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ENDOTRIVIAL MODULES:
A REDUCTION TO p′-CENTRAL EXTENSIONS

CAROLINE LASSUEUR AND JACQUES THÉVENAZ

We examine how, in prime characteristic p, the group of endotrivial mod-
ules of a finite group G and the group of endotrivial modules of a quotient
of G modulo a normal subgroup of order prime to p are related. There
is always an inflation map, but examples show that this map is in general
not surjective. We prove that the situation is controlled by a single central
extension, namely, the central extension given by a p′-representation group
of the quotient of G by its largest normal p′-subgroup.

1. Introduction

Endotrivial modules play an important role in the representation theory of finite
groups. They have been classified in a number of special cases; see, e.g., the recent
papers [Carlson et al. 2014a; Lassueur and Mazza 2015b] and the references therein.
Over an algebraically closed field k of prime characteristic p, endotrivial modules
for a finite group G form an abelian group T (G), which is known to be finitely
generated. One of the main question is to understand the structure of T (G), and, in
particular, of its torsion subgroup TT (G).

We let X (G) be the subgroup of TT (G) consisting of all one-dimensional
representations, that is, X (G) ∼= Hom(G, k×). We also let K (G) be the kernel
of the restriction map ResG

P : T (G)→ T (P) to a Sylow p-subgroup P of G. It
is known that X (G) ⊆ K (G) ⊆ TT (G) and that K (G) = TT (G) in almost all
cases (namely if we exclude the cases when a Sylow p-subgroup of G is cyclic,
generalized quaternion, or semidihedral). Moreover, there are numerous cases,
including infinite families of groups G, for which K (G)= X (G). However, this is
not always the case, and the structure of K (G) is not understood in general.

Let Op′(G) denote the largest normal subgroup of G of order prime to p and set
Q := G/Op′(G) for simplicity. There is always an inflation homomorphism

InfG
Q : T (Q)→ T (G)
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which is easily seen to be injective. But examples show that it is in general not
surjective, so we cannot expect an isomorphism between T (G) and T (Q). The
present article analyzes how T (G) and T (Q) are related, by making use of a
suitable central extension of Q. More precisely, associated with Q, there is a
p′-representation group Q̃, which is a central extension with kernel of order prime
to p. This controls the behavior of projective representations of Q (in the sense of
Schur). When Q is a perfect group, then Q̃ is unique and is also called the universal
p′-central extension of Q. When Q is not perfect, then Q̃ may not be unique.

The present work is based on a key result by the first author and S. Koshitani
[Koshitani and Lassueur 2016]. In the course of their investigation of endotrivial
modules for a finite group with dihedral Sylow 2-subgroups, they proved a general
result [op. cit., Theorem 4.4] about endotrivial modules for an arbitrary group G in
the presence of a normal subgroup N of order prime to p, under mild hypotheses
on G (see Hypothesis 3.1). Their result uses modules over twisted group algebras
of G/N . Taking Q = G/N with N = Op′(G), we can view such modules as
modules over the ordinary group algebra of the central extension Q̃. In this way,
we can show that the structure of T (G) is closely related to the structure of T (Q̃).
Our main result is as follows:

Theorem 1.1. Let G be a finite group of p-rank at least 2 and no strongly p-embed-
ded subgroups. Let Q̃ be any p′-representation group of the group Q := G/Op′(G).

(a) There exists an injective group homomorphism

8G,Q̃ : T (G)/X (G)→ T (Q̃)/X (Q̃).

In particular, 8G,Q̃ maps the class of InfG
Q (W ) to the class of Inf Q̃

Q (W ), for
any endotrivial k Q-module W .

(b) The map 8G,Q̃ induces by restriction an injective group homomorphism

8G,Q̃ : K (G)/X (G)→ K (Q̃)/X (Q̃).

(c) In particular, if K (Q̃)= X (Q̃), then K (G)= X (G).

We note that the construction of the map 8G,Q̃ relies on [op. cit., Theorem 4.4],
which itself relies on Navarro and Robinson [Navarro and Robinson 2012], whose
proof makes use of the classification of finite simple groups. This construction
will be made precise in Section 4. Examples show that 8G,Q̃ is in general not
surjective (see Section 7), but the theorem provides some information on K (G), for
all groups G such that G/Op′(G)= Q. In particular, the question of the equality
K (G)= X (G) is reduced to the same question for the single group Q̃.

