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We consider a fractional Schrodinger—Poisson system in R3. Under certain

assumptions, we prove that the problem has infinitely many nonradial posi-
tive solutions.
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1. Introduction and main result

We consider the fractional Schrédinger—Poisson system

{(—A)Su +u+V(x)Px)u = [u|?"lu, xeR3,

(1‘1) (—A)tq) — V(|X|)u2, = R3,

where (—A)? is the fractional Laplacian operator fora = s, € (0, 1), V(r) (r =|x|)
is a positive bounded function, and

34 2s
l<p<2¥(s)—1= .
p<27°(s) 375
We assume that V() satisfies the following condition:
(V) There are constants a > 0, _ 3425 <m< 3+2s and 6 > 0 such that

2(3+2s+1)

a |
V()= r_m+0(rm+9) as r — 4o00.
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In (1-1), the first equation is a nonlinear fractional Schrodinger equation in which
the potential ® satisfies a nonlinear fractional Poisson equation. The study of elliptic
equations involving fractional powers of the Laplacian appears to be important
in many areas, including physics, biological modeling, mathematical finance and
the study of standing wave solutions of certain nonlinear fractional Schrodinger
equations.

Giammetta [2014] studied the evolution equation associated with the one-dimen-
sional system

(1-2) {—A”+meu=gwx xeR,

(=AY ® = Au?, x €R.

Zhang, do O and Squassina [Zhang et al. 2016] established the existence of a radial
ground state solution to the following fractional Schrodinger—Poisson system with
a general subcritical or critical nonlinearity:

{(—A)su +AD(x)u = g(u), xeR3,

1-3
= (—A)'® = Au?, x eR%.

Under the assumption that the nonlinearity does not satisfy the Ambrosetti—Rabino-
witz condition, Zhang [2015] used the fountain theorem to obtain the existence of
infinitely many large energy solutions to the system

{(—A)su +V(u+0(xu = f(x,u), xeR,

1-4
(1-4) (—=A) D = Au?, x € R3.

When s =1 = 1, the system reduces to the classical Schrodinger—Poisson system.
In recent years, many publications have appeared on that system. Zhang [2014]
studied the existence and behavior of bound states of the system

{—szAu +V(X)u+r®(x)u= f(u), xeR3,

1-5
(1-) —AD =u?, lim| |00 @(x) =0, x € R3,

for A > 0 and small € > 0. For f(u) = |u|?~'u, p € (1,5), there are some results
in the literature. In the case of ¢ = 1, V(x) = 1, the existence of radially symmetric
positive solutions of system (1-5) was obtained by D’ Aprile and Mugnai [2004].
Azzollini and Pomponio [2008] established the existence of ground state solutions
for p € (2,5). Ruiz [2006] proved that (1-5) does not admit any nontrivial solution
for 1 < p <2 and possesses a positive radial solution for 2 < p < 5. When A =1,
Ianni and Vaira [2008] considered the existence of positive bound state solutions
that concentrate on the local minimum of the potential V. Furthermore, Ianni
and Vaira [lanni and Vaira 2009; Ianni 2009] investigated the radially symmetric
solutions that concentrate on the spheres. Ruiz and Vaira [2011] constructed the
multibump solutions whose bumps concentrate around the local minimum of the
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potential V. The proofs explored in [Ruiz and Vaira 2011] are based on a singular
perturbation, essentially a Lyapunov—Schmidt reduction method. By using the
method of invariant sets of descending flow, Liu, Wang and Zhang [Liu et al. 2016]
showed that this system has infinitely many sign-changing solutions. For more
related results, one can refer to [Alves and Souto 2014; Chen and Wang 2014; He
and Zou 2012; Ianni and Vaira 2015; Kim and Seok 2012; Zhao et al. 2013].

In this paper, inspired by [Long et al. 2016] and [Li et al. 2010], we consider the
infinitely many nonradial positive solutions of the fractional Schrodinger—Poisson
system (1-1). In [Long et al. 2016], Long, Peng and Yang were concerned with
the existence of infinitely many nonradial positive solutions and sign-changing
solutions for the equation

(=A)u+u=K(xDuP, u>0, ueH RY).

In [Li et al. 2010], Li, Peng and Yan obtained infinitely many nonradial positive
solutions for (1-1) with s = ¢ = 1.

Compared with the operator —A, which is local, the operator (—A)* with 0 <s < 1
on R? is nonlocal. Unlike the local case s = 1, the leading order of the associated
reduced functional in a variational reduction procedure is of polynomial instead of
exponential order, due to the nonlocal effect. So we need to establish some new
necessary estimates for the Lyapunov—Schmidt reduction. Also, because of the
appearance of the Poisson potential @, problem (1-1) is more complicated than the
problem in [Long et al. 2016] and [Li et al. 2010].

To the best of our knowledge, there are no results on the existence of infinitely
many nonradical positive solutions to the nonlinear fractional Schrédinger—Poisson
system (1-1). In this paper, we will present some results in this direction.

