equality F ≡ G on the set

{t f (λ)+ (1− t)g(λ)= g(λ)+ t ( f (λ)− g(λ)) : t ∈ [0, 1], λ ∈ D}.

Moreover, the identity principle (applied to the map µ 7→ F(µ f (λ)+ (1−µ)g(λ)))
implies that

F(µ f (λ)+ (1−µ)g(λ))= G(µ f (λ)+ (1−µ)g(λ))= B(λ)

for all (µ, λ) ∈ V where V is the set (domain) of all (µ, λ) ∈ C×D such that

8(µ, λ) := µ f (λ)+ (1−µ)g(λ)= g(λ)+µ( f (λ)− g(λ)) ∈ D.

Note that V ⊃ [0, 1]×D. The equality mentioned earlier gives, in particular, F ≡G
on 8(V ).

Let ∅ 6=U bD be a domain such that f (λ) 6= g(λ), λ ∈U, and B|U is injective.
Let V ⊃� :=U1×U ⊃ [0, 1]×U be a domain. We claim that 8|� is injective,

which would finish the proof as in such a case 8(�) would be open and then the
application of the identity principle would imply that F ≡ G on D.
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To see the injectivity take (µ1, λ1), (µ2, λ2)∈� such that8(µ1, λ1)=8(µ2, λ2).
Then B(λ1) = B(λ2) so the injectivity of B|U implies that λ1 = λ2 which (since
f (λ1)− g(λ1)= f (λ2)− g(λ2) 6= 0) gives the equality µ1 = µ2. �

3. Properties of extremals for the Lempert function in case the Coman
conjecture holds

Let us now restrict our considerations to the case of the bidisc and two poles
p, q ∈ D2, p 6= q. Without loss of generality we may assume that z = (0, 0).
Simple continuity properties of the Lempert and Carathéodory function allow us to
reduce the Coman conjecture to the proof of the equality

c(p, q) := cD2((0, 0), p, q)= lD2((0, 0), p, q)=: l(p, q)

for (p, q) from some open, dense subset of D2
×D2

\ 4 to be defined later (4
denotes the diagonal in the corresponding Cartesian product X × X, here X = D2).

Below we shall present the starting point for our considerations. The proof
contains the reasoning which will lead us to the structure of the proof of the equality
c(p, q)= l(p, q) presented later.

Lemma 3. Let p, q ∈ D2
\1 be such that |p1| 6= |p2|, |q1| 6= |q2|, p1 6= q1 and

p2 6= q2. Then the equality c(p, q)= l(p, q) holds if an only if one of the following
conditions is satisfied:

(1) up to a permutation of coordinates |p2|< |p1|, |q2|< |q1| and m(p2/p1,q2/q1)≤

m(p1, q1), or p2 = ωp1, q2 = ωq1 for some unimodular ω, where m is the
Möbius distance on the disc, see Section 4,

(2) there exist α, β, c in the unit disc, a unimodular constant ω, and t ∈ (0, 1) such
that an analytic disc where mα, mβ are (idempotent) Möbius maps

ϕ(λ)= λ(mα(λ), ωmβ(λ)), λ ∈ D,

satisfies ϕ(c)= p and ϕ(mγ (c))= q, where γ = tα+ (1− t)β.

In order to prove Lemma 3 we need the following technical result:

Lemma 4. Let α, β ∈ D, α 6= β, t ∈ [0, 1], ω, τ ∈ T. Define

ϕ(λ) := λ(mα(λ), ωmβ(λ))

and let

(2) G(x) :=
t x1+ (1− t)ωx2+ τωx1x2

1+ τ((1− t)x1+ tωx2)
, x = (x1, x2) ∈ D2.

Set G(ϕ(λ)) =: λ f (λ), λ ∈ D. Denote f (0) = γ := tα+ (1− t)β. Then f is an
automorphism of D (equal to mγ ) if and only if τ = (α−β)/(α−β).
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Proof. The proof of the above lemma reduces to showing that in the inequality
| f ′(0)|/(1− | f (0)|2) ≤ 1 the equality holds if and only if τ = (α−β)/(α − β)
which is elementary although tedious. �

Proof of necessity in Lemma 3. Assume that we have the equality for (p, q). There
are two possibilities (up to a permutation of variables p and q):

(i) there exist a holomorphic ϕ : D→ D2, F : D2
→ D and c ∈ (0, 1) such that

ϕ(0)= (0, 0), ϕ(c)= p and F(p)= F(q)= c, F(0, 0)= 0.
Then F(ϕ(λ)) = λ, so ϕ(λ) = (ωλ,ψ(λ)) where |ω| = 1 (up to switching

coordinates). If ψ /∈ Aut(D) then Lemma 2 implies that F(z) = ωz1 so p1 = q1

and |p2| ≤ |p1|.
The second subcase is when ψ ∈ Aut(D) and ψ(0)= 0. But then |p1| = |p2|.