We also conjecture that 8G,Q̃ induces an isomorphism on the torsion-free part
of T (G) and T (Q̃) (see Section 5). Moreover, in case Q is perfect, then there is an
alternative approach to 8G,Q̃ which we present in Section 6.
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The two main assumptions on G in Theorem 1.1 are needed for applying the
results of [Koshitani and Lassueur 2016]. However, these assumptions are not
really restrictive because endotrivial modules are completely understood in the
two excluded cases: they are classified if the p-rank is 1 [Mazza and Thévenaz
2007; Carlson et al. 2013], and T (G) ∼= T (H) if G has a strongly p-embedded
subgroup H ; see [Mazza and Thévenaz 2007, Lemma 2.7].

The two assumptions also allow us to prove that T (G)∼= T (G/[G, A]), where
A = Op′(G), or in other words that the extension

1−→ A −→ G −→ Q −→ 1

with kernel A of order prime to p can always be replaced by the central extension

1−→ A/[G, A] −→ G/[G, A] −→ Q −→ 1.

This is explained in Section 3.

2. Notation and preliminaries

Throughout, unless otherwise specified, we use the following notation. We let k
denote an algebraically closed field of prime characteristic p. We assume that all
groups are finite, and that all modules over group algebras are finitely generated,
and we set ⊗ := ⊗k . If G is an arbitrary finite group and V is a kG-module, we
denote by ρV : G→ GL(V ) the corresponding k-representation, and we denote by
πV : GL(V )→ PGL(V ) the canonical surjection. Furthermore, we denote by V ∗

the k-dual of V endowed with a kG-module structure via (g f )(v)= f (g−1v) for
every g ∈ G, f ∈ V ∗, v ∈ V.

Assuming moreover that p | |G|, we recall that a kG-module V is called endo-
trivial if there is an isomorphism of kG-modules Endk(V )∼= k⊕ (proj), where k
denotes the trivial kG-module and (proj) some projective kG-module, which might
be zero. Any endotrivial kG-module V splits as a direct sum V = V0⊕(proj) where
V0, the projective-free part of V, is indecomposable and endotrivial. The relation

U ∼ V ⇐⇒ U0 ∼= V0

is an equivalence relation on the class of endotrivial kG-modules, and T (G) denotes
the resulting set of equivalence classes (which we denote by square brackets). Then
T (G), endowed with the law [U ] + [V ] := [U ⊗ V ], is an abelian group called the
group of endotrivial modules of G. The zero element is the class [k] of the trivial
module and −[V ] = [V ∗], the class of the dual module V ∗. By a result of Puig, the
group T (G) is known to be a finitely generated abelian group; see, e.g., [Carlson
et al. 2006, Corollary 2.5].
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We let X (G) denote the group of one-dimensional kG-modules endowed with the
tensor product⊗, and recall that X (G)∼=Hom(G, k×)∼= (G/[G,G])p′ . Identifying
a one-dimensional module with its class in T (G), we consider X (G) as a subgroup
of T (G).

Furthermore, if P is a Sylow p-subgroup of G, we set

K (G)= Ker
(
ResG

P : T (G)→ T (P)
)
.

In other words, the class of an indecomposable endotrivial kG-module V belongs
to K (G) if and only if V↓G

P
∼= k ⊕ (proj), that is, in other words, V is a trivial

source module. We have X (G)⊆ K (G) because any one-dimensional kP-module
is trivial. Moreover, K (G)⊆ TT (G) (see [Carlson et al. 2011, Lemma 2.3]), and
K (G)= TT (G) unless P is cyclic, generalized quaternion, or semidihedral, by the
main result of [Carlson and Thévenaz 2005].

By a central extension (E, π) of Q, we mean a group extension

1−→ Z −→ E
π
−→ Q −→ 1

with Z =Kerπ central in E . Recall that (E, π) is said to have the projective lifting
property (relative to k) if, for every finite-dimensional k-vector space V, every group
homomorphism θ : Q→ PGL(V ) can be completed to a commutative diagram of
group homomorphisms:

1 // Z //

λ|Z
��

E π //

λ

��

Q //

θ

��

1

1 // k× · IdV // GL(V )
πV // PGL(V ) // 1

In general, the homomorphism λ is not uniquely defined. However, by the commu-
tativity of the diagram, the following holds:

Lemma 2.1. In the above situation, if λ, λ′ : E→GL(V ) are two liftings of θ to E ,
then there exists a degree one representation µ : E→ GL(k) such that λ′ = λ⊗µ.