Now, we are able to state our main theorem.

Theorem 1.1. If V() satisfies (V) and 2t + 4s > 3, then the problem (1-1) has
infinitely many nonradial positive solutions.

To prove Theorem 1.1, we will construct solutions with a large number of bumps
near infinity. Since V' (r) — 0 as r — + 00, the solution of (1-1) can be approximated

by using the solution U of the problem
(1-6) {(—A)su-l—u:up, u>0in R3,
u(0) = max . cps u(x).

It is well known that the unique solution U of (1-6) satisfies U(x) = U(]x|) and
U’ < 0 (see [Frank and Lenzmann 2013; Frank et al. 2016]).
Let

2 =Dz 2(j D=
n

(1-7) Qj=(rcos A S A

,o)::(Q;,O), i=12,...k,
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3+2s 3425
where r € [r1k3+2s—2m ok 3+2s—2m] for some r, > r; > 0. Define

ES = {u cu e HY(R®), uis evenin xp, h = 2,3,

277 2]
u(rcosf, rsinf, x3) = u(r 005(9 + %) rsin(9 + %), x3)}.

Let
k
(1-8) Ur(x) =Y Ug, (%),
j=1

where Ug; (+) = U(-— Qj), and Q; is defined in (1-7).
We will prove Theorem 1.1 by proving the following result.

Theorem 1.2. Suppose V(r) satisfies (V) and 2t 4+ 4s > 3. Then there is an integer
ko > 0 such that for any integer k > kg, (1-1) has a positive solution uy, of the form

urp = Uy, (x) + wg,
342s 3+2s

where wy, € ES, 1 € [r1k3+25—2m,r2k 3+2s—2m] for some ry > ry > 0 and as
k — +oo, |wlls — 0.

Remark 1.3. It follows from Theorems 1.1 and 1.2 that (1-1) has solutions with a
large number of bumps near infinity. Hence the energy of these solutions can be
very large.

This paper is organized as follows. In Section 2, we give some preliminaries.
Then we carry out Lyapunov—Schmidt reduction in Section 3. Finally, we prove
our main result in Section 4. Some technical estimates are left to the Appendix.

2. Some preliminaries

In this section, we outline the variational framework for problem (1-1) and give some
preliminary lemmas. Firstly, we recall some properties of the fractional Sobolev
space and some results which are important in our proof of the main theorem.

The nonlocal operator (—A)* in R? is defined on the Schwartz class through the
Fourier transform

AP ) = |57 [ &),

or via the Riesz potential. Here ~ is the Fourier transform. When f has sufficient
regularity, the fractional Laplacian of a function f : R3 — R is expressed by the
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formula
s B JSx) = f(y)
(2-1) (—A) f(x)=C;34PV. . —|x—y|3+zs d
Sx) =)

= C;, lim EAS AL o)
£—0 R3\ B, (x) |x_y|3+2s

b}

where C; ; = 7~ (2$+3/2T (3 4.5) /T (=s). This integral makes sense directly when
s<1tand f e COV(R3) with y > 25, orif /€ C17(R3) with 1 4y > 2s.
When s € (0, 1), the space H*(R?) = W*2(R?) is defined by

HY(R?) = {u e L*(R%): lu) ~ul e L?(R® x IR3)}

eyl
_ {u e L2®): / (1 + £ dk < oo}
R3

and the norm is

1

, Ju(x) —u(y)|? 2\

l[ulls == llull s w3y = (/[Rg R3md?€ dy + R3|u| dx ),
which is induced by the inner product
(u, v) gs@sy = (U, v)s + (U, V) L2m3)

/ (u(x) —u(y)(v(x) —v(y))
R3 JR3

x — p|3t2s

dx dy + / u(x)v(x) dx.
R3

Here the term

_ 2 3
[u]H‘Y(Rfi) = (A M dx dy)

3 Jp3 |x_y|3+2s

is the so-called Gagliardo (semi-)norm of u. The following identity yields the
relation between the fractional Laplacian operator (—A)® and the fractional Sobolev
space H*(R?):

e = € ([ JEPIRGR de) = Cl-a)fulage

for a suitable positive constant C depending only on s.
The homogeneous Sobolev space D*2(R?) is defined by

DYARY) = { X O@): [ e de < oo},
IR3
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which is the completion of Cg*° (R?) under the norm

1
~ 2 r
el = ([ IR de) = =) fullagey
and the inner product
(u,v)pr.2 =/ (—A)%u(—A)%vdx, u,ve D"3(RY).
R3

We have the following Sobolev embedding results.

Lemma 2.1 [Di Nezza et al. 2012]. H*(R3) is continuously embedded into L9 (R?)
for q € [2, 55|, and locally compact whenever q € 2, 355).

