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We prove an analogue of Voiculescu’s theorem: the relative bicommutant
of a separable unital subalgebra A of an ultraproduct of simple unital C∗-
algebras is equal to A.

Ultrapowers1 AU of separable C∗-algebras are, being subject to well-developed
model-theoretic methods, reasonably well-understood; see, e.g., [Farah et al. 2016b,
Theorem 1.2] and Section 2. Since the early 1970s and the influential work of
McDuff and Connes, central sequence algebras A′ ∩ AU play an even more impor-
tant role than ultrapowers in the classification of II1 factors and (more recently)
C∗-algebras. While they do not have a well-studied abstract analogue, in [Farah
et al. 2016b, Theorem 1] it was shown that the central sequence algebra of a strongly
self-absorbing algebra [Toms and Winter 2007] is isomorphic to its ultrapower if the
continuum hypothesis holds. Relative commutants B ′∩DU of separable subalgebras
of ultrapowers of strongly self-absorbing C∗-algebras play an increasingly important
role in the classification program for separable C∗-algebras [Bosa et al. 2016; Matui
and Sato 2014, §3]; see also [Tikuisis et al. 2016; Winter 2016]. In the present note
we make a step towards better understanding of these algebras.

A C∗-algebra is primitive if it has a representation that is both faithful and
irreducible. We prove an analogue of the well-known consequence of Voiculescu’s
theorem [1976, Corollary 1.9] and von Neumann’s bicommutant theorem [Blackadar
2006, §I.9.1.2].

Theorem 1. Assume
∏

U B j is an ultraproduct of primitive C∗-algebras and A
is a separable C∗-subalgebra. In addition, assume A is a unital subalgebra if∏

U B j is unital. With AWOT computed in the ultraproduct of faithful irreducible
representations of Bj s, we have

A =
(

A′ ∩
∏

U B j
)′
= AWOT

∩
∏

U B j .

MSC2010: 03C20, 03C98, 46L05.
Keywords: C*-algebras, ultrapowers, relative commutant, bicommutant.

1Throughout, U denotes a nonprincipal ultrafilter on N.
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A slightly weaker version of the following corollary to Theorem 1 (stated here
with Aaron Tikuisis’ kind permission) was originally proved using very differ-
ent methods.

Corollary 2 (Farah and Tikuisis, 2015). Assume
∏

U B j is an ultraproduct of simple
unital C∗-algebras and A is a separable unital subalgebra. With Z(A) denoting the
center of A, we have

Z
(

A′ ∩
∏

U B j
)
= Z(A). �

At least two open problems are concerned with bicommutants of separable
subalgebras of massive operator algebras. As is well-known, central sequence
algebras M ′ ∩MU of II1 factors in tracial ultrapowers behave differently from the
central sequence algebras of C∗-algebras. For a II1 factor M with separable predual,
the central sequence algebra M ′ ∩MU can be abelian or even trivial. Popa [2014,
Conjecture 2.3.1] asked whether if P is a separable subalgebra of an ultraproduct
of II1 factors then

(
P ′ ∩

∏
U Ni

)′
= P implies P is amenable. In the domain of

C∗-algebras, G. K. Pedersen [1990, Remark 10.11] asked whether the following
variant of Theorem 1 is true: if the corona M(B)/B of a σ -unital C∗-algebra B is
simple and A is a separable unital subalgebra, is (A′ ∩M(B)/B)′ = A? (For the
connection between ultraproducts and coronas, see the last paragraph of Section 3.)

The proof of Theorem 1 uses logic of metric structures [Ben Yaacov et al. 2008;
Farah et al. 2014] and an analysis of the interplay between C∗-algebra B and its
second dual B∗∗.

1. Model theory of representations

We expand the language of C∗-algebras introduced in [Farah et al. 2014, §2.3.1] to
representations of C∗-algebras. Readers’ familiarity with, or at least easy access
to, §2 of that paper is assumed. A structure in the expanded language Lrep is a
C∗-algebra together with its representation on a Hilbert space. As in [Farah et al.
2014], the domains of quantification on a C∗-algebra are Dn for n ∈ N and are
interpreted as the n-balls. The domains of quantification on the Hilbert space
are DH

n for n ∈N and are also interpreted as the n-balls. On all domains the metric
is d(x, y) = ‖x − y‖ (we denote both the operator norm on C∗-algebras and the
`2-norm on Hilbert spaces by ‖·‖). As in [Farah et al. 2014, §2.3.1], for every λ∈C

we have a unary function symbol λ to be interpreted as multiplication by λ. We
also have a binary function + whose interpretation sends DH

m × DH
n to DH

m+n . As
the scalar product ( · | · ) is definable from the norm via the polarization identity, we
freely use it in our formulas, with the understanding that (ξ | η) is an abbreviation
for 1

4

∑3
j=0 i j

‖ξ + i jη‖. The language Lrep also contains a binary function symbol
π whose interpretation sends Dn × DH

m to DH
mn for all m and n. It is interpreted as

an action of A on H.
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Every variable is associated with a sort. In particular, variables x, y, z range
over the C∗-algebra and variables ξ, η, ζ range over the Hilbert space, all of them
decorated with subscripts when needed.