By results of Schur (slightly generalized for dealing with the case of charac-
teristic p), given a finite group Q, there always exists a central extension (E, π)
of Q, with kernel Mk(Q) := H2(Q, k×), which has the projective lifting property.
A p′-representation group of Q (or a representation group of Q relative to k) is a
central extension (Q̃, π) of Q of minimal order with the projective lifting property.
In this case Mk(Q)∼= Kerπ ≤ [Q̃, Q̃]. We recall that Mk(Q)∼= H2(Q,C×)p′ , the
p′-part of the Schur multiplier of Q, and that in general a group Q with X (Q) 6= 1
may have several nonisomorphic p′-representation groups. Furthermore, fixing a
p′-representation group (Q̃, π) of Q, the abelian group Mk(Q) becomes isomorphic
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to its k×-dual via the transgression homomorphism

tr : Hom(Mk(Q), k×)→ H2(Q, k×)

defined by tr(ϕ)=[ϕ◦α], where the cocycle α∈ Z2(Q,Mk(Q)) is in the cohomology
class corresponding to the central extension 1→Mk(Q)→ Q̃

π
→Q→1. For further

details and proofs we refer the reader to [Nagao and Tsushima 1989, Chapter 3, §5;
Curtis and Reiner 1981, §11E].

If V,W are two finite-dimensional k-vector spaces, then the tensor product of
linear maps induces a tensor product−⊗−:PGL(V )×PGL(W )→PGL(V⊗W ) via
πV (α)⊗πW (β) :=πV⊗W (α⊗β) for any α∈GL(V ) and any β ∈GL(W ). Therefore,
ifµ :Q→PGL(V ) and ν :Q→PGL(W ) are group homomorphisms, we may define
a group homomorphism µ⊗ν : Q→ PGL(V ⊗W ) via (µ⊗ν)(q) :=µ(q)⊗ν(q)
for every q ∈ Q. We shall use the following well-known results throughout:

Lemma 2.2. Let 1→ A→ G
π
→ Q→ 1 be an arbitrary group extension.

(a) Whenever V is a kG-module such that ρV (A) ⊆ k× · IdV , the group homo-
morphism ρV : G→ GL(V ) induces a uniquely defined group homomorphism
θV : Q→ PGL(V ) such that the following diagram commutes:

1 // A //

ρV |A
��

G π //

ρV

��

Q //

θV

��

1

1 // k× · IdV // GL(V )
πV // PGL(V ) // 1

(b) If V,W are kG-modules such that ρV (A) ⊆ k× · IdV and ρW (A) ⊆ k× · IdW ,
then ρV⊗W (A)⊆ k× · IdV⊗W and we have θV⊗W = θV ⊗ θW .

Proof. (a) Choose a set-theoretic section s :Q→G for π and define θV :=πV ◦ρV ◦s.
Since ρV (A)⊆ k×· IdV , the map θV is a group homomorphism making the diagram
commute. Clearly θV is uniquely defined since π is an epimorphism.

(b) This is a straightforward computation. �

3. Endotrivial modules and central extensions

We now fix G to be a finite group of order divisible by p, we set A := Op′(G) and
Q := G/A, and we denote by πG : G→ Q the quotient map. Moreover, we let
(Q̃, πQ̃) be a fixed p′-representation group of Q.

Since A is a p′-subgroup of G, inflation induces an injective group homomorphism

InfG
Q : T (Q)→ T (G), [V ] → [InfG

Q (V )].

This is because the inflation of a projective module remains projective when the
kernel A is a p′-group. We emphasize that endotrivial kG-modules cannot be
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recovered from endotrivial k Q-modules, as in general the inflation map InfG
Q is not

an isomorphism; see Section 7.

Hypothesis 3.1. Assume G is a finite group fulfilling the following two conditions:

(1) the p-rank of G is greater than or equal to 2; and

(2) G has no strongly p-embedded subgroups.

The next result restates one of the main results of [Koshitani and Lassueur
2016], but in different terms. Our statement will allow us later to avoid working
with modules over twisted group algebras, but simply consider the corresponding
projective representations instead.

Theorem 3.2 [Koshitani and Lassueur 2016]. Suppose G satisfies Hypothesis 3.1.

(a) If V is an indecomposable endotrivial kG-module, then V↓G
A
∼= Y ⊕ · · ·⊕ Y,

where Y is a one-dimensional k A-module.

(b) If V is an indecomposable endotrivial kG-module, then ρV (A)⊆ k× · IdV .

Proof. (a) Since G satisfies Hypothesis 3.1, any composition factor Y of V↓G
A is

G-invariant, by [op. cit., Lemma 4.3]. Therefore V↓G
A
∼= Y ⊕ · · ·⊕ Y and [op. cit.,

Theorem 4.4] proves that dim Y = 1.

(b) This is a restatement of (a). �

Corollary 3.3. Suppose that G satisfies Hypothesis 3.1. The inflation map

InfG
G/[G,A] : T (G/[G, A])→ T (G)

is a group isomorphism.