Lemma 2.2 [Di Nezza et al. 2012]. For any t € (0, 1), D"?(R?) is continuously
embedded into L2 )([R3 ); i.e., there exists Sy > 0 such that

2/2*(¢t)
(/ Jul? (’)dX) <5 / (—A)5uldx, ue DR,
[R3 R3

Now, we recall some known results for the limit equation (1-6). In a celebrated
paper, Frank and Lenzmann [2013] proved the uniqueness of the ground state
solution U(x) =U(|x]) = 0for N =1, 0 <s <1, 1 < p < (N +2s)/(N —2s).
Very recently, Frank, Lenzmann and Silvestre [Frank et al. 2016] obtained the
nondegeneracy of ground state solutions for (1-6) in arbitrary dimension N > 1
and any admissible exponent 1 < p < (N + 2s5)/(N —2s).

For convenience, we summarize the properties of the ground state U of (1-6),
which can be found in [Frank and Lenzmann 2013; Frank et al. 2016].

Lemma 2.3. Let s € (0, 1) and 1 < p < (3+25)/(3—25). Then the following hold:

(1) Uniqueness: The ground state solution U € H*(R?) for (1-6) is unique up to
translations.

(2) Symmetry, regularity and decay: U (x) is radial, positive and strictly decreasing
in |x|. Moreover, the function U belongs to H*T1(R3) N C%°(R?) and satisfies

Cq G 3
————— <Ux) < —————, xeR’,
1+|X|3+2S - ( )_ 1_|_|x|3+2s
with some constants C, > C; > 0.

(3) Nondegeneracy: The linearized operator Lo = (—A)* +1— p|U [P~V is nonde-
generate, i.e., its kernel is given by

ker Lo = span{dx, U, 0x,U, 05, U }.
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By [Frank et al. 2016, Lemma C.2], dx; U has the following decay estimate for
J=1

2,3:
C

|8ij| = m

By Lemma 2.1, if 2 +4s > 3, H*(R3) < L'2/G+20(R3). Then, for u € H*(R3),

2 2 2
/R 20 = [l 2Pl = Cllul vl pra,

Hence there exists a unique @/, such that (—A)’®!, = V(x)u? and the t-Riesz
potential satisfies

2
@0 = [ % dy,
where
r'(3-2i)
C(t)= —2 "/,
(Z) 72227 (1)

Substituting @L in (1-1), we are lead to the equation
(2-2) (=) u +u+ V()@ (o = [u]”u.

Let us summarize some properties of ®?,(x) which will be useful throughout the
paper.

Lemma 2.4 [Zhang et al. 2016]. Ift,s € (0,1) and 2t + 4s > 3, then for any
u € H5(R?), we have

() u > @, : H(R*) — D"2(R3) is continuous and maps bounded sets into
bounded sets;

(2) @ (x) >0, x € R? and [p3 ' u? dx < Cllu|} for some C > 0.

3. Finite-dimensional reduction

In this section, we prove Theorem 1.1 by proving Theorem 1.2.
We assume

1
3+2s—2m s
(3_1) Ak = [(w — O!) k 3+32J§32m ,

2]’}’135
1

2]’7/135

where o > 0 is a small constant, and where B4 and Bjs are defined in Lemma A.5.
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Let r € Aj. We define

3UQJ

E*, E T u=0y.
¢ = {u ue /[R‘ ,~ 0}
Define

1 2 1 t.2 1 p+1
L] il - S Vuee,
I(u) = 2(u,u)s+ 3 /l;{su + 4/RSV(|x|)CI>u P /R3|u| uee

It is easy to check that

(Ul,uz)s+/ uluz—P/ Urp_lulu2+/ V(|x)®y, uyuz
R3 R3 R3

v
2/ V(|x|)(/ (l—yDUruldy)Uruz, uiuy € €,
R3 R3 |x — y[372

is a bounded bilinear functional in €. Hence, by the Lax—Milgram theorem there is
a bounded linear operator £ from €& to € such that

(Cul’uz):(“17“2>s+/ uluz—P/ Urp_1u1”2+/ V(X @y, uiuz
R3 R3 R3
|4
2/ V(|x|)(/ (|—y|)_U,u1dy)U,u2, uiuy € €,
R3

R3 |x — y372
The following result implies that £ is invertible in &.

Lemma 3.1. There exists a positive constant C, independent of k, such that for
anyr € Ay,
[Lulls = Cllulls, u € €.

Proof. We prove the lemma by contradiction. Suppose that there exist k — 400,
ry € Ay and uy € € with

| Cuglls = o(1)|luglls-
Then we have

(3-2) (Lug, ) = o) |luglsllells VYo e€.

