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Consider a solution f ∈ C2(�) of a prescribed mean curvature equation

div
∇ f√

1+ |∇ f |2
= 2H(x, f ) in �⊂ R2,

where � is a domain whose boundary has a corner at O = (0, 0) ∈ ∂� and
the angular measure of this corner is 2α, for some α ∈ (0, π). Suppose
supx∈� | f (x)| and supx∈� |H(x, f (x))| are both finite. If α > π

2 , then the
(nontangential) radial limits of f at O, namely

R f (θ)= lim
r↓0

f (r cos θ, r sin θ),

were recently proven by the authors to exist, independent of the boundary
behavior of f on ∂�, and to have a specific type of behavior.

Suppose α ∈
(
π
4 ,

π
2

]
, the contact angle γ ( · ) that the graph of f makes

with one side of ∂� has a limit (denoted γ2) at O and

π − 2α < γ2 < 2α.

We prove that the (nontangential) radial limits of f at O exist and the radial
limits have a specific type of behavior, independent of the boundary behav-
ior of f on the other side of ∂�. We also discuss the case α ∈

(
0, π2

]
and the

displayed inequalities do not hold.

1. Introduction and statement of main theorems

Let � be a domain in R2 whose boundary has a corner at O ∈ ∂�. Suppose
H :�×R→ R and H satisfies one of the conditions which guarantees that “cusp
solutions” (e.g., §5 of [Lancaster and Siegel 1996b]) do not exist; for example,
H(x, t) is weakly increasing in t for each x [Echart and Lancaster 2017] or is
real-analytic [Lancaster and Siegel 1996a]. We will assume O = (0, 0). Let
�∗ = � ∩ Bδ∗(O), where Bδ∗(O) is the ball in R2 of radius δ∗ about O. Polar
coordinates relative to O will be denoted by r and θ . We assume that ∂� is
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Figure 1. The domain �∗.

piecewise smooth and there exists α ∈ (0, π) such that ∂� \ {O} ∩ Bδ∗(O) consists
of two (open) C1 arcs ∂+�∗ and ∂−�∗, whose tangent lines approach the lines
L+ : θ = α and L− : θ =−α, respectively, as the point O is approached.

Suppose α > π
2 and f ∈C2(�) satisfies the prescribed mean curvature equation

(1) N f (x)= 2H(x, f (x)), for x ∈�,

where N f =∇ · T f = div(T f ), T f =∇ f/
√

1+ |∇ f |2, and

(2) sup
x∈�
| f (x)|<∞ and sup

x∈�
|H(x, f (x))|<∞.

In [Entekhabi and Lancaster 2016], the authors proved that the radial limits,

R f (θ) def
= lim

r↓0
f (r cos θ, r sin θ),

exist for all θ ∈ (−α, α), that R f ( · ) is a continuous function on (−α, α) and
that these radial limits have similar behavior to that observed in Theorem 1 of
[Lancaster and Siegel 1996b]. As illustrated in [Lancaster 1989] and in Theorem 3
of [Lancaster and Siegel 1996b], radial limits of nonparametric prescribed mean
curvature surfaces do not necessarily exist.

Suppose α≤ π
2 (see Figure 1) and f ∈C2(�)∩C1(�∪∂−�∗) satisfies (1) and (2).

In [Entekhabi and Lancaster 2016], it is shown that if

(3) lim
∂−�∗3x→O

f (x) exists,

then the radial limits of f at O exist and behave as expected. In this paper, we
consider the capillary problem as our model and suppose f ∈C2(�)∩C1(�∪∂−�∗)

satisfies (1), (2) and the boundary condition

(4) T f (x) · ν(x)= cos γ (x) for x ∈ ∂−�∗,
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where ν(x) is the exterior unit normal to � at x ∈ ∂� and γ : ∂�→ [0, π] is the
contact angle between the graph of f and ∂�×R, and

(5) lim
∂−�∗3x→O

γ (x)= γ2.

We shall prove

Theorem 1. Let f ∈ C2(�)∩C1(�∪ ∂−�∗) satisfy (1) and (4) and suppose (2)
and (5) hold, α ∈

(
π
4 ,

π
2

]
and

(6) π − 2α < γ2 < 2α.

