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C1-UMBILICS WITH ARBITRARILY HIGH INDICES

NAOYA ANDO, TOSHIFUMI FUJIYAMA AND MASAAKI UMEHARA

We show that C1-umbilics with arbitrarily high indices exist. This implies
that more than C1-regularity is required to prove Loewner’s conjecture.

1. Introduction

The index of an isolated umbilic on a given regular surface is the index of the
curvature line flow of the surface at that point, which takes values in the set of
half-integers. Loewner’s conjecture asserts that any isolated umbilic on an immersed
surface must have index at most 1. Carathéodory’s conjecture asserts the existence
of at least two umbilics on an immersed sphere in R3, which follows immediately
from Loewner’s conjecture. Although this problem was investigated mainly on real-
analytic surfaces after Hamburger’s work [1940; 1941a; 1941b], several geometers
recently became interested in nonanalytic cases; see [Ando 2003; Bates 2001;
Ghomi and Howard 2012; Gutierrez et al. 1996; Smyth and Xavier 1992]. In
particular, Smyth and Xavier [1992] observed that Enneper’s minimal surface is
inverted to a branched sphere such that the index of the curvature line flow at the
branch point is equal to two. Bates [2001] found that the graph of the function

(1-1) B(x, y) := 2+
xy√

1+ x2
√

1+ y2

has no umbilics on R2 and inversion of it gives a genus zero surface without self-
intersections, which is differentiable at the image of infinity under that inversion.
Ghomi and Howard [2012] gave similar examples of genus zero surfaces using
inversion. Moreover, they showed that Carathéodory’s conjecture for closed convex
surfaces can be reduced to the problem of existence of umbilics of certain entire
graphs over R2. A brief history of Carathéodory’s conjecture and recent devel-
opments are written also in [Ghomi and Howard 2012]. Recently, Guilfoyle and

Ando was partly supported by the Grant-in-Aid for Young Scientists (B) 24740048, Japan Society for
the Promotion of Science. Umehara was partly supported by the Grant-in-Aid for Scientific Research
(A) 262457005, Japan Society for the Promotion of Science.
MSC2010: primary 53A05, 53C45; secondary 57R42, 37C10, 53A30.
Keywords: umbilic, curvature line, Carathéodory’s conjecture, Loewner’s conjecture.
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Klingenberg [2008; 2012] gave an approach to proving the Carathéodory and the
Loewner conjectures in the smooth case.

Let P :U→R3 be a C1-immersion defined on an open subset U of R2 such that
P is C∞-differentiable on U \ {q} and not C2-differentiable at q. Then the point
q ∈ U is called a C1-umbilic if the umbilics of P on U \ {q} do not accumulate
to q . At that point q , we can compute the index of the curvature line flow of P. In
this paper, we prove the following assertion:

Theorem 1.1. Let U1⊂R2 be the unit disk centered at the origin. For each positive
integer m, there exists a C1-function f :U1→R satisfying the following properties:

(1) f is real-analytic on U∗1 :=U1 \ {(0, 0)},

(2) (0, 0, f (0, 0)) is a C1-umbilic of the graph of f with index 1+ (m/2).

It should be remarked that the inversion of the graph of Bates’ function B(x, y)
has a differentiable umbilic of index 2 although not of class C1 (see Example 2.3). It
was classically known that curvature line flows are closely related to the eigenflows
of the Hessian matrices of functions (see Appendix A). As an application of the
above result, we can show the following:

Corollary 1.2. For each m ≥ 1, there exists a C1-function λ :U1→ R satisfying

(1) λ is real-analytic on U∗1 , and

(2) the eigenflow of the Hessian matrix of λ has an isolated singular point (0, 0)
with index 1+ (m/2).

When we consider the eigenflow of the Hessian matrix of f , it is well known
that the index of the flow at an isolated singular point is equal to half of the index
of the vector field

(1-2) d f := 2 fxy
∂
∂x + ( fyy − fxx)

∂
∂y .

In addition, if o := (0, 0) is an isolated singular point of the eigenflow of the Hessian
matrix of f , then its index is equal to 1+ indo(δ f )/2 (see Appendix B), where
indo(δ f ) is the index of the vector field

(1-3) δ f := 2(r frθ − fθ ) ∂∂x + (−r2 frr + r fr + fθθ ) ∂∂y

at o, and x = r cos θ , y= r sin θ . In order to prove the above theorem, we introduce
vector fields D f and 1 f analogous to d f and δ f , respectively (see Propositions 3.3
and 4.2), and prove the theorem by computing the index of 1 f at infinity for each
of the functions (see Section 5)

(1-4) f = fm(r, θ) := 1+ tanh(ra cos mθ), 0< a < 1/4, m = 1, 2, . . . .

We also give an alternative proof of Theorem 1.1 without use of inversion, by an ex-
plicit example of λ, see (6-1), satisfying (1) and (2) of Corollary 1.2 (see Section 6).
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2. The regularity of the inversion

Let R be a positive number. Consider a function f : R2
\�R→ R, where

(2-1) �R :=
{
(x, y) ∈ R2

;

√
x2
+ y2
≤ R

}
.

Then F = (x, y, f (x, y)) gives a parametrization of the graph of f . The inversion
of F is given by F/(F · F), where the dot denotes the inner product on R3. We
consider the following coordinate change:

(2-2) x = u
u2+v2 , y = v

u2+v2 .

Then

(2-3) 9 f :=
1

ρ2 f̂ 2+ 1
(u, v, ρ2 f̂ ), f̂ (u, v) := f

(
u
ρ2 ,

v

ρ2

)
gives a parametrization of the inversion, where ρ :=

√
u2
+ v2. The map 9 f is

defined on the domain

(2-4) U∗1/R :=U1/R \ {o},
(

U1/R :=

{
(u, v) ∈ R2

;

√
u2+ v2 < 1

R

})
,

where o := (0, 0). If we set

(2-5) x = r cos θ, y = r sin θ,

where r > 0, then (2-2) yields

(2-6) ρ = 1
r , u = ρ cos θ, v = ρ sin θ.

In particular, the angular parameter is common in the xy-plane and the uv-plane.

Proposition 2.1. Let f : R2
\�R→ R be a C∞-function such that f/r is bounded.

Then the inversion 9 f : U∗1/R → R3 can be continuously extended to (0, 0), and
moreover, if

(2-7)
∣∣∣∣ f 2
− 2r f fr

r2

∣∣∣∣< 1, r > R,

then the image of 9 f = (X, Y, Z) can be locally expressed as the graph of a
function Z = Z f (X, Y ) on a neighborhood of (0, 0) in the XY -plane. Under the
assumption (2-7), the function Z f (X, Y ) is differentiable if and only if

lim
r→∞

f
r
= 0.

Proof. We can write

(2-8) 9 f (u, v)=
1

1+ϕ(u, v)2

(
u, v, ϕ(u, v)

√
u2+ v2

)
,
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where

(2-9) ϕ(u, v)=
√

u2+ v2 f̂ (u, v)=
f (x, y)

r .

Since f/r is bounded, the function ϕ is bounded on U∗1/R . Thus, using (2-8), we can
prove limρ→09 f = (0, 0, 0), i.e., 9 f (u, v) can be continuously extended to (0, 0).
We denote by 5 : R3

3 (x, y, z) 7→ (x, y) ∈ R2 the orthogonal projection. Setting

ψ(ρ, θ) :=
ρ

1+ϕ(ρ cos θ, ρ sin θ)2
,

it holds that

(2-10) 5 ◦9 f (u, v)=
(
ψ(ρ, θ) cos θ, ψ(ρ, θ) sin θ

)
.

Since f̂ ( ρ cos θ, ρ sin θ)= f (cos θ/ρ, sin θ/ρ), we have

ϕρ = f − r fr .

In particular, it holds that

ψρ =
1− ( f 2

− 2r f fr )/r2

(1+ f 2/r2)2
.

By (2-7), there exists ε>0 such that ρ 7→ψ(ρ, θ), |ρ|≤ε, is a monotone increasing
function for each θ . Thus, by (2-10), we can conclude that 5◦9 f :U ε→R2 is an
injection. Since a continuous bijection from a compact space to a Hausdorff space
is a homeomorphism, the inverse map G : �→ Uε of 5 ◦9 f |Uε

is continuous,
where � is a neighborhood of the origin of the XY -plane in R3. Then the graph of

(2-11) Z f

(
=

ρϕ

1+ϕ2

)
=
ϕ(G(X, Y ))ρ(G(X, Y ))

1+ϕ(G(X, Y ))2

coincides with the image of 9 f = (X, Y, Z) around (0, 0, 0). Then

X = u
1+ϕ2 , Y = v

1+ϕ2 , Z =
ρϕ

1+ϕ2 .

Since ρ→ 0 as (X, Y )→ (0, 0), we obtain

(2-12) lim
(X,Y )→(0,0)

Z f (X, Y )√
X2
+ Y 2

= lim
(X,Y )→(0,0)

ϕρ√
u2
+ v2

= lim
ρ→0

ϕ = lim
r→∞

f
r
. �

Corollary 2.2. Suppose that f :R2
\�R→R is a bounded C∞-function satisfying

(2-13) lim
r→∞

fr

r
= 0.

Then the inversion 9 f : U∗1/R → R3 can be continuously extended to (0, 0), and
moreover, the image of 9 f is locally a graph which is differentiable at (0, 0).
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Example 2.3. Bates’ example mentioned in the introduction is differentiable. In
fact, B(x, y) in (1-1) is bounded and Br/r converges to zero as r→∞. However,
the inversion of (x, y, B(x, y)) is not C1. In fact, the unit normal vector field of
the graph of B is not continuously extended to the point at infinity. Since the
inversion preserves the angle, the unit normal vector field of its inversion cannot be
continuously extended to (0, 0, 0).

Example 2.4. Ghomi and Howard [2012] gave an example:

(2-14) fGH = 1+ λ
1+ x + y2√
1+ (x + y2)2

, (λ > 0).

The graph of fGH is umbilic-free (see Example 3.5 in Section 3). The function fGH

is bounded. In addition, since ( fGH)r is bounded, (2-13) is obvious. Therefore,
as pointed out in [Ghomi and Howard 2012], the inversion of (x, y, fGH(x, y)) is
differentiable. However, it is not a C1-map. In fact, the limit of the unit normal
vector field along y = 0 of the graph of fGH is not equal to that along x+ y2

= 0 at
the point at infinity.

Next, we give a condition for 9 f to be extendable as a C1-map to (0, 0).

Proposition 2.5. Suppose that f :R2
\�R→R is a bounded C∞-function satisfying

(a) limr→∞ fr = 0,

(b) limr→∞ fθ/r = 0.

Then 9 f = (X, Y, Z) can be extended to (0, 0) as a C1-map. Moreover, the map
(u, v) 7→ (X (u, v), Y (u, v)) is a C1-diffeomorphism from a neighborhood of the
origin in the uv-plane onto a neighborhood of the origin in the XY -plane.

To prove this, we prepare the following lemma.

Lemma 2.6. The conditions (a) and (b) in Proposition 2.5 are equivalent to the
following two conditions, respectively:

(1) limρ→0 ρ
2 f̂ρ = 0,

(2) limρ→0 ρ f̂θ = 0.

Proof. The equivalency of (2) and (b) is obvious. The equivalency of (1) and (a)
follows from the identity f̂ρ =− fr/ρ

2. �

Proof of Proposition 2.5. We see by Corollary 2.2 that 9 f can be extended to
(0, 0) as a differentiable map and that the map (u, v) 7→ (X (u, v), Y (u, v)) is a
homeomorphism from a neighborhood of (0, 0) onto a neighborhood of (0, 0).
We set

(2-15) h := ρ2 f̂ (= ρϕ), k := (ρ f̂ )2(= ϕ2).
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By (2-3), we can write

(2-16) 9 f = (X, Y, Z)= 1
k+ 1

(u, v, h).

To show that 9 f is a C1-map at (0, 0), it is sufficient to show that h and k are
C1-functions. Since h and k are C∞-functions on U∗1/R , they satisfy

(2-17)
hu = ρ

(
(2 f̂ + ρ f̂ρ) cos θ − f̂θ sin θ

)
,

hv = ρ
(
(2 f̂ + ρ f̂ρ) sin θ + f̂θ cos θ

)
,

(2-18)
ku = 2 f̂ ρ

(
cos θ( f̂ + ρ f̂ρ)− f̂θ sin θ

)
,

kv = 2 f̂ ρ
(
sin θ( f̂ + ρ f̂ρ)+ f̂θ cos θ

)
,

on U∗1/R . Using (1), (2) in Lemma 2.6, (2-17) and (2-18), one can easily see that

(2-19) lim
ρ→0

hu = lim
ρ→0

hv = lim
ρ→0

ku = lim
ρ→0

kv = 0,

which shows that 9 f extends to (0, 0) as a C1-map. By (2-16) and (2-19), we have

Xu(0, 0)= 1, Xv(0, 0)= 0, Yu(0, 0)= 0, Yv(0, 0)= 1.

Thus the second assertion follows from the inverse mapping theorem, because the
Jacobi matrix of the map (u, v) 7→ (X (u, v), Y (u, v)) is regular at (0, 0). �

In Section 5, we need the following:

Proposition 2.7. Let f : R2
\ �R → R be a bounded C∞-function satisfying

conditions (a) and (b) of Proposition 2.5. If there exists a constant 0 ≤ c < 1
2

such that
r1−c/2 fr , r−c/2 fθ , r2−c frr , r1−c frθ , r−c fθθ

are bounded on R2
\�R , then the map (u, v) 7→ (X (u, v), Y (u, v)) is a C2-map

at (0, 0), where 9 f = (X, Y, Z).

We prepare the following lemmas:

Lemma 2.8. The boundedness of the five functions in Proposition 2.7 is equivalent
to the boundedness of the functions

(2-20) ρ1+c/2 f̂ρ, ρc/2 f̂θ , ρ2+c f̂ρρ, ρ1+c f̂ρθ , ρc f̂θθ

on U \ {(0, 0)}, where U is a sufficiently small neighborhood of (0, 0).

Proof. Differentiating f̂ = f̂ (ρ cos θ, ρ sin θ) by ρ, we get ρ f̂ρ = −r fr and
ρ2 f̂ ρρ = 2r fr + r2 frr , which can be used to check the assertion. �
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Lemma 2.9. Suppose that the five functions in (2-20) are bounded on U \ {(0, 0)}.
Then ρ2ckuu, ρ

2ckuv and ρ2ckvv are also bounded on U \ {(0, 0)}, where k is the
function given in (2-15).

Proof. In fact, each of kuu, kuv, kvv is written as a linear combination of

1, ρ f̂ρ, f̂θ , (ρ f̂ρ)2, ρ f̂ρ f̂θ , f̂ 2
θ , ρ2 f̂ρρ, ρ f̂ρθ , f̂θθ ,

with coefficients that are bounded functions. For example,

kuv = sin2θ
(
ρ2 f̂ 2

ρ+ f̂ (ρ2 f̂ρρ+3ρ f̂ρ− f̂θθ )− f̂ 2
θ

)
+2cos2θ

(
f̂θ (ρ f̂ρ+ f̂ )+ρ f̂ f̂ρθ

)
.

Thus, we get the assertion. �

Proof of Proposition 2.7. By Lemmas 2.8 and 2.9, the fact that 2c < 1 yields that

(2-21) lim
ρ→0

ρkuu = lim
ρ→0

ρkuv = lim
ρ→0

ρkvv = 0.

Since

Xuu =
2uk2

u − 2(k+ 1)ku − u(k+ 1)kuu

(k+ 1)3
,

Xuv =−
kv(−2uku + k+ 1)+ u(k+ 1)kuv

(k+ 1)3
,

Xvv =−
u
(
(k+ 1)kvv − 2k2

v

)
(k+ 1)3

,

we have that Xuu, Xuv, Xvv tend to 0 as ρ → 0. This implies that Xu, Xv are
C1-functions. Similarly, Yu, Yv are also C1-functions. �

3. The pair of identifiers for umbilics

Let U be a domain on R2. Consider a flow (i.e., a 1-dimensional foliation) F
defined on U \ {p1, . . . , pn}, where p1, . . . , pn are distinct points in U. We are
interested in the case where F is

• the curvature line flow of an immersion P :U → R3,

• the eigenflow of a matrix-valued function on U, or

• the flow induced by a vector field on U.

We fix a simple closed smooth curve γ :T 1
→U\{p1, . . . , pn}, where T 1

:=R/2πZ.
We set

∂x :=
∂
∂x , ∂y :=

∂
∂y .

Then one can take a smooth vector field

V (t) := a(t)∂x + b(t)∂y
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along the curve γ (t) such that V (t) is a nonzero tangent vector of R2 at γ (t) which
points in the direction of the flow F. Then the map

(3-1) V̌ : T 1
3 t 7→

(a(t), b(t))√
a(t)2+ b(t)2

∈ S1
:= {x ∈ R2

; |x| = 1}

is called the Gauss map of F with respect to the curve γ . The mapping degree of the
map V̌ is called the rotation index of F with respect to γ and denoted by ind(F, γ ),
which is a half-integer, in general. If γ surrounds only p j , then ind(F, γ ) is
independent of the choice of such a curve γ . So we call it the (rotation) index of
the flow F at p j , and it is denoted by indp j (F). If the flow F is generated by a
vector field V defined on U \ {p1, . . . , pn}, then indp j (F) is an integer, and we
denote it by indp j (V ).

We denote by S2(R) the set of real symmetric 2-matrices. Let U be a domain
in R2, and

A =
(

a11(x, y) a12(x, y)
a12(x, y) a22(x, y)

)
:U → S2(R),

a C∞-map. A point p ∈ U is called an equidiagonal point of A if a11 = a22 and
a12= 0 at p. We now suppose that p is an isolated equidiagonal point. Without loss
of generality, we may assume that A has no equidiagonal points on U \ {p}. Since
two eigenflows of A are mutually orthogonal, the indices of the two eigenflows of the
S2(R)-valued function A are the same half-integer at p. We denote it by indp(A).

It is well known that for an S2(R)-valued function A, the formula

(3-2) indp(A)= 1
2 indp(vA)

holds, where vA is the vector field on U given by

(3-3) vA := (a11− a22)∂x + a12∂y .

We shall apply these facts to the computation of the indices of isolated umbilics
on regular surfaces in R3 as follows. Let f : U → R be a C∞-function. The
symmetric matrices associated with the first and the second fundamental forms of
the graph of f are given by

(3-4) I :=
(

1+ f 2
x fx fy

fx fy 1+ f 2
y

)
, II :=

(
fxx fxy

fxy fyy

)
.

We consider a GL(2,R)-valued function

(3-5) P :=

 0
√

1+ f 2
x

−

√
(1+ f 2

x + f 2
y )/(1+ f 2

x ) fx fy/
√

1+ f 2
x

,
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which satisfies the identity P PT
= I, where PT is the transpose of P. Then

A f := P−1II(PT )−1
= PT (I−1II)(PT )−1

is an S2(R)-valued function. The umbilics of the graph of f correspond to the
equidiagonal points of A f . We show the following:

Proposition 3.1. The symmetric matrix A f (p) is proportional to the identity matrix
at p ∈ U if and only if p gives an umbilic of the graph of f . Moreover, if p is an
isolated umbilic, then indp(A f ) coincides with the index of the umbilic p.

Proof. The first assertion follows from the definition of A f . Without loss of
generality, we may assume that p coincides with the origin o := (0, 0), and the
graph of f has no umbilics other than o on U. Take a sufficiently small positive
number ε > 0 so that the circle

γ (t)= ε(cos t, sin t), 0≤ t ≤ 2π,

is null-homotopic in U.
We denote by (a1(t), b1(t))T and (a2(t), b2(t))T , eigenvectors of I−1II and A f

at γ (t), respectively. We may suppose

(a1(t), b1(t))P(γ (t))= (a2(t), b2(t)), 0≤ t ≤ 2π.

We set
wi (t) := ai (t)∂x + bi (t)∂y, i = 1, 2.

Then w1 points in one of the principal directions of the graph of f . The matrix
P(γ (t)) takes values in the set

(3-6) T :=
{(

0 x
−y z

)
; x, y > 0, z ∈ R

}
.

Since the set T is null-homotopic, the mapping degree of w̌1(t) with respect to
the origin is equal to that of w̌2(t). Since the degree of w̌2(t) with respect to o
coincides with indo(A f ), we get the second assertion. �

By a straightforward calculation, one can get the following identity:

Ã f := hk3 A f =

(
fx fy( fx fy fxx − 2h fxy)+ h2 fyy lk

lk k2 fxx

)
,

where

h := 1+ f 2
x , k :=

√
1+ f 2

x + f 2
y , l := −h fxy + fx fy fxx .

Then the coefficients of the vector field

v Ã f
= v1∂x + v2∂y
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defined as in (3-3) for A = Ã f are given by

v1 = ã11− ã22 = (−1+ f 2
x ) f 2

y fxx − h fxx − 2h fx fxy fy + h2 fyy,

v2 = ã12 =−k(h fxy − fx fy fxx),

where Ã f = (ãi j )i, j=1,2. Hence, we get the following identity:

v1 =
2 fx fy

k
v2+ h

(
− fxx(1+ f 2

y )+ (1+ f 2
x ) fyy

)
.

Consequently, we get the following fact (see [Ghomi and Howard 2012, (10)]):

Fact 3.2. The graph of the function z = f (x, y) defined on U has an umbilic at
p ∈U if and only if the functions

d1(x, y) := (1+ f 2
x ) fxy− fx fy fxx , and d2(x, y) := (1+ f 2

x ) fyy− fxx(1+ f 2
y )

both vanish at p.

We consider the vector field

D f := d1∂x + d2∂y

defined on the domain U in the xy-plane. Suppose that p is a zero of D f . The
following assertion holds:

Proposition 3.3. If p gives an isolated umbilic of the graph of f , then half of the
index of the vector field D f at p coincides with the index of the umbilic p.

Proof. The half of the index of the vector field

X := −v Â f
= (2 fx fyd1− hd2)∂x + kd1∂y

at p is equal to indp( Ã f ). We now set

Xs := (∂x , ∂y)

 2s fx fy −1− s f 2
x√

1+ s( f 2
x + f 2

y ) 0

(d1

d2

)
, 0≤ s ≤ 1.

Then X = X1 and X0 =−d2∂x + d1∂y , and the rotation index of Xs at p does not
depend on s ∈ [0, 1]. Since the rotation index of D f = (d1, d2) at p coincides with
that of X0, we can conclude that X has the same rotation index as D f at p. �

We call d1, d2 the Cartesian umbilic identifiers of the function f .

Example 3.4. For a function f (x, y) := Re(z3) = x3
− 3xy2 (z = x + iy), the

Cartesian umbilic identifiers are given by d1 =−6yϕ1, d2 =−6xϕ2, where

ϕ1 := −9x4
+ 9y4

+ 1, ϕ2 := 9x4
+ 18x2 y2

+ 9y4
+ 2.
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Since ϕi , i = 1, 2, are positive at the origin (0, 0), the vector field D f can be
continuously deformed into the vector field −y∂x − x∂y preserving the property
that the origin is an isolated zero. Thus D f is of index −1, and the graph of the
function f has an isolated umbilic of index − 1

2 at the origin.

Example 3.5. Bates’ function B(x, y) has no umbilics since d1 > 0 on R2. On the
other hand, the identifier d1 with respect to Ghomi and Howard’s function fGH(x, y)
in (2-14) vanishes if and only if y = 0 or x = −y2. Since d2 never vanishes on
these two sets, the graph of fGH also has no umbilics on R2.

4. The pair of polar identifiers for umbilics

Let U be a domain in the xy-plane, and f :U → R a C∞-function. Let (r, θ) be
the polar coordinate system associated to (x, y) as in (2-5). Then

F(r, θ) := (r cos θ, r sin θ, f (r cos θ, r sin θ))

gives a parametrization of the graph of f with the unit normal vector

ν :=
1√

f 2
θ + r2

(
1+ f 2

r
)( fθ sin θ − r fr cos θ,−r fr sin θ − fθ cos θ, r

)
.

Then

Î :=

(
1+ f 2

r fr fθ
fr fθ r2

+ f 2
θ

)
is the symmetric matrix consisting of the coefficients of the first fundamental form
of F. If we set

Q =

 0
√

1+ f 2
r

−

√
f 2
θ + r2

(
1+ f 2

r
)
/
√

1+ f 2
r fr fθ/

√
1+ f 2

r

,
then Q QT

= Î. The symmetric matrix consisting of the coefficients of the second
fundamental form is given by

ÎI :=
1√

f 2
θ + r2

(
1+ f 2

r
)( r frr r frθ − fθ

r frθ − fθ r( fθθ + r fr )

)
.

Then the symmetric matrix

B f = Q−1ÎI(Q−1)T = QT (Î−1ÎI)(QT )−1

satisfies

B̃ f = ĥk̂3 B f =

(
r f 2

r f 2
θ frr + ĥ fr

(
−2r fθ frθ + 2 f 2

θ + r2ĥ
)
+ r ĥ2 fθθ l̂ k̂

l̂ k̂ r k̂2 frr

)
,
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where

ĥ := 1+ f 2
r , k̂ :=

√
f 2
θ + r2(1+ f 2

r
)
, l̂ := fθ (ĥ+ r fr frr )− r ĥ frθ .

The following holds:

Proposition 4.1. The symmetric matrix B̃ f (p) is proportional to the identity matrix
at p ∈ U \ {o} if and only if p gives an umbilic of the graph of f . Moreover, if o
is an isolated umbilic of the graph of f , then the index of the umbilic at o is equal
to 1+ indo(B̃ f ).

Proof. The first assertion follows from the above discussions. So we now prove
the second assertion. Suppose o is an isolated umbilic. We take a simple closed
smooth curve γ (t) in the xy-plane, where 0≤ t ≤ 2π , which surrounds the origin o
anticlockwisely, and does not surround any other umbilics. Let w1 : [0, 2π ] → R2

be a vector field along γ such that w1(t) is an eigenvector of the matrix I−1II at
γ (t) for each t ∈ [0, 2π ]. Since

∂r = cos θ∂x + sin θ∂y,

∂θ =−r sin θ∂x + r cos θ∂y,

we have that

(∂r , ∂θ )= (∂x , ∂y)T0, T0 :=

(
cos θ −r sin θ
sin θ r cos θ

)
.

Then, it holds that
Î−1ÎI = (T0)

−1(I−1II)T0.

In particular,
w2(t) := T0(γ (t))−1w1(t), 0≤ t ≤ 2π,

gives an eigenvector of the matrix Î−1ÎI at γ (t). Let Ts :U→GL(2,R), 0≤ s ≤ 1,
be a map defined by

Ts :=

(
cos θ −(r(1− s)+ s) sin θ
sin θ (r(1− s)+ s) cos θ

)
, 0≤ s ≤ 1.

Then it gives a continuous deformation of T0 to the rotation matrix T1. Since
the winding number of the curve γ (t) with respect to the origin o is equal to 1,
the difference between the rotation indices of w1 and w2 is equal to 1. Since the
eigenflow of the symmetric matrix B̃ f is associated with that of the matrix Î−1ÎI by
Q, the fact that Q takes values in the set T in Section 3 yields that the index of the
umbilic o is equal to 1+ indo(B̃ f ). �

We now set

δ1 := −b̃12/k̂ =− fθ (1+ f 2
r + r fr frr )+ r

(
1+ f 2

r
)

frθ ,
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where B̃ f = (b̃i j )i, j=1,2. Then we have

b̃11− b̃22 =−2 fr fθδ1+ r
(
1+ f 2

r
)
δ2,

where
δ2 :=

(
1+ f 2

r
)
(r fr + fθθ )− frr

(
r2
+ f 2

θ

)
.

Thus, as in the proof of Proposition 3.3, we get the following assertion:

Proposition 4.2. Let U be a neighborhood of the origin o := (0, 0). Let f :U→R

be a C∞-function. Then the graph of f has an umbilic at p∈U \{o} if and only if the
two functions δ1(r, θ), δ2(r, θ) both vanish at p, where x = r cos θ and y = r sin θ .
Further, if o is an isolated umbilic, then half of the index of the vector field

1 f := δ1∂x + δ2∂y

at o equals −1+ I f (o), where I f (o) is the index of the umbilic o.

We call δ1, δ2 the polar umbilic identifiers of the function f .

Example 4.3. Consider the function (where z = x + iy)

f (x, y) := Re(z2z)= x3
+ xy2

= r3 cos θ.

By straightforward calculations, we have

δ1 =−2r3 sin θ, δ2 =−2r3(2− 3r4
− 6r4 cos 2θ) cos θ.

Since 2−3r4
−6r4 cos 2θ is positive for sufficiently small r > 0, the vector field1 f

can be continuously deformed into the vector field − sin θ∂r − cos θ∂θ preserving
the property that the origin is an isolated zero. Thus the rotation index of 1 f at o
is equal to −1, and I f (o)= 1− 1

2 =
1
2 .

We give a generalization of Proposition 4.2 for the computation of the index of
the curvature line flow of a surface along an arbitrarily given simple closed curve
surrounding several umbilics as follows. Let z = f (x, y) be a C∞-function defined
on R2 admitting only isolated umbilics. Suppose that γ : R→ R2 is a C∞-map
satisfying γ (t + 2π) = γ (t) which gives a simple closed curve in the xy-plane
such that it surrounds a bounded domain containing the origin o anticlockwisely.
Moreover, we assume that γ (t) does not pass through any points corresponding to
umbilics of the graph of f . We denote by I f (γ ) (resp. indγ (1 f )) the rotation index
of the curvature line flow (resp. of the vector field 1 f ) along the simple closed
curve γ . Then the formula

(4-1) I f (γ )= 1+
indγ (1 f )

2
can be proved by modifying the proof of Proposition 4.2. Suppose that there exist
at most finitely many points t = t1, . . . , tk ∈ [0, 2π ] such that δ1(γ (t)) vanishes
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9 f (0, 0)

Figure 1. The inversion of the graph f5 for a = 1
5 (left) and its

enlarged view (right). In these two figures, the z-axis points toward
the downward direction.

at t = t j . We now assume that δ′1(γ (t)) := dδ1(γ (t))/dt does not vanish at t = t j ,
for j = 1, . . . , k. We set

ε(t j )=


0 for δ2(γ (t j )) < 0,
1 for δ′1(γ (t j )) > 0 and δ2(γ (t j )) > 0,
−1 for δ′1(γ (t j )) < 0 and δ2(γ (t j )) > 0.

Then, it holds that

(4-2) indγ (1 f )=−

k∑
j=1

ε(t j ).

5. Proof of the main theorem

In this section, using the function f = fm (m = 1, 2, 3, . . .) given in (1-4), we prove
Theorem 1.1 and Corollary 1.2 in the introduction. More generally, we consider
the function

(5-1) g = gm(r, θ) := 1+ F(ra cos mθ), 0< a < 1/4, m = 1, 2, 3, . . . ,

which is defined on {(r, θ) ; r > R}, where R is an arbitrarily fixed positive number,
and F : R→ R is a bounded C∞-function satisfying the following conditions:

(i) F(x) is an odd function, that is, it satisfies F(−x)=−F(x),

(ii) the derivative F ′(x) of F is a positive-valued bounded function on R,

(iii) the second derivative F ′′(x) is a bounded function on R such that F ′′(x) < 0
for x > 0,
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(iv) there exist three constants α, β and γ (β 6= 0, γ > 0) such that

lim
x→∞

eγ x F ′(x)= α, lim
x→∞

eγ x F ′′(x)= β.

One can easily construct a bounded C∞-function F(x) satisfying properties (i–iv).
For example, one can construct an odd C∞-function satisfying (ii) and (iii) so that

F(x)= 1− e−x , x ∈ [M,∞),

for a positive number M. Then it satisfies (iv) also. However, to prove Theorem 1.1,
we must choose the function F(x) to be real-analytic, and

F(x) := tanh x

satisfies all of the properties required. In this case, gm = fm holds. From now on,
we shall prove Theorem 1.1 and Corollary 1.2 using only the above four properties
of F(x).

The function g can be considered as a C∞-function on R2
\�R in the xy-plane

for any R > 0. The graph of g lies between two parallel planes orthogonal to the
z-axis, and is symmetric under rotation by the angle 2π/m with respect to the z-axis
(the entire figure of the inversion of the graph of f5 is given in the left-hand side of
Figure 1). The partial derivatives of the function g are given by

gr = ara−1cm F ′(racm),

gθ =−mrasm F ′(racm),

grr = ara−2cm
(
aracm F ′′(racm)+ (a− 1)F ′(racm)

)
,(5-2)

grθ =−amra−1sm
(
racm F ′′(racm)+ F ′(racm)

)
,

gθθ = m2ra(ras2
m F ′′(racm)− cm F ′(racm)

)
,

where

(5-3) cm := cos mθ, sm := sin mθ.

Since F(x) is a bounded function, g is bounded and satisfies (2-13), since a < 2.
Therefore, the inversion 9g can be expressed as a graph near (0, 0, 0). Since
0<a<1, the function g satisfies (a) and (b) of Proposition 2.5. Then Z = Z f (X, Y )
as in (2-11), where f := g is a C1-function at (0, 0). The graph of Zg for g = f5

near (0, 0, 0) is indicated in the right-hand side of Figure 1. To prove Theorem 1.1,
it is sufficient to show that (0, 0, 0) is a C1-umbilic of the graph of Zg(X, Y ) with
index 1+ (m/2). In the following discussions, we would like to show that there
exists a positive number R such that the graph of g has no umbilics if r > R. We
then compute the index Ig(0) with respect to the circle

(5-4) 0(θ) := (r cos θ, r sin θ), 0≤ θ ≤ 2π, r > R,
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using (4-1) and (4-2), which does not depend on the choice of r > R, as follows.
We set

(5-5) δ̌ j (θ) := δ j (0(θ)), j = 1, 2.

The first polar identifier is given by

(5-6) δ1 =−mrasm
(
aracm F ′′(racm)+ (a− 1)F ′(racm)

)
.

Since 0< a < 1, condition (ii) yields that

(5-7) (a− 1)F ′(racm) < 0.

On the other hand, by (i) and (iii), it holds that

(5-8) x F ′′(x)≤ 0, x := racm .

By (5-7) and (5-8), we can conclude that δ̌1(θ) changes sign only at the zeros of
the function sin mθ . Since the function g is symmetric with respect to rotation by
angle 2π/m, to compute the rotation index of 1g along 0, it is sufficient to check
the sign changes of δ̌i (θ), i = 1, 2, for θ = 0 and θ = π/m. By (5-6), (5-7) and
(5-8), we get the following:

(5-9)
d δ̌1

dθ

∣∣∣∣
θ=0

> 0,
d δ̌1

dθ

∣∣∣∣
θ=π/m

< 0.

The second polar identifier δ2 is given by

r2−3aδ2 =− r2−a(a2c2
m −m2s2

m)F
′′(cmra)+ acm(a2c2

m − am2
+m2s2

m)F
′(cmra)3

− cmr2−2a(a2
− 2a+m2)F ′(cmra).

We need the sign of δ̌2(θ) at θ ∈ (π/m)Z. In this case, sm = 0 and cm = ±1.
Substituting these relations and using the fact that F ′ (resp. F ′′) is an even function
(resp. an odd function), we have

r2−3aδ2 =∓r2−aa2 F ′′(ra)± a2(a−m2)F ′(ra)3∓ r2−2a(a2
− 2a+m2)F ′(ra).

Since F ′ is bounded, the middle term is bounded. Hence, by (iv) and by the fact that
0< a < 1, there exists a positive number R such that the sign of δ2 is determined
by the sign of the first term ∓r2−aa2 F ′′(ra) whenever r > R. Then, we have

(5-10) −δ̌2(π/m)= δ̌2(0) > 0.

In particular, the image of the graph of g has no umbilics when r > R. By the
2π/m-symmetry of g, (4-2), (5-9), and (5-10), the index ind0(1g) is equal to −m.
Then the index of the curvature line flow along 0 is equal to Ig(0) = 1−m/2
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by (4-1). Then after inversion, the Poincaré–Hopf index formula yields that the
index I0 of the umbilic of 9g at the origin is

I0 = 2− Ig(0)= 1+m/2.

If we choose F(x) := tanh x , then the function Zg(X, Y ) satisfies the properties of
Theorem 1.1.

We next prove the corollary. We set

(5-11) λ :=
Z
√

1+ Z2
X + Z2

Y

1+
√

1+ Z2
X + Z2

Y

,

where Z := Zg is the function given in (2-11). Suppose that λ and λν are a
C1-function and a C1-vector field defined on a sufficiently small neighborhood of
(0, 0) in the XY -plane, respectively, where ν is a unit normal vector field of the
graph of Zg. Then the map

8 : (X, Y ) 7→ (ξ(X, Y ), η(X, Y ))

given by (A-4) for f = Z fm is a local C1-diffeomorphism, and is real-analytic
on U \ {(0, 0)}. Then the proof of Fact A.1 in Appendix A is valid in our situation,
and we can conclude that the eigenflow of the Hessian matrix of λ(ξ, η) is equal
to the curvature line flow of the map P(ξ, η) given by (A-8). Since the image of
P(ξ, η) coincides with that of 9 fm (u, v), we get the proof of the corollary in the
introduction.

Thus, it is sufficient to show that λ and λν are C1 at (X, Y )= (0, 0). By (5-11),
we have the following expression

(5-12) λν =
(Z Z X , Z ZY ,−Z)

1+
√

1+ Z2
X + Z2

Y

.

By (5-11) and (5-12), we can say that λ(X, Y ) and λ(X, Y )ν(X, Y ) are C1 at (0, 0) if

(5-13) lim
(X,Y )→(0,0)

Z Z X X = lim
(X,Y )→(0,0)

Z Z XY = lim
(X,Y )→(0,0)

Z ZY Y = 0

hold. So to prove the corollary, it is sufficient to show (5-13). It can be eas-
ily seen that all of r1−agr , r−agθ , r2−2agrr , r1−2agrθ and r−2agθθ are bounded
functions on R2

\ �R . Since 0 < a < 1
4 , Proposition 2.7 yields that the map

(u, v) 7→ (X, Y )=5 ◦9g(u, v) is a C2-map. Then (5-13) is equivalent to

(5-14) lim
(u,v)→(0,0)

Z Zuu = lim
(u,v)→(0,0)

Z Zuv = lim
(u,v)→(0,0)

Z Zvv = 0.

Since Z = h/(k+ 1), (5-14) follows from (2-19), (2-21) and the fact that

lim
ρ→0

ρhuu = lim
ρ→0

ρhuv = lim
ρ→0

ρhvv = 0.
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6. An alternative proof of the main theorem

In the previous section, we have proved Corollary 1.2. However, it is natural to
expect that one can give an explicit description of the function with the desired
properties. The function λ given in (5-11) does not have a simple expression. On
the other hand, we will see that functions

(6-1) 3= 3m := r2 tanh(r−a cos mθ), m = 1, 2, 3, . . . ,

satisfy (1) and (2) of Corollary 1.2 if 0< a < 1. We set

(λ :=) λm := r2 F(r−a cos mθ),

where ξ = r cos θ, η= r sin θ , and F :R→R is a function satisfying the properties
(i–iv) given in the beginning of Section 5. Then 3m is a special case of λm for
F(x) := tanh x . It holds that

λr = r
(
2F(r−acm)− acmr−a F ′(r−acm)

)
,

λθ =−mr2−asm F ′(r−acm),

λrr = 2F(r−acm)+ ar−2acm
(
(a− 3)ra F ′(r−acm)+ acm F ′′(r−acm)

)
,

λrθ =msmr1−2a((a− 2)ra F ′(r−acm)+ acm F ′′(r−acm)
)
,

λθθ =−m2r2−2a(racm F ′(r−acm)− s2
m F ′′(r−acm)

)
,

where cm and sm are defined in (5-3). We set

ζ1 := 2(rλrθ − λθ ), ζ2 := −r2λrr + rλr + λθθ .

Then each component of the vector field δλ := ζ1∂x + ζ2∂y is an identifier for the
eigenflow of the Hessian matrix of λ at the origin given in the introduction; see (1-3).
By a direct calculation, we have

ζ1 = 2mr2−2asm
(
acm F ′′(r−acm)+ (a− 1)ra F ′(r−acm)

)
,

ζ2 =−r2−2a(a2c2
m −m2s2

m)F
′′(r−acm)− (a2

− 2a+m2)r2−acm F ′(r−acm).

By the property (ii) of F, (a − 1)ra F ′(r−acm) is negative, and by (ii) and (iii),
cm F ′′(r−acm) is also negative. So ζ1 is positively proportional to −sm(=− sin mθ).
In particular, ζ1 vanishes only when sm = 0. Moreover, for fixed r , it holds that
dζ1/dθ < 0 (resp. dζ1/dθ > 0) if cm = 1 (resp. cm =−1).

On the other hand, if sm = 0 and r tends to zero, then cm =±1 and F ′(±r−a)

and F ′′(±r−a) tend to zero with exponential order (see condition (iv) for F(x)).
Therefore, the leading term of ζ2 for small r is −r2−2a(a2c2

m −m2s2
m)F

′′(r−acm).
Hence, for a fixed sufficiently small r , the function ζ2 is positive (resp. negative)
if cm = 1 (resp. cm =−1). Summarizing these facts, one can easily show that the
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Figure 2. The image of P
(
r ≤ 1

2

)
for m = 2 and a = 1

2 .

index of the vector field δλ at o := (0, 0) is equal to m. So the index of the eigenflow
of the Hessian matrix of λ at o is equal to 1+m/2 (see Appendix B). One can
easily check that λ is a C1-function at o and the function λ satisfies (1) and (2) of
Corollary 1.2. Since 3 is a special case of λ, we proved that 3 satisfies the desired
properties.

To give an alternative proof of Theorem 1.1, we consider the real analytic map
P : R2

\ {o} → R3 defined (see (A-8)) by

P(ξ, η) := (ξ, η,3(ξ, η))−3(ξ, η)ν(ξ, η),

where

(6-2) ν :=
1

32
ξ +3

2
η+ 1

(23ξ , 23η,32
ξ +3

2
η− 1).

One can easily verify that

3ξ = r1−a((ms1sm − ac1cm) sech2(r−acm)+ 2rac1 tanh(r−acm)
)
,

3η = r1−a(2ras1 tanh(r−acm)− (as1cm +mc1sm) sech2(r−acm)
)
,

where c1 = cos θ and s1 = sin θ . Using them, one can get the expressions

(6-3) 3ξξ =
1

r2a h1(r, θ), 3ξη =
1

r2a h2(r, θ), 3ηη =
1

r2a h3(r, θ),

where hi (r, θ), i = 1, 2, 3, are continuous functions defined on R2. Using (6-2),
(6-3) and the fact limr→03/r2a

= 0, we have

(6-4) lim
r→0

3νξ = lim
r→0

3

r2a (r
2aνξ )= 0,

and also

(6-5) lim
r→0

3νη = 0.
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Using (6-4), (6-5) and the fact

d(3ν)= (d3)ν+3dν,

we can conclude that 3ν can be extended as a C1-function at o. Thus P(ξ, η) can
also be extended as a C1-differentiable map at o. One can also easily check that

Pξ (0, 0)= (1, 0, 0), Pη(0, 0)= (0, 1, 0).

Hence P is an immersion at o, and

8 : (ξ, η) 7→ (X (ξ, η), Y (ξ, η))

is a local C1-diffeomorphism, where P = (X, Y, Z). In particular,

Z3 := Z(8−1(X, Y ))

gives a function defined on a neighborhood of (X, Y ) = (0, 0). By Fact A.1 in
Appendix A, the index of the curvature line flow at (0, 0) of the graph of Z3 is
equal to the index of the eigenflow of the Hessian matrix of 3, which implies
Theorem 1.1. The image of P for m = 3 and a = 1

2 is given in Figure 2.

7. The duality of indices

At the end of this paper, we consider the index at infinity for eigenflows of Hessian
matrices. Let

f : R2
\�R→ R, g :U1/R \ {o} → R

be C2-functions, where �R and U1/R are disks defined in Section 2. Let H f

(resp. Hg) be the eigenflow of the Hessian matrix of f (resp. g). If the Hessian
matrix of f has no equidiagonal points, then we can consider the index ind(H f , 0)

with respect to the circle 0 given in (5-4) and it is independent of the choice
of r > R. So we denote it by ind∞(H f ). Similarly, if the Hessian matrix of g has
no equidiagonal points, then we can consider the index ind(Hg, 0

′) with respect to
the circle 0′(θ) := (ρ cos θ, ρ sin θ), 0≤ θ ≤ 2π , ρ < 1/R. Since it is independent
of the choice of ρ < 1/R, we denote it by indo(Hg). Consider the plane-inversion

ι : R2
∈ (u, v) 7→ 1

u2+ v2 (u, v) ∈ R2.

Then the following assertion holds:

Proposition 7.1 (duality of indices). Let f : R2
\�R→ R be a C2-function whose

Hessian matrix has no equidiagonal points. Then the function g :�R→R defined by

g(x, y) := (u2
+ v2) f ◦ ι(u, v)
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(called the dual of f ) satisfies

indo(Hg)+ ind∞(H f )= 2.

Proof. Using the identification of (u, v) and z = u+ iv, it holds that u = (z+ z)/2
and v = (z− z)/(2i). In particular, f can be considered as a function of variables
z and z, and can be denoted by f = f (z, z). Since ι(z)= 1/z, we can write

g(z, z) := zz f (1/z, 1/z).

Then

gzz(z, z)=
z fzz(1/z, 1/z)

z3

holds, where

∂
∂z :=

1
2

(
∂
∂u − i ∂

∂v

)
, ∂

∂z :=
1
2

(
∂
∂u + i ∂

∂v

)
.

Since 0(θ)= reiθ , we have that

gzz(0(θ))=
fzz(ι ◦0(θ))

r2e4iθ .

Thus, it holds that

indo(gzz, 0)=−4+ indo( fzz, ι ◦0).

By (B-1), we have

indo(gzz, 0)=−2 indo(Hg),

indo( fzz, ι ◦0)=− indo( fzz, ι ◦0)= 2 ind∞(H f ).

Thus we get the assertion. �

Applying Proposition 7.1 for the function g=3m , see (6-1), we get the following:

Corollary 7.2. For each m ≥ 1, there exists a C1-function f : R2
\ �R → R

satisfying

(1) f is real-analytic on R2
\�R ,

(2) the eigenflow of the Hessian matrix of f has no singular points, and

(3) the index at infinity of the eigenflow of H f is equal to 1−m/2.

The function 3m used in the second proof of Theorem 1.1 coincides with the
dual of the function fm − 1 given in (1-4).
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Appendix A: The classical reduction

In this appendix we show the existence of a special coordinate system (ξ, η) of the
graph of a function f (x, y) which reduces the curvature line flow to the Hessian of
a certain function, called Ribaucour’s parametrization (Umehara learned this from
Konrad Voss at the conference of Thessaloniki 1997). Although, the existence of
such a coordinate system was classically known, and a proof is in the appendix of
[Scherbel 1993], the authors will give the proof here for the sake of convenience.
We set P = (x, y, f (x, y)), and suppose that f (0, 0) = fx(0, 0) = fy(0, 0) = 0.
Consider a sphere which is tangent to the graph of f at P and also tangent to the
xy-plane at a point Q. Then, it holds that

(A-1) Q+ λe3 = P + λν,

where e3 = (0, 0, 1) and ν = ( fx , fy,−1)/
√

1+ f 2
x + f 2

y . Taking the third compo-
nent of (A-1), we get

(A-2) λ=
f
√

1+ f 2
x + f 2

y

1+
√

1+ f 2
x + f 2

y

.

In particular, λ(0, 0)= 0. Since fx(0, 0)= fy(0, 0)= 0, we have that

(A-3) dλ(0, 0)= d f (0, 0)= 0.

Taking the exterior derivative of (A-1), and using (A-3) and λ(0, 0)= 0, we have
d P(0, 0)= d Q(0, 0). So, if we set Q = (ξ(x, y), η(x, y), 0), then it holds that

(ξx(0, 0)dx + ξy(0, 0)dy, ηx(0, 0)dx + ηy(0, 0)dy, 0)= d Q

= d P = (dx, dy, fx(0, 0)dx + fy(0, 0)dy)= (dx, dy, 0),

which implies that the Jacobi matrix of the map

(A-4) 8 : (x, y) 7→ (ξ(x, y), η(x, y))

is the identity matrix at (0, 0). So we can take (ξ, η) as a new local coordinate
system. Differentiating (A-1) by ξ and η, we get the following two identities:

Qξ + λξ e3 = Pξ + λξν+ λνξ , Qη+ ληe3 = Pη+ λην+ λνη.

Taking the inner products of them and ν, these two equations yield

(A-5) Qξ · ν+ λξν3 = λξ , Qη · ν+ λην3 = λη,

where we set ν = (ν1, ν2, ν3). Since Q = (ξ, η, 0), we have that Qξ = (1, 0, 0) and
Qη = (0, 1, 0). So Qξ ·ν = ν1 and Qη ·ν = ν2. Substituting this into (A-5), we have

(A-6) λξ =
ν1

1−ν3
, λη =

ν2
1−ν3

.



C1-UMBILICS WITH ARBITRARILY HIGH INDICES 23

This implies that (λξ , λη) is the image of ν via the stereographic projection, and

(A-7) ν =
1

1+λ2
ξ+λ

2
η

(2λξ , 2λη, λ2
ξ + λ

2
η− 1).

By (A-1), we have

(A-8) P = (ξ, η, 0)− λν+ (0, 0, λ).

We prove the following:

Fact A.1. The curvature line flow of the graph z = f (x, y) coincides with the
eigenflow of the Hessian of the function λ(ξ, η) given by (A-2).

Proof. Noticing (A-8), we set

1(ξ,η) := det

 ν

d P
dν

= det

 ν

dξ, dη, dλ
dν

.
Then this gives a map 1(ξ,η) : T(ξ,η)R2

→ R such that

1(ξ,η)

(
a ∂
∂ξ
+ b ∂

∂η

)
= det

(
ν, a Pξ (ξ, η)+ bPη(ξ, η), aνξ (ξ, η)+ bνη(ξ, η)

)
∈ R.

It is well known that w ∈ T(ξ,η)R2 points in a principal direction of P at (ξ, η) if
and only if 1(ξ,η)(w)= 0. Since (ν1)

2
+ (ν2)

2
+ (ν3)

2
= 1, (A-6) yields that

λξν1+ λην2 =
(ν1)

2
+ (ν2)

2

1− ν3
=

1− (ν3)
2

1− ν3
= 1+ ν3,

which implies ν3=λξν1+λην2−1.We now set µ= 2/(1+λ2
ξ+λ

2
η). Differentiating

(A-7), we have

dν =
dµ
µ
ν+µ(dλξ , dλη, λξdλξ + ληdλη).

The first term of the right-hand side of the above equation is proportional to ν and
does not affect the computation of 1(ξ,η). So we have that

1(ξ,η) = µ

∣∣∣∣∣∣∣
ν1 ν2 λξν1+ λην2− 1
dξ dη λξdξ + ληdη
dλξ dλη λξdλξ + ληdλη

∣∣∣∣∣∣∣
= µ

∣∣∣∣∣∣
ν1 ν2 −1
dξ dη 0
dλξ dλη 0

∣∣∣∣∣∣=−µ
∣∣∣∣ dξ dη
dλξ dλη

∣∣∣∣
= µ

(
(λξξ − ληη)dξdη− λξη(dξ 2

− dη2)
)
.

Fact A.1 follows from this representation of 1(ξ,η). �
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Appendix B: Indices of eigenflows of Hessian matrices

Let g : �R \ {o} → R be a C2-function, where �R is the closed disk of radius R
centered at the origin o := (0, 0); see (2-1). The Hessian matrix of g is given by

Hg :=

(
gxx gxy

gyx gyy

)
.

We denote by Hg the eigenflow of Hg. A point p∈�R\{o} is called an equidiagonal
point of Hg if Hg(p) is proportional to the identity matrix. Consider the circle

0(θ) := r(cos θ, sin θ), 0≤ θ < 2π, r < R.

If there are no equidiagonal points on �R \ {o}, then we can define the index
ind(Hg, 0) of the eigenflow Hg with respect to 0, which does not depend on the
choice of r . We call it the index of Hg at the origin and denote it by indo(Hg).
Consider the vector field

dg := 2gxy
∂
∂x + (gyy − gxx)

∂
∂y .

It is well known that the mapping degree of the Gauss map, see (3-1),

ďg : T 1
:= R/2πZ 3 θ 7→

dg(0(θ))

|dg(0(θ))|
∈ S1
:= {(x, y) ∈ R2

; x2
+ y2
= 1}

is equal to 2 indo(Hg). Using the correspondence (x, y) 7→ x + iy, we identify R2

with C, where i =
√
−1. Then

gz =
1
2(gx − igy),

gzz =
1
4((gxx − gyy)− 2igxy),

where gz := ∂g/∂z, gzz := ∂
2g/∂z2 and

∂
∂z :=

1
2

(
∂
∂x − i ∂

∂y

)
.

Thus, dg can be identified with the right-angle rotation of gzz . In particular,

(B-1) indo(Hg)=−
1
2 indo(gzz).

Here gzz is considered as a vector field and indo(gzz) is its index at the origin. Let
(r, θ) be as in (2-5). Then z = reiθ and

gz =
e−iθ

2r
(rgr − igθ ),

gzz =
e−2iθ

4r2

(
(r2grr − rgr − gθθ )+ 2i(gθ − rgrθ )

)
.
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We consider the vector field defined by

(B-2) δg := 2(rgrθ − gθ ) ∂∂x + (−r2grr + rgr + gθθ ) ∂∂y .

Since, from [Klotz 1959, (18)],

indo( gzz )= 2+ indo(δg),

we obtain the following:

Lemma B.1. The identity indo(Hg)= 1+ indo(δg)/2 holds.
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WELL-POSEDNESS OF SECOND-ORDER DEGENERATE
DIFFERENTIAL EQUATIONS WITH FINITE DELAY

IN VECTOR-VALUED FUNCTION SPACES

SHANGQUAN BU AND GANG CAI

We give necessary and sufficient conditions of the L p-well-posedness (re-
spectively, Bs

p,q-well-posedness) for the second-order degenerate differential
equation with finite delay: (Mu′)′(t)+αu′(t)= Au(t)+ Gu′t + Fut + f (t),
(t ∈ [0, 2π]) with periodic boundary conditions u(0) = u(2π), (Mu′)(0) =
(Mu′)(2π), where A and M are closed linear operators on a Banach space
X satisfying D(A) ⊂ D(M), and F and G are bounded linear operators
from L p([−2π, 0]; X) (respectively, Bs

p,q([−2π, 0]; X)) into X.

1. Introduction

The purpose of this paper is to study the well-posedness of the following second-
order degenerate differential equations with finite delays:

(P2)
{
(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t) (t ∈ T)

u(0)= u(2π), (Mu′)(0)= (Mu′)(2π),

where T := [0, 2π ], A and M are closed linear operators on a Banach space X
satisfying D(A)⊂ D(M), α ∈ C is fixed, F and G are bounded linear operators
from L p([−2π, 0]; X) (resp. Bs

p,q([−2π, 0]; X)) into X, ut and u′t are defined on
[−2π, 0] by ut(s)= u(t + s), u′t(s)= u′(t + s) when t ∈ T.

Let 1≤ p<∞. We say that (P2) is L p-well-posed, if for all f ∈ L p(T; X), there
exists a unique u∈W 1,p

per (T; X)∩L p(T; D(A)), such that u′∈ L p(T; D(M)), Mu′∈
W 1,p

per (T; X), and (P2) is satisfied a.e. on T. Here D(A) and D(M) are equipped
with their graph norms so that they become Banach spaces, and W 1,p

per (T; X) is
the X -valued periodic Sobolev space of order 1. Our main result in this paper
gives a necessary and sufficient condition for (P2) to be L p-well-posed. Precisely,

This work was supported by the NSF of China (No.11401063, 11571194), the Natural Science
Foundation of Chongqing(cstc2014jcyjA00016) and Science and Technology Project of Chongqing
Education Committee (Grant No. KJ1500314, KJ1500313, KJ1703041). Cai is the corresponding
author.
MSC2010: 34G10, 34K30, 43A15, 47D06.
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we show that when the underlying Banach space X is a UMD Banach space and
1< p <∞, if the set {k(Gk+1−Gk) : k ∈ Z} is Rademacher bounded, then (P2) is
L p-well-posed if and only if ρp(P2)=Z, and the sets {k2 M Nk : k ∈Z}, {k Nk : k ∈Z}

are Rademacher bounded, where

(1-1) Nk = (k2 M − iαk+ ikGk + Fk + A)−1, (k ∈ Z),

Fk,Gk ∈L(X) are defined by Fk x = F(ek x), Gk x =G(ek x) with ek(t)= eikt (see
Theorem 2.4). We also study the well-posedness of (P2) in periodic Besov spaces
Bs

p,q(T; X), and a necessary and sufficient condition for (P2) to be Bs
p,q -well-posed

is also given (see Theorem 3.3).
The main tools we will use are operator-valued Fourier multipliers on L p(T; X)

and Bs
p,q(T; X). Indeed, we will transform the well-posedness of (P2) to an operator-

valued Fourier multiplier problem in the corresponding vector-valued function
spaces. Thus the operator-valued Fourier multipliers theorems obtained by Arendt
and Bu [2002; 2004] on L p(T; X) and Bs

p,q(T; X) are fundamental for us.
The results obtained in this paper recover the known results presented in Bu and

Fang [2010] in the nondegenerate case when M = IX and α = 0. Thus our results
may be also regarded as generalizations of the previous known results when M = IX

and F = G = 0 in the L p-well-posedness and the Bs
p,q-well-posedness obtained

in [Arendt and Bu 2002; 2004]. Our results also generalize the previous known
results obtained by Bu [2013] in the simpler case when F = G = 0 and α = 0.

A large number of partial differential equations arising in physics and applied
sciences, such as in the flow of fluid through fissured rocks, thermodynamics and
shear in second-order fluids or in the theory of control of dynamical systems, can
be expressed by the model in the form of (P2). See [Lizama 2006; Bu and Fang
2009; 2010; Lizama and Ponce 2011; 2013; Poblete and Pozo 2013; 2014] for the
study of vector-valued degenerate equations with delays. See the monographs by
Favini and Yagi [1999] and by Sviridyuk and Fedorov [2003] for detailed studies
of abstract degenerate type differential equations.

At the end of this paper, we give concrete examples to which our abstract results
may be applied. Let � be a bounded domain in Rn with smooth boundary ∂�,
1 < p < ∞ and m be a nonnegative bounded measurable function defined on
�; let X = H−1(�), F,G : L p([−2π, 0]; X)→ X be bounded linear operators.
If M is the multiplication operator by m on H−1(�) with domain of definition
D(M) and A = 1 is the Laplacian on X with Dirichlet boundary condition and
we assume that D(A) ⊂ D(M), then under suitable assumptions on F and G
we obtain the L p-well-posedness for the corresponding second-order degenerate
differential equations with finite delays (see Example 4.1). Our abstract results
can also be applied in the following situation: let H be a complex Hilbert space,
1< p<∞ and F,G ∈L(L p([−2π, 0]; H), H) be delay operators, P be a densely
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defined positive selfadjoint operator on H with P ≥ δ > 0. If M = P − ε with
ε < δ, and A =

∑k
i=0 ai P i with ai ≥ 0, ak > 0. If we assume that 0 ∈ ρ(M), then

we obtain the L p-well-posedness of the corresponding second-order degenerate
differential equations with finite delays under suitable assumptions on F and G
(see Example 4.2).

This work is organized as follows. In Section 2, we study the well-posedness of
(P2) in L p(T; X). In Section 3, we consider the well-posedness of (P2) in periodic
Besov spaces Bs

p,q(T; X). In Section 4, we give examples of degenerate differential
equations with finite delays to which our abstract results may be applied.

2. Well-posedness in Lebesgue–Bochner spaces

Let X and Y be Banach spaces. We denote by L(X, Y ) the set of all bounded linear
operators from X to Y. If X = Y, we will denote it simply by L(X). Let 1≤ p<∞.
We denote by L p(T; X) the space of all X -valued measurable functions f defined
on T satisfying

‖ f ‖L p :=

(∫ 2π

0
‖ f (t)‖p dt

2π

)1/p

<∞.

If f ∈ L1(T; X), we define

f̂ (k) := 1
2π

∫ 2π

0
e−k(t) f (t) dt,

the k-th Fourier coefficient of f , where k ∈ Z and ek(t) := eikt for t ∈ T.

Definition. Let X and Y be Banach spaces. A set T ⊂ L(X, Y ) is said to be
Rademacher bounded (R-bounded, in short), if there exists C > 0 such that∑

εj=±1

∥∥∥∥ n∑
j=1

εj Tj x j

∥∥∥∥≤ C
∑
εj=±1

∥∥∥∥ n∑
j=1

εj x j

∥∥∥∥
for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N.

It is clear from the definition that if S,T ⊂ L(X) are R-bounded, then ST :=
{ST : S ∈ S, T ∈ T} and S+ T := {S + T : S ∈ S, T ∈ T} are still R-bounded.
It is also clear that each R-bounded set is norm bounded. It is known that each
norm bounded subset of L(X) is R-bounded if and only if X is isomorphic to a
Hilbert space [Arendt and Bu 2002, Proposition 1.13]. The main tool in the study
of L p-well-posedness of (P2) is the operator-valued L p-Fourier multipliers.

Definition. Let X, Y be Banach space and 1≤ p<∞. We say (Mk)k∈Z⊂L(X, Y )
is an L p-Fourier multiplier, if for each f ∈ L p(T; X), there exists a unique
u ∈ L p(T; Y ) such that û(k)= Mk f̂ (k) for all k ∈ Z.
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It follows easily from the closed graph theorem that when (Mk)k∈Z ⊂ L(X, Y )
is an L p-Fourier multiplier, then there exists a unique T ∈ L(L p(T; X), L p(T; Y )),
such that T̂ f (k)= Mk f̂ (k) when f ∈ L p(T; X) and k ∈ Z. The following results
were established in [Arendt and Bu 2002]:

Proposition 2.1. Let X , Y be Banach spaces and assume that (Mk)k∈Z ⊂ L(X, Y )
is an L p-Fourier multiplier. Then the set {Mk : k ∈ Z} is R-bounded.

Theorem 2.2. Let X , Y be UMD spaces and (Mk)k∈Z ⊂ L(X, Y ). If the sets
{Mk : k ∈ Z} and {k(Mk+1−Mk) : k ∈ Z} are R-bounded, then (Mk)k∈Z defines an
L p-Fourier multiplier whenever 1< p <∞.

In this section, we study the following second-order degenerate differential
equation with finite delays:

(P2)
{
(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t), (t ∈ T)

u(0)= u(2π), (Mu′)(0)= (Mu′)(2π),

where A, M are closed linear operators on a Banach space X satisfying D(A)⊂
D(M), α ∈ C is fixed, and F,G : L p([−2π, 0]; X)→ X are fixed bounded linear
operators. Moreover, for fixed t ∈ T, ut and u′t are elements of L p([−2π, 0]; X)
defined by ut(s)= u(t + s), u′t(s)= u′(t + s) for −2π ≤ s ≤ 0. Here we identify
a function u on T with its natural 2π -periodic extension on R.

To give the definition of the solution space for (P2), we need to introduce vector-
valued periodic Sobolev space of order 1. For 1≤ p <∞, we define the periodic
“Sobolev” space of order 1 [Arendt and Bu 2002] by:

W 1,p
per (T; X) := {u ∈ L p(T; X) : there exists v ∈ L p(T; X)

such that v̂(k)= ikû(k) for all k ∈ Z}.

Let u ∈ L p(T; X). Then u ∈W 1,p
per (T; X) if and only if u is differentiable a.e. on T

and u′ ∈ L p(T; X); in this case, u is actually continuous and u(0)= u(2π) [Arendt
and Bu 2002, Lemma 2.1].

Let 1≤ p<∞. We define the solution space of the L p-well-posedness for (P2) by

Sp(A,M) := {u ∈ L p(T;D(A))∩W 1,p
per (T;X) : u′∈ L p(T;D(M)),Mu′∈W 1,p

per (T;X)},

here we consider D(A) and D(M) as Banach spaces equipped with their graph
norms. When u ∈ Sp(A,M), then Fu•,Gu′• ∈ L p(T; X) as ‖Fut‖ ≤ ‖F‖‖u‖p

and ‖Fu′t‖ ≤ ‖F‖‖u
′
‖p when t ∈ T. Thus all terms appearing in (P2) belong to

L p(T; X). Moreover Sp(A,M) is a Banach space with the norm

‖u‖Sp(A,M) := ‖u‖L p +‖u′‖L p +‖Au‖L p +‖Mu′‖L p +‖(Mu′)′‖L p .

By [Arendt and Bu 2002, Lemma 2.1], if u ∈ Sp(A,M), then u and Mu′ are
X -valued continuous on T, and u(0)= u(2π), (Mu′)(0)= (Mu′)(2π).
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Definition. Let 1 ≤ p <∞ and f ∈ L p(T; X); u ∈ Sp(A,M) is called a strong
L p-solution of (P2) if (P2) is satisfied a.e. on T. We say that (P2) is L p-well-posed,
if for each f ∈ L p(T; X), there exists a unique strong L p-solution of (P2).

If (P2) is L p-well-posed, there exists a constant C > 0 such that for each
f ∈ L p(T; X), if u ∈ Sp(A,M) is the unique strong L p-solution of (P2), then

(2-1) ‖u‖Sp(A,M) ≤ C‖ f ‖L p .

This is an easy consequence of the closed graph theorem by the closedness of A
and M.

Let F,G ∈ L(L p(−2π, 0); X), X) and k ∈ Z. We define the linear operators
Fk,Gk on X by

(2-2) Fk x := F(ek x) and Gk x := G(ek x), (x ∈ X).

It is clear that Fk,Gk ∈L(X), ‖Fk‖≤‖F‖ and ‖Gk‖≤‖G‖ as ‖ek‖p=1. Moreover
when u ∈ L p(T; X),

(2-3) F̂u•(k)= Fk û(k) and Ĝu•(k)= Gk û(k), (k ∈ Z).

This implies that (Fk)k∈Z and (Gk)k∈Z are L p-Fourier multipliers as

‖Fut‖ ≤ ‖F‖‖u•‖p = ‖F‖‖u‖p, (t ∈ T)

and thus Fu•,Gu• ∈ L p(T; X). We define the resolvent set of (P2) in the L p-well-
posedness setting by

ρp(P2) := {k ∈ Z : k2 M− iαk+ ikGk + Fk + A is invertible from D(A) onto X

and (k2 M − iαk+ ikGk + Fk + A)−1
∈ L(X)}.

If k ∈ ρp(P2), then M(k2 M− iαk+ ikGk+ Fk+ A)−1 and A(k2 M− iαk+ ikGk+

Fk + A)−1 make sense as D(A)⊂ D(M) by assumption, and they belong to L(X)
by the closed graph theorem. We need the following preparation.

Proposition 2.3. Let A and M be closed linear operators defined on a UMD space
X satisfying D(A) ⊂ D(M), 1 < p < ∞. Let F,G ∈ L(L p([−2π, 0]; X), X).
Assume that ρp(P2) = Z and that the sets {k2 M Nk : k ∈ Z}, {k Nk : k ∈ Z} and
{k(Gk+1−Gk) : k ∈Z} are R-bounded, where Nk = (k2 M−iαk+ikGk+Fk+A)−1,
Fk and Gk are defined by (2-2) when k ∈ Z. Then (k2 M Nk)k∈Z, (Nk)k∈Z, (k Nk)k∈Z

and (k M Nk)k∈Z are L p-Fourier multipliers.

Proof. Let Mk=k2 M Nk, Sk=k Nk and Tk=k M Nk when k ∈Z. The sets {Gk :k ∈Z}

and {Fk : k ∈ Z} are R-bounded by [Lizama 2006, Proposition 3.2]. It follows from
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the R-boundedness of the set {IX/k : k ∈ Z\ {0}} that {Nk : k ∈ Z} is R-bounded, as
the product of R-bounded sets is still R-bounded. Moreover, by the definition of Nk ,

(2-4) Nk+1−Nk = Nk+1(N−1
k − N−1

k+1)Nk

= Nk+1[−(2k+1)M+ iα+ ikGk− i(k+1)Gk+1+Fk−Fk+1]Nk

=−(2k+ 1)Nk+1 M Nk + iαNk+1 Nk − ik Nk+1(Gk+1−Gk)Nk

− i Nk+1Gk+1 Nk − Nk+1(Fk+1− Fk)Nk .

It follows that

(2-5) Mk+1−Mk = (k+ 1)2 M Nk+1− k2 M Nk

= k2 M(Nk+1− Nk)+ (2k+ 1)M Nk+1

=−k2(2k+ 1)M Nk+1 M Nk + iαk2 M Nk+1 Nk

−ik3 M Nk+1(Gk+1−Gk)Nk − ik2 M Nk+1Gk+1 Nk

−k2 M Nk+1(Fk+1− Fk)Nk + (2k+ 1)M Nk+1,

(2-6) Sk+1− Sk = k(Nk+1− Nk))+ Nk+1

=−k(2k+ 1)Nk+1MNk + iαk Nk+1Nk − ik2Nk+1(Gk+1−Gk)Nk

−ik Nk+1Gk+1Nk − k Nk+1(Fk+1− Fk)Nk + Nk+1,

and

(2-7) Tk+1− Tk= M(Sk+1− Sk)

=−k(2k+1)MNk+1MNk+ iαkMNk+1Nk− ik2MNk+1(Gk+1−Gk)Nk

− ik MNk+1Gk+1Nk − k MNk+1(Fk+1− Fk)Nk +MNk+1.

This implies that the sets {k(Nk+1 − Nk) : k ∈ Z}, {k(Mk+1 − Mk) : k ∈ Z},
{k(Sk+1−Sk) :k∈Z} and {k(Tk+1−Tk) :k∈Z} are R-bounded by the R-boundedness
of the sets {k2 M Nk : k ∈ Z}, {k Nk : k ∈ Z}, {k(Gk+1−Gk) : k ∈ Z}, {Fk : k ∈ Z} and
{Gk : k ∈ Z}. It follows that (Nk)k∈Z, (Mk)k∈Z, (Sk)k∈Z and (Tk)k∈Z are L p-Fourier
multipliers by Theorem 2.2. This completes the proof. �

Our next result gives a necessary and sufficient condition for the L p-well-
posedness of (P2) when X is a UMD space and 1< p <∞.

Theorem 2.4. Let X be a UMD space, 1< p <∞ and let A,M be closed linear
operators on X satisfying D(A) ⊂ D(M). Let F,G ∈ L(L p([−2π, 0]; X), X) be
such that the set {k(Gk+1−Gk) : k ∈Z} is R-bounded. Then the following assertions
are equivalent.
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(i) (P2) is L p-well-posed.

(ii) ρp(P2) = Z and the sets {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} are R-bounded,
where Nk = (k2 M − iαk+ ikGk + Fk + A)−1.

Proof. (i)⇒ (i i): Assume that (P2) is L p-well-posed. Let k ∈ Z and y ∈ X. Define
f (t)= eikt y (t ∈ T). Then f ∈ L p(T; X), f̂ (k)= y and f̂ (n)= 0 for n 6= k. Since

(P2) is L p-well-posed, there exists u ∈ Sp(A,M) such that

(2-8) (Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t) a.e. on T.

We have û(n) ∈ D(A) when n ∈ Z by [Arendt and Bu 2002, Lemma 3.1] as
u ∈ L p(T; D(A)). Taking Fourier transforms on both sides of (2-8), we obtain

(2-9) −(k2 M − iαk+ ikGk + Fk + A)û(k)= y,

and−(n2 M−iαn+inGn+Fn+A)û(n)= 0 when n 6= k. This implies in particular
that k2 M − iαk+ ikGk + Fk + A is surjective. We are going to show that it is also
injective. Let x ∈ D(A) be such that

(k2 M − iαk+ ikGk + Fk + A)x = 0,

and let u(t)= eikt x when t ∈ T. Then u ∈ Sp(A,M) and (P2) holds a.e. on T when
taking f = 0. Consequently u is a strong L p-solution of (P2) when f = 0. We
obtain u = 0 by the uniqueness assumption and thus x = 0. We have shown that
k2 M− iαk+ ikGk+Fk+ A is also injective. Therefore k2 M− iαk+ ikGk+Fk+ A
is a bijection from D(A) onto X.