We may assume that [Juy ||? =
Denote

r Q) T
Q-: = ! Rz R:x— J > — (, '=1,2,...,k.
== ety <|x/|’|Q;~| =%
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By symmetry, we have

(3-3) /Q [RS<uk(x>—uk(y))<¢<x>—<o(y)) ixdy

|x_y|3+2s

+/ ”k‘/"l’f Ur’,’fluk<p+/ V(x))®y, ure
Ql Ql Ql k

VyD )
21V ———==U, dy U,
+ »£21 (|X|)(/[R3 x— yp—2 rUk Ay U @

1 1
—(Lug, 9) = o(1)— Yo € €.
k( Uk, @) =o( )ﬁllwlls [7§S

Particularly, choosing ¢ = uj we get

|“k(?€)—uk()’)|2 2 -1 2
(3-4) // dxdy+ [ Jugl —p/ U2 g
Q, Jr3 |x_y|3+2s Q Q ri

)
V(|x])®: 22/1/ (/—U,dU
+/Ql (0l el +2 [ VD ( [ 7 g U d ) Un
=o(1)

and

(3-5)

/ Jug (x) —ug (»))?
Q JR3

dx d +f url?> =1.
x— P2 y J el

Let iy (x) = up(x — Q1). It is easy to check that for any R > 0, we can choose
k large enough such that Br(Q;) C 2. Consequently, (3-5) yields that

~ _ 2
/ i) — ()] dxdy-l—/ |2 < 1.
Br(0) Jr3  |x—y[?T=S Bg(0)

Thus we may assume the existence of u € H*(R?) such that as k — +o0,

i —u weakly in H*(R%)
and

iy — u strongly in LIZOC(R3).

Noting that iy is even in xj, h = 2, 3, we have that u is even in x3, # = 2, 3. On

the other hand, from
8UQ1 —1
—= U} =0
/%3 or e '

U
—_— p_l 1 =
/[R3 001 vr =0

we obtain
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So u satisfies

U
(3-6) / —UPly=o.
r3 00

Now we prove that u satisfies
(—A’u4+u—pUP~lu=0 inR>
Define

~ oU
QE:{(ngOEHS(R3),/ —Up_l(p:()}.
r3 001

For any R > 0, let ¢ belong to C5°(Bg(0)) N ¢ and be even in xp, h=2,3.
Then

P1(x) 1= p(x — Q1) € C3°(Br(0)).

We may identify ¢ (x) as an element in & by redefining the values outside 2
using symmetry. Using (3-4) and Lemma A.1, we deduce that

((x) —u(») () —¢(»))

3-7
5D Rr3 JR3 |x — py[3+2s

dxa’y—l—[ uw—p/ UP~lup =0.
R3 R3

Furthermore, since u is even in xp, h = 2,3, (3-7) is true for any function
Q€ Cg’o(lR3) which is odd in xp, h = 2,3. Therefore, (3-7) holds for any
@ € C3°(Bg(0)) N €. By the density of C(g’o([R{3) in H*(R3), we see
(3-8)

(u(x) —u(y)(e(x) —p(»))
JJ.

|x_y|3+2s

dxdy—i—/ u<p—p/ UPlup=0 Vge€.
R3 R3

But (3-8) is true for ¢ = dU/3Q;. Thus (3-8) holds for any ¢ € H*(R?), and
hence u = c(dU/dQ1) because u is even in xz, h = 2, 3. By (3-6), we find u = 0.
Consequently,

/ uy =o(l) VR>0.
Br(Q1)

Moreover, Lemma A.1 implies that for any 1 < n < 3 4 2s, there is a positive
constant C such that

(x) < ¢ —,
(1+[x—Qq])3+2s—

(3-9) Ug, xeQ.



INFINITELY MANY POSITIVE SOLUTIONS 449

Thus, by (3-9) and (V), we have

ug (x) —ug(y)|? _
o(l)=[ ) — 45 D) dxdy+[ |uk|2—p/ U g
Q JR3 Q1 Q

Ix — p[3+2s

v(ly)
%4 ! 2 2/ Vv (/ — U, dy U
+/Ql (g, e +2 [ VD ( [ 1 g U dy ) U

_ 2
2/ lug (x) —ur(y)| dxdy+/ g |2
Q1 JR3 Q4

|x_y|3+23

1
+ C(/ +/ ) 4ol
Bg(Ql) Ql\Bg(Ql) (1+|X—Q1|)3+2s n Uy

= % +o(1) + Og(1),

which is impossible for large R. O

Proposition 3.2. There is an integer ko > 0 such that for each k > k, there exists
a C' map with respect to r from Ay to ES: ¢ = @(r), satisfying ¢ € E®, and

aJ
<—((p),v> —0 VYveES
de

Moreover, there is a small T > 0 such that

3—‘52.)‘ 4t

C k
(3-10) Il < skt + Ck 3 (r)
Proof. Write
J(@)=I1(Uy +¢), @€k’

By direct computation, we have

J(@) =1(Ur +¢)

1
2(Ur+§0’Ur+§0 /(Ur+(ﬂ)2
1 2 p+1
g [ VDl o= [ Ul
1 1 1 2 1 2
— 30Ut Wrdet lootet g [ V25 [ o2+ [ g
R3 R3

1 2 p+1
g [ VDl o2 [ Ul
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1 1 1 1
=30 Uiy [ Uy [ Vasdey v - [ o

/R3(Z vl _UP)<p+/3V(|x|)d>’UrUr<p

1 1 p—1_2
+§(¢,<p)s+§ p?-L IUI @ + V(IXI)CD
- 3V(|x|>( [ %Urw dy)Ur<p+ / V(Ix)®, Uy

1 t 2 p+1 p+1
3 [y —— [ et 4 [ )

+/ |U,|P<p+£/ U, 1P~
IR3 2 R3

J(p) =J0)+ f(p) + 3(Lp.p) + R(p).