Then (3) holds, R f (θ) exists for all θ ∈ (−α, α) and R f ( · ) is a continuous function
on [−α, α), where R f (−α) equals the limit in (3). Further, R f ( · ) behaves in one
of the following ways:

(i) R f :[−α, α)→R is a constant function, hence f has a nontangential limit at O.

(ii) There exist α1 and α2 so that−α≤α1<α2≤α and R f is constant on [−α, α1]

and [α2, α) and strictly increasing or strictly decreasing on [α1, α2).

If α∈
(
0, π4

]
, then (6) cannot be satisfied. If α∈

(
π
4 ,

π
2

]
but γ2≥2α or γ2≤π−2α,

then (6) is not satisfied. In both cases, Theorem 1 is not applicable. In these cases,
we can prove the existence of R f ( · ) if we add an assumption about the behavior
of γ on ∂+�∗.

Theorem 2. Let f ∈C2(�)∩C1(�∪∂−�∗∪∂+�∗) satisfy (1) and (4). Suppose (2)
and (5) hold, α ∈

(
0, π2

]
, there exist λ1, λ2 ∈ [0, π] with 0< λ2−λ1 < 4α such that

λ1 ≤ γ (x)≤ λ2 for x ∈ ∂+�∗ and

(7) π − 2α− λ1 < γ2 < π + 2α− λ2.

Then the conclusions of Theorem 1 hold.

Remarks. (a) Theorem 2 only offers a new result when λ1 = 0 or λ2 = π ; Figure 8
of [Shi 2006] illustrates one example in which λ1 = 0 or λ2 = π occurs. If
0<λ1 <λ2 <π , then Theorem 2 is a consequence of [Lancaster and Siegel 1996b,
Theorem 1]; in this case, the argument given in that reference (and here) implies
that R f (θ) exists for all θ ∈ [−α, α].

(b) In [Concus and Finn 1996; Finn 1996] it was proved that, in a neighborhood
U of O and assuming ∂+�∗ and ∂−�∗ are straight line segments, a solution of a
constant mean curvature equation (i.e., H is constant in (1)) with constant contact
angles γ1 on U ∩ ∂+�∗ and γ2 on U ∩ ∂−�∗ can exist only if |π − γ1− γ2| ≤ 2α.
Using this, when γ1= 0, we would obtain a (local) upper bound for f in Theorem 1
when π − 2α < γ2 and, when γ1 = π , a (local) lower bound for f when γ2 < 2α;
these two inequalities are equivalent to (6).
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Figure 2. The regions 1 (dark blue) and 1R (light blue).

(c) As in [Lancaster and Siegel 1996b], conclusion (3) of Theorems 1 and 2 is a
consequence of a general argument; establishing (3) is not a key step in the proof.

2. Preliminary remarks

Let f ∈ C2(�) satisfy (1) and suppose (2) holds. Throughout the remainder of the
article, let us assume that M1 ∈ (0,∞), M2 ∈ [0,∞),

(8) sup
x∈�
| f (x)| ≤ M1 and sup

x∈�
|H(x, f (x))| ≤ M2.

2.1. A specific torus. We will use portions of tori and comparison function argu-
ments as, for instance, in Examples 2 and 3 of [Lancaster and Siegel 1996b] and the
Courant–Lebesgue lemma [Courant 1950, Lemma 3.1] to obtain upper and lower
bounds on f near O in specific subsets of � and prove Theorems 1 and 2. Let us
discuss the construction of a particular torus.

Set

r0 =

{
1 if M2 = 0,
1/M2+ 1−

√
(1/M2)2+ 1 if M2 > 0.

Let

1=
{

x = (x1, x2) ∈ R2
: |x| ≥ r0, 0≤ x1 ≤ 2, |x2| ≤ r0

}
,

1R
= {x = (x1, x2) ∈ R2

: (4− x1, x2) ∈1}, and

T =
{(

2+ (2+ r0 cos v) cos u, r0 sin v, (2+ r0 cos v) sin u
)

: u ∈ [0, 2π ], v ∈
[
π
2 ,

3π
2

]}
.