Proof. Since [G, A] is a normal p′-subgroup of G, the inflation map InfG
G/[G,A] is a

well-defined injective group homomorphism. In order to prove that it is surjective,
it suffices to prove that [G, A] acts trivially on any indecomposable endotrivial
kG-module V. But by Theorem 3.2 we have

ρV ([G, A])⊆ [ρV (G), ρV (A)] ⊆ [ρV (G), k× · IdV ] = {IdV }.

Hence [G, A] acts trivially on V. �

Corollary 3.3 is a reduction to the case of central extensions. Explicitly, for the
study of endotrivial modules, we may always replace the given extension

1→ A→ G→ Q→ 1,

and consider instead the central extension

1→ A/[G, A] → G/[G, A] → Q→ 1.

We shall in fact not use this reduction for the proof of our main result, but rather
apply directly Theorem 3.2.
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Lemma 3.4. Let (Q̃, πQ̃) be a p′-representation group of Q. Then X (Q̃) =
Inf Q̃

Q (X (Q)), hence X (Q̃)∼= X (Q).

Proof. We apply the fact, mentioned in Section 2, that KerπQ̃ ⊆ [Q̃, Q̃]. This
implies that any one-dimensional representation of Q̃ has KerπQ̃ in its kernel, hence
is inflated from Q̃/KerπQ̃

∼= Q.
Another way of seeing the same thing is to associate to the central extension

1−→ Mk(Q)−→ Q̃
πQ̃
−→ Q −→ 1

the Hochschild–Serre five-term exact sequence

1−→ Hom(Q, k×)
Inf
−→ Hom(Q̃, k×)

Res
−→ Hom(Mk(Q), k×)

tr
−→ H2(Q, k×)

Inf
−→ H2(Q̃, k×).

Since the transgression map tr is an isomorphism, the first map Inf must be an
isomorphism as well. �

4. Proof of Theorem 1.1

Keep the notation of the previous section. Moreover, given an endotrivial kG-
module V such that ρV (A)⊆ k× · IdV , we let

θV : Q→ PGL(V )

denote the induced homomorphism constructed in Lemma 2.2(a). The projective
lifting property for the central extension (Q̃, πQ̃) allows us to fix a representation

ρVQ̃
: Q̃→ GL(V )

lifting θV to Q̃. We denote by VQ̃ the corresponding k Q̃-module.

Lemma 4.1. Let V be an endotrivial kG-module such that ρV (A)⊆ k×· IdV . Then
VQ̃ is an endotrivial k Q̃-module.

Proof. We have to work with two group extensions

1−→ A −→ G
πG
−→ Q −→ 1 and 1−→ M −→ Q̃

πQ̃
−→ Q −→ 1,

where M := Mk(Q). Both A and M have order prime to p.
Let P ∈ Sylp(G), set P := AP/A ∈ Sylp(Q), and let ıP : P → AP be the

inclusion map, so that
φ := πG ◦ ıP : P→ P

is an isomorphism. Next choose P̃ ∈ Sylp(Q̃) such that M P̃/M = P ∈ Sylp(Q).
Let ı P̃ : P̃ → M P̃ be the inclusion map, so that ψ := πQ̃ ◦ ı P̃ : P̃ → P is an
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isomorphism. Consider now the two commutative diagrams:

P
φ //

ρV

��

P

θV

��
GL(V )

πV // PGL(V )

and

P̃
ψ //

ρQ̃

��

P

θV

��
GL(V )

πV // PGL(V )

where we write ρQ̃ := ρVQ̃
for simplicity. Since φ and ψ are isomorphisms, for

any u ∈ P,
πVρV φ

−1(u)= θV (u)= πVρQ̃ψ
−1(u).

We claim that if two elements u1, u2 ∈ GL(V ) have p-power order and satisfy
πV (u1)= πV (u2), then u1 = u2. Postponing the proof of the claim, we deduce that

ρV φ
−1(u)= ρQ̃ψ

−1(u),

because they have p-power order. This means that the representations (ρV )|P and
(ρQ̃)|P̃ , transported via isomorphisms to representations of P, are equal. Now, a
module is endotrivial if and only if its restriction to a Sylow p-subgroup is; see
[Carlson et al. 2006, Proposition 2.6]. Moreover, this property is preserved when
transported via group isomorphisms. Since V is endotrivial, so is V↓P , hence so is
VQ̃↓P̃ , and it follows that VQ̃ is endotrivial.

We are left with the proof of the claim. If πV (u1) = πV (u2), then u1 = αu2

where α ∈ k×. For some large enough power pn, we have u pn

1 = u pn

2 = 1. Therefore
we obtain

1= u pn

1 = (αu2)
pn
= α pn

u pn

2 = α
pn
.