Hence,

where

k
— p t
G S = A 3(};0@. Urp)90+ /R V(ixhey, Urg.

We notice that £ is the bounded linear map from E* to E¥ in Lemma 2.1, and

1 1
Rp) = [ VUxhoyUrg+ 5 [ VIxhehe? — s [ 1, +oprt

vt Lot [+ 8 [ oty

It is not difficult to verify that f(¢) is a bounded linear functional in E¥, so there
exists an f; € E¥ such that

S (@) = {fk. ).
Thus, to find a critical point for J(¢), we only need to solve
(3-12) Sk +Ly+ R(p)=0.

From Lemma 3.1 we know L is invertible. Therefore, (3-12) can be rewritten as

o =Ap)=—L""fi —L'R(p).
Set

3425+t
2

1 1 1k
Nz{‘/’:?DeEs’ ||§0||s5r2m_rk2 —l—kZ(—) }

r

where 7 > 0 is small.
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When 1 < p <2, we can verify that

IR (@)lls < Cliel?.

Hence Lemma 3.3 below implies

(3-13) [ A@) s
<Cl fills + Cllell?

31425 3425+t
C 1 (kY2 *tF 1 1 ik 2 V¥
3+223+r

1 1 1(k
S,.Zm——rkz +k2(7)

Thus, A maps NV into A" when 1 < p <2.
Meanwhile, when 1 < p <2, we see

IR"(@)s < Cllel27".
Thus,
IA(@1) — A(p2)lls = I1£7'R (¢1) = L7'R (92l
< C|R(¢1) — R'(p2)Is
< C|IR"(ep1 + (1 —&)p2) lsllo1 — @2lls
<C(ler 127"+ le2llZ= ) ller — p2lls < 5ller — 2lls

where ¢ € (0, 1).

Thus, we have proved that when 1 < p <2, A is a contraction map.

When p > 2, by Remark A.2, the Holder inequality, the Sobolev inequality, and
Lemmas 2.2 and 2.4, we get

(R (¢). &)

‘ /V(I I)( o V(lfl)z,fpédy)Uﬂer/ V(|x|)®LU, &

V(XD @opt — | [Ur+olPE+ | |UrlPE+p | U7 08
“Js J. oo [joer

<2 v |>( [ %wédy)w

+ [ vsheyure + [ visnege:|

+'/ vr+ope= [ 1Ure—p [ |Ur|1’—1sos‘
R3 R3 R3
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C PRSI
< o | @9 U
3-2¢ 3421 3421

C fo6_\° 12\ 12 12\ 12
+ — |(I)(p|3—2t |E|3+2 |U, | 3+27

rm R3 R3 R3

C _ 7 S
b Lebs) ([ gersB) ([ e

rm R3 ¢ R3 R3

+c/ U, 1P~ ]2 €]

C C
< CNOIZIENL + Sk TN e el + - 1 2 el
P
p+1 \FFT
+c(/ (10, 1721012) " ) £l
C

—mllsvll I€ls + —k )2 ||$||s+—||<0|| €15

p+2 D+1
co Ll ) el

Hence, we deduce that
IR (@)]ls < C(llell? + llel3)-

For the estimate of || R”(¢)||s, we have
[4G))
IR"(@)E m =2 | V(XD | =516 dy|Ure
R3 RS |x — 372

v(ly)
2 [ 3V("")( [ mwsdy)m
2 [ 3V(|x|)( [ %W) dy)vrs
vily)
2/R3V(|x|)(/ ﬁwé y)wn

/V(IXI)GI> En— p/ Ur + )7~ 1$n+p/ Up- lgn‘
= C(llgls + el IENs s,

which implies

IR"(@)lls = C(lells + llell3)-
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Thus, we can conclude that

G-14) [A@) s =Cll fills +Cllol?

3+2s

C 1 1(k\ 2
Er.Z_me—i_Ckz(_)

+t
1 1 1(k 2

1 k 3+22s+r
1 1
= ,,Zm——rkz + k2 (7)

A1) — A(p2)lls = I£7 R/ (¢1) — L7 R (92) |Is
<C|R'(¢1)— R (¢2)|s
<C|R"(ep1 + (1 —&)@2)|Isller — @2l

< ei —oalls.

and

where ¢ € (0, 1). Hence, A is also a contraction map from A to N.
Now applying the contraction mapping theorem, we can find a unique ¢ such
that (3-12) holds. Moreover, it follows from (3-13) and (3-14) that (3-10) holds. [

Lemma 3.3. There exist constants C > 0 and © > 0 small enough such that

3+2s

C 1 1{k\ 2
||fk||s§r2—mk2+Ck2(—)

+t

r

Proof. We recall

k
- — P _grp t
(3-15) f(9) /R 3(;%]. U,)<p+ /R V(IxD @y, Urg.