Now we show the boundedness of (k2 M − iαk+ ikGk + Fk + A)−1. For f (t)=
eikt y, we let u ∈ Sp(A,M) be the strong L p-solution of (P2). Then

û(n)=
{

0, n 6= k,
−(k2 M − iαk+ ikGk + Fk + A)−1 y, n = k,

by (2-9). This means that u(t)=−eikt(k2 M− iαk+ ikGk+ Fk+ A)−1 y. By (2-1),
there exists a constant C > 0 independent from y and k satisfying

‖u‖L p +‖u′‖L p +‖Au‖L p +‖Mu′‖L p +‖(Mu′)′‖L p ≤ C‖ f ‖L p .

In particular ‖u‖L p ≤ C‖ f ‖L p . This implies that ‖(k2 M − iαk + ikGk + Fk +

A)−1 y‖ ≤ C‖y‖ for all y ∈ X. Thus

‖(k2 M − iαk+ ikGk + Fk + A)−1
‖ ≤ C.

We have shown that k ∈ ρp(P2). Hence ρp(P2)= Z.
Let Mk = k2 M(k2 M − iαk + ikGk + Fk + A)−1 and Sk = ik(k2 M − iαk +

ikGk+ Fk+ A)−1 when k ∈ Z. We are going to show that (Mk)k∈Z and (Sk)k∈Z are
L p-Fourier multipliers. Let f ∈ L p(T; X) be fixed. Then there exists u ∈ Sp(A,M)
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strong L p-solution of (P2) by assumption. Taking Fourier transforms on both sides
of (P2), we get that û(k) ∈ D(A) by [Arendt and Bu 2002, Lemma 3.1] and

−(k2 M − iαk+ ikGk + Fk + A)û(k)= f̂ (k)

when k ∈ Z. Since k2 M − iαk+ ikGk + Fk + A is invertible, we have

û(k)=−(k2 M − iαk+ ikGk + Fk + A)−1 f̂ (k)

when k ∈ Z. We have û′(k)= ikû(k) and (̂Mu′)′(k)=−k2 Mû(k) by [Arendt and
Bu 2002, Lemma 3.1]. Consequently

û′(k)=−Sk f̂ (k), and (̂Mu′)′(k)=−Mk f̂ (k)

when k ∈ Z. We conclude that (Mk)k∈Z and (Sk)k∈Z are L p-Fourier multipliers as
u′, (Mu′)′ ∈ L p(T; X) by assumption. It follows from Proposition 2.1 that the sets
{Mk : k ∈ Z} and {Sk : k ∈ Z} are R-bounded.
(i i)⇒ (i): Assume that ρp(P2)=Z and the sets {k2 M Nk :k∈Z} and {k Nk :k∈Z}

are R-bounded. Define Mk = k2 M Nk , Sk = ik Nk and Tk = ik M Nk when k ∈ Z. It
follows from Proposition 2.3 that (Mk)k∈Z, (Nk)k∈Z, (Sk)k∈Z and (Tk)k∈Z are L p-
Fourier multipliers. Then for all f ∈ L p(T; X), there exists u, v, w, g ∈ L p(T; X)
satisfying

(2-10)
û(k)=−Mk f̂ (k), v̂(k)= Sk f̂ (k),

ŵ(k)= Nk f̂ (k), ĝ(k)= Tk f̂ (k), (k ∈ Z).

Consequently v̂(k) = ikŵ(k) when k ∈ Z. This implies that w ∈ W 1,p
per (T; X)

[Arendt and Bu 2002, Lemma 2.1] and w′ = v. We note that (Gk)k∈Z and (Fk)k∈Z

are L p-Fourier multipliers by (2-3). Thus (ikGk Nk)k∈Z and (Fk Nk)k∈Z are L p-
Fourier multipliers as the product of L p-Fourier multipliers is still an L p-Fourier
multiplier. We have

ANk = IX −Mk + iαk Nk − ikGk Nk − Fk Nk, (k ∈ Z).

It follows that (ANk)k∈Z is also an L p-Fourier multiplier as the sum of L p-Fourier
multipliers is still an L p-Fourier multiplier. This together with the fact that (Nk)k∈Z

defines an L p-Fourier multiplier implies that Nk ∈ L(X, D(A)). Here we consider
D(A) as a Banach space equipped with its graph norm. We have shown that
w ∈ L p(T; D(A)).

Noticing the facts that (Sk)k∈Z and (Tk)k∈Z are L p-Fourier multipliers, we have
that Sk ∈ L(X, D(M)). Since v̂(k)= Sk f̂ (k) when k ∈ Z by (2-10), we deduce that
v = w′ ∈ L p(T; D(M)). Again by (2-10),

û(k)=−k2 M Nk f̂ (k)= ik M̂w′(k)
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when k ∈Z. Thus we have Mw′∈W 1,p
per (T; X) by [Arendt and Bu 2002, Lemma 2.1].

We have shown that w ∈ Sp(A,M).
By (2-10), we have

̂(Mw′)′(k)+ iαkŵ(k)= Aŵ(k)+ ikGkŵ(k)+ Fkŵ(k)+ f̂ (k)

when k ∈Z. This together with the facts F̂w•(k)= Fkŵ(k) and Ĝw′
•
(k)= ikGkŵ(k)

implies that

(Mw′)′(t)+αu′(t)= Aw(t)+Gw′t + Fwt + f (t) a.e. on T

by the uniqueness theorem [Arendt and Bu 2002, page 314]. Thus w is a strong
L p-solution of (P2). This shows the existence.

To show the uniqueness, we let u ∈ Sp(A,M) satisfying

(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut a.e. on T.

Taking the Fourier transforms on both sides, we have

(k2 M − iαk+ ikGk + Fk + A)û(k)= 0, (k ∈ Z).

Since ρp(P2)= Z, this implies that û(k)= 0 for all k ∈ Z and thus u = 0. So (P2)
is L p-well-posed. This completes the proof. �

Theorem 2.4 recovers the known results presented in Bu and Fang [2010] in
the nondegenerate case when M = IX and α = 0. Thus it may be also regarded as
generalizations of the previous known results when M = IX, α = 0 and F = G = 0
in the L p-well-posedness obtained in [Arendt and Bu 2002]. Our results also
generalize the previous known results obtained by Bu [2013] in the simpler case
when F = G = 0 and α = 0.

3. Well-posedness in periodic Besov spaces

In this section we study the Bs
p,q -well-posedness of (P2). Firstly, we briefly recall

the definition of periodic Besov spaces in the vector-valued case introduced in
[Arendt and Bu 2004]. Let S(R) be the Schwartz space of all rapidly decreasing
smooth functions on R. Let D(T) be the space of all infinitely differentiable
functions on T equipped with the locally convex topology given by the seminorms
‖ f ‖α = supx∈T| f

(α)(x)| for α ∈ N0 := N∪ {0}. Let D′(T, X) := L(D(T), X) be
the space of all continuous linear operators from D(T) to X. In order to define
periodic Besov spaces, we consider the dyadic-like subsets of R:

I0 = {t ∈ R : |t | ≤ 2}, Ik = {t ∈ R : 2k−1 < |t | ≤ 2k+1
}
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for k ∈ N. Let φ(R) be the set of all systems φ = (φk)k∈N0 ⊂ S(R) satisfying
supp(φk)⊂ Ik for each k ∈ N0,∑

k∈N0

φk(x)= 1 for x ∈ R,

and for each α ∈ N0,
sup

x∈R, k∈N0

2kα
|φ
(α)
k (x)|<∞.

Let φ= (φk)k∈N0 ⊂φ(R) be fixed. For 1≤ p, q ≤∞, s ∈R, the X -valued periodic
Besov space is defined by

Bs
p,q(T; X) :=

{
f ∈D′(T, X) : ‖ f ‖Bs

p,q
:=

(∑
j≥0

2s jq
∥∥∥∥∑

k∈Z

ek⊗φj(k) f̂ (k)
∥∥∥∥q

p

)1/q

<∞

}
with the usual modification if q =∞. The space Bs

p,q(T; X) is independent from
the choice of φ and different choices of φ lead to equivalent norms ‖ · ‖Bs

p,q
on

Bs
p,q(T; X). Equipping Bs

p,q(T; X) with the norm ‖·‖Bs
p,q

gives a Banach space. See
[Arendt and Bu 2004, Section 2] for more information about the space Bs

p,q(T; X).
We know that if s2 ≤ s1, then Bs1

p,q(T; X) ⊂ Bs2
p,q(T; X) and the embedding is

continuous [Arendt and Bu 2004]. When s > 0, it is shown in the same work that
Bs

p,q(T; X)⊂ L p(T; X), f ∈ Bs+1
p,q (T; X) if and only if f is differentiable a.e. on

T and f ′ ∈ Bs
p,q(T; X). This implies that if u ∈ Bs

p,q(T; X) is such that there exists
v ∈ Bs

p,q(T; X) satisfying v̂(k) = ikû(k) when k ∈ Z, then u ∈ Bs+1
p,q (T; X) and

u′ = v [Arendt and Bu 2004, Lemma 2.1].
The main tool in the study of Bs

p,q -well-posedness of (P2) is the operator-valued
Bs

p,q -Fourier multiplier theory established in [Arendt and Bu 2004].

Definition. Let X, Y be Banach spaces, 1≤ p, q ≤∞, s ∈ R and let (Mk)k∈Z ⊂

L(X, Y ). We say (Mk)k∈Z is a Bs
p,q -Fourier multiplier, if for each f ∈ Bs

p,q(T; X),
there exists a unique u ∈ Bs

p,q(T; Y ), such that û(k)= Mk f̂ (k) for all k ∈ Z.

The following result, obtained in [Arendt and Bu 2004], gives a sufficient condi-
tion for an operator-valued sequence to be a Bs

p,q -Fourier multiplier.

Theorem 3.1. Let X, Y be Banach spaces and (Mk)k∈Z ⊂ L(X, Y ). We assume

sup
k∈Z

(‖Mk‖+‖k(Mk+1−Mk)‖) <∞,(3-1)

sup
k∈Z

‖k2(Mk+2− 2Mk+1+Mk)‖<∞.(3-2)

Then for 1 ≤ p, q ≤ ∞, s ∈ R, (Mk)k∈Z is a Bs
p,q-Fourier multiplier. If X is

B-convex, then condition (3-1) is already sufficient for (Mk)k∈Z to be a Bs
p,q -Fourier

multiplier.
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Recall that a Banach space X is B-convex if it does not contain ln
1 uniformly. This

is equivalent to saying that X has Fourier type 1< p≤ 2, i.e., the Fourier transform
is a bounded linear operator from L p(R; X) to lq(Z; X), where 1/p+1/q = 1. It is
well known that when 1< p<∞, then L p(µ) has Fourier type min{p, p/(p−1)}.

Let 1 ≤ p, q ≤ ∞, s > 0 be fixed. We consider the following second-order
degenerate differential equation with finite delays:

(P2)
{
(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t), (t ∈ T)

u(0)= u(2π), (Mu′)(0)= (Mu′)(2π),

where A, M are closed linear operators on a Banach space X satisfying D(A)⊂
D(M), α ∈ C is fixed, and F,G : Bs

p,q([−2π, 0]; X)→ X are bounded linear
operators. Moreover, for fixed t ∈ T, ut and u′t are elements of Bs

p,q([−2π, 0]; X)
defined by ut(s)= u(t + s), u′t(s)= u′(t + s) for −2π ≤ s ≤ 0. Here we identify
a function u on T with its natural 2π -periodic extension on R.

Let F,G ∈ L(Bs
p,q(−2π, 0); X), X) and k ∈ Z. We define the linear operators

Fk,Gk ∈ L(X) by Fk x := F(ek ⊗ x), Gk x := G(ek ⊗ x) for all x ∈ X. It is clear
that there exists a constant C > 0 such that ‖ek⊗ x‖Bs

p,q
≤C‖x‖ for all k ∈ Z. Thus

(3-3) ‖Fk‖ ≤ C‖F‖, and ‖Gk‖ ≤ C‖G‖, (k ∈ Z).

It is easy to verify that when u ∈ Bs
p,q(T; X), then

F̂u•(k)= Fk û(k), and Ĝu•(k)= Gk û(k), (k ∈ Z).

We define the resolvent set of (P2) in the Bs
p,q -well-posedness setting by

ρp,q,s(P2) := {k ∈Z : k2 M−ikα+ikGk+Fk+A is a bijection from D(A) onto X,

and (k2 M − ikα+ ikGk + Fk + A)−1
∈ L(X)}.

If k ∈ ρp,q,s(P2), then M(k2 M + ikGk + Fk + A)−1, A(k2 M + ikGk + Fk + A)−1

make sense as D(A)⊂ D(M) by assumption, and they are in L(X) by the closed
graph theorem.

Let 1≤ p, q≤∞, s>0. We notice that the functions Fu• and Gu′• are uniformly
bounded on T, but they are not necessarily in Bs

p,q(T; X). We define the solution
space of the Bs

p,q -well-posedness for (P2) by

Sp,q,s(A,M) := {u ∈ Bs
p,q(T; D(A))∩ B1+s

p,q (T; X) : u′ ∈ Bs
p,q(T; D(M)),

Mu′ ∈ Bs+1
p,q (T; X) and Fu•,Gu′• ∈ Bs

p,q(T; X)}.

Here again we consider D(A) and D(M) as Banach spaces equipped with their
graph norms. Sp,q,s(A,M) is a Banach space with the norm

‖u‖Sp,q,s(A,M) :=‖u‖B1+s
p,q
+‖Au‖Bs

p,q
+‖u′‖Bs

p,q
+‖Mu′‖B1+s

p,q
+‖Fu•‖Bs

p,q
+‖Gu′•‖Bs

p,q
.
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From [Arendt and Bu 2002, Lemma 2.1], if u ∈ Sp,q,s(A,M), then u and Mu′

are X -valued continuous on T, and u(0)= u(2π), (Mu′)(0)= (Mu′)(2π).

Definition. Let 1 ≤ p, q ≤ ∞, s > 0 and f ∈ Bs
p,q(T; X). u ∈ Sp,q,s(A,M) is

called a strong Bs
p,q-solution of (P2), if (P2) is satisfied a.e. on T. We say that

(P2) is Bs
p,q-well-posed, if for each f ∈ Bs

p,q(T; X), there exists a unique strong
Bs

p,q -solution of (P2).

If (P2) is Bs
p,q-well-posed, there exists a constant C > 0 such that for each

f ∈ Bs
p,q(T; X), if u ∈ Sp,q,s(A,M) is the unique strong Bs

p,q -solution of (P2), then

(3-4) ‖u‖Sp,q,s(A,M) ≤ C‖ f ‖Bs
p,q
.

This can be easily obtained by the closedness of the operators A and M and the
closed graph theorem. We need the following preparation:

Proposition 3.2. Let A and M be closed linear operators defined on a Banach space
X satisfying D(A)⊂ D(M) and let F,G ∈ L(Bs

p,q([−2π, 0]; X), X). Assume that
ρp,q,s(P2) = Z and the sets {k(Fk+2 − 2Fk+1 + Fk) : k ∈ Z}, {k(Gk+1 −Gk) : k ∈
Z}, {k2(Gk+2 − 2Gk+1 + Gk) : k ∈ Z}, {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} are
norm bounded, where Nk = (k2 M − ikα+ ikGk + Fk + A)−1 when k ∈ Z. Then
(k2 M Nk)k∈Z, (Nk)k∈Z, (k Nk)k∈Z, (k M Nk)k∈Z, (Fk Nk)k∈Z and (kGk Nk)k∈Z are Bs

p,q -
Fourier multipliers whenever 1≤ p, q ≤∞, s ∈ R.

Proof. Define Mk = k2 M Nk , Sk = k Nk , Tk = k M Nk , Pk = Fk Nk and Qk = kGk Nk

when k ∈Z. We know (Gk)k∈Z and (Fk)k∈Z are norm bounded by (3-3). This implies
that the sequences (Mk)k∈Z, (Nk)k∈Z, (Sk)k∈Z, (Tk)k∈Z, (Pk)k∈Z and (Qk)k∈Z are
norm bounded by assumption. Using the same argument used in the proof of
Proposition 2.3, we obtain

sup
k∈Z

‖k(Mk+1−Mk)‖<∞, sup
k∈Z

‖k(Nk+1− Nk)‖<∞,

sup
k∈Z

‖k(Sk+1− Sk)‖<∞ and sup
k∈Z

‖k(Tk+1− Tk)‖<∞.

Moreover, it is easy to see that one has the stronger estimations

sup
k∈Z

‖k2(Nk+1− Nk)‖<∞,(3-5)

sup
k∈Z

‖k3 M(Nk+1− Nk)‖<∞,(3-6)

by using the norm boundedness of {k(Gk+−Gk) : k ∈ Z}. For Pk and Qk , when
k ∈ Z, we have

Pk+1− Pk = Fk+1(Nk+1− Nk)+ (Fk+1− Fk)Nk,(3-7)

Qk+1− Qk = Gk+1 Nk+1+ k(Gk+1−Gk)Nk + kGk(Nk+1− Nk).(3-8)
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We deduce that

sup
k∈Z

‖k(Pk+1− Pk)‖<∞ and sup
k∈Z

‖k(Qk+1− Qk)‖<∞

by (3-5) and the boundedness of (Fk)k∈Z, (Gk)k∈Z and (k(Gk+1−Gk))k∈Z.
By (2-3) we have

Nk+1− Nk = I (1)k + I (2)k + I (3)k + I (4)k + I (5)k ,

where

I (1)k := −(2k+ 1)Nk+1 M Nk,

I (2)k := iαNk+1 Nk,

I (3)k := −ik Nk+1(Gk+1−Gk)Nk,

I (4)k := −i Nk+1Gk+1 Nk,

I (5)k := −Nk+1(Fk+1− Fk)Nk .

We have

(3-9) I (1)k+1− I (1)k =−(2k+ 3)Nk+2 M Nk+1+ (2k+ 1)Nk+1 M Nk

=−2Nk+2 M Nk+1− (2k+ 1)(Nk+2− Nk+1)M Nk+1

−(2k+ 1)Nk+1 M(Nk+1− Nk).

This implies that

sup
k∈Z

‖k3(I (1)k+1− I (1)k )‖<∞ and sup
k∈Z

‖k4 M(I (1)k+1− I (1)k )‖<∞

using (3-5) and (3-6). A similar argument shows that

sup
k∈Z

‖k3(I (i)k+1− I (i)k )‖<∞ and sup
k∈Z

‖k4 M(I (i)k+1− I (i)k )‖<∞

when i = 2, 3, 4, 5 using inequalities (3-5), (3-6) and the norm boundedness of
{k(Fk+2−2Fk+1+Fk) : k ∈Z}, {k(Gk+1−Gk) : k ∈Z} and {k2(Gk+2−2Gk+1+Gk) :

k ∈ Z}. We have shown that

(3-10) sup
k∈Z

‖k3(Nk+2−2Nk+1+Nk)‖<∞, sup
k∈Z

‖k4M(Nk+2−2Nk+1+Nk)‖<∞.

In particular,

sup
k∈Z

‖k2(Nk+2− 2Nk+1+ Nk)‖<∞.
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By (2-4), (2-5), (3-7), (3-8) and (3-10), and using similar argument used in the
proof of (3-10), we show that

sup
k∈Z

‖k2(Mk+2− 2Mk+1+Mk)‖<∞, sup
k∈Z

‖k2(Sk+2− 2Sk+1+ Sk)‖ <∞,

sup
k∈Z

‖k2(Tk+2− 2Tk+1+ Tk)‖<∞, sup
k∈Z

‖k2(Pk+2− 2Pk+1+ Pk)‖<∞,

sup
k∈Z

‖k2(Qk+2− 2Qk+1+ Qk)‖<∞.

Thus (Nk)k∈Z, (Mk)k∈Z, (Sk)k∈Z, (Tk)k∈Z, (Pk)k∈Z and (Qk)k∈Z are Bs
p,q-Fourier

multipliers by Theorem 3.1. �

Now we give a necessary and sufficient condition for (P2) to be Bs
p,q -well-posed.

Theorem 3.3. Let X be a Banach space, 1 ≤ p, q ≤ ∞, s > 0 and let A
and M be closed linear operators on X satisfying D(A) ⊂ D(M). Let F,G ∈
L(Bs

p,q([−2π, 0]; X), X). We assume that the sets {k(Fk+2− 2Fk+1+ Fk) : k ∈ Z},
{k(Gk+1−Gk) : k ∈ Z} and {k2(Gk+2− 2Gk+1+Gk) : k ∈ Z} are norm bounded.
Then the following assertions are equivalent:

(i) (P2) is Bs
p,q -well-posed.

(ii) ρp,q,s(P2) = Z and the sets {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} are norm
bounded, where Nk = (k2 M − ikα+ ikGk + Fk + A)−1.

Proof. (i)⇒ (i i): Assume that (P2) is Bs
p,q-well-posed. Let k ∈ Z and y ∈ X

be fixed, we define f (t) = eikt y when t ∈ T. Then f ∈ Bs
p,q(T; X), f̂ (k) = y

and f̂ (n) = 0 for n 6= k. Since (P2) is Bs
p,q-well-posed, there exists a unique

u ∈ Sp,q,s(A,M) satisfying

(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t), a.e. on T.

We have û(n) ∈ D(A) when n ∈ Z by [Arendt and Bu 2002, Lemma 3.1] as
u ∈ Bs

p,q(T; D(A)). Taking Fourier transforms on both sides, we obtain

(3-11) −(k2 M − ikα+ ikGk + Fk + A)û(k)= y

and −(k2 M + ikGk + Fk + A)û(n)= 0 when n 6= k. This implies that the operator
k2 M − ikα+ ikGk + Fk + A is surjective as the vector y ∈ X is arbitrary. To show
that k2 M − ikα+ ikGk + Fk + A is also injective, we let x ∈ D(A) satisfying

(k2 M − ikα+ ikGk + Fk + A)x = 0.

Let u(t)= eikt x when t ∈ T. Then u ∈ Sp,q,s(A,M) and (P2) holds a.e. on T when
f = 0. Thus u is a strong Bs

p,q-solution of (P2) when f = 0. We obtain x = 0 by
the uniqueness assumption. We have shown that k2 M − ikα+ ikGk + Fk + A is
injective. Thus it is bijective from D(A) onto X.
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Next we show that (k2 M − ikα + ikGk + Fk + A)−1
∈ L(X). For y ∈ X and

f (t) = eikt y, we let u ∈ Sp,q,s(A,M) be the unique strong Bs
p,q-solution of (P2).

Then taking Fourier coefficients on both sides of (P2), we obtain by (3-11)

û(n)=
{

0, n 6= k,
−(k2 M − ikα+ ikGk + Fk + A)−1 y, n = k.

Consequently, u(t)=−eikt(k2 M− ikα+ ikGk+ Fk+ A)−1 y when t ∈ T. By (3-4)
there exists a constant C > 0 independent from y and k, such that

‖u‖B1+s
p,q
+‖Au‖Bs

p,q
+‖u′‖Bs

p,q
+‖Mu′‖B1+s

p,q
+‖Fu•‖Bs

p,q
+‖Gu′•‖Bs

p,q
≤ C‖ f ‖Bs

p,q
.

The estimation

‖u′‖Bs
p,q
≤ C‖ f ‖Bs

p,q

implies that ‖k(k2 M− ikα+ ikGk+ Fk+ A)−1 y‖ ≤C‖y‖ for all y ∈ X. Therefore

‖k(k2 M − ikα+ ikGk + Fk + A)−1
‖ ≤ C.

We have shown that k ∈ ρp,q,s(P2) for all k ∈ Z. Thus ρp,q,s(P2)= Z.
Next we show that (Mk)k∈Z and (k Nk)k∈Z are norm bounded, where Mk=k2 M Nk

and Nk = (k2 M − ikα+ ikGk + Fk + A)−1 when k ∈ Z. For this it will suffice to
show that (Mk)k∈Z and (k Nk)k∈Z define Bs

p,q -Fourier multipliers by [Arendt and Bu
2004]. Let f ∈ Bs

p,q(T; X). Then there exists u ∈ Sp,q,s(A,M) which is a strong
Bs

p,q-solution of (P2) by assumption. Taking Fourier coefficients on both sides of
(P2), we get that û(k) ∈ D(A) and

−(k2 M − ikα+ ikGk + Fk + A)û(k)= f̂ (k),

or equivalently,

û(k)=−(k2 M − ikα+ ikGk + Fk + A)−1 f̂ (k), (k ∈ Z).

It follows from u ∈ Sp,q,s(A,M) that (̂Mu′)′(k)=−k2 Mû(k) and û′(k)= ikû(k).
We obtain

(̂Mu′)′(k)=−k2 Mû(k)=−Mk f̂ (k), and û′(k)=−ik Nk f̂ (k), (k ∈ Z).

We conclude that (Mk)k∈Z and (k Nk)k∈Z define Bs
p,q -Fourier multipliers as (Mu′)′,

u′ ∈ Bs
p,q(T; X).

(i i)⇒ (i): Let ρp,q,s(P2)= Z and the sets {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} be
norm bounded, where Nk = (k2 M− ikα+ ikGk+Fk+ A)−1. Define Mk = k2 M Nk ,
Sk = ik Nk , Tk = k M Nk , Pk = Fk Nk and Qk = ikGk Nk when k ∈ Z. It follows
from Proposition 3.2 that (Mk)k∈Z, (Nk)k∈Z, (Sk)k∈Z, (Tk)k∈Z, (Pk)k∈Z and (Qk)k∈Z
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are Bs
p,q-Fourier multipliers. Then for all f ∈ Bs

p,q(T; X), there exists u, v, w ∈
Bs

p,q(T; X) satisfying

(3-12) û(k)=−k2MNk f̂ (k), v̂(k)= ikNk f̂ (k) and ŵ(k)= Nk f̂ (k),

when k ∈ Z. We deduce from the facts that (Pk)k∈Z and (Qk)k∈Z are Bs
p,q-Fourier

multipliers that Fw•,Gw′• ∈ Bs
p,q(T; X) as

F̂w•(k)= Fkŵ(k)= Fk Nk f̂ (k)= Pk f̂ (k), (k ∈ Z)

and

Ĝw′
•
(k)= Gkŵ′(k)= ikGkŵ(k)= ikGk Nk f̂ (k)= Qk f̂ (k), (k ∈ Z).

On the other hand, v̂(k)= ikŵ(k) when k ∈ Z by (3-12). Therefore w is differen-
tiable a.e. on T and w′ = v. This implies that w ∈ B1+s

p,q (T; X) as v ∈ Bs
p,q(T; X)

[Arendt and Bu 2002, Lemma 2.1].
We note that

ANk = Mk +αSk − Pk − Qk + IX , (k ∈ Z).

It follows that (ANk)k∈Z is also a Bs
p,q-Fourier multiplier. Therefore there exists

g ∈ Bs
p,q(T; X) satisfying

(3-13) ĝ(k)= ANk f̂ (k), (k ∈ Z).

Thus ĝ(k)= Aŵ(k) when k ∈ Z. This implies w ∈ Bs
p,q(T; D(A)) by [Arendt and

Bu 2002, Lemma 3.1].
Since (Tk)k∈Z is a Bs

p,q -Fourier multiplier, there exists h ∈ Bs
p,q(T; X) such that

ĥ(k)= ik M Nk f̂ (k)= Mŵ′(k), (k ∈ Z).

Thus w′ ∈ Bs
p,q(T; D(M)) by [Arendt and Bu 2002, Lemma 3.1]. In view of (3-12),

we obtain

û(k)=−k2 M Nk f̂ (k)=−k2 Mŵ(k)= ik M̂w′(k), (k ∈ Z)

which implies that Mw′ ∈ Bs+1
p,q (T; X) by [Arendt and Bu 2002, Lemma 2.1]. We

have shown that u ∈ Sp,q,s(A,M).
By (3-12), we have

̂(Mw′)′(k)+αŵ′(k)= Aŵ(k)+ ikGkŵ(k)+ Fkŵ(k)+ f̂ (k), (k ∈ Z).

It follows that (Mw′)′(t)+ αw′(t) = Aw(t)+ Gw′t + Fwt + f (t) a.e. on T by
the uniqueness theorem [Arendt and Bu 2002, page 314]. Thus w is a strong
Bs

p,q -solution of (P2). This shows the existence.
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To show the uniqueness, we let u ∈ Sp,q,s(A,M) satisfy

(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut

a.e. on T. Taking the Fourier coefficients on both sides, we have

−(k2 M −αSk + ikGk + Fk + A)û(k)= 0

for all k ∈ Z. Since ρp,q,s(P2)= Z, this implies that û(k)= 0 for all k ∈ Z and thus
u = 0. So (P2) is Bs

p,q -well-posed. This finishes the proof. �

By the proof of Theorem 2.4 and using Theorem 3.1, one can obtain the following
result.

Theorem 3.4. Let X be a B-convex Banach space, 1 ≤ p, q ≤ ∞, s > 0 and
let A,M be closed linear operators on X satisfying D(A) ⊂ D(M). Let F,G ∈
L(Bs

p,q([−2π, 0]; X), X). We assume that {k(Gk+1−Gk) : k ∈ Z} is norm bounded.
Then the following assertions are equivalent:

(i) (P2) is Bs
p,q -well-posed.

(ii) ρp,q,s(P2) = Z and the sets {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} are norm
bounded, where Nk = (k2 M − ikα+ ikGk + Fk + A)−1.

4. Applications

In the last section, we give some examples to which our abstract results (Theorem 2.4
and Theorem 3.3) may be applied.

Example 4.1. Let � be a bounded domain in Rn with smooth boundary ∂� and m
be a nonnegative bounded measurable function defined on �. Let f be a given
function on [0, 2π ] ×� and X = H−1(�). We consider the following periodic
degenerate differential equations with finite delay:

(P)


∂2

∂t2(m(x)u(t,x))+α ∂∂t u(t,x)+1u = Fut+Gu′t+ f (t,x), (t,x)∈ [0,2π]×�,
u(t,x)= 0, (t,x)∈ [0,2π]×∂�,
u(0,x)= u(2π,x), x ∈�,
∂u(t,x)
∂t |t=0 =

∂u(t,x)
∂t |t=2π , x ∈�,

where α ∈ C is fixed, ut(s, x) := u(t + s, x), u′t(s, x) := u′(t + s, x) when s ∈
[−2π, 0] and x ∈�, the delay operators F,G : L p([−2π, 0]; X)→ X are bounded
linear operators for some fixed 1< p <∞.

Let M be the multiplication operator by m on H−1(�) with domain D(M).
Then it follows from [Favini and Yagi 1999, Section 3.7] that if we consider the
Laplacian operator 1 on X with Dirichlet boundary condition, then there exists a
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constant C > 0 such that

‖M(zM −1)−1
‖ ≤

C
1+|z|

,

when Re(z)≥−β(1+ |Im(z)|) for some positive constant β depending only on m,
which implies that

(4-1) ‖M(k2 M −1)−1
‖ ≤

C
1+|k|2

, (k ∈ Z).

If we assume that m−1 is regular enough so that the multiplication operator by the
function m−1 is bounded on H−1(�), then there exists a constant C1 such that

(4-2) ‖(k2 M −1)−1
‖ ≤

C1

1+ |k|2
, (k ∈ Z).

Assume that D(1)⊂ D(M), that the set {k(Gk+1−Gk) : k ∈ Z} is norm bounded,
and that ρp(P)=Z, so that for all k ∈Z the operator −k2 M+ iαk+1−Fk− ikGk

is a bijection from D(1) onto X, and (−k2 M + iαk+1− Fk − ikGk)
−1
∈ L(X).

We observe that

−k2 M+iαk+1−Fk−ikGk= (I−(Fk+ikGk−iαk)(−k2 M+1)−1)(−k2 M+1)

for k ∈ Z. From (4-2) we get limk→∞ ‖(Fk + ikGk − iαk)(−k2 M +1)−1
‖ = 0

using the norm boundedness of (Fk)k∈Z and (Gk)k∈Z. This implies that the operator
I − (−k2 M +1)−1(Fk + ikGk − iαk) is invertible when |k| is big enough. For
such k we have

(−k2M + iαk+1− Fk − ikGk)
−1

= (−k2M +1)−1(I − (Fk + ikGk − iαk)(−k2M +1)−1)−1.

It follows from (4-1) and (4-2) that

sup
k∈Z

‖k(−k2 M + iαk+1− Fk − ikGk)
−1
‖<∞,

and
sup
k∈Z

‖k2 M(−k2 M + iαk+1− Fk − ikGk)
−1
‖<∞.

As a consequence, the sets {k(−k2 M + iαk + 1 − Fk − ikGk)
−1
: k ∈ Z} and

{k2 M(−k2 M+ iαk+1− Fk− ikGk)
−1
: k ∈ Z} are R-bounded. Here we used the

fact that when the underlying Banach space X is a Hilbert space, then each norm
bounded subset of L(X) is R-bounded [Arendt and Bu 2002, Proposition 1.13].
We deduce from Theorem 2.4 that (P) is L p-well-posed when X = H−1(�).

If we consider F,G ∈L(Bs
p,q([−2π, 0]; X), X), we may also apply Theorem 3.3

and Theorem 3.4 to obtain the Bs
p,q-well-posedness of (P) under suitable assump-

tions on F and G.
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Example 4.2. Let H be a complex Hilbert space, let 1 < p <∞ and let F,G ∈
L(L p([−2π, 0]; H), H) be delay operators. Let P be a densely defined positive
self-adjoint operator on H with P ≥ δ > 0. Let M = P − ε with ε < δ, and let
A =

∑k
i=0 ai P i with ai ≥ 0, ak > 0. Then there exists a constant C > 0, such that

‖M(zM + A)−1
‖ ≤

C
1+|z|

whenever Re z ≥−β(1+ | Im z|) for some positive constant β depending only on
A and M by [Favini and Yagi 1999, page 73]. This implies in particular that

sup
k∈Z

‖k2 M(k2 M + A)−1
‖<∞.

If we assume 0 ∈ ρ(M), then

sup
k∈Z

‖k2(k2 M + A)−1
‖<∞.

Furthermore we assume that the set {k(Gk+1−Gk : k ∈ Z)} is norm bounded. Then
the argument used in the example on page 43 our first example shows that the
degenerate differential equations with finite delay

(P ′)
{
(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t), (t ∈ T)

u(0)= u(2π), (Mu′)(0)= (Mu′)(2π)

is L p-well-posed when ρp(P ′)= Z. Under suitable assumptions on F, G, we may
also apply Theorem 3.3 to (P ′) to obtain the Bs

p,q-well-posedness of (P ′) for all
1≤ p, q ≤∞, s > 0.

We can also give a concrete example of (P ′). We consider the following problem:
∂2

∂t2

(
1− ∂2

∂x2

)
u(t, x)+α ∂

∂t u(t, x)=
∂4

∂x4 u(t, x)+Fut( · , x)+G
(
∂u
∂t

)
t( · , x)+ f (t, x),

u(t, 0)= u(t, 1)= ∂2

∂x2 u(t, 0)= ∂2

∂x2 u(t, 1)= 0,
u(0, x)= u(2π, x),

(
1− ∂2

∂x2

)
u(0, x)=

(
1− ∂2

∂x2

)
u(2π, x),

∂
∂t

(
1− ∂2

∂x2

)
u(0, x)= ∂

∂t

(
1− ∂2

∂x2

)
u(2π, x),

where x ∈ �, t ∈ (0, 2π) in the first equation, and t ∈ [0, 2π ] in the second
equation. Here,�= (0, 1), F,G∈L(L p([−2π, 0]; L2(�)), L2(�)) and ut(s, x) :=
u(t+s, x) when t ∈ [0, 2π ] and s ∈ [−2π, 0]. Let X = L2(�) and let P =−∂2/∂x2

with domain D(P) = H 2(�) ∩ H 1
0 (�), i.e., P is the Laplacian on L2(�) with

Dirichlet boundary conditions. Then P is positive self adjoint on X. Let M= P+ IX

and A = P2. It is clear that −P generates an contraction semigroup on L2(�)

[Arendt et al. 2001, Example 3.4.7], hence 1∈ ρ(−P), or equivalently M = IX+ P
has a bounded inverse, i.e., 0 ∈ ρ(M). Then the abstract results obtained above for
the problem (P ′) may be applied.
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ON CUSP SOLUTIONS TO A
PRESCRIBED MEAN CURVATURE EQUATION

ALEXANDRA K. ECHART AND KIRK E. LANCASTER

The nonexistence of “cusp solutions” of prescribed mean curvature bound-
ary value problems in � × R when � is a domain in R2 is proven in certain
cases and an application to radial limits at a corner is mentioned.

1. Introduction

Let � be a domain in R2 with locally Lipschitz boundary and O = (0, 0) ∈ ∂� and
H ∈C1,β(�×R), for some β ∈ (0, 1). Let polar coordinates relative to O be denoted
by r and θ and let Bδ(O) be the open ball in R2 of radius δ about O. We shall
assume there exist a δ∗ > 0 and α ∈ (0, π) such that ∂�∩ Bδ∗(O) consists of two
smooth arcs ∂+�∗ and ∂−�∗, whose tangent lines approach the lines L+ : θ =α and
L− : θ =−α, respectively, as the point O is approached and for each θ ∈ (−α, α),
there exists an r(θ) > 0 such that {(r cos θ, r sin θ) : 0 < r < r(θ)} ⊂ �. Set
�∗ =�∩ Bδ∗(O).

Consider a solution f ∈ C2(�) of the prescribed mean curvature equation

(1) div(T f )(x, y)= 2H(x, y, f (x, y)) for (x, y) ∈�∗,

which satisfies the conditions

(2) sup
(x,y)∈�∗

| f (x, y)|<∞ and sup
(x,y)∈�∗

|H(x, y, f (x, y))|<∞,

where T f =∇ f/
√

1+ |∇ f |2; examples of such functions might arise as solutions
of a Dirichlet or contact angle boundary value problem for (1). We are interested in
the radial limits of f :

(3) R f (θ)=def lim
r↓0

f (r cos θ, r sin θ), −α < θ < α.

When lim∂+�∗3(x,y)→O f (x, y) exists, we define R f (α) to be this limit and when
lim∂−�∗3(x,y)→O f (x, y) exists, we define R f (−α) to be this limit.

MSC2010: 53A10, 35J93.
Keywords: cusp solutions, prescribed mean curvature.
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Figure 1. The domain �∗.

There are examples in which the radial limits do not exist for any θ ∈ (−α, α)
[Lancaster 1989; Lancaster and Siegel 1996b]. For solutions of boundary value
problems which satisfy appropriate conditions, R f (θ) can be proven to exist for
θ ∈ [−α, α] \ J, where J is a countable subset of (−α, α); see, e.g., [Entekhabi and
Lancaster 2016; 2017; Lancaster 1988; 1991; 2012; Lancaster and Siegel 1996a;
1996b]. We know of no examples in which J 6= ∅ and we ask if J = ∅ always
holds; this is related to the existence of cusp solutions.

A cusp solution for (1) is a domain 3⊂ R2 and a solution f of (1) in 3 such
that ∂3 \ {O, A, B} = 01 ∪02 ∪03, where A, B,O are distinct points on ∂3, and
01, 02 and 03 are disjoint, smooth (open) arcs with endpoints {A,O}, {B,O} and
{A, B}, respectively; where 01 and 02 are tangent at O

(
so 3 has an “outward”

cusp at O, such as in Figure 2, which has a cusp at (0, 0)
)
; and where f (x, y)= c j

when (x, y) ∈ 0 j ( j = 1, 2), c1 < c2, and, for each c ∈ (c1, c2), the level curves
{(x, y) ∈3 : f (x, y)= c} are tangent at O; see, e.g., [Lancaster and Siegel 1996b,
Section 5]. (Capillary surfaces in cusp regions were studied in [Aoki and Siegel
2012; Scholz 2004].) In cases where cusp solutions do not exist, we know J =∅.

In [Lancaster and Siegel 1996a; 1996b], the nonexistence of cusp solutions is
proven when (a) H ∈ C1,δ(�×R), δ ∈ (0, 1), and H(x, y, z) is strictly increasing
in z for each (x, y)∈� or (b) H is real-analytic. The proof in [Lancaster and Siegel
1996b] for case (a) involves a “local” argument while that for (b) involves a “global”
argument which shows (2) is violated. Using a “local” argument, we shall prove:

Theorem 1. Suppose � is a domain in R2 with locally Lipschitz boundary, O =
(0, 0) ∈ ∂� and H ∈ C1,β(�∗×R) for some β ∈ (0, 1). Let f ∈ C2(�∗) satisfy (1)
and (2). Suppose H(x, y, z) is weakly increasing in z for (x, y) in a neighborhood
of (0, 0). Then f cannot have a cusp solution (i.e., there is no “cusp region”3⊂�
such that (3, f ) is a cusp solution).

We can exclude cusp solutions when H vanishes in the “cusp direction,” which
we may assume is the direction of the positive x-axis (see Figure 2).
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A

B

Figure 2. The cusp domain 3.

Theorem 2. Suppose 3 is a cusp domain in R2, ∂3 is tangent to Ei at O, H ∈
C1,β(3×R) for some β ∈ (0, 1), f ∈ C2(3) satisfies (1) and (2) and there exists
a δ > 0 such that

H(x, 0, z)= 0 for (x, z) ∈ [0, δ]× [ lim inf
33(x,y)→O

f (x, y), lim sup
33(x,y)→O

f (x, y)].

Then (3, f ) cannot be a cusp solution.

What can we say when H(x, y, z) is strictly decreasing in z? Unfortunately, as
the following example illustrates, we cannot exclude cusp solutions in this case,
even when H is real-analytic; a “global” argument (like in [Lancaster and Siegel
1996b, page 176]) is required to exclude cusp solutions when H is real-analytic.
Thus, for example, the reasoning in [Aoki and Siegel 2012, 3B] cannot be used
when κ < 0.

Example 3. Consider the cone C =
{

X (θ, t) : 0≤ θ ≤ π
2 , 0< t <∞

}
, where

X (θ, t)= t (cos θ, sin θ − 1, 1).

Set 3=
{
t (cos θ, sin θ − 1) : 0< θ < π

2 , 1< t < 2
}

and S = C ∩
(
R2
×[1, 2]

)
. A

straightforward computation shows that the mean curvature (with respect to the
upward normal) is

H(θ, t)= 3−2 sin θ
2t (1+(1−sin θ)2)3/2

;

that is, H(x, y, z) = (z2
− 2yz)/

(
2(y2
+ z2)3/2

)
. Now y/z = sin θ − 1 ∈ [−1, 0]

and x = 0 if and only if θ = π/2; another calculation yields

2∂H
∂z
(x, y, z)=− z3

(y2+z2)5/2

(
1− 4

( y
z
)
− 2

( y
z
)2
+ 2

( y
z
)3 )

< 0.

Finally observe that S is the graph of a cusp solution and satisfies (2) in 3.

The hypotheses of [Entekhabi and Lancaster 2016] include the assumption that
H satisfies one of the conditions which guarantees that cusp solutions do not exist;
the following corollary is a consequence of Theorem 1 and that paper. (A second
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corollary, similar to Corollary 4, follows by applying Theorem 1 to [Entekhabi and
Lancaster 2017, Theorems 1 and 2].)

Corollary 4 [Entekhabi and Lancaster 2016]. Suppose �, f and H satisfy the
hypotheses of Theorem 1 and either

(i) α ∈
(
π
2 , π

)
or

(ii) α ∈
(
0, π2

]
and one of R f (α) or R f (−α) exists.

Then R f (θ) exists for each θ ∈ (−α, α) and R f ∈ C0
(
(−α, α)

)
. If R f (α) exists,

then R f ∈ C0
(
(−α, α]

)
. If R f (−α) exists, then R f ∈ C0

(
[−α, α)

)
.

2. Proof of Theorem 1

Suppose (3, f ) is a cusp solution and 3 ⊂ {(x, y) ∈ R2
: 0 < x < a, |y| < x},

c1 < c2 and the c-level curves of f in 3 are tangent to the positive x-axis at O for
c1≤ c≤ c2, for some a> 0 (see Figure 2). Since H ∈C1,β(�×R), the solution f is
an element of C3(�) and, as in [Lancaster and Siegel 1996a; 1996b], there exist an
(open) rectangle R0= (0, a)× (c1, c2) and g ∈C3(R), where R = R0, such that the
graph of f over 3, G, is the set

{
(x, g(x, z), z) : (x, z) ∈ R0

} (
i.e., z = f (x, y) if

and only if y= g(x, z) for (x, z)∈ R0 and (x, y)∈3
)

and g(0, z)=∂g(0, z)/∂x=0
for c1 ≤ z ≤ c2. We may assume that |∇g(x, z)| ≤ 1 for (x, z) ∈ R.

The (upward) unit normal to the graph of f , G, is

EN (x, y, z)=
(− fx(x, y),− fy(x, y), 1)√

1+ f 2
x (x, y)+ f 2

y (x, y)

and div(T f )(x, y) = 2 EH(x, y, z) · EN (x, y, z) for (x, y, z) ∈ G, where 2 EH is the
mean curvature vector of G. Then

sgn(gz(x, z)) EN (x, y, z)=
(gx(x, z),−1, gz(x, z))√

1+ g2
x(x, z)+ g2

z (x, z)
.

Since div(T g)= 2 EH · (−gx , 1,−gz)/
√

1+ g2
x + g2

z , we see that

div(T g)(x, z)= 2 EH(x, y, z) ·
(
−sgn(gz(x, z))

)
EN (x, y, z) for (x, y, z) ∈ G.

(Of course, if gz(x, z)= 0 for some (x, z) ∈ R with x > 0, then G has a horizontal
unit normal at an interior point of �, which contradicts our hypothesis f ∈ C2(�);
hence gz(x, z) 6= 0 when (x, z) ∈ R with x > 0.)

Let us assume sgn(gz(x, z))= sgn
(

fy(x, g(x, z))
)
=+1 for (x, z)∈ R with x>0;

the opposite choice will lead to the same (eventual) conclusion that cusp solutions
do not exist. Then

Mg(x, z)=−2H(x, g(x, z), z),
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where Mg =∇ · T g = div(T g). Suppose there exist a δ1 > 0 such that H(x, y, z)
is weakly increasing in z for each (x, y) ∈3 and z ∈ [c1, c2] when x2

+ y2
≤ δ2

1 .
We may assume a ≤ δ1.

Fix ε ∈
(
0, 1

2(c2−c1)
)

and set c̃1= c1+ε and c̃2= c2−ε; notice that c̃2> c̃1. Set

(4) g j (x, z) := g(x, z+ c̃ j ) for 0≤ x ≤ a, −ε ≤ z ≤ ε, j = 1, 2,

and define h = g1− g2.
If h(x0, z0) = 0 for some (x0, z0) ∈ (0, a] × [−ε, ε], then the graph of f fails

the vertical line test since (x0, y0, z0 + c̃1) and (x0, y0, z0 + c̃2) are both points
on the graph of f , where y0 = g1(x0, z0) = g2(x0, z0). Thus h(x, z) 6= 0 for all
0< x ≤ a, −ε≤ z≤ ε. Since sgn(gz(x, z))=+1 when (x, z)∈ (0, a]×[−ε, ε], we
see that h(x, z)< 0 for all (x, z)∈ (0, a]×[−ε, ε]. (This is essentially the argument
at the bottom of page 175 in [Lancaster and Siegel 1996b] since h(0, z) > 0 is the
only option available there.)

Define
K (x, y)= 2H(x, y, c̃1+ ε), 0≤ x ≤ a, (x, y) ∈3,

and d(x, z)=2H(x, g(x, z), c̃1+ε)−2H(x, g(x, z), z). Notice that d(x, z+c̃1)≥0
and d(x, z+ c̃2)≤ 0 when (x, z) ∈ [0, a]× [−ε, ε]. Now, for each j = 1, 2, g j is
a solution of the Cauchy problem

Mg j (x, z)=− K (x, g j (x, z))+ d(x, z+ c̃ j ) for (x, z) ∈ [0, a]× [−ε, ε],

g j (0, z)=
∂g j

∂x
(0, z)= 0 for z ∈ [−ε, ε].

Then, as in [Gilbarg and Trudinger 1983, pages 263–264], we have

0= Mg1(x, z)−Mg2(x, z)+ 2H(x, g1(x, z), z+ c̃1)− 2H(x, g2(x, z), z+ c̃2)

= Lh(x, z)− d(x, z+ c̃1)+ d(x, z+ c̃2),

where, setting D1 := ∂/∂x and D2 := ∂/∂z,

(5) Lh =
2∑

i, j=1

ai, j Di j h+
2∑

i=1

bi Di h+ ch;

here

(6) ai, j (x, z)= ei, j (Dg1(x, z)) for i, j = 1, 2,

with
e1,1(p, q)= (1+ q2)W−3 e1,2(p, q)= e2,1(p, q)=−pqW−3,

e2,2(p, q)= (1+ p2)W−3 W =W (p, q)=
√

1+ p2
+ q2,
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b1(x, z)=
2∑

i, j=1

Di j g2(x, z)∂ei, j

∂p
(ξ1, (g1)z(x, z)),(7)

b2(x, z)=
2∑

i, j=1

Di j g2(x, z)∂ei, j

∂q
((g2)x(x, z), ξ2)(8)

and c(x, z)= ∂K (x, ξ)/∂y = 2∂H(x, ξ, c̃1+ ε)/∂y, for some ξ between g1(x, z)
and g2(x, z), ξ1 between (g1)x(x, z) and (g2)x(x, z) and ξ2 between (g1)z(x, z)
and (g2)z(x, z).

Notice that ai, j
∈ C1(R) for i, j ∈ {1, 2}, bi

∈ L∞(R) for i ∈ {1, 2} and
c ∈ L∞(R). Now h(0, z)= ∂h(0, z)/∂x = 0 for |z| ≤ ε and

(9) Lh(x, z)= d(x, z+ c̃1)− d(x, z+ c̃2)≥ 0, (x, z) ∈ [0, a]× [−ε, ε].

From (9) and the Hopf boundary point lemma (see, e.g., [Gilbarg and Trudinger
1983, Lemma 3.4]), we have

∂h
∂x
(0, z) < 0 for each z ∈ (−ε, ε)

and this contradicts the fact that hx(0, z)= 0 if z ∈ [−ε, ε]. Thus we have proven
Theorem 1. �

Remark 5. The assumption that H is weakly increasing in z is equivalent to
one in the (weak) comparison principle (see, e.g., [Gilbarg and Trudinger 1983,
Theorem 10.1] or [Finn 1986, Theorem 5.1]), which plays a critical role here.

3. Proof of Theorem 2

Suppose (3, f ) is a cusp solution and 3 ⊂ {(x, y) ∈ R2
: 0 < x < a, |y| < x},

c1 < c2 and the c-level curves of f in 3 are tangent to the positive x-axis at O for
c1≤ c≤ c2, for some a> 0 (see Figure 2). As before, there exist an (open) rectangle
R0 = (0, a)× (c1, c2) and g ∈ C3(R) such that the graph of f over 3, G, is the set{
(x, g(x, z), z) : (x, z) ∈ R0

}
and g(0, z) = ∂g(0, z)/∂x = 0 for c1 ≤ z ≤ c2. We

shall assume that |∇g(x, z)| ≤ 1 for (x, z) ∈ R.
Let us assume there exist δ ∈ (0, a] and d1, d2 ∈ [c1, c2] with d1 < d2 such that

H(x, 0, z) = 0 for 0 ≤ x ≤ δ, d1 ≤ z ≤ d2. Now gxx(0, z) = 0 for all z ∈ [c1, c2](
since 4g(0, z)= Mg(0, z)=−2H(0, 0, z)= 0

)
and

H(x, g(x, z), z)= H(x, 0, z)+ ∂H
∂y
(x, ξ, z)g(x, z)= ∂H

∂y
(x, ξ, z)g(x, z)

for some ξ between 0 and g(x, z). We may extend g as an even function in x by
setting g(x, z)= g(−x, z) for −a ≤ x < 0, c1 ≤ z ≤ c2, so that g ∈ C2(R ∪ R−),
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where R− = {(−x, z) : (x, z) ∈ R}. Then

0= Mg(x, z)+ 2H(x, g(x, z), z)= L̃g(x, z),
where

a1,1(x, z)=
1+ g2

z (x, z)
W 3 , a1,2(x, z)=−

gx(x, z)gz(x, z)
W 3 ,

a2,2(x, z)=
1+ g2

x(x, z)
W 3 , W (x, z)=

√
1+ g2

x(x, z)+ g2
z (x, z),

a1,2
= a2,1, c̃(x, z)= 2Hy(x, ξ, z)

and
L̃u =

2∑
i, j=1

ai, j Di j u+ c̃u.

Since |∇g(x, z)| ≤ 1 for (x, z) ∈ R, L̃ is uniformly elliptic in R. Notice that
ai, j
∈ C1(R) for i, j = 1, 2 and c̃ ∈ C0(R). Since g ∈ C2(R ∪ R−), Theorems 1∗

and 2∗ of [Hartman and Wintner 1953] imply that for each z ∈ (d1, d2), there exist
a natural number n and real constants e1 and e2, not both zero, such that

gx(ρ cos θ, z+ ρ sin θ)= ρn(e1 cos(nθ)+ e2 sin(nθ))+ o(ρn)

and
gz(ρ cos θ, z+ ρ sin θ)= ρn(e2 cos(nθ)− e1 sin(nθ))+ o(ρn)

as ρ→ 0. Since gx(0, z)= 0 and gz(0, z)= 0 for z ∈ [c1, c2], we see that

e1 cos(nπ/2)+ e2 sin(nπ/2)= 0, e2 cos(nπ/2)− e1 sin(nπ/2)= 0

and so e1 = e2 = 0. This contradicts the fact that at least one of e1 or e2 is nonzero.
Thus we have proven Theorem 2. �

4. Radial limits

When radial limits for (1) exist, they behave in a different manner than do radial
limits of, for example, Laplace’s equation; see, e.g., [Bear and Hile 1983]. In
particular, if f is a solution of (1) and the radial limits R f (θ) exist for θ ∈ (−α, α),
then they behave in one of the following ways:

(i) R f : (−α, α)→R is a constant function (i.e., f has a nontangential limit at O).

(ii) There exist α1 and α2 so that−α≤α1<α2≤α and R f is constant on (−α, α1]

and [α2, α) and strictly increasing or strictly decreasing on (α1, α2).

(iii) There exist α1, αL , αR, α2 so that −α≤ α1 <αL <αR <α2≤ α, αR = αL+π ,
and R f is constant on (−α, α1], [αL , αR], and [α2, α) and is either strictly
increasing on (α1, αL ] and strictly decreasing on [αR, α2) or strictly decreasing
on (α1, αL ] and strictly increasing on [αR, α2).
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RADIAL LIMITS OF CAPILLARY SURFACES AT CORNERS

MOZHGAN (NORA) ENTEKHABI AND KIRK E. LANCASTER

Dedicated to the memory of Amir Entekhabi

Consider a solution f ∈ C2(�) of a prescribed mean curvature equation

div
∇ f√

1+ |∇ f |2
= 2H(x, f ) in �⊂ R2,

where � is a domain whose boundary has a corner at O = (0, 0) ∈ ∂� and
the angular measure of this corner is 2α, for some α ∈ (0, π). Suppose
supx∈� | f (x)| and supx∈� |H(x, f (x))| are both finite. If α > π

2 , then the
(nontangential) radial limits of f at O, namely

R f (θ)= lim
r↓0

f (r cos θ, r sin θ),

were recently proven by the authors to exist, independent of the boundary
behavior of f on ∂�, and to have a specific type of behavior.

Suppose α ∈
(
π
4 ,

π
2

]
, the contact angle γ ( · ) that the graph of f makes

with one side of ∂� has a limit (denoted γ2) at O and

π − 2α < γ2 < 2α.

We prove that the (nontangential) radial limits of f at O exist and the radial
limits have a specific type of behavior, independent of the boundary behav-
ior of f on the other side of ∂�. We also discuss the case α ∈

(
0, π2

]
and the

displayed inequalities do not hold.

1. Introduction and statement of main theorems

Let � be a domain in R2 whose boundary has a corner at O ∈ ∂�. Suppose
H :�×R→ R and H satisfies one of the conditions which guarantees that “cusp
solutions” (e.g., §5 of [Lancaster and Siegel 1996b]) do not exist; for example,
H(x, t) is weakly increasing in t for each x [Echart and Lancaster 2017] or is
real-analytic [Lancaster and Siegel 1996a]. We will assume O = (0, 0). Let
�∗ = � ∩ Bδ∗(O), where Bδ∗(O) is the ball in R2 of radius δ∗ about O. Polar
coordinates relative to O will be denoted by r and θ . We assume that ∂� is

MSC2010: 35B40, 53A10, 76D45, 35J93.
Keywords: prescribed mean curvature, radial limits.
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Figure 1. The domain �∗.

piecewise smooth and there exists α ∈ (0, π) such that ∂� \ {O} ∩ Bδ∗(O) consists
of two (open) C1 arcs ∂+�∗ and ∂−�∗, whose tangent lines approach the lines
L+ : θ = α and L− : θ =−α, respectively, as the point O is approached.

Suppose α > π
2 and f ∈C2(�) satisfies the prescribed mean curvature equation

(1) N f (x)= 2H(x, f (x)), for x ∈�,

where N f =∇ · T f = div(T f ), T f =∇ f/
√

1+ |∇ f |2, and

(2) sup
x∈�
| f (x)|<∞ and sup

x∈�
|H(x, f (x))|<∞.

In [Entekhabi and Lancaster 2016], the authors proved that the radial limits,

R f (θ) def
= lim

r↓0
f (r cos θ, r sin θ),

exist for all θ ∈ (−α, α), that R f ( · ) is a continuous function on (−α, α) and
that these radial limits have similar behavior to that observed in Theorem 1 of
[Lancaster and Siegel 1996b]. As illustrated in [Lancaster 1989] and in Theorem 3
of [Lancaster and Siegel 1996b], radial limits of nonparametric prescribed mean
curvature surfaces do not necessarily exist.

Suppose α≤ π
2 (see Figure 1) and f ∈C2(�)∩C1(�∪∂−�∗) satisfies (1) and (2).

In [Entekhabi and Lancaster 2016], it is shown that if

(3) lim
∂−�∗3x→O

f (x) exists,

then the radial limits of f at O exist and behave as expected. In this paper, we
consider the capillary problem as our model and suppose f ∈C2(�)∩C1(�∪∂−�∗)

satisfies (1), (2) and the boundary condition

(4) T f (x) · ν(x)= cos γ (x) for x ∈ ∂−�∗,
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where ν(x) is the exterior unit normal to � at x ∈ ∂� and γ : ∂�→ [0, π] is the
contact angle between the graph of f and ∂�×R, and

(5) lim
∂−�∗3x→O

γ (x)= γ2.

We shall prove

Theorem 1. Let f ∈ C2(�)∩C1(�∪ ∂−�∗) satisfy (1) and (4) and suppose (2)
and (5) hold, α ∈

(
π
4 ,

π
2

]
and

(6) π − 2α < γ2 < 2α.

Then (3) holds, R f (θ) exists for all θ ∈ (−α, α) and R f ( · ) is a continuous function
on [−α, α), where R f (−α) equals the limit in (3). Further, R f ( · ) behaves in one
of the following ways:

(i) R f :[−α, α)→R is a constant function, hence f has a nontangential limit at O.

(ii) There exist α1 and α2 so that−α≤α1<α2≤α and R f is constant on [−α, α1]

and [α2, α) and strictly increasing or strictly decreasing on [α1, α2).

If α∈
(
0, π4

]
, then (6) cannot be satisfied. If α∈

(
π
4 ,

π
2

]
but γ2≥2α or γ2≤π−2α,

then (6) is not satisfied. In both cases, Theorem 1 is not applicable. In these cases,
we can prove the existence of R f ( · ) if we add an assumption about the behavior
of γ on ∂+�∗.

Theorem 2. Let f ∈C2(�)∩C1(�∪∂−�∗∪∂+�∗) satisfy (1) and (4). Suppose (2)
and (5) hold, α ∈

(
0, π2

]
, there exist λ1, λ2 ∈ [0, π] with 0< λ2−λ1 < 4α such that

λ1 ≤ γ (x)≤ λ2 for x ∈ ∂+�∗ and

(7) π − 2α− λ1 < γ2 < π + 2α− λ2.

Then the conclusions of Theorem 1 hold.

Remarks. (a) Theorem 2 only offers a new result when λ1 = 0 or λ2 = π ; Figure 8
of [Shi 2006] illustrates one example in which λ1 = 0 or λ2 = π occurs. If
0<λ1 <λ2 <π , then Theorem 2 is a consequence of [Lancaster and Siegel 1996b,
Theorem 1]; in this case, the argument given in that reference (and here) implies
that R f (θ) exists for all θ ∈ [−α, α].

(b) In [Concus and Finn 1996; Finn 1996] it was proved that, in a neighborhood
U of O and assuming ∂+�∗ and ∂−�∗ are straight line segments, a solution of a
constant mean curvature equation (i.e., H is constant in (1)) with constant contact
angles γ1 on U ∩ ∂+�∗ and γ2 on U ∩ ∂−�∗ can exist only if |π − γ1− γ2| ≤ 2α.
Using this, when γ1= 0, we would obtain a (local) upper bound for f in Theorem 1
when π − 2α < γ2 and, when γ1 = π , a (local) lower bound for f when γ2 < 2α;
these two inequalities are equivalent to (6).
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x

y

Figure 2. The regions 1 (dark blue) and 1R (light blue).

(c) As in [Lancaster and Siegel 1996b], conclusion (3) of Theorems 1 and 2 is a
consequence of a general argument; establishing (3) is not a key step in the proof.

2. Preliminary remarks

Let f ∈ C2(�) satisfy (1) and suppose (2) holds. Throughout the remainder of the
article, let us assume that M1 ∈ (0,∞), M2 ∈ [0,∞),

(8) sup
x∈�
| f (x)| ≤ M1 and sup

x∈�
|H(x, f (x))| ≤ M2.

2.1. A specific torus. We will use portions of tori and comparison function argu-
ments as, for instance, in Examples 2 and 3 of [Lancaster and Siegel 1996b] and the
Courant–Lebesgue lemma [Courant 1950, Lemma 3.1] to obtain upper and lower
bounds on f near O in specific subsets of � and prove Theorems 1 and 2. Let us
discuss the construction of a particular torus.

Set

r0 =

{
1 if M2 = 0,
1/M2+ 1−

√
(1/M2)2+ 1 if M2 > 0.

Let

1=
{

x = (x1, x2) ∈ R2
: |x| ≥ r0, 0≤ x1 ≤ 2, |x2| ≤ r0

}
,

1R
= {x = (x1, x2) ∈ R2

: (4− x1, x2) ∈1}, and

T =
{(

2+ (2+ r0 cos v) cos u, r0 sin v, (2+ r0 cos v) sin u
)

: u ∈ [0, 2π ], v ∈
[
π
2 ,

3π
2

]}
.

T is the inner half of a torus of revolution with axis of symmetry {(2, y, 0) : y ∈R},
major radius R0 = 2 and minor radius r0; recall that the mean curvature of T (with
respect to the exterior normal) at

(
2+(2+r0 cos v) cos u, r0 sin v, (2+r0 cos v) sin u

)
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τ1 τ2

−β

β

Figure 3. Left: β + τ1 =
π
2 . Right: −β + τ2 =

π
2 . In both cases, β ≥ 0.

is given by

HT =−
2+ 2r0 cos v

2r0(2+ r0 cos v)
.

A calculation shows that

(9) −

( 1
r0
+

1
2+r0

)
≤ 2HT ≤−

( 1
r0
−

1
2−r0

)
=−M2.

Set

T + = {(x, z) ∈ T : x ∈1, z ≥ 0} and T − = {(x, z) ∈ T : x ∈1, z ≤ 0}.

Let h+, h− :1→ R be functions whose graphs satisfy

{(x, h+(x)) : x ∈1} = T + and {(x, h−(x)) : x ∈1} = T −.

Then, from (9), we have

(10) div
h+√

1+ |∇h+|2
≥ M2 and div

h−√
1+ |∇h−|2

≤−M2.

For each β ∈
[
−
π
2 ,

π
2

]
let 1β =Rα ◦ Tβ(1), where Rα : R

2
→ R2, given by

(x1, x2) 7→
(
cos(α)x1+ sin(α)x2,− sin(α)x1+ cos(α)x2

)
,

is the rotation about (0, 0) through the angle −α and Tβ : R2
→ R2, given by

(x1, x2) 7→ (x1− r0 cosβ, x2− r0 sinβ),

is the translation taking (r0 cosβ, r0 sinβ) ∈ ∂1 to (0, 0). We will let τ1 denote
the angle that the upward tangent ray to Tβ(C) makes with the negative x1−axis
and let τ2 denote the angle that the upward tangent ray to T−β(C) makes with the
positive x1−axis, where C =

{
x = (x1, x2) ∈ R2

: |x| = r0, x1 ≥ 0
}
. (Figure 3

illustrates this when β > 0.) Let h±β :1β→ R be defined by h±β = h± ◦ T−1
β ◦R

−1
α ,

see Figure 4.



60 MOZHGAN (NORA) ENTEKHABI AND KIRK E. LANCASTER

Let q denote the be modulus of continuity of h−, so that |h−β (x1)− h−β (x2)| ≤

q(|x1− x2|. Notice that q is also the modulus of continuity of h+, as well as for
h−β and h+β for each β ∈

[
−
π
2 ,

π
2

]
.

2.2. Parametric framework. Since f ∈C0(�), we may assume that f is uniformly
continuous on {x ∈ �∗ : |x| > δ} for each δ ∈ (0, δ∗); if this is not true, we may
replace� with a subset U ⊂�, such that ∂�∩∂U = {O} and ∂U ∩Bδ∗(O) consists
of two arcs ∂+U and ∂−U , whose tangent lines approach the lines L+ : θ = α and
L− : θ =−α, respectively, as the point O is approached. Set

S∗0 = {(x, f (x)) : x ∈�∗} and 0∗0 = {(x, f (x)) : x ∈ ∂�∗ \ {O}};

the points where ∂Bδ∗(O) intersect ∂� are labeled A ∈ ∂−�∗ and B ∈ ∂+�∗. From
the calculation on page 170 of [Lancaster and Siegel 1996b], we see that the area
of S∗0 is finite; let M0 denote this area. For δ ∈ (0, 1), set

p(δ)=

√
8πM0

ln(1/δ)
.

Let E = {(u, v) : u2
+ v2 < 1}. As in [Elcrat and Lancaster 1986; Lancaster and

Siegel 1996b], there is a parametric description of the surface S∗0 ,

(11) Y (u, v)= (a(u, v), b(u, v), c(u, v)) ∈ C2(E : R3),

which has the following properties:

(a1) Y is a diffeomorphism of E onto S∗0 .

(a2) Set G(u, v)= (a(u, v), b(u, v)), (u, v) ∈ E . Then G ∈ C0(E : R2).

(a3) Let σ = G−1(∂�∗ \ {O}); then σ is a connected arc of ∂E and Y maps σ
strictly monotonically onto 0∗0 . We may assume the endpoints of σ are o1

and o2 and there exist points a, b∈ σ such that G(a)= A, G(b)= B, G maps
the (open) arc o1b onto ∂+�, and G maps the (open) arc o2a onto ∂−�. (Note
that o1 and o2 are not assumed to be distinct at this point; Figures 4a and 4b
of [Lancaster and Siegel 1997] illustrate this situation.)

(a4) Y is conformal on E : Yu · Yv = 0, Yu · Yu = Yv · Yv on E .

(a5) 4Y := Yuu + Yvv = H(Y )Yu × Yv on E .

Here by the (open) arcs o1b and o2a are meant the component of ∂E \{o1, b} which
does not contain a and the component of ∂E \ {o2, a} which does not contain b,
respectively. Let σ0 = ∂E \ σ .

There are two cases we will need to consider during the proofs of Theorem 1
and Theorem 2:

(A) o1 = o2 or (B) o1 6= o2.
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Figure 4. The domain (in blue) of a toroidal function h±β , α < π
4 .

These correspond to Cases 5 and 3 respectively in Step 1 of the proof of Theorem 1
of [Lancaster and Siegel 1996b].

3. Proof of Theorem 1

Since π − 2α < γ2 < 2α, we can choose τ1 ∈ (π − 2α, γ2) and τ2 ∈ (γ2, 2α). Set
β1 =

π
2 − τ1 and β2 =

π
2 − (π − τ2) = τ2 −

π
2 . With these choices of β1 and β2,

notice that

T (h− ◦ Tβ1)(x1, 0) · (0,−1)= cos τ1 > cos γ2, for 0< x1 < 2− r0,

T (h+ ◦ Tβ2)(x1, 0) · (0,−1)= cos τ2 < cos γ2, for 0< x1 < 2− r0.

This implies that, for δ1 = δ1(β1, β2) > 0 small enough,

(12) T (h−β1
)(x) · Eν(x) > cos γ (x) and T (h+β2

)(x) · Eν(x) < cos γ (x),

γ2
π−2α

γ2

2α

τ2

τ1

2α

Figure 5. Left: 1β1 , the domain of h−β1
. Right: 1β2 , the domain of h+β2

.
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for x ∈ ∂−� with |x|< δ1, where Eν(x) is the exterior unit normal to � at x ∈ ∂�.
(See Figure 5.) (We may also assume ν(x) · (1, 1) < 0, for x ∈ ∂+� with |x|< δ1

and ν(x) · (1,−1) < 0, for x ∈ ∂−� with |x|< δ1, since α > π
4 .)

Let µ ∈ (0,min{γ2 − (π − 2α), 2α − γ2}) and set τ1(µ) = π − 2α + µ and
τ2(µ) = 2α − µ, so that β1 = β2. Let us write δ1(µ) for δ1(β1, β2), h+µ for h+β2

,
h−µ for h−β1

and 1µ for 1β1 = 1β2 . Since β1, β2 6= ±
π
2 , there exists a positive

R= R(µ) such that B(O, R(µ))∩�∗⊂1µ (where B(O, R)= {x ∈R2
: |x|< R}).

Let us first assume that (A) holds and set o= o1 = o2.

Claim. f is uniformly continuous on �0, where �0 =�
∗
∩1µ.

Proof. For r > 0, set Br = {u ∈ E : |u− o| < r}, Cr = {u ∈ E : |u− o| = r} and
let lr be the length of the image curve Y (Cr ); also let C ′r =G(Cr ) and B ′r =G(Br ).
From the Courant–Lebesgue lemma (e.g., Lemma 3.1 in [Courant 1950]), we see
that for each δ ∈ (0, 1), there exists a ρ = ρ(δ) ∈ (δ,

√
δ) such that the arclength lρ

of Y (Cρ) is less than p(δ). For δ > 0, let k(δ) = infu∈Cρ(δ) c(u) = infx∈C ′ρ(δ) f (x)
and m(δ)= supu∈Cρ(δ) c(u)= supx∈C ′ρ(δ)

f (x); notice that m(δ)− k(δ)≤ lρ < p(δ).
For each δ ∈ (0, 1) with

√
δ < min{|o− a|, |o− b|}, there are two points in

Cρ(δ) ∩ ∂E ; we denote these points as e1(δ) ∈ ob and e2(δ) ∈ oa and set y1(δ)=

G(e1(δ)) and y2(δ) = G(e2(δ)). Notice that C ′ρ(δ) is a curve in � which joins
y1 ∈ ∂

+�∗ and y2 ∈ ∂
−�∗ and ∂�∩C ′ρ(δ) \ { y1, y2} = ∅; therefore there exists

η = η(δ) > 0 such that Bη(δ)(O)= {x ∈� : |x|< η(δ)} ⊂ B ′ρ(δ) (see Figure 6).
Let ε>0. Choose δ>0 such that

√
δ<min{|o−a|, |o−b|}, p(δ)<δ1(µ), p(δ)<

R(µ), and p(δ)+ q(p(δ)) < 1
2ε. Pick a point w ∈ C ′ρ(δ) and define b±j :1µ→ R

by
b±(x)= f (w)± p(δ)± h∓µ (x), x ∈1µ.