But there are no nontrivial p-th roots of unity in k×, so α = 1, hence u1 = u2. �

Proposition 4.2. Assume G satisfies Hypothesis 3.1. Then there is an injective
group homomorphism

8G,Q̃ : T (G)/X (G)→ T (Q̃)/X (Q̃)

defined by8G,Q̃([V ]+X (G)) := [VQ̃]+X (Q̃) for any indecomposable endotrivial
kG-module V. Moreover, for any endotrivial k Q-module W, the homomorphism
8G,Q̃ maps the class of InfG

Q (W ) to the class of Inf Q̃
Q (W ).

Proof. First, Lemma 4.1 allows us to define a map φ : T (G)→ T (Q̃)/X (Q̃) by
setting φ([V ]) := [VQ̃] + X (Q̃) for any [V ] ∈ T (G) such that ρV (A) ⊆ k× · IdV .
The definition of φ([V ]) does not depend on the choice of VQ̃ , for if ρV ′Q̃ is a
second lifting of θV to Q̃, then by Lemma 2.1 there exists X ∈ X (Q̃) such that
V ′Q̃
∼= VQ̃ ⊗ X , hence φ([VQ̃])= φ([V

′

Q̃]).
Next, let V,W be two indecomposable endotrivial kG-modules. Theorem 3.2

implies that ρV⊗W (A) = (ρV ⊗ ρW )(A) ⊆ k× · IdV⊗W . Thus, by Lemma 2.2(b),
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θV⊗W =θV⊗θW , and it is easy to verify that ρVQ̃
⊗ρWQ̃

lifts θV⊗θW to Q̃. Therefore,
by Lemma 2.1, there exists X ∈ X (Q̃) such that (V ⊗W )Q̃

∼= VQ̃ ⊗WQ̃ ⊗ X . This
shows that φ is a group homomorphism.

It is clear that Kerφ = X (G), since by construction dim VQ̃ = dim V for any
indecomposable endotrivial kG-module V. As a result, φ induces the required
homomorphism 8G,Q̃ .

Finally, if W is any endotrivial k Q-module, then the kQ̃-module constructed
from V = InfG

Q (W ) is easily seen to be the inflated module VQ̃ = Inf Q̃
Q (W ), because

the map θV : Q → PGL(V ) comes from a group homomorphism Q → GL(V ).
This shows that the class of InfG

Q (W ) is mapped to the class of Inf Q̃
Q (W ) under the

map 8G,Q̃ , proving the additional statement. �

Corollary 4.3. Assume G satisfies Hypothesis 3.1. If Q̃1 and Q̃2 are two noniso-
morphic p′-representation groups of Q, then

8Q̃1,Q̃2
: T (Q̃1)/X (Q̃1)→ T (Q̃2)/X (Q̃2)

is an isomorphism.

Proof. Let V be an indecomposable kQ̃1-module. By construction

8Q̃1,Q̃2
([V ] + X (Q̃1))= [W ] + X (Q̃2),

where W := VQ̃2
is a k Q̃2-module such that ρW lifts θV : Q→ PGL(V ) to Q̃2. But

then ρV lifts θW = θV to Q̃1, so that by construction

8Q̃2,Q̃1
([W ] + X (Q̃2))= [V ] + X (Q̃1).

In other words, 8Q̃1,Q̃2
◦8Q̃2,Q̃1

= Id. Similarly 8Q̃2,Q̃1
◦8Q̃1,Q̃2

= Id. �

Corollary 4.4. Assume G satisfies Hypothesis 3.1. The map 8G,Q̃ induces by
restriction an injective group homomorphism

8G,Q̃ : K (G)/X (G)→ K (Q̃)/X (Q̃).

In particular, if K (Q̃)∼= X (Q̃), then K (G)∼= X (G).

Proof. Let P ∈ Sylp(G) and let V be an indecomposable endotrivial kG-module.
As in the proof of Lemma 4.1, the two modules V↓G

P and VQ̃↓
Q̃
P̃

are isomorphic,
provided we view them as modules over the group P via the isomorphisms P ∼= P
and P̃ ∼= P. It follows that V has a trivial source if and only if VQ̃ has. Therefore
8G,Q̃ restricts to an injective group homomorphism

8G,Q̃ : K (G)/X (G)→ K (Q̃)/X (Q̃).

The special case follows. �

Proposition 4.2 together with Corollary 4.4 prove Theorem 1.1.
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5. Conjecture on the torsion-free part

We keep the notation of the previous sections. Let TF(G) = T (G)/TT (G), the
torsion-free part of the group of endotrivial modules. Since X (G)⊆ TT (G), the
map

8G,Q̃ : T (G)/X (G)→ T (Q̃)/X (Q̃)

induces an injective group homomorphism

9G,Q̃ : TF(G)→ TF(Q̃).