3+2s

USing UQ] < UQI’ X € Q], m

(3-16)

k

P _ P

/R3 Uy Zl UQJ
]=

k
— p_ p
=k o vy -3 Ug,

j=1

k
—1
= Ck/Q Ug ' > Uolel
1 j=2

k _p_ 1
_ Z p p+1 r+1
Q] P Q1

<2m < 3+2s and Lemma A.1, we obtain

o]

[
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3+2S+U p+1 p

T Va4 x-SR "
X ( |§0|p+1)1J+l
Q

+o pE+l _p
< c;cp'n(’i) : ( | ( ! _ ) ’ )"“ loll
r 2\ (1 +|x — Q;])CH2)—D+75"—0
424

1(k
=ck(5)7 ol

3+2s

where 7 > 0 is a small constant and o € (0,
On the other hand, by Lemma A.4 and Remark A.2, we have

)

1 1
C 2 2 C 1
t 2 2 1
a1 [ vxhel,ue = URU) (/ch ) < il
Inserting (3-16) and (3-17) into (3-15), we can complete the proof. O

4. Proof of the main result

Proof of Theorem 1.2. Let ¢(r) be the map obtained in Proposition 3.2. Define
Fr)=1U,+¢(r)) VreAyg.

It is well known that if r is a critical point of F(#), then U, + ¢(r) is a solution of

(1-1) (see [Cao and Tang 2006]). As a consequence, in order to complete the proof

of the proposition, we only need to prove that F () has a critical point in A.
Hence, by Proposition 3.2 and Lemma A.5, we have

F(r)=1U)+ f(@) + 5(Le. ) + R(p)
=I1(Uy)+ O(ka”s”(/)”s + ”‘P”z)

KN Bs 1ka? 5
:kB3—kB4(7) +kr2_m+4r2m ,-2_2: K(Qj—Ql)/RSU
3+2s

1 I 1 1(kY) 2
+k0(r2m+r) JFO(Fka2 +k2(7)

k 342s B
i -kny(T) kg
r

r2m

lk
o fmZ k(0 -0 [ U +k0( gz ).

where B3, B4 and Bjs are defined in Lemma A.5.

+'L’)2
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We consider its maximum with respect to r:
4-1) max{F(r):r € Ay}.
Assume that (4-1) is achieved by some r in Aj. We will prove that ry is an interior
point of Ay.
Consider the following smooth function in Ay:
kT2 B
g(r):= —34(7) +r2_m

Then
Jo3+2s 2mBs

/ = —_———
g(r)—(3+2s)B4m 2mtl
It is easy to check that g(r) has a maximum point 7, satisfying

g'(7) =0.
Thus

1
e = ((3; 2;)34)3+2s_2mk3+32+s3§m,
mbs

By direct computation, we observe that
(4-2)

25 p 1
_/T(rk)Z}—(fk)ZkB3—kB4(a) kr_+k0( 2m+r)
k )

2m 1
=kBs+k——(1-— kO
T ( 3+2s)+ (F,f’"“)

__ 3425
_ KBy +kBIT S P p (3+2S—1)(3+2S) RS-

2m 2m
2m(3+4+2s)

+ k()(k 34+2s—2m _T)

On the other hand, if we suppose that

1
3+2s—2m s
= ((3 ; 2;)34 _a) s
mbs

then
4-3)

—2m

2m (3+2s)By 3F25—2m  —2m(3+2s)
F =kBs;+kBs|1— — ke 3+2s—2m
() =K Bs + 5( 3+2s)( 2mBs

1 ka? m(3+2s)

+——Z K(Q; - Q1)/U2+k0k )

4 p2m
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__ 3+2s
— kB3 + kB;-‘:z—tiAZm B; 3+2%”12m 3 + 2s -1 3 + 2s S+2s=zm
2m 2m

2maBs _3+223+2mk 2mG+20
(3+2s5)By

_ 2m@3-=21) 2m(3+2s)

+ kO(r 3+2s _2’”) + kO(k_3+2s—2m —r)

__ 3+2s
342s 1) (3 + 2s) 3+2s—2m  —2m(3+2s)

342s _ 2m
< kB3 —JrkB 3+2s—2mB 3+2s—2m k 3F2s—2m
3 4 2m 2m

2m(342s)

+ kO (k_ 3f2s—2m —l’) .