T is the inner half of a torus of revolution with axis of symmetry {(2, y, 0) : y ∈R},
major radius R0 = 2 and minor radius r0; recall that the mean curvature of T (with
respect to the exterior normal) at

(
2+(2+r0 cos v) cos u, r0 sin v, (2+r0 cos v) sin u

)
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τ1 τ2

−β

β

Figure 3. Left: β + τ1 =
π
2 . Right: −β + τ2 =

π
2 . In both cases, β ≥ 0.

is given by

HT =−
2+ 2r0 cos v

2r0(2+ r0 cos v)
.

A calculation shows that

(9) −

( 1
r0
+

1
2+r0

)
≤ 2HT ≤−

( 1
r0
−

1
2−r0

)
=−M2.

Set

T + = {(x, z) ∈ T : x ∈1, z ≥ 0} and T − = {(x, z) ∈ T : x ∈1, z ≤ 0}.

Let h+, h− :1→ R be functions whose graphs satisfy

{(x, h+(x)) : x ∈1} = T + and {(x, h−(x)) : x ∈1} = T −.

Then, from (9), we have

(10) div
h+√

1+ |∇h+|2
≥ M2 and div

h−√
1+ |∇h−|2

≤−M2.

For each β ∈
[
−
π
2 ,

π
2

]
let 1β =Rα ◦ Tβ(1), where Rα : R

2
→ R2, given by

(x1, x2) 7→
(
cos(α)x1+ sin(α)x2,− sin(α)x1+ cos(α)x2

)
,

is the rotation about (0, 0) through the angle −α and Tβ : R2
→ R2, given by

(x1, x2) 7→ (x1− r0 cosβ, x2− r0 sinβ),

is the translation taking (r0 cosβ, r0 sinβ) ∈ ∂1 to (0, 0). We will let τ1 denote
the angle that the upward tangent ray to Tβ(C) makes with the negative x1−axis
and let τ2 denote the angle that the upward tangent ray to T−β(C) makes with the
positive x1−axis, where C =

{
x = (x1, x2) ∈ R2

: |x| = r0, x1 ≥ 0
}
. (Figure 3

illustrates this when β > 0.) Let h±β :1β→ R be defined by h±β = h± ◦ T−1
β ◦R

−1
α ,

see Figure 4.
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Let q denote the be modulus of continuity of h−, so that |h−β (x1)− h−β (x2)| ≤

q(|x1− x2|. Notice that q is also the modulus of continuity of h+, as well as for
h−β and h+β for each β ∈

[
−
π
2 ,

π
2

]
.

2.2. Parametric framework. Since f ∈C0(�), we may assume that f is uniformly
continuous on {x ∈ �∗ : |x| > δ} for each δ ∈ (0, δ∗); if this is not true, we may
replace� with a subset U ⊂�, such that ∂�∩∂U = {O} and ∂U ∩Bδ∗(O) consists
of two arcs ∂+U and ∂−U , whose tangent lines approach the lines L+ : θ = α and
L− : θ =−α, respectively, as the point O is approached. Set

S∗0 = {(x, f (x)) : x ∈�∗} and 0∗0 = {(x, f (x)) : x ∈ ∂�∗ \ {O}};

the points where ∂Bδ∗(O) intersect ∂� are labeled A ∈ ∂−�∗ and B ∈ ∂+�∗. From
the calculation on page 170 of [Lancaster and Siegel 1996b], we see that the area
of S∗0 is finite; let M0 denote this area. For δ ∈ (0, 1), set

p(δ)=

√
8πM0

ln(1/δ)
.

Let E = {(u, v) : u2
+ v2 < 1}. As in [Elcrat and Lancaster 1986; Lancaster and

Siegel 1996b], there is a parametric description of the surface S∗0 ,

(11) Y (u, v)= (a(u, v), b(u, v), c(u, v)) ∈ C2(E : R3),

which has the following properties:

(a1) Y is a diffeomorphism of E onto S∗0 .

(a2) Set G(u, v)= (a(u, v), b(u, v)), (u, v) ∈ E . Then G ∈ C0(E : R2).

(a3) Let σ = G−1(∂�∗ \ {O}); then σ is a connected arc of ∂E and Y maps σ
strictly monotonically onto 0∗0 . We may assume the endpoints of σ are o1

and o2 and there exist points a, b∈ σ such that G(a)= A, G(b)= B, G maps
the (open) arc o1b onto ∂+�, and G maps the (open) arc o2a onto ∂−�. (Note
that o1 and o2 are not assumed to be distinct at this point; Figures 4a and 4b
of [Lancaster and Siegel 1997] illustrate this situation.)