(ii) The function ϕ realizing the infimum is a weak 3-extremal with respect to
(0, c, d) such that ϕ(0) = (0, 0), ϕ(c) = p, ϕ(d) = q. The special left inverse
F : D2

→ D would satisfy the equalities F(p) = F(q) = 0 and F(0) = cd.
Consequently F ◦ϕ = mcmd . We have two possibilities:

(a) ϕ is a geodesic (2-extremal). This holds if either

• |p2|< |p1|, |q2|< |q1| and m(p2/p1, p2/p1)≤ m(p1, q1), or

• |p1|< |p2|, |q1|< |q2| and m(p1/p2, q1/q2)≤ m(p2, q2), or

• p2 = ωp1 and q2 = ωq1 for some unimodular ω.

(b) ϕ is not a 2-extremal. First note that ϕ(λ)=λψ(λ)whereψ is a 2-extremal (geo-
desic). Consequently, up to a permutation of the coordinates, ϕ(λ)= λ(m(λ), h(λ)),
where m is some Möbius map and h ∈ O(D,D). In the case h is not a Möbius
map the mapping ϕ is not uniquely determined — in the sense that for the triple
(0, c, d) there also exists another 3-extremal mapping ϕ̃ which maps this triple
of numbers to the same triple of points. But existence of the left inverse already
gives its uniqueness (see Lemma 2); moreover, it follows from the same lemma that
F(λm(λ), µ)=mc(λ)md(λ) for any µ∈D, which easily implies that F(z)= a(z1),
where a is some Möbius map. But the last property may hold only if p1 = q1.

Thus the generic case for ϕ being a 3-extremal from the definition of the Lempert
function which are not 2-extremals is the one given by the formula

(3) ϕ(λ)= λ(ω′mα(λ), ωmβ(λ)), λ ∈ D,

where α, β ∈D and ω′, ω ∈ T. Multiplying α, β, c, d by a unimodular constant one
may assume that ω′ = 1.

Our aim is now to show what the necessary form of functions F ∈ O(D2,D)

such that F ◦ϕ is a Blaschke product should be. We present below the reasoning,
employing some results of McCarthy and Agler. Let us also mention that G. Knese
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(personal communication, 2014) let us know about another approach which leads
to the same form of left inverses.

We are looking for a form of a function F : D2
→ D such that F ◦ ϕ = mcmd .

Set G := mcd ◦ F. Clearly G ◦ ϕ(0) = 0, so it suffices to consider the following
situation:

G(λmα(λ), ωλmβ(λ))= λmγ (λ), λ ∈ D.

We are looking for a formula for G. Note that we consider only the case when
α 6= β. The cases γ = α or β = γ are also excluded.

Assuming that G and γ do exist consider the following Pick problem:
(0, 0) 7→ 0
(γmα(γ ), ωγmβ(γ )) 7→ 0,
(λ′mα(λ

′), ωλ′mβ(λ
′)) 7→ λ′mγ (λ

′),

where λ′ is any point in D, λ′ 6= λ. It is quite clear that this problem is strictly 2-
dimensional, extremal and nondegenerate (with the notions understood as defined in
[Agler and McCarthy 2002, Chapter 12], itself drawing from [Agler and McCarthy
2000] where the terminology is slightly different). Therefore, it follows from [Agler
and McCarthy 2002, Theorem 12.13, p. 201–204] that the above problem has a
unique solution which is given by a rational inner function of degree 2, with no
terms in x2

1 or x2
2 . It is easily seen that the solution to this problem is a left inverse

we are looking for. Therefore,

G(x)=
Ax1+ Bx2+Cx1x2

1+ Dx1+ Ex2+Gx1x2
.

Now we proceed in a standard way: comparing multiplicities in the poles of mα

and mβ , etc. After additional calculations we get that A+ωB = 1 and then

(4) G(x)=
t x1+ (1− t)ωx2− ηx1x2

1− ((1− t)x1+ t x2)ω
,

where t ∈ (0, 1) and η∈T. In particular, γ = tα+(1−t)β. It is clear that d=mγ (c),
which finishes the proof of necessity. �

Proof of sufficiency in Lemma 3. Assume first that condition (1) is satisfied. In
other words there is ψ ∈O(D,D) is such that ψ(p1)= p2/p1, ψ(q1)= q2/q1. Let
F(z) := m p1(z1)mq1(z1), z ∈ D2. Put

ϕ(λ) := (λ, λψ(λ)), λ ∈ D.