This is a contradiction to (4-2).
Similarly

1
mbs

_ 342s
3425 1)(3+2s) 3F25=2m  —2m@G3+2s)

k 3F2s—2m

342s _ 2m
< kB3 +kBS3+2s—2m B4 3+2s—2m ( 2m 2m

2m(3+2s)

+ kO(k_ 3+2s—2m —r)'

Hence we can check that (4-1) is achieved by some r; which is in the interior of Ay.
As aresult, r is a critical point of F(r). Therefore

Urk + (k)

is a solution of (1-1). O

Appendix: Some technical estimates

In this section, we give some estimates of the energy expansion for the approximate
solutions. Firstly, we recall

20j=hx 2 =Dr
ko k)

Qj = (rcos

/

X Q,' T
Qi=dx=xx3)eR?>xR:{—,—L)>cos—%, j=12,...k,
j {x (x7, x3) X <|x/| 0] 2 cos - j

and

1 1 1 1
1) = S+ 3 [ 0+ [ V@t~ [t

where @, is the solution of (—A)' ®! = V(|x|)u>
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Recall that U is the unique solution of

{(—A)su +u=uP, u>0inR3
u(0) = max . ¢p3 u(x).

Let K be the solution of
(=A)'v=U? inR?
v e DH2(RY).

Then K is radial, and r372? K(r) - K¢ > 0 as r — +00.
To begin, we give the following lemmas.

Lemma A.1 [Long et al. 2016, Lemma A.2]. Forany x € Qq,and n € (1,3 + 2s],
there are constants C, B > 0 such that

1 k" kM

k
Uo: <C — <C—
i_Zz 0, (%) = (1+ [x— Oy |)3+2s=nyn =~ 41

k 1 kY k
—— =B - ol —).
2o () +o(im)

Remark A.2. It follows from Lemma A.1 that U, is bounded.

and

Lemma A.3 [Wei and Zhao 2013, Lemma 13.1]. Assume that 0 < m < 3 and
n > m. Then

| | C(+[ypm ifn <3,
dx <3C(+|y)™3[1 +log(1 + ifn =3,

for=r (141Dt +log(1+ D] &
C(+|y) ifn > 3.

Now, we estimate @7, and 1(U;).

Lemma A.4. We have

k k

a 1 1
0%0) =35 328000+ 0( X e =g )

j=1 j=1

Proof. For any B > 0, we get

1 1 |y ))
— 1+0—1]), Br(0).
T 0P |Q,~|ﬁ(+ (Ile ye B0
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By Lemmas A.1 and A.3, we are led to

(A-1)
V(x])
V(lx])
:/QIWUéI(x) dx
V(|x|) ‘ / V(|x|) ( )
ol | -2V gy Up. d U
' (/Q e L Ve i | Z
a 1 U%(x)
- L) d
/QmBg(O)(|x+Q1|m+ (|x+Q1|m+9))|y—x—Q1|3—2‘ ¥
+/ —Vﬂxll U3, (x) dx
o _

mBg(O) |y —x[372

+0 (—) / 01D () dx
r QinBg () [y —x— 01"
k)”“ / 4(E)
+( = Ug, (x)dx
(" sszg(o)|y—x|3_2t <

— X
r) Ja y=x= 0P (4 )26

a U?(x)
QiNB1 (0) ly—x—0,372

1 U?
+0( m+t/ ) 321 dx)
r @B |y —x— 01
1 1
+0(—/ v 3 312 dx)
rm 21N 55 (0) |ly—x—Q 372t p3+2s
342
+0 (]i) / VI 01D ) ax
r 1N By (0) |y —x—0Q1]
k 3+2S V(lxl)
+ - —U X dx
(V) /szmag(o)ly—XP‘Z’ 0:()

- X
r) oy ly=x= Qi (1 [x]2072

dx
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a U?2(x 1 U(x

= m ()3—2td +0(m/ ()32tU(x)dx)
M Jgs |y —x— 01| ™ JainBy o) |y —x—01]

1 1
0
+ (rm+r(1+|y_Q1|)3—2t)
! U?(x) 1 1
+0( m+r/ —X— 3-2¢ dx)+0( m+t (] _ 3—2t)
Tl ol Py =01
k 3+2S 1 1 1
oM7) = d
i ((r) rm /[Rs ly—x—0; 3727 (1 +|x])3+2s x)

k" 1
ollZ
- ((r) (1+|y—Q1I)3‘2’)

a 1 1
:r_mK(y_Ql)+0(rm+f (1+|y_Q1|)3—2t)’

where t > 0 is small and we choose n = %(3 +2s) e (1,34 2s].
So

k

k
; _a o 1 1
¥, 0) = 7 2 KO Qf”o(jzrmﬂ(1+|y—Qj|)3-2f)‘ N

=1

Lemma A.5. We have
1(Uy)

k 3+2s Bs lka 5 1
:kB3—kB4(7) r2m 4 2m ZK(Q] QI)A3U +k0(r2n’l—+t)’

where By=(1—-10) [os UPH! By=1B). Bs=% [o3 KU?and t> 0 is small.
Proof. Recall that