We know that 8G,Q̃ is in general not surjective, but we conjecture that 9G,Q̃ is
surjective.

Conjecture 5.1. (a) The map InfG
Q : TF(Q)→ TF(G) is an isomorphism.

(b) The map 9G,Q̃ : TF(G)→ TF(Q̃) is an isomorphism.

Note that (b) follows from (a), by applying (a) to both InfG
Q : TF(Q)→ TF(G)

and Inf Q̃
Q : TF(Q)→ TF(Q̃) and composing, because the map 9G,Q̃ : TF(G)→

TF(Q̃) is the identity on modules inflated from Q.
Part (a) of Conjecture 5.1 is in fact a consequence of any of the two conjectures

made in [Carlson et al. 2014b]. First, Conjecture 10.1 in that reference asserts
that, if a group homomorphism φ : G→ G ′ induces an isomorphism between the
corresponding p-fusion systems, then φ should induce an isomorphism TF(G ′)−→∼

TF(G). In the special case where φ is the quotient map φ : G→ Q = G/Op′(G),
it is well-known that the fusion systems are isomorphic, so we would obtain the
isomorphism TF(Q) −→∼ TF(G) of Conjecture 5.1 above. This special case is
explicitly mentioned at the end of Section 10 in [op. cit].

Conjecture 9.2 in [op. cit.] asserts that the group TF(G) should be generated
by endotrivial modules lying in the principal block. Since Op′(G) acts trivially on
any module lying in the principal block of G, such a module is inflated from Q, so
the inflation map InfG

Q : TF(Q)→ TF(G) in Conjecture 5.1 above should be an
isomorphism.

Example 7.3 below illustrates a method allowing one to prove that the maps in
Conjecture 5.1 are isomorphisms in specific cases.

6. The perfect case

When the group Q = G/Op′(G) is perfect, there is an alternative approach to
the construction of the injective group homomorphism of Theorem 1.1(a) using
universal central extensions.
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Recall that a universal p′-central extension of an arbitrary finite group Q is by
definition a central extension

1−→ Mp′ −→ Q̃
πQ̃
−→ Q −→ 1

with Mp′ = KerπQ̃ of order prime to p and satisfying the following universal
property: For any central extension

1−→ Z −→ E
π
−→ Q −→ 1

with Z = Kerπ of order prime to p, there exists a unique group homomorphism
φ : Q̃→ E such that the following diagram commutes:

1 // Mp′ //

φ|Mp′

��

Q̃
πQ̃ //

φ

��

Q //

Id
��

1

1 // Z // E π // Q // 1

A standard argument shows that if a universal p′-central extension (Q̃, πQ̃) exists,
then it is unique up to isomorphism.

Lemma 6.1. If (Q̃, πQ̃) is a universal p′-central extension of a finite group R, then
(Q̃, πQ̃) is p′-representation group of Q.

Proof. Let (Q̌, πQ̌) be an arbitrary p′-representation group of Q. Let V be a
finite-dimensional k-vector space and θ : Q→ PGL(V ) a group homomorphism.
Because (Q̌, πQ̌) has the projective lifting property and (Q̃, πQ̃) is universal, there

exist group homomorphisms θ̃ : Q̌→GL(V ) and φ : Q̃→ Q̌ such that θ̃ ◦φ lifts θ .
Therefore (Q̃, πQ̃) has the projective lifting property as well.

Now, because (Q̃, πQ̃) is universal, it is easy to see that X (Q̃) = X (Q) = 1.
Therefore the Hochschild–Serre 5-term exact sequence associated to (Q̃, πQ̃) is:

1−→ 1−→ 1−→ Hom(Mp′, k×)
tr
−→ H2(Q, k×)

Inf
−→ H2(Q̃, k×)

Thus the transgression map tr : Hom(Mp′, k×)→ H2(Q, k×)= Mk(Q) is injective.
But Mp′ ∼= Hom(Mp′, k×), therefore by minimality of (Q̌, πQ̌), we have |Mp′ | =

|Mk(Q)| and |Q̃| = |Q̌|, proving that (Q̃, πQ̃) is a p′-representation group of Q. �

Lemma 6.2. Any finite perfect group Q admits a universal p′-central extension.