We shall write x for a tuple x = (x1, . . . , xn) (with n either clear from the
context or irrelevant). Terms come in two varieties. On the C∗-algebra side, a
term is a noncommutative ∗-polynomial in C∗-variables. On the Hilbert space side,
terms are linear combinations of Hilbert space variables and expressions of the
form π(α(x))ξ , where α(x) is a term in the language of C∗-algebras. Formulas are
defined recursively. Atomic formulas are expressions of the form ‖t‖ where t is
a term.

The set of all formulas is the smallest set F containing all atomic formulas with
the properties that

(i) for every n, all continuous f : [0,∞)n→ [0,∞) and all ϕ1, . . . , ϕn in F, the
expression f (ϕ1, . . . , ϕn) belongs to F, and

(ii) if ϕ∈F, and x and ξ are variable symbols, then each of sup‖ξ‖≤m ϕ, inf‖ξ‖≤m ϕ,
sup‖x‖≤m ϕ, and inf‖x‖≤m ϕ belongs to F; see [Farah et al. 2014, §2.4] or [Farah
et al. 2016a, Definition 2.1.1].

Suppose π : A→ B(H) is a representation of a C∗-algebra A on Hilbert space H.
To (A, H, π) we associate the natural metric structure M(A, H, π) in the above
language.

Suppose ϕ(x, ξ) is a formula whose free variables are included among x and ξ .
If π : A→ B(H) is a representation of a C∗-algebra on Hilbert space, a are elements
of A and ξ are elements of H ,2 then the interpretation ϕ(a, ξ)M(A,H,π) is defined
by recursion on the complexity of ϕ in the obvious way; see [Ben Yaacov et al.
2008, §3].

Proposition 1.1. Triples (A, H, π) such that π is a representation of A on H form
an axiomatizable class.

Proof. As in [Farah et al. 2014, Definition 3.1], we need to define an Lrep-theory Trep

such that the category of triples (A, H, π), where π : A→ B(H) is a representation
of a C∗-algebra A, is equivalent to the category of metric structures that are models
of Trep, via the map

(A, H, π) 7→M(A, H, π).

We use the axiomatization of C∗-algebras from [Farah et al. 2014, §3.1]. In addition
to the standard Hilbert space axioms, we need the following two axioms assuring

2Symbols ξ, η, ζ , . . . denote both Hilbert space variables and vectors in Hilbert space due to the
font shortage; this shall not lead to a confusion.
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that the interpretation of DH
n equals the n-ball of the underlying Hilbert space for

all n:
sup
ξ∈D1

‖ξ‖ ≤ n,

(∗) sup
ξ∈Dn

max
(
(1−. ‖ξ‖), inf

η∈D1
‖ξ − η‖

)
,

where s−. t :=max(s− t, 0). The standard axioms,

π(xy)ξ = π(x)π(y)ξ,

π(x + y)ξ = π(x)ξ +π(y)ξ,

(π(x)ξ | η)= (ξ |π(x∗)η)

are expressible as first-order sentences.3 The axioms described here comprise
theory Trep.

One needs to check that the category of models of Trep is equivalent to the
category of triples (A, H, π). Every triple (A, H, π) uniquely defines a model
M(A, H, π). Conversely, assume M is a model of Trep. The algebra AM obtained
from the first component of M is a C∗-algebra by [Farah et al. 2014, Proposition 3.2].
Also, the linear space HM obtained from the second component of M is a Hilbert
space and the third component gives a representation πM of A on H .

To see that this provides an equivalence of categories, we need to check that
M(AM, HM, πM) ∼=M for every model M of Trep. We need to show that the
domains on M are determined by AM and HM. The former was proved in the
second paragraph of [Farah et al. 2014, Proposition 3.2], and the latter follows
by (∗). �

Proposition 1.1 gives us full access to the model-theoretic toolbox, such as Łoś’s
theorem (see Section 2) and the Löwenheim–Skolem theorem [Farah et al. 2014,
Theorem 4.6]. From now on, we shall identify triple (A, H, π) with the associated
metric structure M(A, H, π) and stop using the latter notation. We shall also write
sup‖ξ‖≤n and inf‖ξ‖≤n instead of supξ∈Dn

and infξ∈Dn , respectively.

Lemma 1.2. The following properties of a representation π of A are axiomatizable:

(1) π is faithful.

(2) π is irreducible.

Proof. We explicitly write the axioms for each of the properties of π . Fix a
representation π . It is faithful if and only if it is isometric, which can be expressed as

sup
‖x‖≤1

inf
‖ξ‖≤1

∣∣‖x‖−‖π(x)ξ‖∣∣= 0.

3Our conventions are as described in [Farah et al. 2014, p. 485]. In particular α(x, ξ)= β(x, ξ) is
an abbreviation for supξ∈Dn supξ ‖α(x, ξ)−β(x, ξ)‖ = 0, for all n.
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A representation π is irreducible if and only if for all vectors ξ and η in H such that
‖η‖ ≤ 1 and ‖ξ‖ = 1, the expression ‖η− π(a)ξ‖ can be made arbitrarily small
when a ranges over the unit ball of A. In symbols,

sup
‖ξ‖≤1

sup
‖η‖≤1

inf
‖x‖≤1

∣∣‖ξ‖−. 1
∣∣∥∥η−π(x)ξ∥∥= 0.