Observe that ϕ(0) = (0, 0), ϕ(p1) = p, ϕ(q1) = q, F(0, 0) = p1q1 and F(p) =
F(q)= 0 which give the equality

c(p; q)≤ l(p; q)≤ log |p1q1| ≤ c(p; q).
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Now suppose that (2) holds, i.e., the analytic disc λ 7→ϕ(λ)=λ(mα(λ), ωmβ(λ))

satisfies ϕ(c)= p and ϕ(mγ (c))= q. Let G be the function given by the formula
(2) with τ = (α−β)/(α−β). It follows from Lemma 4 that G(ϕ(λ))= λmγ (λ)

for λ ∈ D. In particular
F := mcmγ (c) ◦G

satisfies F ◦ϕ = τmcmmγ (c) for some τ ∈ T. This gives the equality

c(ϕ(c), ϕ(mγ (c)))= l(ϕ(c), ϕ(mγ (c))). �

The above result is a key one — it will turn out that the set of pairs of points
(ϕ(λ), ϕ(mγ (λ))) (parametrized by (α, β, c, t, ω)) will build an open set, which
together with the one constructed with the help of extremals for the Lempert
functions being 2-geodesics will be dense in D2

×D2 — that will complete the
proof.

4. Proof of the equality c( p; q) = l( p; q)

To prove the Coman conjecture for the bidisc we consider open sets in D2
×D2

\4

whose union forms a dense subset of D2
×D2

\ 4 and on each part the desired
equality holds. Let us denote σ(p, q) := ((p2, p1), (q2, q1)), p, q ∈ D2. Define U
as the set of points (p; q) ∈ D2

×D2 satisfying the following inequalities

(5) |p2|< |p1|, |q2|< |q1| and m(p2/p1, q2/q1) < m(p1, q1),

where m is the Möbius distance on the unit disc given by the formula m(λ1, λ2) :=∣∣(λ1− λ2)/(1− λ1λ2)
∣∣.

Denote
�1 :=U ∪ σ(U ).

The equality on �1 was proved in Lemma 3.
We shall consider now the set given by 3-geodesics that are not 2-geodesics and

that appeared in Lemma 3.
Consider a real-analytic mapping

8 : D×D×D×T× (0, 1)→ D2
×D2

given by the formula (below and in the sequel γ := tα+ (1− t)β)

(α, β, c, ω, t) 7→
(
ϕα,β,ω(c), ϕα,β,ω(mγ (c))

)
,

where
ϕα,β,ω(ζ ) := (ωζmα(ζ ), ζmβ(ζ )), ζ ∈ D.

Motivated by the considerations in Section 3 we define open sets.
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Denote A := {(p, q) ∈ D2
×D2

: p1 = q1 or p2 = q2} and

(6) F1 := {(p, q) ∈ D2
×D2

: |p2|> |p1| and |q2|< |q1|}.

We also define the set F2 as the set of points (p, q) ∈ D2
× D2 satisfying the

following inequalities:

(7) |p2|< |p1| and |q2|< |q1| and m
( p2

p1
,

q2

q1

)
> m(p1, q1).

Let F3 = σ(F1), and F4 = σ(F2). Let E j := Fj \A.
Define

�2 := E1 ∪ E2 ∪ E3 ∪ E4.

Certainly the sets E j are disjoint and open. Moreover, they are connected. Actually,
A is an analytic set so it is sufficient to show the connectivity of Fj. But F1 is the
image of D×D∗×D∗×D under the mapping λ 7→ (λ1λ2, λ2, λ4, λ3λ4). On the other
hand the set F2 is the image, under the mapping λ 7→ (λ1, λ1λ2, λ3, λ3λ4) of the set
B := {λ∈D∗×D×D∗×D :m(λ1, λ3)<m(λ2, λ4)}. To show connectedness of the
last set it suffices to show that B̃ := {λ ∈D×D×D×D : m(λ1, λ3) < m(λ2, λ4)}

is connected, as B is obtained from B̃ by removing an analytic set. This is the case
because any point λ ∈ B̃ may be joined by the curve [0, 1] 3 t 7→ (tλ1, λ2, tλ3, λ4)

with (0, λ2, 0, λ4). And now it is sufficient to see that the set {0}×D∗×{0}×D∗

is arc-connected.
Let G j :=8

−1(E j ). To finish the proof of the assertion it suffices to show that

8|G j : G j → E j

is surjective. In fact, in such a case 8(G j )= E j so the equality l = c holds on �2,
which together with �1 builds a dense subset of D2

×D2
\4.