Proof. Since Q is a perfect group, it is well-known that Q has a representation
group relative to C, say (Q̂, πQ̂), which is unique up to isomorphism and that

Ker(πQ̂)=: M
∼= MC(Q)= H2(Q,C×),
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the Schur multiplier of Q. Moreover, (Q̂, πQ̂) is a universal central extension of Q,
in particular perfect; see [Rotman 1995, Theorem 11.11]. Thus, for any central
extension

1−→ Z −→ E
π
−→ Q −→ 1

where Z = Kerπ , there exists a unique group homomorphism ψ : Q̂→ E such
that the following diagram commutes:

1 // M //

ψ |M
��

Q̂
πQ̂ //

ψ
��

Q //

Id
��

1

1 // Z // E π // Q // 1

If Z has order prime to p, then the p-part Mp of M lies in the kernel of ψ |M .
Passing to the quotient by Mp, we define Q̃ := Q̂/Mp and denote by φ : Q̃→ E
the map induced by ψ . Thus we obtain an induced central extension

1−→ Mp′ −→ Q̃
πQ̃
−→ Q −→ 1

where Mp′ := M/Mp, a universal p′-central extension of Q by construction. �

Given an arbitrary group extension 1→ A→G→Q→1 with perfect quotient Q
and kernel A of order prime to p, there is an induced p′-central extension:

1−→ A/[G, A] −→ G/[G, A]
πG
−→ Q −→ 1

Moreover, by the above, Q admits a universal p′-central extension, which is in fact
a p′-representation group (Q̃, πQ̃) of Q. Therefore, by the universal property, there
exists a unique group homomorphism φG : Q̃→G/[G, A] lifting the identity on Q.

Lemma 6.3. The homomorphism φG : Q̃ → G/[G, A] induces a group homo-
morphism

φ∗G : T (G/[G, A])→ T (Q̃)

such that φ∗G = Inf Q̃
Im(φG)

◦ResG/[G,A]
Im(φG)

. Moreover, both Inf Q̃
Im(φG)

and ResG/[G,A]
Im(φG)

preserve indecomposability of endotrivial modules.

Proof. The kernel of φG is contained in KerπQ̃ = Mp′ , which is a p′-group. There-
fore, there is an induced inflation map Inf Q̃

Im(φG)
: T (Im(φG))→ T (Q̃), preserving

indecomposability of endotrivial modules.
Since Im(φG)maps onto Q via πG , the group G/[G, A] is the product of Im(φG)

and the central p′-subgroup A/[G, A]. It follows that Im(φG) is a normal subgroup
of G/[G, A] of index prime to p. Therefore, the restriction to Im(φG) of any
indecomposable endotrivial k(G/[G, A])-module remains indecomposable and is
endotrivial [Carlson et al. 2009, Proposition 3.1].

We define φ∗G to be the composite of Inf Q̃
Im(φG)

and ResG/[G,A]
Im(φG)

. �
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Composing the group homomorphism

φ∗G : T (G/[G, A])→ T (Q̃)

with the inverse of the isomorphism

InfG
G/[G,A] : T (G/[G, A])→ T (G)

of Corollary 3.3, we obtain a group homomorphism

8 : T (G)→ T (Q̃).

We now show that this provides the alternative approach to the map of Theorem 1.1.

Proposition 6.4. Suppose that G satisfies Hypothesis 3.1 and that Q is perfect.

(a) Ker8= X (G).

(b) The induced injective group homomorphism

8 : T (G)/X (G)→ T (Q̃)= T (Q̃)/X (Q̃)

coincides with the map 8G,Q̃ of Theorem 1.1.

Proof. Consider the map φ∗G : T (G/[G, A])→ T (Q̃) of Lemma 6.3. It is clear
that the image of a one-dimensional module is one-dimensional, hence trivial since
X (Q̃)= 1 by Lemma 3.4. Therefore X (G)⊆ Ker8. It follows that 8 induces a
group homomorphism 8 as in the statement.

Our assumption on G implies that, if V is an endotrivial kG-module, then
[G, A] acts trivially on V (Corollary 3.3). Moreover, ρV :G/[G, A]→GL(V ) lifts
θV :Q→PGL(V ), as in Section 4. It is then clear that ρV φG : Q̃→GL(V ) also lifts
θV : Q→ PGL(V ). Therefore, the definition of 8G,Q̃ (see Proposition 4.2) shows
that the class of V is mapped by 8G,Q̃ to the class of the module VQ̃ corresponding
to the representation ρV φG . In other words, [VQ̃] = 8([V ]) and this shows that
8G,Q̃ coincides with 8.

Finally, since8G,Q̃ is injective and is equal to8, we have Ker8={0}. Therefore
we obtain Ker8= X (G). �

Remark 6.5. The proof we give above shows that Proposition 6.4 remains valid
if the assumption that Q is perfect is replaced by the assumption that Q admits a
universal p′-central extension. It is proved in [Lassueur and Thévenaz 2017] that
this happens if and only if X (Q)= 1, that is, Q is p′-perfect. Here, for simplicity,
we restrict ourselves to the perfect case.