The interpretation of this sentence in (A, H, π) is 0 if and only if the representation
π is irreducible. �

A triple (D, θ, K ) is an elementary submodel of (B, π, H), and (B, π, H) is an
elementary extension of (D, θ, K ), if D ⊆ B, K ⊆ H , θ(d) = π(d) � H for all
d ∈ D, and

ϕ(a)(D,θ,K ) = ϕ(a)(B,π,H)

for all formulas ϕ and all a in (D, θ, K ) of the appropriate sort. Axiomatizable
properties, such as being irreducible or faithful, transfer between elementary sub-
models and elementary extensions. Therefore the downward Löwenheim–Skolem
theorem [Farah et al. 2014, Theorem 4.6] and Lemma 1.2 together imply, e.g., that
if ϕ is a pure state of a nonseparable C∗-algebra B then B is an inductive limit of
separable subalgebras D such that the restriction of ϕ to D is pure. This fact was
proved in [Akemann and Weaver 2004] and its slightly more precise version will
be used in the proof of Lemma 3.2.

Some other properties of representations (such as not being faithful) are axioma-
tizable, but we shall concentrate on proving Theorem 1.

2. Saturation and representations

It has been known to logicians since the 1960s that the two defining properties
of ultraproducts associated with nonprincipal ultrafilters on N in axiomatizable
categories are Łoś’s theorem [Farah et al. 2014, Proposition 4.3] and countable
saturation [Farah et al. 2014, Proposition 4.11]. By the former, the diagonal
embedding of a metric structure M into its ultrapower is elementary. More generally,
if ϕ(x) is a formula and a( j) ∈ M j are of the appropriate sort then

ϕ(a)
∏

U M j = lim
j→U

ϕ(a( j))M j .

In order to define countable saturation, we recall the notion of a type from the
logic of metric structures [Farah et al. 2014, §4.3]. A closed condition (or simply a
condition; we shall not need any other conditions) is any expression of the form
ϕ ≤ r for formula ϕ and r ≥ 0 and a type is a set of conditions [Farah et al.
2014, §4.3]. As every expression of the form ϕ = r is equivalent to the condition
max(ϕ, r)≤ r and every expression of the form ϕ ≥ r is equivalent to the condition
min(0, r −ϕ)≤ 0, we shall freely refer to such expressions as conditions. For m
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and n in N such that m+n≥ 1, an (m, n)-type is a type t such that all free variables
occurring in conditions of t are among {x1, . . . , xm} ∪ {ξ1, . . . , ξn}.

Given a structure (A, H, π) and a subset X of A∪ H , we expand the language
Lrep by adding constants for the elements of X (as in [Farah et al. 2014, §2.4.1]).
The new language is denoted (Lrep)X . C∗-terms in (Lrep)X are ∗-polynomials in
C∗-variables and constants from X ∩ A. Hilbert space terms are linear combinations
of Hilbert space variables, constants in X ∩ H , and expressions of the form π(α)ξ ,
where α is a C∗-term in the expanded language. The interpretation of an (Lrep)X -
formula is defined recursively in the natural way; see, e.g., the paragraph after
Definition 2.1.1 in [Farah et al. 2016a].

A type over X is a type in (Lrep)X . Such a type is realized in some elementary
extension of (A, H, π) if the latter contains a tuple satisfying all conditions from
the type. A type is consistent if it is realized in some ultrapower of (A, H, π),
where the ultrafilter is taken over an arbitrary, not necessarily countable, set. This
is equivalent to the type being realized in some elementary extension of (A, H, π).

By Łoś’s theorem, a type t is consistent if and only every finite subset of t is
ε-realized in (A, H, π) for every ε > 0 [Farah et al. 2014, Proposition 4.8].

A structure (A, H, π) is said to be countably saturated if every consistent type
over a countable (or equivalently, norm-separable) set is realized in (A, H, π).
Ultraproducts associated with nonprincipal ultrafilters on N are always countably
saturated [Farah et al. 2014, Proposition 4.11]. A standard transfinite back-and-forth
argument shows that a structure of density character ℵ1 is countably saturated if
and only if it is an ultraproduct. (The density character is the smallest cardinality
of a dense subset.)

In the case when A = B(H), we have

(B(H), H)U = (B(H)U , HU );

in particular B(H)U is identified with a subalgebra of B(HU ). These two algebras
are equal (still assuming U is a nonprincipal ultrafilter on N) if and only if H is finite-
dimensional. As a matter of fact, no projection p∈ B(HU ) with a separable, infinite-
dimensional range belongs to B(H)U (this is proved by a standard argument, see,
e.g., the last two paragraphs of the proof of Proposition 4.6 in [Farah et al. 2013]).

In the following, π will always be faithful and clear from the context and we
shall identify A with π(A) and suppress writing π . We shall therefore write (A, H)
in place of (A, H, id).

The following two lemmas are standard (they were used in the proof of Corollary 2
on p. 344 of [Arveson 1977]) but we sketch the proofs for the reader’s convenience.

Lemma 2.1. Suppose A is a C∗-algebra and ϕ is a functional on A. Then there are a
representation π : A→ B(K ) and vectors ξ and η in K such that ϕ(a)= (π(a) ξ | η)
for all a ∈ A.
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Proof. Let ϕ be the unique extension of ϕ to a normal functional of the von Neumann
algebra A∗∗. By Sakai’s polar decomposition for normal linear functionals (see, for
example, [Pedersen 1979, Proposition 3.6.7]) there exists a normal state ψ of A∗∗

and a partial isometry v such that ϕ(a)=ψ(av) for all a∈ A∗∗. Let π : A∗∗→ B(K )
be the GNS representation corresponding to ψ . If η is the corresponding cyclic
vector and ξ = vη, then the restriction of π to A is as required. �

Lemma 2.2. Suppose A is a proper unital subalgebra of C = C∗(A, b). Then there
exists a representation π : C → B(K ) and a projection q in π(A)′ ∩ B(K ) such
that [q, b] 6= 0.