(a4) Y is conformal on E : Yu · Yv = 0, Yu · Yu = Yv · Yv on E .

(a5) 4Y := Yuu + Yvv = H(Y )Yu × Yv on E .

Here by the (open) arcs o1b and o2a are meant the component of ∂E \{o1, b} which
does not contain a and the component of ∂E \ {o2, a} which does not contain b,
respectively. Let σ0 = ∂E \ σ .

There are two cases we will need to consider during the proofs of Theorem 1
and Theorem 2:

(A) o1 = o2 or (B) o1 6= o2.
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Figure 4. The domain (in blue) of a toroidal function h±β , α < π
4 .

These correspond to Cases 5 and 3 respectively in Step 1 of the proof of Theorem 1
of [Lancaster and Siegel 1996b].

3. Proof of Theorem 1

Since π − 2α < γ2 < 2α, we can choose τ1 ∈ (π − 2α, γ2) and τ2 ∈ (γ2, 2α). Set
β1 =

π
2 − τ1 and β2 =

π
2 − (π − τ2) = τ2 −

π
2 . With these choices of β1 and β2,

notice that

T (h− ◦ Tβ1)(x1, 0) · (0,−1)= cos τ1 > cos γ2, for 0< x1 < 2− r0,

T (h+ ◦ Tβ2)(x1, 0) · (0,−1)= cos τ2 < cos γ2, for 0< x1 < 2− r0.

This implies that, for δ1 = δ1(β1, β2) > 0 small enough,

(12) T (h−β1
)(x) · Eν(x) > cos γ (x) and T (h+β2

)(x) · Eν(x) < cos γ (x),

γ2
π−2α

γ2

2α

τ2

τ1

2α

Figure 5. Left: 1β1 , the domain of h−β1
. Right: 1β2 , the domain of h+β2

.
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for x ∈ ∂−� with |x|< δ1, where Eν(x) is the exterior unit normal to � at x ∈ ∂�.
(See Figure 5.) (We may also assume ν(x) · (1, 1) < 0, for x ∈ ∂+� with |x|< δ1

and ν(x) · (1,−1) < 0, for x ∈ ∂−� with |x|< δ1, since α > π
4 .)

Let µ ∈ (0,min{γ2 − (π − 2α), 2α − γ2}) and set τ1(µ) = π − 2α + µ and
τ2(µ) = 2α − µ, so that β1 = β2. Let us write δ1(µ) for δ1(β1, β2), h+µ for h+β2

,
h−µ for h−β1

and 1µ for 1β1 = 1β2 . Since β1, β2 6= ±
π
2 , there exists a positive

R= R(µ) such that B(O, R(µ))∩�∗⊂1µ (where B(O, R)= {x ∈R2
: |x|< R}).

Let us first assume that (A) holds and set o= o1 = o2.

Claim. f is uniformly continuous on �0, where �0 =�
∗
∩1µ.

Proof. For r > 0, set Br = {u ∈ E : |u− o| < r}, Cr = {u ∈ E : |u− o| = r} and
let lr be the length of the image curve Y (Cr ); also let C ′r =G(Cr ) and B ′r =G(Br ).
From the Courant–Lebesgue lemma (e.g., Lemma 3.1 in [Courant 1950]), we see
that for each δ ∈ (0, 1), there exists a ρ = ρ(δ) ∈ (δ,

√
δ) such that the arclength lρ

of Y (Cρ) is less than p(δ). For δ > 0, let k(δ) = infu∈Cρ(δ) c(u) = infx∈C ′ρ(δ) f (x)
and m(δ)= supu∈Cρ(δ) c(u)= supx∈C ′ρ(δ)

f (x); notice that m(δ)− k(δ)≤ lρ < p(δ).
For each δ ∈ (0, 1) with

√
δ < min{|o− a|, |o− b|}, there are two points in

Cρ(δ) ∩ ∂E ; we denote these points as e1(δ) ∈ ob and e2(δ) ∈ oa and set y1(δ)=

G(e1(δ)) and y2(δ) = G(e2(δ)). Notice that C ′ρ(δ) is a curve in � which joins
y1 ∈ ∂

+�∗ and y2 ∈ ∂
−�∗ and ∂�∩C ′ρ(δ) \ { y1, y2} = ∅; therefore there exists

η = η(δ) > 0 such that Bη(δ)(O)= {x ∈� : |x|< η(δ)} ⊂ B ′ρ(δ) (see Figure 6).
Let ε>0. Choose δ>0 such that

√
δ<min{|o−a|, |o−b|}, p(δ)<δ1(µ), p(δ)<

R(µ), and p(δ)+ q(p(δ)) < 1
2ε. Pick a point w ∈ C ′ρ(δ) and define b±j :1µ→ R

by
b±(x)= f (w)± p(δ)± h∓µ (x), x ∈1µ.