7. Examples

In this final section, we provide various examples, in particular illustrating cases
where the morphism 8G,Q̃ is not surjective.



436 CAROLINE LASSUEUR AND JACQUES THÉVENAZ

Example 7.1. Suppose that Q is simple and take G = Q, hence A= Op′(G)= {1}.
Then 8Q,Q̃ is just the inflation map T (Q)→ T (Q̃). If Q is a finite simple group
listed in the table below, then it is known that its unique p′-representation group
Q̃ has indecomposable endotrivial modules lying in faithful p-blocks, namely not
inflated from Q.

Q p Q̃ T (Q) T (Q̃)

A6 3 2 .A6 Z⊕Z/4 Z⊕Z/8
A6 2 3 .A6 Z2 Z2

⊕Z/3

M22 3 4 .M22 Z⊕ (Z/2)2 Z⊕Z/2⊕Z/4
J3 2 3 . J3 Z Z⊕Z/3
Ru 3 2 . Ru Z⊕Z/2 Z⊕Z/4

Fi22 5 6 . Fi22 Z⊕ (Z/2)2 Z⊕Z/6⊕Z/2

The results concerning the sporadic groups can be found in [Lassueur and Mazza
2015b, Table 3], and those about the alternating group A6 in [Lassueur and Mazza
2015a, Theorems A and B] together with [Carlson et al. 2009, Theorems A and B].

Further examples are given by the exceptional covering group 2.F4(2) of the
exceptional group of Lie type F4(2), which possesses simple torsion endotrivial
modules lying in faithful blocks in characteristics 5 and 7 [Lassueur and Malle 2015,
Proposition 5.5], although the full structure of the group of endotrivial modules has
not been determined in these cases.

Example 7.2. Assume p > 2, let n ≥max{2p, p+ 4} be an integer and denote by
S̃n and Ŝn the two isoclinic p′-representation groups of the symmetric group Sn .
Corollary 4.3 yields

T (S̃n)/X (S̃n)∼= T (Ŝn)/X (Ŝn).

However, Lassueur and Mazza [2015a, Theorem B, parts (1) and (2)] prove a
stronger result, namely

T (S̃n)= InfS̃n
Sn
(T (Sn)) and T (Ŝn)= InfŜn

Sn
(T (Sn)).

Consequently, given any finite group G such that G/Op′(G) is isomorphic to one
of Sn , S̃n or Ŝn (with n ≥max{2p, p+ 4}), by Theorem 1.1 there exist injective
group homomorphisms

T (Sn)/X (Sn)−→ T (G)/X (G)
8G,Ŝn
−→ T (Ŝn)/X (Ŝn)−→

∼ T (Sn)/X (Sn),

where the first map is induced by inflation. Hence we have T (G)/X (G) ∼=
T (Sn)/X (Sn). Recall that the structure of T (Sn) is known [Carlson et al. 2009].
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Example 7.3. In this final example, we outline a method which allows us to show
that the maps Inf Q̃

Q is an isomorphism on the torsion-free part of the groups of
endotrivial modules of Q and Q̃ in some concrete cases.

Specifically, we may use the fact that endotrivial modules are liftable to character-
istic zero, and afford characters taking root of unity values at p-singular conjugacy
classes; see [Lassueur et al. 2016, Theorem 1.3 and Corollary 2.3]. Therefore, if for
every faithful p-block B of k Q̃ (of full defect) no elements of Z IrrC(B) take root of
unity values at p-singular conjugacy classes of Q̃, then any endotrivial k Q̃-module
is inflated from Q, hence

Inf Q̃
Q : TF(Q)→ TF(Q̃)

is an isomorphism.
This was used [Lassueur and Mazza 2015a, Theorem B] in the case that Q =Sn ,

n ≥ max{2p, p+ 4} (as mentioned in Example 7.2 above), as well as for a large
number of sporadic simple groups Q [Lassueur and Mazza 2015b, Lemmas 4.3
and 6.2]. More precisely, in characteristic p = 2 for Q = M12, M22, J2, H S, McL ,
Ru, Suz, ON , Fi22, Co1, Fi ′24, or B; in characteristic p = 3 for Q = M12, J2, HS,
Suz, Fi22, Co1, or B; in characteristic p = 5 for Q = J2, HS, Ru, Suz, Co1, Fi ′24,
or B; and in characteristic p = 7 for Q = Co1, Fi ′24, or B.
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