_ 1 2,1 t g2 1 pH1
10 = 50 Ui+ 5 | UF+5 [ Visnet, up -t [ urt

By direct computation, we obtain

—

k
1 21
(A-2) §<Ur,Ur)s+§fRSUr =5 _{Ug;.Ug))s 22 Ug;-Ug;)s
j=1 i#]

k
%Z/UQ, ZZ/ Ug, Vo,

i#j
_k 1 /j p
j:
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By the result in [Long et al. 2016], we know that
k k

B 1
(A-3) / =) ——————+ 0( )
Z QJ |Q1 Q].|3+2s J; |Q1 — Qj|3+2s+r
where Bj is a positive constant and 7 > 0 is small enough. We also obtain

1
(A-4) —/ U, P!
p+1Jg,

1 ( i p+1
—Q 0, + UQ-)
p+1 im !
=i | wert+ /|UQ1|pZUQJ
2 k p+1
+0(/ vor () +o( [ (Sra) )
1 j=2

j=2
k

/ |UQ1|p+1 / |UQl|pZUQ
P+1 =
1 2
+0((Z—3))
210 =012t
£ 1 p+1
i 0((12; |Q] _ Q |3+2s—3+(1_7’_—11)s ) )
P+1 P k 3+4s
p+1/| | /|UQ1| ZUQ]+0 .

Using (A-3) and Lemma A.4, we see that
(A-5)

| vaxhey,u?
R3
- k/QlV(|x|)<I>§]r U?
a k
- k[ﬂlmxn(r—m; K(x=0))

k

: ! k 3+25\2
+O(; Fm+T (1+|x_Qj|)3—2t))(UQ1+0(7) )

J
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k
_ a4 _0)U2
_k/QIV(|x|)rmj§K(x 0)U},

k
1 1
+k/ V(|x|)0( )U2
Q ; Fm+T (14 |x— Qj|)3—2t 0

1 a k
+k0(rm+t/QIV(|x|)r—m; K(x—Q,-))

+k0(/ V(] |)i : 1 )
o, X P r2m+2t (1 4 |x — Q)32
[4) a k
- k/ﬂlvaxbr—mK(x— 03, +kaIV(|x|>r—mj§ K(x—0))U,
1 1 ,
“‘fglw'x'm(rm“ (g Qll)H’)UQ‘
k
1 1 ,
+k/$21V(|X|)O(j; m+tT (1+|x—Qj|)3_2’)UQ1

cko( [ Y. o )
R3 = r2m+r (1 + |x _ Qj|)3—2t

ka

a 1
+0(
leBg(o)(IX-i-Qll’" |x + Qq|m+?

+/’c0(/Q K(x— QJ)UQ1)+r2mj§K(QJ Ql)/u@-%U

)) K(x)U?(x)

1NBS (0) "2’"
k

1 1 1
+k0(z p2m+t |Q1 _ Qj|3—2t) +k0( 2m+r)

j=2

k
r;’m KU2+—ZK(QJ Ql)/ U?

k

1 1 1
+k0(2 p2m+t |Q1 _ Qj|3—2t) +k0(r2m+r)'

j=2
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Above all, we deduce that

(A-6)
I(Uy)

1 1 2 1 t oyr2 p+1
ZE(Ur,Ur)s‘i‘E [R{3Ur +4 V(|x|)q) U i |Ur
—k/UP"'l—i-ka:/U”U k /|U|P+1 k/ |U, |sz:U
— 2 Jgs 2 Lt Jor 0170 p+1Jgs Q, o1l Q)

j=2 j=2
KN4 1 ka? 1 ka? 5
+k0(7) + 1 am Rg +ZWZ K(Qj— Ql)/U

k
1 1 1
+k0(z r2m+r |Q1 _Qj|3—2t) +k0(r2m+r)

k
yrt! / Upt!— k/ Up | Up.

2/ +Z Ug, — p+1 || |Q1|ZQ

k 3+4S lk(l )
+k0(7) T ), +ZWZ K(Qj— Ql)/U

k

1 1 1

+k0(j§r2m+r|Q1_Qj|3—21)+k0(r2m+r)

k
k k k
_ = Up+1 —E:/UPU-— f Up+1
Z/H@ —‘_21,:2 g3 & Qj p+1 R3| |

k I\ tT2stT e \3H4s
_ p 1ol -
k/R3|UQ1| ;UQ]JF o(r) +k0(r)

1 ka? , lka

| K b K(O; — 2
G [ KU+ 7 L K@) 0y [ v

k

1 1 1
+k0(2 p2m+t |Q1 _Qj|3—2t) +k0(r2m+r)

j=2

k

=k(l_;)/ prir K B
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k

1 k 3+2s+t k 3+4s
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1ka 2 2
T m KU +ZWZK(QJ Ql)/U

R3

k
1 1 1
+k0(j§2 r2m+r |Q1 _ Qj|3—2t) +k0(r2m+r)

342
Y (L /UP“—EB RYTT Lk e
2 p+1) Jws 272\ r 4r2m Jos

1
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