Recalling that T b+ · η1 = 1 on C1 = Rα ◦ Tβ1(C) and T b− · η2 = −1 on C2 =

Rα ◦ Tβ2(C), where η j (x) is the interior unit normal to C j at x ∈ C j (and C =

y2(δ)−→

y1(δ)−→

Figure 6. Bη(δ)(O) (blue region) and B ′ρ(δ) (blue and green regions).
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{x ∈ R2
: |x| = r0, x1 ≥ 0}), it follows from (10), (12) and the general comparison

principle (e.g., [Finn 1986, Theorem 5.1]) that

b−(x) < f (x) < b+(x) for all x ∈ B ′ρ(δ) ∩1µ.

Thus if x1, x2 ∈�0 satisfy |x1|< η(δ), |x2|< η(δ) and |x1− x2|< η(δ), then

(13) | f (x1)− f (x2)|< 2p(δ)+ 2q(p(δ)) < ε.

Since f is uniformly continuous on {x ∈�∗ : |x| ≥ 1
2η(δ)}, there exists a λ > 0

such that if x1, x2 ∈ �
∗ satisfy |x1| ≥

1
2η(δ), x2| ≥

1
2η(δ) and |x1 − x2| < λ,

then | f (x1)− f (x2)| < ε. Now set d = d(ε) = min{λ, 1
2η(δ)}. If x1, x2 ∈ �0,

|x1− x2|< d(ε)≤ 1
2η(δ) and |x1|<

1
2η(δ), then |x1|<η(δ) and |x2|<η(δ); hence

| f (x1)− f (x2)|<ε by (13). Next, if x1, x2 ∈�0, |x1−x2|<d(ε)≤λ, |x1|≥
1
2η(δ)

and |x2| ≥
1
2η(δ), then | f (x1)− f (x2)| < ε. Therefore, for all x1, x2 ∈ �0 with

|x1− x2|< d(ε), we have | f (x1)− f (x2)|< ε. The claim is proven. �

Notice that if θ(µ)= α−µ (= τ2(µ)−α = π −α− τ1(µ)), then{(
r cos θ(µ), r sin θ(µ)

)
: r ≥ 0

}
is the tangent ray to ∂�0 at O and it follows from the claim that f ∈C0(�0); hence
the radial limits R f (θ) of f at O exist for θ ∈ [−α, θ(µ)] and the radial limits are
identical (i.e., R f (θ)= f (O) for all θ ∈[−α, θ(µ)], where f (O) is the value at O of
the restriction of f to�0). Since limµ↓0 θ(µ)= α, Theorem 1 is proven in this case.

Let us next assume that (B) holds. This part of the proof is essentially the same
as the proof of case (B) in Theorem 1 of [Entekhabi and Lancaster 2016]. As in
that paper, and taking into account the hypothesis α ≤ π

2 , we see that

(i) c ∈ C0(E \ {o1, o2}),

Figure 7. The domain (in blue) of the toroidal functions h±µ , α > π
4 .
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(ii) there exist α1, α2 ∈ [−α, α] with α1 < α2 such that R f (θ) exists when
θ ∈ (α1, α2), and

(iii) R f is strictly increasing or strictly decreasing on (α1, α2).

Taking hypothesis (5) into account and using cylinders as in case 3 of step 1 in the
proof of Theorem 1 of [Lancaster and Siegel 1996b] (see Figure 2b in [Lancaster and
Siegel 1997]) or using h±µ (see Figure 7), we see that in addition to (i)–(iii), we have

(iv) c ∈ C0(E \ {o1}) and

(v) R f (θ) exists when θ ∈ [−α, α2).

If α2= α, then Theorem 1 is proven. Otherwise, suppose α2<α and fix δ0 ∈ (0, δ∗)
and �0 =�

∗
∩1µ as before.

Claim. Suppose α2 < α. Then f is uniformly continuous on �+0 , where

�+0
def
= {(r cos θ, r sin θ) ∈�0 : 0< r < δ∗, α2 < θ < π}.

Notice that the restriction of Y to G−1(�+0 ) maps only one point, o1, to O×R

and so the proof of this claim is the same as the proof of the previous claim. Thus
f ∈ C0(�+0 ); since limµ↓0 θ(µ)= α, we see that

R f (θ)= lim
τ↑α2

R f (τ ) for all θ ∈ [α2, α).

Thus Theorem 1 is proven. �

π − 2α
τ1

γ2

α

Figure 8. α = π
6 , λ1 = 0, λ2 =

π
2 , γ2 =

7π
9 , and τ1 =

27π
36 . The

domain of h−β1
is the green region.
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4. Proof of Theorem 2

Suppose (6) does not hold. Since π − 2α−λ1 < γ2 < π + 2α−λ2, we can choose
τ1, τ2 ∈ (0, π) such that τ1 ∈ (π − 2α − λ1, γ2) and τ2 ∈ (γ2, π + 2α − λ2). Set
β1=

π
2 −τ1 and β2= τ2−

π
2 . (See Figures 8 and 9.) With these choices of β1 and β2,

notice that

T (h− ◦ Tβ1)(x1, 0) · (0,−1)= cos τ1 > cos γ2, for 0< x1 < 2− r0,

T (h+ ◦ Tβ2)(x1, 0) · (0,−1)= cos τ2 < cos γ2, for 0< x1 < 2− r0.

This implies that for δ1 = δ1(β1, β2) > 0 small enough,

(14) T (h−β1
)(x) · Eν(x) > cos γ (x) and T (h+β2

)(x) · Eν(x) < cos γ (x),

for x ∈ ∂−� with |x|< δ1, where Eν(x) is the exterior unit normal to � at x ∈ ∂�.
(See Figures 5, 8 and 9.)

Notice that the tangent plane at (0, 0, 0) to the surface {(x, h−β1
(x)) : x ∈1β1} is

a vertical plane with (downward oriented) unit normal

En = (− sin(τ1+α),− cos(τ1+α), 0)

and
lim

∂+�3x→O
Eν(x)= (− sinα, cosα, 0).

Suppose τ1+ 2α ≤ π . Then

lim
∂+�3x→O

En · Eν(x)=− cos(τ1+ 2α) >− cos(π − λ1)= cos λ1,

since τ1+2α >π−λ1; since lim inf∂+�3x→O γ (x)≥ λ1, this implies that for some
δ2 > 0 small enough,

(15) T (h−β1
)(x) · Eν(x) > cos γ (x), for x ∈ ∂+� with |x|< δ2.

If τ1+ 2α > π , then λ1 doesn’t matter and we argue as in the proof of Theorem 1;
see Figure 8 for an illustration of this case.

Now the tangent plane at (0, 0, 0) to the surface {(x, h+β2
(x)) : x ∈1β2} is a verti-

cal plane with (downward oriented) unit normal Em = (sin(τ2−α),− cos(τ2−α), 0)
and lim∂+�3x→O Eν(x)= (− sinα, cosα, 0).

Suppose τ2 ≥ 2α. Then

lim
∂+�3x→O

Em · Eν(x)=− cos(τ2− 2α) <− cos(π − λ2)= cos λ2,

since τ2 − 2α < π − λ2; since lim sup∂+�3x→O γ (x) ≤ λ2, this implies that for
some δ3 > 0 small enough,

(16) T (h+β1
)(x) · Eν(x) < cos γ (x), for x ∈ ∂+� with |x|< δ3.
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γ2

τ2

Figure 9. α = π
6 , λ1 = 0, λ2 =

π
2 , γ2 =

7π
9 , and τ2 =

29π
36 . The

domain of h+β2
is the blue region.

If τ2 < 2α, then λ2 doesn’t matter and we argue as in the proof of Theorem 1.
Now set δ4 =min{δ1, δ2, δ3}. The proof of Theorem 2 now follows essentially

as in the proof of Theorem 1. �
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A NEW BICOMMUTANT THEOREM

ILIJAS FARAH

We prove an analogue of Voiculescu’s theorem: the relative bicommutant
of a separable unital subalgebra A of an ultraproduct of simple unital C∗-
algebras is equal to A.

Ultrapowers1 AU of separable C∗-algebras are, being subject to well-developed
model-theoretic methods, reasonably well-understood; see, e.g., [Farah et al. 2016b,
Theorem 1.2] and Section 2. Since the early 1970s and the influential work of
McDuff and Connes, central sequence algebras A′ ∩ AU play an even more impor-
tant role than ultrapowers in the classification of II1 factors and (more recently)
C∗-algebras. While they do not have a well-studied abstract analogue, in [Farah
et al. 2016b, Theorem 1] it was shown that the central sequence algebra of a strongly
self-absorbing algebra [Toms and Winter 2007] is isomorphic to its ultrapower if the
continuum hypothesis holds. Relative commutants B ′∩DU of separable subalgebras
of ultrapowers of strongly self-absorbing C∗-algebras play an increasingly important
role in the classification program for separable C∗-algebras [Bosa et al. 2016; Matui
and Sato 2014, §3]; see also [Tikuisis et al. 2016; Winter 2016]. In the present note
we make a step towards better understanding of these algebras.

A C∗-algebra is primitive if it has a representation that is both faithful and
irreducible. We prove an analogue of the well-known consequence of Voiculescu’s
theorem [1976, Corollary 1.9] and von Neumann’s bicommutant theorem [Blackadar
2006, §I.9.1.2].

Theorem 1. Assume
∏

U B j is an ultraproduct of primitive C∗-algebras and A
is a separable C∗-subalgebra. In addition, assume A is a unital subalgebra if∏

U B j is unital. With AWOT computed in the ultraproduct of faithful irreducible
representations of Bj s, we have

A =
(

A′ ∩
∏

U B j
)′
= AWOT

∩
∏

U B j .

MSC2010: 03C20, 03C98, 46L05.
Keywords: C*-algebras, ultrapowers, relative commutant, bicommutant.

1Throughout, U denotes a nonprincipal ultrafilter on N.
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A slightly weaker version of the following corollary to Theorem 1 (stated here
with Aaron Tikuisis’ kind permission) was originally proved using very differ-
ent methods.

Corollary 2 (Farah and Tikuisis, 2015). Assume
∏

U B j is an ultraproduct of simple
unital C∗-algebras and A is a separable unital subalgebra. With Z(A) denoting the
center of A, we have

Z
(

A′ ∩
∏

U B j
)
= Z(A). �

At least two open problems are concerned with bicommutants of separable
subalgebras of massive operator algebras. As is well-known, central sequence
algebras M ′ ∩MU of II1 factors in tracial ultrapowers behave differently from the
central sequence algebras of C∗-algebras. For a II1 factor M with separable predual,
the central sequence algebra M ′ ∩MU can be abelian or even trivial. Popa [2014,
Conjecture 2.3.1] asked whether if P is a separable subalgebra of an ultraproduct
of II1 factors then

(
P ′ ∩

∏
U Ni

)′
= P implies P is amenable. In the domain of

C∗-algebras, G. K. Pedersen [1990, Remark 10.11] asked whether the following
variant of Theorem 1 is true: if the corona M(B)/B of a σ -unital C∗-algebra B is
simple and A is a separable unital subalgebra, is (A′ ∩M(B)/B)′ = A? (For the
connection between ultraproducts and coronas, see the last paragraph of Section 3.)

The proof of Theorem 1 uses logic of metric structures [Ben Yaacov et al. 2008;
Farah et al. 2014] and an analysis of the interplay between C∗-algebra B and its
second dual B∗∗.

1. Model theory of representations

We expand the language of C∗-algebras introduced in [Farah et al. 2014, §2.3.1] to
representations of C∗-algebras. Readers’ familiarity with, or at least easy access
to, §2 of that paper is assumed. A structure in the expanded language Lrep is a
C∗-algebra together with its representation on a Hilbert space. As in [Farah et al.
2014], the domains of quantification on a C∗-algebra are Dn for n ∈ N and are
interpreted as the n-balls. The domains of quantification on the Hilbert space
are DH

n for n ∈N and are also interpreted as the n-balls. On all domains the metric
is d(x, y) = ‖x − y‖ (we denote both the operator norm on C∗-algebras and the
`2-norm on Hilbert spaces by ‖·‖). As in [Farah et al. 2014, §2.3.1], for every λ∈C

we have a unary function symbol λ to be interpreted as multiplication by λ. We
also have a binary function + whose interpretation sends DH

m × DH
n to DH

m+n . As
the scalar product ( · | · ) is definable from the norm via the polarization identity, we
freely use it in our formulas, with the understanding that (ξ | η) is an abbreviation
for 1

4

∑3
j=0 i j

‖ξ + i jη‖. The language Lrep also contains a binary function symbol
π whose interpretation sends Dn × DH

m to DH
mn for all m and n. It is interpreted as

an action of A on H.
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Every variable is associated with a sort. In particular, variables x, y, z range
over the C∗-algebra and variables ξ, η, ζ range over the Hilbert space, all of them
decorated with subscripts when needed.

We shall write x for a tuple x = (x1, . . . , xn) (with n either clear from the
context or irrelevant). Terms come in two varieties. On the C∗-algebra side, a
term is a noncommutative ∗-polynomial in C∗-variables. On the Hilbert space side,
terms are linear combinations of Hilbert space variables and expressions of the
form π(α(x))ξ , where α(x) is a term in the language of C∗-algebras. Formulas are
defined recursively. Atomic formulas are expressions of the form ‖t‖ where t is
a term.

The set of all formulas is the smallest set F containing all atomic formulas with
the properties that

(i) for every n, all continuous f : [0,∞)n→ [0,∞) and all ϕ1, . . . , ϕn in F, the
expression f (ϕ1, . . . , ϕn) belongs to F, and

(ii) if ϕ∈F, and x and ξ are variable symbols, then each of sup‖ξ‖≤m ϕ, inf‖ξ‖≤m ϕ,
sup‖x‖≤m ϕ, and inf‖x‖≤m ϕ belongs to F; see [Farah et al. 2014, §2.4] or [Farah
et al. 2016a, Definition 2.1.1].

Suppose π : A→ B(H) is a representation of a C∗-algebra A on Hilbert space H.
To (A, H, π) we associate the natural metric structure M(A, H, π) in the above
language.

Suppose ϕ(x, ξ) is a formula whose free variables are included among x and ξ .
If π : A→ B(H) is a representation of a C∗-algebra on Hilbert space, a are elements
of A and ξ are elements of H ,2 then the interpretation ϕ(a, ξ)M(A,H,π) is defined
by recursion on the complexity of ϕ in the obvious way; see [Ben Yaacov et al.
2008, §3].

Proposition 1.1. Triples (A, H, π) such that π is a representation of A on H form
an axiomatizable class.

Proof. As in [Farah et al. 2014, Definition 3.1], we need to define an Lrep-theory Trep

such that the category of triples (A, H, π), where π : A→ B(H) is a representation
of a C∗-algebra A, is equivalent to the category of metric structures that are models
of Trep, via the map

(A, H, π) 7→M(A, H, π).

We use the axiomatization of C∗-algebras from [Farah et al. 2014, §3.1]. In addition
to the standard Hilbert space axioms, we need the following two axioms assuring

2Symbols ξ, η, ζ , . . . denote both Hilbert space variables and vectors in Hilbert space due to the
font shortage; this shall not lead to a confusion.
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that the interpretation of DH
n equals the n-ball of the underlying Hilbert space for

all n:
sup
ξ∈D1

‖ξ‖ ≤ n,

(∗) sup
ξ∈Dn

max
(
(1−. ‖ξ‖), inf

η∈D1
‖ξ − η‖

)
,

where s−. t :=max(s− t, 0). The standard axioms,

π(xy)ξ = π(x)π(y)ξ,

π(x + y)ξ = π(x)ξ +π(y)ξ,

(π(x)ξ | η)= (ξ |π(x∗)η)

are expressible as first-order sentences.3 The axioms described here comprise
theory Trep.

One needs to check that the category of models of Trep is equivalent to the
category of triples (A, H, π). Every triple (A, H, π) uniquely defines a model
M(A, H, π). Conversely, assume M is a model of Trep. The algebra AM obtained
from the first component of M is a C∗-algebra by [Farah et al. 2014, Proposition 3.2].
Also, the linear space HM obtained from the second component of M is a Hilbert
space and the third component gives a representation πM of A on H .

To see that this provides an equivalence of categories, we need to check that
M(AM, HM, πM) ∼=M for every model M of Trep. We need to show that the
domains on M are determined by AM and HM. The former was proved in the
second paragraph of [Farah et al. 2014, Proposition 3.2], and the latter follows
by (∗). �

Proposition 1.1 gives us full access to the model-theoretic toolbox, such as Łoś’s
theorem (see Section 2) and the Löwenheim–Skolem theorem [Farah et al. 2014,
Theorem 4.6]. From now on, we shall identify triple (A, H, π) with the associated
metric structure M(A, H, π) and stop using the latter notation. We shall also write
sup‖ξ‖≤n and inf‖ξ‖≤n instead of supξ∈Dn

and infξ∈Dn , respectively.

Lemma 1.2. The following properties of a representation π of A are axiomatizable:

(1) π is faithful.

(2) π is irreducible.

Proof. We explicitly write the axioms for each of the properties of π . Fix a
representation π . It is faithful if and only if it is isometric, which can be expressed as

sup
‖x‖≤1

inf
‖ξ‖≤1

∣∣‖x‖−‖π(x)ξ‖∣∣= 0.

3Our conventions are as described in [Farah et al. 2014, p. 485]. In particular α(x, ξ)= β(x, ξ) is
an abbreviation for supξ∈Dn supξ ‖α(x, ξ)−β(x, ξ)‖ = 0, for all n.
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A representation π is irreducible if and only if for all vectors ξ and η in H such that
‖η‖ ≤ 1 and ‖ξ‖ = 1, the expression ‖η− π(a)ξ‖ can be made arbitrarily small
when a ranges over the unit ball of A. In symbols,

sup
‖ξ‖≤1

sup
‖η‖≤1

inf
‖x‖≤1

∣∣‖ξ‖−. 1
∣∣∥∥η−π(x)ξ∥∥= 0.

The interpretation of this sentence in (A, H, π) is 0 if and only if the representation
π is irreducible. �

A triple (D, θ, K ) is an elementary submodel of (B, π, H), and (B, π, H) is an
elementary extension of (D, θ, K ), if D ⊆ B, K ⊆ H , θ(d) = π(d) � H for all
d ∈ D, and

ϕ(a)(D,θ,K ) = ϕ(a)(B,π,H)

for all formulas ϕ and all a in (D, θ, K ) of the appropriate sort. Axiomatizable
properties, such as being irreducible or faithful, transfer between elementary sub-
models and elementary extensions. Therefore the downward Löwenheim–Skolem
theorem [Farah et al. 2014, Theorem 4.6] and Lemma 1.2 together imply, e.g., that
if ϕ is a pure state of a nonseparable C∗-algebra B then B is an inductive limit of
separable subalgebras D such that the restriction of ϕ to D is pure. This fact was
proved in [Akemann and Weaver 2004] and its slightly more precise version will
be used in the proof of Lemma 3.2.

Some other properties of representations (such as not being faithful) are axioma-
tizable, but we shall concentrate on proving Theorem 1.

2. Saturation and representations

It has been known to logicians since the 1960s that the two defining properties
of ultraproducts associated with nonprincipal ultrafilters on N in axiomatizable
categories are Łoś’s theorem [Farah et al. 2014, Proposition 4.3] and countable
saturation [Farah et al. 2014, Proposition 4.11]. By the former, the diagonal
embedding of a metric structure M into its ultrapower is elementary. More generally,
if ϕ(x) is a formula and a( j) ∈ M j are of the appropriate sort then

ϕ(a)
∏

U M j = lim
j→U

ϕ(a( j))M j .

In order to define countable saturation, we recall the notion of a type from the
logic of metric structures [Farah et al. 2014, §4.3]. A closed condition (or simply a
condition; we shall not need any other conditions) is any expression of the form
ϕ ≤ r for formula ϕ and r ≥ 0 and a type is a set of conditions [Farah et al.
2014, §4.3]. As every expression of the form ϕ = r is equivalent to the condition
max(ϕ, r)≤ r and every expression of the form ϕ ≥ r is equivalent to the condition
min(0, r −ϕ)≤ 0, we shall freely refer to such expressions as conditions. For m
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and n in N such that m+n≥ 1, an (m, n)-type is a type t such that all free variables
occurring in conditions of t are among {x1, . . . , xm} ∪ {ξ1, . . . , ξn}.

Given a structure (A, H, π) and a subset X of A∪ H , we expand the language
Lrep by adding constants for the elements of X (as in [Farah et al. 2014, §2.4.1]).
The new language is denoted (Lrep)X . C∗-terms in (Lrep)X are ∗-polynomials in
C∗-variables and constants from X ∩ A. Hilbert space terms are linear combinations
of Hilbert space variables, constants in X ∩ H , and expressions of the form π(α)ξ ,
where α is a C∗-term in the expanded language. The interpretation of an (Lrep)X -
formula is defined recursively in the natural way; see, e.g., the paragraph after
Definition 2.1.1 in [Farah et al. 2016a].

A type over X is a type in (Lrep)X . Such a type is realized in some elementary
extension of (A, H, π) if the latter contains a tuple satisfying all conditions from
the type. A type is consistent if it is realized in some ultrapower of (A, H, π),
where the ultrafilter is taken over an arbitrary, not necessarily countable, set. This
is equivalent to the type being realized in some elementary extension of (A, H, π).

By Łoś’s theorem, a type t is consistent if and only every finite subset of t is
ε-realized in (A, H, π) for every ε > 0 [Farah et al. 2014, Proposition 4.8].

A structure (A, H, π) is said to be countably saturated if every consistent type
over a countable (or equivalently, norm-separable) set is realized in (A, H, π).
Ultraproducts associated with nonprincipal ultrafilters on N are always countably
saturated [Farah et al. 2014, Proposition 4.11]. A standard transfinite back-and-forth
argument shows that a structure of density character ℵ1 is countably saturated if
and only if it is an ultraproduct. (The density character is the smallest cardinality
of a dense subset.)

In the case when A = B(H), we have

(B(H), H)U = (B(H)U , HU );

in particular B(H)U is identified with a subalgebra of B(HU ). These two algebras
are equal (still assuming U is a nonprincipal ultrafilter on N) if and only if H is finite-
dimensional. As a matter of fact, no projection p∈ B(HU ) with a separable, infinite-
dimensional range belongs to B(H)U (this is proved by a standard argument, see,
e.g., the last two paragraphs of the proof of Proposition 4.6 in [Farah et al. 2013]).

In the following, π will always be faithful and clear from the context and we
shall identify A with π(A) and suppress writing π . We shall therefore write (A, H)
in place of (A, H, id).

The following two lemmas are standard (they were used in the proof of Corollary 2
on p. 344 of [Arveson 1977]) but we sketch the proofs for the reader’s convenience.

Lemma 2.1. Suppose A is a C∗-algebra and ϕ is a functional on A. Then there are a
representation π : A→ B(K ) and vectors ξ and η in K such that ϕ(a)= (π(a) ξ | η)
for all a ∈ A.
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Proof. Let ϕ be the unique extension of ϕ to a normal functional of the von Neumann
algebra A∗∗. By Sakai’s polar decomposition for normal linear functionals (see, for
example, [Pedersen 1979, Proposition 3.6.7]) there exists a normal state ψ of A∗∗

and a partial isometry v such that ϕ(a)=ψ(av) for all a∈ A∗∗. Let π : A∗∗→ B(K )
be the GNS representation corresponding to ψ . If η is the corresponding cyclic
vector and ξ = vη, then the restriction of π to A is as required. �

Lemma 2.2. Suppose A is a proper unital subalgebra of C = C∗(A, b). Then there
exists a representation π : C → B(K ) and a projection q in π(A)′ ∩ B(K ) such
that [q, b] 6= 0.

Proof. By the Hahn–Banach separation theorem, there exists a functional ϕ on C of
norm 1 such that ϕ annihilates A and ϕ(b)= dist(A, b). Let π : C→ B(K ), and η
and ξ be as guaranteed by Lemma 2.1. Let L be the norm-closure of π(A)ξ . Since
A is unital, L 6= {0}. As 0= ϕ(a)= (π(a) ξ | η) for all a ∈ A, η is orthogonal to L
and therefore the projection p to L is nontrivial. Clearly p ∈ π(A)′ ∩ B(K ). Since
(π(b)ξ | η) = ϕ(b) 6= 0, π(b) does not commute with p and we therefore have
q ∈ π(A)′ ∩ B(K ) such that ‖[π(b), q]‖> 0. �

The proof of Theorem 1 would be much simpler if Lemma 2.2 provided an
irreducible representation. This is impossible in general, as the following example
shows. Let A be the unitization of the algebra of compact operators K(H) on an
infinite-dimensional Hilbert space and let b be a projection in B(H)which is Murray–
von Neumann equivalent to 1−b. Then C =C∗(A, b) has (up to equivalence) three
irreducible representations. Two of those representations annihilate A and send b
to a scalar, and the third representation is faithful and the image of b is in the weak
operator closure of the image of A.

It is well-known that for a Banach space X , the second dual X∗∗ can be embedded
into an ultrapower of X [Heinrich 1980, Proposition 6.7]. In general, the second
dual A∗∗ of a C∗-algebra A cannot be embedded into an ultrapower of A by a
∗-homomorphism for at least two reasons. First, A∗∗ is a von Neumann algebra
[Blackadar 2006, §III.5.2] and it therefore has real rank zero, while A may have
no nontrivial projections at all. Since being projectionless is axiomatizable [Farah
et al. 2016a, Theorem 2.5.1], if A is projectionless then Łoś’s theorem implies
that AU is projectionless as well and A∗∗ cannot be embedded into it. The referee
pointed out another, much subtler, obstruction. In the context of Banach spaces, the
embeddability of X∗∗ into XU is equivalent to a finitary statement, the so-called
local reflexivity of Banach spaces, the C∗-algebraic version of which does not hold
for all C∗-algebras [Effros and Haagerup 1985, §5]. In particular, for a large class
of C∗-algebras the diagonal embedding of A into AU cannot be extended even to
a unital completely positive map from A∗∗ into AU . The referee also pointed out
that a result of J. M. G. Fell is closely related to results of the present section. It
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is a standard fact that a representation of a discrete group is weakly contained in
another representation of the same group if and only if it can be embedded into an
ultrapower of the direct sum of infinitely many copies of the latter representation.
In [Fell 1960, Theorem 1.2] it was essentially proved that this equivalence carries
over to arbitrary C∗-algebras.

All this said, Lemma 2.3 is a poor man’s C∗-algebraic variant of the fact that
Banach space X∗∗ embeds into XU . As in [Pedersen 1979, 3.3.6], we say that two
representations π1 and π2 of A are equivalent if the identity map on A extends to
an isomorphism between π1(A)′′ and π2(A)′′.

Lemma 2.3. Assume
(∏

U B j ,
∏

U H j
)

is an ultraproduct of faithful irreducible
representations of unital C∗-algebras and C is a unital separable subalgebra of BU .

(1) If C ∩ K
(∏

U H j
)
= {0} then the induced representation of C on

∏
U H j is

equivalent to the universal representation of C.

(2) In general, if

p =
∨{

q : q is a projection in C ∩K
(∏

U H j
)}

then p ∈ C ′ ∩ B
(∏

U H j
)

and c 7→ (1− p)c is equivalent to the universal
representation of C/

(
C ∩K

(∏
U H j

))
on (1− p)

∏
U H j .

Proof. For a state ψ on C the (0, 1)-type tψ(ξ) of a vector ξ implementing ψ
consists of all conditions of the form (aξ | ξ)= ψ(a) for a ∈ C and ‖ξ‖ = 1.

(1) Fix a stateψ on C . By Glimm’s lemma [Davidson 1996, Lemma II.5.1], the type
tψ is consistent with the theory of

(∏
U B j ,

∏
U H j

)
. By the separability of C and

countable saturation, there exists a unit vector η ∈
∏

U H j such that ψ(c)= (cη | η)
for all c ∈ C . Let L be the norm-closure of Cη in

∏
U H j . Then L is a reducing

subspace for C and the induced representation of C on L is spatially isomorphic
to the GNS representation of C corresponding to ψ . Since ψ was arbitrary, by
[Pedersen 1979, Theorem 3.8.2] this completes the proof.

(2) For every a ∈ C we have pa ∈ C ∩K
(∏

U H j
)

and therefore pa(1− p) = 0.
Similarly (1− p)ap = 0, and therefore p ∈ C ′ ∩ B

(∏
U H j

)
. Let pn , for n ∈ N,

be a maximal family of orthogonal projections in C ∩K
(∏

U H j
)
. It is countable

by the separability of C and p =
∨

n pn . Let ψ be a state of C that annihilates
C ∩ K

(∏
U H j

)
. Let t+ψ (ξ) be the type obtained from tψ(ξ) by adding to it all

conditions of the form pnξ = 0 for n ∈ N. By Glimm’s lemma (as stated in
[Davidson 1996, Lemma II.5.1]) the type t+ψ (ξ) is consistent, and by the countable
saturation we can find ξ1 ∈

∏
U H j that realizes this type. Then pξ1=0 and therefore

ξ1 ∈ (1− p)
∏

U H j . Therefore every GNS representation of C/
(
C ∩K

(∏
U H j

))
is spatially equivalent to a subrepresentation of c 7→ (1− p)c, and by [Pedersen
1979, Theorem 3.8.2] this concludes the proof. �
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3. Second dual and Day’s trick

The natural embedding of a C∗-algebra B into its second dual B∗∗ is rarely ele-
mentary. For example, having real rank zero is axiomatizable [Farah et al. 2016a,
Theorem 2.5.1] and B∗∗, being a von Neumann algebra, has real rank zero while
B may have no nontrivial projections at all. However, we shall see that there is
a restricted degree of elementarity between B and B∗∗, and it will suffice for our
purposes.

We shall consider the language (Lrep)B obtained by adding new constants for
parameters in B; see Section 2. Term α(x) in the extended language is linear if it
is of the form

α(x)= xa+ bx

for some parameters a and b.
A restricted B-linear formula is a formula of the form

(1) max j≤m ‖α j (x)− b j‖+max j≤n(r j −
.
‖β j (x)‖),

where

(2) all b j , for 1≤ j ≤ m, are parameters in B,

(3) all r j , for 1≤ j ≤ n, are positive real numbers,

(4) all α j , for 1≤ j ≤ m, are linear terms with parameters in B, and

(5) all β j , for 1≤ j ≤ n, are linear terms with parameters in B.

The proof of the following is based on an application of the Hahn–Banach separation
theorem first used by Day [1957]; see also [Elliott 1977, Section 2] for some uses
of this method in the theory of C∗-algebras.

Lemma 3.1. Suppose B is a unital C∗-algebra and

γ (x)=max
j≤m
‖α j (x)− b j‖+max

j≤n

(
r j −
.
‖β j (x)‖

)
.

is a restricted B-linear formula. Then the following are equivalent:

(6) infx∈B γ (x)= 0,

(7) infx∈B∗∗ γ (x)= 0.

Proof. Condition (6) implies (7) because B is isomorphic to a unital subalgebra
of B∗∗ and therefore infx∈B∗∗ γ (x)≤ infx∈B γ (x).

Assume (7) holds. Let a j and c j , for j ≤ n, be such that α j (x) = a j x + xc j .
For each j we identify α j with its interpretation, a linear map from B to B. The
second adjoint α∗∗j : B

∗∗
→ B∗∗ also satisfies α∗∗j (x)= a j x + xc j , hence α∗∗j (x) is

the interpretation of the term α j (x) in B∗∗. The set

Z := 〈α j (x) : x ∈ B≤1〉,
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being an image of a convex set under a linear map, is a convex subset of Bm and
by the Hahn–Banach theorem,

Z1 := Bm
∩ 〈α j (x) : x ∈ B∗∗

≤1〉

is included in the norm-closure of Z . By (7) we have (b1, . . . , bm) ∈ Z1.
Fix ε > 0 and let

X1 :=
{

x ∈ B≤1 :max
j≤m
‖α j (x)− b j‖ ≤ ε

}
.

By the above, this is a convex subset of the unit ball of B and (by using the
Hahn–Banach separation theorem again) the weak∗-closure of X1 in B∗∗ is equal
to {x ∈ B∗∗

≤1 :max j≤m ‖α j (x)− b j‖ ≤ ε}.
Let c ∈ B∗∗

≤1 be such that γ (c) < ε. Then c belongs to the weak∗-closure of X1.
For each j ≤ n we have ‖β j (c)‖> r j − ε. Fix a norming functional ϕ j ∈ B∗ such
that ‖ϕ j‖ = 1 and ϕ j (β j (c)) > r j − ε. Then

U := {x ∈ B∗∗ : ϕ j (β j (x)) > r j − ε for all j}

is a weak∗-open neighborhood of c and, as c belongs to the weak∗-closure of X1,
U ∩ X1 is a nonempty subset of B≤1. Any b ∈U ∩ X1 satisfies γ (b) < ε. As ε > 0
was arbitrary, this shows that (6) holds. �

In the following, A ⊆
∏

U B j is identified with a subalgebra of B
(∏

U H j
)
.

Lemma 3.2. Suppose (B j , H j ) is an irreducible representation of B j on H j for
j ∈ N and A is a separable subalgebra of

∏
U B j .

(1) For every b ∈
∏

U B j , we have that b ∈
(

A′ ∩ B
(∏

U H j
))′ if and only if

b ∈
(

A′ ∩
∏

U B j
)
′. Equivalently,(

A′ ∩ B
(∏

U H j
))′
∩
∏

U B j =
(

A′ ∩
∏

U B j
)′
∩
∏

U B j .

(2) AWOT
∩
∏

U B j =
(

A′ ∩
∏

U B j
)′.

Proof. (1) Since
∏

U B j ⊆ B
(∏

U H j
)
, we clearly have

(
A′ ∩ B

(∏
U H j

))′
⊆(

A′ ∩
∏

U B j
)
′. In order to prove the converse inclusion, fix b ∈

∏
U B j and suppose

that there exists q ∈ A′ ∩ B
(∏

U H j
)

such that ‖[q, b]‖ = r > 0. We need to find
d ∈ A′ ∩

∏
U B j satisfying [d, b] 6= 0.

Consider the (1, 0)-type t(x) consisting of all conditions of the form

‖[x, b]‖ ≥ r and [x, a] = 0

for a ∈ A. This type is satisfied in B
(∏

U H j
)

by q . Since all formulas in t(x) are
quantifier-free, their interpretation is unchanged when passing to a larger algebra.

Fix a finite subset of t(x) and let F ⊆ A be the set of parameters occurring in
this subset. Then

γF (x) := inf
x

max
a∈F
‖[x, a]‖+ (r −. ‖[x, b]‖)
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is a restricted
∏

U B j -linear formula. Since A is separable, we can find projection
p in C∗(A, q)′ ∩ B

(∏
U H j

)
with separable range such that q1 := pq satisfies

‖[q1, b]‖ = r . To find this p, take a separable elementary submodel (C, H0) of(
B
(∏

U H j
)
,
∏

U H j
)

such that A ⊆ C and let p be the projection to H0.
By the downward Löwenheim–Skolem theorem [Farah et al. 2014, Theorem 4.6]

there exists a separable elementary submodel (D, K ) of
(∏

U B j ,
∏

U H j
)

such that
C∗(A, b) ⊆ D and the range of p is included in K . Part (2) of Lemma 1.2 and
Łoś’s theorem imply that

∏
U B j

WOT
= B

(∏
U H j

)
and pK DpK

WOT
= B

(
pK
∏

U H j
)
,

where pK denotes the projection to K . We can therefore identify pK with a minimal
central projection in D∗∗. Via this identification we have q1∈D∗∗. Since γF (q1)=0,
Lemma 3.1 implies infx∈D,‖x‖≤1 γF (x)= 0 and infx∈

∏
U B j ,‖x‖≤1 γF (x)= 0 (since

γF is quantifier-free).
Since F was an arbitrary finite subset of A, the type t(x) is consistent with the

theory of
∏

U B j . Since A is separable, by the countable saturation there exists
d ∈ A′ ∩

∏
U B j satisfying ‖[d, b]‖ ≥ r .

(2) By the von Neumann bicommutant theorem, AWOT
=
(

A′ ∩ B
(∏

U H j
))
′ and

therefore (1) implies AWOT
∩
∏

U B j =
(

A′ ∩
∏

U B j
)′. �

4. Proof of Theorem 1

Suppose (B j , H j ) is a faithful irreducible representation of B j on H j for j ∈ N

and A is a separable subalgebra of
∏

U B j . By Lemma 1.2,
(∏

U B j ,
∏

U H j
)

is an
irreducible faithful representation of

∏
U B j .

By (2) of Lemma 3.2, we have AWOT
∩
∏

U B j =
(

A′ ∩
∏

U B j
)
′. Then, since

A⊆
(

A′∩
∏

U B j
)′, it remains to prove

(
A′∩

∏
U B j

)′
⊆ A. Fix b ∈

∏
U B j such that

r := dist(b, A) > 0. By (1) of Lemma 3.2, it suffices to find d ∈ A′ ∩ B
(∏

U H j
)

such that [d, b] 6= 0. Let
C := C∗(A, b).

Lemma 4.1. With A, b, C , r and
∏

U B j as above, there exists a representation

π : C/
(
C ∩K

(∏
U H j

))
→ B(K )

and q ∈ π(A)′ ∩ B(K ) such that [q, π(b)] 6= 0.

Since the proof of Lemma 4.1 is on the long side, let us show how it completes
the proof of Theorem 1. Lemma 2.3 implies that if

p =
∨{

q : q is a projection in C ∩K
(∏

U H j
)}

then p ∈ C ′ ∩ B
(∏

U H j
)

and c 7→ (1− p)c is equivalent to the universal represen-
tation of C/

(
C ∩K

(∏
U H j

))
on (1− p)

∏
U H j . Therefore q as in the conclusion
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of Lemma 4.1 can be found in A′ ∩ B
(∏

U H j
)
, implying b /∈

(
A′ ∩ B

(∏
U H j

))
′.

By Lemma 3.2 this implies b /∈
(

A′ ∩
∏

U B j
)′, reducing the proof of Theorem 1 to

the following.

Proof of Lemma 4.1. An easy special case is worth noting. If C ∩K
(∏

U H j
)
= {0}

then Lemma 2.2 implies the existence of a representation π : C → B(K ) and
q ∈ π(A)′ ∩ B(K ) such that [q, π(b)] 6= 0.

In the general case, let qn , for n ∈ J , be an enumeration of a maximal orthogonal
set of minimal projections in A ∩K

(∏
U H j

)
. The index-set J is countable (and

possibly finite or even empty) since A is separable. Let pn :=
∨

j≤n q j .
Suppose for a moment that there exists n such that pnbpn /∈ A. Since the range of

pn is finite-dimensional, by von Neumann’s bicommutant theorem [Blackadar 2006,
§I.9.1.2] and the Kadison transitivity theorem [Blackadar 2006, Theorem II.6.1.13]
there exists d ∈ A′ ∩ B(pn

∏
U H j ) such that [d, b] 6= 0. Lemma 3.2 now implies

pnbpn /∈
(

A′ ∩
∏

U B j
)′ and b /∈

(
A′ ∩

∏
U B j

)′.
We may therefore assume pnbpn ∈ A, for all n. Let p =

∨
n pn . Lemma 2.3 (2)

implies p ∈ A′ ∩ B
(∏

U H j
)
, and we may therefore assume [b, p] = 0. Since

C = C∗(A, b) this implies p ∈ C ′ ∩ B
(∏

U H j
)
. Since pnbpn ∈ A for all n we

have A ∩ K
(∏

U H j
)
= pCp ∩ K

(∏
U H j

)
. If c ∈ C , then for every n, we have

pnc(1− p) = 0 and similarly (1− p)cpn = 0. Since the sequence pn , for n ∈ N,
is an approximate unit for A∩K

(∏
U H j

)
, the latter is an ideal of C . Let θ : C→

C/(A∩K) be the quotient map. We claim that dist(θ(b), θ(A))= dist(b, A) > 0.
Fix a ∈ A. We need to show that ‖θ(a− b)‖ ≥ r .

Consider the (0, 1)-type t(ξ) consisting of all conditions of the form

‖ξ‖ = 1, ‖(a− b)ξ‖ ≥ r, pnξ = 0,

for n ∈ J . To see this type is consistent fix a finite F ⊆ J . Let m ≥max(F) and

a′ := (1− pm)a(1− pm)+ pmbpm .

As both summands belong to A, we have a′ ∈ A and therefore ‖a′− b‖ ≥ r . Fix
ε > 0. If ξ ∈

∏
U H j is a vector of norm ≤ 1 such that ‖(a′− b)ξ‖ > r − ε then

ξ ′ = (1− pm)ξ has the same property since (a′ − b)pm = 0. Since ε > 0 was
arbitrary, t(ξ) is consistent. By the countable saturation there exists a unit vector
ξ ∈

∏
U H j which realizes t(ξ). Since pnξ = 0 for all n, we have pξ = 0 and

therefore ‖θ(a− b)‖ ≥
∥∥(1− p)(a− b)(1− p)

∥∥ ≥ r . Since a ∈ A was arbitrary,
we conclude that dist(θ(b), θ(A))= r .

Suppose for a moment that (1− p)C(1− p) ∩ K
(∏

U H j
)
= {0}. By (2) of

Lemma 2.3 the representation

C 3 c 7→ (1− p)c ∈ B
(
(1− p)

∏
U H j

)
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is equivalent to the universal representation of C . Hence by Lemma 2.2 we can
find d ∈ (1− p)

(
A′ ∩ B

(∏
U H j

))
that does not commute with b, and by the above,

this concludes the proof in this case.
We may therefore assume that

(1− p)C(1− p)∩K
(∏

U H j
)
6= {0}.

By the spectral theorem for self-adjoint compact operators and continuous functional
calculus, there exists a nonzero projection q ∈ (1− p)C(1− p) of finite rank. Fix
c ∈ C such that (1− p)c(1− p)= q .

By Lemma 3.2, it suffices to find q ∈ A′ ∩ (1− p)B
(∏

U H j
)
(1− p) such that

[q, c] 6= 0. Suppose otherwise, so that c ∈
(

A′ ∩
∏

U B j
)′. Lemma 3.2 (2) implies

that c∈ AWOT. By the Kaplansky density theorem [Blackadar 2006, Theorem I.9.1.3]
there is a net of positive contractions in A converging to c in the weak operator
topology. By the continuous functional calculus and the Kadison transitivity theorem
[Blackadar 2006, Theorem II.6.1.13], we may choose this net among the members of

Z := {a ∈ A+ : ‖a‖ = 1, qaq = q}.

Consider the (0, 1)-type t1(ξ) consisting of all conditions of the form

‖ξ‖ = 1, aξ = ξ,

qξ = 0, pnξ = 0,

for n ∈ N and a ∈ Z .
We claim that t1(ξ) is consistent. Fix ε > 0 and a1, a2, . . . , an in Z . Let

a := a1a2 · · · an−1anan−1 · · · a2a1.

Then a ∈ Z and q ≤ a. By the choice of p the operator (1− p)(a − s)+ is not
compact for any s < 1. Therefore there exists a unit vector ξ0 in (1− p−q)

∏
U H j

such that ‖ξ0− aξ0‖ is arbitrarily small. By the countable saturation there exists a
unit vector ξ1 ∈ (1− (p+ q))

∏
U H j such that aξ1 = ξ1. As each a j is a positive

contraction, we have a jξ1 = ξ1 for 1 ≤ j ≤ n. Since a1, . . . , an was an arbitrary
subset of Z , this shows that t1(ξ) is consistent.

Since Z is separable, by the countable saturation there exists ξ ∈
∏

U H j realizing
t1(ξ). Then ξ is a unit vector in (1− (p+q))

∏
U H j such that aξ = ξ for all a ∈ Z .

As cξ = 0, this contradicts c being in the weak operator topology closure of Z .
Therefore there exists

q ∈ A′ ∩ (1− p)B
(∏

U H j
)
(1− p)

such that [q, c] 6= 0. Since c ∈C =C∗(A, b) we have [q, b] 6= 0, and this concludes
the proof. �
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5. Concluding remarks

In the following infinitary form of the Kadison transitivity theorem, pK denotes
projection to a closed subspace K of

∏
U H j .

Proposition 5.1. Assume
(∏

U B j ,
∏

U H j
)

is an ultraproduct of faithful and irre-
ducible representations of unital C∗-algebras. Also assume K is a separable closed
subspace of

∏
U H j and T ∈ B(K ).

(1) There exists b ∈
∏

U B j such that ‖b‖ = ‖T ‖ and pK bpK = T .

(2) If T is self-adjoint, positive, or unitary in B(K ), then b can be chosen to be
self-adjoint, positive, or unitary, respectively, in B

(∏
U H j

)
.

Proof. (1) This is a consequence of the Kadison transitivity theorem and countable
saturation of the structure

(∏
U B j ,

∏
U H j

)
. Let pn , for n ∈ N, be an increasing

sequence of finite-dimensional projections converging to pK in the strong operator
topology and let an , for n ∈ N, be a dense subset of A. We need to check that the
type t(x) consisting of all conditions of the form

‖pn(x − T )pn‖ = 0, ‖x‖ = ‖T ‖,

for n ∈ N is consistent. Since the representation of
∏

U B j on
∏

U H j is irreducible
by Lemma 1.2, every finite subset of t(x) is consistent by the Kadison transitivity
theorem. We can therefore find b ∈

∏
U B j that satisfies t(x) and thus pK bpK = T

and ‖b‖ = ‖T ‖.

(2) If T is self-adjoint, add the condition x = x∗ to t(x). By [Pedersen 1979,
Theorem 2.7.5] the corresponding type is consistent, and the assertion again follows
by countable saturation. The case when T is unitary uses the same theorem. �

An important consequence of Voiculescu’s theorem is that any two unital rep-
resentations π j : A→ B(H) of a separable unital C∗-algebra A on H such that
ker(π1) = ker(π2) and π1(A)∩K(H) = π2(A)∩K(H) = {0} are approximately
unitarily equivalent [Voiculescu 1976, Corollary 1.4]. The analogous statement is
in general false for the ultraproducts. Let Bn = Mn(C) for n ∈ N and let A = C2.
The group K0

(∏
U Mn(C)

)
is isomorphic to ZN with the natural ordering and the

identity function id as the order-unit. Every unital representation of A corresponds
to an element of this group that lies between 0 and id, and there are 2ℵ0 inequivalent
representations. Also, K0

(∏
U Mn(C)

)
is isomorphic to the ultraproduct

∏
U Z and

2ℵ0 of these extensions remain inequivalent even after passing to the ultraproduct.
We return to Pedersen’s question [1990, Remark 10.11], whether a bicommutant

theorem (A′∩M(B)/B)′= A is true for a separable unital subalgebra A of a corona
M(B)/B of a σ -unital C∗-algebra B? A simple and unital C∗-algebra C is purely
infinite if for every nonzero a ∈ C there are x and y such that x a y = 1.
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Question 5.2. Suppose C is unital, simple, purely infinite, and separable and A is
a unital subalgebra of C . Is (A′ ∩C∗∗)′ ∩C = A?

Let us prove that a positive answer to Question 5.2 would imply a positive answer
to Pedersen’s question. If A is a separable and unital subalgebra of M(B)/B and
b∈ (M(B)/B)\A, then there exists a separable elementary submodel C of M(B)/B
containing b. By [Lin 2004], M(B)/B is simple if and only if it is purely infinite,
and since being simple and purely infinite is axiomatizable [Farah et al. 2016a,
Theorem 2.5.1], C is simple and purely infinite. If (A′ ∩ C∗∗)′ ∩ C = A then
Proposition 5.3 implies that there exists d ∈ A′ ∩M(B)/B such that [d, b] 6= 0.

Proposition 5.3. Suppose B is a C∗-algebra, A is a separable subalgebra of B,
b ∈ B and r ≥ 0. If B is an ultraproduct or a corona of a σ -unital, nonunital
C∗-algebra then

sup
d∈(A′∩B)+,‖d‖≤1

‖[d, b]‖ = sup
d∈(A′∩B∗∗)+,‖d‖≤1

‖[d, b]‖.

Proof. The only property of B used in this proof is that of being countably degree-1
saturated [Farah and Hart 2013, Theorem 1]. Since B ⊆ B∗∗, it suffices to prove
“≥” in the above inequality. Suppose b ∈ B and d ∈ (A′ ∩ B∗∗)+ are such that
‖d‖ = 1 and r −. ‖[b, d]‖. Consider the type t(x) consisting of conditions ‖x‖ = 1,
x ≥ 0, ‖xb− bx‖ ≥ r , and ‖[x, a]‖ = 0 for a in a countable dense subset of A.
This is a countable degree-1 type. If ϕ j = 0, for j < n, is a finite subset of t(x)
then γ (x) :=max j<n ϕ j (x) is a restricted B-linear formula and Lemma 2.3 implies
that it is approximately satisfied in B. By the countable degree-1 saturation of B
[Farah and Hart 2013, Theorem 1] we can find a realization d ′ of t(x) in B. Clearly
d ′ ∈ (A′ ∩ B)+, ‖d ′‖ = 1, and ‖[d ′, b]‖ ≥ r , completing the proof. �

Some information on a special case of Pedersen’s conjecture can also be found
in [Elliott and Kucerovsky 2007].
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NONCOMPACT MANIFOLDS THAT ARE INWARD TAME

CRAIG R. GUILBAULT AND FREDERICK C. TINSLEY

We continue our study of ends of noncompact manifolds, with a focus on the
inward tameness condition. For manifolds with compact boundary, inward
tameness, by itself, has significant implications. For example, such mani-
folds have stable homology at infinity in all dimensions. Here we show that
these manifolds have “almost perfectly semistable” fundamental group at
each of their ends. That observation leads to further analysis of the group-
theoretic conditions at infinity, and to the notion of a “near pseudocollar”
structure. We obtain a complete characterization of n-manifolds (n � 6)
admitting such a structure, thereby generalizing our previous work (Geom.
Topol. 10 (2006), 541–556). We also construct examples illustrating the ne-
cessity and usefulness of the new conditions introduced here. Variations on
the notion of a perfect group, with corresponding versions of the Quillen
plus construction, form an underlying theme of this work.
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1. Introduction

In [Guilbault 2000; Guilbault and Tinsley 2003; 2006] we carried out a program to
generalize L. C. Siebenmann’s famous manifold collaring theorem [1965] in ways
applicable to manifolds with nonstable fundamental group at infinity. Motivated by
some important examples of finite-dimensional manifolds and a seminal paper by
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T. A. Chapman and Siebenmann [1976] on Hilbert cube manifolds, we chose the
following definitions.

A manifold N n with compact boundary is called a homotopy collar if @N n ,!N n

is a homotopy equivalence. If N n contains arbitrarily small homotopy collar
neighborhoods of infinity, we call N n a pseudocollar. Clearly, an actual open
collar N n, i.e., N n�@N n�Œ0;1/, is a special case of a pseudocollar. Fundamental
to [Siebenmann 1965; Chapman and Siebenmann 1976] and our earlier work is the
notion of inward tameness.

A manifold M n is inward tame if each of its clean neighborhoods of infinity is
finitely dominated; it is absolutely inward tame if those neighborhoods all have finite
homotopy type. An alternative formulation of this definition (see p. 95) justifies the
adjective “inward” — a term that helps distinguish this version of tameness from a
similar, but inequivalent, version found elsewhere in the literature.

In [Guilbault and Tinsley 2006] a classification of pseudocollarable n-manifolds
for 6� n<1 was obtained. In simplified form, it says:

Theorem 1.1 (pseudocollarability characterization — simple version). A 1-ended
n-manifold M n (n� 6) with compact boundary is pseudocollarable if and only if

(a) M n is absolutely inward tame, and

(b) the fundamental group at infinity is P-semistable.

A “P-semistable (or perfectly semistable) fundamental group at infinity” indicates
that an inverse sequence of fundamental groups of neighborhoods of infinity can be
arranged so that bonding homomorphisms are surjective with perfect kernels.

By way of comparison, the simple version of Siebenmann’s collaring theorem is
obtained by replacing (b) with the stronger condition of �1-stability, while Chapman
and Siebenmann’s pseudocollarability characterization for Hilbert cube manifolds
is obtained by omitting (b) entirely. Thus, the differences among these three results
lie entirely in the fundamental group at infinity.

In this paper we take a close look at n-manifolds satisfying only the inward
tameness hypothesis. By necessity, our attention turns to the group theory at the
ends of those spaces. Unlike the case of infinite-dimensional manifolds, CW com-
plexes, or even n-manifolds with noncompact boundary, inward tameness has major
implications for the fundamental group at the ends of n-manifolds with compact
boundary. Unfortunately, inward tameness (ordinary or absolute) does not imply
P-semistability — an example from [Guilbault and Tinsley 2003] attests to that —
but it comes remarkably close. One of the main results of this paper is the following.

Theorem 1.2. Let M n be an inward tame n-manifold with compact boundary. Then
M n has an AP-semistable (almost perfectly semistable) fundamental group at each
of its finitely many ends.
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The initial goals of this paper are developing the appropriate group theory
(including the definition of AP-semistable) and proving the above theorem. After
that is accomplished, we apply those investigations by proving a structure theorem
for manifolds that are inward tame, but not necessarily pseudocollarable.

Theorem 1.3 (near pseudocollarability characterization — simple version).
A 1-ended n-manifold M n (n� 6) with compact boundary is nearly pseudocollar-
able if and only if

(a) M n is absolutely inward tame, and

(b) the fundamental group at infinity is SAP-semistable.

The notion of near pseudocollarability will be defined and explored in Section 4.
For now, we note that nearly pseudocollarable manifolds admit arbitrarily small clean
neighborhoods of infinity N , containing compact codimension 0 submanifolds A

for which A ,! N is a homotopy equivalence. Obtaining a near pseudocollar
structure requires a slight strengthening of AP-semistability to SAP-semistability
(strong almost perfect semistability). The essential nature of this stronger condition
is verified by a final result, in which our group-theoretic explorations come together
in a concrete set of examples.

Theorem 1.4. For all n � 6, there exist 1-ended open n-manifolds that are abso-
lutely inward tame but do not have SAP-semistable fundamental group at infinity,
and thus, are not nearly pseudocollarable.

In Section 7, we close with a discussion of some open questions.

Remark 1.5. Throughout this paper attention is restricted to noncompact manifolds
with compact boundaries. When a boundary is noncompact, its end topology gets
entangled with that of the ambient manifold, leading to very different issues. In
the study of noncompact manifolds, a focus on those with compact boundaries is
analogous to a focus on closed manifolds in the study of compact manifolds. An
investigation of manifolds with noncompact boundaries is planned for [Guilbault
and Gu � 2017].

2. Definitions and background

Variations on the notion of a perfect group. In this subsection we review the
definition of perfect group and discuss some variations.

Given elements a and b of a group K, the commutator a�1b�1ab will be denoted
by Œa; b�. The commutator subgroup of K, denoted by ŒK;K�, is the subgroup gen-
erated by all commutators. It is a standard fact that ŒK;K� is normal in K and is the
smallest such subgroup with an abelian quotient. We call K perfect if K D ŒK;K�.
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Now suppose K and J are normal subgroups of G. Define ŒK;J � to be the
subgroup of G generated by the set of commutators

Œk; j �D fk�1j�1kj j k 2K and j 2 J g:

The following is standard and easy to verify.

Lemma 2.1. For normal subgroups K and J of a group G,

(1) ŒK;J �EG,

(2) ŒK;J �EK and ŒK;J �E J , and

(3) ŒK;J �D ŒJ;K�.

Given the above setup, we say that K is J-perfect if K � ŒJ;J �, and that K is
strongly J-perfect if K � ŒK;J �. By Lemma 2.1, both of these conditions imply
that K E J ; so we customarily begin with that as an assumption.

The following two lemmas are immediate. We state them explicitly for the
purpose of comparison.

Lemma 2.2. Let K E J be normal subgroups of G.

(1) K is perfect if and only if each element of K can be expressed as
Qk

iD1Œai; bi �,
where ai ; bi 2K for all i .

(2) K is J-perfect if and only if each element of K can be expressed as
Qk

iD1Œai; bi �,
where ai ; bi 2 J for all i .

(3) K is strongly J-perfect if and only if each element of K can be expressed asQk
iD1Œai ; bi �, where ai 2K and bi 2 J for all i .

Lemma 2.3. Let K E J EL be normal subgroups of G.

(1) If K is [strongly] J-perfect, then K is [strongly] L-perfect for every normal
subgroup L containing J.

(2) K is [strongly] K-perfect if and only if K is a perfect group.

Remark 2.4. Lemma 2.3 suggests a key theme: the smaller the group L for which
K is [strongly] L-perfect, the closer K is to being a genuine perfect group.

The various levels of perfectness can be nicely characterized using group homol-
ogy. The Z-homology of a group G may be defined as the Z-homology of a K.G; 1/

space KG . If � W G ! H is a homomorphism, there is a map f� W KG ! KH ,
unique up to basepoint-preserving homotopy, inducing � on fundamental groups.
Define �� WH�.GIZ/!H�.H IZ/ to be the homomorphism induced by f�.

Lemma 2.5. Let KE J , i WK ,! J be inclusion, and q W J ! J=K be projection.

(1) K is perfect if and only if H1.KIZ/D 0.



NONCOMPACT MANIFOLDS THAT ARE INWARD TAME 91

(2) K is J-perfect if and only if i� W H1.KIZ/
0
�! H1.J IZ/ if and only if

q� WH1.J IZ/
Š
�!H1.J=KIZ/.

(3) K is strongly J-perfect if and only if K is J-perfect and q� W H2.J IZ/!

H2.J=KIZ/ is surjective.

Proof. Claim (1) is clear from the standard fact that H1.K/ŠK=ŒK;K�. Claim (2)
can be verified with elementary group theory. Claim (3) follows from a well-known
5-term exact sequence due to Stallings [1965] and Stammbach [1966]. Due to its
importance in this paper, we state it as a separate lemma. �
Lemma 2.6 (5-term exact sequence for group homology). Given a normal subgroup
K of a group J , there is a natural exact sequence:

H2.J IZ/!H2.J=KIZ/!K=ŒK;J �!H1.J IZ/!H1.J=KIZ/! 0:

The following elementary facts about group homology will be useful.

Lemma 2.7. Let f W X ! Y be a map between connected CW complexes and
� W �1.X /! �1.Y / the induced homomorphism. Then

(1) H1.X IZ/ŠH1.�1.X;�/IZ/;

(2) f� WH1.X IZ/!H1.Y IZ/ realizes �� WH1.�1.X /IZ/!H1.�1.Y /IZ/; and

(3) if f� W H2.X IZ/ ! H2.Y IZ/ is surjective, then �� W H2.�1.X /IZ/ !

H2.�1.Y /IZ/ is also surjective.

Proof. Build a K.�1.X /; 1/ complex X 0 by attaching cells of dimension � 3 to
X and a K.�1.Y /; 1/ complex Y 0 by attaching cells of dimension � 3 to Y . Both
X

i
,�!X 0 and Y

j
,�!Y 0 induce isomorphisms on �1 and H1, so (1) follows. Use

the asphericity of Y 0 to extend f to f 0 WX 0! Y 0, also inducing � on �1. Clearly
i� WH2.X IZ/!H2.X

0IZ/ and j� WH2.Y IZ/!H2.Y
0IZ/ are surjective.

This gives a commutative diagram

H2.X IZ/
f�
�� H2.Y IZ/

H2.�1.X /IZ/

i�
g

f 0�
� H2.�1.Y /IZ/

j�
g

Since the other maps are all surjective, so is f 0�. �
Lastly we offer a topological characterization of the various levels of perfectness.

For the purposes of this paper, these are possibly the most useful.
Let Sg denote a compact orientable surface of genus g with a single boundary

component. A collection of oriented simple closed curves f˛1;ˇ1;˛2;ˇ2; : : : ;˛g;ˇgg

on Sg with the property that each ˛i intersects ˇi transversely at a single point, and
each of ˛i \ j̨ , ˇi \ ǰ , and ˛i \ ǰ is empty when i ¤ j , is called a complete
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˛1

ˇ1

˛2

ˇ2

Figure 1. Complete set of handle curves (g D 2 case).

set of handle curves for Sg. A complete set of handle curves on Sg is not unique;
however, given any such set, there exists a homeomorphism of Sg to the “disk with
g handles” pictured in Figure 1 taking each ˛i and ˇi to the corresponding curves
in the diagram.

Given a (not necessarily embedded) loop  in a topological space X , we say
that  bounds a compact orientable surface in X if, for some g, there exists a
map f W Sg ! X such that f j@Sg

D  . Notice that we do not require that f be
an embedding. We often abuse terminology slightly by saying that  bounds the
surface Sg in X . Similarly, we often do not distinguish between a set of handle
curves on Sg and their images in X .

Lemma 2.8. Let X be a space with �1.X;x0/ Š G and let K E J be normal
subgroups of G. Then:

(1) K is perfect if and only if each loop  in X representing an element of
K bounds a surface Sg in X containing a complete set of handle curves
f˛1; ˇ1; ˛2; ˇ2; : : : ; ˛g; ˇgg with each ˛i and ˇi belonging to K.

(2) K is J-perfect if and only if each loop  in X representing an element of
K bounds a surface Sg in X containing a complete set of handle curves
f˛1; ˇ1; ˛2; ˇ2; : : : ; ˛g; ˇgg with each ˛i and ˇi belonging to J.

(3) K is strongly J-perfect if and only if each loop  in X representing an el-
ement of K bounds a surface Sg in X containing a complete set of handle
curves f˛1; ˇ1; ˛2; ˇ2; : : : ; ˛g; ˇgg with each ˛i belonging to K and each ˇi

belonging to J.

Remark 2.9. We are being informal in the statement of Lemma 2.8. Since the
handle curves are not based, we should also choose, for each pair .˛i ; ˇi/, an arc
�i in Sg from x0 to pi D ˛i \ˇi . The element of �1.X;x0/ represented by ˛i is
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then �i �˛i � �
�1
i , and similarly for ˇi . Notice that, by normality, the question of

whether one of these loops belongs to K or J is independent of the choice of �i .

Algebra of inverse sequences. Understanding the fundamental group at infinity re-
quires the language of inverse sequences. We briefly review the necessary definitions
and terminology.

Throughout this subsection all arrows denote homomorphisms, while those of
type� or� specify surjections. The symbol Š denotes isomorphisms.

Let
G0

�1
 �G1

�2
 �G2

�3
 � � � �

be an inverse sequence of groups and homomorphisms. A subsequence is an inverse
sequence of the form

Gi0

�i0C1ı���ı�i1
 ��������Gi1

�i1C1ı���ı�i2
 ��������Gi2

�i2C1ı���ı�i3
 �������� � � � :

In the future we denote a composition �i ı � � � ı�j (i � j ) by �i;j .
Sequences fGi ; �ig and fHi ; �ig are pro-isomorphic if, after passing to subse-

quences, there exists a commuting diagram:

Gi0
�

�i0C1;i1 Gi1
�

�i1C1;i2 Gi2
�

�i2C1;i3
� � �

Hj0
�

�j0C1;j1�

�

Hj1
�

�j1C1;j2�

�

Hj2

�

�

� � �

Clearly an inverse sequence is pro-isomorphic to each of its subsequences. To avoid
tedious notation, we often do not distinguish fGi ; �ig from its subsequences. Instead
we assume fGi ; �ig has the properties of a preferred subsequence — prefaced by
the words “after passing to a subsequence and relabeling”.

An inverse sequence fGi ; �ig is stable if it is pro-isomorphic to an fHi ; �ig for
which each �i is an isomorphism. A more usable formulation is that fGi ; �ig is
stable if, after passing to a subsequence and relabeling, there is a commutative
diagram of the form

(�)

G0�
�1

G1�
�2

G2�
�3

G3�
�4

� � �

im.�1/ �
Š�

�

im.�2/ �
Š�

�

im.�3/ �
Š�

�

� � �

where all unlabeled maps are obtained by restriction. If fHi ; �ig can be chosen so
that each �i is an epimorphism, we call our sequence semistable (or Mittag-Leffler,
or pro-epimorphic). In that case, it can be arranged that the maps in the bottom row
of (�) are epimorphisms. Similarly, if fHi ; �ig can be chosen so that each �i is a
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monomorphism, we call our sequence pro-monomorphic; it can then be arranged
that the restriction maps in the bottom row of (�) are monomorphisms. It is easy to
show that an inverse sequence that is semistable and pro-monomorphic is stable.

An inverse sequence is perfectly semistable if it is pro-isomorphic to an inverse
sequence

G0
�1���G1

�2���G2
�3��� � � �

of finitely presentable groups and surjections, where each ker.�i/ is perfect. A
straightforward argument [Guilbault 2000, Corollary 1] shows that sequences of
this type behave well under passage to subsequences.

Augmented inverse sequences and almost perfect semistability. An augmenta-
tion of an inverse sequence fGi ; �ig is a sequence fLig, where Li E Gi and
�i.Li/ � Li�1 for each i . The corresponding augmentation sequence is the
sequence fLi ; �jLi

g.
The minimal augmentation (or the unaugmented case) occurs when Li Df1g; the

maximal augmentation is the case where Li DGi ; and the standard augmentation
occurs when Li D ker�i for each i . Any augmentation where Li � ker�i for
each i is called a small augmentation. For each subsequence fGki

g of a sequence
fGi ; �ig augmented by fLig, there is a corresponding augmentation fLki

g.
We say that fGi ; �ig satisfies the fLig-perfectness property if, for each i , ker�i

is ��1
i .Li�1/-perfect; it satisfies the strong fLig-perfectness property if each ker�i

is strongly ��1
i .Li�1/-perfect. More concisely, if KiD ker�i and JiD�

�1
i .Li�1/,

these conditions require that each Ki be [strongly] Ji-perfect.
Employing the above terminology, we can restate the definition of perfect semista-

bility (abbreviated P-semistable) by requiring that the sequence be pro-isomorphic
to an inverse sequence of finitely presented groups and surjections satisfying the
fLig-perfectness property for the minimal augmentation fLigDf1g. More generally,
we call an inverse sequence of groups

� AP-semistable (for almost perfectly semistable) if it is pro-isomorphic to
an inverse sequence fGi ; �ig of finitely presentable groups and surjections,
satisfying the fLig-perfectness property for some small augmentation fLig, and

� SAP-semistable (for strongly almost perfectly semistable) if it is pro-isomorphic
to an inverse sequence fGi ; �ig of finitely presentable groups and surjections sat-
isfying the strong fLig-perfectness property for some small augmentation fLig.

Remark 2.10. Note that an inverse sequence satisfies the [strong] fLig-perfectness
property for some small augmentation fLig if and only if it satisfies that property
for the standard augmentation.
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When applying sequences of the above types to geometric constructions, it is
frequently desirable to pass to subsequences without losing the defining property
of the sequence. For that reason, the following observation is crucial.

Proposition 2.11. If an inverse sequence fGi ; �ig of surjections augmented by
fLig satisfies the [strong] fLig-perfectness property, then any subsequence fGki

g

satisfies the corresponding [strong] fLki
g-perfectness property.

Proof. Since the proofs for perfectness and strong perfectness are similar, we
prove only the latter. Assume fGi ; �ig augmented by fLig satisfies strong fLig-
perfectness. Simplifying notation, a portion of the given subsequence becomes

Ga
�aC1;b
 ����Gb

�bC1;c
 ����Gc ;

where �1� a< b < c. We must show that

ker.�bC1;c/� Œker.�bC1;c/; �
�1
bC1;c.Lb/�:

Suppose the proposition holds for j < c. If c D bC 1, then �bC1;c D �c , and
the result follows by hypothesis. Now, assume c � bC 2 and write

�bC1;c D �bC1;c�1 ı�c WGc!Gc�1!Gb:

Let ! 2 ker.�bC1;c/; then �c.!/ 2 ker.�bC1;c�1/. By induction, ker.�bC1;c�1/�

Œker.�bC1;c�1/; �
�1
bC1;c�1

.Lb/�; so, �c.!/ is a product of commutators Œ˛m; ˇm�,
where ˇm 2 �

�1
bC1;c�1

.Lb/ and ˛m 2 ker.�bC1;c�1/. Since �c is surjective over
Gc�1 we identify for each m a pair of elements ˛0m; ˇ

0
m 2 Gc that map to ˛m

and ˇm, respectively. Thus, ˇ0m 2 �
�1
bC1;c

.Lb/, ˛0m 2 ker.�bC1;c/, and Œ˛0m; ˇ
0
m� 2

Œker.�bC1;c/; �
�1
bC1;c

.Lb/�.
Now, let � be the product of the commutators with Œ˛0m; ˇ

0
m� replacing Œ˛m; ˇm�.

By construction, �c.!/D �c.�/ and � 2 Œker.�bC1;c/; �
�1
bC1;c

.Lb/�. Thus,

!v�1
2 ker.�c/� Œker.�c/; �

�1
c .Lc�1/�� Œker.�bC1;c/; �

�1
bC1;c.Lb/�:

Consequently, ! 2 Œker.�bC1;c/; �
�1
bC1;c

.Lb/� as well. �

Topology of ends of manifolds. Next we supply some topological definitions and
background. Throughout the paper, � represents homeomorphism and ' indicates
homotopic maps or homotopy equivalent spaces. The word manifold means manifold
with (possibly empty) boundary. A manifold is open if it is noncompact and has
no boundary. As noted earlier, we restrict our attention to manifolds with compact
boundaries.

For convenience, all manifolds are assumed to be PL; analogous results may
be obtained for smooth or topological manifolds in the usual ways. Our standard
resource for PL topology is [Rourke and Sanderson 1972]. Some of the results
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presented here are valid in all dimensions. Others are valid in dimensions� 4 or� 5,
but require the purely topological 4-dimensional techniques found in [Freedman
and Quinn 1990] for the 4- and/or 5-dimensional cases; there the conclusions are
only topological. The main focus of this paper is on dimensions � 6.

Let M n be a manifold with compact (possibly empty) boundary. A set N �M n

is a neighborhood of infinity if M n�N is compact. A neighborhood of infinity N

is clean if

� N is a closed subset of M n,

� N \ @M n D∅, and

� N is a codimension 0 submanifold of M n with bicollared boundary.

It is easy to see that each neighborhood of infinity contains a clean neighborhood
of infinity.

We say that M n has k ends if it contains a compactum C such that, for every
compactum D with C �D, M n�D has exactly k unbounded components, i.e., k

components with noncompact closures. When k exists, it is uniquely determined;
if k does not exist, we say M n has infinitely many ends. If M n is k-ended, then it
contains a clean neighborhood of infinity N consisting of k connected components,
each of which is a 1-ended manifold with compact boundary. Thus, when studying
manifolds with finitely many ends, it suffices to understand the 1-ended situation.
That is the case in this paper, where our standard hypotheses ensure finitely many
ends. (See Theorem 3.1.)

A connected clean neighborhood of infinity with connected boundary is called a
0-neighborhood of infinity. A 0-neighborhood of infinity N for which @N ,!N

induces a �1-isomorphism is called a generalized 1-neighborhood of infinity. If,
in addition, �j .N; @N /D 0 for j � k, then N is a generalized k-neighborhood of
infinity.

A nested sequence N0�N1�N2� � � � of neighborhoods of infinity is cofinal ifT1
iD0 Ni D∅. We will refer to any cofinal sequence fNig of closed neighborhoods

of infinity with NiC1� int Ni , for all i , as an end structure for M n. Descriptors will
be added to indicate end structures with additional properties. For example, if each
Ni is clean we call fNig a clean end structure; if each Ni is clean and connected
we call fNig a clean connected end structure; and if each Ni is a generalized k-
neighborhood of infinity, we call fNig a generalized k-neighborhood end structure.