Proof. By the Hahn–Banach separation theorem, there exists a functional ϕ on C of
norm 1 such that ϕ annihilates A and ϕ(b)= dist(A, b). Let π : C→ B(K ), and η
and ξ be as guaranteed by Lemma 2.1. Let L be the norm-closure of π(A)ξ . Since
A is unital, L 6= {0}. As 0= ϕ(a)= (π(a) ξ | η) for all a ∈ A, η is orthogonal to L
and therefore the projection p to L is nontrivial. Clearly p ∈ π(A)′ ∩ B(K ). Since
(π(b)ξ | η) = ϕ(b) 6= 0, π(b) does not commute with p and we therefore have
q ∈ π(A)′ ∩ B(K ) such that ‖[π(b), q]‖> 0. �

The proof of Theorem 1 would be much simpler if Lemma 2.2 provided an
irreducible representation. This is impossible in general, as the following example
shows. Let A be the unitization of the algebra of compact operators K(H) on an
infinite-dimensional Hilbert space and let b be a projection in B(H)which is Murray–
von Neumann equivalent to 1−b. Then C =C∗(A, b) has (up to equivalence) three
irreducible representations. Two of those representations annihilate A and send b
to a scalar, and the third representation is faithful and the image of b is in the weak
operator closure of the image of A.

It is well-known that for a Banach space X , the second dual X∗∗ can be embedded
into an ultrapower of X [Heinrich 1980, Proposition 6.7]. In general, the second
dual A∗∗ of a C∗-algebra A cannot be embedded into an ultrapower of A by a
∗-homomorphism for at least two reasons. First, A∗∗ is a von Neumann algebra
[Blackadar 2006, §III.5.2] and it therefore has real rank zero, while A may have
no nontrivial projections at all. Since being projectionless is axiomatizable [Farah
et al. 2016a, Theorem 2.5.1], if A is projectionless then Łoś’s theorem implies
that AU is projectionless as well and A∗∗ cannot be embedded into it. The referee
pointed out another, much subtler, obstruction. In the context of Banach spaces, the
embeddability of X∗∗ into XU is equivalent to a finitary statement, the so-called
local reflexivity of Banach spaces, the C∗-algebraic version of which does not hold
for all C∗-algebras [Effros and Haagerup 1985, §5]. In particular, for a large class
of C∗-algebras the diagonal embedding of A into AU cannot be extended even to
a unital completely positive map from A∗∗ into AU . The referee also pointed out
that a result of J. M. G. Fell is closely related to results of the present section. It
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is a standard fact that a representation of a discrete group is weakly contained in
another representation of the same group if and only if it can be embedded into an
ultrapower of the direct sum of infinitely many copies of the latter representation.
In [Fell 1960, Theorem 1.2] it was essentially proved that this equivalence carries
over to arbitrary C∗-algebras.

All this said, Lemma 2.3 is a poor man’s C∗-algebraic variant of the fact that
Banach space X∗∗ embeds into XU . As in [Pedersen 1979, 3.3.6], we say that two
representations π1 and π2 of A are equivalent if the identity map on A extends to
an isomorphism between π1(A)′′ and π2(A)′′.

Lemma 2.3. Assume
(∏

U B j ,
∏

U H j
)

is an ultraproduct of faithful irreducible
representations of unital C∗-algebras and C is a unital separable subalgebra of BU .

(1) If C ∩ K
(∏

U H j
)
= {0} then the induced representation of C on

∏
U H j is

equivalent to the universal representation of C.

(2) In general, if

p =
∨{

q : q is a projection in C ∩K
(∏

U H j
)}

then p ∈ C ′ ∩ B
(∏

U H j
)

and c 7→ (1− p)c is equivalent to the universal
representation of C/

(
C ∩K

(∏
U H j

))
on (1− p)

∏
U H j .

Proof. For a state ψ on C the (0, 1)-type tψ(ξ) of a vector ξ implementing ψ
consists of all conditions of the form (aξ | ξ)= ψ(a) for a ∈ C and ‖ξ‖ = 1.

(1) Fix a stateψ on C . By Glimm’s lemma [Davidson 1996, Lemma II.5.1], the type
tψ is consistent with the theory of

(∏
U B j ,

∏
U H j

)
. By the separability of C and

countable saturation, there exists a unit vector η ∈
∏

U H j such that ψ(c)= (cη | η)
for all c ∈ C . Let L be the norm-closure of Cη in

∏
U H j . Then L is a reducing

subspace for C and the induced representation of C on L is spatially isomorphic
to the GNS representation of C corresponding to ψ . Since ψ was arbitrary, by
[Pedersen 1979, Theorem 3.8.2] this completes the proof.