Recalling that T b+ · η1 = 1 on C1 = Rα ◦ Tβ1(C) and T b− · η2 = −1 on C2 =

Rα ◦ Tβ2(C), where η j (x) is the interior unit normal to C j at x ∈ C j (and C =

y2(δ)−→

y1(δ)−→

Figure 6. Bη(δ)(O) (blue region) and B ′ρ(δ) (blue and green regions).
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{x ∈ R2
: |x| = r0, x1 ≥ 0}), it follows from (10), (12) and the general comparison

principle (e.g., [Finn 1986, Theorem 5.1]) that

b−(x) < f (x) < b+(x) for all x ∈ B ′ρ(δ) ∩1µ.

Thus if x1, x2 ∈�0 satisfy |x1|< η(δ), |x2|< η(δ) and |x1− x2|< η(δ), then

(13) | f (x1)− f (x2)|< 2p(δ)+ 2q(p(δ)) < ε.

Since f is uniformly continuous on {x ∈�∗ : |x| ≥ 1
2η(δ)}, there exists a λ > 0

such that if x1, x2 ∈ �
∗ satisfy |x1| ≥

1
2η(δ), x2| ≥

1
2η(δ) and |x1 − x2| < λ,

then | f (x1)− f (x2)| < ε. Now set d = d(ε) = min{λ, 1
2η(δ)}. If x1, x2 ∈ �0,

|x1− x2|< d(ε)≤ 1
2η(δ) and |x1|<

1
2η(δ), then |x1|<η(δ) and |x2|<η(δ); hence

| f (x1)− f (x2)|<ε by (13). Next, if x1, x2 ∈�0, |x1−x2|<d(ε)≤λ, |x1|≥
1
2η(δ)

and |x2| ≥
1
2η(δ), then | f (x1)− f (x2)| < ε. Therefore, for all x1, x2 ∈ �0 with

|x1− x2|< d(ε), we have | f (x1)− f (x2)|< ε. The claim is proven. �

Notice that if θ(µ)= α−µ (= τ2(µ)−α = π −α− τ1(µ)), then{(
r cos θ(µ), r sin θ(µ)

)
: r ≥ 0

}
is the tangent ray to ∂�0 at O and it follows from the claim that f ∈C0(�0); hence
the radial limits R f (θ) of f at O exist for θ ∈ [−α, θ(µ)] and the radial limits are
identical (i.e., R f (θ)= f (O) for all θ ∈[−α, θ(µ)], where f (O) is the value at O of
the restriction of f to�0). Since limµ↓0 θ(µ)= α, Theorem 1 is proven in this case.

Let us next assume that (B) holds. This part of the proof is essentially the same
as the proof of case (B) in Theorem 1 of [Entekhabi and Lancaster 2016]. As in
that paper, and taking into account the hypothesis α ≤ π

2 , we see that

(i) c ∈ C0(E \ {o1, o2}),

Figure 7. The domain (in blue) of the toroidal functions h±µ , α > π
4 .
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(ii) there exist α1, α2 ∈ [−α, α] with α1 < α2 such that R f (θ) exists when
θ ∈ (α1, α2), and

(iii) R f is strictly increasing or strictly decreasing on (α1, α2).

Taking hypothesis (5) into account and using cylinders as in case 3 of step 1 in the
proof of Theorem 1 of [Lancaster and Siegel 1996b] (see Figure 2b in [Lancaster and
Siegel 1997]) or using h±µ (see Figure 7), we see that in addition to (i)–(iii), we have

(iv) c ∈ C0(E \ {o1}) and

(v) R f (θ) exists when θ ∈ [−α, α2).