Remark 2.12. The word “generalized” in the above definitions is in deference
to the terminology in [Siebenmann 1965], where the ambient manifold M n is
assumed to have stable fundamental group at infinity. There a (nongeneralized)
k-neighborhood of infinity N is also required to satisfy �1.".M

n// Š�!�1.N /.
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Building upon the above terminology, the primary goal of this paper is to identify,
construct, and detect the existence of various end structures for manifolds. A central
example: the pseudocollar can be described as an end structure fNig where each
Ni is a homotopy collar.

We say M n is inward tame if, for arbitrarily small neighborhoods of infinity N,
there exist homotopies H W N � Œ0; 1�! N such that H0 D idN and H1.N / is
compact. Thus inward tameness means each neighborhood of infinity can be pulled
into a compact subset of itself. In this case we refer to H as a taming homotopy.

In [Guilbault 2000], the existence of generalized .n�3/-neighborhood end struc-
tures is shown for all inward tame M n (n� 5).

Recall that a space X is finitely dominated if there exists a finite complex K and
maps u WX !K and d WK!X such that d ıu' idX . The following lemma uses
this notion to offer equivalent formulations of inward tameness.

Lemma 2.13 [Guilbault and Tinsley 2003, Lemma 2.4]. For a manifold M n, the
following are equivalent.

(1) M n is inward tame.

(2) Each clean neighborhood of infinity in M n is finitely dominated.

(3) For each clean end structure fNig, the inverse sequence

N0
j1
 �-N1

j2
 �-N2

j3
 �- � � �

is pro-homotopy equivalent to an inverse sequence of finite polyhedra.

Given a clean connected end structure fNig
1
iD0

, basepoints pi 2Ni , and paths
˛i �Ni connecting pi to piC1, we obtain an inverse sequence:

�1.N0;p0/
�1
 ��1.N1;p1/

�2
 ��1.N2;p2/

�3
 � � � � :

Here, each �iC1 W �1.NiC1;piC1/! �1.Ni ;pi/ is the homomorphism induced by
inclusion followed by the change-of-basepoint isomorphism determined by ˛i . The
singular ray obtained by piecing together the ˛i is called the base ray for the inverse
sequence. Provided the sequence is semistable, its pro-isomorphism class does not
depend on any of the choices made above (see [Guilbault 2016] or [Geoghegan
2008, §16.2]). In the absence of semistability, the pro-isomorphism class of the
inverse sequence depends on the base ray; hence, the ray becomes part of the data.
The same procedure may be used to define �k.".M

n// for all k � 1. Similarly, but
without need for a base ray or connectedness, we may define Hk.".M

n//.
Wall [1965] showed that each finitely dominated connected space X determines a

well-defined �.X /2 zK0.ZŒ�1X �/ (the reduced projective class group) that vanishes
if and only if X has the homotopy type of a finite complex. Given a clean connected



98 CRAIG R. GUILBAULT AND FREDERICK C. TINSLEY

end structure fNig
1
iD0

for an inward tame M n, we have a Wall finiteness obstruction
�.Ni/ for each i . These may be combined into a single obstruction

�1.M
n/D .�1/n.�.N0/; �.N1/; �.N2/; : : : /

2 zK0.�1.".M
n///� lim

 �
zK0.ZŒ�1Ni �/

that is well defined and which vanishes if and only if each clean neighborhood of
infinity in M n has finite homotopy type. See [Chapman and Siebenmann 1976] or
[Guilbault 2000] for details.

We now state the full version of the main theorem of [Guilbault and Tinsley 2006].

Theorem 2.14 (pseudocollarability characterization — complete version).
A 1-ended n-manifold M n (n� 6) with compact boundary is pseudocollarable if
and only if

(1) M n is inward tame,

(2) �1.".M
n// is P-semistable, and

(3) �1.M n/D 0 2 zK0.�1.".M
n///.

3. Some consequences of inward tameness

In this section we show that, for manifolds with compact boundary, the inward
tameness condition, by itself, has significant implications. The main goal is a proof
of Theorem 1.2 — that every inward tame manifold with compact boundary has
AP-semistable fundamental group at each of its finitely many ends. Results in this
section are valid in all (finite) dimensions and build upon an earlier theorem.

Theorem 3.1 [Guilbault and Tinsley 2003]. If an n-manifold with compact (possibly
empty) boundary is inward tame, then it has finitely many ends, each of which has
semistable fundamental group and stable homology in all dimensions.

Remark 3.2. Note that none of the above conclusions is valid for Hilbert cube
manifolds, polyhedra, or manifolds with noncompact boundary. See, for example,
[Guilbault 2016, §4.5].

As preparation for the proof of Theorem 1.2, we look at an easier result that
follows directly from Theorem 3.1.

Let M n be an inward tame n-manifold with compact boundary. Since M n is
finite-ended, there is no loss of generality in assuming that M n is 1-ended. By
taking a product with Sk (k � 2) if necessary, we may arrange that n� 6, without
changing the fundamental group at infinity. So, by the semistability conclusion of
Theorem 3.1 combined with the generalized 1-neighborhood theorem [Guilbault
2000, Theorem 4], we may choose a generalized 1-neighborhood end structure
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fNig for which each bonding map in the inverse sequence

(3-1) �1.N0;p0/
�1����1.N1;p1/

�2����1.N2;p2/
�3��� � � �

is surjective. Abelianization gives an inverse sequence

(3-2) H1.N0/
�1����H1.N1/

�2����H1.N2/
�3���� � � � ;

which, by Theorem 3.1, is stable. It follows that all but finitely many of the
epimorphisms in (3-2) are isomorphisms, so by omitting finitely many terms (then
relabeling), we may assume all bonds in (3-2) are isomorphisms. A term-by-term
application of Lemma 2.5 gives the following.

Proposition 3.3. Every 1-ended inward tame manifold M n with compact boundary
admits a generalized 1-neighborhood end structure fNig for which all bonding
maps in the sequence f�1.Ni ;pi/; �ig are surjective and each ker�i is �1.Ni ;pi/-
perfect; in other words, if fLi D �1.Ni ;pi/g is the maximal augmentation, then
f�1.Ni ;pi/; �ig satisfies the fLig-perfectness property.

Theorem 1.2 is a stronger version of Proposition 3.3. For clarity, we restate it in
a similar form.

Proposition 3.4. Every 1-ended inward tame manifold M n with compact boundary
admits a generalized 1-neighborhood end structure fNig for which all bonding
maps in the sequence f�1.Ni ;pi/; �ig are surjective and, if we let Ki D ker�i for
each i � 1 (the standard augmentation), then Ki is ��1

i .Ki�1/-perfect for all i � 2.
In other words, f�1.Ni ;pi/; �ig satisfies the fKig-perfectness property; so M n has
AP-semistable fundamental group at infinity.

Proof. Assume the sequence fNigwas chosen so that, for each i , NiC1 is sufficiently
small that a taming homotopy H i pulls Ni into Ai DNi� int NiC1, i.e., H i

1
.Ni/�

Ai , and NiC3 is sufficiently small that H i.@NiC2 � Œ0; 1�/ \ NiC3 D ¿. By
compactness of H i

1
.Ni/ and H i.@NiC2 � Œ0; 1�/ those choices can be made.

Now let i � 2 be fixed and qi�2 W
zNi�2 ! Ni�2 be the universal covering

projection. Let zAi�2 D q�1
i�2
.Ai�2/ and for j > i � 2, yNj D q�1

i�2
.Nj / and yAj D

p
q�1
i�2

.Aj /. Then
zNi�2 �

yNi�1 �
yNi �

yNiC1I

and H i�2 lifts to a proper homotopy zH i�2 that pulls zNi�2 into zAi�2 and for which
zH i.@ yNi � Œ0; 1�/ misses yNiC1.

We may associate ��1
i .Ki�1/with�1. yNi/ and Ki with ker.�1. yNi/!�1. yNi�1//.

Thus, an arbitrary element of Ki may be viewed as a loop ˛ in @ yNi that bounds
a disk D in yAi�1. To prove the proposition, it suffices to show that ˛ bounds an
orientable surface in yNi . By �1-surjectivity and the fact that the Nj are generalized
1-neighborhoods, ˛ may be homotoped within yAi to a loop ˛0 in @ yNiC1. Let E be
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the cylinder in yAi between ˛ and ˛0 traced out by that homotopy. Then the disk
D[E may be viewed as an element Œˇ� 2H2. yAi [

yAi�1; @ yNiC1/. Let

yf W @ yNi � Œ0; 1�[@ yNi�f0g
yAi!

zAi�2[
yAi�1[

yAi

be the identity on yAi and zH i�2j on @ yNi � Œ0; 1�. By PL transversality theory (see
[Rourke and Sanderson 1968] or [Buoncristiano et al. 1976, §II.4]), we may — after
a small proper adjustment that does not alter yf on .@ yNi�f0; 1g/[ yAi — assume that
yf �1. yAi�1[

yAi/ is a manifold with boundary that is a homeomorphism over a collar
neighborhood of @ yNiC1. Let yC be the component of yf �1. yAi�1[

yAi/ containing
that neighborhood. Then, by local characterization of degree, yf j W yC ! yAi�1[

yAi

is a proper degree 1 map, and yf j�1.@ yNiC1/D @ yNiC1. Thus we have a surjection

yf j� WH2. yC ; @ yNiC1/!H2. yAi [
yAi�1; @ yNiC1/:

Let Œˇ0� be a preimage of Œˇ�. We may assume that ˇ0 is an orientable surface with
boundary in yC . Since yf is the identity on @ yNiC1, @ˇ0 is homologous in @ yNiC1 to
@ˇD ˛0. Without loss of generality, we may assume that @ˇ0D ˛0. Since yC lies in
@ yNi � Œ0; 1�[@ yNi�f0g

yAi , we may push ˇ0, rel boundary, into yAi . This provides an
orientable surface in yAi with boundary ˛0. Gluing the cylinder E to that surface
along ˛0 produces the bounding surface for ˛ that we desire. �

Early attempts to prove P-semistability (hence pseudocollarability) with only an
assumption of absolute inward tameness were brought to a halt by the discovery of
a key example presented in [Guilbault and Tinsley 2003]. Ideas contained in that
example play an important role here, so we provide a quick review.

An easy way to denote normal subgroups will be helpful. Let G be a group
and S �G. The normal closure of S in G is the smallest normal subgroup of G

containing S . We denote it by ncl.S;G/.

Example 3.5 (main example from [Guilbault and Tinsley 2003]). For all n � 6,
there exist 1-ended absolutely inward tame open n-manifolds with fundamental
group system

G0
�1���G1

�2���G2
�3��� � � � ;

where

Gi D
˝
a0; a1; : : : ; ai

ˇ̌
a1 D Œa1; a0�; a2 D Œa2; a1�; : : : ; ai D Œai ; ai�1�

˛
and �i sends aj to aj for 0� j � i � 1 and ai to 1.

By a largely algebraic argument, it was shown that these examples do not
have P-semistable fundamental group at infinity, and thus are not pseudocollarable.
Notice, however, that each KiDker�i is the normal closure of ai and aiD Œai ; ai�1�

in Gi ; so Ki E ŒKi ; �
�1
i .Ki�1/�. In other words, fGi ; �ig satisfies the strong fKig-

perfectness property, and is therefore SAP-semistable.
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In addition to the above algebra, these examples have nice topological properties.
Although they do not contain small homotopy collar neighborhoods of infinity,
they do contain arbitrarily small generalized 1-neighborhoods of infinity N for
which @N ,!N is Z-homology equivalence. In fact, they contain a sequence fNig

of generalized 1-neighborhoods of infinity with �1.Ni/ Š Gi and @Ni ,! Ni a
ZŒGi�1�-homology equivalence.

The observation in Example 3.5 provides much of the motivation for the remain-
der of this paper.

4. Generalizing one-sided h-cobordisms, homotopy collars and pseudocollars

We begin developing ideas for placing Example 3.5 into a general context. We will
see that end structures like those found in that example are possible only when
kernels satisfy a strong relative perfectness condition. Conversely, we will show
that whenever such a group-theoretic condition is present, a corresponding “near
pseudocollar” structure is attainable.

We have already defined a pseudocollar structure on the end of a manifold M n

to be an end structure fNig for which each Ni is a homotopy collar, i.e., each
@Ni ,!Ni is a homotopy equivalence. The existence of such a structure allows us
to express each Ni as a union

Ni DWi [WiC1[WiC2[ � � � ;

where Wi D Ni � int NiC1, and each triple .Wi ; @Ni ; @NiC1/ is a compact one-
sided h-cobordism in the sense that @Ni ,! Wi is a homotopy equivalence (and
@NiC1 ,!Wi is probably not). One-sided cobordisms play an important role in
manifold topology in general, and the topology of ends in particular. See [Guilbault
2000, §4] for details. For later use, we review a few key properties of one-sided
h-cobordisms. See, for example, [Guilbault and Tinsley 2003, Theorem 2.5].

Theorem 4.1. Let .W;P;Q/ be a compact cobordism between closed manifolds
with P ,!W a homotopy equivalence. Then

(1) P ,!W and Q ,!W are ZŒ�1.W /�-homology equivalences, i.e.,

H�.W;P IZŒ�1.W /�/D 0DH�.W;QIZŒ�1.W /�/I

(2) �1.Q/! �1.W / is surjective; and

(3) K D ker.�1.Q/! �1.W // is perfect.

Moving forward, we require generalizations of the fundamental concepts of
homotopy equivalence, homotopy collar, one-sided h-cobordism and pseudocollar:

� Let .X;A/ be a CW pair for which i WA ,!X induces a �1-isomorphism and let
LE�1.A/. Call i a .mod L/-homotopy equivalence if H�.X;AIZŒ�1.A/=L�/
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is zero for all �. Extension to arbitrary maps is accomplished by use of mapping
cylinders.

� A manifold N with compact boundary is a .mod L/-homotopy collar if LE
�1.@N / and @N ,!N is a .mod L/-homotopy equivalence.

� Let .W;P;Q/ be a compact cobordism between closed manifolds and LE
�1.W /. We call .W;P;Q/ a .mod L/-one-sided h-cobordism if i W P ,!W

is a .mod L/-homotopy equivalence and j WQ ,!W induces a surjection on
fundamental groups.

� Let fNig be a generalized 1-neighborhood end structure on a manifold M n,
chosen so that the bonding maps in

�1.N0/
�1����1.N1/

�2����1.N2/
�3��� � � � :

are surjective, and let fLig be an augmentation of this sequence. Call fNig a
mod.fLig/ pseudocollar structure if each @Ni ,!Ni is a .mod Li/-homotopy
equivalence.

Remark 4.2. (i) Each of the above definitions reduces to its traditional counterpart
when the subgroup(s) involved are trivial.

(ii) In the generalization of one-sided h-cobordism, we require j# W�1.Q/!�1.W /

to be surjective — a condition that is automatic when LD f1g, but not in general.
Analogs of the other two assertions of Theorem 4.1 will be shown to follow.

(iii) For the maximal augmentation, the generalization of pseudocollar requires
only that each @Ni ,! Ni be a Z-homology equivalence, whereas, for the trivial
augmentation, we have a genuine pseudocollar. The key dividing line between those
extremes occurs when fLig is a small augmentation (Li � ker�i for all i ). In those
cases, we call fNig a near pseudocollar structure, and say that a 1-ended M n with
compact boundary is nearly pseudocollarable if it admits such a structure. The
geometric significance of the small augmentation requirement will become clear in
the proof of Theorem 5.1. Further discussion of that topic is contained in Section 7.

The following lemma adds topological meaning to the definition of .mod L/-
homotopy equivalence.

Lemma 4.3. Let .X;A/ be a CW pair for which i W A ,! X induces a �1-
isomorphism, L E �1.A/, and S � L for which ncl.S; �1.A// D L. Obtain
A0 from A by attaching a 2-disk Ds along each s 2 S ; let X 0 D X [

�S
s2S Ds

�
,

and i 0 WA0 ,!X 0. Then i is a .mod L/-homotopy equivalence if and only if i 0 is a
homotopy equivalence.

Proof. Let p W yX ! X be the covering projection corresponding to L. Then
yAD p�1.A/ is the cover of A corresponding to L. Viewing S as a collection of
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loops in A and yS the set of all lifts of those loops, then attaching 2-disks to yA (and
simultaneously yX ) along yS produces universal covers zA0 of A0 and zX 0 of X 0.

Assume now that i W A ,! X is a .mod L/-homotopy equivalence. Then
by Shapiro’s lemma [Davis and Kirk 2001, p. 100], H�. yX ; yAIZ/ D 0, so by
excision H�. zX

0; zA0IZ/D 0. Because both spaces are simply connected, the relative
Hurewicz theorem implies that ��. zX 0; zA0/ D 0; therefore ��.X 0;A0/ D 0. By
Whitehead’s theorem i 0 is a homotopy equivalence.

Conversely, if i 0 is a homotopy equivalence, then its lift zA0 ,! zX 0 is a homotopy
equivalence. Therefore H�. zX

0; zA0IZ/D 0, so by excision H�. yX ; yAIZ/D 0, and
by Shapiro’s lemma H�.X;AIZŒ�1.A/=L�/D 0. �

The following is a useful corollary.

Lemma 4.4. Let .X;A/ be a CW pair for which i W A ,! X induces a �1-
isomorphism and suppose L E �1.A/. If H�.X;AIZŒ�1.A/=L�/ D 0, then
H�.X;AIZŒ�1.A/=J �/ D 0 for any J with L < J E �1.A/. In particular,
H�.X;AIZ/D 0.

The next observation is a direct analog of Theorem 4.1.

Theorem 4.5. Let .W;P;Q/ be a compact .mod L/-one-sided h-cobordism be-
tween closed manifolds with LE �1.W /. Let j WQ ,!W and L0D j�1

# .L/. Then

(1) both P ,!W and Q ,!W are ZŒ�1.W /=L�-homology equivalences, i.e.,

H�.W;P IZŒ�1.W /=L�/D 0DH�.W;QIZŒ�1.W /=L�/I

and

(2) K D ker j# E �1.Q/ is strongly L0-perfect.

Proof. First note that by the surjectivity of j# W �1.Q/ ! �1.W /, there is a
canonical isomorphism �1.Q/=L

0 Š�!�1.W /=L that is assumed throughout. Let
p W yWL!W be the covering projection corresponding to L, yP D p�1.P / and
yQD p�1.Q/. Then both yP and yQ are connected, and their projections onto P and
Q are the coverings corresponding to L and L0.

The assertion that H�.W;P IZŒ�1.W /=L�/D 0 is part of the hypothesis, and (by
Shapiro’s lemma [Davis and Kirk 2001, p. 100]) equivalent to the assumption that
H�. yWL; yP IZ/D 0. To show that H�.W;QIZŒ�1.W /=L�/ vanishes in all dimen-
sions, it suffices to show that H�. yWL; yQIZ/D 0. This will follow from Poincaré
duality for noncompact manifolds if we can verify:

Claim. H�
f
. yWL; yP IZ/D 0, where the f indicates cellular cohomology based on

finite cochains. (See [Geoghegan 2008, Chapter 12].)

Applying Lemma 4.3, attach 2-cells to W along a collection S of loops in P

to kill L, obtaining spaces P 0 and W 0, and a homotopy equivalence P 0 ,! W 0.
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Since W is compact, any strong deformation retraction of W 0 onto P 0 is proper,
and hence, lifts to a proper strong deformation retraction of universal covers zW 0

onto zP 0 [Geoghegan 2008, §10.1]. It follows that H�
f
. yW 0; @ yN 0

i�1
IZ/D 0. Both

universal covers are obtained by attaching disks along the collection yS of lifts to yP
and yW of the loops in S . By excising the interiors of those disks, we conclude that
H�
f
. yW ; @ yN IZ/D 0.

To verify assertion (2), consider the short exact sequence

1!K!L0
q
�!L0=K! 1;

where L0=K may be identified with L. Lemma 2.6 provides the 5-term exact
sequence

H2.L
0
IZ/

q�2
��!H2.L

0=KIZ/!K=ŒK;L0�!H1.L
0
IZ/

q�1
��!H1.L

0=KIZ/!0;

from which the L0-perfectness of K can be deduced by showing that q�2 is an
epimorphism and q�1 an isomorphism.

Since yQ ,! yWL induces q W L0 ! L and since H2. yWL; yQIZ/ D 0, the long
exact sequence for that pair ensures that H1.L

0IZ/ Š�!H1.LIZ/. In addition, the
surjectivity of H2. yQIZ/! H2. yWLIZ/ combines with Lemma 2.7 to imply the
surjectivity of H2.L

0IZ/!H2.LIZ/. �

5. Structure of inward tame ends

With all necessary definitions in place, we are ready to prove the second main
theorem described in the introduction. We begin by stating a strong form of the
theorem, written in the style of earlier characterization theorems from [Siebenmann
1965; Guilbault and Tinsley 2006].

Theorem 5.1 (near pseudocollarability characterization). A 1-ended n-manifold
M n (n� 6) with compact boundary is nearly pseudocollarable if and only if

(1) M n is inward tame,

(2) the fundamental group at infinity is SAP-semistable, and

(3) �1.M n/D 0 2 zK0.�1.".M
n///.

Recall that condition (2) calls for the existence of a representation of �1.".M
n/

of the form

(5-1) G0
�1���G1

�2���G2
�3��� � � �

with a small augmentation fLig (Li E Ki D ker�i for all i) so that each Ki is
strongly Ji-perfect, where Ji D �

�1
i .Li�1/.
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Proof. First we verify that a nearly pseudocollarable 1-ended manifold with compact
boundary must satisfy conditions (1)–(3).

The hypothesis provides a generalized 1-neighborhood end structure fNig on
M n with group data

(5-2) G0
�1���G1

�2���G2
�3��� � � �

(Gi D �1.Ni/) and a small augmentation fLig (Li EKi D ker�i) such that each
Ni is a mod.Li/-homotopy collar.

To simultaneously verify (1) and (3), it suffices to exhibit a cofinal sequence
of clean neighborhoods of infinity, each having finite homotopy type. Lemma 4.4
ensures that each Ni is a mod.Ki/-homotopy collar, and since each �i is a surjection
between finitely presented groups, each Ki is finitely generated as a normal subgroup
of Gi . Let i be fixed and A D f j̨ g be a finite collection of loops in @Ni that
normally generates Ki in Gi . By Lemma 4.3, if we abstractly attach a 2-disk �2

j

along each j̨ , we obtain a homotopy equivalence

@Ni [
�S

�2
j

�
,!Ni [

�S
�2

j

�
:

In particular, Ni [
�S

�2
j

�
has the homotopy type of a finite complex. But, since

each j̨ represents an element of ker�i , we may assume that each �2
j is properly

embedded in Ni�1� int Ni . By thickening these 2-disks to 2-handles, we obtain a
clean neighborhood of infinity N �i with finite homotopy type, lying in Ni�1.

This leaves only SAP-semistability to be checked. We will show that (5-2)
satisfies the strong fLig-perfectness property; in other words, each Ki is strongly
Ji-perfect, where Ji D �

�1
i .Ki�1/.

For each i > 0, let Wi�1 DNi�1� int Ni .

Claim. .Wi�1; @Ni�1; @Ni/ is a .mod Li�1/-one-sided h-cobordism.

Fix i and let p W yNi�1!Ni�1 be the covering corresponding to Li�1EGi�1D

�1.Ni�1/Š �1.Wi�1/. Let yWi�1 denote p�1.Wi�1/ and let yNi denote p�1.Ni/.
Then yWi�1 is the cover of Wi�1 corresponding to Ji�1, and yNi is the cover of Ni

corresponding to Ji EGi D �1.Ni/. By Lemma 4.4 and Shapiro’s lemma

0DH�.Ni ; @Ni IZŒGi=Ji �/ŠH�. yNi ; @ yNi IZ/;

and from the long exact homology sequence for the triple . yNi�1; yWi�1; @ yNi�1/,
excision and Shapiro’s lemma

H�. yWi�1; @ yNi�1IZ/ŠH�.Wi�1; @Ni�1IZŒGi�1=Li�1�/D 0:

The claim follows.

Finally, since the bonding map Gi�1
�i���Gi is represented by the inclusion

Wi�1 - @Ni , Ki is strongly Ji-perfect by Theorem 4.5.
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For the converse, we must show that conditions (1)–(3) imply the existence of
a near pseudocollar structure on M n. Though the proof is rather complicated, it
follows the same outline as that in [Guilbault 2000], which followed the original
proof in [Siebenmann 1965]. For a full understanding, the reader should be familiar
with [Guilbault 2000]. The new argument presented here generalizes the final
portions of that proof. A concise review of [Guilbault 2000] can be found in
[Guilbault and Tinsley 2006, §4].

In [Guilbault 2000; Guilbault and Tinsley 2006] the goal was to improve arbi-
trarily small neighborhoods of infinity to homotopy collars. That is impossible with
our weaker hypotheses; instead, the goal is to improve neighborhoods of infinity to
homotopy collars modulo certain subgroups of their fundamental groups.

By condition (2) the pro-isomorphism class of �1.".M
n// may be represented

by a sequence

(5-3) G0
�1���G1

�2���G2
�3��� � � �

of finitely presented groups, along with a small augmentation fLig (Li EKi D

ker�i for all i ) so that each Ki is strongly Ji-perfect, where Ji D �
�1
i .Li�1/.

By [Guilbault 2000, Lemma 8] there is a sequence fNig of generalized 1-
neighborhoods of infinity whose inverse sequence of fundamental groups is isomor-
phic to a subsequence of fGig.

Gi0
��

�i0C1;i1 Gi1
��

�i1C1;i2 Gi2
��

�i2C1;i3 Gi3
��

�i3C1;i4
� � �

�1.N0;p0/

Š

g
f

��
inc#

�1.N1;p1/

Š

g
f

��
inc#

�1.N2;p2/

Š

g
f

��
inc#

�1.N3;p3/

Š

g
f

��
inc#
� � �

This diagram and Proposition 2.11 ensure that, for each j , ker.�ij�1C1;ij / is strongly
��1

ij�1C1;ij
.Lij�1

/-perfect. So by passing to this subsequence and relabeling, we
may assume that sequence (5-1) and the corresponding subgroup data match the
fundamental group data of fNig. Note here that the J-groups (which are not viewed
as part of the original data) are not the same as the previous J-groups; they are now
preimages of compositions of the original bonding maps.

Next we inductively improve the sequence fNj g to generalized k-neighborhoods
of infinity for increasing values of k, up to k D n� 3. We must frequently pass to
subsequences; however, each improvement of a given Nj leaves its fundamental
group and that of @Ni intact. So at each stage, the “new” fundamental group data will
be a subsequence of the original (5-1), along with the subsequence augmentation.
The J-groups will change as per their definition, but, by Proposition 2.11, we
always maintain the appropriate strong relative perfectness condition.

This neighborhood improvement process uses only the hypothesis that M n is
inward tame; it is identical to that used in [Guilbault 2000, Theorem 5] and outlined
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in [Guilbault and Tinsley 2006, Theorem 3.2]. To save on notation we relabel the
neighborhood sequences and their corresponding groups at each stage, designating
the resulting cofinal sequence of generalized .n�3/-neighborhoods of infinity by
fNig, with Gi D �1.Ni/, �i W Gi ! Gi�1 the corresponding homomorphism,
Li EKi D ker�i , and Ji D �

�1
i .Li�1/.

For each i , let Ri D Ni �
VNiC1 and consider the collection of cobordisms

f.Ri ; @Ni ; @NiC1/g. The following summary comprises the contents of Lemmas 11
and 12 of [Guilbault 2000], along with new hypotheses regarding kernels.

(i) Each Ni is a generalized .n�3/-neighborhood of infinity.

(ii) Each induced bonding map �1.Ni/� �1.NiC1/ is surjective.

(iii) Each inclusion @Ni ,!Ri ,!Ni induces a �1-isomorphism.

(iv) Each @NiC1 ,!Ri induces a �1-epimorphism with kernel strongly Ji-perfect.

(v) �k.Ri ; @Ni/D 0 for all k < n� 3 and all i.

(vi) Each .Ri ; @Ni ; @NiC1/ admits a handle decomposition based on @Ni contain-
ing handles only of index n� 3 and n� 2.

(vii) Each Ni admits an infinite handle decomposition with handles only of index
n� 3 and n� 2.

(viii) Each .Ni ; @Ni/ has the homotopy type of a relative CW pair .Ki ; @Ni/ with
dim.Ki � @Ni/� n� 2.

The obvious next goal is attempting to improve the Ni to generalized .n�2/-
neighborhoods of infinity, which by item (viii) would necessarily be homotopy
collars. In previous work [Siebenmann 1965; Guilbault 2000; Guilbault and Tinsley
2006], that is the final (and most difficult and interesting) step. The same is true
here, where the weakened hypotheses create greater difficulties and the strategy and
end goal must eventually be altered. For now, we continue with the earlier strategies
by turning our attention to �n�2.Ni ; @Ni/ŠHn�2. zNi ; @ zNi/, which may be viewed
as a ZŒ�1Ni �-module Hn�2.Ni ; @Ni IZŒ�1Ni �/. The content of [Guilbault 2000,
Lemma 13] is given by the next two items.

(ix) Hn�2. zNi ; @ zNi/ is a finitely generated projective ZŒ�1Ni �-module.

(x) As an element of zK0.ZŒ�1Ni �/, ŒHn�2. zNi ; @ zNi/� D .�1/n�.Ni/, where
�.Ni/ is the Wall finiteness obstruction for Ni .

Together, these elements of zK0.ZŒ�1Ni �/ determine the obstruction �1.".M n//

found in condition (3). From now on we assume that �1.M n/ vanishes. This is
equivalent to assuming that each �.Ni/ is the trivial element of zK0.ZŒ�1Ni �/, in
other words, each Hn�2. zNi ; @ zNi/ is a stably free ZŒ�1Ni �-module. Therefore:

(xi) By carving out finitely many trivial .n�3/-handles from each Ni , we can
arrange that Hn�2. zNi ; @ zNi/ is a finitely generated free ZŒ�1Ni �-module.
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Item (xi) can be done so that these sets remain a generalized .n�3/-neighborhood
of infinity, and so that their fundamental groups and those of their boundaries are
unchanged. Again, to save on notation, we denote the improved collection by fNig.
See [Guilbault 2000, Lemma 14] for details.

The finite generation of Hn�2. zNi ; @ zNi/ allows us to, after again passing to a
subsequence and relabeling, assume that

(xii) Hn�2. zRi ; @ zNi/�Hn�2. zNi ; @ zNi/ is surjective for each i .

The long exact sequence for the triple . zNi ; zRi ; @ zNi/ from there shows that

(xiii) Hn�2. zRi ; @ zNi/
Š
�!Hn�2. zNi ; @ zNi/ is an isomorphism for each i (and hence,

Hn�2. zRi ; @ zNi/ is a finitely generated free ZŒ�1Ri �-module).

As above, we may choose handle decompositions for the Ri based on @Ni having
handles only of index n� 3 and n� 2.

From now on, let i be fixed. After introducing some trivial .n�3; n�2/-handle
pairs, an algebraic lemma and some handle slides allow us to obtain a handle
decomposition of Ri based on @Ni with .n�2/-handles hn�2

1
; hn�2

2
; : : : ; hn�2

r and
an integer s � r , such that the subcollection fhn�2

1
; hn�2

2
; : : : ; hn�2

s g is a free
ZŒ�1Ri �-basis for Hn�2. zRi ; @ zNi/. So we have:

(xiv) The ZŒ�1Ri �-cellular chain complex for .Ri ; @Ni/ may be expressed as

(5-4) 0! hhn�2
1 ; : : : ; hn�2

s i˚ hhn�2
sC1; : : : ; h

n�2
r i

@
�!hhn�3

1 ; : : : ; hn�3
t i ! 0;

where
� hhn�2

1
; : : : ;hn�2

s i and hhn�2
sC1

; : : : ;hn�2
r i represent free ZŒ�1Ri �-submodules

of zCn�2 generated by the corresponding handles;
� hhn�3

1
; : : : ; hn�3

t i D zCn�3 is the free ZŒ�1Ri �-module generated by the
.n�3/-handles in Ri ;

� Hn�2. zRi ; @ zNi/D ker @D hhn�2
1
; : : : ; hn�2

s i˚ f0g; and
� @ takes f0g˚ hhn�2

sC1
; : : : ; hn�2

r i injectively into hhn�3
1

; : : : ; hn�3
t i.

Item (xiv) and the preceding paragraph are the content of Lemma 15 in [Guilbault
2000].

To this point, we have only used the hypotheses of inward tameness and triviality
of the Wall obstruction to build the structure described by items (i)–(xiv). All
arguments used thus far appear in [Guilbault 2000; Guilbault and Tinsley 2006],
with simpler analogs in [Siebenmann 1965].

Under the �1-stability hypothesis of [Siebenmann 1965], Hn�2. zRi ; @ zNi/ can
now be killed by sliding the offending .n�2/-handles fhn�2

1
; : : : ; hn�2

s g off the
.n�3/-handles and carving out their interiors. Under the weaker P-semistability
hypothesis of [Guilbault and Tinsley 2006], a similar strategy works, but only after
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Ri

Ti

@Ni

@�Ti

Ui3-handles 2-handles Si

@NiC1

Figure 2. Schematic of Ri .

a significant preparatory step, made possible by perfect kernels. In [Guilbault 2000]
an alternate strategy was employed. Instead of killing Hn�2. zRi ; @ zNi/D ker @ by
removing its generating handles fhn�2

1
; : : : ; hn�2

s g, the task was accomplished by
introducing new .n�3/-handles, which became images of the fhn�2

1
; : : : ; hn�2

s g

under the resulting boundary map, thereby trivializing the kernel. Complete dis-
cussions of these approaches can be found in [Guilbault and Tinsley 2006, §3] and
[Guilbault 2000, §8]; the strategy employed here is based on the latter.

It is helpful to change our perspective by switching to the dual handle decompo-
sition of Ri . Let Si be a closed collar neighborhood of @NiC1 in Ri , and for each
.n�2/-handle hn�2

k
identified earlier, let Nh2

k
be its dual, attached to Si . Similarly,

for each .n�3/-handle hn�3
k

, let Nh3
k

be its dual. As is standard, the attaching and
belt spheres of a given handle switch roles in its dual.

Let Ti DSi[ . Nh
2
1
[� � �[ Nh2

s [
Nh2
sC1
[� � �[ Nh2

r /, @�Ti D @Ti�@NiC1, and Ui be
a closed collar on @�Ti in Ti . Observe that Ri D Ti[ . Nh

3
1
[� � �[ Nh3

t /. See Figure 2.
A simplified view of the next step is that we will find a collection of 3-handles

f Nk3
1
; : : : ; Nk3

s g attached to the left-hand boundary of Ri and lying in Ri�1 so that
the collection f�2

j g
s
jD1

of attaching spheres of those 3-handles is algebraically dual
to the belt spheres of f Nh2

1
; : : : ; Nh2

s g and has trivial algebraic intersection with the
belt spheres of f Nh2

sC1
; : : : ; Nh2

r g. Adding those 3-handles to the mix, then inverting
the handle decomposition again, results in a cobordism with chain complex

(5-5) 0! hhn�2
1 ; : : : ; hn�2

s i˚ hhn�2
sC1; : : : ; h

n�2
r i

@
�!hkn�3

1 ; : : : ; hn�3
s i˚ hhn�3

1 ; : : : ; hn�3
t i ! 0

in which ker @ D 0 as desired — but with a caveat. Although addition of the
3-handles does not change the fundamental group of the cobordism, the arranged
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algebraic intersections between the attaching spheres of f Nk3
1
; : : : ; Nk3

s g and the belt
spheres of the existing 2-handles are ZŒ�1.Ri/=Li �-intersection numbers; this is the
best the hypotheses will allow. Then, to arrive at the desired conclusion — that we
have effectively killed the relative second homology — it is necessary to switch the
coefficient ring to ZŒ�1.Ri/=Li � (in other words, mod out by Li), and reinterpret
(5-5) as a ZŒ�1.Ri/=Li �-complex. Then, letting ViDNi[. Nk

3
1
[� � �[ Nk3

s /, it follows
that

�1.Vi/Š �1.Ri/Š �1.Ni/;

@Vi ,! Vi induces a �1-isomorphism, and H�.Vi ; @Vi IZŒ�1.Ri/=Li �/ D 0. In
other words, Vi is a mod.Li/-homotopy collar.

In order to carry out the above program, we first identify a collection f�2
j g

s
jD1

of
pairwise disjoint 2-spheres in @�Ti algebraically dual over ZŒ�1.Ri/=Li � to the col-
lection fˇn�3

j gs
jD1

of belt spheres of the 2-handles f Nh2
1
; : : : ; Nh2

s g and having trivial
ZŒ�1.Ri/=Li �-intersections with the belt spheres fˇn�3

j gr
jDsC1

of the remaining
2-handles f Nh2

sC1
; : : : ; Nh2

r g. Keeping in mind that �1.Ri/=Li is canonically iso-
morphic to �1.RiC1/=JiC1, and using the hypothesis that KiC1 is strongly JiC1-
perfect, such a collection f�2

j g
s
jD1

exists, as is shown in [Guilbault and Tinsley 2013,
§5]. By general position, the collection can be made disjoint from the attaching
tubes of the 3-handles f Nh3

1
; : : : ; Nh3

t g, so they may be viewed as lying in @Ni . If the
collection f�2

j g
s
jD1

bounds a pairwise disjoint collection of embedded 3-disks in
Ri�1, regular neighborhoods of those disks would provide the desired 3-handles, and
the proof is complete. (The argument from [Guilbault 2000, §8] provides details.)

For n� 7, the issue is just whether the 2-spheres f�2
j g

s
jD1

contract in Ri�1. (In
dimension 6, a special argument is needed to get pairwise disjoint embeddings.)
Contractibility is not guaranteed; but with additional work it can be arranged.
The additional work involves the spherical alteration of 2-handles developed in
[Guilbault and Tinsley 2013]. The idea is to alter the 2-handles f Nh2

1
; : : : ; Nh2

s g in a
planned manner so that the correspondingly altered f�2

j g
s
jD1

contract in the new
Ri�1. Along the way it will be necessary to reconstruct the 3-handles f Nh3

1
; : : : ; Nh3

t g

as well; for later use, let f‚2
j g

t
jD1

denote the attaching spheres of those handles.
All of the details were carefully laid out in [Guilbault and Tinsley 2013], with

this application in mind. The tailor-made lemma, stated in the final section of that
paper, is repeated here.

Lemma 5.2 [Guilbault and Tinsley 2013, Lemma 6.1]. Let R0 � R be a pair of
n-manifolds .n � 6/ with a common boundary component B, and suppose there
is a subgroup L0 of ker.�1.B/! �1.R// for which K D ker.�1.B/! �1.R

0//

is strongly L0-perfect. Suppose further that there is a clean submanifold T �R0

consisting of a finite collection H2 of 2-handles in R0 attached to a collar neighbor-
hood S of B with T ,!R0 inducing a �1-isomorphism (the 2-handles precisely kill
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the group K) and a finite collection f‚2
t g of pairwise disjoint embedded 2-spheres

in @T �B, each of which contracts in R0.
Then on any subcollection fh2

j g
k
jD1
�H2, one may perform spherical alterations

to obtain 2-handles f Ph2
j g

k
jD1

in R0 so that in @ PT�B (where PT is the correspondingly
altered version of T ) there is a collection of 2-spheres f P�2

j g
k
jD1

algebraically
dual over ZŒ�1.B/=L

0� to the belt spheres fˇn�3
j gk

jD1
common to fh2

j g
k
jD1

and
f Ph2

j g
k
jD1

with the property that each P�2
j contracts in R.

Furthermore, each correspondingly altered 2-sphere P‚2
t (now lying in @ PT �B)

has the same ZŒ�1.B/=L
0�-intersection number with those belt spheres and with

any other oriented .n�3/-manifold lying in both @T �B and @ PT �B as did ‚2
t .

Whereas the 2-spheres f‚2
t g each contracted in R0, the P‚2

t each contract in R.

We apply Lemma 5.2 to the current setup, with the following substitutions:

Lemma 5.2 Current situation

R0 Ri

R Ri [Ri�1

B @NiC1

H2 f Nh2
1
; : : : ; Nh2

s ;
Nh2
sC1

; : : : ; Nh2
r g

L0 JiC1 D �
�1
iC1

.Li/

T Ti D Si [ . Nh
2
1
[ � � � [ Nh2

s [
Nh2
sC1
[ � � � [ Nh2

r /

k 2 Z s 2 Z

fh2
j g

k
jD1

f Nh2
j g

s
jD1

f�2
j g

k
jD1

f�2
j g

s
jD1

f‚2
t g f‚2

j g
t
jD1

After applying this lemma, the collection f Nh2
j g

s
jD1

is replaced by altered versions
f
PNh2
j g

s
jD1

and the original collection f Nh2
j g

r
jDsC1

is retained. Let

PTi D Si [
� PNh2

1[ � � � [
PNh2

s [
Nh2
sC1[ � � � [

Nh2
r

�
and @� PTi D @ PTi � @NiC1. The collections f�2

j g
s
jD1

and f‚2
j g

t
jD1

are replaced by
altered versions f P�2

j g
s
jD1

and f P‚2
j g

t
jD1

which lie in @� PTi and contract in

Ri [Ri�1�
PT :

The original 3-handles f Nh3
j g

t
jD1

must be discarded since their attaching tubes have
been disrupted; replacements will be constructed shortly. When n� 7, use general
position to choose a pairwise disjoint collection of properly embedded 3-disks in

Ri [Ri�1�
PT
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with boundaries corresponding to the 2-spheres f P�2
j g

k
jD1
[f P‚2

t g. Those 3-disks may
be thickened to 3-handles by taking regular neighborhoods. With all of these handles
finally in place, the argument described earlier completes the proof. When nD6, the
same is true, but the �-� argument used in [Guilbault and Tinsley 2013, Theorems
4.2 and 5.3] is needed in order to find pairwise disjoint embedded 3-disks. �

Remark 5.3. In reality, we have shown a stronger result than what is stated in
Theorem 5.1. Specifically, the near pseudocollar structures obtained are as close to
actual pseudocollars as the augmentation is to the trivial augmentation. For example,
if fLig is the trivial augmentation, the above argument contains an alternative proof
of the main result of [Guilbault and Tinsley 2006] (stated here as Theorem 2.14).
More generally, if fLig lies somewhere between the trivial augmentation and the
standard augmentation, then a near pseudocollar structure on M n can be chosen to
reflect that augmentation.

6. The examples: proof of Theorem 1.4

Introduction to the examples. The main examples of [Guilbault and Tinsley 2003],
described here in Example 3.5, proved the existence of (absolutely) inward tame
open manifolds that are not pseudocollarable. In this section we construct open
manifolds that are absolutely inward tame but not nearly pseudocollarable. Since
the examples from that paper are nearly pseudocollarable, the new examples fill a
gap in the spectrum of known end structures.

The examples of [Guilbault and Tinsley 2003] began with algebra. The main
theorems of that paper showed that all inward tame open manifolds have pro-finitely
generated, semistable fundamental group, and stable Z-homology, at infinity. The
missing ingredient for detecting a pseudocollar structure was P-semistability. With
that knowledge, an inverse sequence of groups satisfying the necessary properties,
but failing P-semistability, became the blueprint for an example. A nontrivial
handle-theoretic strategy was needed to realize the examples, but the heart of the
matter was the group theory.

A similar story plays out here. We will begin with an inverse sequence of finitely
presented groups with surjective bonding maps that become isomorphisms upon
abelianization; but this time, in light of Theorems 1.2 and 1.3, we want an AP-
semistable sequence that is not SAP-semistable. The first step is to identify such a
sequence.

Let F3 D ha1; a2; a3 j i, the free group on the three generators; r1;1 D Œa2; a3�,
r1;2D Œa1; a3�, and r1;3D Œa1; a2�; A1Dncl.fr1;1; r1;2; r1;3g; F3/; and G1DF3=A1.
Notice that A1 is precisely the commutator subgroup ŒF3; F3�, so G1 Š Z˚Z˚Z.

Suppose r2;1 D Œr1;2;; r1;3�, r2;2 D Œr1;1; r1;3�, and r1;3 D Œr1;1; r1;2�; A2 D

ncl.fr2;1; r2;2; r2;3g; F3/; and G2 D F3=A2. Since A2 � A1, there is an induced
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epimorphism
G1

�2
 �G2

which abelianizes to the identity map on Z˚Z˚Z.
Continue inductively, letting riC1;1D Œri;2; ri;3�, riC1;2D Œri;1; ri;3�, and riC1;3D

Œri;1; ri;2�; AiC1 D ncl.friC1;1; riC1;2; riC1;3g; F3/; and GiC1 D F3=AiC1. The
result is a nested sequence of normal subgroups of F3, A1 � A2 � A3 � � � � , and a
corresponding inverse sequence of quotient groups

(6-1) G1
�2���G2

�3���G3
�4��� � � �

which abelianizes to the constant inverse sequence

Z3 id
 �Z3 id

 �Z3 id
 � � � � :

A more delicate motivation for our choices is the following: For each i > 1,
ker�i D ncl.fri�1;1; ri�1;2; ri�1;3g;Gi/; similarly, for each i > 2,

ker.�i�1�i/D ncl.fri�2;1; ri�2;2; ri�2;3g;Gi/:

Moreover, since the elements of fri�1;1; ri�1;2; ri�1;3g are precisely the commuta-
tors of the elements of fri�2;1; ri�2;2; ri�2;3g,

ker.�i/� Œker.�i�1�i/; ker.�i�1�i/�:

So, for the standard augmentation, Li D ker�i , (6-1) is fLig-perfect, hence, AP-
semistable.

Two tasks remain:

� prove that (6-1) is not SAP-semistable, and

� construct 1-ended absolutely inward tame open manifolds with fundamental
groups at infinity representable by (6-1).

Since these tasks are independent, the ordering of the following two subsections is
arbitrary.

The sequence (6-1) is not SAP-semistable. Let Fn D ha1; : : : ; an j i, the free
group on n generators. We will exploit two standard constructions from group
theory. The derived series of Fn is defined by

F.0/n D Fn and F.kC1/
n D ŒF.k/n ; F.k/n � for k � 0:

The lower central series of Fn is given by .Fn/1DFn and then .Fn/kC1D Œ.Fn/k ; Fn�

for k � 0. By inspection

F.kC1/
n � F.k/n ; .Fn/kC1 � .Fn/k ; F.k/n � .Fn/kC1 for all k.
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A well-known fact, similar in spirit to our goal in this subsection, is thatT1
kD0 F

.k/
n D f1g D

T1
kD1.Fn/k :

The following representation of Fn was discovered by Magnus; our general
reference is [Lyndon and Schupp 1977].

Proposition 6.1 [Lyndon and Schupp 1977, Proposition 10.1]. Let Pn be the non-
commuting power series ring in indeterminates fx1;x2; : : : ;xng with x2

j D 0 for
j D 1; 2; : : : ; n. Then the function ˇ.aj / D 1C xj .j D 1; 2; : : : ; n/ induces a
faithful representation of Fn into P�n , the multiplicative group of units of Pn.

In Pn, the fundamental ideal � is the kernel of the homomorphism � W Pn! Z

that takes each xj to 0. The elements of� are all sums of the form
P1
�D1 �� where

each �� is a homogeneous polynomial of degree at least one. Consequently, for any
positive integer k the ideal �k is made of all sums of the form

P1
�D1 �� where

each �� is a homogeneous polynomial of degree at least k.
The next proposition and lemma are useful for monitoring the location of com-

mutators in a group.

Proposition 6.2 [Lyndon and Schupp 1977, Proposition 10.2]. Let ˇ W Fn! P�

be the representation given above. If w1; w2 2 Fn such that ˇ.w1/� 1 2�r and
ˇ.w2/� 1 2�s , then ˇ.Œw1; w2�/� 1 2�rCs.

By applying Proposition 6.2 inductively, we obtain the following useful facts.

Lemma 6.3. For all integers n; i � 1,

(1) fˇ.w/� 1 j w 2 F
.i/
n g ��

2i

,

(2) fˇ.w/� 1 j w 2 .Fn/ig ��
i,

(3)
T1

kD1�
k D 0, and

(4)
T1

kD1 F
.k/
n D f1g D

T1
kD1.Fn/k .

We now focus our attention on F3 and its subgroups AiD ncl.fri;1; ri;2; ri;3g; F3/,
as defined earlier.

Lemma 6.4. For each k � 1 and j 2 f1; 2; 3g,

(1) rk;j is a member of at least one free basis for F
.k/
3

, and

(2) rk;j 2 F
.k/
3
� F

.kC1/
3

.

Proof. Assertion (1) can be obtained from an inductive argument using Schreier
systems. A model argument can be found in [Massey 1967, Example 8.1].

Assertion (2) follows from (1), since the quotient map Fk
3
! Fk

3
=FkC1

3
is the

abelianization of Fk
3

. �

Since Ai � F
.i/
3

, the following is an easy consequence of Lemmas 6.3 and 6.4.
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Lemma 6.5. For each i � 1 and j 2 f1; 2; 3g,

(1) ˇ.ri;j /� 1¤ 0, and

(2) fˇ.h/� 1 j h 2 Aig ��
2i

.

The definitions of derived and lower central series are clearly applicable to
arbitrary groups. To expand those notions further, the following definition is useful.
For H EG, let �1.H;G/DH and �k.H;G/D Œ�k�1.H;G/;G� for k > 1. By
normality, H D�1.H;G/��2.H;G/��3.H;G/� � � � . When H is strongly
G-perfect, �k.H;G/DH for all k.

Proposition 6.6. For each i � 1, there exists pi > 0 and qi � pi such that

(1) for each j 2 f1; 2; 3g, ˇ.ri;j /� 1 =2�2iCpi , and

(2) fˇ.w/� 1 j w 2�qi
.Ai ; F3/g ��

2iCpi .

Proof. Let i be fixed. Existence of pi follows from item (3) of Lemma 6.3. Existence
of qi may be obtained from an inductive application of Proposition 6.2. �

We shift focus one more time, from F3 and its subgroups to the quotient groups
GiDF3=Ai and their subgroups. In doing so, we will allow a word in the generators
of F3 to represent both an element of F3 and the corresponding element of a Gi . For
example, recalling that �iC1;j D �iC1 ı � � � ı�j WGj !Gi , we say ker.�iC1;j /D

ncl.fri;1; ri;2; ri;3g;Gj /.
The following result is simple but useful.

Lemma 6.7. Suppose � W G ! G0 is a surjective homomorphism, H E G, and
q � 0. Then �.�q.H;G//D�q.�.H /;G0/.

Lemma 6.7 ensures that, for each i <k and all q� 0, the quotient maps F3�Gk

restrict to epimorphisms

(6-2) �q.Ai ; F3/��q.ncl.fri;1; ri;2; ri;3g;Gk/;Gk/:

Proposition 6.8. For pi and qi as chosen in Proposition 6.6, and each j 2 f1; 2; 3g,
ri;j =2�qi

.ker.�iC1;k/;Gk/ whenever 2k � 2i Cpi .

Proof. Suppose ri;j 2�qi
.ker.�iC1;k/;Gk/D�qi

.ncl.fri;1; ri;2; ri;3g;Gk/;Gk/.
Surjection (6-2) provides a w 2�qi

.Ai ; F3/ with cosets Ak � ri;j D Ak �w. Conse-
quently, there is an h 2 Ak with ri;j D hw in F3. Then

ˇ.ri;j /� 1D ˇ.h/ˇ.w/� 1

D ˇ.h/ˇ.w/�ˇ.h/Cˇ.h/� 1

D ˇ.h/.ˇ.w/� 1/C .ˇ.h/� 1/:

Since ˇ.w/�12�2iCpi and ˇ.h/�12�2k

��2iCpi, then ˇ.ri;j /�12�2iCpi,
violating the choice of pi . �
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We are now ready for the main result of this subsection.

Theorem 6.9. The inverse sequence fGi ; �ig
1
iD0

is not SAP-semistable. In fact,
fGi ; �ig

1
iD0

is not pro-isomorphic to any inverse sequence fHi ; �ig of surjections
that satisfies the strong fHig-perfectness property.

Proof. We proceed directly to the stronger assertion. Suppose fGi ; �ig is pro-
isomorphic to an inverse sequence fHi ; �ig of surjections that is strongly fHig-
perfect; in other words, ker�i D Œker�i ;Hi � for all i .

By Proposition 2.11, each subsequence of fHi ; �ig satisfies the same essential
property, so by our assumption, fGi ; �ig contains a subsequence that fits into a
commutative diagram of the following form:

Gi0
�

�i0C1;i1 Gi1
�

�i1C1;i2 Gi2
�

�i2C1;i3 Gi3
� � �

H0 ��
�1�

d 1

�
u
0

H1��
�2�

d 2

�
u
1

H2 ��
�3�

d 3

�
u
2

� � �

Passing to a further subsequence if necessary, we may assume 2in � 2in�1Cpin�1

for all n.
By Lemma 6.4, 1¤ ri1;j 2 ker.�i1C1;i2

/�Gi2
. Choose ˛0 2H2 with u2.˛

0/D

ri1;j . Then, ˛0 2 ker.�1;2/, and consequently ˛0 2 Œker.�1;2/;H2�, since ker.�1;2/

is strongly H2-perfect (again using Proposition 2.11). Thus ˛0 2�q.ker.�1;2/;H2/

for all q. Moreover, since u2.ker.�1;2//� ker.�i0C1;i2
/,

ri1;j D u2.˛
0/ 2�q.u2.ker.�1;2//;Gi2

/��q.ker.�i0C1;i2
/;Gi2

/

for all q, thereby contradicting Proposition 6.8. �

Construction of the examples. The goal of this subsection is to construct, for
each n � 6, a 1-ended open manifold M n that is absolutely inward tame and
has fundamental group at infinity represented by the inverse sequence (6-1). By
Theorem 1.3 or Theorem 5.1, such an example fails to be nearly pseudocollarable,
thus completing the proof of Theorem 1.4.

Overview. We will construct M n as a countable union of codimension 0 submani-
folds

M n
D C1[A1[A2[A3[ � � � ;

where C1 is a compact “core” and f.Ai ; �i ; �iC1/g is a sequence of compact
cobordisms between closed connected .n�1/-manifolds with Ai \AiC1 D �iC1

for each i � 1, and @C1 D �1. Letting

Ni DAi [AiC1[AiC2[ � � �
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N1

N2

N3

C1 A1 A2 A3

�1 �2 �3 �4

Figure 3. M n D C1[A1[A2[A3[ � � � .

gives a preferred end structure fNig with @Ni D �i for each i . See Figure 3.
So that pro-�1.".M

n// is represented by (6-1), the Ai will be constructed to
satisfy:

(a) For all i � 1, �1.�i ;pi/ŠGi and �i ,!Ai induces a �1-isomorphism.

(b) The isomorphism between �1.�i ;pi/ and Gi may be chosen so that

Gi�
�iC1

GiC1

�1.�i ;pi/

Š

g
�
Š

�1.Ai ;pi/ �
 iC1

�1.�iC1;piC1/

Š

g

commutes. Here  iC1 is the composition

�1.Ai ;pi/
y�i
 ��1.Ai ;piC1/

�iC1
 ���1.�iC1;piC1/;

where �iC1 is induced by inclusion and y�i is a change-of-basepoint isomor-
phism with respect to a path �i in Ai between pi and piC1.

From there it follows from Van Kampen’s theorem that each �i D @Ni ,! Ni

induces a �1-isomorphism, so by repeated application of (a) and (b), the inverse
sequence

�1.N1;p1/
�2
 ���1.N2;p2/

�3
 ���1.N3;p3/

�4
 ��

is isomorphic to (6-1).
It will also be shown that each Ni has finite homotopy type; so M n is absolutely

inward tame. That argument requires specific details of the construction; it will be
presented later.

Details of the construction. Recall that a p-handle hp attached to an n-manifold
Pn and a .pC1/-handle hpC1 attached to Pn [ hp form a complementary pair
if the attaching sphere of hpC1 intersects the belt sphere of hp transversely in a
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single point. In that case Pn[ hp [ hpC1 � Pn; moreover, we may arrange (by
an isotopy of the attaching sphere of hpC1) that Pn \ .hp [ hpC1/ is an .n�1/-
ball in @Pn. Conversely, for any ball Bn�1 � @Pn, one may introduce a pair of
complementary handles Pn[hp[hpC1 so that Pn\.hp[hpC1/DBn�1. We call
.hp; hpC1/ a trivial handle pair. Note that the difference between a complementary
pair and trivial pair is just a matter of perspective. In general, we say that hp is
attached trivially to Pn if it is possible to attach an hpC1 so that .hp; hpC1/ is a
complementary pair.

After a preliminary step where we construct the core manifold C1, our proof
proceeds inductively. At the i -th stage we construct the cobordism .Ai ; �i ; �iC1/,
along with a compact manifold CiC1 with @CiC1D�iC1, to be used in the following
stage. Throughout the construction, we abuse notation slightly by letting @Ci� Œ0; "�

denote a small regular neighborhood of @Ci in Ci and �i � Œ0; "� to denote a small
regular neighborhood of �i in Ai .

Step 0 (preliminaries). Let C0 be the n-manifold obtained by attaching three
orientable 1-handles fh1

0;j
g3
jD1

to the n-ball Bn. Choose a basepoint p0 2 @C0

and let a1; a2, and a3 be embedded loops in @C0, one through each 1-handle,
intersecting only at p0. Abuse notation slightly by writing

�1.@C0/D �1.C0/D ha1; a2; a3 j i:

A convenient way to arrange that the 1-handles are orientable is by attaching three
trivial .1; 2/-handle pairs fh1

0;j
; h2

0;j
g3
jD1

, then discarding the 2-handles.
Recall that

G1 D ha1; a2; a3 jr1;1; r1;2; r1;3i;

where r1;1D Œa2; a3�, r1;2D Œa1; a3�, and r1;3D Œa1; a2�. Attach a trio of 2-handles
fh2

1;j
g3
jD1

to C0, where h2
1;j

has attaching circle r1;j . Choose the framings of these
handles so that, if the 2-handles fh2

0;j
g3
jD1

were added back in, then fh2
1;j
g3
jD1

would be trivially attached (to an n-ball). Let

C1 D C0[ h2
1;1[ h2

1;2[ h2
1;3

and note that �1.C1/Š �1.@C1/ŠG1.

Step 1 (constructing A1 and C2). Attach three trivial .2; 3/-handle pairs to C1,
disjoint from the existing handles, then perform handle slides on each of the trivial
2-handles (over the handles fh2

1;j
g3
jD1

) so the resulting 2-handles h2
2;1

, h2
2;2

and
h2

2;3
have attaching circles spelling out the words r2;1, r2;2 and r2;3, respectively.

This is possible since each r2;k can be viewed as a product of the loops fr1;j g
3
jD1

and their inverses, which are the attaching circles of fh2
1;j
g3
jD1

. Sliding a 2-handle
over h2

1;j
inserts the loop r˙1

1;j
into the new attaching circle of that 2-handle (with

˙1 depending on the orientation chosen).
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p_ pC

q_

qC

�0 �

Figure 4. Attaching a .2; 3/-handle pair.

By keeping track of the attaching 2-spheres of the trivial 3-handles after the handle
slides, it is possible to attach 3-handles h3

2;1
, h3

2;2
, and h3

2;3
to C1[h2

2;1
[h2

2;2
[h2

2;3

that are complementary to h2
2;1

, h2
2;2

, and h2
2;3

, respectively. Then

C1[
�S3

jD1 h2
2;j

�
[
�S3

jD1 h3
2;j

�
� C1:

For later purposes, it is useful to have a schematic image of the attaching circles
of fh2

1;j
g3
jD1

and the attaching 2-spheres of the complementary handles fh2
1;j
g3
jD1

.
Figure 4 provides such an image for one complementary pair. The outer loop
represents the attaching circle for an h2

2;j
and the shaded region represents the

“lower hemisphere” of the attaching 2-sphere of h3
2;j

; the “upper hemisphere”,
which is not shown, is a parallel copy of the core of h2

2;j
. Within the lower

hemisphere, the small central disk represents the lower hemisphere of the 2-sphere
before handle slides. The arms are narrow strips whose centerlines are the paths
along which the handle slides were performed; diametrically opposite paths lead to
the same 2-handle, and are chosen to be parallel to a fixed path. We have indicated
this by labeling one pair of centerlines � and the other �0. The four outer disks
are parallel to the cores of the 2-handles over which the slides were made. A
twist in the strip leading to an outer disk is used to reverse the orientation of the
boundary of that disk. Thus, diametrically opposite outer disks are parallel to each
other, but with opposite orientations. Center points of the outer disks represent
transverse intersections with belt spheres of those handles; thus, pC and p� are
nearby intersections with the same belt sphere, and similarly for qC and q�.

By rewriting
C1[

�S3
jD1 h2

2;j

�
[
�S3

jD1 h3
2;j

�
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as
C0[

�S3
jD1 h2

1;j

�
[
�S3

jD1 h2
2;j

�
[
�S3

jD1 h3
2;j

�
;

we may reorder the handles so that h2
2;1

, h2
2;2

, and h2
2;3

are attached first. Define

C2 D C0[
�S3

jD1 h2
2;j

�
and note that �1.C2/� �1.@C2/�G2. Furthermore,

C2[
�S3

jD1 h2
1;j

�
[
�S3

jD1 h3
2;j

�
� C1:

So, if we let

A1 D .@C2 � Œ0; "�/[
�S3

jD1 h2
1;j

�
[
�S3

jD1 h3
2;j

�
;

(the result of excising the interior of a slightly shrunken copy of C2), then @A1 �

@C2 t @C1. By letting �1 D @C1 and �2 D @C2 we obtain the first cobordism of
the construction .A1; �1; �2/. By avoiding the basepoint p0 2 @C0 in all of the
above handle additions, we may let the arc �1 �A1 be the product line p0 � Œ0; "�,
with p1 and p2 its endpoints. Conditions (a) and (b) are then clear.

Inductive step (constructing Ai and CiC1). Assume the existence of a cobor-
dism .Ai�1; �i�1; �i/ satisfying (a) and (b) along with a compact manifold Ci D

C0 [
�S3

jD1 h2
i;j

�
, with the attaching circle of each h2

i;j representing the relator
ri;j in the presentation of Gi , and @Ci D �i . Attach three trivial .2; 3/-handle
pairs to Ci , then perform handle slides on each of the trivial 2-handles (over the
handles fh2

i;j g
3
jD1

) so that the resulting 2-handles h2
iC1;1

, h2
iC1;2

and h2
iC1;3

have
attaching circles spelling out the words riC1;1, riC1;2 and ri1;3, respectively. This
is possible since each riC1;k can be viewed as a product of the loops fri;j g

3
jD1

and
their inverses, which are the attaching circles of fh2

i;j g
3
jD1

.
By keeping track of the attaching 2-spheres of the trivial 3-handles under the

above handle slides, it is possible to attach 3-handles h3
iC1;1

, h3
iC1;2

, and h3
iC1;3

to

Ci [ h2
iC1;1[ h2

iC1;2[ h2
iC1;3

that are complementary to h2
iC1;1

, h2
iC1;2

, and h2
iC1;3

, respectively. Then

Ci [
�S3

jD1 h2
iC1;j

�
[
�S3

jD1 h3
iC1;j

�
� Ci :

A picture like Figure 4, but with different indices, describes the current situation.
Rewrite

Ci [
�S3

jD1 h2
iC1;j

�
[
�S3

jD1 h3
iC1;j

�
as

C0[
�S3

jD1 h2
i;j

�
[
�S3

jD1 h2
iC1;j

�
[
�S3

jD1 h3
iC1;j

�
;
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then reorder the handles so that h2
iC1;1

, h2
iC1;2

, and h2
iC1;3

are attached first. Define

CiC1 D C0[
�S3

jD1 h2
iC1;j

�
and note that �1.CiC1/� �1.@CiC1/�GiC1.

Furthermore,

CiC1[
�S3

jD1 h2
i;j

�
[
�S3

jD1 h3
iC1;j

�
� Ci :

Excising the interior of a slightly shrunken copy of CiC1 gives

AiC1 D .@CiC1 � Œ0; "�/[
�S3

jD1 h2
i;j

�
[
�S3

jD1 h3
iC1;j

�
I

then @AiC1 � @CiC1 t @Ci . Noting that �i D @Ci and letting �iC1 D @CiC1, we
obtain .Ai ; �i ; �iC1/. By avoiding pi 2 @Ci in all of the handle additions, letting
�i �Ai be the product line pi � Œ0; "�, and piC1 the new endpoint, conditions (a)
and (b) are clear.

Assembling the pieces in the manner described in Figure 3 completes the con-
struction. In particular, we obtain a 1-ended open manifold

M n
D C1[A1[A2[A3[ � � �

whose fundamental group at infinity is represented by the inverse sequence (6-1).

Remark 6.10. In the construction of .Ai ; �i ; �iC1/, we have written �i on the left
and �iC1 on the right to match the blueprint laid out in Figure 3. In that case, the
handle decomposition of Ai implicit in the construction goes from right to left,
with handles being attached to a collar neighborhood �iC1 � Œ0; "� of �iC1. Later,
when our perspective becomes reversed, we will pass to the dual decomposition

Ai D .�i � Œ0; "�/[
�S3

jD1
Nhn�3
1;j

�
[
�S3

jD1
Nhn�2
2;j

�
;

where each Nhn�p is the dual of an original hp and �i � Œ0; "� is a thin collar
neighborhood of �i .

Absolute inward tameness of M n. The following proposition will complete the
proof of Theorem 1.4.

Proposition 6.11. For the manifolds M n constructed above, each clean neighbor-
hood of infinity

Ni DAi [AiC1[AiC2[ � � �

has finite homotopy type. Thus, M n is absolutely inward tame.

We will prove this by examining H�.Ni ; �i IZGi/ (equivalently, H�. zNi ; z�i IZ/

viewed as a ZGi-module), where Gi D �1.Ni/ D �1.�i/. In particular, we will
prove:



122 CRAIG R. GUILBAULT AND FREDERICK C. TINSLEY

Claim 6.12. For each i , H�.Ni ; �i IZGi/ is trivial in all dimensions except for
� D n� 2, where it is isomorphic to the free module .ZGi/

3 D ZGi ˚ZGi ˚ZGi .

Once this claim is established, Proposition 6.11 follows from [Siebenmann 1965,
Lemma 6.2]. In Remark 6.13 at the conclusion of this section, we explain why this
final observation is elementary, requiring no discussion of finite dominations or
finiteness obstructions.

Proof. It is useful to consider compact subsets of the form

Ai;k DAi [AiC1[ � � � [Ak :

By repeated application of Remark 6.10, there is a handle decomposition of Ai;k

based on �i � Œ0; "� with handles only of indices n� 3 and n� 2. By reordering
the handles, .Ai;k ; �i/ is seen to be homotopy equivalent to a finite relative CW
complex .Ki;k ; �i/, where Ki;k consists of �i with an .n�3/-cell attached for
each .n�3/-handle of Ai;k followed by an .n�2/-cell for each .n�2/-handle. In
the usual way, the ZGi-incidence number of an .n�2/-cell with an .n�3/-cell is
equal to the ZGi-intersection number between the belt sphere of the corresponding
.n�3/-handle and the attaching sphere of the corresponding .n�2/-handle. This
process produces a sequence

Ki;i �Ki;iC1 �Ki;iC2 � � � �

of relative CW complexes with direct limit a relative CW pair .Ki;1; �i/ homo-
topy equivalent to .Ni ; �i/. So we can determine H�.Ni ; �i IZGi/ by calculating
H�.Ai;k ; �i IZGi/ and taking the direct limit as k!1.

The ZGi-handle chain complex for .Ai;k ; �i/ (equivalently, the ZGi-cellular
chain complex for .Ki;k ; �i/) looks like

0 �! Cn�2
@
�! Cn�3 �! 0;

where Cn�2 and Cn�3 are finitely generated free ZGi-modules generated by the
handles of Ai;k , and the boundary map is determined by ZGi-intersection numbers
between the belt spheres of .n�3/-handles and attaching spheres of the .n�2/-
handles. These intersection numbers will be determined by returning to the con-
struction.

Beginning with the compact manifold

Ci D C0[
�S3

jD1 h2
i;j

�
;

attach three trivial .2; 3/-handle pairs, then perform handle slides on the 2-handles
(over the handles fh2

i;j g
3
jD1

) to obtain h2
iC1;1

, h2
iC1;2

and h2
iC1;3

with attaching
circles riC1;1, riC1;2 and riC1;3, respectively. Having kept track of the attaching
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2-spheres of the trivial 3-handles under the handle slides, attach 3-handles h3
iC1;1

,
h3

iC1;2
, and h3

iC1;3
to

Ci [ h2
iC1;1[ h2

iC1;2[ h2
iC1;3

that are complementary to h2
iC1;1

, h2
iC1;2

, and h2
iC1;3

, respectively (all as described
in inductive step above). This can all be done so that h3

iC1;1
, h3

iC1;2
, and h3

iC1;3

do not touch the earlier 2-handles h2
i;1

, h2
i;2

and h2
i;3

. Next attach a second trio
of trivial .2; 3/-handle pairs, taking care that they are disjoint from the existing
handles, and slide the trivial 2-handles over the 2-handles fh2

iC1;j
g3
jD1

so that the
resulting 2-handles fh2

iC2;j
g3
jD1

have attaching circles riC2;1, riC2;2 and riC2;3.
Again, having kept track of the attaching 2-spheres of the trivial 3-handles under
the handle slides, attach 3-handles h3

iC2;1
, h3

iC2;2
, and h3

iC2;3
to

Ci [
�S3

jD1 h2
iC1;j

�
[
�S3

jD1 h3
iC1;j

�
[
�S3

jD1 h2
iC2;j

�
that are complementary to h2

iC2;1
, h2

iC2;2
, and h2

iC2;3
, respectively, while taking

care that these new 3-handles are completely disjoint from all 2- and 3-handles of
lower index. Continue this process k � i times, at each stage attaching three trivial
.2; 3/-handle pairs disjoint from the existing handles; sliding the trivial 2-handles
over the 2-handles created in the previous step, in the manner prescribed above;
and then attaching 3-handles complementary to these new 2-handles (and disjoint
from earlier 2- and 3-handles) along the images of the attaching 2-spheres of the
trivial 3-handles after the handle slides.

Since all of the 2- and 3-handles mentioned above, except for the original
2-handles h2

i;1
, h2

i;2
and h2

i;3
, occur in complementary pairs, the manifold we just

created is just a thickened copy of Ci ; let us call it C 0i . By the standard reordering
lemma, we may arrange that the 2-handles are pairwise disjoint, and all are attached
before any of the 3-handles — which are also are attached in a pairwise disjoint
manner. Then

C 0i D Ci [
�Sk

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
D C0[

�S3
jD1 h2

i;j

�
[
�Sk

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
D C0[

�S3
jD1 h2

iCk;j

�
[
�S3

jD1 h2
i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
D Ck [

�S3
jD1 h2

i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
;

where, going from the first to the second line, we apply the definition of Ci ; going
from the second to the third, we bring the last triple of 2-handles forward to the
beginning; and in going from the third to the fourth, we apply the definition of Ck .
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Excising a slightly shrunken copy of the interior of Ck from C 0i results in a
cobordism between @Ck D �k and @C 0i � �i , which has a handle decomposition

.�k � Œ0; "�/[
�S3

jD1 h2
i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
:

Comparing this handle decomposition to our earlier construction reveals that this
cobordism is precisely Ai[AiC1[� � �[AkDAi;k . In order to match the orientation
of Figure 3, view �k as the right-hand boundary and �i as the left-hand boundary,
with 2- and 3-handles being attached from right to left. Before switching to the
dual handle decomposition, we analyze the ZGi-intersection numbers between the
attaching spheres of the 3-handles and the belt spheres of the 2-handles. All should
be viewed as submanifolds of the left-hand boundary of

.�k � Œ0; "�/[
�S3

jD1 h2
i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
;

which has fundamental group Gi .
For each 1 � s � k and j 2 f1; 2; 3g let ˛2

iCs;j denote the attaching 2-sphere
of h3

iCs;j ; and for each 0� s0 � k�1 and j 0 2 f1; 2; 3g let ˇn�3
iCs0;j 0 denote the belt

.n�3/-sphere of h2
iCs0;j 0 There are three cases to consider.