(2) For every a ∈ C we have pa ∈ C ∩K
(∏

U H j
)

and therefore pa(1− p) = 0.
Similarly (1− p)ap = 0, and therefore p ∈ C ′ ∩ B

(∏
U H j

)
. Let pn , for n ∈ N,

be a maximal family of orthogonal projections in C ∩K
(∏

U H j
)
. It is countable

by the separability of C and p =
∨

n pn . Let ψ be a state of C that annihilates
C ∩ K

(∏
U H j

)
. Let t+ψ (ξ) be the type obtained from tψ(ξ) by adding to it all

conditions of the form pnξ = 0 for n ∈ N. By Glimm’s lemma (as stated in
[Davidson 1996, Lemma II.5.1]) the type t+ψ (ξ) is consistent, and by the countable
saturation we can find ξ1 ∈

∏
U H j that realizes this type. Then pξ1=0 and therefore

ξ1 ∈ (1− p)
∏

U H j . Therefore every GNS representation of C/
(
C ∩K

(∏
U H j

))
is spatially equivalent to a subrepresentation of c 7→ (1− p)c, and by [Pedersen
1979, Theorem 3.8.2] this concludes the proof. �
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3. Second dual and Day’s trick

The natural embedding of a C∗-algebra B into its second dual B∗∗ is rarely ele-
mentary. For example, having real rank zero is axiomatizable [Farah et al. 2016a,
Theorem 2.5.1] and B∗∗, being a von Neumann algebra, has real rank zero while
B may have no nontrivial projections at all. However, we shall see that there is
a restricted degree of elementarity between B and B∗∗, and it will suffice for our
purposes.

We shall consider the language (Lrep)B obtained by adding new constants for
parameters in B; see Section 2. Term α(x) in the extended language is linear if it
is of the form

α(x)= xa+ bx

for some parameters a and b.
A restricted B-linear formula is a formula of the form

(1) max j≤m ‖α j (x)− b j‖+max j≤n(r j −
.
‖β j (x)‖),

where

(2) all b j , for 1≤ j ≤ m, are parameters in B,

(3) all r j , for 1≤ j ≤ n, are positive real numbers,

(4) all α j , for 1≤ j ≤ m, are linear terms with parameters in B, and

(5) all β j , for 1≤ j ≤ n, are linear terms with parameters in B.

The proof of the following is based on an application of the Hahn–Banach separation
theorem first used by Day [1957]; see also [Elliott 1977, Section 2] for some uses
of this method in the theory of C∗-algebras.

Lemma 3.1. Suppose B is a unital C∗-algebra and

γ (x)=max
j≤m
‖α j (x)− b j‖+max

j≤n

(
r j −
.
‖β j (x)‖

)
.

is a restricted B-linear formula. Then the following are equivalent:

(6) infx∈B γ (x)= 0,

(7) infx∈B∗∗ γ (x)= 0.

Proof. Condition (6) implies (7) because B is isomorphic to a unital subalgebra
of B∗∗ and therefore infx∈B∗∗ γ (x)≤ infx∈B γ (x).

Assume (7) holds. Let a j and c j , for j ≤ n, be such that α j (x) = a j x + xc j .
For each j we identify α j with its interpretation, a linear map from B to B. The
second adjoint α∗∗j : B

∗∗
→ B∗∗ also satisfies α∗∗j (x)= a j x + xc j , hence α∗∗j (x) is

the interpretation of the term α j (x) in B∗∗. The set

Z := 〈α j (x) : x ∈ B≤1〉,



78 ILIJAS FARAH

being an image of a convex set under a linear map, is a convex subset of Bm and
by the Hahn–Banach theorem,

Z1 := Bm
∩ 〈α j (x) : x ∈ B∗∗

≤1〉

is included in the norm-closure of Z . By (7) we have (b1, . . . , bm) ∈ Z1.
Fix ε > 0 and let

X1 :=
{

x ∈ B≤1 :max
j≤m
‖α j (x)− b j‖ ≤ ε

}
.

By the above, this is a convex subset of the unit ball of B and (by using the
Hahn–Banach separation theorem again) the weak∗-closure of X1 in B∗∗ is equal
to {x ∈ B∗∗

≤1 :max j≤m ‖α j (x)− b j‖ ≤ ε}.
Let c ∈ B∗∗

≤1 be such that γ (c) < ε. Then c belongs to the weak∗-closure of X1.
For each j ≤ n we have ‖β j (c)‖> r j − ε. Fix a norming functional ϕ j ∈ B∗ such
that ‖ϕ j‖ = 1 and ϕ j (β j (c)) > r j − ε. Then

U := {x ∈ B∗∗ : ϕ j (β j (x)) > r j − ε for all j}

is a weak∗-open neighborhood of c and, as c belongs to the weak∗-closure of X1,
U ∩ X1 is a nonempty subset of B≤1. Any b ∈U ∩ X1 satisfies γ (b) < ε. As ε > 0
was arbitrary, this shows that (6) holds. �

In the following, A ⊆
∏

U B j is identified with a subalgebra of B
(∏

U H j
)
.

Lemma 3.2. Suppose (B j , H j ) is an irreducible representation of B j on H j for
j ∈ N and A is a separable subalgebra of

∏
U B j .

(1) For every b ∈
∏

U B j , we have that b ∈
(

A′ ∩ B
(∏

U H j
))′ if and only if

b ∈
(

A′ ∩
∏

U B j
)
′. Equivalently,(

A′ ∩ B
(∏

U H j
))′
∩
∏

U B j =
(

A′ ∩
∏

U B j
)′
∩
∏

U B j .

(2) AWOT
∩
∏

U B j =
(

A′ ∩
∏

U B j
)′.