If α2= α, then Theorem 1 is proven. Otherwise, suppose α2<α and fix δ0 ∈ (0, δ∗)
and �0 =�

∗
∩1µ as before.

Claim. Suppose α2 < α. Then f is uniformly continuous on �+0 , where

�+0
def
= {(r cos θ, r sin θ) ∈�0 : 0< r < δ∗, α2 < θ < π}.

Notice that the restriction of Y to G−1(�+0 ) maps only one point, o1, to O×R

and so the proof of this claim is the same as the proof of the previous claim. Thus
f ∈ C0(�+0 ); since limµ↓0 θ(µ)= α, we see that

R f (θ)= lim
τ↑α2

R f (τ ) for all θ ∈ [α2, α).

Thus Theorem 1 is proven. �

π − 2α
τ1

γ2

α

Figure 8. α = π
6 , λ1 = 0, λ2 =

π
2 , γ2 =

7π
9 , and τ1 =

27π
36 . The

domain of h−β1
is the green region.
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4. Proof of Theorem 2

Suppose (6) does not hold. Since π − 2α−λ1 < γ2 < π + 2α−λ2, we can choose
τ1, τ2 ∈ (0, π) such that τ1 ∈ (π − 2α − λ1, γ2) and τ2 ∈ (γ2, π + 2α − λ2). Set
β1=

π
2 −τ1 and β2= τ2−

π
2 . (See Figures 8 and 9.) With these choices of β1 and β2,

notice that

T (h− ◦ Tβ1)(x1, 0) · (0,−1)= cos τ1 > cos γ2, for 0< x1 < 2− r0,

T (h+ ◦ Tβ2)(x1, 0) · (0,−1)= cos τ2 < cos γ2, for 0< x1 < 2− r0.

This implies that for δ1 = δ1(β1, β2) > 0 small enough,

(14) T (h−β1
)(x) · Eν(x) > cos γ (x) and T (h+β2

)(x) · Eν(x) < cos γ (x),

for x ∈ ∂−� with |x|< δ1, where Eν(x) is the exterior unit normal to � at x ∈ ∂�.
(See Figures 5, 8 and 9.)

Notice that the tangent plane at (0, 0, 0) to the surface {(x, h−β1
(x)) : x ∈1β1} is

a vertical plane with (downward oriented) unit normal

En = (− sin(τ1+α),− cos(τ1+α), 0)

and
lim

∂+�3x→O
Eν(x)= (− sinα, cosα, 0).

Suppose τ1+ 2α ≤ π . Then

lim
∂+�3x→O

En · Eν(x)=− cos(τ1+ 2α) >− cos(π − λ1)= cos λ1,

since τ1+2α >π−λ1; since lim inf∂+�3x→O γ (x)≥ λ1, this implies that for some
δ2 > 0 small enough,

(15) T (h−β1
)(x) · Eν(x) > cos γ (x), for x ∈ ∂+� with |x|< δ2.

If τ1+ 2α > π , then λ1 doesn’t matter and we argue as in the proof of Theorem 1;
see Figure 8 for an illustration of this case.

Now the tangent plane at (0, 0, 0) to the surface {(x, h+β2
(x)) : x ∈1β2} is a verti-

cal plane with (downward oriented) unit normal Em = (sin(τ2−α),− cos(τ2−α), 0)
and lim∂+�3x→O Eν(x)= (− sinα, cosα, 0).

Suppose τ2 ≥ 2α. Then

lim
∂+�3x→O

Em · Eν(x)=− cos(τ2− 2α) <− cos(π − λ2)= cos λ2,

since τ2 − 2α < π − λ2; since lim sup∂+�3x→O γ (x) ≤ λ2, this implies that for
some δ3 > 0 small enough,

(16) T (h+β1
)(x) · Eν(x) < cos γ (x), for x ∈ ∂+� with |x|< δ3.
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γ2

τ2

Figure 9. α = π
6 , λ1 = 0, λ2 =

π
2 , γ2 =

7π
9 , and τ2 =

29π
36 . The

domain of h+β2
is the blue region.

If τ2 < 2α, then λ2 doesn’t matter and we argue as in the proof of Theorem 1.
Now set δ4 =min{δ1, δ2, δ3}. The proof of Theorem 2 now follows essentially

as in the proof of Theorem 1. �
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