Case 1: s D s0. Then for each j , the pair .h2
iCs;j ; h

3
iCs;j / is complementary; in

other words ˛2
iCs;j intersects ˇn�3

iCs;j transversely in a single point. Adjusting base
paths, if necessary, and being indifferent to orientation (since it will not affect
our computations), we have

"ZGi
.˛2

iCs;j ; ˇ
n�3
iCs;j /D˙1:

If j ¤ j 0, then h3
iCs;j does not intersect h2

iCs;j 0 , so

"ZGi
.˛2

iCs;j ; ˇ
n�3
iCs;j 0/D 0:

Case 2: sD s0C1. For each j , ˛2
iCs;j can be split into a pair of disks. The “upper

hemisphere” lies in the 2-handle h2
iCs;j and it intersects ˇn�3

iCs;j transversely in a
single point; that point of intersection was accounted for in Case 1. The “lower
hemisphere” is analogous to the one pictured in Figure 4. If fu; vg D f1; 2; 3g �
fj g, then one pair of the diametrically opposite disks has boundaries labelled
riCs�1;u and r�1

iCs�1;u
and the disks are parallel to the core of h2

iCs�1;u
, so each

intersects ˇn�3
iCs�1;u

transversely in points pCu and p�u . Due to the flipped orientation
of one of the disks, these points of intersection, between ˛2

iCs;j and ˇn�3
iCs�1;u

,
have opposite sign. Connecting pCu and p�u by a path homotopic to ��1 �� in
˛2

iCs;j and a short path � connecting pCu and p�u in ˇn�3
iCs�1;u

yields a loop that is
contractible in the left-hand boundary of

.�k � Œ0; "�/[
�S3

jD1 h2
i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
:



NONCOMPACT MANIFOLDS THAT ARE INWARD TAME 125

So together pCu and p�u contribute 0 to the ZGi-intersection number of ˛2
iCs;j and

ˇn�3
iCs�1;u

; hence,
"ZGi

.˛2
iCs;j ; ˇ

n�3
iCs�1;u/D 0:

Similarly
"ZGi

.˛2
iCs;j ; ˇ

n�3
iCs�1;v/D 0:

Finally, ˛2
iCs;j and ˇn�3

iCs�1;j
do not intersect, so

"ZGi
.˛2

iCs;j ; ˇ
n�3
iCs�1;j /D 0

as well.

Case 3: s =2 fs0; s0C 1g. In this case, the handles h3
iCs;j and h2

iCs0;u are disjoint,
so "ZGi

.˛2
iCs;j ; ˇ

n�3
iCs;j 0/D 0.

Now invert the above handle decomposition to obtain a handle decomposition
of the cobordism .Ai;k ; �i ; �k/, based on �i , containing only .n�3/- and .n�2/-
handles. Specifically, we have

.�i � Œ0; "�/[
�Sk

sD1

�S3
jD1
Nhn�3
iCs;j

��
[
�S3

jD1
Nhn�2
i;j

�
[
�Sk�1

sD1

�S3
jD1
Nhn�2
iCs;j

��
:

Since the belt sphere of each Nhn�3 is the attaching sphere of its dual h3 and the
attaching sphere of each Nhn�2 is the belt sphere of its dual h2, the incidence numbers
between these handles of this handle decomposition are determined (up to sign)
by the earlier calculations. So the cellular ZGi-chain complex for the .Ai;k ; �i/ is
isomorphic to

0!

k�1M
sD0

.ZGi/
3 @
�!

kM
sD1

.ZGi/
3
! 0;

where the .ZGi/
3 summands on the left are generated by the handles f Nhn�2

iCs;j g
3
jD1

and those on the right by f Nhn�3
iCs;j g

3
jD1

. Since "ZGi
.˛2

iCs;j ; ˇ
n�3
iCs;j / D ˙1 for all

1� s�k�1 and all other intersection numbers are 0, the boundary map is trivial on
the 0-th copy of .ZGi/

3; misses the k-th copy of .ZGi/
3 in the range; and restricts

to an isomorphism
Lk�1

sD1.ZGi/
3 Š�!

Lk�1
sD1.ZGi/

3 elsewhere. Thus

Hn�2.Ai;k ; �i IZGi/D ker @Š .ZGi/
3, and

Hn�3.Ai;k ; �i IZGi/D coker @Š .ZGi/
3;

where Hn�2.Ki;k ; �i/ is generated by the s D 0 summand and Hn�3.Ki;k ; �i/ is
generated by the s D k summand.

Now consider the inclusion Ai;k ,!Ai;kC1 and the corresponding inclusion of
ZGi-chain complexes. The chain complex of Ai;kC1 will contain an extra .ZGi/

3

summand in each dimension, generated by f Nhn�2
iCk;j

g3
jD1

and f Nhn�3
iCkC1;j

g3
jD1

, re-
spectively. The boundary map takes the new summand in the domain onto the
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previous cokernel, thereby killing Hn�3.Ai;k ; �i IZGi/, and replacing it with a
cokernel generated by f Nhn�3

iCkC1;j
g3
jD1

. Said differently, the inclusion induced map

i� WHn�3.Ki;k ; �i IZGi/
0
�!Hn�3.Ki;kC1; �i IZGi/

is trivial. On the other hand, the expansion from Ki;k to Ki;kC1 does not change
ker @, which is still generated by the handles f Nhn�2

i;j g
3
jD1

. In other words, the
inclusion induced map

i� WHn�2.Ki;k ; �i IZGi/
Š
�!Hn�2.Ki;kC1; �i IZGi/

is an isomorphism.
Taking direct limits, we have

H�.Ni ; �i IZGi/Š

�
.ZGi/

3 if � D n� 2;

0 otherwise. �

Remark 6.13. The appeal to [Siebenmann 1965, Lemma 6.2] may give the im-
pression that obtaining Proposition 6.11 from Claim 6.12 is complicated — that
is not the case. The conclusion can be obtained directly as follows: If fen�2

i;j g
3
jD1

represents the cores of the .n�2/-handles f Nhn�2
i;j g, which generate H�.Ni ; �i IZGi/,

abstractly attach .n�2/-disks ff n�2
i;j g

3
jD1

to �i along their boundaries. This does
not affect fundamental groups, so by excision, the pair�

Ni [ff
n�2

i;j g
3
jD1; �i [ff

n�2
i;j g

3
jD1

�
has the same ZGi -homology as .Ni ; �i/, with the same generating set. Now attach
an .n�1/-cell gn�1

j along each sphere en�2
i;j [f

n�2
i;j to obtain a pair�

Ni [ff
n�2

i;j g
3
jD1[fg

n�2
i;j g

3
jD1; �i [ff

n�2
i;j g

3
jD1

�
with trivial ZGi-homology in all dimensions. It follows that

�i [ff
n�2

i;j g
3
jD1 ,!Ni [ff

n�2
i;j g

3
jD1[fg

n�1
i;j g

3
jD1

is a homotopy equivalence. But notice that each gn�1
i;j has a free face f n�2

i;j , so

Ni [ff
n�2

i;j g
3
jD1[fg

n�1
i;j g

3
jD1

collapses onto Ni . Therefore, Ni is homotopy equivalent to �i [ff
n�2

i;j g
3
jD1

.

7. Remaining questions

In the introduction we commented that nearly pseudocollarable manifolds admit
arbitrarily small clean neighborhoods of infinity N containing compact codimen-
sion 0 submanifolds A for which A ,!N is a homotopy equivalence. Call such
a pair .N;A/ a wide homotopy collar. The difference, of course, between a wide
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homotopy collar and a homotopy collar is that, in the latter, the subspace is required
to be the (codimension 1) boundary of N. The fact that nearly pseudocollarable
manifolds contain arbitrarily small wide homotopy collars is immediate from the
following easy lemma.

Lemma 7.1. Suppose N 0 is a (mod J )-homotopy collar neighborhood of infinity
in a manifold M n (n � 5/, where J is a normally finitely generated subgroup of
ker.�1.N

0/!�1.M
n//. Then M n contains a wide homotopy collar neighborhood

of infinity .N;A/, where N 0 �N �M n.

Proof. Choose a finite collection of pairwise disjoint properly embedded 2-disks
fD2

i g
k
iD1

in M n�N 0, with boundaries comprising a normal generating set for
ker.�1.N

0/! �1.M
n//. Then let .N;A/ be a regular neighborhood pair for�
N 0[

�Sk
iD1 D2

i

�
; @N 0[

�Sk
iD1 D2

i

��
and apply Lemma 4.3. �

The following seem likely but, thus far, we have been unable to find proofs.

Questions. Must a manifold with compact boundary that contains arbitrarily small
wide homotopy collar neighborhoods of infinity be nearly pseudocollarable? More
specifically, can it be shown that the nonpseudocollarable examples in Section 6 do
not contain arbitrarily small wide homotopy collar neighborhoods of infinity?
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p-ADIC VARIATION OF UNIT ROOT L-FUNCTIONS

C. DOUGLAS HAESSIG AND STEVEN SPERBER

Dwork’s conjecture, now proven by Wan, states that unit root L-functions
“coming from geometry” are p-adic meromorphic. In this paper we study
the p-adic variation of a family of unit root L-functions coming from a
suitable family of toric exponential sums. In this setting, we find that the
unit root L-functions each have a unique p-adic unit root. We then study
the variation of this unit root over the family of unit root L-functions. Sur-
prisingly, we find that this unit root behaves similarly to the classical case of
families of exponential sums, as studied by Adolphson and Sperber (2012).
That is, the unit root is essentially a ratio of A-hypergeometric functions.

1. Introduction

Dwork [1973] conjectured that certain L-functions, constructed as Euler products of
p-adic unit roots coming from the fibers of an algebraic family of L-functions, are
p-adic meromorphic. He proved this in a few cases using the idea of an excellent
lifting of Frobenius, but was unable to prove it in general, mainly because excellent
lifting in its original form does not always exist. Wan [1999; 2000b; 2000a] proved
Dwork’s conjecture using a new technique which avoided excellent lifting. In
the present paper, we extend Wan’s techniques, as established in [Haessig 2014],
by constructing a dual theory in which to study the p-adic variation of unit root
L-functions.

Let 9 be a nontrivial additive character on the finite field Fq . Additionally, let
f ∈ Fq [λ

±

1 , . . . , λ
±
s , x±1 , . . . , x±n ] be a Laurent polynomial, and consider for each

λ ∈ (F×q )
s and m ≥ 1 the exponential sum

Sm( f, λ) :=
∑

x∈(F×q m·deg(λ) )n

9 ◦TrFq m·deg(λ)/Fq ( f (λ, x))

where deg(λ) := [Fq(λ) : Fq ]. Define the associated L-function by L( f, λ, T ) :=
exp

(∑
m≥1 Sm( f, λ)T m/m

)
. It is known that L( f, λ, T )(−1)n+1

is a rational function

Haessig was partially supported by a grant from the Simons Foundation (#314961).
MSC2010: 11T23.
Keywords: L-function, unit root, hypergeometric.
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with a unique p-adic unit root, say π0(λ), which is also a 1-unit. The unit root
L-function of this family is defined by

Lunit(κ, T ) :=
∏

λ∈|Gs
m/Fq |

1

1−π0(λ)κT deg(λ)
,

where κ takes on values in the p-adic integers Zp. This is a p-adic meromorphic
function in T and a p-adic continuous function in κ . As shown in a remark below,
Lunit(κ, T )(−1)s+1

will have a unique p-adic unit root. We conjecture that the unit
root will have the following description.

Writing f (λ, x) =
∑

aγ,uλγ xu with aγ,u ∈ Fq , let âγ,u be the Teichmüller lift
of aγ,u and write â = (âγ,u)(γ,u)∈supp( f ). Let π ∈ Qp be such that π p−1

= −p.
Define a new polynomial f̃ by replacing the coefficients of f by new variables
3γ,u for each monomial λγ xu , that is, define f̃ (3, λ, x) :=

∑
3γ,uλ

γ xu . Writing
expπ f̃ (3, λ, x) =

∑
gγ,u(3)λγ xu , Adolphson and Sperber [2012] have shown

that G(3) := g0,0(3)/g0,0(3
p) converges on the closed polydisk |3γ,u|p≤ 1. Thus,

it makes sense to evaluate G(â) := G(3)|3=â . We conjecture that the unit root of
Lunit(κ, T )(−1)s+1

is of the form (G(â)G(â p) · · ·G(â pa−1
))κ where q = pa .

Our first main result will be to prove this conjecture when f (λ, x) satisfies a
lower deformation hypothesis stated below. Our second main result, which explains
the paper’s length, is the development of a dual theory for L-functions of infinite
symmetric powers L(0)(κ, t, T ), defined on page 137. These seem to have a theory
similar to that of classical L-functions of exponential sums over finite fields. For
example, they display the same type of δ-structure (10) as well as having an attached
p-adic cohomology theory (see, e.g., [Haessig 2016]). There is some slight evidence
that these may be related to p-adic automorphic forms.

As mentioned above, in this paper we study the p-adic variation of unit root
L-functions such as these. The following setup is similar to that of the above family,
but more technical for the following reason. As unit root L-functions come from
families, and we wish to study a family of unit root L-functions, we need to consider
a family of families. The role of the variables in the following is: x denotes the
space variables, λ denotes the parameters of the family, and t denotes the parameters
defining the family of families.

Let A be a finite subset of Zn . We define the Newton polyhedron of A at∞,
denoted 1∞(A), to be the convex closure of A∪0 in Rn . We make the simplifying
hypothesis that every element u ∈A lies on the Newton boundary at∞ of 1∞(A),
that is, the union of all faces of 1∞(A) which do not contain the origin. In other
language this is the same as the hypothesis that w(u) = 1 for all u ∈ A, where
w is the usual polyhedral weight defined by 1∞(A) (see the next section for
definition). The generic polynomial f , with x-support equal to A, is given by
f (t, x)=

∑
tu xu
∈ Fq [{tu}u∈A, x±1 , . . . , x±n ], where u runs over A and {tu}u∈A are
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new variables. Let 1∞( f )(=1∞(A)) be the Newton polyhedron at infinity of f .
Let P(λ, x) ∈ Fq [λ

±

1 , . . . , λ
±
s , x±1 , . . . , x±n ] be such that the monomials λγ xv in

the support of P(λ, x) all satisfy 0<w(v) < 1. Such deformations were studied
in [Haessig and Sperber 2014]. It is convenient to assume the origin is not in the
set A and if λγ xv is in the support of P , then v 6= 0 so that neither f nor P have
a constant term (with respect to the x-variables). This assumption will be made
throughout this work. Let G(t, λ, x) := f (t, x)+ P(λ, x).

We construct a family of L-functions as follows. Let t ∈ (F∗q)
|A|, and denote by

deg(t)= [Fq(t) : Fq ] the degree of t , where Fq(t) means we adjoin every coordinate
of t to Fq . We will often write d(t) for deg(t). For convenience, write qt := qd(t)

so that Fqt = Fq(t). Next, let λ ∈ (F∗q)
s . Denote by degt(λ) or dt(λ) the degree

[Fqt (λ) : Fqt ]; set qt,λ := qdt (λ)

t and Fqt,λ
= Fqt (λ). For each m ≥ 1, define the

exponential sum

Sm(t, λ) :=
∑

x∈(F∗qm
t,λ
)n

9 ◦TrFqm
t,λ
/Fq (G(t, λ, x))

and its associated L-function

L(t, λ, T ) := exp
( ∞∑

m=1

Sm(t, λ) T m

m

)
.

It is well-known [Adolphson and Sperber 2012] that L(t, λ, T )(−1)n+1
has a unique

reciprocal p-adic unit root π0(t, λ), which is a 1-unit. Let κ ∈ Zp be a p-adic
integer. For each t , the unit root L-function is defined by

Lunit(κ, t, T ) :=
∏

λ∈|Gs
m/Fqt

|

1
1−π0(t, λ)κT dt (λ)

,

where κ takes values in the p-adic integers Zp. Wan’s theorem tells us that this
L-function is p-adic meromorphic and so may be written as a quotient of p-adic
entire functions:

Lunit(κ, t, T )(−1)s+1
=

∏
∞

i=1(1−αi (κ, t)T )∏
∞

j=1(1−β j (κ, t)T )
, αi , β j → 0 as i, j→∞.

Little is known about the zeros and poles of unit root L-functions. In Theorem 1.1
below we show, for each t and κ , that Lunit(κ, t, T )(−1)s+1

itself has a unique unit
zero (and no unit poles), which is a 1-unit. We then study the variation of this unit
root as a function of t and κ . We note that the variation of the unit root L-function
with respect to the parameter κ has been studied before in Wan’s proof of Dwork’s
conjecture, and is connected to the Gouvêa–Mazur conjecture [1992]. On the other
hand, as far as we know, the study of the p-adic analytic variation of the unit root
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L-function with respect to t is new. To state the main result, first denote by π ∈Qp

an element satisfying π p−1
=−p. Next, writing

G(t, λ, x)= f (t, x)+ P(λ, x)

=

∑
tu xu
+

∑
A(γ, v)λγ xv

∈ Fq [x±1 , . . . , x±n , λ
±

1 , . . . , λ
±

s , {tu}u∈supp( f )],

let Â(γ, v) be the Teichmüller lift of A(γ, v) in Qq for each (γ, v) ∈ supp(P).
We now replace every coefficient A(γ, v) of P(λ, x) with a new variable 3: set
P(3, λ, x) :=

∑
(γ,v)∈supp(P)3γ,vλ

γ xv and define

H(t,3, λ, x) := f (t, x)+P(3, λ, x).

Note that the series

exp(πH(t,3, λ, x))=
∑
γ∈Zs

u∈Zn

Kγ,u(t,3)λγ xu

is well-defined, and its coefficients Kγ,u(t,3) are themselves elements in the power-
series ring Zp[ζp][[{tu}u∈A, {3γ,v}(γ,v)∈supp(P)]], and so converge in the open poly-
disk D(0, 1−)|A|+| supp(P)| which is defined by the inequalities |tu|< 1 for all u ∈A
and |3γ,v|< 1 for all (γ, v)∈ supp(P). Of particular interest is K0,0(t), a principal
p-adic unit for all t and3 in the polydisk. Define F(t,3) :=K0,0(t,3)/K0,0(t p,3p)

and set Fm(t,3) :=
∏m−1

i=0 F(t pi
,3pi

). By Adolphson and Sperber [2012], F(t,3)
analytically continues to the closed polydisc D(0,1+)|A|+|supp(P)| defined by |tu|≤1,
u ∈A and |3γ,v| ≤ 1, (γ, v) ∈ supp(P).

Theorem 1.1. Let t̂ be the Teichmüller lift of t . Then

Fad(t)(t̂, Â)κ =
ad(t)∏
i=0

F(t̂ pi
, Âpi

)κ

is the unique unit root of Lunit(κ, t, T )(−1)s+1
at each fiber t and κ ∈ Zp, where

Fad(t)(t̂, Â) means setting each tu = t̂u and 3γ,v = Â(γ, v).

Remark. It is worthwhile to compare this result to the result in [Adolphson and
Sperber 2012]. To that end, consider the (total) family H(t,3, λ, x) above. For
each t ∈ (F×q )

|A| and m ≥ 1, define the exponential sum

Sm(H, t) :=
∑

(λ,x)∈(F×q m·deg(t) )s×(F
×

q m·deg(t) )n

9 ◦TrF
qm·deg(t)/Fq (H(t, A, λ, x)).

Define by L(H, t, T ) := exp
(∑

m≥1 Sm(H, t)T m/m
)

the associated L-function, a
rational function over Q(ζp). By [Adolphson and Sperber 2012], L(H, t, T )(−1)s+n+1
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has a unique p-adic unit root given by Fad(t)(t̂, Â). As mentioned above, this
relation should conjecturally hold in greater generality.

Remark. The existence of a unique p-adic unit root is a general result for unit
root L-functions defined over the torus Gs

m . This includes the classical case of L-
functions of exponential sums defined over the torus; see [Haessig 2014, Section 3]
for details.

To give an indication of the proof, we use the language of σ -modules. See
[Haessig 2014] as a reference for the following notation. Let K be a finite ex-
tension field of Qp with uniformizer π , ring of integers R, and residue field Fq .
Let (M, φ) be a c · log-convergent, nuclear σ -module over R, ordinary at slope
zero of rank one (h0 = 1) with basis {ei }i≥0. Assume further the normalization
condition φe0 ≡ e0 mod(π) and φei ≡ 0 mod(π) for all i ≥ 1. With this setup, it
follows that the associated unit root L-function Lunit(κ, φ, T )(−1)s+1

has a unique
p-adic unit root (and no unit poles). To see this we first note that, by [Haessig
2014], Lunit(κ, φ, T )(−1)s+1

≡ det(1− FB[κ]T ) mod π . Next, it follows from the
normalization condition that the matrix B[κ] takes the form

( 1
0

0
0

)
mod π , and thus

det(1− FB[κ]T )≡ 1−T mod π . Hence, the Fredholm determinant det(1− FB[κ]T )
has a unique p-adic unit root proving the result.

2. Lower deformation family

Let f ∈Fq [{tu}u∈supp( f ), x±1 , . . . , x±n ] be of the form f (t, x)=
∑

tu xu . In particular,
the coefficient of every monomial xu in f is a new variable tu . Denote by 1∞( f )
the Newton polytope at infinity of f , defined as the convex closure of supp( f )∪{0}
in Rn . Let Cone( f ) be the union of all rays emanating from the origin and passing
through1∞( f ), and set M :=M( f ) :=Cone( f )∩Zn . We define a weight function
w on M as follows. For u ∈M , letw(u) be the smallest nonnegative rational number
such that u ∈ w(u)1( f ). It is convenient to assume w(u) = 1 for all u in the x-
support of f . In particular this implies that f has no constant term. Let D denote
the smallest positive integer such that w(M)⊂ (1/D)Z≥0. The weight function w
satisfies the following norm-like properties:

(1) w(u)= 0 if and only if u = 0.

(2) w(cu)= cw(u) for every c ≥ 0.

(3) w(u+v)≤w(u)+w(v) for every u, v ∈ M , with equality holding if and only
if u and v are cofacial.

It is convenient to assume the lower-order deformation P ∈Fq [λ
±

1 ,...,λ
±
s ,x
±

1 ,...,x
±
n ]

has no constant term so the origin in Rn is not in the x-support of P . In fact, if
we write P(λ, x) =

∑
u∈M Pu(λ)xu , then 0 < w(u) < 1. Our lower deformation
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family then is defined by G(t, λ, x) := f (t, x)+ P(λ, x). Set

(1) U :=
{( 1

1−w(u)

)
γ ∈Qs

∣∣ (γ, u) ∈ supp(P)
}
,

and let 0 :=1∞(U )⊂Rs . Similarly, define M(0) :=Cone(0)∩Zs with associated
polyhedral weight function w0. The polyhedral weight makes sense as well on
points in Cone(0) having real coordinates. Since 0<w(u)<1 for (γ, u)∈ supp(P),
it follows that w0(δ) < 1 for any δ = γ /(1−w(u)) ∈U . Equivalently, w0(γ ) < 1
for any (γ, u) ∈ supp(P). We call 0 the relative polytope of the family G(x, t).

Rings of p-adic analytic functions. Let ζp be a primitive p-th root of unity, Qq be
the unramified extension of Qp of degree a := [Fq : Fp], and denote by Zq its ring of
integers. Then Zq [ζp] and Zp[ζp] are the rings of integers of Qq(ζp) and Qp(ζp),
respectively. Let π ∈Qp satisfy π p−1

=−p, and let π̃ be an element which satisfies
ordp(π̃) = (p − 1)/p2. We may have occasion to work over a purely ramified
extension �0 =Qp(π̂) of Qp with uniformizer π̂ which contains Qp(ζp, π̃) and
for which π̃ is an integral power of π̂ . Let �=Qq(π̂). Denote by R the ring of
integers of �, and R0 the ring of integers of �0. Set

O0 :=

{ ∑
γ∈M(0)

C(γ )π̃w0(γ )λγ
∣∣∣C(γ ) ∈ R,C(γ )→ 0 as γ →∞

}
.

(We note that the fractional powers of π̃ are to be understood as integral powers of
a uniformizer of R.) Then O0 is a ring with a discrete valuation given by∣∣∣∣ ∑

γ∈M(0)

C(γ )λγ π̃w0(γ )
∣∣∣∣ := sup

γ∈M(0)
|C(γ )|.

Define

C0(O0) :=

{
ξ =

∑
µ∈M( f )

ξ(µ)π̃w(µ)xµ
∣∣∣ ξ(µ) ∈O0, ξ(µ)→ 0 as µ→∞

}
,

an O0-algebra.
In the following, q = pa is an arbitrary power of p (including the case a = 0),

so we can handle the cases of tq , t p, and t at the same time. Define

(2) O0,q :=

{ ∑
γ∈M(0)

C(γ )λγ π̃wq0(γ )
∣∣∣C(γ ) ∈ R,C(γ )→ 0 as γ →∞

}
.

This ring is the same as O0 except using a weight function defined by the dilation q0
(that is,wq0(γ )=w0(γ )/q). We note that here O0,1=O0. A discrete valuation may
be defined as follows. If ξ =

∑
γ∈M(0) C(γ )π̃wq0(γ )λγ ∈ O0,q then the valuation
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on O0,q is given by
|ξ | := sup

γ∈M(0)
|C(γ )|.

We may also define the space

(3) C0(O0,q) :=

{ ∑
u∈M( f )

ξu xuπ̃w(u)
∣∣∣ ξu ∈O0,q , ξu→ 0 as u→∞

}
.

For η =
∑

u∈M( f ) ξuπ̃
w(u)xu

∈ C0(O0,q), we set

|η| = sup
u∈M( f )

|ξu|.

Frobenius. At present, we fix t ∈ (Fq)
|A|, returning to variation in t in the last sec-

tion. Recall the notation deg(t)=d(t)=[Fq(t) :Fq ] and qt=qd(t). Now let λ∈ (Fq)
s .

Similarly, denote by deg(λ) or d(λ) the degree [Fq(λ, t) : Fq(t)], and qt,λ= qd(t)d(λ).
Dwork defines a splitting function by θ(T ) := expπ(T − T p)=

∑
∞

i=0 θi T i . It
is well-known that ordp(θi )≥ i(p− 1)/p2 for all i ≥ 0. Writing

G(t, λ, x)= f (t, x)+ P(λ, x)=
∑

tu xu
+

∑
A(γ, v)λγ xv

in Fqt [x
±

1 , . . . , x±n , λ
±

1 , . . . , λ
±
s ], we let

Ĝ(t̂, λ, x) :=
∑

t̂u xu
+

∑
Â(γ, v)λγ xv ∈ R[x±1 , . . . , x±n , λ

±

1 , . . . , λ
±

s ]

be the lifting of G by lifting the coefficients A(γ, u) and t by Teichmüller units. Set

(4) F(t̂, λ, x) :=
∏

u∈supp( f )

θ(t̂u xu) ·
∏

(γ,v)∈supp(P)

θ( Â(γ, v)λγ xv)

and for any m ≥ 1,

(5) Fm(t̂, λ, x) :=
m−1∏
i=0

Fσ
i
(t̂, λpi

, x pi
),

where σ is the extension of the usual Frobenius generator of Gal(Qq/Qp) to �
with σ(π̂)= π̂ . Then, σ acts on a series with coefficients in � by acting on these
coefficients. Note that if we set

Fm(t̂, λ, x)=
∑

u∈M( f )

Bm(u)xu
=

∑
γ∈M(0)
u∈M( f )

Bm(γ, u)λγ xu,

then

ordp(Bm(γ, u))≥
w0(γ )+w(u)

pm−1 ·
p− 1

p2 .
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Define ψx by
∑

C(u)xu
7→
∑

C(pu)xu . Set

α1 := σ
−1
◦ψx ◦ F(t̂, λ, x).

A similar argument to that in [Haessig and Sperber 2014] demonstrates that α1 is a
σ−1-semilinear map of C0(O0) into C0(O0,p). Similarly, for m ≥ 1, if we define

αm := σ
−m
◦ψm

x ◦ Fm(t̂, λ, x),

then αm maps C0(O0) into C0(O0,pm ). In particular,

αm(π̃
w(v)xv)=

∑
u∈M( f )

π̃w(v)−w(u)Bm(pmu− v)π̃w(u)xu,

with ordp(π̃
w(v)−w(u)Bm(pmu−v))≥

(
(p−1)w(u)+(1−1/pm−1)w(v)

)
ordp(π̃).

Summarizing, in C0(O0,pm ) we have |αm(π̃
w(v)xv)| ≤ |π̃ |w(v)(p

m−1
−1)/pm−1

.

Fibers. Define

αt,λ := ψ
ad(t)d(λ)
x ◦ Fad(t)d(λ)(t̂, λ̂, x),

where t̂ and λ̂ are the Teichmüller representatives of t and λ, respectively. Notice
that αt,λ is an endomorphism of C0(λ̂), where C0(λ̂) denotes the space obtained
from C0(O0) by applying the map on O0 which sends λ to λ̂.

To relate the L-function L(t, λ, T ) to the operator αt,λ it is convenient to introduce
the following operation: for any function g(T ), define g(T )δq := g(T )/g(qT ). Set
qt,λ := qd(t)d(λ). Dwork’s trace formula states

(qm
t,λ− 1)n Tr(αm

t,λ | C0(λ̂))=
∑

x∈(F∗qm
t,λ
)n

9 ◦TrFqm
t,λ
/Fq (G(t, λ, x))

Equivalently,

L(t, λ, T )(−1)n+1
= det

(
1−αt,λT | C0(λ̂)

)δn
qt,λ .

This is a rational function, and it is well-known that L(t, λ, T )(−1)n+1
has a unique

unit (reciprocal) root π0(t, λ) (see [Adolphson and Sperber 2012], for example).
This unit root is a 1-unit, so it makes sense to define, for any p-adic integer κ , the
unit root L-function at the fiber t :

(6) Lunit(κ, t, T ) :=
∏

λ∈|Gs
m/Fq (t)|

1
1−π0(t, λ)κT deg(λ)

.
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Denote the roots of det(1− αt,λT | C0(λ̂)) by πi (t, λ), and order them such that
ordp πi (t, λ)≤ ordp πi+1(t, λ) for i ≥ 0. For each m ≥ 0, define

L(m)(κ, t, T ) :=∏
λ∈|Gs

m/Fqt
|

∏(
1−π0(t, λ)κ−r−mπi1(t, λ) · · ·πir (t, λ)π j1(t, λ) · · ·π jm (t, λ)T

deg(λ))−1
,

where the inner product runs over all r≥0, 1≤ i1≤ i2≤· · · , and 0≤ j1≤ j2<· · ·< jm .
Note that the factors indexed by ik are allowed to repeat, whereas the factors indexed
by jl are distinct. Intuitively, the inner product is det(1−Symκ−m αt,λ⊗∧

mαt,λT ).
From [Haessig 2014, Lemma 2.1],

Lunit(κ, t, T )=
∞∏

i=0

L(i)(κ, t, T )(−1)i−1(i−1)(7)

= L(0)(κ, t, T )
∏
i≥2

L(i)(κ, t, T )(−1)i−1(i−1).

In the next section, we will show each L(i) with i ≥ 1 has no unit root or pole,
whereas L(0) will. This will show Lunit(κ, t, T )(−1)s+1

has a unique unit root.

3. Infinite symmetric powers

Denote by S(λ̂) := R[λ̂][[{eu}u∈M\{0}]] the formal power series ring over R[λ̂] in
the variables {eu}u∈M\{0} which are formal symbols indexed by M \ {0}. We equip
this ring with the sup-norm on coefficients (in R[λ̂]). This ring will play the role
of the formal infinite symmetric power of C0(λ̂) over R[λ̂] in a way we describe
below. It is convenient to write the monomials of degree r in the variables {eu}

using the notation eu := eu1 · · · eur , where u1, . . . , ur ∈ M( f ) \ {0} for r ≥ 0. To
fix ideas, it helps to assume we have a linear order on M( f ) \ {0} with the property
that if w(u) ≤ w(v) for u, v ∈ M( f ) \ {0}, then u ≤ v. We may extend this to
all of M( f ) by taking 0 as the least element. We then agree that in this notation
we have 0 < u1 ≤ u2 ≤ · · · ≤ ur (equality indicating repeated variables). When
r = 0 we understand there is only the monomial 1 of degree 0. We extend the
weight function w to such monomials by defining, for eu := eu1 · · · eur , the weight
w(u) :=w(u1)+· · ·+w(ur ). Denote by S(M) the set of all indices u corresponding
to monomials eu. We emphasize that we will often equate elements u ∈ S(M) with
the monomials eu; it should be clear from the context which meaning is desired.
We may assume S(M) has a linear order defined on it such that the weight w(u)
is nondecreasing and such that the restriction of this linear order to M( f ) is our
earlier linear order.
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We may identify C0(λ̂) as an R[λ̂]-submodule of S(λ̂) by defining an R[λ̂]-linear
map

ϒ : C0(λ̂)→ S(λ̂) via
∑

u∈M( f )

ξuπ̃
w(u)xu

7−→ ξ0+
∑

u∈M( f )\{0}

ξueu .

That is, the image ϒ(C0(λ̂)) consists of the powers series with support in the
monomials of S(λ̂) of degree ≤ 1 with coefficients {ξu}u∈M( f ) ⊂ R[λ̂] satisfying
ξu → 0 as u→∞. Note that ϒ(π̃w(u)xu) = eu for u ∈ M \ {0}, and ϒ(1) := 1.
Define the R[λ̂]-subalgebra of S(λ̂)

S0(λ̂) :=

{
ξ =

∑
u∈S(M)

ξ(u)eu

∣∣∣ ξ(u) ∈ R[λ̂], ξ(u)→ 0 as w(u)→∞
}
.

Hence, ϒ(C0(λ̂)) ⊂ S0(λ̂). Note that we may write αt,λ(1) = 1+ η(x) for some
element η ∈ C0(λ̂) satisfying |η| < 1 with support of η in M( f ) \ {0}. For
ξ =

∑
ξ(u)eu ∈ S0(λ̂), define |ξ | :=

∑
u∈S(M) |ξ(u)|, which makes S0(λ̂) a p-

adic Banach algebra over R[λ̂]. Then for any ζ ∈ C0(λ̂), |ϒ(ζ )| = |ζ |. It fol-
lows that (ϒ ◦ αt,λ(1))

τ is defined and belongs to S0(λ̂) for any τ ∈ Zp. Define
[αt,λ]κ : S0(λ̂)→ S0(λ̂) by extending linearly over R[λ̂] the action on monomials
of degree r :

[αt,λ]κ(eu1 · · · eur ) :=(ϒ◦αt,λ(1))
κ−r (ϒ◦αt,λ(π̃

w(u1)xu1)) · · · (ϒ◦αt,λ(π̃
w(ur )xur )).

By a similar argument to [Haessig 2014, Corollary 2.4, part 2],

det
(
1− [αt,λ]κT | S0(λ̂)

)
=

∞∏
r=0

∏(
1−π0(t, λ)κ−rπi1(t, λ) · · ·πir (t, λ)T

)
,

where the inner product runs over all multisets {i1, . . . , ir } of positive integers of
cardinality r satisfying 1≤ i1 ≤ i2 ≤ · · · .

Infinite symmetric power on the family. Denote by S(O0) := O0[[{eu}u∈M\{0}]],
the formal power series ring supported by the monomials S(M), with coefficients
in the ring O0. As in the constant fiber case above, this ring is equipped with the
sup-norm on coefficients. Define the p-adic Banach algebra over O0,

S0(O0) :=

{
ξ =

∑
u∈S(M)

ξ(u)eu

∣∣∣ ξ(u) ∈O0, ξ(u)→ 0 as w(u)→∞
}

=

{
ξ =

∑
γ∈M(0)
u∈S(M)

C(γ, u)π̃w0(γ )λγ eu

∣∣∣
C(γ, u) ∈ R,C(γ, u)→ 0 as w0(γ )+w(u)→∞

}
,
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and similarly, for any q= pa an arbitrary power of p (including the case when a=0),

S0(O0,q) :=

{ ∑
u∈S(M)

ξ(u)eu

∣∣∣ ξ(u) ∈O0,q , ξ(u)→ 0 as w(u)→∞
}
.

Note that S0(O0,q) is a p-adic Banach algebra over O0,q with S(M) an orthonormal
basis. We embed C0(O0,q) ↪→ S0(O0,q) via a map ϒ defined in the same way as
on the fibers. Again, (ϒ ◦αm(1))τ ∈ S0(O0,pm ) for any τ ∈ Zp. We define a map
[αm]κ : S0(O0)→ S0(O0,pm ) as follows. On a basis element eu = eu1 · · · eur with
r > 0 and 0< u1 ≤ · · · ≤ ur ,

[αm](eu) := [αm]κ(eu1 · · · eur )

:= (ϒ ◦αm(1))κ−r (ϒ ◦αm(π̃
w(u1)xu1)) · · · (ϒ ◦αm(π̃

w(ur )xur )).

If r = 0,

[αm]κ(1) := ϒ(αm(1))κ .

We may calculate an estimate for αm(π̃
w(u)xu), where we recall that αm :=

σ−m
◦ψm

x ◦ Fm(t, λ, x). As noted earlier, we may write

(8) Fm(t̂, λ, x)=
∑

γ∈M(0),v∈M( f )

B(γ, v)π̃ (w0(γ )+w(v))/pm−1
λγ xv,

with ordp B(γ, r)≥ 0, and set Bm(γ, v)= B(γ, v)π̃ (w0(γ )+w(v))/pm−1
. So

αm(π̃
w(u)xu)= ψm

x (Fm(t̂, λ, x) · π̃w(u)xu)

=

∑(
π̃ (w0(γ )+w(p

mv−u))/pm−1
+w(u)−w0(γ )/pm−1

−w(v)

× B(γ, pmv− u) · π̃w0(γ )/pm−1
λγ · π̃w(v)xv

)
.

We note that

w(pmv−u)
pm−1 +w(u)−w(v)≥ pw(v)− w(u)

pm−1 +w(u)−w(v)

≥ (p− 1)w(v)+ pm−1
−1

pm−1 w(u).

Hence,

(9) |ϒ(αm(π̃
w(u)xu))| ≤ |π̃ |w(u)(p

m−1
−1)/pm−1

.

The R-linear map ψλ : S0(O0,p)→ S0(O0) is defined by

ψλ :
∑

γ∈M(0)
u∈S(M)

A(γ, u)λγ eu 7−→
∑

γ∈M(0)
u∈S(M)

A(pγ, u)λγ eu.
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We may in the usual manner view S0(O0) as a p-adic Banach space over R with
orthonormal basis {π̃w0(γ )λγ eu | γ ∈ M(0), u ∈ S(M)}. Then

βκ,t := ψ
ad(t)
λ ◦ [αad(t)]κ : S0(O0)→ S0(O0)

is a completely continuous operator (over R). Set B := {eu | u ∈ S(M)}. Let
B[κ]t (λ) be the matrix of [αad(t)]κ with respect to B, the basis of S0(O0) over O0

(as well as S0(O0,pm ) over O0,pm ). The entries of B[κ]t (λ) are series with support
in B and coefficients in O0,pm (which tend to 0 as w(u)→∞). We may write
B[κ]t (λ)=

∑
γ∈M(0) b[κ]γ λ

γ , where b[κ]γ is a matrix with rows and columns indexed
by M(0) and entries in R. We define the matrix FB[κ]t

:= (b[κ]qtγ−µ
)(γ,µ) indexed

by γ, µ ∈ M(0), and we set b[κ]qtγ−µ
:= 0 if qtγ −µ 6∈ M(0). Note that FB[κ]t

is a
matrix with entries in R whose (γ, µ) entry is again a matrix in R with rows and
columns indexed by M(0). As we showed in [Haessig and Sperber 2014, §2.3],
FB[κ]t

is the matrix of the completely continuous operator βκ,t , and as such it has a
well-defined Fredholm determinant. In particular, the Dwork trace formula gives

(qm
t − 1)s Tr(βm

κ,t)= (q
m
t − 1)s Tr(Fm

B[κ]t
)

=

∑
λ

qm
t −1=1

Tr
(
B[κ]t (λ̂qm−1

t ) · · · B[κ]t (λ̂qt )B[κ]t(λ̂)
)

=

∑
λ∈(F∗qm

t
)s

λ̂=Teich(λ)

Tr
(
[αt,λ]

m
κ | S0(λ̂)

)
.

Using an argument similar to that succeeding [Haessig 2014, (8)], it follows that

(10) L(0)(κ, t, T )(−1)s+1
= det(1−βκ,t T )

δs
qt .

Since the Fredholm determinant det(1−βκ,t T ) is p-adically entire, this demonstrates
the meromorphic continuation of L(0)(κ, t, T ). Since the matrix of βκ,t shows that
det(1−βκ,t T ) has a unique unit root, it follows that L(0)(κ, t, T )(−1)s+1

has a unique
unit root equal in fact to the unique unit root of det(1−βκ,t T ).

In a similar way, define on the space S0(O0)⊗∧
mC0(O0), the operator β(m)

κ,t :=

ψ
ad(t)
λ ◦

(
[αad(t)]κ−m ⊗∧

mαad(t)
)
. Then

L(m)(κ, t, T )(−1)s+1
= det(1−β(m)

κ,t T )δ
s
qt .

In particular, for m ≥ 2, due to the wedge product, L(m)(κ, t, T )(−1)s+1
has no zeros

or poles on the closed unit disk. Hence, by (7), we have:

Theorem 3.1. Lunit(κ, t, T )(−1)s+1
has a unique p-adic unit root which in fact is

the unique unit root of L(0)(κ, t, T )(−1)s+1
.
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4. Dual theory

In this section, we define a dual theory for the operator βκ,t acting on S0(O0).
We begin by defining a dual map to αad(t). For q = pa an arbitrary power of p
(including the case a = 0) define the O0,q -module

C∗0 (O0,q) :=

{ ∑
u∈M( f )

ξ(u)π̃−w(u)x−u
∣∣∣ ξ(u) ∈O0,q

}
,

equipped with the sup-norm on the set of coefficients {ξ(u)}u∈M( f ). Define the
projection (or truncation) map

prM( f ) :
∑
u∈Zn

A(u)x−u
7−→

∑
u∈M( f )

A(u)x−u .

For each m ≥ 1, define

α∗m := prM( f ) ◦Fm(t̂, λ, x) ◦8m
x ◦ σ

m,

where σ ∈ Gal(�/�0) acts on coefficients (as mentioned above), and 8x acts on
monomials by 8x(xu) := x pu .

Lemma 4.1. α∗m :C∗0 (O0,pm )→C∗0 (O0,pm ) is a linear map over O0,pm . Furthermore,
writing

α∗m(π̃
−w(v)x−v)=

∑
z∈M( f )

Cv(z)π̃−w(z)x−z,

with Cv(z) ∈O0,pm , then Cv(z)→ 0 in O0,pm as w(v)→∞. In addition, we may
write α∗m(1)= 1+ η∗m(λ, x), with η∗m(λ, x) ∈ C∗0 (O0,pm ) having |η∗m | ≤ |π̃ |.

Proof. We consider α∗m(π̃
−w(v)x−v) with v ∈M( f ). Using (8), we may write this as

α∗m(π̃
−w(v)x−v)=

∑
z∈M( f )
γ∈M(0)

(
B(γ,−z+ pmv)π̃w0(γ )/pm−1

λγ

× π̃−w(v)+w(z)+(w(−z+pmv)/pm−1)π̃−w(z)x−z).
Since

−w(v)+w(z)+ 1
pm−1w(−z+ pmv)≥

pm−1
−1

pm−1 w(z)+ (p− 1)w(v),

we see that

(11) α∗m(π̃
−w(v)x−v)= π̃ (p−1)w(v)ζ ∗v (λ, x),

where ζ ∗v (λ, x) ∈ C∗0 (O0,pm ).
If ξ∗ ∈ C∗0 (O0,pm ) with ξ∗ =

∑
v∈M( f ) Av(λ)π̃−w(v)x−v, then

α∗m(ξ
∗)=

∑
v∈M( f )

π̃ (p−1)w(v)Av(λ)ζ ∗v (λ, x) ∈ C∗0 (O0,pm ).
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Finally, note that by the above,

α∗m(1)= 1+
∑

γ∈M(0)\{0}

B(γ, 0)π̃w(γ )/pm−1
λγ

+

∑
z∈M( f )\{0}
γ∈M(0)

B(γ,−z)π̃w(z)+(w(−z)/pm−1)(π̃w(γ )/pm−1
λγ )(π̃w(−z)x−z).

This proves the lemma. �

Define

A0 :=

{ ∑
γ∈M(0)

A(γ )λγ
∣∣A(γ ) ∈ R and A(γ )→ 0 as w(γ )→∞

}
.

For q1 and q2 any two powers of the prime p, define a pairing

(· , ·) : C0(O0,q1)× C∗0 (O0,q2)→A0

by

(ξ, ξ∗) := the constant term with respect to x of the product ξ · ξ∗.

This product is well-defined since if {η1(v)}v∈M(0) ⊂ O0,q1 with η1(v)→ 0 as
w(v)→∞, and {η2(v)}v∈M(0) ⊂ O0,q2 , then

∑
v∈M(0) η1(v)η2(v) ∈ A0. Next let

ξ ∈ C0(O0), ξ∗ ∈ C∗0 (O0,pm ). Writing Fm for Fm(t̂, λ, x), observe that

(12) ((ψm
x ◦ Fm)ξ, ξ

∗)= (Fmξ,8
m
x ξ
∗)= (ξ, (prM( f ) ◦Fm ◦8

m
x )(ξ

∗)).

Symmetric powers. We construct in a now familiar manner formal k-th symmetric
powers of C0(O0) and C∗0 (O0,pm ) over O0. Similar to the construction used above,
we consider a linear order on {u ∈ M( f )} under which the weight is nondecreasing,
say 0 = u0 ≤ u1 ≤ · · · . We will for convenience of notation write the “basis” as
{Eu := π̃

w(u)xu
| u ∈ M( f )}, and the k-th symmetric power of the basis as

Eu := Eu j1
Eu j2
· · · Eu jk

(0≤ j1 ≤ j2 ≤ · · · ≤ jk),

where u runs over multisets of indices of cardinality k, say

{u = (u j1, u j2, . . . , u jk ) | 0≤ u j1 ≤ u j2 ≤ · · · ≤ u jk }.

Defining

Symk
O0

C0(O0) :=

{
ξ =

∑
|u|=k

ξu(λ)Eu

∣∣∣ ξu(λ) ∈O0, ξu(λ)→ 0 as w(u)→+∞
}
,

we then define the map

Symk αm : Symk
O0

C0(O0)→ Symk
O0,pm C0(O0,pm )
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as follows. Let

αm(π̃
w(u)xu)=

∑
v∈M( f )

Am
v,u(λ)π̃

w(v)xv

=

∑
v∈M( f )

Am
v,u(λ)Ev.

We know from Section 2 that

Am
u,v =

∑
γ∈M(0),v∈M( f )

π̃w(u)−w(v)Bm(γ, pmv− u)λγ .

Then

Symk αm(Eu j1
Eu j2
· · · Eu jk

)=
∑

Am
vl1 ,u j1

(λ) · · ·Am
vlk ,u jk

(λ)Evl1
· · · Evlk

,

where the sum runs over all vli ∈ M( f ) for each i , 1 ≤ i ≤ k. Since, by above,
|αm(π̃

w(u)xu)| ≤ |π̃ |w(u)(p
m−1
−1)/pm−1

therefore Symk(αm) is a completely continu-
ous map. The mapϒ may be extended to Symk

O0
(C0(O0)) ↪→S0(O0) as follows. For

u = (u j1, . . . , u jk ) an ordered multiset of cardinality k with elements in M( f ), set

ϒ(Eu)=

{
eu if j1 > 0,
eu jr+1

eu jr+2
· · · eu jk

if j1 = j2 = · · · = jr = 0.

Thus ϒ(Symk
O0

C0(O0)) consists of all power-series with coefficients in O0 and
support in monomials eu of degree ≤ k, with coefficients going to 0 as w(u) =
w(u1)+ · · ·+w(ur )→∞.

We have as well a dual variant

Symk
O0,pm C

∗

0 (O0,pm ) :=

{∑
|u|=k

Au(λ)E∗u
∣∣∣ Au(λ) ∈O0,pm

}
,

where we denote E∗u := π̃
−w(u)x−u for each u ∈ M( f ), and using the linear order

above write for each multiset u = (u j1, . . . , u jk ) of cardinality k of indices, with
j1 ≤ · · · ≤ jk we set E∗u := E∗u1

· · · E∗uk
. Then

Symk
O0,pm C

∗

0 (O0,pm )=

{∑
|u|=k

ξ(u)E∗u
∣∣∣ ξ(u) ∈O0,pm

}
,

there being no requirement here that the coefficients tend to 0 as w(u)→∞. Since
α∗m : C∗0 (O0,pm )→ C∗0 (O0,pm ), we may define for u = (u j1, . . . , u jk ),

Symk(α∗m)(E
∗

u)=
∑

A∗vl1 ,u j1
(λ)A∗vl2 ,u j2

(λ) · · ·A∗vlk ,u jk
(λ)E∗v ,
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where v= (vl1, . . . vlk ), the sum runs over vli ∈ {π̃
−w(u)x−u

| u ∈M( f )}, and where
α∗m(π̃

−w(u)x−u)=
∑

v∈M( f )A
∗
u,v(λ)π̃

−w(v)x−v . The map Symk(α∗m) then is defined
on Symk

O0,pm since, as we noted earlier in (11), |α∗m(π̃
−w(u)x−u)| ≤ |π̃ |w(u)(p−1).

We extend the pairing above to these symmetric power spaces by “linearly” ex-
tending the following: for decomposable elements ξ = ξ1 · · · ξk ∈Symk

O0,q1
C0(O0,q1)

and ξ∗ = ξ∗1 · · · ξ
∗

k ∈ Symk
O0,q2

C∗0 (O0,q2),

(13) (ξ, ξ∗) := (ξ1 · · · ξk, ξ
∗

1 · · · ξ
∗

k )k :=
1
k!

∑
σ∈Sk

k∏
i=1

(ξi , ξ
∗

σ(i)),

where Sk denotes the symmetric group on k letters. This pairing (· , ·)k is well-
defined since A0 is a ring. It follows from (12) that, for ξ ∈ Symk C0(O0) and
ξ∗ ∈ Symk C∗0 (O0,qt ),

(14) (Symk αad(t)ξ, ξ
∗)k = (ξ,Symk α∗ad(t)ξ

∗)k .

Infinite symmetric powers. Denote by S∗0 (O0) :=O0[[e∗u : u ∈ M \ {0}]] the formal
power series ring over O0 in the variables {e∗u}u∈M\{0}, a set of formal symbols
indexed by M \ {0}. We endow S∗0 (O0) with the sup-norm on coefficients. Mono-
mials in S∗0 (O0) have the form e∗u := e∗u1

e∗u2
· · · e∗ur

, where u1, . . . , ur ∈ M( f ) \ {0}
for r > 0, and e∗0 := 1 when r = 0. Thus, elements in the ring may be described by

S∗0 (O0) :=

{
ξ∗ =

∑
u∈S(M)

ξ∗(u)e∗u
∣∣∣ ξ∗(u) ∈O0

}
.

Using the same notation as before, define the embedding ϒ : C∗0 (O0) ↪→ S∗0 (O0)

by ϒ(π̃−w(u)x−u) := e∗u for u ∈ M \ {0}, and ϒ(1) := e∗0 = 1. For each m ≥ 1,
recall from Lemma 4.1 that α∗m(1)= 1+η∗m(λ, x) for some element η∗m ∈ C∗0 (O0,pm )

satisfying |η∗m | < 1. It follows that (ϒ ◦ α∗m(1))
τ
∈ S∗0 (O0,pm ) for any τ ∈ Zp.

For m ≥ 1, we define the map [α∗m]κ : S∗0 (O0,pm )→ S∗0 (O0,pm ) by

(15) [α∗m]κ(e
∗

u1
· · · e∗ur

)

:= (ϒ(α∗m(1)))
κ−r (ϒ(α∗m(π̃

−w(u1) x−u1))) · · · (ϒ(α∗m(π̃
−w(ur )x−ur ))).

The product on the right side makes sense and lives in S∗0 (O0,pm ) since S∗0 (O0,pm )

is a ring and each factor is clearly in S∗0 (O0,pm ). Furthermore,

(16) |[α∗m]κ(e
∗

u)| ≤ |π̃
(p−1)w(u)

|.

Define the R-module

O∗0,q :=
{
ζ ∗ =

∑
γ∈M(0)

ζ ∗(γ )π̃−wq0(γ )λ−γ
∣∣∣ ζ ∗(γ ) ∈ R

}
.
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Here we do not insist that the coefficients go to 0 and we do not claim O∗0,q is a
ring. As usual we define an absolute value on O∗0,q by |ζ ∗| := supγ∈M(0) |ζ

∗(γ )|.
For series in λ, we define a projection (or truncation) map

prM(0) :
∑
γ∈Zs

A(γ )λ−γ 7−→
∑

γ∈M(0)

A(γ )λ−γ .

Note that for any q a power of the prime p, if γ , γ ′, and δ all belong to M(0)
with γ −γ ′ =−δ then wq0(γ )−wq0(γ

′)≥−wq0(δ). It follows that, for ξ ∈O0,q

and ξ∗ ∈O∗0,q ,

(17) prM(0)(ξ · ξ
∗) ∈O∗0,q .

Define the R module

S∗0 (O
∗

0) :=

{
ω∗ =

∑
γ∈M(0)
u∈S(M)

ω∗(γ, u)π̃−w0(γ )λ−γ e∗u
∣∣∣ω∗(γ, u) ∈ R

}
.

Define the map 8λ by λ 7→ λp. We define an R-linear map

β∗
κ,t := prM(0) ◦[α

∗

ad(t)]κ ◦8
ad(t)
λ

by “linearly” extending over R the action

β∗
κ,t(λ

−γ e∗u)= prM(0)(λ
−qtγ · [α∗ad(t)]κ(e

∗

u)).

Lemma 4.2. β∗
κ,t is an R-linear endomorphism of S∗0 (O

∗

0).

Proof. We have remarked already that [α∗ad(t)]κ is a well-defined endomorphism of
S∗0 (O0,qt ). As such, we may write for each u ∈ S(M),

[α∗ad(t)]κ(e
∗

u)=
∑

σ∈M(0)
v∈S(M)

Bu(σ, v)π̃
wqt0

(σ )
λσ e∗v ∈ S

∗

0 (O0,qt ),

with Bu(σ, v)∈ R, and Bu(σ, v)→ 0 aswqt0(σ )+w(v)→∞ using (16). For ω∗=∑
γ∈M(0),u∈S(M) ω

∗(γ, u)π̃−w0(γ )λ−γ e∗u ∈ S∗0 (O
∗

0), we have

β∗
κ,t(ω

∗)= prM(0)

( ∑
γ∈M(0)
u∈S(M)

ω∗(γ, u)π̃−w0(γ )λ−qtγ · [α∗ad(t)]κ(e
∗

u)

)

= prM(0)

( ∑
γ∈M(0)

λ−qtγ
∑

u∈S(M)

ω∗(γ, u)
∑

σ∈M(0)
v∈S(M)

Bu(σ, v)π̃
−wqt0

(σ )
π̃−w0(γ )λσ e∗v

)

=

∑
τ∈M(0)
v∈S(M)

C(τ, v)π̃−w0(τ )λ−τ e∗v,
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where

C(τ, v) :=
∑

u∈S(M)

∑
γ,σ∈M(0)
qtγ−σ=τ

ω∗(γ, u)Bu(σ, v)π̃
−w0(γ )+wqt0(σ )+w0(τ ).

Observe that the exponent of π̃ satisfies

−w0(γ )+wqt0(σ )+w0(τ )≥
(
1− 1

qt

)
w0(τ ),

so that the term π̃
−w0(γ )+wqt0

(σ )+w0(τ ) is bounded in norm by 1 since w(τ)≥ 0, and
ω∗(γ, u) and Bu(σ, v)∈ R. On the other hand, Bu(σ, v)→0 asw0(σ )+w(v)→∞
so that the coefficient C(τ, v) is defined, in R, and β∗κ (ω

∗) ∈ S∗0 (O
∗

0). Clearly it is
R-linear. �

Estimation using finite symmetric powers. It is useful to estimate βκ,t and β∗
κ,t

using finite symmetric powers. For monomials eu or e∗u, with u ∈ S(M), u =
(u1, . . . , ur )∈ (M( f )\0)r , we say as usual that the degree or length of eu or e∗u is r .
For ξ ∈S0(O0), define length(ξ) as the supremum of the lengths of the monomials eu
in the support of ξ (i.e., those terms appearing with nonzero coefficients). In the
case length(ξ)= r , we may write ξ =

∑
|u|≤r ξ(u)eu, and ξ may be a series (not

a polynomial), since M( f ) and the set of monomials of degree ≤ r are infinite in
general. Similarly for ξ∗u .

Let k be a positive integer. Define S(k)0 (O0) := {ξ ∈ S0(O0) | length(ξ) ≤ k}.
Then the map

Ek−r
0 Eu1 · · · Eur 7−→ eu1eu2 · · · eur

identifies Symk C0(O0) with S(k)0 (O0) as O0-submodules in S0(O0). Similarly, we
identify Symk C∗0 (O0) in S∗0 (O0) as the O0-submodule S∗(k)0 (O0) of power series
in {e∗u | |u| ≤ k} with coefficients in O0. By transfer of structure, we have a pairing
(· , ·)k : S(k)0 (O0)×S∗(k)0 (O0)→O0.

We now work over R and define a new pairing 〈· , ·〉k :S(k)0 (O0)×S∗(k)0 (O∗0)→�

as follows. (Here again S∗(k)0 (O∗0) is the R-submodule of S∗0 (O
∗

0) of series with sup-
port in monomials of degree ≤ k, namely {e∗u | |u| ≤ k}, with coefficients in O∗0 .) Let

ξ :=
∑

γ∈M(0),u∈S(M)

ξ(γ, u)π̃w0(γ )λγ eu ∈ S(k)0 (O0),

ξ∗ :=
∑

σ∈M(0),v∈S(M)

ξ∗(σ, v)π̃−w0(σ )λ−σ e∗v ∈ S
∗(k)
0 (O∗0),

and set
〈ξ, ξ∗〉k :=

∑
γ∈M(0)
u∈S(M)

ξ(γ, u)ξ∗(γ, u)(eu, e∗u)k,
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where (· , ·)k was defined above. (Observe that as defined, a denominator k! is
introduced, so (eu, e∗u)k is a rational number with p-adic valuation bounded below
by −k/(p − 1). This is independent of u, so 〈ξ, ξ∗〉k is well-defined and takes
values in the R-submodule of � consisting of elements with ordp c ≥−k/(p−1).)
It is useful to think of 〈ξ, ξ∗〉k as the constant term with respect to λ and the eu and
e∗u of the product ξ · ξ∗, where the product eu · e∗v is defined to be zero if u 6= v and
(eu, e∗u)k if u = v.

Let km be a sequence of positive integers which tend to infinity (in the usual
archimedean sense) and such that limm→∞ km = κ p-adically. For each m we
have a Frobenius map Symkm (αad(t)) on Symkm Co(O0), as well as a Frobenius
map Symkm (α∗ad(t)) on Symkm C∗0 (O0,qt ). By transport of structure, we have then
a Frobenius map [αad(t)](κ;m) on S(km)

0 (O0) and a dual Frobenius [α∗ad(t)](κ;m) on
S∗(km)

0 (O0,qt ). We extend by zero these maps to all of S0(O0) and S∗0 (O0,qt ), re-
spectively. That is, we define

[αad(t)](κ;m)(eu) :=

{
[αad(t)]km (eu) if |u| ≤ km,

0 otherwise.

To avoid any possible confusion, we note

[αad(t)](κ;m)(eu1 · · · eur )

= (ϒ ◦αad(t)(1))
km−r (ϒ ◦αad(t)π̃

w(u1)xu1) · · · (ϒ ◦αad(t)π̃
w(ur )xur )

∼= (Symkm αad(t))(E
km−r
0 Eu1 · · · Eur ),

when r ≤ km . Similarly

[α∗ad(t)](κ;m)(e
∗

u) :=

{
[α∗ad(t)]km (e

∗
u) if |u| ≤ km,

0 otherwise.

Lemma 4.3. limm→∞[αad(t)](κ;m) = [αad(t)]κ as maps from S0(O0)→ S0(O0,qt ).

Proof. Write

(18) ([αad(t)](κ;m)− [αad(t)]κ)(eu1eu2 · · · eur )

=
(
ϒ(αad(t)(1))

km−r
−ϒ(αad(t)(1))

κ−r)
× (ϒ(αad(t)(π̃

w(u1)xu1))) · · · (ϒ(αad(t)(π̃
w(ur )xur ))).

If r ≤ km , then the first factor on the right may itself be factored into

−ϒ(αad(t)(1))
κ−r (1− (ϒ(αad(t)(1))

km−κ)).

If κ = km + pτ(m)σm (with τ(m)→∞ and σm ∈ Zp) then∣∣1− (ϒ(αad(t)(1))
km−κ

∣∣≤ ∣∣π̃ τ(m)+1∣∣,
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as in the proof of [Haessig 2014, Lemma 2.2], and using the estimate (9). If r > km

then (18) becomes(
[αad(t)](κ;m)− [αad(t)]κ

)
(eu)

=−[αad(t)]κeu

=−ϒ(αad(t)(1))
κ−r (ϒ(αad(t)(π̃

w(u1)xu1))) · · · (ϒ(αad(t)(π̃
w(ur )xur ))).

Applying (9) to the r rightmost factors we see that∣∣([αad(t)](κ;m)− [αad(t)]κ
)
eu
∣∣≤ |π̃ |w(u)(pad(t)−1

−1)/pad(t)−1
.

But w(u)≥ rw0 > kmw0 (where w0 :=min{w(u) | u ∈ M( f ) \ {0}}). In terms of
the operator norm,

‖[αad(t)]κ − [αad(t)](κ;m)‖ ≤ |π̃ |
min{τ(m)+1,kmw0(pad(t)−1

−1)/pad(t)−1
}.

As km and τ(m) both tend to infinity as m grows, we see that

lim
m→∞
[αad(t)](κ;m) = [αad(t)]κ . �

In an altogether similar manner, for u 6= 0 we have, by Lemma 4.1, that
α∗m(π̃

−w(u)x−u) belongs to C∗0 (O0,pm ), and (recalling (11))

|α∗m(π̃
−w(u)x−u)| ≤ |π̃ |(p−1)w(u).

Also α∗m(1)= 1+η∗(λ) with η∗(λ) ∈O0,pm and |η∗(λ)| ≤ |π̃ |. With these observa-
tions, an entirely similar argument shows limm→∞[α

∗

ad(t)](κ;m) = [α
∗

ad(t)]κ as maps
from S∗0 (O0,qt )→ S∗0 (O0,qt ). Define

β(κ;m),t := ψ
ad(t)
λ ◦ [αad(t)](κ;m),

β∗
(κ;m),t := prM(0) ◦[α

∗

ad(t)](κ;m) ◦8
ad(t)
λ .

As ψλ and8λ are bounded maps, it follows that as operators on S0(O0) and S∗0 (O
∗

0),
respectively,

(19) lim
m→∞

β(κ;m),t = βκ,t and lim
m→∞

β∗
(κ;m),t = β

∗

κ,t .

Lemma 4.4. For ξ ∈ S(km)
0 (O0) and ξ∗ ∈ S∗(km)

0 (O∗0),

(20) 〈β(κ;m),tξ, ξ
∗
〉km = 〈ξ, β

∗

(κ;m),tξ
∗
〉km .

Proof. With ξ ∈ S(km)
0 (O0) and ξ∗ ∈ S∗(km)

0 (O0,qt ), we may rewrite (14) as

(21) ([αad(t)](κ,m)ξ, ξ
∗)km = (ξ, [α

∗

ad(t)](κ;m)ξ
∗)km .
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By linearity we only need consider ξ = λγ eu and ξ∗ = λ−σ e∗v where γ, σ ∈ M(0)
and u, v ∈ S(M). We may write

(eu, [α
∗

ad(t)](κ;m)e
∗

v)km =

∑
τ∈M(0)

C(τ )λτ .

Next, observe that

〈ψλξ, ξ
∗
〉km = 〈ξ,8λξ

∗
〉km .

Hence, in the case ξ = λγ eu and ξ∗ = λ−σ e∗v ,

〈β(κ;m)ξ, ξ
∗
〉km = 〈[αad(t)](κ;m)ξ,8

ad(t)
λ ξ∗〉km

= the constant term of [λγ−qtσ ([αad(t)](κ;m)eu, e∗v)km ]

= the constant term of [λγ−qtσ (eu, [α
∗

ad(t)](κ;m)e
∗

v)km ] (by (21))

= the constant term of
[
λγ−qtσ

∑
τ∈M(0)

C(τ )λτ
]

=

{
C(qtσ − γ ) if qtσ − γ ∈ M(0),
0 otherwise.

In the other direction, again setting ξ = λγ eu and ξ∗ = λ−σ e∗v ,

〈ξ, β∗(κ;m)ξ
∗
〉km = the constant term of [λγ · prM(0)(λ

−qtσ (eu, [α
∗

ad(t ](κ;m)e
∗

v)km ))]

= the constant term of
[
λγ · prM(0)

( ∑
τ∈M(0)

C(τ )λ−(qtσ−τ)

)]

= the constant term of
[
λγ ·

∑
τ∈M(0) such that

qtσ−τ∈M(0)

C(τ )λ−(qtσ−τ)

]

=

{
C(qtσ − γ ) if qtσ − γ ∈ M(0),
0 otherwise. �

Observe that β(κ;m),t and βκ,t are completely continuous operators on the p-
adic Banach R-algebra S0(O0) (viewed as R-algebra) with orthonormal basis
{π̃w0(γ )λγ eu | γ ∈M(0), u∈S(M)}. Let T0(R) be S0(O0) viewed in this way as an
R-algebra. Similarly, write T ∗0 (R) for the b(I )-space (over R) in Serre’s terminology
with “basis” I := {π̃−w0(γ )λ−γ e∗u | γ ∈ M(0), u ∈ S(M)} with coefficients in R.
Again, T ∗0 (R) is just S∗0 (O

∗

0) viewed over R. Then

lim
m→∞

det(1−β(κ;m),t T )= det(1−βκ,t T ).
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Similarly, β∗
(κ;m),t is a continuous R-linear endomorphism of T ∗0 (R) to itself. We

may consider a matrix B∗(κ;m),t with entries in R defined by

β∗
(κ;m),t(π̃

−w0(γ )λ−γ e∗u)=
∑

B∗(κ;m),t(δ,v),(γ,u)π̃
−w0(δ)λ−δe∗v .

Using the matrix B∗(κ;m),t , we define in the usual way the Fredholm determinant
det(1 − β∗

(κ;m),t T ) =
∑

j≥0(−1) j+1C j (β
∗

(κ;m),t)T
j where C0 = 1 and C j is the

series of all principal j × j subdeterminants of the matrix B∗(κ;m),t . The 〈· , ·〉km -
adjointness of β(κ;m),t and β∗

(κ;m),t implies C j (β(κ;m),t)= C j (β
∗

(κ;m),t), so that

det(1−β∗
(κ;m),t T )= det(1−β(κ;m),t T ).

The uniform convergence limm→∞B∗(κ;m),t =:B∗
κ,t over the entries implies that

the series
∑

j≥0(−1) j+1C j (B
∗

κ,t)T
j is well-defined, and is the coefficient-wise

limit of det(1−B∗
(κ;m),t T ) as m→∞. If we define

det(1−β∗
κ,t T ) :=

∑
j≥0

(−1) j+1C j (B
∗

κ,t)T
j ,

then we have shown:

Theorem 4.5. det(1−βκ,t T )= det(1−β∗
κ,t T ), and thus from (10),

(22) L(0)(κ, t, T )(−1)s+1
= det(1−β∗

κ,t T )
δs

qt .

5. Eigenvector

Recall that

G(t, λ, x)= f (t, x)+ P(λ, x)=
∑

tu xu
+

∑
A(γ, v)λγ xv

in Fq [x±1 , . . . , x±n , λ
±

1 , . . . , λ
±
s , {tu}u∈supp( f )]. Let Â(γ, v) be the Teichmüller lift

in Qq for each (γ, v) ∈ supp(P), and denote the lifting of G by

Ĝ(t, λ, x) := f̂ (t, x)+ P̂(λ, x)=
∑

tu xu
+

∑
Â(γ, v)λγ xv

in Qq [x±1 , . . . , x±n , λ
±

1 , . . . , λ
±
s , {tu}u∈supp( f )]. We now replace every coefficient

of G (with respect to the variables x and λ) with a new variable 3:

f (3, x)=
∑

u∈supp( f )

3u xu,

P(3, λ, x)=
∑

(γ,v)∈supp(P)

3γ,vλ
γ xv,

H(3, λ, x) := f (3, x)+P(3, λ, x).
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As before, let 1∞(H) denote the Newton polytope of H at infinity in Rs+n (in λ
and x variables). Let Cone(H) be the cone in Rs+n over 1∞(H) and M(H) =
Cone(H) ∩ Zs+n be the relevant monoid. Clearly M(H) ⊂ M(0)× M( f ). By
our hypothesis that the x-support of P is contained in 1∞( f ) we have that the
polyhedral weight function on this polytope wH dominates the total weight w0+w
relative to the polyhedron 0×1∞; more precisely

w0(γ )+w(u)≤ wH (γ, u),

for all (γ, u) ∈ M(H).
The following definitions extend those in Section 4, by replacing R with the

(multivariable) formal power series ring K := R[[3]]. We equip K with the sup-norm.
Denote by K0 the subring of K of power series which converge on the closed unit
polydisk |3| ≤ 1. For q any power of the prime p, define

O0,q(K) :=
{ ∑
γ∈M(0)

C(γ )λγ π̃wq0(γ )
∣∣∣C(γ ) ∈ K,C(γ )→ 0 as γ →∞

}
,

C∗0 (O0,q(K)) :=
{ ∑

u∈M( f )

ξ(u)π̃−w(u)x−u
∣∣∣ ξ(u) ∈O0,q(K)

}
,

S∗0 (O0,q(K)) :=
{ ∑

u∈S(M)

ξ∗(u)e∗u
∣∣∣ ξ∗(u) ∈O0,q(K)

}
,

O∗0,q(K) :=
{ ∑
γ∈M(0)

ζ ∗(γ )π̃−wq0(γ )λ−γ
∣∣∣ ζ ∗(γ ) ∈ K},

S∗0 (O
∗

0,q(K)) :=
{ ∑
γ∈M(0)
u∈S(M)

ω∗(γ, u)π̃−wq0(γ )λ−γ e∗u
∣∣∣ω∗(γ, u) ∈ K

}
.

In all cases, the spaces above have versions (with obvious modification of notation),
where the ring of coefficients K is replaced by the subring K0. Define the maps

prM( f ) :
∑
u∈Zn

C(u)x−u
7−→

∑
u∈M( f )

C(u)x−u,

andϒ :C∗0 (O0(K)) ↪→S∗0 (O0(K)) by π̃−w(u)x−u
7→e∗u for u∈M\{0} andϒ(1) :=1.

Next, define a relative Frobenius map as follows. First, set

F(3, λ, x) :=
∏

u∈supp( f )

θ(3u xu) ·
∏

(γ,v)∈supp(P)

θ(3γ,vλ
γ xv),

Fm(3, λ, x) :=
m−1∏
i=0

F(3pi
, λpi

, x pi
),



152 C. DOUGLAS HAESSIG AND STEVEN SPERBER

and note that, similar to before,

Fm(3, λ, x)=
∑

(γ,u)∈M(H)

Bγ,u(3)π̃wH (γ,u)/pm−1
λγ xu,

with |Bγ,u(3)| ≤ 1. It follows that, if we set

α∗m,3 := prM( f ) ◦Fm(3, λ, x) ◦8m
x ,

where 8x sends xu
7→ x pu , then an argument similar to Lemma 4.1 shows

α∗m,3 : C
∗

0 (O0,pm (K))→ C∗0 (O0,pm (K)).