Proof. (1) Since
∏

U B j ⊆ B
(∏

U H j
)
, we clearly have

(
A′ ∩ B

(∏
U H j

))′
⊆(

A′ ∩
∏

U B j
)
′. In order to prove the converse inclusion, fix b ∈

∏
U B j and suppose

that there exists q ∈ A′ ∩ B
(∏

U H j
)

such that ‖[q, b]‖ = r > 0. We need to find
d ∈ A′ ∩

∏
U B j satisfying [d, b] 6= 0.

Consider the (1, 0)-type t(x) consisting of all conditions of the form

‖[x, b]‖ ≥ r and [x, a] = 0

for a ∈ A. This type is satisfied in B
(∏

U H j
)

by q . Since all formulas in t(x) are
quantifier-free, their interpretation is unchanged when passing to a larger algebra.

Fix a finite subset of t(x) and let F ⊆ A be the set of parameters occurring in
this subset. Then

γF (x) := inf
x

max
a∈F
‖[x, a]‖+ (r −. ‖[x, b]‖)
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is a restricted
∏

U B j -linear formula. Since A is separable, we can find projection
p in C∗(A, q)′ ∩ B

(∏
U H j

)
with separable range such that q1 := pq satisfies

‖[q1, b]‖ = r . To find this p, take a separable elementary submodel (C, H0) of(
B
(∏

U H j
)
,
∏

U H j
)

such that A ⊆ C and let p be the projection to H0.
By the downward Löwenheim–Skolem theorem [Farah et al. 2014, Theorem 4.6]

there exists a separable elementary submodel (D, K ) of
(∏

U B j ,
∏

U H j
)

such that
C∗(A, b) ⊆ D and the range of p is included in K . Part (2) of Lemma 1.2 and
Łoś’s theorem imply that

∏
U B j

WOT
= B

(∏
U H j

)
and pK DpK

WOT
= B

(
pK
∏

U H j
)
,

where pK denotes the projection to K . We can therefore identify pK with a minimal
central projection in D∗∗. Via this identification we have q1∈D∗∗. Since γF (q1)=0,
Lemma 3.1 implies infx∈D,‖x‖≤1 γF (x)= 0 and infx∈

∏
U B j ,‖x‖≤1 γF (x)= 0 (since

γF is quantifier-free).
Since F was an arbitrary finite subset of A, the type t(x) is consistent with the

theory of
∏

U B j . Since A is separable, by the countable saturation there exists
d ∈ A′ ∩

∏
U B j satisfying ‖[d, b]‖ ≥ r .

(2) By the von Neumann bicommutant theorem, AWOT
=
(

A′ ∩ B
(∏

U H j
))
′ and

therefore (1) implies AWOT
∩
∏

U B j =
(

A′ ∩
∏

U B j
)′. �

4. Proof of Theorem 1

Suppose (B j , H j ) is a faithful irreducible representation of B j on H j for j ∈ N

and A is a separable subalgebra of
∏

U B j . By Lemma 1.2,
(∏

U B j ,
∏

U H j
)

is an
irreducible faithful representation of

∏
U B j .

By (2) of Lemma 3.2, we have AWOT
∩
∏

U B j =
(

A′ ∩
∏

U B j
)
′. Then, since

A⊆
(

A′∩
∏

U B j
)′, it remains to prove

(
A′∩

∏
U B j

)′
⊆ A. Fix b ∈

∏
U B j such that

r := dist(b, A) > 0. By (1) of Lemma 3.2, it suffices to find d ∈ A′ ∩ B
(∏

U H j
)

such that [d, b] 6= 0. Let
C := C∗(A, b).

Lemma 4.1. With A, b, C , r and
∏

U B j as above, there exists a representation

π : C/
(
C ∩K

(∏
U H j

))
→ B(K )

and q ∈ π(A)′ ∩ B(K ) such that [q, π(b)] 6= 0.

Since the proof of Lemma 4.1 is on the long side, let us show how it completes
the proof of Theorem 1. Lemma 2.3 implies that if

p =
∨{

q : q is a projection in C ∩K
(∏

U H j
)}

then p ∈ C ′ ∩ B
(∏

U H j
)

and c 7→ (1− p)c is equivalent to the universal represen-
tation of C/

(
C ∩K

(∏
U H j

))
on (1− p)

∏
U H j . Therefore q as in the conclusion
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of Lemma 4.1 can be found in A′ ∩ B
(∏

U H j
)
, implying b /∈

(
A′ ∩ B

(∏
U H j

))
′.

By Lemma 3.2 this implies b /∈
(

A′ ∩
∏

U B j
)′, reducing the proof of Theorem 1 to

the following.

Proof of Lemma 4.1. An easy special case is worth noting. If C ∩K
(∏

U H j
)
= {0}

then Lemma 2.2 implies the existence of a representation π : C → B(K ) and
q ∈ π(A)′ ∩ B(K ) such that [q, π(b)] 6= 0.