Therefore, to finish the proof of the theorem we go to the proof of the surjectivity
of the mappings defined above.

Without loss of generality we may restrict to the cases j = 1, 2.
First note that the sets G j are nonempty. Therefore, to finish the proof it is

sufficient to show that 8(G j ) is open and closed in E j.
First we show that 8(G j ) is closed. The proof may be conducted with the

standard sequence procedure; however, we shall make use of considerations that
were given in Section 3.

Take (p, q) in the closure of 8(G j ) with respect to E j. The continuity property
implies that c(p, q)= l(p, q). It follows immediately from Lemma 3 that (p, q)
lies in 8(G j ).

To show that the image is open it suffices to prove that 8 is locally injective.
So assume that 8(α, β, c, ω, t)=8(α̃, β̃, c̃, ω̃, t̃).
Let ϕ := ϕα,β,ω, ϕ̃ := ϕα̃,β̃,ω̃.
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Let F(x) = (ωt x1 + (1− t)x2 + ηx1x2)/(1− ((1− t)ωx1 + t x2)η), where η
is properly chosen. It simply follows from the previous discussion that F is a
left inverse to both ϕ and ϕ̃. Therefore, F = F̃, where F̃ denotes the appropriate
left inverse to ϕ̃. Thus t = t̃ and ω = ω̃. Moreover, cmγ (c) = c̃m γ̃ (c̃) =: l 6= 0.
Therefore, it suffices to show the local injectivity of the function

9 : (α, β, c) 7→
(

cmα(c),
l
c

mα

( l
c

)
, cmβ(c),

l
c

mβ

( l
c

))
defined for (α, β, c)∈D3 such that (z, w)=8(α, β, c) satisfies |z1| 6= |z2|, |w1| 6=

|w2|, z1 6= w1 and z2 6= w2 (in particular, α 6= β, c 6= 0).

Proposition 5. 9 is locally injective. Moreover, 9 is two-to-one.

Proof. Observe first that 9(α, β, c) = 9(−α,−β,−c). Therefore, to get the
assertion, it suffices to show that for fixed points z := (z1, z2), w := (w1, w2)

such that z1 6= z2, w1 6= w2, z1 6= w1 and z2 6= w2 the equation 9(α, β, c) =
(z1, z2, w1, w2) has at most two solutions.

From the equation we deduce that

α = c
z2(1− z1/ l)

z2− z1
+

1
c

z1(z2− l)
z2− z1

, and α = c
1− z2/ l
z1− z2

+
1
c

z1− l
z1− z2

,

β = c
w2(1−w1/ l)
w2−w1

+
1
c
w1(w2− l)
w2−w1

, and β = c
1−w2/ l
w1−w2

+
1
c
w1− l
w1−w2

.

We can write the above equations in the form(
α

β

)
= M

(
c

1/c

)
,

(
α

β

)
= N

(
c

1/c

)
,

where M, N ∈ C2×2. Set v :=
( c

1/c

)
. The equations imply that Mv = Nv.

Notice that

det M =
z2(1− z1/ l)w1(w2− l)−w2(1−w1/ l)z1(z2− l)

(z2− z1)(w2−w1)
,

det N =
(1− z2/ l)(w1− l)− (1−w2/ l)(z1− l)

(z2− z1)(w2−w1)
.

The hypotheses made on z andw ensure that (1−z2/ l)(w1−l) and (1−w2/ l)(z1−l)
cannot vanish simultaneously, so if det N = 0, we see that the equation det M = 0
reduces to z2w1− z1w2 = 0. Since l 6= 0, this together with det N = 0 would imply
z1 = z2 or z1 = w1, which is excluded. Therefore at least one of the matrices M
or N is invertible. Suppose for now that M is invertible, we have v = Pv, with
P := M−1 N. Since v = Pv, we see that v = P Pv.

Since M
(

l
1

)
=

(
l
l

)
and N

(
l
1

)
=

(
1
1

)
, then P P

(
l
1

)
= |l|−2

(
l
1

)
, so that we

have an eigenvalue |l|−2 > 1 of P P , and P P 6= I . So dim ker(I − P P)≤ 1, which
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means, since v cannot be 0, that there is a nonzero vector w ∈ C2, depending only
on z, w, l, such that v is collinear to w, which implies c2

= w1/w2. So we have at
most two possible values for (α, β, c).

If det M = 0, then N is invertible and we reason in the same way starting from
v = N−1 Mv. �
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