For any κ ∈ Zp, we define [α∗m,3]κ : S
∗

0 (O0,pm (K))→ S∗0 (O0,pm (K)) using (15).
By an argument similar to Lemma 4.2, the map

β∗
κ,t,3 : S

∗

0 (O
∗

0(K))→ S∗0 (O
∗

0(K))

defined by
β∗
κ,t,3 := prM(0) ◦[α

∗

ad(t),3]κ ◦8
ad(t)
λ ,

is an endomorphism over K.

Eigenvector. In the following, we will define an eigenvectorϒ(η)κ of β∗
κ,t,3 whose

eigenvalue is Fad(t)(3)
κ . We will then specialize 3, proving Theorem 1.1. We

start by defining the groups

M0(0)= M(0)∩ (−M(0)) and M0( f )= M( f )∩ (−M( f )).

Define the projection map

pr0 :
∑
γ∈Zs

u∈Zn

C(γ, u)λγ xu
7−→

∑
γ∈M0(0)
u∈M0( f )

C(γ, u)λγ xu,

and write

(23) pr0 ◦ expπH(3, λ, x)=
∑

(γ,u)∈M0(0)×M0( f )

Jγ,u(3)λγ xu,

with Jγ,u ∈ R[[3]]. Observe that J0,0 ∈ 1+3R[[3]], and so we may define

η(3, λ, x) := 1
J0,0(3)

pr0(expπH(3, λ, x)).

We will eventually need to specialize 3 to Teichmüller units. The following lemma
demonstrates that this is possible.

Lemma 5.1. Jγ,u(3)/J0,0(3) ∈ K0 for each (γ, u) ∈ M0(0) × M0( f ). Also,
J0,0(3)/J0,0(3

p) ∈ K0.
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Proof. This result is essentially a version of the main result, Proposition 2.15 and
its corollaries, in [Adolphson and Sperber 2012]. The proof of the version here
necessitates only some minor modifications from that in the above reference. The
key difference is that the setup here uses total weight, wtot = w0 +w based on
0×1∞( f ) rather than the straightforward polyhedral weightwH based on1∞(H).
The argument of [Adolphson and Sperber 2012] works here as well. �

Next, we will show that the ϒ(η)κ is a well-defined element of our dual space.

Lemma 5.2. ϒ(η(3, λ, x))κ ∈ S∗0 (O
∗

0(K0)).

Proof. First, write

η(3, λ, x)=
∑

(γ,u)∈M0(0)×M0( f )

Cγ,u(3)λγ xu,

with |Cγ,u| ≤ 1 and Cγ,u ∈ K0. Since u ∈ M0( f ), we may write

η(3, λ, x)=
∑

(γ,u)∈M0(0)×M0( f )

(Cγ,−u(3)π̃
w(u))λγ π̃−w(u)x−u,

and so ϒ(η(3, λ, x)) =
∑

γ,u C̃γ,u(3)λγ e∗u , with C̃γ,u(3) := Cγ,−u(3)π̃
w(u).

Next, since C̃0,0 is a unit, we may write

ϒ(η)κ =

(
C̃0,0(3)+

∑
(γ,u)∈M\{0}

C̃γ,u(3)λγ e∗u

)κ

=

∞∑
l=0

(
κ

l

)
C̃0,0(3)

κ−l
( ∑
(γ,u)∈M\{0}

C̃γ,u(3)λγ e∗u

)l

=

∑
γ∈M0(0)

u∈S(M0( f ))

Dγ,u(3)λ
γ e∗u,

with Dγ,u ∈ K0. Lastly, since γ ∈ M0(0), we may rewrite this as

ϒ(η)κ =
∑

γ∈M0(0)
u∈S(M0( f ))

(D−γ,u(3)π̃w0(γ ))π̃−w0(γ )λ−γ e∗u,

and thus ϒ(η)κ ∈ S∗0 (O
∗

0(K0)). �
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We now consider the action of α∗1,3 on η. Set F(3) := J0,0(3)/J0,0(3
p).

Observe that

α∗1,3(η(3
p, λp, x))

= prM( f )
(
F(3, λ, x) pr0

(
expπH(3p, λp, x p)/J0,0(3

p)
))

= prM( f )
(
F(3, λ, x)

(
expπH(3p, λp, x p)/J0,0(3

p)+ ω̂(3, λ, x)+ ε(3.λ, x)
))

= F(3)
(
prM( f )

(
expπH(3, λ, x)/J0,0(3)+ω

∗(3, λ, x)
))

= F(3)
(
η(3, λ, x)+ ω̃(3, λ, x)

)
,

where each λγ xu appearing in ω̂ (and ω∗ and ω̃) has γ in M(0) \ M0(0), and
every λγ xu appearing in ε has u in M( f ) \M0( f ). Iterating this, if we set

Fm(3) :=

m−1∏
i=0

F(3pi
),

then we have

(24) α∗ad(t),3η(3
qt , λqt , x)= Fad(t)(3)(η(3, λ, x)+ω(3, λ, x)),

where each λγ appearing in ω lies in M(0) \M0(0).
For the calculation of the eigenvalue, we will need the following. First, as

every λγ appearing in ϒ(ω) (from Equation (24)) satisfies γ ∈ M(0) \M0(0), it
follows that the same is true for ϒ(η)κ−rϒ(ω)r for every r ∈ Z≥1. Hence,

(25) prM(0)(ϒ(η)+ϒ(ω))
κ
= prM(0)

∞∑
r=0

(
κ
r

)
ϒ(η)κ−rϒ(ω)r = ϒ(η)κ .

We may now finish the proof of Theorem 1.1. For convenience, write η(3, λ, x)=
1+ h(3, λ, x) so that ϒ(η)κ = (1+ϒ(h))κ =

∑
∞

l=0
(
κ
l

)
ϒ(h)l . Observe that

β∗
κ,t,3ϒ(η(3

qt , λ, x))κ

= prM(0) ◦[α
∗

ad(t),3]κ ◦8
ad(t)
λ ϒ(η(3qt , λ, x))κ

= prM(0) ◦[α
∗

ad(t),3]κϒ(η(3
qt , λqt , x))κ

= prM(0) ◦[α
∗

ad(t),3]κ

∞∑
l=0

(
κ

l

)
ϒ(h(3qt , λqt , x))l

= prM(0)

∞∑
l=0

(
κ

l

)
(ϒ ◦α∗ad(t),3 · 1)

κ−l(ϒ ◦α∗ad(t),3h(3qt , λqt , x))l

(by (15))

= prM(0)
(
ϒ ◦α∗ad(t),3 · 1+ϒ ◦α

∗

ad(t),3h(3qt , λqt , x)
)κ

= prM(0)(ϒ ◦α
∗

ad(t),3η(3
qt , λqt , x))κ
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= prM(0) Fad(t)(3)
κ(ϒ(η(3, λ, x))+ϒ(ω(3, λ, x)))κ (by (24))

= prM(0) Fad(t)(3)
κϒ(η(3, λ, x))κ

(
1+ ϒ(ω(3, λ, x))

ϒ(η(3, λ, x))

)κ
= Fad(t)(3)

κϒ(η(3, λ, x))κ (by (25)).

Finally, we may specialize this equality by taking 3 at the Teichmüller unit
coefficients of Ĝ(t̂, λ, x),

3u = t̂u and 3γ,v = Â(γ, v)

for all u and γ, v in the support of H . Setting

ηsp(λ, x) :=
(
η(3, λ, x) specialized at 3u = t̂u and 3γ,v = Â(γ, v)

)
,

we see that

(26) β∗
κ,tϒ(ηsp(λ, x))κ = Fad(t)(t̂)

κϒ(ηsp(λ, x))κ .

This demonstrates that Fad(t)(t̂)κ is the unique unit root of L(0)(κ, t, T )(−1)s+1
by

(22), which, together with Theorem 3.1, completes the proof of Theorem 1.1.
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BAVARD’S DUALITY THEOREM ON
CONJUGATION-INVARIANT NORMS

MORIMICHI KAWASAKI

Bavard proved a duality theorem between commutator length and quasi-
morphisms. Burago, Ivanov and Polterovich introduced the notion of a
conjugation-invariant norm which is a generalization of commutator length.
Entov and Polterovich proved Oh–Schwarz spectral invariants are subset-
controlled quasimorphisms, which are generalizations of quasimorphisms.
We prove a Bavard-type duality theorem between subset-controlled quasi-
morphisms on stable groups and conjugation-invariant (pseudo)norms. We
also pose a generalization of our main theorem and prove “stably nondis-
placeable subsets of symplectic manifolds are heavy” in a rough sense if
that generalization holds.

1. Definitions and results

Definitions. Burago, Ivanov and Polterovich defined the notion of conjugation-
invariant (pseudo)norms on groups and they gave a number of its applications.

Definition 1.1 [Burago et al. 2008]. Let G be a group. A function ν : G→ R≥0 is
a conjugation-invariant norm on G if ν satisfies the following axioms:

(1) ν(1)= 0;

(2) ν( f )= ν( f −1) for every f ∈ G;

(3) ν( f g)≤ ν( f )+ ν(g) for every f, g ∈ G;

(4) ν( f )= ν(g f g−1) for every f, g ∈ G;

(5) ν( f ) > 0 for every f 6= 1 ∈ G.

A function ν : G→ R is a conjugation-invariant pseudonorm on G if ν satisfies
axioms (1), (2), (3) and (4) above.

For a conjugation-invariant pseudonorm ν, let sν denote the stabilization of ν,
i.e., sν(g)= limn→∞ ν(gn)/n (this limit exists by Fekete’s Lemma).

MSC2010: primary 46B20, 53D35, 57M07, 57S05; secondary 57M27, 53D40, 51F99, 51K99.
Keywords: Bavard’s duality theorem, conjugation-invariant norm, quasimorphism, heavy subset,

stable nondisplaceability.
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For a perfect group G, the commutator length cl on G is a conjugation-invariant
norm. Bavard [1991] proved the following famous theorem (see also [Calegari
2009]):

Theorem 1.2 (Corollary of Bavard’s [1991] duality theorem). Let g be an element
of a perfect group G. Then scl(g) > 0 if and only if there exists a homogeneous
quasimorphism φ such that φ(g) > 0.

For interesting applications of Bavard’s duality theorem, see [Calegari et al. 2014],
[Endo and Kotschick 2001] and [Mimura 2010] for example. After Bavard’s work,
Calegari and Zhuang [2011] proved a Bavard-type duality theorem on W -length
which is also conjugation-invariant. In the present paper, we give a Bavard-type
duality theorem on general conjugation-invariant (pseudo)norms for some groups
which are stable in some sense.

To state our main theorem, we introduce the notion of subset-controlled quasi-
morphism (partial quasimorphism, prequasimorphism) which is a generalization of
quasimorphism:

Definition 1.3. Let G be a group and H a subgroup of G. We define the fragmen-
tation norm νH with respect to H for an element f of G, by

νH ( f )=min{k : there exist g1, . . . , gk ∈ G, and h1, . . . , hk ∈ H

such that f = g1h1g−1
1 · · · gkhk g−1

k }.

If there is no such decomposition of f as above, we put νH ( f )=∞.

Definition 1.4. Let H be a subgroup of a group G. A function φ : G→R is called
an H-quasimorphism if there exists a positive number C such that for any f, g ∈G,

|φ( f g)−φ( f )−φ(g)|< C min{νH ( f ), νH (g)}.

The infimum of such C is called the defect of φ and we denote it by D(φ). If
φ( f n)= nφ( f ) for any element f of G and any integer n, φ is called homogeneous.

Such generalizations of quasimorphisms appeared first in [Entov and Polterovich
2006]. They proved that Oh–Schwarz spectral invariants (for example, see [Schwarz
2000] and [Oh 2006]) are controlled quasimorphisms.

Remark 1.5. In [Kawasaki 2016], H -quasimorphism is called quasimorphism
relative to νH . Tomohiko Ishida and Tetsuya Ito pointed out that quasimorphism
relative to H usually means quasimorphism which vanishes on H . Thus we use a
different notation from that work.

Let K be a subset of a group G. For elements f, g of G, let f K g denote the
subset { f kg; k ∈ K } of G.
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Definition 1.6. Let H be a subgroup of a group G. If for any element g of G,
νH (g) <∞, G is said to be c-generated by H .

The author essentially proved the following proposition:

Proposition 1.7 [Kawasaki 2016]. Let G be a group c-generated by a perfect
subgroup H (in particular, G is also perfect). If there exists an H-quasimorphism φ
with limk→∞ φ(gk)/k > 0 for some g, then there is a conjugation-invariant norm ν

with sν(g) > 0 (such a norm is called stably unbounded [Burago et al. 2008]).

Our main theorem (Theorem 1.12) is a converse of the Proposition 1.7.

Remark 1.8. The author [Kawasaki 2016] proved that there exists such a Ham(B2n)-
quasimorphism µK on Ham(R2n). Here, Ham(B2n) and Ham(R2n) are the group of
Hamiltonian diffeomorphisms with compact support of the ball and the Euclidean
space with the standard symplectic form, respectively. He also proved that µK (g) >
0 for some commutator g. Thus, by Proposition 1.7, [Ham(R2n),Ham(R2n)] admits
a stably unbounded norm.

Kimura [2016] proved a similar result on the infinite braid group B∞ =
⋃
∞

k=1 Bk

(the existence of a stably unbounded norm on [B∞, B∞] is also proved by Bran-
denbursky and Kedra [2015]).

Definition 1.9. Let G be a group, H a subgroup of G and K a subset of G. We
define the set D f

H (K ) of maps displacing K far away by

D f
H (K )= {h0 ∈ G : for all g1, . . . , gk ∈ G, there exists h ∈ G such that

hh0h−1K (hh0h−1)−1 commutes with g1 Hg−1
1 ∪ · · · ∪ gk Hg−1

k }.

Let ν be a conjugation-invariant pseudonorm on a group G. For a subset K of G,
we define the far away displacement energy EH,ν(K ) of K by

EH,ν(K )= inf
g∈D f

H (K )
ν(g).

Definition 1.10. Let G be a group and H a subgroup of G. The pair (G, H)
satisfies the property FM if G and H satisfy the following conditions.

(1) G is c-generated by H ,

(2) For any elements h1, . . . , hk of G, D f
H (h1 Hh−1

1 ∪ · · · ∪ hk Hh−1
k ) 6=∅.

A group G satisfies the property FM if (G, H) satisfies the property FM for some
subgroup H .

For a group G, we define the set FM(G) by

FM(G)= {H ≤ G; (G, H) satisfies the property FM}.

We give some examples satisfying the property FM.
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Proposition 1.11. (1) For any integer i , the pair (B∞, Bi ) satisfies the property
FM, and so does the pair ([B∞, B∞], [Bi , Bi ]).

(2) We consider the Riemannian surface 6∞ =
⋃
∞

k=16
1
k where 61

k is the Rie-
mannian surface which has genus k and 1 puncture. The pair of mapping class
groups (MCG(6∞),MCG(61

i )) satisfies the property FM for any integer i .

(3) The pair (Ham(R2n),Ham(B2n)) satisfies the property FM, and so does the
pair ([Ham(R2n),Ham(R2n)], [Ham(B2n),Ham(B2n)]).

Our main theorem is the following one.

Theorem 1.12. Let G be a group satisfying the property FM and ν a conjugation-
invariant pseudonorm on G. Then,

(1) For any element g of G such that sν(g) > 0, there exists a function φ : G→ R

which is a homogeneous H-quasimorphism for any element H of FM(G) such
that φ(g) > 0.

(2) For any element g of the commutator subgroup [G,G] and any H ∈ FM(G),

sν(g)≤ 8 sup
φ

φ(g) · EH,ν(H)
D(φ)

,

where sup is taken over the set of homogeneous H-quasimorphisms φ :G→R.

In Section 2, we construct the normed vector space Aν and prove Theorem 1.12
by applying the Hahn–Banach theorem to Aν . In Section 3, we prove that Aν is a
normed vector space. In Section 4, we prove Proposition 1.11. In Section 5, we pose
a generalization of Theorem 1.12 (Problem 5.6) and give its application to symplectic
geometry. There, we prove that “stably nondisplaceable subsets of symplectic man-
ifolds are heavy” in a very rough sense if the positive answer of Problem 5.6 holds.

2. Proof of main theorem

To construct controlled quasimorphisms by using the Hahn–Banach theorem, we
consider the normed vector space Aν which we define here. The idea of our
construction comes from [Calegari and Zhuang 2011].

For a group G, we define the set AG =
∐
∞

k=0(G×R)k. We denote elements of
AG by gs1

1 · · · g
sk
k , where g1, . . . , gk ∈ G and s1, . . . , sk are real numbers.

Let ν be a conjugation-invariant pseudonorm on G. We define the R≥0-valued
function ‖ · ‖ν : AG→ R≥0 by

‖gs1
1 · · · g

sk
k ‖ν = lim

n→∞

1
n
· ν(g[s1n]

1 . . . g[skn]
k ),

where [ · ] denotes the integer part. For the trivial element 1 ∈ (G×R)0 of AG , we
define ‖1‖ν = 0.
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Proposition 2.1. Let ν be a conjugation-invariant pseudonorm on a group G
satisfying the property FM. Then for any element gs1

1 · · · g
sk
k of AG , the above

limit ‖gs1
1 · · · g

sk
k ‖ν exists. Thus ‖ · ‖ν is well defined.

We prove Proposition 2.1 in Section 3. First, we define some operations on AG .
For elements g= gs1

1 · · · g
sk
k , h= ht1

1 · · · h
tl
l of AG and a real number λ, we define

g · h, g and g(λ) by

g · h= gs1
1 · · · g

sk
k ht1

1 · · · h
tl
l , g= g−sk

k · · · g−s1
1 and g(λ) = gλs1

1 · · · g
λsk
k .

By the definition of conjugation-invariant pseudonorms, we can confirm that the
function ‖·‖ν : AG→R satisfies the following properties easily. For any g, h∈ AG ,

‖g · h‖ν ≤ ‖g‖ν +‖h‖ν, ‖h · g · h‖ν = ‖g‖ν and ‖g‖ν = ‖g‖ν .

We define the equivalence relation ∼ by g∼ h if and only if ‖g ·h‖ν = 0. We denote
the set AG/∼ by Aν and the function ‖ · ‖ν : AG→ R on AG induces the function
‖ · ‖ν : Aν→ R on Aν .

In the present paper, we want to consider Aν as an R-vector space with the norm
‖ · ‖ν . We define a sum operation, an inverse operation and an R-action on Aν . For
elements g = [g], h= [h] of Aν and a real number λ, we define g+ h and λg by

g+ h= [g · h] and λg = [g(λ)].

Proposition 2.2. Assume that G satisfies the property FM. Then the above opera-
tions are well defined.

To use the Hahn–Banach theorem, we prove that Aν is a normed vector space.

Proposition 2.3. Assume that G satisfies the property FM. Then (Aν, ‖ · ‖ν) is a
normed vector space with respect to the above operations.

We prove Proposition 2.2 and 2.3 in Section 3.
Let G be a group and ν a conjugation-invariant pseudonorm on G. Let L(G, ν)

denote the set of Lipschitz continuous (linear) homomorphisms from Aν to R. By
the Hahn–Banach theorem, Proposition 2.3 implies the following proposition.

Proposition 2.4. Assume that G satisfies the property FM. Then for any g ∈ Aν ,

‖g‖ν = sup
φ̂∈L(G,ν)

φ̂(g)

l(φ̂)
,

where l(φ̂) is the optimal Lipschitz constant of φ̂.

For an element φ̂ of L(G, ν), we define the map φ : G→ R by φ(g)= φ̂([g1
]).

Proposition 2.5. Let H be an element of FM(G). For any element φ̂ of L(G, ν), φ
is a homogeneous H-quasimorphism. Moreover, D(φ)≤ 8l(φ̂) · EH,ν(H).
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To prove Proposition 2.5, we use the following lemmas:

Lemma 2.6. Let G be a group and H, K subgroups of G. Assume (G, H) satisfies
the property FM. Then for any g∈G and any element f ∈ K, ν([g, f ])≤ 4EH,ν(K ).

Proof. Let f, g and h0 be elements of K ,G and D f
H (K ), respectively. Since G is

c-generated by H and the set { f, g} is a finite set, there exist elements h1, . . . , hk

of G such that f, g ∈ 〈h1 Hh−1
1 , . . . , hk Hh−1

k 〉.
Then, by the definition of D f

H (K ), there exists an element h of G such that
(hh0h−1)K (hh0h−1)−1 commutes with 〈h1 Hh−1

1 , . . . , hk Hh−1
k 〉. Since f ∈ K

and f, g ∈ 〈h1 Hh−1
1 , . . . , hk Hh−1

k 〉, (hh0h−1) f (hh0h−1)−1 commutes with both
of f and g and thus [g, f ] = [g, [ f, hh0h−1

]] holds.
Since ν is a conjugation-invariant pseudonorm,

ν([g, f ])≤ ν(g[ f, hh0h−1
]g−1)+ ν([ f, hh0h−1

]
−1)= 2ν([ f, hh0h−1

])

≤ 2(ν( f (hh0h−1) f −1)+ ν((hh0h−1)−1))

= 4ν(hh0h−1)= 4ν(h0).

By taking the infimum, ν([g, f ])≤ 4EH,ν(K ). �

Lemma 2.7 [Entov and Polterovich 2006],[Kimura 2016]. Let G be a group, H
a subgroup of G and C a positive real number. Assume that a map φ : G → R

satisfies |φ( f )+ φ(g)− φ( f g)| ≤ C for any elements f, g of G with νH ( f )= 1.
Then φ is an H-quasimorphism. Moreover, D(φ)≤ 2C.

Proof of Proposition 2.5. Let φ̂ be an element of L(G, ν) and f, g elements of G
with νH ( f ) = 1. Since H is a subgroup, νH ( f i ) = 1 for any nonzero integer i .
Since ν is a conjugation-invariant pseudonorm, by Lemma 2.6,

|φ(g)+φ( f )−φ( f g)|

= |φ̂([g1
])+ φ̂([ f 1

])− φ̂([( f g)1])|

= |φ̂([g1
] + [ f 1

] + (−1)[( f g)1])|

≤ l(φ̂) · lim
m

m−1
· ν(gm f m(g−1 f −1)m)

= l(φ̂) · lim
m

m−1
· ν((gm−1

[g, f m
]g−m+1)(gm−2

[g, f m−1
]g−m+2)···(g0

[g, f ]g0))

≤ l(φ̂) · liminf
m

m−1
·

m−1∑
i=1

ν([g, f i
])

≤ l(φ̂) · liminf
m

m−1
· (m− 1) · 4EH,ν(H)

= 4l(φ̂) · EH,ν(H).
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Thus, by Lemma 2.7, φ is an H -quasimorphism and D(φ) ≤ 8l(φ̂) · EH,ν(H).
Since φ̂ is a homomorphism, φ : G→ R is a homogeneous H -quasimorphism. �

Proof of Theorem 1.12. Note that ‖[g1
]‖ν = sν(g) for any element g of G. Then (1)

follows from Proposition 2.4 and 2.5. To prove (2), it is sufficient to prove it for an
element g of [G,G] with sν(g) > 0. Then, by Proposition 2.4 and ‖[g1

]‖ν = sν(g),
there exists an element φ̂ of L(G, ν) satisfying φ(g)= φ̂([g1

]) 6=0. Since g∈[G,G],
D(φ) > 0. Thus Proposition 2.5 implies 8l(φ̂)−1

≤ D(φ)−1
· EH,ν(H). Therefore

Proposition 2.4 implies

sν(g)≤ 8 sup
φ

φ(g) · EH,ν(H)
D(φ)

. �

3. Proof of being a normed vector space

Definition 3.1. Let H be a subgroup of a group G and ν a conjugation-invariant
pseudonorm on G. For elements g1, . . . , gk of G, we define the far away displace-
ment energy EH,ν[g1, . . . , gk] of (g1, . . . , gk) by

EH,ν[g1, . . . , gk] = inf EH,ν(〈h1 Hh−1
1 , . . . , hl Hh−1

l 〉),

where inf is taken over h1, . . . , hl such that g1, . . . , gk ∈ 〈h1 Hh−1
1 , . . . , hl Hh−1

l 〉.
If (G, H) satisfies the property FM, EH,ν[g1, . . . , gk]<∞ for any g1, . . . , gk ∈ G.

To prove Proposition 2.1, 2.2 and 2.3, we use the following lemma:

Lemma 3.2 [Calegari and Zhuang 2011]. Let ν a conjugation-invariant pseudonorm
on a group G. For any elements g1, . . . , gk of G and integers s1, . . . , sk, t1, . . . , tk ,

ν((gs1
1 · · · g

sk
k )
−1(gt1

1 · · · g
tk
k ))≤

k∑
i=1

|ti − si | · ν(gi ).

Proof. By using a graphical calculus argument (for example, see 2.2.4 of [Calegari
2009]), there exist elements h1, . . . , hk of 〈g1, · · · , gk〉 such that

(gs1
1 · · · g

sk
k )
−1(gt1

1 · · · g
tk
k )= h−1

k gtk−sk
k hk · · · h−1

1 gt1−s1
1 h1.

Since ν is a conjugation-invariant pseudonorm,

ν((gs1
1 · · · g

sk
k )
−1(gt1

1 · · · g
tk
k ))≤

k∑
i=1

ν(h−1
i gti−si

i hi )≤

k∑
i=1

|ti − si | · ν(gi ). �

Proof of Proposition 2.1. Fix an element g=[gs1
1 · · · g

sk
k ] of Aν . Define a function F :

Z>0→R by F(m)=ν(g[s1m]
1 · · · g[skm]

k ). By Fekete’s Lemma, it is sufficient to prove
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that there exists a positive real number C such that F(m+ n)≤ F(m)+ F(n)+C
for any positive integers m, n. By Lemma 3.2,

F(m+ n)= ν(g[s1(m+n)]
1 · · · g[sk(m+n)]

k )

≤ ν(g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k )

+ ν((g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k )−1(g[s1(m+n)]
1 · · · g[sk(m+n)]

k ))

≤ ν(g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k )+

k∑
i=1

ν(gi ).

By using a graphical calculus argument, there exists an integer l(k) which depends
only on k and elements f1, . . . , fl(k), f ′1, . . . , f ′l(k) of 〈g1, . . . , gk〉 such that

(g[s1m]
1 ···g[skm]

k )−1(g[s1n]
1 ···g

[skn]
k )−1(g[s1m]+[s1n]

1 ···g[skm]+[skn]
k )=[ f1, f ′1]···[ fl(k), f ′l(k)].

Fix an element H of FM(G). Then EH,ν[g1, . . . , gk]<∞. Thus, by Lemma 2.6,

F(m+ n)− F(m)− F(n)

≤ν(g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k )+

k∑
i=1

ν(gi )−ν(g
[s1m]
1 · · · g[skm]

k )−ν(g[s1n]
1 · · · g[skn]

k )

≤ ν((g[s1m]
1 · · · g[skm]

k )−1(g[s1n]
1 · · · g[skn]

k )−1(g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k ))+

k∑
i=1

ν(gi )

≤ ν([ f1, f ′1] · · · [ fl(k), f ′l(k)])+
k∑

i=1

ν(gi )

≤

l(k)∑
j=1

ν([ f j , f ′j ])+
k∑

i=1

ν(gi )

≤ 4l(k)EH,ν[g1, . . . , gk] +

k∑
i=1

ν(gi ).

Thus we can apply Fekete’s Lemma. �

To prove Proposition 2.2 and 2.3, we use the following lemmas.

Lemma 3.3. Let G be a group satisfying the property FM and ν any conjugation-
invariant pseudonorm on G. Then for any g ∈ AG and any real numbers λ1, λ2,

‖g(λ1+λ2) · g(λ1) · g(λ2)‖ν = 0.

Proof. Assume that g is represented by gs1
1 gs2

2 · · · g
sk
k ∈ AG . For any integer n,

by using a graphical calculus argument, there exist elements fn,1, . . . , fn,l(k) and
f ′n,1, . . . , f ′n,l(k) of 〈g1, . . . , gk〉 such that

(g[nλ1s1]+[nλ2s1]
1 g[nλ1s2]+[nλ2s2]

2 ···g[nλ1sk ]+[nλ2sk ]
k )−1

(g[nλ1s1]
1 g[nλ1s2]

2 ···g[nλ1sk ]
k )(g[nλ2s1]

1 g[nλ2s2]
2 ···g[nλ2sk ]

k )=[ fn,1, f ′n,1]···[ fn,l(k), f ′n,l(k)].
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Fix H ∈FM(G). Then EH,ν[g1, . . . , gk]<∞. Thus, by Lemma 3.2 and Lemma 2.6,

‖g(λ1+λ2) · g(λ1) · g(λ2)‖ν

= lim
n→∞

1
n
· ν
(
(g[nλ1s1+nλ2s1]

1 · · · g[nλ1sk+nλ2sk ]
k )−1

(g[nλ1s1]
1 · · · g[nλ1sk ]

k )(g[nλ2s1]
1 · · · g[nλ2sk ]

k )
)

≤ lim
n→∞

1
n
·

(
ν((g[nλ1s1]+[nλ2s1]

1 · · · g[nλ1sk ]+[nλ2sk ]
k )−1

(g[nλ1s1]
1 · · · g[nλ1sk ]

k )(g[nλ2s1]
1 · · · g[nλ2sk ]

k ))+

k∑
i=1

ν(gi )

)

= lim
n→∞

1
n
·

(
ν([ fn,1, f ′n,1] · · · [ fn,l(k), f ′n,l(k)])+

k∑
i=1

ν(gi )

)

≤ lim
n→∞

1
n
·

( l(k)∑
j=1

ν([ fn, j , f ′n, j ])+

k∑
i=1

ν(gi )

)

≤ lim
n→∞

1
n
·

(
4l(k)EH,ν[g1, . . . , gk] +

k∑
i=1

ν(gi )

)
= 0. �

Lemma 3.4. Let G be a group satisfying the property FM and ν a conjugation-
invariant pseudonorm on G. For g1, . . . , gk ∈ G and real numbers λ, s1, . . . , sk ,

lim
n→∞

1
n
· ν(g[λs1n]

1 · · · g[λskn]
k )= |λ| lim

n→∞

1
n
· ν(g[s1n]

1 · · · g[skn]
k ).

Proof. We first prove for the case when λ is a positive rational number, i.e., λ= q/p
where p, q are positive integers. By the existence of the limits (Proposition 2.1),
since the limit of any subsequence equals that of the original sequence,

lim
n→∞

1
n
· ν(g[λs1n]

1 · · · g[λskn]
k )= lim

n→∞

1
pn
· ν(g[qs1n]

1 · · · g[qskn]
k )

= lim
n→∞

q
pn
· ν(g[s1n]

1 · · · g[skn]
k )

= λ lim
n→∞

1
n
· ν(g[s1n]

1 · · · g[skn]
k ).

We prove for the case λ=−1.
Let g denote the element gs1

1 gs2
2 · · · g

sk
k of AG . By Lemma 3.3, [g(−1)

· g] =
[g(0)] = [1]. Recall that 1 ∈ (G×R)0 is the trivial element of AG . Thus [g(−1)

] =

[g(−1)
· g · g] = [1 · g] = [g]. Therefore ‖(−1)g‖ν = ‖g‖ν = ‖g‖ν and we have

completed the proof for the case when λ is a rational number.
Since Lemma 3.2 implies that the function R → R, λ 7→ limn→∞(1/n) ·

ν(g[λs1n]
1 · · · g[λskn]

k ) is continuous, we have completed the proof. �
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Proof of Proposition 2.2. Assume that elements f1, f2, g1, g2 of AG satisfy [f1] =

[f2] and [g1] = [g2]. Then

‖(f1 · g1) · (f2 · g2)‖ν = ‖f1 · g1 · g2 · f2‖ν

≤ ‖f1 · g1 · g2 · f1‖ν +‖f1 · f2‖ν

= ‖g1 · g2‖ν +‖f1 · f2‖ν = 0.

Thus [f1 · g1] = [f2 · g2].
Assume g1, g2 ∈ AG satisfy [g1] = [g2]. For any λ ∈ R, Lemma 3.4 implies
‖g(λ)1 · g2

(λ)
‖ν = ‖(g1 · g2)

(λ)
‖ν = |λ| · ‖(g1 · g2)‖ν = 0. Thus [g(λ)1 ] = [g

(λ)
2 ]. �

Lemma 3.5. Let G be a group satisfying the property FM and ν a conjugation-
invariant pseudonorm on G. Then for any elements f, g of Aν ,

f+ g = g+ f.

Proof. Assume f, g are represented by [f] = [ f s1
1 f s2

2 · · · f sk
k ], [g] = [g

t1
1 gt2

2 · · · g
tl
l ],

respectively. Fix an element H of FM(G). Then EH,ν[g1, . . . , gl] <∞. Since
g[t1n]

1 g[t2n]
2 · · · g[tl n]l ∈ 〈g1, . . . , gl〉 for any n, Lemma 2.6 implies

‖f · g · (g · f)‖ν = ‖f · g · f · g‖ν

= lim
n→∞

1
n
· ν
(
( f [s1n]

1 f [s2n]
2 · · · f [skn]

k )(g[t1n]
1 g[t2n]

2 · · · g[tl n]l )

( f [s1n]
1 f [s2n]

2 · · · f [skn]
k )−1(g[t1n]

1 g[t2n]
2 · · · g[tl n]l )−1)

= lim
n→∞

1
n
· ν
(
[ f [s1n]

1 f [s2n]
2 · · · f [skn]

k , g[t1n]
1 g[t2n]

2 · · · g[tl n]l ]
)

= lim
n→∞

1
n
· 4EH,ν[g1, . . . , gl] = 0.

Thus f+ g = [f · g] = [g · f] = g+ f. �

Proof of Proposition 2.3. By Lemma 3.3, 3.4 and 3.5, for any elements f, g of Aν
and real numbers λ1, λ2,

(λ1+ λ2)g = λ1g+ λ2g, ‖λ1g‖ν = |λ1| · ‖g‖ν, and f+ g = g+ f.

We can confirm the other axioms of a normed vector space easily. Thus we complete
the proof of Proposition 2.3. �

4. Proof that examples satisfy the property FM

In the present section, we prove that (Ham(R2n),Ham(B2n)) satisfies the property
FM. We can prove other parts of Proposition 1.11 similarly.

We use the following notations. For a diffeomorphism g on a manifold M, let
Supp(g) denote the support of g. For a point p of R2n and a positive real number
R, let B2n(p, R) denote a subset {x ∈ R2n

; ‖x − p‖< R} of R2n.
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Proof. For simplicity, let B denote the subgroup Ham(B2n) and p0 denote the point
(3, 0, . . . , 0) of R2n.

Let f0 be a Hamiltonian diffeomorphism on R2nsuch that f0(B
2n)= B2n(p0, 1).

Fix Hamiltonian diffeomorphisms g1, . . . , gk on R2n. Then there exists a pos-
itive real number R such that Supp(g1) ∪ · · · ∪ Supp(gk) ⊂ B2n(0, R). Since
f0(B

2n) = B2n(p0, 1) and B2n(p0, 1)∩B2n
= ∅, we can take a Hamiltonian dif-

feomorphism f such that f (B2n) = B2n and f f0(B
2n) ∩ B2n(0, R) = ∅. Since

( f f0 f −1)B( f f0 f −1)−1
= Ham( f f0 f −1(B2n))= Ham( f f0(B

2n)) and

g1Bg−1
1 ∪ · · · ∪ gkBg−1

k = Ham(g1(B
2n)∪ · · · ∪ gk(B

2n))⊂ Ham(B2n(0, R)),

f f0(B
2n) ∩ B2n(0, R) = ∅ implies that ( f f0 f −1)B( f f0 f −1)−1 commutes with

g1Bg−1
1 ∪ · · · ∪ gkBg−1

k . Thus f0 ∈ D f
B(B).

Note that Banyaga’s [1978] fragmentation lemma states that for any Hamiltonian
diffeomorphism g, there exist Hamiltonian diffeomorphisms f1, . . . , fk such that
g ∈ 〈 f1B f −1

1 , . . . , fkB f −1
k 〉. Thus Ham(R2n) is c-generated by B and the proof is

complete. �

5. Are stably nondisplaceable subsets heavy?
Bavard’s duality in Hofer’s geometry

We have considered subgroups which are displaceable far away. We now pose a
problem on displaceable subgroups and give its application to symplectic geometry.

On notions related to symplectic geometry, we follow [Entov 2014].

Definition 5.1. Let G be a group, H a subgroup of G and µ : G → R an H -
quasimorphism on G. Ifµ(gn)=nµ(g) for any element g of G and any nonnegative
integer n, µ is called semihomogeneous.

Let (M, ω) be a 2m-dimensional closed symplectic manifold. A subset X of
(M, ω) is called displaceable if X ∩ φ1

F (X) = ∅ for some Hamiltonian function
F : S1

×M→R where φF is the Hamiltonian diffeomorphism generated by F and
X is the topological closure of X . Otherwise, X is nondisplaceable. Let DO(M)
denote the set of displaceable open subsets of (M, ω). A subset X of a symplectic
manifold M is stably displaceable if X×S1 is displaceable in M×T ∗S1. Otherwise,
X is stably nondisplaceable.

Entov and Polterovich [2006] defined for an idempotent a of the quantum ho-
mology Q H∗(M, ω), the asymptotic spectral invariant µa : H̃am(M)→ R on the
universal covering H̃am(M) of the group Ham(M) of Hamiltonian diffeomorphisms
in terms of Oh–Schwarz spectral invariants and proved that µa is a semihomoge-
neous H̃amU (M)-quasimorphism for any element U of DO(M). Here H̃amU (M)
is the set of elements of H̃am(M) which are generated by Hamiltonian functions
with support in S1

×U.
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A Hamiltonian function F : S1
×M→ R is normalized if

∫
M Ftω

m
= 0 for any

t ∈ S1.

Definition 5.2 [Entov and Polterovich 2009]. Let (M, ω) be a closed symplectic
manifold and a an idempotent of Q H∗(M, ω). A compact subset X of (M, ω) is
a-heavy if for any normalized Hamiltonian function F : S1

×M→ R,

−µa(φF )≥ vol(M) · inf
S1×X

F,

where vol(M)=
∫

M ω
m.

In particular, if X is a-heavy, µa(φF ) < 0 for any normalized Hamiltonian
function F with F |S1×X > 0.

Remark 5.3. The above definition of heaviness is different from the one of [Entov
and Polterovich 2009] and [Entov 2014] (in their definition, they consider only
autonomous Hamiltonian functions). However, as remarked in [Seyfaddini 2014],
the above definition is known to be equivalent.

Entov and Polterovich [2009] also proved that heavy subsets are stably nondis-
placeable. In the present section, we consider the converse problem, “are stably
nondisplaceable subsets heavy?”

Definition 5.4. Let G be a group, H a subgroup of G and K a subset of G. We
define the set DH (K ) of maps displacing K by

DH (K )= {h0 ∈ G; h0K (h0)
−1 commutes with H}.

Definition 5.5. Let G be a group and H a subgroup of G. The pair (G, H) satisfies
the property FD if G and H satisfy the following conditions:

(1) G is c-generated by H ,

(2) DH (H) 6=∅.

A group G satisfies the property FD if (G, H) satisfies the property FD for some
subgroup H .

For a group G which satisfies the property FD, we define the set FD(G) by

FD(G)= {H ≤ G; (G, H) satisfies the property FD}.

We pose the following problem.

Problem 5.6. Let G be a group satisfying the property FD, H an element of FD(G)
and ν a conjugation-invariant pseudonorm on G. Prove that for any element g of G
such that sν(g) > 0, there exists a function µ :G→R which is a semihomogeneous
H -quasimorphism for any element H of FD(G) such that µ(g) > 0.

Here, we give an application of Problem 5.6 to symplectic geometry.
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Proposition 5.7. Assume that the positive answer of Problem 5.6 holds.
Let X be a stably nondisplaceable compact subset of a closed symplectic manifold

(M, ω). For any normalized Hamiltonian function F : S1
×M→R with F |S1×X >0,

there exists a function µF : H̃am(M)→R which is a semihomogeneous H̃amU (M)-
quasimorphism for any element U of DO(M) such that µF (φF ) < 0.

Proposition 5.7 states that “stably nondisplaceable subsets are heavy” in a very
rough sense if the positive answer of Problem 5.6 holds.

To prove Proposition 5.7, we use the following theorem, due to Polterovich:

Theorem 5.8 [Polterovich 1998, 2001]. Let X be a stably nondisplaceable subset
of a closed symplectic manifold (M, ω). For any normalized Hamiltonian function
F : S1

×M→ R with F |S1×X ≥ p for some positive number p, ‖φF‖H ≥ p. Here
‖·‖H : H̃am(M)→R is the Hofer norm which is known to be a conjugation-invariant
pseudonorm.

Proof of Proposition 5.7. Since X is compact, there exists some positive number p
with F |S1×X ≥ p. For any positive integer n, we define a Hamiltonian function
F (n) : S1

× M → R by F (n)(t, x) = n · F(nt, x). Note that φF (n) = (φF )
n. Then,

by F (n)|S1×X ≥ np and Theorem 5.8, ‖(φF )
n
‖H ≥ np for any positive integer n.

Since H̃amU (M) ∈ FD(H̃am(M)) for any element U of DO(M), by the positive
answer of Problem 5.6, there exists a function µ′F : H̃am(M)→ R which is a
semihomogeneous H̃amU (M)-quasimorphism for any element U of DO(M) such
that µ′F (φF ) > 0. Then setting µF =−µ

′

F completes the proof. �
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PARABOLIC MINIMAL SURFACES IN M2×R

VANDERSON LIMA

Let M2 be a complete noncompact orientable surface of nonnegative curva-
ture. We prove some theorems involving parabolicity of minimal surfaces in
M2×R. First, using a characterization of δ-parabolicity we prove that under
additional conditions on M, an embedded minimal surface with bounded
Gaussian curvature is proper. The second theorem states that under some
conditions on M, if 6 is a properly immersed minimal surface with finite
topology and one end in M×R, which is transverse to a slice M×{t} except
at a finite number of points, and such that 6 ∩ (M× {t}) contains a finite
number of components, then 6 is parabolic. In the last result, we assume
some conditions on M and prove that if a minimal surface in M × R has
height controlled by a logarithmic function, then it is parabolic and has a
finite number of ends.

1. Introduction

Let M2 be a complete noncompact orientable surface with nonnegative curvature.
Under these conditions M×R is complete and has nonnegative sectional curvature,
in particular nonnegative Ricci curvature. Recently, using some of the results of
[Schoen and Yau 1982], G. Liu classified complete noncompact 3-manifolds with
nonnegative Ricci curvature.

Theorem [Liu 2013]. Let N be a complete noncompact 3-manifold with nonnega-
tive Ricci curvature. Then either N is diffeomorphic to R3 or its universal cover Ñ
is isometric to a Riemannian product M×R, where M is a complete surface with
nonnegative sectional curvature.

In particular it follows from the proof of this result that if N is not flat or does
not have positive Ricci curvature then its universal cover splits as a product M×R.
So the spaces M× R are in fact general examples of a very important class of
3-manifolds.

We are interested in minimal surfaces in M × R, where M is as above. In
particular we want information about the topology and the conformal structure. It is

The author was supported by CNPq-Brazil.
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important to study under which hypotheses we can guarantee that a minimal surface
is proper. Concerning the topology, we know that there is no compact minimal
surface in these spaces. So, one can study the genus and the number of ends of
such minimal surfaces. Concerning the conformal structure, one important property
is parabolicity. Our results are inspired by analogous results in R3.

First we study the problem of properness. Bessa, Jorge and Oliveira-Filho studied
this problem for manifolds with nonnegative Ricci curvature and obtained some
partial results in R3.

Theorem [Bessa et al. 2001]. Let N 3 be a complete Riemannian 3-manifold of
bounded geometry and positive Ricci curvature. Let f : 62

→ N 3 be a complete
injective minimal immersion, where 6 is a complete oriented surface with bounded
curvature.

(1) If N is compact, then 6 is compact.

(2) If N is not compact, then f is proper.

A major breakthrough was the work of Colding and Minicozzi [2008], where
it was proved that a complete minimal surface of finite topology embedded in R3

is proper. After this, Meeks and Rosenberg [2006] proved that if 6 is a complete
embedded minimal surface in R3 which has positive injectivity radius, then 6 is
proper. Finally, Meeks and Rosenberg [2008] proved that if f : 6 → R3 is an
injective minimal immersion, with 6 complete and of bounded curvature, then f is
proper. We extend the last result to the case of a product M×R:

Theorem A. Let M be a complete simply connected orientable noncompact surface
such that 0≤ KM ≤ κ . Let f :6→M×R be an injective minimal immersion of a
complete, connected Riemannian surface of bounded curvature. Then the map f is
proper.

Next we focus on surfaces with finite topology and one end. The results in [Cold-
ing and Minicozzi 2008; Meeks and Rosenberg 2005] imply that every complete,
embedded minimal surface in R3 of finite genus and one end is properly embedded
and intersects some plane transversely in a single component, and so, is parabolic.
Meeks and Rosenberg [2008] gave an independent proof that the surface is parabolic
without the additional assumption that it is embedded. Namely, they proved:

Theorem [Meeks and Rosenberg 2008]. Let 6 be a surface of finite topology and
one end, and let f : 6→ R3 be a proper minimal immersion. Suppose that f is
transverse to a plane P except at a finite number of points, and f −1(P) contains a
finite number of components. Then 6 is parabolic.

The half-space theorem of Hoffman and Meeks [1990] states that a properly
immersed minimal surface in R3 which is above a plane is a parallel plane. Thus
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the condition that a minimal surface be transverse to a plane is natural. Rosenberg
proved the following half-space theorem for product spaces:

Theorem [Rosenberg 2002]. Let M be a complete noncompact surface satisfying
the following conditions:

(1) KM ≥ 0.

(2) There is a point p ∈ M such that the geodesic curvatures of all geodesic circles
with center p and radius r ≥ 1 are uniformly bounded.

If 6 is a properly immersed minimal surface in a half-space M×[t0,+∞), then 6
is a slice M×{s} for some s > t0.

Based on these results we prove the following:

Theorem B. Suppose M satisfies the conditions of the previous theorem. Let 6 be
a surface of finite topology and one end and let f :6→M×R be a proper minimal
immersion. Suppose that f is transverse to a slice M×{t0} except at a finite number
of points and that f −1(M×{t0}) contains a finite number of components. Then 6
is parabolic.

Next we focus on surfaces with more than one end. A major breakthrough was
the proof of the generalized Nitsche conjecture in R3:

Theorem [Collin 1997]. Let 6 be a properly embedded minimal surface in R3 with
at least two ends. Then an annular end of 6 is asymptotic to a plane or to the end
of a catenoid.

Let 6 be as in the last theorem. The set E6 of all the ends of 6 has a natural
topology that makes it a compact Hausdorff space. The limit points in E6 are called
the limit ends of 6, and an end which is not a limit end is called a simple end. To
6 is associated a unique plane P passing through the origin in R3 called the limit
tangent plane at infinity of 6 [Callahan et al. 1990]. The ends of 6 are linearly
ordered by their relative heights over P and this linear ordering, up to reversing it,
depends only on the proper ambient isotopy class of 6 in R3 [Frohman and Meeks
1997]. Since E6 is compact and the ordering is linear, there exists a unique top end
which is the highest end and a unique bottom end which is lowest in the associated
ordering. The ends of 6 that are neither top nor bottom ends are called middle
ends. In the proof of the ordering theorem, one shows that every middle end of 6 is
contained between two catenoids in the following sense: if E is an end of6 there are
c1 > 0 and r1 > 0 such that E ⊂ {(x1, x2, x3) : |x3| ≤ c1 log r, r2

= x2
1+ x2

2 , r ≥ r1}.
Collin, Kusner, Meeks and Rosenberg [Collin et al. 2004] proved that if 6

is a properly immersed minimal surface with compact boundary in R3 which is
contained between two catenoids, then 6 has quadratic area growth. Furthermore,
6 has a finite number of ends. As a consequence the middle ends of a properly
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embedded minimal surface in R3 are never limit ends. We explain what it means
for a properly immersed minimal surface of M×R to be contained between two
catenoids and generalize the result above:

Theorem C. Let M be a complete noncompact surface satisfying the following
conditions:

(1) 0≤ KM ≤ κ .

(2) M has a pole p.

(3) The geodesic curvatures of all geodesic circles with center p and radius r ≥ 1
are uniformly bounded.

Let 6 be a properly immersed minimal surface inside the region of M×R defined
by |h|≤ c2 log r for some constant c2> 0 and r ≥ 1. Then6 is parabolic. Moreover,
if 6 has compact boundary, then 6 has quadratic area growth and a finite number
of ends.

The paper is organized as follows. In Section 2 we present some results about the
geometry of the space M×R and its minimal surfaces. In Sections 3 and 4 we give
some well-known definitions and enunciate some results involving parabolicity and
laminations. In Section 5 we prove Theorem A. In Section 6 we prove Theorems B
and C.

2. The geometry of M2×R

Some of the results of this section are well known, but we prove them here for
completeness.

Lemma 1. Let M be a complete noncompact orientable surface with nonnegative
sectional curvature. Then M is homeomorphic to R2 or isometric to a flat cylinder
S1
×R.

Proof. Since K−M ≡ 0, by Huber’s theorem M has finite topology and

0≤
∫

M

KM dµ≤ 2π(2− 2g− n),

where g is the genus of M and n its number of ends; see [White 1987]. Since M is
noncompact and n ≥ 1, we have

1≤ n+ 2g ≤ 2.

But n+ 2g is an integer; thus the only possibility is g = 0, n = 1, 2.
If n = 1, M is homeomorphic to R2. If n = 2, M has the topology of S1

×R and∫
M

KM dµ= 0,

thus KM ≡ 0 and M is isometric to S1
×R endowed with a flat metric. �
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Lemma 2. Let M be a complete noncompact surface with sectional curvature
satisfying 0 ≤ KM ≤ κ . Then M has positive injectivity radius; in particular the
same holds for M×R.

Proof. By the previous lemma either M is a flat cylinder, which has positive
injectivity radius, or M is homeomorphic to R2. Suppose in the last case that
injM = 0. Since KM ≤ κ , the exponential map expq : Bπ/√κ(0)→M has no critical
points for each q ∈M. Then for each positive integer j sufficiently large there is a
point p j such that expp j

is not injective in the geodesic ball B1/j (p j ), which implies
there are two geodesics γ j , σ j : [0, l]→M beginning in p j which meet at the same
endpoint q j in the boundary of B1/j (p j ) with angle equal to π (q j realizes the
distance from p j to Cut(p j ); see [do Carmo 1988, Chapter 13, Proposition 2.12]).
This gives us a geodesic loop α j with one angular vertex at p j which has exterior
angle θ j ≤ π . Since M is simply connected, α j bounds a disc D j in M. By the
Gauss–Bonnet theorem

2π =
∫

D j

KM dµ+ θ j ≤ κ|D j | +π.

However, for j sufficiently large, |D j | is small and κ|D j | +π < 2π , which is a
contradiction. Therefore injM > 0. �

Lemma 3 [Espinar and Rosenberg 2009]. Let M be a complete connected nonflat
surface. Let 6 be a complete totally geodesic surface in M×R. Then 6 is of the
form α×R, where α is a geodesic of M , or 6 =M×{t} for some t ∈ R.

Proof. Let 5 be the projection of M×R to M. Let η be a unit normal to 6 and
define ν = 〈η, ∂t 〉. Since 6 is totally geodesic we have

K6(p)= KM(5(p))ν(p) ∀p ∈6,(1)

X〈η, ∂t 〉 = 〈∇Xη, ∂t 〉 ≡ 0 ∀X ∈ T6,(2)

where (1) is just the Gauss equation. So ν is constant, and we can suppose ν ≥ 0.
If ν = 0, then 6 is of the form α×R. If ν = 1, then 6 is a slice.

Suppose 0< ν < 1. We know that

16ν+ (Ric(η, η)+ |A|2)ν = 0,

and by equation (2), 16ν = 0. Thus 0 = Ric(η, η) = KM(5(p))(1− ν2), which
implies KM(5(p))= 0. It follows from equation (1) that 6 is flat. Then there is a
δ > 0 such that for any p ∈6 a neighborhood of p in 6 is a graph (in exponential
coordinates) over the disc Dδ ⊂ Tp6 of radius δ, centered at the origin of Tp6.
This graph, denoted by Gp, has bounded geometry. The number δ is independent
of p, and the bound on the geometry of Gp is uniform as well.
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We claim that 5(6)=M. Suppose the contrary. Then there exists a bounded
open set �⊂5(6) and q0 ∈ ∂� such that, for some point p ∈5−1(�), a neigh-
borhood of p in 6 is a vertical graph of a function f defined over � and this graph
does not extend to a minimal graph over any neighborhood of q0.

We can identify � with �×{0}. Let {qn} ⊂� be a sequence converging to q0

and pn = (qn, f (qn)). Let 6n denote the image of Gpn under the vertical translation
taking pn to qn . There is a subsequence of {qn} (which we also denote by {qn}) such
that the tangent planes Tqn (6n) converge to some vertical plane P ⊂ Tq0(M×R). In
fact, if this were not true, for qn close enough to q0, the graph of bounded geometry
Gpn would extend to a vertical graph beyond q0. Hence f would extend beyond
q0, a contradiction. So Tpn6 must become almost vertical at pn for n sufficiently
large, which means that η(pn) must become horizontal. But ν is a constant different
from 0, a contradiction.

Then 5(6)=M. Since KM ◦5≡ 0, it follows that M is a complete flat surface,
which contradicts our assumption. �

Lemma 4 [Rosenberg 2002]. Let 6 be a minimal surface of M× R. Then the
height function h :M×R→ R, h(q, t)= t , is harmonic on 6.

Proof. Let E1, E2, η be an orthonormal frame in a neighborhood of a point of 6,
where η is normal to 6. Since ∂t is a Killing vector field on M×R, we have

div ∂t = 0= 〈∇η∂t , η〉.

Write ∂t =∇h = X +∇6h, where X is normal to 6. Then

0=1h =
∑

i

[〈∇Ei∇6h, Ei 〉+ 〈∇Ei X, Ei 〉]

=16h−
∑

i

〈X,∇Ei Ei 〉 =16h−〈X, EH〉 =16h. �

Lemma 5 [Rosenberg 2002]. Suppose that M has nonnegative sectional curva-
ture and that there exists a point p ∈M such that the geodesic curvatures of all
geodesic circles with center p and radius r ≥ 1 are uniformly bounded. Define
f :M \

(
{p} ∪Cut(p)

)
×R→ R, f (q, t) = log(r(q)), where r is the distance in

M to the point p. Let 6 be a minimal surface of M×R. Then

16 f ≤
c1

r
|∇6h|2

for some constant c1 > 0 and r ≥ 1.

Proof. Denote by ∇ f , 1 f and Hess f respectively the gradient, the Laplacian and
the Hessian of f in M×R. Since M has nonnegative curvature, by the Laplacian
comparison theorem we have

1Mr ≤ 1
r
.
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But f does not depend on the height, so

1 f =1M f =
1Mr

r
−
|∇Mr |2

r2 ≤ 0.

Let E1, E2, η be an orthonormal frame in a neighborhood of a point of 6, where
η is normal to 6. Write ∇ f =∇6 f +〈∇ f, η〉η. Since 6 is minimal we have

1 f =
2∑

i=1

〈∇Ei∇ f, Ei 〉+ 〈∇η∇ f, η〉

=

2∑
i=1

〈∇Ei∇6 f, Ei 〉+

2∑
i=1

〈∇ f, η〉〈∇Eiη, Ei 〉+ 〈∇η∇ f, η〉

=16 f +〈∇ f, η〉H +Hess f (η, η)

=16 f +Hess f (η, η).

Now, let V be tangent to M, ξ = ∂/∂t and 5 be the projection of M×R to M.
Again, since f does not depend on the height, we have

Hess f (ξ, ξ)= 0,

Hess f (V, V )= HessM f (V, V ).

Then

Hess f (η, η)= Hess f (5(η),5(η))= HessM f (5(η),5(η)).

But 1 f ≤ 0, so

(3) 16 f ≤−Hess fM(5(η),5(η))≤ |HessM f ||5(η)|2.

A simple calculation shows that

(4) |5(η)| = |∇6h|.

Let q ∈M, r(q)= d(q, p) and v be a unit tangent vector to M at q . Thus

HessM f (v, v)=
〈
∇v

(
∇Mr

r

)
, v

〉
=

1
r
〈∇v∇Mr, v〉+ v

(
1
r

)
〈∇Mr, v〉.

When v =∇Mr ,

HessM f (v, v)=−
1
r2 |∇Mr |2.

When v = T , the unit tangent vector to the geodesic circle of radius r through the
point q ,

HessM f (v, v)=
1
r
〈∇T∇Mr, T 〉 =

1
r

kg(q),
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where kg(q) is the geodesic curvature of the geodesic circle of radius r centered at
the point q . By the hypothesis about the geodesic circles of M,

|HessM f |2 =
1
r4 +

1
r2 k2

g ≤
C
r2 .

Using equations (3) and (4), the lemma follows. �

3. Laminations

Definition 6. Let 6 be a complete, embedded surface in a 3-manifold N. A point
p ∈ N is a limit point of 6 if there exists a sequence {pn} ⊂6 which diverges to
infinity in 6 with respect to the intrinsic Riemannian topology on 6, but converges
in N to p as n→∞. Let L(6) denote the set of all limit points of 6 in N ; we
call this set the limit set of 6. In particular, L(6) is a closed subset of N and
6 \6 ⊂ L(6), where 6 denotes the closure of 6.

Definition 7. A codimension-1 lamination of a Riemannian n-manifold N is the
union of a collection of pairwise disjoint, connected, injectively immersed hyper-
surfaces, with a certain local product structure. More precisely, it is a pair (L,A)
satisfying the following conditions:

(1) L is a closed subset of N.

(2) A= {ϕβ :D× (0, 1)→Uβ}β is an atlas of coordinate charts of N, where D is
the open unit ball in Rn−1 and Uβ is an open subset of N.

(3) For each β, there is a closed subset Cβ of (0, 1) such that ϕ−1
β (Uβ∩L)=D×Cβ .

If all the leaves are minimal hypersurfaces, (L,A) is called a minimal lamination.

4. Parabolic manifolds

Definition 8. Given a point p on a Riemannian manifold N with boundary, one can
define the hitting, or harmonic, measure µp of an interval I ⊂ ∂N as the probability
that a Brownian path beginning at p reaches the boundary for the first time at a
point in I .

Proposition 9. Let N be a Riemannian manifold with nonempty boundary. The
following are equivalent:

(1) Any bounded harmonic function on N is determined by its boundary values.

(2) For some p ∈ Int N, the measure µp is full on ∂N, i.e,
∫
∂N µp = 1.

(3) If h : N → R is a bounded harmonic function, then h(p)=
∫
∂N h(x)µp.

If N satisfies any of the conditions above, then it is called parabolic.
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An important property is that a proper subdomain of a parabolic manifold is par-
abolic; hence removing the interior of a compact domain does not alter parabolicity.
Moreover, if there exists a proper nonnegative superharmonic function on N, then
N is parabolic. For equivalent definitions and properties of parabolic manifolds see
[Grigor’yan 1999].

Definition 10. Let N be a Riemannian manifold with nonempty boundary. For
R > 0, let N (R) = {p ∈ N : d(p, ∂N ) < R}. We say that N is δ-parabolic if for
every δ > 0, Ñ = N \ N (δ) is parabolic.

The following theorem gives a sufficient condition for a surface to be δ-parabolic.

Theorem 11 [Meeks and Rosenberg 2008]. Let N be a complete surface with
nonempty boundary and curvature function K : N→[0,∞]. Suppose that for each
R > 0, the restricted function K |N (R) is bounded. Then N is δ-parabolic.

5. Proper minimal immersions

Proposition 12. Let N be a 3-manifold with nonnegative Ricci curvature and
sectional curvature bounded above by κ > 0. Suppose 6 is a complete, orientable
minimal surface with boundary in N, with a Jacobi function u. If u ≥ ε for some
ε > 0, then 6 is δ-parabolic.

Proof. First note that a Riemannian surface W is δ-parabolic if and only if for all
δ′ > 0, the surface W \W (δ′) is also δ-parabolic. Thus, without loss of generality,
we may assume that 6 has the form W \W (δ′) for some δ′> 0, where W is a stable
minimal surface with a positive Jacobi function u ≥ ε, which exists by [Fischer-
Colbrie and Schoen 1980]. By curvature estimates for stable, orientable minimal
surfaces [Schoen 1983; Rosenberg et al. 2010], we may assume that 6 has bounded
Gaussian curvature. Consider the new Riemannian manifold 6̃, which is 6 with
the metric g̃ = u〈 · , · 〉 on 6, where 〈 · , · 〉 is the Riemannian metric on 6. Since
u ≥ ε the metric g̃ is complete. Moreover, 1g̃ f = u−11 f for any function on 6
which has second derivative. Thus 6 is δ-parabolic if and only if 6̃ is δ-parabolic.
Let E1, E2, η be an orthonormal frame in a neighborhood of a point of 6, where η
is normal to 6. By the Gauss equation,

Ric(η, η)+ |A6|2 = Ric(E1, E1)+Ric(E2, E2)− 2K6.

Then, as u is a Jacobi function,

16u+
(
Ric(E1, E1)+Ric(E2, E2)− 2K6

)
u = 0.

So,

K6̃ =
K6 −

1
216 log u
u

=
1
2

Ric(E1, E1)+Ric(E2, E2)

u
+

1
2
|∇6u|2

u3 ,
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which implies

0≤ K6̃ ≤ 2
κ

ε
+

1
2ε
|∇6u|2

u2 .

Choose δ > 0 and let �̃= 6̃ \ 6̃(δ). Let � be the corresponding submanifold
on 6. By the Harnack inequality (see [Moser 1961]), |∇6u|/u is bounded, and so
one has that K6̃ is nonnegative and bounded on �. It follows from Theorem 11
in Section 4 that �̃ is parabolic, and hence � is parabolic. Since δ was chosen
arbitrarily, we conclude that 6 is δ-parabolic. �

Theorem A. Let M be a complete simply connected orientable noncompact surface
such that 0≤ KM ≤ κ . Let f :6→M×R be an injective minimal immersion of a
complete, connected Riemannian surface of bounded curvature. Then the map f is
proper.

Proof. Since the curvature of f (6) is bounded, there exists an ε > 0 such that
for any point p ∈M×R, every component of f −1(Bε(p)), when pushed forward
by f , is a compact disc and a graph over a domain in the tangent plane of any
point on it, with a uniform bound on the area. It follows that if p is a limit point
of f (6) coming from distinct components of f −1(Bε(p)), then there is a minimal
disc D(p) passing through p that is a graph over its tangent plane at p, and D(p)
is a limit of components in f −1(Bε(p)). Let D′(p) be any other such limit disc.
Since f is an embedding the unique possibility is that the discs are tangent at p;
then the maximum principle implies that the two discs agree near p. This implies
that the closure L( f (6)) of f (6) has the structure of a minimal lamination.

The immersion f is proper if and only if L( f (6)) has no limit leaves. Suppose
L( f (6)) has a limit leaf L . Denote by L̃ the universal cover of L . It was proved
in [Meeks et al. 2008] that L̃ is stable. So, by [Fischer-Colbrie and Schoen 1980]
L̃ is totally geodesic; hence L is totally geodesic. Suppose M is not flat (the case
where M is flat was proved in [Meeks and Rosenberg 2008]). By Lemma 3 a totally
geodesic surface in M×R is a slice M×{t} or is of the form α×R, where α is a
geodesic of M .

Assume L is a slice. Since 6 is not proper, it is not equal to a slice. We can
suppose L=M×{0} and H+ is a smallest half-space containing f (6). Since6 has
bounded curvature, there is an ε > 0 such that for every component C of f (6) in the
slab between L and Lε = {t = ε}, the Jacobi function u = 〈ν, ∂t 〉 satisfies u ≥ λ> 0,
where ν is the unit normal to C. Choose 0< δ < ε such that C(δ)= {p ∈C : h ≤ δ}
is not empty, where h is the height function. By Proposition 12, C(δ) is parabolic.
But h|C(δ) is a bounded harmonic function with the same boundary values as the
constant function δ. Hence h|C(δ) is constant, which is a contradiction because C(δ)
is not contained in a slice.
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Now, suppose L = α×R. Consider a one-sided closed ε-normal interval bundle
Nε(L) that submerses to M× R, with the induced metric. Observe that Nε(L)
is diffeomorphic to (α × R)× [0, δ], with L = (α × R)× {0} as a flat minimal
submanifold, and L(δ) = (α × R)× {δ} having mean curvature vector pointing
out of Nε(L). For ε sufficiently small, we may assume that each component of
f (6)∩ Nε(L) is a normal graph of bounded gradient over the zero section L . Let
C be such a component which is a graph over a connected domain � of L and let
LC(δ) be the part of Lδ which is also a normal graph over �. Consider the surface
Wδ = L(δ)\ LC(δ). Under normal projection to L , Wδ ∪C is quasi-isometric to
the flat plane L . It follows that C is a parabolic Riemann surface with boundary.
But the function d := dist( · , L) is superharmonic, and has constant value δ on the
boundary of C . Then C is contained in L(δ), which contradicts the fact that L is a
limit leaf of L( f (6)). �

6. Parabolicity of minimal surfaces

Theorem B. Let M be a complete noncompact surface satisfying the following
conditions:

(1) KM ≥ 0.

(2) There is a point p ∈ M such that the geodesic curvatures of all geodesic circles
with center p and radius r ≥ 1 are uniformly bounded.

Let 6 be a surface of finite topology and one end and let f : 6 → M×R be a
proper minimal immersion. Suppose that f is transverse to a slice M×{t0} except
at a finite number of points and that f −1(M× {t0}) contains a finite number of
components. Then 6 is parabolic.

Proof. We know from [Rosenberg 2002] that the conditions on M imply that the
surfaces

6(+) := {(p, t) ∈6 : t ≥ t0},

6(−) := {(p, t) ∈6 : t ≤ t0}

are parabolic. Suppose that E is an annular end representative which does not
have conformal representative which is a punctured disc. Then this end has a
representative which is conformally diffeomorphic to {z ∈C : ε ≤ |z|< 1} for some
positive ε < 1. In this conformal parametrization, the unit circle corresponds to
points at infinity on E . After choosing a larger ε, we may assume that f |E intersects
M×{t0} transversely in a finite positive number of arcs and that each noncompact arc
of the intersection has one endpoint on the compact boundary circle {z ∈C : |z| = ε}.

We claim that it suffices to prove that each of the finite number of noncompact
arcs α1, . . . , αn in M×{t0} has a well-defined limit on the unit circle S1 of points
at infinity. In fact, assume the claim is true; then there is an open arc γ ⊂ S1
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αi+1
αi+2

αi

|z| = 1

|z| = ε

U
γ

Figure 1. The disc U.

which does not contain limit points of α1, . . . , αn . Hence, there would be an open
half-disc U ⊂ E centered at a point in γ , such that U ∩ ( f −1(M×{t0}))=∅; see
Figure 1. But U is a proper domain which is contained in one of the parabolic
surfaces 6(+) or 6(−), so is parabolic. However, U does not have full harmonic
measure, which is a contradiction.

Suppose αk has two limit points q1, q2 in S1. We first prove that at least one of
the two interval components I1, I2 of S1

\ {q1, q2} consists of limit points of αk .
Suppose not and let x1 ∈ I1, x2 ∈ I2 be points which are not limit points. Since they
are not limit points, there exists a δ > 0 such that the radial arcs β1 and β2 in E
of length δ and orthogonal to S1 at x1, x2 respectively, are disjoint from αk . Since
αk is proper and disjoint from β1 ∪β2, the parametrized arc αk(s) must eventually
be in one of the two components of {z ∈ E \ (β1 ∪β2) : |z| ≥ 1− δ}; see Figure 2.
Thus, αk cannot have both q1 and q2 as limit points, a contradiction. Now, suppose

x1

β1

q1
|z| = 1− δ

αk

q2

β2 x2

Figure 2. The arc trapped in one component.
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I1

∂∞D

D

α1

Eδ

Figure 3. The arc α1 accumulates in I1.

one of the intervals, say I2, contains one point z which is not a limit point of αk ;
then by the previous argument the interval I1 cannot contain any point which is not
a limit point. So one of the intervals consists of limit points of αk .

Since the height function is harmonic on E and the generator of the homology of
E is a boundary in 6, by Cauchy’s theorem there is a conjugate harmonic function
to h, which we denote by h∗. Consider the holomorphic function g=h+ih∗ :E→C.
As the slice M×{t0} is transverse to E , we have 〈∇h, η〉2 6= 1 for all points in an
arc αk and h = 0 in this arc, where η is a unit normal to 6. Moreover, as g is
holomorphic we have

|∇6h∗(p)|2 = |∇6h(p)|2 = 1−〈∇h, η〉2(p) > 0 ∀p ∈ αk,

so h∗|αk is strictly monotone. Thus g restricted to any of the finite number of
components in ( f −1(M×{t0}))∩ E monotonically parametrizes an interval on the
imaginary axis R(i)⊂ C. Choose a closed half-disc D ⊂ E = E ∪S1, centered at
a point p ∈ I1, where I1, as discussed above, consists entirely of limit points of α1,
and suppose that D is chosen sufficiently small so that ∂∞D := ∂D∩S1

⊂ I1. Since
g|αk is injective we can take a compact interval J ⊂ g

(⋃n
k=1 αk

)
⊂ R(i) which is

disjoint from the endpoints of g|αk for all k, and choose D sufficiently small such
that D ∩ (g−1(J ))=∅.

Observe that g maps D into C\ J , so by the Riemann mapping theorem, the func-
tion g|D is essentially bounded in the sense that it maps D into a domain that is con-
formally equivalent to an open subset of the unit disc. It follows from Fatou’s theo-
rem that the holomorphic function g|D has radial limits almost everywhere, i.e., D is
conformally the unit disc, so radial limits are with respect to the radii of the unit disc.

Consider the radial arc β orthogonal to S1 at the point p (the center of I1).
The arc β divides I1 into two intervals I−1 and I+1 and separates D into two
regions D− and D+. Choose δ > 0 small. We can suppose D is inside the region
Eδ := {z ∈ E : |z| ≥ 1−δ}. Since α1 is proper, this arc will eventually be inside of Eδ .
As I1 is composed of accumulation points of α1 and ∂∞D is not equal to I1, the arc
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∂∞D− ∂∞D+

Figure 4. Infinitely many arcs in D− and D+.

α1 leaves D and returns to it an infinite number of times, and it does this crossing the
boundaries of D− and D+ infinitely many times, in each step getting closer to ∂∞D−

and ∂∞D+ respectively; see Figure 3. Then there exists an infinite number of arcs
in α1 ∩ D− (respectively α1 ∩ D+) converging to ∂∞D− (respectively ∂∞D+); see
Figure 4. Thus the points of ∂∞D with radial limits for g have a constant value which
corresponds to the limiting endpoint of the curve g ◦α1 in R(i)∪{∞}. However, by
Privalov’s theorem, a nonconstant meromorphic function on the unit disc cannot have
a constant radial limit on a set of ∂∞D with positive measure, a contradiction. �

Theorem C. Let M be a complete noncompact surface satisfying the following
conditions:

(1) 0≤ KM ≤ κ .

(2) M has a pole p.

(3) The geodesic curvatures of all geodesic circles with center p and radius r ≥ 1
are uniformly bounded.

Let 6 be a properly immersed minimal surface inside the region of M×R defined
by |h|≤ c2 log r for some constant c2> 0 and r ≥ 1. Then6 is parabolic. Moreover,
if 6 has compact boundary, then 6 has quadratic area growth and a finite number
of ends.