In the general case, let qn , for n ∈ J , be an enumeration of a maximal orthogonal
set of minimal projections in A ∩K

(∏
U H j

)
. The index-set J is countable (and

possibly finite or even empty) since A is separable. Let pn :=
∨

j≤n q j .
Suppose for a moment that there exists n such that pnbpn /∈ A. Since the range of

pn is finite-dimensional, by von Neumann’s bicommutant theorem [Blackadar 2006,
§I.9.1.2] and the Kadison transitivity theorem [Blackadar 2006, Theorem II.6.1.13]
there exists d ∈ A′ ∩ B(pn

∏
U H j ) such that [d, b] 6= 0. Lemma 3.2 now implies

pnbpn /∈
(

A′ ∩
∏

U B j
)′ and b /∈

(
A′ ∩

∏
U B j

)′.
We may therefore assume pnbpn ∈ A, for all n. Let p =

∨
n pn . Lemma 2.3 (2)

implies p ∈ A′ ∩ B
(∏

U H j
)
, and we may therefore assume [b, p] = 0. Since

C = C∗(A, b) this implies p ∈ C ′ ∩ B
(∏

U H j
)
. Since pnbpn ∈ A for all n we

have A ∩ K
(∏

U H j
)
= pCp ∩ K

(∏
U H j

)
. If c ∈ C , then for every n, we have

pnc(1− p) = 0 and similarly (1− p)cpn = 0. Since the sequence pn , for n ∈ N,
is an approximate unit for A∩K

(∏
U H j

)
, the latter is an ideal of C . Let θ : C→

C/(A∩K) be the quotient map. We claim that dist(θ(b), θ(A))= dist(b, A) > 0.
Fix a ∈ A. We need to show that ‖θ(a− b)‖ ≥ r .

Consider the (0, 1)-type t(ξ) consisting of all conditions of the form

‖ξ‖ = 1, ‖(a− b)ξ‖ ≥ r, pnξ = 0,

for n ∈ J . To see this type is consistent fix a finite F ⊆ J . Let m ≥max(F) and

a′ := (1− pm)a(1− pm)+ pmbpm .

As both summands belong to A, we have a′ ∈ A and therefore ‖a′− b‖ ≥ r . Fix
ε > 0. If ξ ∈

∏
U H j is a vector of norm ≤ 1 such that ‖(a′− b)ξ‖ > r − ε then

ξ ′ = (1− pm)ξ has the same property since (a′ − b)pm = 0. Since ε > 0 was
arbitrary, t(ξ) is consistent. By the countable saturation there exists a unit vector
ξ ∈

∏
U H j which realizes t(ξ). Since pnξ = 0 for all n, we have pξ = 0 and

therefore ‖θ(a− b)‖ ≥
∥∥(1− p)(a− b)(1− p)

∥∥ ≥ r . Since a ∈ A was arbitrary,
we conclude that dist(θ(b), θ(A))= r .

Suppose for a moment that (1− p)C(1− p) ∩ K
(∏

U H j
)
= {0}. By (2) of

Lemma 2.3 the representation

C 3 c 7→ (1− p)c ∈ B
(
(1− p)

∏
U H j

)
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is equivalent to the universal representation of C . Hence by Lemma 2.2 we can
find d ∈ (1− p)

(
A′ ∩ B

(∏
U H j

))
that does not commute with b, and by the above,

this concludes the proof in this case.
We may therefore assume that

(1− p)C(1− p)∩K
(∏

U H j
)
6= {0}.

By the spectral theorem for self-adjoint compact operators and continuous functional
calculus, there exists a nonzero projection q ∈ (1− p)C(1− p) of finite rank. Fix
c ∈ C such that (1− p)c(1− p)= q.

By Lemma 3.2, it suffices to find q ∈ A′ ∩ (1− p)B
(∏

U H j
)
(1− p) such that

[q, c] 6= 0. Suppose otherwise, so that c ∈
(

A′ ∩
∏

U B j
)′. Lemma 3.2 (2) implies

that c∈ AWOT. By the Kaplansky density theorem [Blackadar 2006, Theorem I.9.1.3]
there is a net of positive contractions in A converging to c in the weak operator
topology. By the continuous functional calculus and the Kadison transitivity theorem
[Blackadar 2006, Theorem II.6.1.13], we may choose this net among the members of

Z := {a ∈ A+ : ‖a‖ = 1, qaq = q}.

Consider the (0, 1)-type t1(ξ) consisting of all conditions of the form

‖ξ‖ = 1, aξ = ξ,

qξ = 0, pnξ = 0,

for n ∈ N and a ∈ Z .
We claim that t1(ξ) is consistent. Fix ε > 0 and a1, a2, . . . , an in Z . Let

a := a1a2 · · · an−1anan−1 · · · a2a1.

Then a ∈ Z and q ≤ a. By the choice of p the operator (1− p)(a − s)+ is not
compact for any s < 1. Therefore there exists a unit vector ξ0 in (1− p−q)

∏
U H j

such that ‖ξ0− aξ0‖ is arbitrarily small. By the countable saturation there exists a
unit vector ξ1 ∈ (1− (p+ q))

∏
U H j such that aξ1 = ξ1. As each a j is a positive

contraction, we have a jξ1 = ξ1 for 1 ≤ j ≤ n. Since a1, . . . , an was an arbitrary
subset of Z , this shows that t1(ξ) is consistent.

Since Z is separable, by the countable saturation there exists ξ ∈
∏

U H j realizing
t1(ξ). Then ξ is a unit vector in (1− (p+q))

∏
U H j such that aξ = ξ for all a ∈ Z .

As cξ = 0, this contradicts c being in the weak operator topology closure of Z .
Therefore there exists

q ∈ A′ ∩ (1− p)B
(∏

U H j
)
(1− p)

such that [q, c] 6= 0. Since c ∈C =C∗(A, b) we have [q, b] 6= 0, and this concludes
the proof. �
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5. Concluding remarks

In the following infinitary form of the Kadison transitivity theorem, pK denotes
projection to a closed subspace K of

∏
U H j .