Proof. Let p be the pole of M. Since the map expp : TpM→M is a diffeomor-
phism, we have that φ : TpM×R→M×R, defined by φ(v, s)= (expp v, s), is a
diffeomorphism and defines a coordinate system.

Let r be the distance to p on M extended to M×R in the natural way and h be
the height function on M×R. Let CR = {(q, s) ∈M×R : r(q)= R} be the vertical
cylinder of radius R and let 6R be the part of 6 inside CR . Let BR((p, 0)) be the
ball of M×R of center (p, 0) and radius R. Since M×R has the product metric
and p is a pole in M, the point (p, 0) is a pole in M×R. Thus 6 ∩ BR((p, 0))
is inside the interior of CR . Then it suffices to prove that 6R has quadratic area
growth as a function of r .
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Using these coordinates we can define a horizontal vector field X that is orthog-
onal to ∇r and ∇h and has norm 1, so (∇r,∇h, X) is an orthonormal basis at each
point of M×R. Let η be a unit normal to 6, so

〈η,∇r〉2+〈η,∇h〉2+〈η, X〉2 = 1,

|∇6r |2 = 1−〈η,∇r〉2,

and

|∇6h|2 = 1−〈η,∇h〉2.

Hence,

|∇6r |2+ |∇6h|2 = 1+〈η, X〉2 ≥ 1.

Thus, ∫
6R

dµ≤
∫
6R

(|∇6r |2+ |∇6h|2) dµ.

Consider the function f :6→ R, f =−h arctan(h)+ 1
2 log(h2

+ 1), where h
is the height function on M×R. Since h is harmonic on 6,

16 f =− arctan(h)16h−
|∇6h|2

h2+ 1
=−
|∇6h|2

h2+ 1
.

Consider now the function g = log r + f . After rescaling the metric of 6 and
removing a compact subset of 6 we may assume that |h| ≤ 1

2 log r . By Lemma 5,
g satisfies

16g ≤ c1
|∇6h|2

r
−
|∇6h|2

h2+ 1
≤ 0.

Since log r is proper in
{
(q, t)∈M×R : |h|≤ 1

2 log r, r ≥1
}

and6 is proper, log r
is proper in 6. Moreover g ≥ 3π

4 log r , so g is a nonnegative proper superharmonic
function on 6. This proves that 6 is parabolic.

Suppose ∂6 is compact. There exists a > 0 such that g(∂6) ⊂ [0, a]. Let
t2 > t1 ≥ a. Since g is proper, g−1([t1, t2]) is compact; then we can apply the
divergence theorem and use the fact that g is superharmonic to obtain

(5) 0≥
∫

g−1([t1,t2])
16g dµ=−

∫
g−1(t1)

|∇6g| d L +
∫

g−1(t2)
|∇6g| d L .

It follows that the function t 7→
∫

g−1(t) |∇6g| d L is monotonically decreasing and
bounded, so

(6) lim
t→∞

∫
g−1(t)
|∇6g| d L <∞.
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Since 6 = g−1([0,∞)) it follows from (5) and (6) that 16g ∈ L1(6). Further-
more, 16g ≥ 1

2 |16 f | for r large; thus 16 f ∈ L1(6). Hence,∫
6R

16 f dµ=
∫
6R

|∇6h|2

h2+ 1
dµ≤

∫
6

|∇6h|2

h2+ 1
dµ= c3

for some positive constant c3. Then, for R ≥ 1,∫
6R

|∇6h|2 dµ≤
∫
6R

(
(log R)2+ 1

h2+ 1

)
|∇6h|2 dµ≤ ((log R)2+ 1)c3 ≤ c3 R2.

Since 16 f ∈ L1(6) and |16 f | ≥ c4|16 log r | (c4 > 0 a constant), we have
16(log r) ∈ L1(6). Again by the divergence theorem,∫

6R

16 log r dµ=
∫
∂6

1
r
〈∇6r, ν〉 d L +

∫
CR∩6

|∇6r |
R

d L

= c5+
1
R

∫
CR∩6

|∇6r | d L ,

where ν is the outward conormal to the boundary of 6. Thus

lim
R→∞

1
R

∫
CR∩6

|∇6r | d L <∞,

which implies there is a constant c6 > 0 such that∫
CR∩6

|∇6r | d L ≤ c6 R.

By the coarea formula∫
6R

|∇6r |2 dµ≤
∫ R

1

∫
Cρ∩6
|∇6r | d L dρ ≤ c6

∫ R

1
ρ dρ ≤ 1

2 c6 R2.

Therefore 6 has quadratic area growth.
Now, suppose 6 has an infinite number of ends. Let E be an end of 6. Choose

0<δ <min{injM×R, 1/
√
κ} such that for each positive integer j , there is a distance

ball Bδ(q j ) of M× R inside the region R j between C j and C j+1, with q j ∈ E .
By the monotonicity formula for minimal surfaces (see Chapter 7 of [Colding and
Minicozzi 2011]),

|E ∩ Bδ(q j )| ≥
cδ2

e2
√
κδ
=: c7,

where c > 0 is a constant and κ = sup KM×R. Write En = E ∩Cn . Since in each
region R j , j < n, we have a portion of E of area at least c7 it follows that

|En|> c7n.
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Then in the cylinder Cn2 we have

c7n2
≤ |En2 | ≤ c8n2.

Since this holds for each end, choosing n ends we obtain that the area of 6 inside
Cn2 satisfies

c9n3
≤ |6n2 | ≤ c10n2,

but for n sufficiently large this leads to a contradiction. Hence, 6 has a finite
number of ends. �
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REGULARITY CONDITIONS
FOR SUITABLE WEAK SOLUTIONS
OF THE NAVIER–STOKES SYSTEM

FROM ITS ROTATION FORM

CHANGXING MIAO AND YANQING WANG

We establish new regularity criteria for suitable weak solutions involving
Bernoulli (total) pressure 5= 1

2 |u|
2+ p. By the rotation form of the Navier–

Stokes equations, we also obtain regularity criteria for suitable weak solu-
tions in terms of either u×ω/|ω| or ω× u/|u| with sufficiently small local
scaled norm, where ω is the vorticity of the velocity. As a consequence, we
extend and refine some known interior regularity criteria for suitable weak
solutions.

1. Introduction

Consider the initial boundary-value problem for the incompressible time-dependent
Navier–Stokes equations:

(1-1)


ut −1u+ u · ∇u+∇p = 0, div u = 0 in �× (0, T ),
u = 0 on ∂�×[0, T ),
u|t=0 = u0(x) on �×{t = 0},

where the domain � ⊆ R3 is a bounded regular domain. Here u describes the
velocity of the flow, the scalar function p stands for the pressure of the fluid. The
initial data u0(x) satisfies divergence free. Denote by ω = curl u the vorticity of
the velocity field.

There have been extensive studies on the regularity of suitable weak solutions to
the Navier–Stokes equations since the late 1970s (see, e.g., [Caffarelli et al. 1982;
Chae et al. 2007; Dong and Du 2007; Dong and Strain 2012; Chae 2010; Gustafson
et al. 2007; Wang and Wu 2014; 2016a; 2016b; Struwe 1988; Seregin 2002; 2007;
2014; Wang et al. 2014; Wang and Zhang 2013; 2014; Scheffer 1976; 1977; 1980;
Vasseur 2007; Wolf 2008; Lin 1998; Ladyzhenskaya and Seregin 1999; Tian and
Xin 1999]). Suitable weak solutions originated with Scheffer [1976; 1977; 1980] in

Wang is the corresponding author.
MSC2010: 35B65, 35Q30.
Keywords: Navier–Stokes equations, suitable weak solutions, regularity, Bernoulli pressure, rotation.
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studying the potential singular points of solutions to the Navier–Stokes equations
and were later developed by Caffarelli, Kohn, Nirenberg [Caffarelli et al. 1982] and
Lin [1998]. For convenience, we recall the definition of suitable weak solutions.

Definition (Suitable weak solutions). A pair (u, p) is a suitable weak solution to
the Navier–Stokes equations (1-1), provided the following conditions are satisfied

(i) u ∈ L∞(t, t ′; L2(�))∩ L2(t, t ′;W 1,2(�)), p ∈ L3/2(t, t ′; L3/2(�)).

(ii) (u, p) solves (1.1) in �× (t, t ′) in the sense of distributions.

(iii) (u, p) obeys the local energy inequality

(1-2)
∫
�

|u(t ′,x)|2φ dx + 2
∫ t ′

t

∫
�

|∇u(s,x)|2φ dx ds

≤

∫ t ′

t

∫
�

|u(s,x)|2(∂sφ+1φ) dx ds+2
∫ t ′

t

∫
�

( 1
2 |u(s,x)|

2
+p(s,x)

)
u(s,x)·∇φ dx ds

for any nonnegative function φ ∈ C∞0 (�× (t, t ′)).

A point is said to be a regular point of the Navier–Stokes equations (1-1) if
one has an L∞ bound of u in some neighborhood of this point. Otherwise, they
are called singular points. In this direction, the milestone work is that the one-
dimensional Hausdorff measure of the possible spacetime singular points of suitable
weak solutions to the 3D Navier–Stokes equations is zero, which was shown by
Caffarelli, Kohn, Nirenberg in [Caffarelli et al. 1982]. This result relies heavily on
the following regularity criteria: if there is an absolute constant ε such that

(1-3) lim sup
µ→0

1
µ

∫∫
Q(µ)
|∇u|2 dx dt ≤ ε,

then (0, 0) is a regular point, where Q(µ) := B(µ)× (−µ2, 0) and B(µ) denotes
the ball of center 0 and radius µ. Since then, different approaches to show the
Caffarelli–Kohn–Nirenberg theorem have been presented. More precisely, based on
the blowup method, Lin [1998] provided a simple proof (see also Ladyzenskaja
and Seregin [1999] with nonzero external force belonging to parabolic Morrey
space). Recently, by means of De Giorgi’s iteration technique, Vasseur [2007]
provided a constructive proof without external force. In [Wang and Wu 2014], De
Giorgi’s iteration strategy was applied to the 4D Navier–Stokes equations and the
high-dimensional steady Navier–Stokes equations with nonzero external force. In
what follows, the local scaled norm of quantity is the one which equips the scale
invariant norm similar to (1-3). An alternative proof is offered by Wolf [2008]
via establishing a decay estimate of the gradient of the velocity with local scaled
norm together with Campanato’s Lemma on Hölder continuity. Moreover, notice
that regularity condition (1-3) plays a central role in the partial regularity theory
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of Navier–Stokes. There are a lot of extensions and improvements of (1-3). For
instance, Gustafson, Kang and Tsai [Gustafson et al. 2007] obtained the following
regularity criteria to suitable weak solutions:

lim sup
µ→0

µ
1− 2

p−
3
q ‖u‖L p,q (Q(µ)) ≤ ε, 1≤ 2

p +
3
q ≤ 2, 1≤ p, q ≤∞;(1-4)

lim sup
µ→0

µ
2− 2

p−
3
q ‖∇u‖L p,q (Q(µ)) ≤ ε, 2≤ 2

p +
3
q ≤ 3, 1≤ p, q ≤∞;(1-5)

lim sup
µ→0

µ
2− 2

p−
3
q ‖ω‖L p,q (Q(µ)) ≤ ε, 2≤ 2

p +
3
q ≤ 3, 1≤ p, q ≤∞,(1-6)

where (p, q) 6= (1,∞) in (1-6), and where ε is an absolute constant, which extends
the work of Tian and Xin [1999]. Employing a blowup procedure, Seregin [2007]
improved the regular condition (1-3) to, for any M > 0, there exists a positive
number ε(M) such that

(1-7) lim sup
r→0

1
r

∫∫
Q(r)
|∇u|2dx dt ≤ M and lim inf

r→0

1
r

∫∫
Q(r)
|∇3u|2dx dt ≤ ε(M).

We also refer the reader to the recent works of Wang and Zhang [2014] and Wang
and Wu [2016a; 2016b].

We note that almost all the results mentioned above rest on the Navier–Stokes
equations in convective form (1-1). Depending on different expressions of the
nonlinear term, the Navier–Stokes equations have several equivalent versions such
as the convective form, the skew-symmetric form and the rotation form (see, e.g.,
[Layton et al. 2009; Zang 1991] and references therein). Thanks to the well-known
fact that

u · ∇u = 1
2∇|u|

2
+ω× u,

the 3D Navier–Stokes equations (1-1) can be equivalently reformulated as the
rotation form below:

(1-8)
{

ut −1u+w× u+∇5= 0,
div u = 0,

where 5= 1
2 |u|

2
+ p is called as the Bernoulli (total) pressure, which can be found

in [Prandtl 2004; Heywood et al. 1996; Layton et al. 2009; Olshanskii 2002; Zang
1991] and references therein. By means of the Bernoulli pressure 5, the local
energy inequality (1-2) can be rewritten as

(1-9)
∫
�

|u(t ′, x)|2φdx + 2
∫ t ′

t

∫
�

|∇u(s, x)|2φ dx ds

≤

∫ t ′

t

∫
�

|u|2(φs +1φ) dx ds+ 2
∫ t ′

t

∫
�

5u · ∇φ dx ds.
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We refer to the above inequality as the local energy inequality with respect to the
3D Navier–Stokes equations in rotation form (1-8).

The goal of this paper is to derive some new regularity criteria for suitable weak
solutions from the Navier–Stokes equations in rotation form (1-8). Notice that the
Bernoulli pressure5 not only plays important role in the regular theory of the Navier–
Stokes equations (see, e.g., [Frehse and Růžička 1994; 1995; Struwe 1995; Seregin
and Šverák 2002; Nečas et al. 1996; Chae 2014; Tsai 1998]), but also can be measur-
able via numerical simulations (see, e.g., [Heywood et al. 1996; Layton et al. 2009;
Prandtl 2004; Olshanskii 2002; Zang 1991]). Seregin and Šverák [2002] showed
that the weak solutions to the 3D Navier–Stokes equations are regular provided the
positive part of the Bernoulli pressure is controlled. Since the pressure p is nonlocal,
it seems difficult to obtain regularity criteria via only the pressure p with sufficiently
small local scaled norm. One objective of this paper is to establish the regularity
criteria in terms of Bernoulli pressure 5 with sufficiently small local scaled norm.

Theorem 1.1. There exists a constant ε1 > 0 with the property that if (u, p) is a
suitable weak solution of the Navier–Stokes equations such that5− (5)B(µ) ∈ L p,q

loc
with

lim sup
µ→0

µ
2− 2

p−
3
q

(∫ 0

−µ2

(∫
B(µ)
|5− (5)B(µ)|

q dx
) p

q
ds
)1

p
< ε1,

where (p, q) ∈ [1,∞]× [1,∞] satisfying

(1-10) 2≤ 2
p
+

3
q
≤

7
2

with 1≤ p ≤ 2.

Then u is regular at (0, 0).

Remarks. (1) The range 1≤ p≤2 corresponds to the limiting case 2/p+3/q=7/2.
By means of Hölder’s inequality, the range (1-10) can be generalized to

2
p
+

3
q
=

{ 7
2 − δ with 1− δ ≤ 2/p ≤ 2(0≤ δ ≤ 1),
h̄ ∈ [2, 5/2] with 1≤ p ≤∞.

(2) Theorem 1.1 also implies the criteria in terms of the gradient of the Bernoulli
pressure. Moreover, Theorem 1.1 holds true for nonzero external force f provided
that f ∈ Lq

t,x with q > 5
2 .

(3) The same result is valid if 5− (5)B(r) is replaced by 5 in Theorem 1.1. As a
straightforward consequence, a Serrin-type sufficient regularity condition in terms
of Bernoulli pressure can be obtained. More precisely, let (u, p) be a suitable weak
solution. Then u is regular on Q(r/2) provided 5 belongs to L p,q(Q(r)) with
2/p+ 3/q = 2.
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The key point for proving the above theorem is how to bound the first term on
the right hand side of the local energy inequality (1-9). Generally speaking, the
magnitude between 1

2 |u|
2 and 1

2 |u|
2
+ p is not clear. Resorting to the appropriate

test function (backward heat kernel) recently adopted in [Dong and Du 2007; Wang
et al. 2014; Wang and Zhang 2013], we could circumvent the direct control. This
enables us to obtain

µ−1
‖u‖2

L∞,2(Q(µ))
+µ−1

‖∇u‖2
L2(Q(µ))

≤ C
(µ
ρ

)2
ρ−1
‖u‖2

L∞,2(Q(ρ))

+C
(ρ
µ

)2
ρ−2
‖5− (5)B(ρ)‖L p,q (Q(ρ))

[
‖u‖2

L∞,2(Q(ρ))
+‖∇u‖2

L2(Q(ρ))

]1/2
,

which gives the desired iteration. A slight modification of the latter iteration yields

µ−1
‖u‖2

L∞,2(Q(µ))
+µ−1

‖∇u‖2
L2(Q(µ))

≤C
(µ
ρ

)2
ρ−1
‖u‖2

L∞,2(Q(ρ))
+C

(ρ
µ

)2
ρ−2

∥∥∥5
|u|

∥∥∥
L p\,q\(Q(ρ))

[
‖u‖2

L∞,2(Q(ρ))
+‖∇u‖2

L2(Q(ρ))

]
.

This relation leads to the following results:

Theorem 1.2. There exists a constant ε2 > 0 with the property that if (u, p) is a
suitable weak solution of the Navier–Stokes equations such that5/|u| ∈ L p\,q\

loc with

lim sup
µ→0

µ
1− 2

p\
−

3
q\
(∫ 0

−µ2

(∫
B(µ)

∣∣∣ 5
|u|

∣∣∣q\ dx
) p\

q\
ds
) 1

p\
< ε2,

where (p\, q\) ∈ [1,∞]× [1,∞] satisfy

(1-11) 1≤ 2
p\
+

3
q\
≤ 2,

then u is regular at (0, 0).

Remarks. (1) The statement of Theorem 1.2 remains valid if 5/|u| is replaced
by 5/(µ−1

+ |u|). This theorem also means the Serrin-type regular condition in
terms of 5/|u|. This theorem corresponds to Beirão da Veiga’s [2000] regularity
condition that any weak solution u is regular in �× (0, T ) provided

p
1+ |u|

∈ L p(0, T ; Lq(�)) with 2
p +

3
q = 1, q > 3.

(2) The proofs of Theorems 1.1 and 1.2 also yield the regularity conditions involving
5/|u|α with sufficiently small local scaled norm for 0≤α≤ 1. Invoking the blowup
framework introduced by Seregin [2007], one can improve these results provided
α < 1 in the sense of (1-7).
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In the following, we seek out a quantity which can control the Bernoulli pressure
from the equations (1-8). Notice that the Bernoulli pressure is determined by

(1-12) 15=− div(ω× u).

We find that ω and u may be the apposite candidate. Indeed, by virtue of the split
of velocity u, Wolf [2008] established the following criteria: assume that u is a
suitable weak solution to (1-1). If there exists an absolute constant ε such that

(1-13) lim sup
µ→0

1
µ

∫∫
Q(µ)

∣∣∣ω× u
|u|

∣∣∣2 dx ds ≤ ε,

then (0, 0) is a regular point. The second goal of this paper is to obtain a regular
class in terms of u×ω/|ω| and to extend the integral norms with different exponents
in space and time in (1-13).

Theorem 1.3. Let (u, p) be a suitable weak solution to (1-1) in Q(1). Then (0, 0)
is regular point provided one of the following conditions holds:

(1) There exists a positive constant ε3 such that u×ω/|ω| ∈ Li, j
loc with

(1-14) lim sup
µ→0

µ
1−2

i −
3
j

(∫ 0

−µ2

(∫
B(µ)

∣∣∣u× ω

|ω|

∣∣∣ j
dx
) i

j
ds
)1

i
≤ ε3,

where (i, j) ∈ (2, 4)× (2, 3) satisfy

(1-15) 1≤ 2
i
+

3
j
≤ 2 with i < 4.

(2) There exists a positive constant ε3 such that ω× u/|u| ∈ Lm,n
loc with

(1-16) lim sup
µ→0

µ2− 2
m−

3
n

(∫ 0

−µ2

(∫
B(µ)

∣∣∣ω× u
|u|

∣∣∣n dx
)m

n
ds
) 1

m
≤ ε3,

where (m, n) ∈ (1, 4)× (6/5, 3) satisfy

(1-17) 2≤ 2
m
+

3
n
≤ 3 with m < 4.

Remarks. (1) As noted in the first remark on page 192, in light of Hölder’s
inequality, one can extend the range of (1-15) and (1-17) to

2
i
+

3
j
=

{
2− δ with 1− 2δ < 4

i < 2
(
0≤ δ ≤ 1

2

)
,

` ∈
[
1, 3

2

)
, with 2< i ≤∞,

and
2
m
+

3
n
=

{
3− δ with 1− 2δ < 4

m < 4
(
0≤ δ ≤ 1/2

)
,

`′ ∈
[
2, 5

2

)
, with 2< m ≤∞,

respectively.
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(2) Theorem 1.3 is an improvement of corresponding results (1-4) and (1-6) proved
by Gustafson, Kang and Tsai [Gustafson et al. 2007]. These extensions of (1-4)
and (1-6) include their endpoint cases.

(3) As a corollary of Theorem 1.3, one immediately obtains the Serrin-type regu-
larity conditions via u×ω/|ω| or ω× u/|u|, which was proved in [Chae 2010].

The idea of proving Theorem 1.3 is to establish an effective iteration scheme via
local energy inequality (1-9). Therefore, the main target is devoted to deriving the
decay-type estimate of |u|2 and the Bernoulli pressure5 in terms of the rotation term
ω×u. In view of (1-12), one can derive the decay-type estimate of the Bernoulli pres-
sure5 in terms of ω×u. Since there is no direct relationship between |u|2 and ω×u,
the main difficulty of the proof of this theorem lies in the estimate of the first term
on the right hand side of the local energy inequality (1-9). One would want to invoke
the backward heat kernel as test function utilized in [Dong and Du 2007; Wang et al.
2014; Wang and Zhang 2013] again, which yields the appearance of (ρ/µ)2 > 1 in
the second term on the right hand side of the local energy inequality. However, this
breaks down since now neither 5 nor u is assumed to be sufficiently small. Our
strategy is to utilize the decomposition introduced by Seregin [2002] for studying
the partial regularity of the Navier–Stokes equations near the boundary. Precisely,
let (v, p1) be a unique solution to the following initial boundary value problem:

(1-18)


vt−1v+∇p1 =−w×u, div v = 0 in Q(ρ)
(p1)B(ρ) = 0 on (−ρ2, 0),
v = 0 on {t =−ρ2

}×B(ρ)∪[−ρ2,0]×∂Bρ.

Then b = u− v and p2 =5− (5)B(ρ/2)− p1 solve the following boundary value
problem:

(1-19)
{

bt −1b =−∇p2, div b = 0 in Q(ρ)
b = u on {t =−ρ2

}× B(ρ)∪ [−ρ2, 0]× ∂Bρ .

This allows us to bound the L2-norm of u in terms of controlling that of v and b
separately. On the one hand, applying the L p

− Lq-estimate of solutions to the
Stokes system established by Giga and Sohr [1991] to (1-18), we get

‖vt‖Lr,s(Q(ρ))+‖Asv‖Lr,s(Q(ρ))+‖∇p1‖Lr,s(Q(ρ)) ≤ C‖w× u‖Lr,s(Q(ρ)),

where As =−Ps1 and Ps is the Leray projection from Ls(�)d onto Ls
σ (�). Then

we can apply embedding theorems in mixed norm also shown in the same work to
bound ‖v‖L2(Q(ρ)) in terms of ‖w× u‖Lr,s(Q(ρ)). On the other hand, the harmonic
function p2 helps us to get an interior estimate of b below

‖b‖2
L2(Q(µ))

≤ C
(µ
ρ

)5[
‖b‖2

L2(Q(ρ))
+‖p2‖

2
Lr,s′ (Q(ρ/2))

]
,
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where 0< µ≤ ρ/32. Then we could derive the decay-type estimate

(1-20) µ−3
‖u‖2

L2(Q(µ))
≤ C

(ρ
µ

)3
ρ−3
‖ω× u‖2

Lr,s(Q(ρ))

+C
(µ
ρ

)2[
ρ−3
‖u‖2

L2(Q(ρ))
+ ρ−3

‖5− (5)B(ρ)‖
2
Lr,s′ (Q(ρ))

]
.

Remark. The decomposition (1-18)–(1-19) allows us to take full advantage of the
structure of the rotation term ω× u and the local energy inequality (1-9) to refine
regularity criteria (1-4) and (1-6). Roughly speaking, if the rotation term w× u in
(1-18) is replaced by a convective term u · ∇u, then the split (1-18)–(1-19) reduces
to Seregin’s [2002] original split. However, it seems that, following the pathway
of Theorem 1.3, Seregin’s original split of the velocity u seems to yield Serrin-
type regularity criteria rather than the Caffarelli–Kohn–Nirenberg type regularity
conditions via u · ∇u/|∇u| or u/|u| · ∇u.

Finally, we turn our attention to the following stationary Navier–Stokes equations
in Rd for d = 5, 6:

(1-21) −1u+ u · ∇u+∇p = f, div u = 0, x ∈�.

First, we also present the definition of suitable weak solutions to the stationary case.

Definition. A pair (u, p) is said to be a suitable weak solution to the stationary
Navier–Stokes equations (1-21) if and only if

(1) u ∈W 1,2(�), p ∈ L3/2(�).

(2) (u, p) solves (1-21) in the sense of distributions.

(3) (u, p) verifies the local energy inequality

(1-22) 2
∫
�

|∇u|2ψ dx ≤
∫
�

|u|21ψ dx + 2
∫
�

( 1
2 |u|

2
+ p

)
u · ∇ψ dx + 2

∫
�

u fψ dx,

for ψ ∈ C∞0 (�), in the sense of distributions.

According to the dimensional analysis of the Navier–Stokes equations in [Caf-
farelli et al. 1982], nonstationary Navier–Stokes equations in Rd may be viewed
as stationary Navier–Stokes equations Rd+2. The analogue of the Caffarelli–Kohn–
Nirenberg criteria (1-3) for suitable weak solutions to the stationary Navier–Stokes
equations in R5 and R6 were proved by Struwe [1995] and by Dong and Strain
[2012], respectively. By means of an observation that both the local energy inequality
for the time-dependent Navier–Stokes equations and the stationary case can be dealt
with by the unified approach in [Wang and Wu 2014], one can show the analogue
theorem of Theorem 1.1 to system (1-21). To make our paper more self-contained
and more readable, we outline the proof of the stationary case with the external
force f (div f = 0).
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Theorem 1.4. Suppose that (u, p) is a suitable weak solution of the Navier–Stokes
equations (1-21) and the external force f belongs to Lq(�) with q > 1

2 d. There is
a constant ε4 such that if the condition

lim sup
µ→0

µ
−

d−2
2

(∫
B(µ)
|5− (5)B(µ)|

2d
d+2 dx

)2−d
2
< ε4, d = 5, 6,

holds, then u is regular at origin.

As a byproduct, Hölder’s inequality and absolute continuity of Lebesgue’s integral
immediately yield the following result:

Corollary 1.5. Let (u, p) be a suitable weak solution of the stationary Navier–
Stokes equations (1-21). If

(1-23) 1
2 |u|

2
+ p ∈ Ld/2

loc (�), with d = 5, 6,

then one has u ∈ L∞loc(�).

Remark. Frehse and Růžička [1994] showed that if the weak solutions satisfy( 1
2 |u|

2
+ p

)
+
∈ Lq

loc(�) with q > 1
2 d, d ≥ 5,

and the local energy inequality (1-22), then u is regular. Compared with Frehse
and Růžička’s regularity condition, the regular class (1-23) is scaling-invariant with
respect to system (1-21).

The remainder of the paper is organized as follows. In the next section, we
recall some helpful results and give some useful auxiliary lemmas such as the decay
estimate involving the Bernoulli pressure and |u|2. The last section will be devoted
to proving theorems.

Notation. Throughout this paper, we denote

B(x, µ)= {y ∈ Rd
| |x − y| ≤ µ}, B(µ) := B(0, µ),

Q(x, t, µ)= B(x, µ)× (t −µ2, t), Q(µ) := Q(0, 0, µ).

For p∈[1,∞], the notation L p((0, T ); X) stands for the set of measurable functions
f on the interval (0, T ) with values in X such that ‖ f (t, · )‖X belongs to L p(0, T ).
For simplicity, we write

‖ f ‖L p,q (Q(µ)) := ‖ f ‖L p(−µ2,0;Lq (B(µ))) and ‖ f ‖L p(Q(µ)) := ‖ f ‖L p,p(Q(µ)).

Denote by Lq
σ (�) the closure of C∞0,σ (�) in Lq(�)d, where C∞0,σ (�) denotes the set

{u ∈ C∞0 (�)
d
: div u = 0}. The classical Sobolev space W 1,2(�) is equipped with

the norm ‖ f ‖W 1,2(�) = ‖ f ‖L2(�) +‖∇ f ‖L2(�). We will also use the summation
convention on repeated indices. C is an absolute constant which may be different
from line to line unless otherwise stated. According to the natural scaling property
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of the Navier–Stokes equations [Caffarelli et al. 1982], we introduce the following
dimensionless quantities for the nonstationary case

E(u,µ)= µ−1
‖u‖2

L∞,2(Q(µ))
, E∗(u,µ)= µ−1

‖∇u‖2
L2(Q(µ))

,

Up,q(×,µ)= µ
1− 2

p−
3
q
∥∥∥u× ω

|ω|

∥∥∥
L p,q (Q(µ))

, Ep,q(u,µ)= µ
1− 2

p−
3
q ‖u‖L p,q (Q(µ)),

Wp,q(×,µ)= µ
2− 2

p−
3
q
∥∥∥ω× u

|u|

∥∥∥
L p,q (Q(µ))

,Pp,q

(
5

|u|
,µ
)
= µ

1− 2
p−

3
q
∥∥∥5
|u|

∥∥∥
L p,q (Q(µ))

,

Pp,q(5− (5)B(µ), µ)= µ
2− 2

p−
3
q ‖5− (5)B(µ)‖L p,q (Q(µ)),

E2(u, r)= µ−3
‖u‖2

L2(Q(µ))
,

and for the stationary Navier–Stokes equations,

Ẽp(u,µ)= µp−d
‖u‖p

L p(B(µ))
, Ẽ∗(u,µ)= µ4−d

‖∇u‖2
L2(B(µ))

,

P̃ 2d
2+d

(5− (5),µ)= µ
−

d−2
2 ‖5− (5)‖L

2d
2+d (B(µ)), F̃q( f,µ)= µ3q−d

‖ f ‖q
Lq (B(µ))

.

2. Preliminaries and main lemma

Before proceeding further with the decay-type estimate, we shall recall the L p
−Lq -

estimate of solutions to the linear Stokes system and an associated interpolation
inequality.

Proposition 2.1 [Giga and Sohr 1991]. Let � be a bounded domain and r, s ∈
(1,∞). Then for every f ∈ Lr (0, T ; Ls(�)), there exists a unique solution (v,∇p1)

to the Stokes system below:
vt −1v+∇p1 = f, div v = 0 in (0, T )×�,
v|∂� = 0,
(p1)� = 0, t ∈ (0, T ),
v|t=0 = 0.

satisfying

‖vt‖Lr (0,T ;Ls(�))
+‖Asv‖Lr (0,T ;Ls(�))

+‖∇p1‖Lr (0,T ;Ls(�))
≤ C‖ f ‖Lr (0,T ;Ls(�))

,

where C = C(q, s, �).

Lemma 2.2 [Giga and Sohr 1991]. Let D(As)={v∈ Ls
σ (�); ∂l∂kv∈ Ls

σ (�)
d
; 1≤

l, k ≤ d, v|∂� = 0}. Suppose that 1< s < 3/2, s < h∗ <∞, and 1< r ≤ ρ <∞.
Assume that

2
r
+

3
s
= 2+ 3

h∗
+

2
ρ
.
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Then there are constants C such that

‖v‖Lρ(0,T ;Lh∗ (�))
≤ C(‖vt‖Lr (0,T ;Ls(�))

+‖Asv‖Lr (0,T ;Ls(�))
),

for all v ∈ Lr (0, T ; D(As)) satisfying vt , Asv ∈ Lr (0, T ; Ls(�)), and v(0)= 0.

Applying Proposition 2.1 to system (1-18), we immediately get, by Lemma 2.2,

(2-1) ‖v‖2
L2(Q(ρ))

≤ C(‖vt‖
2
Lr,s(Q(ρ))

+‖Asv‖
2
Lr,s(Q(ρ))

)≤ C‖ω× u‖2
Lr,s(Q(ρ))

,

provided that r, s satisfy

2
r
+

3
s
=

9
2
, with 1< s < 6

5
.

We recall a well-known interpolation inequality, which will be frequently used later.
For every 2 ≤ κ ≤ ∞ and 2 ≤ τ ≤ 6 satisfying (2/κ)+ (3/τ) = 3

2 , by Hölder’s
inequality, Sobolev’s inequality and Young’s inequality, we see that

(2-2) ‖u‖Lκ,τ (Q(µ)) ≤ C‖u‖1−2/κ
L∞,2(Q(µ))

‖u‖2/κ
L2,6(Q(µ))

≤ C‖u‖1−2/κ
L∞,2(Q(µ))

(‖u‖L∞,2(Q(µ))+‖∇u‖L2(Q(µ)))
2/κ

≤ C(‖u‖L∞,2(Q(µ))+‖∇u‖L2(Q(µ))).

The following lemma will play a crucial role in the proof of Theorem 1.1.

Lemma 2.3. For µ ≤ 1
2ρ, there exists a constant C independent of µ and ρ such

that

E(u,µ)+ E∗(u,µ)≤ C
(µ
ρ

)2
E(u,ρ)(2-3)

+

(ρ
µ

)2
Pp,q(5− (5)B(ρ),ρ)[E(u,ρ)+ E∗(u,ρ)]1/2,

E(u,µ)+ E∗(u,µ)≤ C
(µ
ρ

)2
E(u,ρ)(2-4)

+C
(ρ
µ

)2
Pp\,q\

( 5
|u|
,ρ
)
[E(u,ρ)+ E∗(u,ρ)],

where (p, q) and (p\, q\) satisfy

(2-5) 2
p
+

3
q
=

7
2

and 2
p\
+

3
q\
= 2 with 1≤ p ≤ 2, 1≤ p\ ≤∞.

Proof. Consider the following smooth cutoff function

ψ(x, t)=
{

1, (x, t) ∈ Q(ρ/2),
0, (x, t) ∈ Qc(ρ);
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which satisfies 0≤ψ(x, t)≤1, |ψt(x, t)|+|1ψ(x, t)|≤C/ρ2 and |∇ψ(x)|≤C/ρ.
We denote the backward heat kernel

0(x, t)=
1

4π(µ2− t)3/2
e
−
|x |2

4(µ2
−t) .

Plugging φ = ψ(x, t)0(x, t) into the local energy inequality (1-9) and using that
0t +10 = 0, we know that

(2-6) sup
−ρ2≤t≤0

∫
B(ρ)
|u(x,t)|20(t,x)ψ(x,t)dx + 2

∫∫
Q(ρ)
|∇u|20(x,s)ψ(x,s)dx ds

≤

∫∫
Q(ρ)
|u|2[0(x,s)ψs(x,s)+0(x,s)1ψ(x,s)+2∇ψ(x,s)∇0(x,s)]dx ds

+

∫∫
Q(ρ)

(5− (5)B(ρ))u · [0∇ψ(x,s)+ψ(x,s)∇0(x,s)]dx ds.

This inequality in turn implies

(2-7) sup
−µ2≤t≤0

∫
B(µ)
|u(x,s)|20(x,t)dx + 2

∫∫
Q(µ)
|∇u|20(x,s)dx ds

≤

∫∫
Q(ρ)\Q(ρ/2)

|u|2[0(x,s)ψs(x,s)+0(x,s)1ψ(x,s)+ 2∇ψ(x,s)∇0(x,s)]dx ds

+

∫∫
Q(ρ)

(5− (5)B(ρ))u · [0∇ψ(x,s)+ψ(x,s)∇0(x,s)]dx ds,

where we have used the fact that supp(ψs, ∂iψ)⊂ Q(2ρ) \ Q(ρ).
To proceed further, we list some properties of the test function φ(x, t) whose

deduction rests on elementary calculations.

(i) There is a constant c > 0 independent of µ such that, for any (x, t) ∈ Q(µ),

0(x, t)≥ cµ−3.

(ii) It is clear that, for any (x, t) ∈ Q(ρ),

|0(x, t)ψ(x, t)| ≤ Cµ−3, |∇ψ(x, t)0(x, t)| ≤ Cµ−4,

and

∂i0(x, t)=−
1

4π(µ2− t)3/2
e
−
|x |2

4(µ2
−t)

2xi

4(µ2− t)
,

which in turn yields

|ψ(x, t)∇0(x, t)| ≤ Cµ−4.

(iii) For any (x, t) ∈ Q(ρ) \ Q(ρ/2), one can deduce that

0(x, t)≤ Cρ−3, ∂i0(x, t)≤ Cρ−4,
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which leads to

|0(x, t)∂tψ(x, t)| + |0(x, t)1ψ(x, t)| + |∇ψ(x, t)∇0(x, t)| ≤ Cρ−5.

Take 1/κ= 1−1/p and 1/τ = 1−1/q . Then, in light of (2-7), the Hölder inequality,
(2-2) and (2-5), we see that

E(u,µ)+E∗(u,µ)≤ C
(µ
ρ

)2
E2(u,ρ)+

(ρ
µ

)2
Pp,q(5− (5)B(ρ),ρ)Eκ,τ(u,ρ)

≤ C
(µ
ρ

)2
E(u,ρ)+

(ρ
µ

)2
Pp,q(5− (5)B(ρ),ρ)[E(u,ρ)+E∗(u,ρ)]1/2,

which means (2-3).
Choose 1/p] = 1− 1/p\ and 1/q] = 1− 1/q\. Then we derive from (2-5) that

2
2p]
+

3
2q]
=

3
2
.

This together with Hölder’s inequality and interpolation inequality (2-2) yields that∫∫
Q(ρ)
|5||u| dx dt ≤

∥∥∥ 5
|u|

∥∥∥
L p\,q\ (Q(ρ))

‖u‖2
L2p],2q] (Q(ρ))

≤

∥∥∥ 5
|u|

∥∥∥
L p\,q\

(‖u‖2
L∞,2(Q(ρ))

+‖∇u‖2
L2(Q(ρ))

).

Collecting these estimates leads to (2-4). This completes the proof. �

Next, we derive the decay estimate of the Bernoulli pressure.

Lemma 2.4. Let 0< 4µ≤ ρ and i , j, m, n be defined as the limiting case of (1-15)
and (1-17). There exists an absolute constant C independent of µ and ρ such that

Pr,s′(5− (5)B(µ), µ)≤ C
(ρ
µ

)3/2
Ui, j (×, ρ)E1/2

∗
(u, ρ)(2-8)

+C
(µ
ρ

)3−2
r Pr,s′(5− (5)B(ρ), ρ),

Pr,s′(5− (5)B(µ), µ)≤ C
(ρ
µ

)3/2
Wm,n(×, ρ)[E∗(u, ρ)+ E(u, ρ)]1/2(2-9)

+C
(µ
ρ

)3−2
r Pr,s′(5− (5)B(ρ), ρ),

where the pair (r, s ′) satisfies

2
r
+

3
s ′
=

7
2

with 1< r < 4
3
,

3
2
< s ′ < 2.
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Proof. Utilizing that (p1)B(ρ)= 0 and the Poincaré–Sobolev inequality and applying
Proposition 2.1 to system (1-18), we get

(2-10) ‖p1‖Lr,s′ (Q(ρ)) ≤ C‖∇p1‖Lr,s(Q(ρ)) ≤ C‖ω× u‖Lr,s(Q(ρ)),

where

(2-11) 3
s
= 1+ 3

s ′
.

Since 1p2 = 0 on B(ρ/4), then, by the interior estimate of harmonic functions and
Hölder’s inequality, we see that, for every x0 ∈ B(ρ/4),

|∇p2(x0)|≤
C
ρ3+1‖p2‖L1(Bx0(ρ/4))

≤
C
ρ3+1‖p2‖L1(B(ρ/2))≤

C
ρ3+1ρ

3(1−1/s′)
‖p2‖Ls′(B(ρ/2)),

which in turn implies

‖∇p2‖
s′

L∞(B(ρ/4))
≤ Cρ−3−s′

‖p2‖
s′

Ls′ (B(ρ/2))
.

The latter inequality together with the mean value theorem leads to

‖p2− (p2)B(µ)‖
s′

Ls′ (B(µ))
≤Cµ3

‖p2− (p2)B(µ)‖
s′

L∞(B(µ))

≤Cµ3(2µ)s
′

‖∇p2‖
s′

L∞(B(ρ/4))

≤C
(µ
ρ

)3+s′

‖p2‖
s′

Ls′ (B(ρ/2))
.

Integrating this inequality in time, we obtain

‖p2− (p2)B(µ)‖Lr,s′ (Q(µ)) ≤ C
(µ
ρ

) 3
s′+1
‖p2‖Lr,s′ (Q(ρ/2)).

With the help of the triangle inequality and (2-10), we infer that

(2-12) ‖p2‖Lr,s′ (Q(ρ/2)) ≤ ‖5− (5)Bρ/2‖Lr,s′ (Q(ρ/2))+‖p1‖Lr,s′ (Q(ρ/2))

≤ ‖5− (5)Bρ‖Lr,s′ (Q(ρ/2))+‖p1‖Lr,s′ (Q(ρ))

≤ ‖5− (5)Bρ‖Lr,s′ (Q(ρ))+‖ω× u‖Lr,s(Q(ρ)),

which in turns yields

‖p2− (p2)B(µ)‖Lr,s′(Q(µ)) ≤ C
(µ
ρ

)3
s′+1

(‖5− (5)B(ρ)‖Lr,s′(Q(ρ))+‖ω× u‖Lr,s(Q(ρ))).
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It follows from (2-10) and the last estimate that

(2-13) ‖5− (5)B(µ)‖Lr,s′(Q(µ))

≤ ‖p1− (p1)B(µ)‖Lr,s′(Q(µ))+‖p2− (p2)B(µ)‖Lr,s′(Q(µ))

≤ ‖p1‖Lr,s′(Q(µ))+‖p2− (p2)B(µ)‖Lr,s′(Q(µ))

≤ ‖p1‖Lr,s′(Q(ρ))+‖p2− (p2)B(µ)‖Lr,s′(Q(µ))

≤ C‖ω× u‖Lr,s(Q(ρ))+C
(µ
ρ

) 3
s′+1
‖5− (5)B(ρ)‖Lr,s′(Q(ρ)).

Now, we bound ω× u in two different ways.

Case I: The Hölder inequality and hypothesis (1-15) in Theorem 1.3 ensure that

(2-14) ‖ω× u‖Lr,s(Q(ρ)) ≤

∥∥∥u× ω

|ω|

∥∥∥
Li, j (Q(ρ))

‖ω‖L2(Q(ρ))

≤ C
∥∥∥u× ω

|ω|

∥∥∥
Li, j (Q(ρ))

‖∇u‖L2(Q(ρ)),

where the pair (r, s) satisfies
2
r
+

3
s
=

9
2
,

and

(2-15) 1
2
<

1
r
=

1
2
+

1
i
< 1, 2

3
<

1
s
=

1
2
+

1
j
< 1,

which guarantees that Proposition 2.1 and Lemma 2.2 work. Substituting (2-14)
into (2-13), we conclude that

µ−3/2
‖5− (5)B(µ)‖Lr,s′(Q(µ)) ≤ C

(ρ
µ

)3/2
ρ−1

∥∥∥u×
ω

|ω|

∥∥∥
Li, j(Q(ρ))

ρ−1/2
‖∇u‖L2(Q(ρ))

+C
(µ
ρ

)3−2/r
ρ−3/2

‖5− (5)B(ρ)‖Lr,s′(Q(ρ)).

where we have used the fact 2/r + 3/s ′ = 7/2.

Case II: Using Hölder’s inequality, (1-16) and (2-2), we see that

(2-16) ‖ω× u‖Lr,s(Q(ρ)) ≤

∥∥∥ω× u
|u|

∥∥∥
Lm,n(Q(ρ))

‖u‖Lκ,τ (Q(ρ))

≤

∥∥∥ω× u
|u|

∥∥∥
Lm,n(Q(ρ))

(‖u‖L∞,2(Q(ρ))+‖∇u‖L2(Q(ρ))),

where the pair (r, s) satisfies
2
r
+

3
s
=

9
2
.
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Just as (2-15), it suffices to verify that

(2-17) 1
2
<

1
r
=

1
m
+

1
κ
< 1 and 2

3
<

1
s
=

1
n
+

1
τ
< 1.

Indeed, for 1< m ≤ 2, we choose

κ =
3m

2m−2
and τ =

18m
m+8

.

For 2< m < 4, we pick up κ = 2, τ = 6.
Inserting (2-16) into (2-13), we know that

µ−3/2
‖5− (5)B(µ)‖Lr,s′ (B(µ))

≤ C
(ρ
µ

)3/2
ρ−1

∥∥∥ω× u
|u|

∥∥∥
Lm,n(Q(ρ))

ρ−1/2(‖u‖L∞,2(Q(ρ))+‖∇u‖L2(Q(ρ)))

+C
(µ
ρ

)3−2/r
ρ−3/2

‖5− (5)B(ρ)‖Lr,s′ (Q(ρ)).

This finishes the proof. �

Taking full advantage of the interior estimate of harmonic functions, we can
extend Lemma 2.1 in [Wolf 2008] and present its proof arguing as with the heat
equation.

Lemma 2.5. Assume that b is the solution of (1-19). Then, for µ≤ ρ/32, there is a
constant C independent of µ and ρ such that

(2-18) µ−3
‖b‖2

L2(Q(µ))
≤ C

(µ
ρ

)2(
ρ−3
‖b‖2

L2(Q(ρ/2))
+Cρ−3

‖p2‖
2
Lr,s′ (Q(ρ/2))

)
,

where the pair (r, s ′) has been defined as in Lemma 2.4.

Proof. Consider the following smooth cutoff functions:

ξ(t)=
{

1, t ≥−(ρ/8)2,
0, t ≤−(ρ/4)2;

and η(x)=
{

1, x ∈ B(ρ/8),
0, x ∈ Bc(ρ/4),

which satisfy

0≤ ξ(t), η(x)≤ 1, |ξ ′(t)| ≤ C
ρ2 and |∇η(x)| ≤ C

ρ
.

Taking the inner product of (1-19) with ξ 2η2b over (−(ρ/4)2, t)× B(ρ/4), (t ≤ 0),
we arrive at∫ t

−(ρ/4)2

∫
B(ρ/4)

ξ 2η2bbs dx ds−
∫ t

−(ρ/4)2

∫
B(ρ/4)

ξ 2η2b1b dx ds

=−

∫ t

−(ρ/4)2

∫
B(ρ/4)

ξ 2η2b∇p2 dx ds.
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Integrating by parts and the Cauchy–Schwarz inequality, we infer that

1
2

∫
B(ρ/4)

ξ 2(t)η2(x)b2(t, x) dx +
∫ t

−(ρ/4)2

∫
B(ρ/4)

ξ 2(s)η2(x)|∇b|2 dx ds

=

∫ t

−(ρ/4)2

∫
B(ρ/4)

ξ ′ξη2b2 dx ds− 2
∫ t

−(ρ/4)2

∫
B(ρ/4)

ξ 2
∇ηηb∇b dx ds

−

∫ t

−(ρ/4)2

∫
B(ρ/4)

ξ 2η2b∇p2 dx ds

≤C
∫ 0

−(ρ/4)2

∫
B(ρ/4)

ξ(ξ |∇η|2+|ξ ′|η2)b2dx ds+1
2

∫ 0

−(ρ/4)2

∫
B(ρ/4)

ξ 2(s)η2(x)|∇b|2dx ds

+C
(∫ 0

−(ρ/4)2

(∫
B(ρ/4)

ξ 2η2
|∇p2|

2 dx
)1/2

ds
)2

+
1
4
‖ξηb‖2

L∞,2(Q(ρ/4))
,

which in turn implies

ess sup
−(ρ/4)2≤t<0

1
2

∫
B(ρ/4)

ξ 2(t)η2(x)b2(t, x) dx +
∫ 0

−(ρ/4)2

∫
B(ρ/4)

ξ 2(s)η(x)2|∇b|2dx ds

≤
C
ρ2

∫ 0

−(ρ/4)2

∫
B(ρ/4)
|b|2dx ds+C

(∫ 0

−(ρ/4)2

(∫
B(ρ/4)
|∇p2|

2dx
)1/2

ds
)2

+
1
4
‖ξηb‖2

L∞,2(Q(ρ/4))
.

Consequently,

(2-19) ‖b‖2
L∞,2(Q(ρ/8))

+‖∇b‖2
L2(Q(ρ/8))

≤Cρ−2
‖b‖2

L2(Q(ρ/4))
+C‖∇p2‖

2
L1,2(Q(ρ/4))

.

Notice that the system (1-19) is linear, thus, a slight variant of the proof above
provides the estimates

‖∇b‖2
L∞,2(Q(ρ/16))

+‖∇
2b‖2

L2(Q(ρ/16))
≤ Cρ−2

‖∇b‖2
L2(Q(ρ/8))

+‖∇
2 p2‖

2
L1,2(Q(ρ/8))

,

and

‖∇
2b‖2

L∞,2(Q(ρ/32))
+‖∇

3b‖2
L2(Q(ρ/32))

≤Cρ−2
‖∇

2b‖2
L2(Q(ρ/16))

+‖∇
3p2‖

2
L1,2(Q(ρ/16))

.

Collecting the above estimates, we find

(2-20) ‖∇2b‖2
L∞,2(Q(ρ/32))

+‖∇
3b‖2

L2(Q(ρ/32))

≤ Cρ−2{Cρ−2
‖∇b‖2

L2(Q(ρ/8))
+‖∇

2p2‖
2
L1,2(Q(ρ/8))

}
+C‖∇3p2‖

2
L1,2(Q(ρ/16))

≤Cρ−2{Cρ−2[Cρ−2
‖b‖2

L2(Q(ρ/4))
+‖∇p2‖

2
L1,2(Q(ρ/4))

]
+C‖∇2p2‖

2
L1,2(Q(ρ/8))

}
+C‖∇3p2‖

2
L1,2(Q(ρ/16))

.

By virtue of the interior estimate of harmonic functions, for every k ∈ N+, we have

|∇
k p2(x0)| ≤ Cρ−3−k

‖p2‖L1(Bx0 (ρ/4))
≤ ρ−3−k

‖p2‖L1(B(ρ/2)),
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for any x0 ∈ B(ρ/4), from which it follows that

‖∇
k+1 p2‖L2(B(ρ/4)) ≤ Cρ

3
2 ‖∇k+1 p2‖L∞(B(ρ/4))

≤ Cρ
3
2ρ−(k+1+3)

‖p2‖L1(B(ρ/2))

≤ Cρ−(k+1)ρ
3
2−

3
s′ ‖p2‖Ls′ (B(ρ/2)).

Integrating the last inequality in time yields

‖∇
k+1 p2‖Lr,2(Q(ρ/4)) ≤ Cρ−(k+1)ρ

3
2−

3
s′ ‖p2‖Lr,s′(Q(ρ/2)).

Utilizing Hölder’s inequality, we discover

‖∇
k+1 p2‖L1,2(Q(ρ/4)) ≤ Cρ−(k+1)

‖p2‖Lr,s′(Q(ρ/2)),

where we have used the fact 2/r+3/s ′ = 7/2. Plugging this inequality into bounds
(2-19) and (2-20) gives

‖b‖2
L∞,2(Q(ρ/8))

+‖∇b‖2
L2(Q(ρ/8))

≤
C
ρ2 ‖b‖

2
L2(Q(ρ/4))

+
C
ρ2 ‖p2‖

2
Lr,s′(Q(ρ/2))

,

and

‖∇
2b‖2

L∞,2(Q(ρ/32))
+‖∇

3b‖2
L2(Q(ρ/32))

≤
C
ρ6 ‖b‖

2
L2(Q(ρ/4))

+
C
ρ6 ‖p2‖

2
Lr,s′(Q(ρ/2))

.

By the Gagliardo–Nirenberg inequality and the latter inequalities, we infer that

‖b‖2
L2(Q(µ))

≤ Cµ5
‖b‖2

L∞(Q(ρ/32))

≤ Cµ5(
‖b‖2·(1/4)

L∞,2 Q(ρ/32)
‖∇

2b‖2·(3/4)
L∞,2(Q(ρ/32))

+
C
ρ3 ‖b‖

2
L∞,2(Q(ρ/32))

)
≤ Cµ5(ρ−2

‖b‖2
L2(Q(ρ/4))

+Cρ−2
‖p2‖

2
Lr,s′ (Q(ρ/2))

)1/4
×
(
ρ−6
‖b‖2

L2(Q(ρ/4))
+Cρ−6

‖p2‖
2
Lr,s′ (Q(ρ/2))

)3/4
+Cµ5 C

ρ3

(
ρ−2
‖b‖2

L2(Q(ρ/4))
+Cρ−2

‖p2‖
2
Lr,s′(Q(ρ/2))

)
≤ C

(µ
ρ

)5(
‖b‖2

L2(Q(ρ/4))
+C‖p2‖

2
Lr,s′(Q(ρ/2))

)
,

which means that

µ−3
‖b‖2

L2(Q(µ))
≤ C

(µ
ρ

)2(
ρ−3
‖b‖2

L2(Q(ρ/2))
+Cρ−3

‖p2‖
2
Lr,s′ (Q(ρ/2))

)
,

which is the desired result. �
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This lemma entails the desired decay estimate (1-20), that is,

(2-21) E2(u,µ)≤ C
(ρ
µ

)3
ρ−3
‖ω× u‖2

Lr,s(Q(ρ))

+C
(µ
ρ

)2
[E2(u,ρ)+ P2

r,s′(5− (5)Bρ ,ρ)].

Indeed, it is enough to bound the right hand of the following inequality:

µ−3
‖u‖2

L2(Q(µ))
≤µ−3

‖v‖2
L2(Q(µ))

+µ−3
‖b‖2

L2(Q(µ))

≤

(ρ
µ

)3
ρ−3
‖v‖2

L2(Q(ρ))
+µ−3

‖b‖2
L2(Q(µ))

≤C
(ρ
µ

)3
ρ−3
‖ω× u‖2

Lr,s(Q(ρ))
+µ−3

‖b‖2
L2(Q(µ))

,

where we have used (2-1). To end this, first, by triangle inequality and (2-1) again,
we see that

ρ−3
‖b‖2

L2(Q(ρ))
≤ρ−3

‖u‖2
L2(Q(ρ))

+ ρ−3
‖v‖2

L2(Q(ρ))

≤ρ−3
‖u‖2

L2(Q(ρ))
+Cρ−3

‖ω× u‖2
Lr,s(Q(ρ))

.

Then, we insert the latter estimate and (2-12) into (2-18) to obtain

µ−3
‖b‖2

L2(Q(µ))
≤ C

(µ
ρ

)2(
ρ−3
‖u‖2

L2(Q(ρ))
+ ρ−3

‖ω× u‖2
Lr,s(Q(ρ))

+Cρ−3
‖5− (5)Bρ‖

2
Lr,s′ (Q(ρ))

)
.

This inequality yields the desired estimate (2-21).
Before we state the auxiliary results to the stationary Navier–Stokes equations,

we first recall the Caffarelli–Kohn–Nirenberg regular condition below to the steady
Navier–Stokes equations.

Proposition 2.6 [Struwe 1995; Dong and Strain 2012; Wang and Wu 2014]. Sup-
pose (u, p) is a suitable weak solution to (1-21) and the external force f ∈ Lq(�)

with q > 1
2 d. Then the origin 0 is a regular point for u(x) if the following condition

holds:

(2-22) lim sup
µ→0

1
µd−4

∫
B(µ)
|∇u|2 dx < ε, d = 5, 6,

for a universal constant ε > 0.

To show Theorem 1.4, we need to prove the following lemma:
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Lemma 2.7. Let 0< 2r < ρ. It holds that

(2-23) Ẽ(u, µ)+ Ẽ∗(u, µ)

≤ C
(µ
ρ

)2
Ẽ(u,ρ)

+C
(ρ
µ

)d−3(
P̃ 2d

d+2
(5−(5)B(ρ),ρ)+ F̃ 2d

d+2
( f, ρ)

)
[Ẽ(u,ρ)+ Ẽ∗(u,ρ)]1/2,

where the constant C is independent of µ and ρ.

Proof. The conclusion can be derived by a slight change of the proof of Lemma 2.3
as follows. In the spirit of the backward heat kernel for the time-dependent case,
we modify slightly the fundamental solution of Laplace equations to set

0(x)=
1

(µ2+ |x |2)(d−2)/2 , d = 5, 6.

An easy computation gives

∂i0(x)=−
(d − 2)xi

(µ2+ |x |2)d/2
and 10(x)=

−d(d − 2)µ2

(µ2+ |x |2)(d+2)/2 .

Consider the smooth cutoff function

η(x)=
{

1, x ∈ B(ρ/2),
0, x ∈ Bc(ρ),

which satisfies

0≤ η(x)≤ 1, |∇η(x)| ≤ C
ρ
, and |1η(x)| ≤ C

ρ2 .

The desired estimate turns out to be a consequence of the following properties of
the test function η(x)0(x):

(i) For every x ∈ B(µ), straightforward calculations yield

−10 ≥ Cµ−d , 0 ≥ Cµ−(d−2).

(ii) For every x ∈ B(ρ), it is easy to verify that

|η(x)0| ≤ Cµ−(d−2), |η(x)∇0| + |0∇η(x)| ≤ Cµ−(d−1),

(iii) For every ρ/2≤ |x | ≤ ρ, we know that

|01η(x)| + |∇η(x) · ∇0| ≤ Cρ−d .
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Inserting φ = η(x)0(x) into the local energy inequality (1-22), we see that

−

∫
B(ρ)
|u|2η10 dx + 2

∫
B(ρ)
|∇u|2η0 dx

≤

∫
B(ρ)
|u|2(01η+ 2∇η · ∇0) dx + 2

∫
B(ρ)
(5− (5)B(ρ))u · (η∇0+0∇η)

+2
∫

B(ρ)
f · uη0 dx .

This inequality implies

−

∫
B(µ)
|u|210 dx + 2

∫
B(µ)
|∇u|20 dx

≤

∫
B(ρ)\B(ρ/2)

|u|2(01η+2∇η · ∇0) dx +2
∫

B(ρ)
(5− (5)B(ρ))u · (η∇0+0∇η) dx

+2
∫

B(ρ)
f · uη0 dx .

The property of test functions and Hölder’s inequality yield that

C
µd−2

∫
B(µ)
|u|2 dx + C

µd−4

∫
B(µ)
|∇u|2 dx

≤

(µ
ρ

)2 1
ρd−2

∫
B(ρ)\B(ρ/2)

|u|2 dx

+C
(ρ
µ

)d−3
(

1

ρ
d2
−2d

d+2

∫
B(ρ)
|(5− (5)B(ρ))|

2d
d+2 dx

)d+2
2d
(

1

ρ
d2
−4d

d−2

∫
B(ρ)
|u|

2d
d−2 dx

)d−2
2d

+C
(ρ
µ

)d−4
(

1

ρ
d2
−4d

d+2

∫
B(ρ)
| f |

2d
d+2 dx

)d+2
2d
(

1

ρ
d2
−4d

d−2

∫
B(ρ)
|u|

2d
d−2 dx

)d−2
2d
.

Combining this estimate with the Sobolev embedding

(2-24) ‖u‖L2d/(d−2)(B(ρ)) ≤ C(‖∇u‖L2(B(ρ))+ ρ
−1
‖u‖L2(B(ρ))), x ∈ Rd

with d = 5, 6, we derive the desired estimate (2-23). �

3. Proofs of theorems

This section is devoted to the proofs of Theorem 1.1–1.4.

Proof of Theorem 1.1. In the light of Hölder’s inequality, it suffices to deal with the
case 2/p+ 3/q = 7/2. According to the hypothesis of Theorem 1.1, we know that
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there exists a constant r0 > 0 such that

Pp,q(5− (5)B(µ), µ)≤ ε1, for any µ≤ r0.

Before going further, we set

G1(µ)= E(u, µ)+ E∗(u, µ) and λ= µ/ρ (λ≤ 1/4).

By (2-3) in Lemma 2.3 and Young’s inequality, we derive that

G1(µ)≤ C
(µ
ρ

)2
E(u,ρ)+C

(ρ
µ

)2
Pp,q(5− (5)B(ρ),ρ)[E(u,ρ)+ E∗(u,ρ)]1/2

≤C
(µ
ρ

)2
G1(ρ)+C

(ρ
µ

)2
Pp,q(5− (5)B(ρ),ρ)G1(ρ)+

(ρ
µ

)2
Pp,q(5− (5)B(ρ),ρ)

≤ C2λ
2G1(ρ)+C1λ

−2ε1G1(ρ)+ λ
−2ε1.

Choosing λ, ε1 such that q = 2C2λ
2 < 1 and ε1 =min{qλ2/(2C1), (1− q)λ3ε/2},

we obtain
G1(λρ)≤ qG1(ρ)+ λ

−2ε1

Iterating the latter inequality, we deduce that

G1(λ
kρ)≤ qk G1(ρ)+

1
2λε.

From the definition of G1(µ), there exists a positive number K0 such that

q K0 G1(r0)≤ 2
C(‖u‖L∞L2, ‖∇u‖L2)

r0
q K0 ≤

1
2
λε.

Let r2 :=λ
K0r0. For every 0< r ≤ r2, there exists k≥ K0 such that λk+1r0≤ r ≤λkr0.

An easy computation yields that

E∗(r)≤
1

λk+1r0

∫∫
Q(λkr0)

|∇u|2 dx dt≤ 1
λ

G1(λ
kr0)≤

1
λ

(
qk−K0q K0 G1(r0)+

1
2
λε
)
≤ε.

This together with (1-3) completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Thanks to Hölder’s inequality, without loss of generality, we
just consider the endpoint case 2/p\+ 3/q\ = 2. With the estimate (2-4) in hand,
arguing as with the iteration method above, we can finish the proof. �

Proof of Theorem 1.4. It follows from Hölder’s inequality that

(3-1) F̃p( f, µ)= µ3p−d
∫

B(µ)
| f (x)|p dx ≤ µ3p− p

q d
(∫

�

| f (x)|q dx
)p/q

,

which together with the integrability hypothesis on the force f implies that

F̃p( f, µ) tends to 0 as µ→ 0,
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where p < 1
2 d < q. Therefore, we see that there is a constant r1 such that for any

µ ≤ r1, F̃2d/(d+2)( f, µ) ≤ ε2. Owing to the assumption, there exists a constant
r2 ≤ r1 such that

P̃2d/(d+2)(5− (5)B(µ), µ)≤ ε2, for any µ≤ r2.

Based on this inequality and (2-23) in Lemma 2.7, we complete the proof in the
same way as in the proof of Theorem 1.1. �

Proof of Theorem 1.3. This will occupy the remainder of the section. We start
with some preliminaries. Recall the symbols r , s ′ defined ias n Lemma 2.4, which
correspond to the borderline cases of (1-15) and (1-17). Set

1
r ]
= 1− 1

r
and 1

s]
= 1− 1

s ′
.

Then it is obvious that

2
r ]
+

3
s]
=

3
2

with r ] ∈ [2,∞), s] ∈ (2, 6).

It follows from (2-2) that

‖u‖Lr],s](Q(ρ)) ≤ C(‖u‖L∞,2(Q(ρ))+‖∇u‖L2(Q(ρ))).

Consider the usual cutoff function ϕ(x, t) ∈ C∞0 (Q(2µ)) satisfying ϕ ≡ 1 in Q(µ),
0 ≤ ϕ ≤ 1, |∇ϕ| ≤ Cµ−1 and |∂tϕ| + |1ϕ| ≤ Cµ−2. By the divergence-free
condition div = 0, Hölder’s inequality and the latter inequality, for 32µ ≤ ρ, we
infer that∫∫

Q(2µ)
u·∇ϕ5 dx ds =

∫∫
Q(2µ)

u·∇ϕ(5− (5)B(2µ)) dx ds

≤Cµ−1
‖5− (5)B(2µ)‖Lr,s′(Q(2µ))‖u‖Lr],s](Q(2µ))

≤Cµ−1
‖5− (5)B(2µ)‖Lr,s′(Q(2µ))(‖u‖L∞,2(Q(ρ))+‖∇u‖L2(Q(ρ))).

Choosing ϕ(x, t) as the test function in (1-9) and using the latter relation, we see
that

(3-2) E(u, µ)+ E∗(u, µ)

≤ E2(u, 2µ)+ Pr,s′(5− (5), 2µ)
(ρ
µ

)1/2
(E(u, ρ)+ E∗(u, ρ))1/2.

This concludes the preliminaries. The proof proper is divided into two steps.

(1) Substituting (2-14) into (2-21), we have

(3-3) E2(u,µ)≤C
(ρ
µ

)3
U 2

i, j(×,ρ)E∗(u,ρ)+C
(µ
ρ

)2
[E2(u,ρ)+P2

r,s′(5−(5)Bρ,ρ)].
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Plugging (3-3) and (2-8) into (3-2), we infer that

E(u,µ)+E∗(u,µ)≤C
(ρ
µ

)3
U 2

i, j (×,ρ)E∗(u,ρ)+C
(µ
ρ

)2
[E(u,ρ)+P2

r,s′(5− (5)Bρ,ρ)]

+

[
C
(ρ
µ

)3/2
Ui, j (×,ρ)E

1/2
∗ (u,ρ)+C

(µ
ρ

)3−2/r
Pr,s′(5− (5)Bρ,ρ)

]
×

(ρ
µ

)1/2
[E(u,ρ)+ E∗(u,ρ)]1/2.

We define G2(µ) = E(u, µ) + E∗(u, µ) + P2
r,s′(5 − (5)Bµ, µ). Then the last

inequality and (2-8) in Lemma 2.4 lead to

(3-4) G2(µ)≤C
(ρ
µ

)3
U 2

i, j (×, ρ)G2(ρ)+C
(µ
ρ

)2
G2(ρ)

+C
(ρ
µ

)2
Ui, j (×, ρ)G2(ρ)+C

(µ
ρ

)5/2−2/r
G2(ρ)

+C
(ρ
µ

)3
U 2

i, j (×, ρ)E∗(u, ρ)+C
(µ
ρ

)6−4/r
P2

r,s′(5− (5)Bρ , ρ)

≤C
(ρ
µ

)3
Ui, j (×, ρ)G2(ρ)+C

(µ
ρ

)5/2−2/r
G2(ρ).

Now, by an argument completely analogous to that in the proof of Theorem 1.1,
we can complete the first part of the proof of Theorem 1.3.

(2) Substituting (2-16) into (2-21), we get

(3-5) E2(u, µ)≤
(ρ
µ

)3
W 2

m,n(×, ρ)[E(u, ρ)+ E∗(u, ρ)]

+C
(µ
ρ

)2
[E(u, ρ)+ P2

r,s′(5− (5)Bρ , ρ)].

Plugging (3-5) and (2-9) into (3-2), we infer that

E(u, µ)+ E∗(u, µ)

≤

(ρ
µ

)3
W 2

m,n(×, ρ)[E(u, ρ)+E∗(u, ρ)]+C
(µ
ρ

)2
[E(u, ρ)+P2

r,s′(5−(5)Bρ , ρ)]

+

{
C
(ρ
µ

)3/2
Wm,n(×, ρ)[E(u, ρ)+E∗(u, ρ)]1/2+C

(µ
ρ

)3−2/r
Pr,s′(5−(5)Bρ , ρ)

}
×

(ρ
µ

)1/2
[E(u, ρ)+ E∗(u, ρ)]1/2.

Let

G3(µ)= E(u, µ)+ E∗(u, µ)+ P2
r,s′(5− (5)Bµ, µ).
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Then the latter relation and (2-9) allow us to obtain

(3-6) G3(µ)≤C
(ρ
µ

)3
W 2

m,n(×, ρ)G3(ρ)+C
(µ
ρ

)2
G3(ρ)

+C
(ρ
µ

)2
Wm,n(×, ρ)G3(ρ)+C

(µ
ρ

)5/2−2/r
G3(ρ)

+C
(ρ
µ

)3
W 2

m,n(×, ρ)G3(ρ)+C
(µ
ρ

)6−4
r G3(ρ)

≤C
(ρ
µ

)3
Wm,n(×, ρ)G3(ρ)+C

(µ
ρ

)5/2−2/r
G3(ρ).

Combining equations (3-4) and (3-6) and iterating as in the proof of Theorem 1.1
completes the second part of the proof of Theorem 1.3. �
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GEOMETRIC PROPERTIES OF LEVEL CURVES
OF HARMONIC FUNCTIONS AND MINIMAL GRAPHS

IN 2-DIMENSIONAL SPACE FORMS

JINJU XU AND WEI ZHANG

We study the geometric properties of level curves of harmonic functions and
minimal graphs in 2-dimensional space forms using the maximum principle.
More precisely, we find two auxiliary functions which consist of tangential
derivatives of the curvature of level curves and the norms of the gradient
of the solution functions. Then we prove that they satisfy certain elliptic
partial differential equations.

1. Introduction

The geometric properties of the level surfaces of solutions of elliptic partial differ-
ential equations have been studied for a long time. For instance, a book by Ahlfors
[1973] contains the well-known result that level curves of the Green function of a
2-dimensional convex domain are convex curves. Gergen [1931] proved the level
surfaces of the Green function of a 3-dimensional star-shaped domain are also
star-shaped. Shiffman [1956] studied the convexity of the level curves of immersed
minimal surfaces in R3. He proved that if two convex curves in parallel planes in
R3 bound a minimal surface S then the intersections of all other parallel planes
with S are also convex curves. In particular, he obtained that if the boundaries are
two circles then intermediate level curves are also circles. Gabriel [1957] proved
that the level surfaces of the Green function of a 3-dimensional convex domain
are strictly convex. Later, Lewis [1977] extended Gabriel’s results to p-harmonic
functions in high dimensions. For more related extensions and a survey on this
subject, see [Bianchini et al. 2009; Caffarelli and Spruck 1982; Kawohl 1985].

There is also a lot of literature on the quantitative curvature estimates of level
surfaces of solutions of elliptic partial differential equations. For 2-dimensional
harmonic functions, Talenti [1983] got the following result. Let�⊂R2 be a domain
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and u be a harmonic function with no critical points in�. Then the function κ/|∇u|
is harmonic in �. Here

κ =
2u1u2u12− u2

1u22− u2
2u11

|∇u|3

is the curvature of the level curves of u. Throughout the paper we use subscripts to
represent the derivatives with respect to any orthonormal frames. Similar results can
also be seen in [Ortel and Schneider 1983; Longinetti 1983]. Recently, Ma, Ou and
Zhang [Ma et al. 2010] generalized the above results to n-dimensional harmonic
functions (2≤ n <∞) and obtained the sharp Gaussian curvature estimates of the
level surfaces. See also [Chang et al. 2010; Ma and Zhang 2013; 2014; Wang and
Zhang 2012; Zhang and Zhang 2013].

More recently, Kong and Xu [2015] found that if u is a harmonic function of
two variables with no critical points, then the function (κ1u2− κ2u1)/|∇u|3 is also
harmonic. Using this fact, they proved that all the level curves of solutions of the
Laplace equation with homogeneous Dirichlet boundary conditions on an annulus
are circles. This result can be viewed as a generalization of Shiffman’s result on
minimal surfaces. In this paper, we extend Kong and Xu’s and Shiffman’s results
to harmonic functions and minimal graphs in 2-dimensional space forms. More
precisely, we obtain the following results.

Theorem 1.1. Suppose that M2(c) is a 2-dimensional Riemannian manifold with
constant sectional curvature c. Let �⊂ M2(c) be a domain and u be a harmonic
function with no critical points in �. Let κ be the curvature of the level curves of u.
Then the function ϕ = (κ1u2− κ2u1)/|∇u|3 is also harmonic in �.

For minimal graphs, we have the following similar result.

Theorem 1.2. Suppose that M2(c) is a 2-dimensional Riemannian manifold with
constant sectional curvature c. Let � ⊂ M2(c) be a domain and u satisfy the
minimal surface equation ∑

i j

ai j ui j = 0 in �,

where ai j = (1+ |∇u|2)δi j − ui u j . Furthermore, assume that there are no critical
points of u in �. Let κ be the curvature of the level curves of u. Set

ψ =
(1+ |∇u|2)3/2

|∇u|3
· (κ1u2− κ2u1).

Then the function ψ satisfies the differential equation∑
i j

ai jψi j +
∑

i

biψi = 0 in �.

Here the bi are bounded functions.
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Based on the above theorems, we have the following characterization of geodesic
circles.

Remark 1.3. Since (κ1u2−κ2u1)/|∇u| is the tangential derivative of the curvature
of the level curves, the auxiliary functions ϕ and ψ are independent of the choice
of orthonormal frames. Similar to the case of Euclidean space, by the maximum
principle, we know that all the level curves of solutions of the Laplace equation or
the minimal surface equation with homogeneous Dirichlet boundary conditions on
an annulus are geodesic circles.

Now we give the derivative commutation formulas in Riemannian geometry. Let
u be a smooth function and Ri jkl be coefficients of the Riemannian curvature tensor
under orthonormal frames. Here for 2-dimensional space forms M2(c), we adopt
R1212 = c. Then we have

ui j − u j i = 0,(1-1)

ui jk − uik j =
∑

m

um Rmi jk,(1-2)

ui jkl − ui jlk =
∑

m

umj Rmikl +
∑

m

uim Rmjkl .(1-3)

For more details, one can consult any book on Riemannian geometry, such as [Chern
et al. 1999].

In this paper, all the summation indices i , j , k, l and m run from 1 to 2. In
Section 2, we prove Theorem 1.1. In Section 3, we prove Theorem 1.2.

2. Level curves of harmonic functions

In this section, we focus on the calculation of harmonic functions in 2-dimensional
space forms.

Let �⊂ M2(c) be a domain and u be a harmonic function defined in � with no
critical points. Set

ϕ = f (|∇u|)(κ1u2− κ2u1),

where κ is the curvature of the level curves and f is a smooth function of one
variable defined on the interval (0,+∞) which will be determined later. For a
suitable choice of f , we will prove that ϕ is also a harmonic function in �, i.e., the
function ϕ satisfies

(2-1) 1ϕ = 0 in �.

In order to prove (2-1) at an arbitrary point x0 ∈�, we may choose the orthonor-
mal frames such that

u1(x0)= 0, u2(x0)= |∇u|(x0) > 0.
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From now on, all the calculations will be done at the fixed point x0 unless
otherwise specified.

By taking the first derivative of ϕ, we have

(2-2) ϕi = f ′(|∇u|)i · (κ1u2− κ2u1)+ f · (κ1i u2+ κ1u2i − κ2i u1− κ2u1i ).

Differentiating (2-2) once more, we have

ϕi i = f ′′(|∇u|)2i · κ1u2+ f ′(|∇u|)i i · κ1u2+ 2 f ′(|∇u|)i · (κ1i u2+ κ1u2i − κ2u1i )

+ f · (κ1i i u2+ 2κ1i u2i + κ1u2i i − 2κ2i u1i − κ2u1i i );

hence

(2-3) 1ϕ = u2 f
∑

i

k1i i +
[
2u2 f ′(|∇u|)1+ 2 f u12

]
· κ11

+
[
2u2 f ′(|∇u|)2+ 2 f u22− 2 f u11

]
· κ12+ [−2 f u12] · κ22

+

[
u2 f ′′

∑
i

(|∇u|)2i + u2 f ′
∑

i

(|∇u|)i i

+ 2 f ′
∑

i

(|∇u|)i u2i + f
∑

i

u2i i

]
· κ1

+

[
−2 f ′

∑
i

(|∇u|)i u1i − f
∑

i

u1i i

]
· κ2.

Direct calculation yields

(2-4)

(|∇u|)i =
1
|∇u|

∑
j

u j u j i ,

(|∇u|)i i =
1
|∇u|

∑
j

u2
j i +

1
|∇u|

∑
j

u j u j i i −
1
|∇u|3

∑
jk

u j u j i ukuki .

Then at the point x0,

(2-5) (|∇u|)i = u2i , (|∇u|)i i =
u2

1i

u2
+ u2i i .

By the commutation formulas (1-1)–(1-2), we have∑
i

u1i i =
∑

i

ui1i =
∑

i

[
ui i1+

∑
m

um Rmi1i

]
= 0,(2-6)

∑
i

u2i i =
∑

i

ui2i =
∑

i

[
ui i2+

∑
m

um Rmi2i

]
= u2 · c.(2-7)
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Putting (2-5)–(2-7) into (2-3), we obtain

(2-8) 1ϕ= u2 f
∑

i

κ1i i+(2u2 f ′+2 f )u12 ·κ11+(−2u2 f ′−4 f )u11 ·κ12

+(−2 f )u12 ·κ22+(u2 f ′′+3 f ′)(u2
11+u2

12)·κ1+(u2
2 f ′+u2 f )·κ1 ·c.

To compute the first term in (2-8), we should get the formula for 1κ at a general
point in advance. Recalling the curvature formula for the level curves, we have

(2-9) |∇u|3 · κ = 2u1u2u12− u2
1u22− u2

2u11.

By applying the Laplace operator on both sides of (2-9) and then using (2-4), we
obtain

(2-10) 1κ =
1
|∇u|3

∑
i

(2u1u2u12−u2
1u22−u2

2u11)i i−
6
|∇u|

∑
i

(|∇u|)i ·κi

−
6
|∇u|2

∑
i

(|∇u|)2i ·κ−
3
|∇u|

∑
i

(|∇u|)i i ·κ

=
1
|∇u|3

∑
i

(2u1u2u12−u2
1u22−u2

2u11)i i−
6
|∇u|2

(u1u11+u2u12)·κ1

−
6
|∇u|2

(u1u12−u2u11)·κ2−
1
|∇u|2

[
9(u2

11+u2
12)+3

∑
i j

u j u j i i

]
·κ.

Now the commutation formulas (1-1)–(1-2) yield

(2-11)
∑

i j

u j u j i i =
∑

i j

u j

[
ui i j +

∑
m

um Rmi ji

]
=

∑
i jm

u j um Rmi ji = |∇u|2 · c.

By inserting (2-11) into (2-10), we have

(2-12) 1κ =
1
|∇u|3

∑
i

(2u1u2u12−u2
1u22−u2

2u11)i i−
6
|∇u|2

(u1u11+u2u12) ·κ1

−
6
|∇u|2

(u1u12− u2u11) · κ2−
9
|∇u|2

(u2
11+ u2

12) · κ − 3κ · c.

Straightforward computation gives

(2-13)
∑

i

(2u1u2u12−u2
1u22−u2

2u11)i i

=

∑
i

[
2u1i i u2u12+2u1u2i i u12+2u1u2u12i i−2u1u1i i u22

−u2
1u22i i−2u2u2i i u11−u2

2u11i i+4u1i u2i u12+4u1i u2u12i

+4u1u2i u12i−2u2
1i u22−4u1u1i u22i−2u2

2i u11−4u2u2i u11i
]
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= 2(u2u12+u1u11)
∑

i

u1i i+2(u1u12−u2u11)
∑

i

u2i i

+2u1u2
∑

i

u12i i−u2
1

∑
i

u22i i−u2
2

∑
i

u11i i

+4
∑

i

(u2u1i+u1u2i )u12i+4
∑

i

(u1u1i−u2u2i )u11i

, I1+ I2+ I3,

where

I1 = 2(u2u12+ u1u11)
∑

i

u1i i + 2(u1u12− u2u11)
∑

i

u2i i ,

I2 = 2u1u2
∑

i

u12i i − u2
1

∑
i

u22i i − u2
2

∑
i

u11i i ,

I3 = 4
∑

i

(u2u1i + u1u2i )u12i + 4
∑

i

(u1u1i − u2u2i )u11i .

We deal with the terms I1, I2 and I3 consecutively. By (2-6)–(2-7), we have

(2-14) I1 = 2(u2u12+ u1u11)
∑
im

um Rmi1i + 2(u1u12− u2u11)
∑
im

um Rmi2i

= 2(u2u12+ u1u11) · u1 · c+ 2(u1u12− u2u11) · u2 · c

= 2|∇u|3 · κ · c.

By the commutation formulas (1-1)–(1-3), we have

u jki i = ui i jk +
∑

m

umk Rmi ji +
∑

m

umj Rmiki + 2
∑

m

umi Rmjki .

It follows that

(2-15) I2 = 2u1u2 ·

[∑
im

um2 Rmi1i +
∑
im

um1 Rmi2i + 2
∑
im

umi Rm12i

]
− u2

1 ·

[
2
∑
im

um2 Rmi2i + 2
∑
im

umi Rm22i

]
− u2

2 ·

[
2
∑
im

um1 Rmi1i + 2
∑
im

umi Rm11i

]
= 2u1u2 · 4u12 · c− u2

1 · (−4u11) · c− u2
2 · 4u11 · c

= (8u1u2u12+ 4u2
1u11− 4u2

2u11) · c.
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By the commutation formulas (1-1)–(1-2),

u121 = u112+
∑

m

um Rm121 = u112+ u2 · c,(2-16)

u122 = u221+
∑

m

um Rm212 =−u111+ u1 · c.(2-17)

Then we have

(2-18) I3 = 8(u1u11− u2u12)u111+ 8(u1u12+ u2u11)u112

+ (8u1u2u12+ 4u2
2u11− 4u2

1u11) · c.

Combining (2-13)–(2-15) and (2-18), we get

(2-19)
∑

i

(2u1u2u12− u2
1u22− u2

2u11)i i

= 8(u1u11− u2u12)u111+ 8(u1u12+ u2u11)u112

+ 2|∇u|3 · κ · c+ 16u1u2u12 · c.

Now let us explore the relations between u111, u112 and κ1, κ2. Taking the first
derivative on both sides of (2-9) and using (2-4), (2-16) and (2-17), we obtain

(u2
1− u2

2) · u111+ 2u1u2 · u112

= |∇u|3 · κ1+ 3|∇u|(u1u11+ u2u12) · κ − 2u1(u2
11+ u2

12)− 2u1u2
2 · c,

− 2u1u2 · u111+ (u2
1− u2

2) · u112

= |∇u|3 · κ2+ 3|∇u|(u1u12− u2u11) · κ − 2u2(u2
11+ u2

12)− 2u2
1u2 · c.

Thus we have

(2-20) u111 =
u2

1− u2
2

|∇u|
· κ1−

2u1u2

|∇u|
· κ2+

3
|∇u|

(u1u11− u2u12) · κ

−
2u1(u2

1− 3u2
2)

|∇u|4
(u2

11+ u2
12)+

2u1u2
2

|∇u|2
· c,

and

(2-21) u112 =
2u1u2

|∇u|
· κ1+

u2
1− u2

2

|∇u|
· κ2+

3
|∇u|

(u2u11+ u1u12) · κ

−
2u2(3u2

1− u2
2)

|∇u|4
(u2

11+ u2
12)−

2u2
1u2

|∇u|2
· c.
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Hence the formula (2-19) reduces to

(2-22)
∑

i

(2u1u2u12− u2
1u22− u2

2u11)i i

= 8|∇u|(u1u11+ u2u12) · κ1+ 8|∇u|(u1u12− u2u11) · κ2

+ 8|∇u|(u2
11+ u2

12) · κ + 2|∇u|3 · κ · c.

By (2-12) and (2-22), we have

(2-23) 1κ =
2
|∇u|2

(u1u11+ u2u12) · κ1+
2
|∇u|2

(u1u12− u2u11) · κ2

−
1
|∇u|2

(u2
11+ u2

12) · κ − κ · c.

Then at the point x0, we take the first derivative of (2-23). With (2-5) and (2-16)
in hand, we obtain

(2-24) (1κ)1 =
2
u2

u12 · κ11−
2
u2

u11 · κ12+

[
2
u2

u112+
1
u2

2
u2

11−
3
u2

2
u2

12

]
· κ1

+

[
−

2
u2

u111+
4
u2

2
u11u12

]
· κ2

+

[
−

2
u2

2
(u11u111+ u12u112)+

2
u3

2

(u2
11+ u2

12)u12

]
· κ

+

[
κ1−

2
u2

u12 · κ

]
· c.

Now, the equations (2-20) and (2-21) are simplified as

u111 =−u2κ1+
3
u2

u11u12,(2-25)

u112 =−u2κ2−
1
u2

u2
11+

2
u2

u2
12.(2-26)

Putting (2-25)–(2-26) into (2-24), one achieves

(1κ)1 =
2
u2

u12 ·κ11−
2
u2

u11 ·κ12+

[
−

3
u2

2
u2

11+
1
u2

2
u2

12

]
·κ1+

[
−

4
u2

2
u11u12

]
·κ2

+

[
−

2
u3

2

(u2
11+ u2

12)u12

]
· κ +

[
κ1−

2
u2

u12 · κ

]
· c.
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Therefore, by the commutation formulas(1-1)–(1-2), we get

(2-27)
∑

i

κ1i i

=

∑
i

[
κi i1+

∑
m

κm Rmi1i

]
= (1κ)1+κ1 ·c

=
2
u2

u12 ·κ11−
2
u2

u11 ·κ12+

[
−

3
u2

2
u2

11+
1
u2

2
u2

12

]
·κ1

+

[
−

4
u2

2
u11u12

]
·κ2+

[
−

2
u3

2

(u2
11+u2

12)u12

]
·κ+

[
2κ1−

2
u2

u12 ·κ

]
·c.

Thanks to (2-27), the formula (2-8) reduces to

1ϕ =
[
(2u2 f ′+ 4 f )u12

]
· κ11+

[
(−2u2 f ′− 6 f )u11

]
· κ12+ [−2 f u12] · κ22

+

[(
u2 f ′′+ 3 f ′−

3 f
u2

)
u2

11+

(
u2 f ′′+ 3 f ′+

f
u2

)
u2

12

]
· κ1

+

[
−

4 f
u2

u11u12

]
· κ2+

[
−

2 f
u2

2
(u2

11+ u2
12)u12

]
· κ

+
[
(u2

2 f ′+ 3u2 f ) · κ1− 2 f u12 · κ
]
· c.

At the point x0, by (2-23), we have

κ22 =−κ11+
2
u2

u12 · κ1−
2
u2

u11 · κ2−
1
u2

2
(u2

11+ u2
12) · κ − κ · c.

Thus

(2-28) 1ϕ = (2u2 f ′+ 6 f )u12 · κ11+ (−2u2 f ′− 6 f )u11 · κ12

+

(
u2 f ′′+ 3 f ′−

3 f
u2

)
(u2

11+ u2
12) · κ1+ (u2

2 f ′+ 3u2 f ) · κ1 · c.

By (2-2), we have

κ11 =
1

u2 f

[
ϕ1− (u2 f ′+ f )u12 · κ1+ f u11 · κ2

]
,(2-29)

κ12 =
1

u2 f

[
ϕ2+ (u2 f ′+ f )u11 · κ1+ f u12 · κ2

]
.(2-30)
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Putting (2-29)–(2-30) into (2-28), we finally get

(2-31) 1ϕ =

(
2 f ′

f
+

6
u2

)
· (u12ϕ1− u11ϕ2)

+

(
u2 f ′′−

2u2 f ′2

f
−5 f ′−

9 f
u2

)
(u2

11+u2
12)·κ1+(u2

2 f ′+3u2 f )·κ1·c.

If we let
f (t)= t−3,

then all of the terms on the right-hand side of (2-31) vanish. This completes the
proof of Theorem 1.1. �

3. Level curves of minimal graphs

Along the same lines as in Section 2, in this section we deal with the minimal
graphs in 2-dimensional space forms.

Let � ⊂ M2(c) be a domain and u be a solution with no critical points of the
minimal surface equation

(3-1)
∑

i j

ai j ui j = 0 in �,

where
ai j = (1+ |∇u|2)δi j − ui u j .

Set
ψ = g(|∇u|)(κ1u2− κ2u1),

where κ is the curvature of the level curves and g is a smooth function of one
variable defined on the interval (0,+∞) to be determined later. For a suitable
choice of g, we will prove that the function ψ satisfies

(3-2)
∑

i j

ai jψi j +
∑

i

biψi = 0 in �.

Here the bi are bounded functions.
In order to prove (3-2) at an arbitrary point x0 ∈�, we may choose the orthonor-

mal frames such that
u1(x0)= 0,

u2(x0)= |∇u|(x0) > 0.

From now on, all the calculations will be done at the fixed point x0 unless
otherwise specified.
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By taking the derivative of ψ , we have

(3-3) ψi = g′(|∇u|)i · (κ1u2− κ2u1)+ g · (κ1i u2+ κ1u2i − κ2i u1− κ2u1i ).

Differentiating (3-3) once more, we have

ψi j = g′′(|∇u|) j (|∇u|)i ·κ1u2+g′(|∇u|)i j ·κ1u2+g′(|∇u|)i ·(κ1 j u2+κ1u2 j−κ2u1 j )

+ g′(|∇u|) j · (κ1i u2+ κ1u2i − κ2u1i )

+ g · (κ1i j u2+ κ1i u2 j + κ1 j u2i + κ1u2i j − κ2i u1 j − κ2 j u1i − κ2u1i j );

hence

(3-4)
∑

i j

ai jψi j = u2g
∑

i j

ai j k1i j +

[
2u2g′

∑
j

a1 j (|∇u|) j +2g
∑

j

a1 j u2 j

]
·κ11

+

[
2u2g′

∑
j

a2 j (|∇u|) j+2g
∑
2 j

a2 j u2 j−2g
∑

j

a1 j u1 j

]
·κ12

+

[
−2g

∑
j

a2 j u1 j

]
· κ22

+

[
u2g′′

∑
i j

ai j (|∇u|)i (|∇u|) j + u2g′
∑

i j

ai j (|∇u|)i j

+ 2g′
∑

i j

ai j (|∇u|) j u2i + g
∑

i j

ai j u2i j

]
· κ1

+

[
−2g′

∑
i j

ai j (|∇u|) j u1i − g
∑

i j

ai j u1i j

]
· κ2.

Direct calculation yields

(3-5)

(|∇u|)i =
1
|∇u|

∑
k

ukuki ,

(|∇u|)i j =
1
|∇u|

∑
k

uk j uki +
1
|∇u|

∑
k

ukuki j −
1
|∇u|3

∑
kl

ulul j ukuki .

Then at the point x0,

(3-6)

(|∇u|)i = u2i ,

(|∇u|)i j =
u1 j u1i

u2
+ u2i j .
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By the commutation formulas (1-1)–(1-2), we obtain

(3-7)
∑

i j

ai j u1i j =
∑

i j

ai j ui1 j

=

∑
i j

ai j

[
ui j1+

∑
m

um Rmi1 j

]
=−

∑
i j

ai j,1ui j +
∑
i jm

ai j um Rmi1 j

=−2u1(u11u22− u2
12)+ u1(1+ |∇u|2) · c

and

(3-8)
∑

i j

ai j u2i j =
∑

i j

ai j ui2 j

=

∑
i j

ai j

[
ui j2+

∑
m

um Rmi2 j

]
=−

∑
i j

ai j,2ui j +
∑
i jm

ai j um Rmi2 j

=−2u2(u11u22− u2
12)+ u2(1+ |∇u|2) · c.

Hence at the point x0, we have∑
i j

ai j u1i j = 0,(3-9)

∑
i j

ai j u2i j =−2u2(u11u22− u2
12)+ u2(1+ u2

2) · c.(3-10)

On the other hand,

a11 = 1+ u2
2, a12 = 0, a21 = 0, a22 = 1,(3-11)

u22 =−(1+ u2
2)u11.(3-12)

Inserting (3-6), (3-9)–(3-12) into (3-4), we obtain

(3-13)
∑

i j

ai jψi j

= u2g
∑

i j

ai j k1i j +
[
2u2(1+ u2

2)g
′
+ 2(1+ u2

2)g
]
u12 · κ11

+
[
−2u2(1+ u2

2)g
′
− 4(1+ u2

2)g
]
u11 · κ12+ [−2g]u12 · κ22

+
[
u2(1+ u2

2)g
′′
+ (3+ 4u2

2)g
′
+ 2u2g

]
·
[
(1+ u2

2)u
2
11+ u2

12
]
· κ1

+
[
u2

2(1+ u2
2)g
′
+ u2(1+ u2

2)g
]
· κ1 · c.
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To compute the first term in (3-13), we should get the formula for
∑

i j ai jκi j at
a general point in advance. Recalling the curvature formula for the level curves, we
have

(3-14) |∇u|3 · κ = 2u1u2u12− u2
1u22− u2

2u11.

On both sides of (3-14), we take the second derivative with respect to i j , multiply
by ai j , and then sum with respect to i j . We obtain

(3-15)
∑

i j

ai jκi j =
1
|∇u|3

∑
i j

ai j (2u1u2u12− u2
1u22− u2

2u11)i j

−
6
|∇u|

∑
i j

ai j (|∇u|) j · κi −
6
|∇u|2

∑
i j

ai j (|∇u|)i (|∇u|) j · κ

−
3
|∇u|

∑
i j

ai j (|∇u|)i j · κ.

Recalling the minimal surface equation (3-1), we have

(3-16) a11 = 1+ u2
2, a12 =−u1u2, a21 =−u1u2, a22 = 1+ u2

1,

and

(3-17) u22 =
2u1u2u12− (1+ u2

2)u11

1+ u2
1

.

Inserting (3-5) and (3-16)–(3-17) into (3-15), we get

(3-18)
∑

i j

ai jκi j

=
1
|∇u|3

∑
i j

ai j (2u1u2u12− u2
1u22− u2

2u11)i j

−
6(1+ |∇u|2)
|∇u|2(1+ u2

1)

[
(1+ u2

2)u1u11+ (1− u2
1)u2u12

]
· κ1

−
6(1+ |∇u|2)
|∇u|2

(u1u12− u2u11) · κ2

−
1
|∇u|2

{
9+ 6|∇u|2

1+ u2
1

[
(1+u2

2)u
2
11−2u1u2u11u12+(1+u2

1)u
2
12
]

+3
∑
i jk

ai j ukuki j

}
·κ.
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Now the commutation formulas (1-1)–(1-2) and relations (3-16)–(3-17) yield

(3-19)
∑
i jk

ai j ukuki j =
∑
i jk

ai j ukui jk +
∑
i jkm

ai j ukum Rmik j

=−

∑
i jk

ai j,kukui j +
∑
i jkm

ai j ukum Rmik j

=
2|∇u|2

1+ u2
1

[
(1+ u2

2)u
2
11− 2u1u2u11u12+ (1+ u2

1)u
2
12
]

+ |∇u|2(1+ |∇u|2) · c.

Putting (3-19) into (3-18), we have

(3-20)
∑

i j

ai jκi j

=
1
|∇u|3

∑
i j

ai j (2u1u2u12− u2
1u22− u2

2u11)i j

−
6(1+ |∇u|2)
|∇u|2(1+ u2

1)

[
(1+ u2

2)u1u11+ (1− u2
1)u2u12

]
· κ1

−
6(1+ |∇u|2)
|∇u|2

(u1u12− u2u11) · κ2

−
9+ 12|∇u|2

|∇u|2(1+ u2
1)

[
(1+ u2

2)u
2
11− 2u1u2u11u12+ (1+ u2

1)u
2
12
]
· κ

− 3(1+ |∇u|2) · κ · c.

Straightforward computation gives

(3-21)
∑

i j

ai j (2u1u2u12− u2
1u22− u2

2u11)i j

= 2u1u2
∑

i j

ai j u12i j − u2
1

∑
i j

ai j u22i j − u2
2

∑
i j

ai j u11i j

+ 2(u2u12− u1u22)
∑

i j

ai j u1i j + 2(u1u12− u2u11)
∑

i j

ai j u2i j

− 4u2
∑

i j

ai j u2i u11 j − 4u1
∑

i j

ai j u1i u22 j + 4u2
∑

i j

ai j u1i u12 j

+ 4u1
∑

i j

ai j u2i u12 j + 4u12
∑

i j

ai j u1i u2 j

− 2u22
∑

i j

ai j u1i u1 j − 2u11
∑

i j

ai j u2i u2 j

, J1+ J2+ J3+ J4,
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where

J1 = 2u1u2
∑

i j

ai j u12i j − u2
1

∑
i j

ai j u22i j − u2
2

∑
i j

ai j u11i j ,

J2 = 2(u2u12− u1u22)
∑

i j

ai j u1i j + 2(u1u12− u2u11)
∑

i j

ai j u2i j ,

J3 =−4u2
∑

i j

ai j u2i u11 j − 4u1
∑

i j

ai j u1i u22 j

+ 4u2
∑

i j

ai j u1i u12 j + 4u1
∑

i j

ai j u2i u12 j ,

J4 = 4u12
∑

i j

ai j u1i u2 j − 2u22
∑

i j

ai j u1i u1 j − 2u11
∑

i j

ai j u2i u2 j .

We deal with the terms J1, J2, J3 and J4 consecutively. If we differentiate the
minimal surface equation (3-1) twice, then we have∑

i j

ai j,kui j +
∑

i j

ai j ui jk = 0,(3-22)

∑
i j

ai j,klui j +
∑

i j

ai j,kui jl +
∑

i j

ai j,lui jk +
∑

i j

ai j ui jkl = 0.(3-23)

By the commutation formulas (1-1)–(1-3), we have

ukli j = ui jkl +
∑

m

umi Rmkl j +
∑

m

umj Rmkli +
∑

m

umk Rmil j +
∑

m

uml Rmik j .

It follows that

(3-24)
∑

i j

ai j ukli j =−

[∑
i j

ai j,klui j +
∑

i j

ai j,kui jl +
∑

i j

ai j,lui jk

]
+

∑
i jm

ai j umi Rmkl j +
∑
i jm

ai j umj Rmkli

+

∑
i jm

ai j umk Rmil j +
∑
i jm

ai j uml Rmik j .

Note that ai j = (1+ |∇u|2)δi j − ui u j . It is easy to get

ai j,k = 2
∑

m

umumkδi j − uiku j − ui u jk,

ai j,l = 2
∑

m

umumlδi j − uilu j − ui u jl,

ai j,kl = 2
∑

m

umlumkδi j + 2
∑

m

umumklδi j − uiklu j − uiku jl − uilu jk − ui u jkl .
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Thus we have∑
i j

ai j,klui j = 2(u1u22− u2u12)u1kl + 2(u2u11− u1u12)u2kl(3-25)

+ 2u1lu1ku22+ 2u2lu2ku11− 2u1ku2lu12− 2u2ku1lu12,∑
i j

ai j,kui jl = 2u2u2ku11l + 2u1u1ku22l − 2(u1u2k + u2u1k)u12l,(3-26)

∑
i j

ai j,lui jk = 2u2u2lu11k + 2u1u1lu22k − 2(u1u2l + u2u1l)u12k .(3-27)

Putting (3-25)–(3-27) into (3-24), we obtain

(3-28)
∑

i j

ai j ukli j =−
[
2(u1u22−u2u12)u1kl+2(u2u11−u1u12)u2kl+2u1lu1ku22

+ 2u2lu2ku11− 2u1ku2lu12− 2u2ku1lu12+ 2u2u2ku11l

+ 2u1u1ku22l − 2(u1u2k + u2u1k)u12l + 2u2u2lu11k

+ 2u1u1lu22k − 2(u1u2l + u2u1l)u12k
]

+

∑
i jm

ai j umi Rmkl j +
∑
i jm

ai j umj Rmkli

+

∑
i jm

ai j umk Rmil j +
∑
i jm

ai j uml Rmik j .

By the commutation formulas (1-1)–(1-2),

u121 = u112+
∑

m

um Rm121 = u112+ u2 · c,(3-29)

u122 = u221+
∑

m

um Rm212 = u221+ u1 · c.(3-30)

With (3-16) and (3-29)–(3-30) in hand, formula (3-28) is equivalent to∑
i j

ai j u12i j =−2u2u22u111+ 2u2u12u112+ 2u1u12u221

− 2u1u11u222− 2u12(u11u22− u2
12)

+
[
u1u2u11+ (4+ 5u2

1+ 5u2
2)u12+ u1u2u22

]
· c,∑

i j

ai j u22i j =−4u2u22u112+ 2(3u2u12+ u1u22)u221

− 2(u2u11+ u1u12)u222− 2u22(u11u22− u2
12)

+
[
−2(1+ u2

2)u11+ 10u1u2u12+ 2(1+ u2
1+ u2

2)u22
]
· c,∑

i j

ai j u11i j =−2(u2u12+ u1u22)u111+ 2(u2u11+ 3u1u12)u112

− 4u1u11u221− 2u11(u11u22− u2
12)

+
[
2(1+ u2

1+ u2
2)u11+ 10u1u2u12− 2(1+ u2

1)u22
]
· c.
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Therefore,

(3-31)

J1=
[
2u3

2u12−2u1u2
2u22

]
·u111+

[
−2u3

2u11−2u1u2
2u12+4u2

1u2u22
]
·u112

+
[
4u1u2

2u11−2u2
1u2u12−2u3

1u22
]
·u221+

[
−2u2

1u2u11+2u3
1u12

]
·u222

−2(u11u22−u2
12) ·(2u1u2u12−u2

1u22−u2
2u11)

+
[
2(u2

1−u2
2+u2

1u2
2−u4

2)u11+8u1u2u12+2(−u2
1+u2

2+u2
1u2

2−u4
1)u22

]
·c.

Let us handle the term J2. By (1-1)–(1-2), (3-16) and (3-22), we have∑
i j

ai j u1i j =
∑

i j

ai j ui j1+
∑
i jm

ai j um Rmi1 j

=−

∑
i j

ai j,1ui j +
∑
i jm

ai j um Rmi1 j

=−2u1(u11u22− u2
12)+ u1(1+ u2

1+ u2
2) · c

and ∑
i j

ai j u2i j =
∑

i j

ai j ui j2+
∑
i jm

ai j um Rmi2 j

=−

∑
i j

ai j,2ui j +
∑
i jm

ai j um Rmi2 j

=−2u2(u11u22− u2
12)+ u2(1+ u2

1+ u2
2) · c.

Thus

(3-32) J2 =−4(u11u22− u2
12) · (2u1u2u12− u2

1u22− u2
2u11)

+2(1+ u2
1+ u2

2) · (2u1u2u12− u2
1u22− u2

2u11) · c.

For the term J3, by (3-16) and (3-29)–(3-30), we have

(3-33) J3=
[
(−4u2− 4u3

2)u12+ 4u1u2
2u22

]
· u111

+
[
(4u2+ 4u3

2)u11+ (4u1+ 4u1u2
2)u12+ (−4u2− 8u2

1u2)u22
]
· u112

+
[
(−4u1−8u1u2

2)u11+ (4u2+4u2
1u2)u12+ (4u1+4u3

1)u22
]
·u221

+
[
4u2

1u2u11+ (−4u1− 4u3
1)u12

]
· u222

+
[
(4u2

2−4u2
1u2

2+4u4
2)u11+8u1u2u12+(4u2

1−4u2
1u2

2+4u4
1)u22

]
·c.

Moreover, straightforward computation yields

(3-34) J4 =−2(u11u22− u2
12)
[
(1+ u2

2)u11− 2u1u2u12+ (1+ u2
1)u22

]
= 0.
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Combining (3-21) and (3-31)–(3-34), we obtain

(3-35)
∑

i j

ai j (2u1u2u12− u2
1u22− u2

2u11)i j

=
[
(−4u2− 2u3

2)u12+ 2u1u2
2u22

]
· u111

+
[
(4u2+2u3

2)u11+(4u1+2u1u2
2)u12+(−4u2−4u2

1u2)u22
]
·u112

+
[
(−4u1−4u1u2

2)u11+(4u2+2u2
1u2)u12+(4u1+2u3

1)u22
]
·u221

+
[
2u2

1u2u11+ (−4u1− 2u3
1)u12

]
· u222

− 6(u11u22− u2
12) · (2u1u2u12− u2

1u22− u2
2u11)

+
[
(2u2

1− 4u2
1u2

2)u11+ (20u1u2+ 4u1u3
2+ 4u3

1u2)u12

+ (2u2
2− 4u2

1u2
2)u22

]
· c.

Now let us explore the relations between u111, u112, u221, u222 and κ1, κ2. If we
take the first derivative on both sides of (3-14) and (3-1), respectively, then using
(3-5), (3-29)–(3-30) and (3-16), we obtain

−u2
2 · u111+ 2u1u2u12 · u112− u2

1 · u221− |∇u|3 · κ1

− 3|∇u|(u1u11+ u2u12) · κ − 2u1(u11u22− u2
12)+ 2u1u2

2 · c = 0,

−u2
2 · u112+ 2u1u2u12 · u221− u2

1 · u222− |∇u|3 · κ2

− 3|∇u|(u1u12+ u2u22) · κ − 2u2(u11u22− u2
12)+ 2u2

1u2 · c = 0,

and

(1+u2
2) ·u111−2u1u2 ·u112+ (1+u2

1) ·u221+2u1(u11u22−u2
12)−2u1u2

2 · c= 0,

(1+ u2
2) · u112− 2u1u2 · u221+ (1+ u2

1) · u222+ 2u2(u11u22− u2
12)− 2u2

1u2 · c= 0.

Thus we have

(3-36) u111= (−u2
2+u2

1+3u2
1u2

2+u4
1)|∇u|−1

·κ1+(−2u1u2−2u3
1u2)|∇u|−1

·κ2

+ 3|∇u|−3[(−u1u2
2+ u3

1+ 3u3
1u2

2+ u5
1)u11

+ (−u3
2− u2

1u2+ 3u2
1u3

2− u4
1u2)u12

+ (−2u1u2
2− 2u3

1u2
2)u22

]
· κ

+ (−6u1u2
2+ 2u3

1)|∇u|−4
· (u11u22− u2

12)+ 2u1u2
2|∇u|−2

· c,

(3-37) u112 = (2u1u2+ 2u1u3
2)|∇u|−1

· κ1+ (−u2
2+ u2

1− u2
1u2

2+ u4
1)|∇u|−1

· κ2

+ 3|∇u|−3[(2u2
1u2+ 2u2

1u3
2)u11

+ (u1u2
2+ u3

1+ 2u1u4
2− u3

1u2
2+ u5

1)u12

+ (−u3
2+ u2

1u2− u2
1u3

2+ u4
1u2)u22

]
· κ

+ (−2u3
2+ 6u2

1u2)|∇u|−4
· (u11u22− u2

12)− 2u2
1u2|∇u|−2

· c,



GEOMETRIC PROPERTIES OF LEVEL CURVES 235

and

(3-38) u221 = (u2
2+ u4

2− u2
1− u2

1u2
2)|∇u|−1

· κ1+ (2u1u2+ 2u3
1u2)|∇u|−1

· κ2

+ 3|∇u|−3[(u1u2
2+ u1u4

2− u3
1− u3

1u2
2)u11

+ (u3
2+ u5

2+ u2
1u2− u2

1u3
2+ 2u4

1u2)u12

+ (2u1u2
2+ 2u3

1u2
2)u22

]
· κ

+ (6u1u2
2− 2u3

1)|∇u|−4
· (u11u22− u2

12)− 2u1u2
2|∇u|−2

· c,

(3-39) u222 = (−2u1u2−2u1u3
2)|∇u|−1

·κ1+ (u2
2+u4

2−u2
1+3u2

1u2
2)|∇u|−1

·κ2

+ 3|∇u|−3[(−2u2
1u2− 2u2

1u3
2)u11

+ (−u1u2
2− u1u4

2− u3
1+ 3u3

1u2
2)u12

+ (u3
2+ u5

2− u2
1u2+ 3u2

1u3
2)u22

]
· κ

+ (2u3
2− 6u2

1u2)|∇u|−4
· (u11u22− u2

12)+ 2u2
1u2|∇u|−2

· c.

Inserting (3-36)–(3-39) and (3-17) into (3-35), after some tedious calculation, we get

(3-40)
∑

i j

ai j (2u1u2u12− u2
1u22− u2

2u11)i j

=
2|∇u|(4+ 3|∇u|2)

1+ u2
1

[
(1+ u2

2)u1u11+ (1− u2
1)u2u12

]
· κ1

+ 2|∇u|(4+ 3|∇u|2)(u1u12− u2u11) · κ2

+
4|∇u|(2+ 3|∇u|2)

1+ u2
1

[
(1+u2

2)u
2
11−2u1u2u11u12+(1+u2

1)u
2
12
]
·κ

+ 2|∇u|3(1+ |∇u|2) · κ · c.

By (3-20) and (3-40), we have

(3-41)
∑

i j

ai jκi j =
2

|∇u|2(1+ u2
1)

[
(1+ u2

2)u1u11+ (1− u2
1)u2u12

]
· κ1

+
2
|∇u|2

(u1u12− u2u11) · κ2

−
1

|∇u|2(1+ u2
1)

[
(1+u2

2)u
2
11−2u1u2u11u12+(1+u2

1)u
2
12
]
·κ

− (1+ |∇u|2)κ · c.

Then at the point x0, we take the first derivative of (3-41). Note that

κ(x0)=−
u11

u2
.
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With (3-6), (3-16) and (3-29) in hand, we obtain

(3-42)
∑

i j

ai jκi j1 =
2(1− u2

2)

u2
u12 · κ11−

2(1− u2
2)

u2
u11 · κ12

+

[
2
u2

u112+
1+ u2

2

u2
2

u2
11−

3
u2

2
u2

12

]
· κ1

+

[
−

2
u2

u111+
4
u2

2
u11u12

]
· κ2+

2(1+ u2
2)

u3
2

u2
11u111

+
2
u3

2

u11u12u112−
2(1+ u2

2)

u4
2

u3
11u12−

2
u4

2
u11u3

12

+

[
(1− u2

2) · κ1+
2(1+ u2

2)

u2
2

u11u12

]
· c.

Now, the equations (3-36) and (3-37) are simplified as

u111 =−u2κ1+
3
u2

u11u12,(3-43)

u112 =−u2κ2−
1+ u2

2

u2
u2

11+
2
u2

u2
12.(3-44)

Putting (3-43)–(3-44) into (3-42), one obtains∑
i j

ai jκi j1=
2(1− u2

2)

u2
u12 ·κ11−

2(1− u2
2)

u2
u11 ·κ12+

[
−

3(1+ u2
2)

u2
2

u2
11+

1
u2

2
u2

12

]
·κ1

−
4
u2

2
u11u12 · κ2+

2(1+ u2
2)

u4
2

u3
11u12+

2
u4

2
u11u3

12

+

[
(1− u2

2) · κ1+
2(1+ u2

2)

u2
2

u11u12

]
· c.

Therefore, by commutation formulas (1-1)–(1-2), we get
(3-45)∑

i j

ai jκ1i j =
∑

i j

ai j

[
κi j1+

∑
m

κm Rmi1 j

]
=

∑
i j

ai jκi j1+κ1 ·c

=
2(1−u2

2)

u2
u12 ·κ11−

2(1−u2
2)

u2
u11 ·κ12

+

[
−

3(1+u2
2)

u2
2

u2
11+

1
u2

2
u2

12

]
·κ1−

4
u2

2
u11u12 ·κ2+

2(1+u2
2)

u4
2

u3
11u12

+
2
u4

2
u11u3

12+

[
(2−u2

2) ·κ1+
2(1+u2

2)

u2
2

u11u12

]
·c.
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Thanks to (3-45), the formula (3-13) reduces to

(3-46)
∑

i j

ai jψi j

=
[
2u2(1+ u2

2)g
′
+ 4g

]
u12 · κ11

−
[
2u2(1+ u2

2)g
′
+ (6+ 2u2

2)g
]
u11 · κ12− 2gu12 · κ22

+

{[
u2(1+u2

2)
2g′′+(3+4u2

2)(1+u2
2)g
′
−
(3− 2u2

2)(1+ u2
2)

u2
g
]

u2
11

+

[
u2(1+ u2

2)g
′′
+ (3+ 4u2

2)g
′
+

1+ 2u2
2

u2
g
]

u2
12

}
· κ1

−
4g
u2

u11u12 · κ2+
2g
u3

2

[
(1+ u2

2)u
2
11+ u2

12
]
u11u12

+

{[
u2

2(1+ u2
2)g
′
+ 3u2g

]
· κ1+

2(1+ u2
2)g

u2
u11u12

}
· c.

By (3-3) and (3-41), we have

κ11 =
1

u2g

[
ψ1− (u2g′+ g)u12 · κ1+ gu11 · κ2

]
,(3-47)

κ12 =
1

u2g

[
ψ2+ (u2g′+ g)(1+ u2

2)u11 · κ1+ gu12 · κ2
]
,(3-48)

and

(3-49) κ22 =
1

u2g

{
−(1+ u2

2)ψ1+
[
u2(1+ u2

2)g
′
+ (3+ u2

2)g
]
u12 · κ1

− (3+ u2
2)gu11 · κ2+

g
u2

2
u11
[
(1+ u2

2)u
2
11+ u2

12
]

+ (1+ u2
2)gu11 · c

}
.

Putting (3-47)–(3-49) into (3-46), we finally get

(3-50)
∑

i j

ai jψi j

=

[
2(1+ u2

2)g
′

g
+

6+ 2u2
2

u2

]
· (u12ψ1− u11ψ2)

+

[
u2(1+u2

2)g
′′
−

2u2(1+ u2
2)g
′2

g
−5g′−

9g
u2

]
·
[
(1+u2

2)u
2
11+u2

12
]
·κ1

+
[
u2

2(1+ u2
2)g
′
+ 3u2g

]
· κ1 · c.
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If we let

g(t)=
(1+ t2)3/2

t3 ,

then the last two terms on the right-hand side of (3-50) vanish. Namely,∑
i j

ai jψi j = 2u2 · (u12ψ1− u11ψ2).

This completes the proof of Theorem 1.2. �
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EIGENVALUE RESOLUTION OF SELF-ADJOINT MATRICES

XUWEN ZHU

Resolution of a compact group action in the sense described by Albin and
Melrose is applied to the conjugation action by the unitary group on self-
adjoint matrices. It is shown that the eigenvalues are smooth on the resolved
space and that the trivial bundle smoothly decomposes into the direct sum
of global one-dimensional eigenspaces.

For a general compact Lie group G acting on a smooth compact manifold with
corners M , Albin and Melrose [2011] showed that there is a canonical full resolution
such that the group action lifts to the blown-up space Y (M) to have a unique isotropy
type. Under this condition, a result of Borel and Ji [2006] applies to show that the
orbit space G \ Y (M) is smooth.

In this paper, we give an explicit construction of the resolution of the action of
the unitary group on the space of self-adjoint matrices

S = S(n)= {X ∈ Mn(C) | X∗ = X},

with the unitary group U(n) acting by conjugation:

u ∈ U(n), X ∈ S, u · X := u Xu−1.

The orbit of an element X ∈ S, denoted by U(n) · X , consists of the matrices with
the same eigenvalues including multiplicities. For a matrix X ∈ S with m distinct
eigenvalues {λ j }

m
j=1 with multiplicities ik, k = 1, 2, . . . ,m, the isotropy group of X

is conjugate to a direct sum of smaller unitary groups:

U(n)X(
:= {u ∈ U(n) | u · X = X}

)
∼=

m⊕
k=1

U (ik).

The isotropy types are therefore parametrized by the partition of n into integers.
Note here that the partition contains information about ordering, for example, the
two partitions of 3, {i1 = 1, i2 = 2} and {i1 = 2, i2 = 1}, are not the same type.

For n > 1, the eigenvalues are not smooth functions on S, but are singular where
the multiplicities change. Consider the trivial bundle over S, M := S×Cn , the fiber
of which can be decomposed into n eigenspaces of the self-adjoint matrix at the
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base point. This decomposition is not unique at matrices with multiple eigenvalues,
and the eigenspaces are not smooth at these base points. We will show that, by
doing iterative blow-ups, the singularities are resolved and the eigenvalues become
smooth functions on the resolved space. Moreover, by doing a “full” blow-up, the
eigenspaces also become smooth.

Recall a lemma on group action resolutions:

Lemma 1 [Albin and Melrose 2011]. A compact manifold (with corners), M , with
a smooth, boundary intersection free, action by a compact Lie group, G, has a
canonical full resolution, Y (M), obtained by iterative blow-up of minimal isotropy
types.

In this paper we will discuss two kinds of blow-ups, namely radial and projective
blow-ups, which give different results; a projective blow-up of a hypersurface is
trivial but a radial blow-up produces a new boundary. A resolution of S involves
the choice of blow-up and which centers to blow-up. In this paper, we will discuss
three kinds of resolutions:

Definition 2. We define the following three resolutions of S:

(1) radial resolution Ŝr : a radial blow-up of all singular strata {there exists i 6= j,
λi = λ j } in an order compatible with inclusion of the conjugation class of the
isotropy group;

(2) projective resolution Ŝp: a projective blow-up of all singular strata in the same
order as radial resolution;

(3) small resolution Ŝs : a radial blow-up of a smaller set of centers⋃
1≤i< j≤n

{λi = λi+1 = · · · = λ j }

with the order determined by complete inclusion.

As pointed out in [Albin and Melrose 2011], a projective blow-up usually requires
an extra step of reflection in the iterative scheme in order to obtain smoothness. We
will show that, the radial resolution yields that the trivial bundle M decomposes
into the direct sum of n one-dimensional eigenspaces. By contrast, after projective
resolution or small resolution, the eigenvalues are smooth on the resolved space,
and locally we have a smooth decomposition into simple eigenspaces, but the trivial
bundle doesn’t split into global line bundles.

Remark 3. In theory there is a fourth resolution by doing a projective blow-up of
the smaller set of centers introduced in Ŝs . This resolves eigenvalues but does not
globally resolve eigenbundles, for the same reason as Ŝs . Therefore for simplicity
we do not include this resolution in our discussion below.



EIGENVALUE RESOLUTION OF SELF-ADJOINT MATRICES 243

To describe the different outcomes of the three resolutions above, we recall the
resolution in the sense of Albin and Melrose.

Definition 4 (eigenresolution). By an eigenresolution of S, we mean a manifold
with corners Ŝ, with a surjective smooth map β : Ŝ→ S such that the self-adjoint
matrices have a smooth (local) diagonalization when lifted to Ŝ. Eigenvalues then lift
to n smooth functions fi on Ŝ, i.e., for any X ∈ Ŝ, β(X) has eigenvalues { fi (X)}ni=1.

Note that in the definition we only require the diagonalization to exist locally. To
encompass the information of global decomposition of eigenvectors, we introduce
the full resolution below.

Definition 5 (full eigenresolution). A full eigenresolution is an eigenresolution
with global eigenbundles. The eigenvalues lift to n smooth functions fi on Ŝ, and
the trivial n-dimensional complex vector bundle on Ŝ is decomposed into n smooth
line bundles:

Ŝ×Cn
=

n⊕
i=1

Ei

such that

β(X)vi = fi (X)vi for all vi ∈ Ei (X) for all X ∈ Ŝ.

We use the blow-up constructions introduced by Melrose [1996, Chapter 5] and
show that we can obtain resolutions in this way and, in particular, a full resolution
if we use radial blow-ups.

Theorem 6. The three types of resolutions given in Definition 2, namely, Ŝr , Ŝp,
and Ŝs , each yield an eigenresolution. Only the radial resolution Ŝr gives a full
eigenresolution.

Remark 7. In particular, the blow-down map β : Ŝ → S is a diffeomorphism
between the interior of Ŝ and the open dense subset of S consisting of the matrices
with n-distinct eigenvalues.

Related to the problem of resolving eigenvalues is the problem of desingulariza-
tion of polynomial roots. In [Kurdyka and Paunescu 2008], generalizing Rellich’s
result [1937] on one-dimensional analytical families, the perturbation theory of
hyperbolic polynomials is discussed using Hironaka’s resolution theory. It is applied
to perturbation theory of normal operators and resonances; see for example [Rainer
2013] and [Rauch 1980].

The idea of resolution has been used in many geometric problems. The abstract
notion of a resolution structure on a manifold with corners is discussed in [Baum
et al. 1985]. In [Davis 1978], it is shown that for a general action the induced action
on the set of boundary hypersurfaces can be appropriately resolved. The canonical
resolution is presented in [Duistermaat and Kolk 2000], and the induced resolution
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of the orbit space is considered in [Hassell et al. 1995]. In [Albin and Melrose
2011], an iterative procedure is shown to capture the simultaneous resolution of all
isotropy types in a “resolution structure” consisting of equivariant iterated fibrations
of the boundary faces, which is the procedure we will use in this paper.

1. Proof of Theorem 6

The proof of Theorem 6 proceeds through induction on the dimension. We begin
by discussing the first example which is the 2× 2 matrices.

Lemma 8 (2 × 2 case). For the 2× 2 self-adjoint matrices S(2), the eigenvalues
and eigenvectors are smooth except at multiples of the identity. After radial res-
olution, the singularities are resolved and the trivial 2-dimensional bundle splits
into the direct sum of two line bundles. The projective resolution also gives smooth
eigenvalues, but does not give two global line bundles.

Remark 9. Note that in the 2 × 2 case, the radial resolution Ŝr and the small
resolution Ŝs are the same.

Proof. In this case

S = S(2)=
{(

a11 z12

z12 a22

)
| ai i ∈ R, z12 ∈ C

}
∼= R4.

The space S is isomorphic to the product of R and the trace-free subspace

(1) S0 =

{(
a11 z12

z12 a22

)
| a11+ a22 = 0

}
,

i.e., there is a bijective linear map:

(2)
φ : S → S0×R

A =
(

a11 z12

z12 a22

)
7→
(

A0 :=A− 1
2(a11+ a22)I, 1

2(a11+ a22)
)
.

The eigenvalues λi and eigenvectors vi of A are related to those of A0 by
λi (A)= λi (A0)+

1
2 tr(A), vi (A)= vi (A0), i = 1, 2. Therefore, we can restrict the

discussion of resolution to the subspace S0, since the smoothness of eigenvalues
and eigenvectors on the resolution of S follows.

Let z12 = c+ di . The space S0 can be identified with R3
= {(a11, c, d)}. The

eigenvalues of this matrix are:

(3) λ± =±

√
a2

11+ c2+ d2.

Hence the only singularity of the eigenvalues on S0 is at the point a11 = c = d = 0
which represents the zero matrix.
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Based on the resolution formula in [Melrose 1996], the radial blow-up can be
realized as

(4) Ŝ0,r = [S0, {0}] = S+N {0} t (S0 \ {0})' S2
×[0,∞)+,

where the front face S+N {0} ' S2. Here the radial variable is

r =
√

a2
11+ c2

+ d2.

The blow-down map is

(5) β : [S0, {0}] → S0, (r, θ) 7→ rθ, r ∈ R+, θ ∈ S2.

The radial variable r lifts to be smooth on the blown up space; therefore the two
eigenvalues λ± =±r become smooth functions.

Now we consider the eigenvectors to the corresponding eigenvalues λ± :

(6) v± =
(
c+ di,±

√
a2

11+ c2
+ d2
− a11

)
∈ C2.

Similar to the discussion of the eigenvalues, the only singularity is at r = 0, which
becomes a smooth function on [S0, {0}]. It follows that v+ and v− span two smooth
line bundles on [S0, {0}].

If we do the projective blow-up instead, which identifies the antipodal points in
the front face of S2 to get RP2, namely,

(7) Ŝ0,p = {(x, l) | x ∈ l} ⊂ R3
×RP2,

which we can cover with three coordinate patches:

(x1, y1, z1)=
(

c, d
c
,

a11

c

)
∈ R3,

and the other two (x2, y2, z2), (x3, y3, z3)=(d, c/d, a11/d), (a11, c/a11, d/a11) are
similar. The two eigenvalues we get from here are

v± =±
√

a2
11+ c2

+ d2
=±|x1|

√
(1+ y2

1 + z2
1),

which is smooth across {x1 = 0}. Similar discussions hold for the other two
coordinate patches.

However, the trivial bundle does not decompose into two line bundles as in the
radial case. The nontriviality of eigenbundles can be seen by taking a homotopically
nontrivial loop in RP2

l = β−1({r = 1})⊂ Ŝ0,p.

This curve intersects the line c = d = 0 twice, which hits at two different places;
thus both a±11 = ±1 are on the curve, and equation (6) shows that starting from
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v− = (0,−2)= (0,−2a+11), this turns into v+ = (0,−2)= (0, 2a−11), which means
the two eigenvectors are not separated by projective blow-up.

Now that we have done the radial resolution for the trace-free slice S0, the
resolution of S follows. Consider S as a 3-dimensional vector bundle on R with
trace being the projection map. Then at each base point λ, the fiber is S0+λI . The
resolution is [S0+ λI ; λI ] ∼= [S0; {0}]. Since the trace direction is transversal to
the blow-up,

(8) [S;RI ] = [S0; {0}]×R.

And because the trace doesn’t change the eigenvectors, the smoothness follows. �

To proceed to higher dimensions, we first discuss the partition of eigenvalues
into clusters. The basic case is when the eigenvalues are divided into two clusters;
then the U(n) action of the matrices can be decomposed to two commuting actions.

Definition 10 (spectral gap). A connected neighborhood U ⊂ S has a spectral gap
at c ∈ R, if c is not an eigenvalue of X for any X ∈U .

Note here that since U is connected, the number of eigenvalues less than c stays
the same for all X ∈U , denoted by k.

Lemma 11 (local eigenspace decomposition). If a bounded neighborhood U ⊂ S(n)
has a spectral gap at c, then the matrices in U can be decomposed into two smooth
self-adjoint commuting matrices:

X = L X + RX , L X RX = RX L X .

with rank(L X )= k, rank(RX )= n− k.

Proof. Let γ be a simple closed curve on C such that it intersects with R only at
−R and c, where R is a sufficiently large number such that −R is less than any
eigenvalues of the matrices contained in U . In this way, for any matrix X ∈U , the k
smallest eigenvalues are contained inside γ . We consider the operator PX :C

n
→Cn

defined by

(9) PX := −
1

2π i

∮
γ

(X − s I )−1 ds.

Since the resolvent is nonsingular on γ , PX is a well-defined operator and varies
smoothly with X , the integral is independent of choice of γ up to homotopy.

First we show that PX is a projection operator, i.e.,

(10) P2
X = PX .
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Let γs and γt be two curves satisfying the above condition with γs completely
inside γt . Then

P2
X =−

1
4π2

∮
γt

(X − t I )−1 dt
(∮

γs

(X − s I )−1 ds
)

=−
1

4π2

∮
γt

dt
[∮

γs

1
s−t

(X − s I )−1 ds−
∮
γs

1
s−t

(X − t I )−1 ds
]

= I− II,

where using the fact that s is completely inside γt ,

I=− 1
4π2

∮
γs

1
X−s I

ds
∮
γt

1
s−t

dt =− 1
4π2 (−2π i)

∮
γs

1
X−s I

ds = PX ,

and any t on γt is outside of the loop γs , so∮
γs

1
s−t

ds = 0,

and we have

II=− 1
4π2

∮
γt

(X − t I )−1 dt
∮
γs

1
s−t

ds = 0.

This proves (10).
Then we show that PX is self-adjoint. This is because

P∗X =
1

2π i

∫
γ

((X − s I )−1)∗ ds = 1
2π i

∫
−γ

(X − s I ) ds = PX .

PX maps Rn to the invariant subspace spanned by the eigenvectors corresponding
to eigenvalues that are less than c. We denote this invariant subspace by L and
its orthogonal complement by R. Write X as the diagonalization X = V3V−1,
where 3 is the eigenvalue matrix and V is the matrix whose columns are the
eigenvectors of X . Then L is spanned by the first k columns of V . Take one of the
eigenvectors v j ∈ L , j = 1, 2, . . . , k,

PXv j =−
1

2π i

∮
γ

(X − s I )−1v j ds =− 1
2π i

∮
V (3− s I )−1V−1v j ds

=−
1

2π i
v j

∮
1

λ j−s
ds = v j .

Similarly for v j ∈ R that corresponds to an eigenvalue greater than c (therefore λ j

is outside the loop),

PXv j =−
1

2π i
v j

∮
1

λ j−s
ds = 0;
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therefore
(I − PX )v j = v j for all v j ∈ R.

Then using the projection PX we define two operators L X and RX as

(11) L X := PX X PX

and

(12) RX := (I − PX )X (I − PX )

Since PX is smooth, the two operators are also smooth. Moreover, using the fact
that PX is a projection onto the invariant subspace L , we have

(I − PX )X PX = PX X (I − PX )= 0;

therefore
X = L X + RX .

For an eigenvector v ∈ L ,

(13) L Xv = Xv and RXv = 0,

i.e., L X equals X when restricted to L , similarly RX |R = X . Since P∗X = PX ,
L X and RX are also self-adjoint. In this way we get two commuting lower-rank
matrices L X and RX . �

It is natural to have a finer decomposition when there is more than one spectral
gap in the neighborhood, and we have the following corollary.

Corollary 12. If the eigenvalues of matrices in a neighborhood U can be grouped
into k clusters, then the matrices can be decomposed into k lower-rank self-adjoint
commuting matrices smoothly.

Proof. Do the decomposition inductively. If k = 2, then it is the case in Lemma 11.
Suppose the decomposition for k = l − 1 is defined. Then for k = l, since the
eigenvalues can also be divided into two clusters (by combining the smallest l − 1
groups of eigenvalues together), then X = L X+RX , with L X and RX corresponding
to the two intervals. Then L X satisfies the separation condition for l−1 clusters, so
by induction, L X = L1+ · · ·+ L l−1. Therefore, X = L1+ L2+ · · ·+ L l−1+ RX

is the desired division. �

Using Lemma 11 of decomposition of matrices in a neighborhood, we can now
show that locally the trivial bundle S×Cn decomposes into two subspaces if there
is a spectral gap. Moreover, locally there is a product structure of two lower-
dimensional matrices. In order to see this, we need to introduce the Grassmannian.
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Let GrC(n, k) denote the Grassmannian, i.e., the set of k-dimensional subspaces
in Cn . Consider the tautological vector bundle over the Grassmannian:

πk : Tk→ GrC(n, k), π−1(p)= V (p),

where each fiber is a k-dimensional subspace in Cn , with self-adjoint operators
acting on it. Similarly, we define Tn−k to be the orthogonal complement of Tk :

πn−k : Tn−k→ GrC(n, k), π−1(p)= V (p)⊥.

Definition 13 (Operator bundle). Let Pk (resp. Pn−k) be the bundles over GrC(n, k)
of the fiberwise self-adjoint operators on the tautological bundle Tk (resp. Tn−k).

Take the Whitney sum of the two bundles

(14) π : Pk ⊕ Pn−k→ GrC(n, k).

Each of its fibers can be identified with S(k)⊕ S(n − k) when we pick a basis.
There is a U(n)-action on this bundle:

(15) g · (p, (pk, pn−k))= (g · p, (g ◦ pk ◦ g−1, g ◦ pn−k ◦ g−1)),

p ∈ GrC(n, k), pk ∈ Pk(p), pn−k ∈ Pn−k(p).

Suppose an open neighborhood U ∈ S satisfies the spectral gap condition. Let
U(n) ·U be the group invariant neighborhood generated by U , that is,

(16) U(n) ·U :=
⋃

g∈U(n)

g ·U.

Then U(n) ·U is open and connected, and also satisfies the spectral gap condition
as U does, since the U(n)-action preserves the eigenvalues. From the proof of
Lemma 11, it is shown that in the neighborhood, the trivial Cn bundle over U
naturally splits into two subbundles Ek

⊕ En−k , and this gives a local product
structure. We will prove that, for a U(n)-invariant neighborhood, there is actually a
group equivariant homeomorphism with the operator bundles defined above.

Lemma 14 (bundle map). If a point X0 ∈ S satisfies the spectral gap condition, then
there is a neighborhood V ⊂ S such that V is homeomorphic to a neighborhood in
the product of lower-rank matrices and the Grassmannian, i.e.,

φ : V ∼= V (k)× V (n− k)× VGr ⊂ S(k)× S(n− k)×GrC(n, k),

which is contained in Pk ⊕ Pn−k as defined in Definition 13. Moreover, U(n) · V
is homeomorphic to a neighborhood W ⊂ Pk ⊕ Pn−k such that π(W )= GrC(n, k)
and the map φ is U(n)-equivariant.
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Proof. From the proof of Lemma 11, there is a neighborhood X0 ∈ U ⊂ S, such
that each element X ∈U is decomposed into L X + RX . Moreover, this induces a
decomposition of the trivial bundle U ×Cn into two subbundles:

(17) U ×Cn
= Ek

⊕ En−k,

where Ek(X) and En−k(X) are determined by the projection operator PX defined
in equation (9):

(18) Ek(X)= Im(PX ) and En−k(X)= Im(PX )
⊥.

Let (ξ1, . . . , ξk) be the basis for Ek(X0). Ek over U is an open neighborhood
in GrC(n, k). We can find a neighborhood V of X0 (possibly smaller than U ) such
that, for every point in V , the k-dimensional space Ek projects onto Ek(X0). And
an orthonormal basis of Ek(X) is uniquely determined by requiring the projection
of the first j vectors to Ek(X0) spans (ξ1, . . . , ξ j ) for every j smaller than k. In this
way we find a basis for each fiber of Ek and Ek is trivialized to be a k-dimensional
vector bundle on V . Since the action of X on Cn has been decomposed to L X

and RX , then with the choice of basis, the action of L X on Ek(X) gives a k × k
self-adjoint matrix, and by continuity, these matrices form a neighborhood Vk in
S(k). And the same argument works for RX .

Therefore, we have the following map φ:

(19)
φ :V→Pk ⊕ Pn−k

X 7→(Ek(X), (L X |Ek(X), RX |En−k(X))).

We show this map is a homeomorphism between V and φ(V ). It is injective since
the actions of the two invariant subspaces uniquely determine the action on Cn ,
therefore give the unique operator X . Surjectivity is easy to see. The continuity of φ
and φ−1 comes from the continuity of the projection operator defined in Theorem 6.

Now take U(n) · V . Since Ek takes every possible k-subspace of Cn under the
action of U(n), we know that the first entry of φ(U(n) · V ) maps onto GrC(n, k).
Moreover, since the decomposition respects the action of U(n), it is easily seen
that, for g ∈ U(n), X ∈ U(n) · V ,

(20) φ(g · X)= (g · Ek(X), (g ◦ L X ◦ g−1, g ◦ RX ◦ g−1))= g · (φ(X)),

which means the map is U(n)-equivariant. �

To do the induction, we will need to define an index on the inclusion of isotropy
types, so the blow-up procedure could be done in the partial order given by the
index. Recall that two matrices have the same isotropy type if they have the same
“clustering” of eigenvalues. Now we define the isotropy index of a matrix X as
follows.
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Definition 15 (Isotropy index). Suppose the eigenvalues of a matrix X are

λ1 = · · · = λi1 < λi1+1 = · · · = λi2 < λi2+1 = · · ·< λik−1+1 = · · · = λn.

Then the isotropy index of X is defined as the set

I (X)= {i0 = 0, i1, i2, . . . , ik−1, ik = n}.

We denote the set of all matrices with the same isotropy index I as S I .

There is a partial order of this index on S given by the inclusion. That is, if for
two matrices X and Y we have I (X)⊂ I (Y ), then we say that the order is X ≤ Y .
Note there is an inverse inclusion for isotropy groups. The smallest isotropy index
is I (λI )= {0, n}, while the isotropy group is U(n), which is the largest. And the
largest index is {0, 1, 2, . . . , n− 1, n}, which corresponds to n distinct eigenvalues,
and the isotropy group is the product of n copies of U(1).

Remark 16. Except the most singular stratum {λI }, the stratum of other isotropy
types are not closed. In fact, the closure of a stratum S I will include all the stratum
S I ′ with I ′ ⊂ I . However, the two sets {λi1 = λi2 = · · · = λik } and {λ j1 = · · · = λ jl }

are transversal once the set {λmin{i1, j1} = · · · = λmax{ik , jl }} is blown up. So one can
get Ŝs by blowing up these singular stratum by order of strict inclusion. However,
in order to globally decompose the eigenbundle, one needs to blow-up all the
intersections first as in Ŝr (the proof is given later).

For Ŝr and Ŝp, the total blow-up of S(n) is done by iteratively blowing up the
singular strata by the order of isotropy indices. The first step is to blow-up the most
singular stratum S{0,n} = {RI }:

[S(n); S{0,n}].

After that we blow-up the second smallest strata S{0,i,n}, i = 1, . . . , n− 1. From
the discussion above we know that, for any of such two strata, the intersection of
their closure is exactly S{0,n} which has been blown up. Therefore one can blow-up
these S{0,i,n} in any order: [

S(n); S{0,n};
n−1⋃
i=1

S{0,i,n}
]
.

After the second step, the intersection of any two S{0,i, j,n} has been blown up.
Therefore one can proceed by blowing up those strata in any order. Iteratively, one
obtains the following space:

(21)
[

S(n); S{0,n};
n−1⋃
i=1

S{0,i,n};
⋃
i, j

S{0,i, j,n}
; . . . ;

⋃
0≤i1<i2<···<in−2≤n

S{0,i1,...,in−2,n}
]
.
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In order to do the inductive proof to show this yields the full eigenresolution,
the last lemma we need is the compatibility of conjugacy class inclusion and the
decomposition to two submatrices, which shows the order of resolution is compatible
with the decomposition.

Lemma 17 (Compatibility with conjugacy class). The partial order of conjugacy
class inclusion is compatible with the decomposition in Lemma 11.

Proof. Suppose a neighborhood V ⊂ S(n) has a decomposition as Lemma 11. We
need to show that, if S I is the stratum of minimal isotropy type in V , then this
stratum corresponds to the minimal isotropy type in U(k) and U(n− k).

Since V satisfies the spectral gap condition, the isotropy groups for any elements
in V would be subgroups of U(k) ⊕ U(n − k). Suppose the minimal stratum
corresponds to the index I = {0, i1, . . . , im} which must contain k as one element
because of the spectral gap condition. Then the isotropy type of two subgroups are
{0, i1, . . . , k} and {i j−k = 0, i j+1−k, . . . , n−k}. They would still be the minimal
in each subgroup, otherwise when the two smallest elements are combined it will
give a smaller index than I , which is a contradiction. �

Now we can finally prove Theorem 6 using the above lemmas.

Proof of Theorem 6. We prove the theorem by induction on the matrix size. Except
special remarks, the discussion below about Ŝ applies to all three kinds of resolutions.
The 2× 2 case is shown in Lemma 8. Suppose the claim holds for all the cases up
to n− 1 dimensions. Now we claim that, by an iterative blow-up, we can get Ŝ(n)
with eigenvalues and eigenbundles lifted to satisfy the eigenresolution properties.

As in the 2× 2 example, we shall first consider the trace-free slice S0(n) since
other slices have the same behavior in terms of smoothness of eigenvalues and
eigenbundles, that is, Ŝ(n) = Ŝ0(n) × R. Take the smallest index I = {0, n}
with the largest possible isotropy group U(n), and the stratum in S0(n) with such
an isotropy group is a single point, the zero matrix. After blowing up, we get
[S0; {0}] as the first step. And in the total S(n) space, this step corresponds to
[S; S{0,n} = {RI }] = [S0; {0}]×R.

For any other point X /∈ {RI }, one can find a bounded neighborhood W such
that the matrices in W have a spectral gap as defined in Definition 10. Assume the
first k eigenvalues are uniformly bounded below c, then by Lemma 14 there is a
fibration structure

(22) V (k)× V (n− k) // W

π

��
GrC(n, k).
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And the trivial bundle W ×Cn naturally splits to the sum Ek
⊕ En−k as in (17).

Because of the spectral gap, there are two smallest strata of type {λi1 = · · · = λi j }

and {λi ′1 = · · · = λi ′j }, with i j ≤ k and i ′1 ≥ k + 1, therefore the two strata are
transversal as discussed in the Remark 16, and can be blown up at the same time.
This give the iteration step for Ŝs .

Now we consider the radial and projective resolution. For each fiber of π
in (22), consider the resolved space V̂ (k)× V̂ (n− k)⊂ Ŝ(k)× Ŝ(n− k), where the
resolution is done by blowing up all the singular stratum inside V (k) and V (n− k).
By induction the resolution V̂ (k) resolves the singularity for the first k eigenvalues,
and V̂ (n−k) resolves the other n−k eigenvalues. For example, take a point X ∈ S(5)
with eigenvalues {λ1 = λ2 < λ3 = λ4 = λ5}. Near this point there is a product
decomposition V (2)×V (3)×GrC(5, 2). After the resolution, V̂ (2)× V̂ (3) resolves
the isotropy type ({0, 2} ∪ {0, 1, 2})× ({0, 3} ∪ {0, 1, 3} ∪ {0, 2, 3} ∪ {0, 1, 2, 3}),
which, after adjusting numbering of eigenvalues, includes all the isotropy types
that could occur with this spectral gap in W . Let Ŵ be the this resolved space and
denote the blow-down map as

β : Ŵ
π̂

%%

// W

π

��
GrC(n, k).

Consider the two subbundles Ek and En−k under the pullback map from β:

(23) Êk
⊕ Ên−k β //

φ̂

��

Ek
⊕ En−k

φ

��
Ŵ

β // W.

By the induction assumptions, V̂ (k) and V̂ (n− k) are eigenresolutions, hence Êk

splits into line bundles
⊕k

i=1 Ei over V̂ (k) and the same for Ên−k
=
⊕n

i=k+1 Ei

over V̂ (n− k). With the local product structure of π , the Whitney sum Êk
⊕ Ên−k

splits into n eigenbundles locally.
For the radial resolution Ŝr , since the local product structure is U(n)-equivariant,

extending to
⊕n

i=1 U(n) · Ei , we get that the splitting of eigenbundles is global
over Ŵ . We have already shown in Lemma 8 that the projective resolution does
not give a global eigendecomposition. Similarly, for the small resolution Ŝs , one
can find a closed curve in the base such that one eigenvector switches to another
around the curve. We prove this by giving an example: consider the curve of 4× 4
matrices of the form X (t)=U (t)3(t)U (t)−1, 0≤ t ≤ 1, where U (t) is unitary for
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all t , switching from the identity to its column permutation,

U (t)=


(Ee1, Ee2, Ee3, Ee4) 0≤ t ≤ 1

3
U (t) 1

3 ≤ t ≤ 2
3

(Ee3, Ee4, Ee1, Ee2)
2
3 ≤ t ≤ 1

,

which smoothly permutes the eigenspace decomposition. On the other hand, 3(t)
is always diagonal, going through {λ1 = λ2} and {λ3 = λ4}:

3(t)=



diag{−1,−1, 1, 1} t = 0
diag{−1,−1, 1− t, 1+ t} 0≤ t ≤ 1

3
diag{−1− t,−1+ t, 1

3 + t, 5
3 − t} 1

3 ≤ t ≤ 2
3

diag{−2+ t,−t, 1, 1} 2
3 ≤ t ≤ 1

diag{−1,−1, 1, 1} t = 1

.

With X (t) defined above, one can see that X (0)= X (1) in the stratum that is not
blown up in Ŝs . Now consider the lift of the curve to Ŝs , which is still a closed
curve. Now one can immediately see that as t goes from 0 to 1, the eigenspace for
the first two eigenvalues switches from {e1, e2} to {e3, e4}. So one cannot obtain a
global decomposition.

Even though the eigenbundles do not always split, the three resolutions all
resolve eigenvalues. Since the blow-down map β is injective on a dense open set,
the eigenvalues extend to the front face to be n smooth functions fi on Ŵ and the
splitting of eigendata extends to Ên−k

⊕ Ên−k from nearby such that

β(X)vi = fi (X)vi for all vi ∈ Ei (X) for all X ∈ Ŵ.

According to Lemma 17 the isotropy index order is preserved when decomposed
into two subspaces. By induction, to obtain the global eigenresolution, we have
iteratively blown up the strata according to isotropy indices to get Ŝr as in (21). �
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