Proposition 5.1. Assume
(∏

U B j ,
∏

U H j
)

is an ultraproduct of faithful and irre-
ducible representations of unital C∗-algebras. Also assume K is a separable closed
subspace of

∏
U H j and T ∈ B(K ).

(1) There exists b ∈
∏

U B j such that ‖b‖ = ‖T ‖ and pK bpK = T .

(2) If T is self-adjoint, positive, or unitary in B(K ), then b can be chosen to be
self-adjoint, positive, or unitary, respectively, in B

(∏
U H j

)
.

Proof. (1) This is a consequence of the Kadison transitivity theorem and countable
saturation of the structure

(∏
U B j ,

∏
U H j

)
. Let pn , for n ∈ N, be an increasing

sequence of finite-dimensional projections converging to pK in the strong operator
topology and let an , for n ∈ N, be a dense subset of A. We need to check that the
type t(x) consisting of all conditions of the form

‖pn(x − T )pn‖ = 0, ‖x‖ = ‖T ‖,

for n ∈ N is consistent. Since the representation of
∏

U B j on
∏

U H j is irreducible
by Lemma 1.2, every finite subset of t(x) is consistent by the Kadison transitivity
theorem. We can therefore find b ∈

∏
U B j that satisfies t(x) and thus pK bpK = T

and ‖b‖ = ‖T ‖.

(2) If T is self-adjoint, add the condition x = x∗ to t(x). By [Pedersen 1979,
Theorem 2.7.5] the corresponding type is consistent, and the assertion again follows
by countable saturation. The case when T is unitary uses the same theorem. �

An important consequence of Voiculescu’s theorem is that any two unital rep-
resentations π j : A→ B(H) of a separable unital C∗-algebra A on H such that
ker(π1) = ker(π2) and π1(A)∩K(H) = π2(A)∩K(H) = {0} are approximately
unitarily equivalent [Voiculescu 1976, Corollary 1.4]. The analogous statement is
in general false for the ultraproducts. Let Bn = Mn(C) for n ∈ N and let A = C2.
The group K0

(∏
U Mn(C)

)
is isomorphic to ZN with the natural ordering and the

identity function id as the order-unit. Every unital representation of A corresponds
to an element of this group that lies between 0 and id, and there are 2ℵ0 inequivalent
representations. Also, K0

(∏
U Mn(C)

)
is isomorphic to the ultraproduct

∏
U Z and

2ℵ0 of these extensions remain inequivalent even after passing to the ultraproduct.
We return to Pedersen’s question [1990, Remark 10.11], whether a bicommutant

theorem (A′∩M(B)/B)′= A is true for a separable unital subalgebra A of a corona
M(B)/B of a σ -unital C∗-algebra B? A simple and unital C∗-algebra C is purely
infinite if for every nonzero a ∈ C there are x and y such that x a y = 1.
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Question 5.2. Suppose C is unital, simple, purely infinite, and separable and A is
a unital subalgebra of C . Is (A′ ∩C∗∗)′ ∩C = A?

Let us prove that a positive answer to Question 5.2 would imply a positive answer
to Pedersen’s question. If A is a separable and unital subalgebra of M(B)/B and
b∈ (M(B)/B)\A, then there exists a separable elementary submodel C of M(B)/B
containing b. By [Lin 2004], M(B)/B is simple if and only if it is purely infinite,
and since being simple and purely infinite is axiomatizable [Farah et al. 2016a,
Theorem 2.5.1], C is simple and purely infinite. If (A′ ∩ C∗∗)′ ∩ C = A then
Proposition 5.3 implies that there exists d ∈ A′ ∩M(B)/B such that [d, b] 6= 0.

Proposition 5.3. Suppose B is a C∗-algebra, A is a separable subalgebra of B,
b ∈ B and r ≥ 0. If B is an ultraproduct or a corona of a σ -unital, nonunital
C∗-algebra then

sup
d∈(A′∩B)+,‖d‖≤1

‖[d, b]‖ = sup
d∈(A′∩B∗∗)+,‖d‖≤1

‖[d, b]‖.

Proof. The only property of B used in this proof is that of being countably degree-1
saturated [Farah and Hart 2013, Theorem 1]. Since B ⊆ B∗∗, it suffices to prove
“≥” in the above inequality. Suppose b ∈ B and d ∈ (A′ ∩ B∗∗)+ are such that
‖d‖ = 1 and r −. ‖[b, d]‖. Consider the type t(x) consisting of conditions ‖x‖ = 1,
x ≥ 0, ‖xb− bx‖ ≥ r , and ‖[x, a]‖ = 0 for a in a countable dense subset of A.
This is a countable degree-1 type. If ϕ j = 0, for j < n, is a finite subset of t(x)
then γ (x) :=max j<n ϕ j (x) is a restricted B-linear formula and Lemma 2.3 implies
that it is approximately satisfied in B. By the countable degree-1 saturation of B
[Farah and Hart 2013, Theorem 1] we can find a realization d ′ of t(x) in B. Clearly
d ′ ∈ (A′ ∩ B)+, ‖d ′‖ = 1, and ‖[d ′, b]‖ ≥ r , completing the proof. �

Some information on a special case of Pedersen’s conjecture can also be found
in [Elliott and Kucerovsky 2007].

Acknowledgments

Theorem 1 was inspired by conversations with Aaron Tikuisis and Stuart White
and I use this opportunity to thank them. Corollary 2 was proved during a very
inspirational visit to the University of Aberdeen in July 2015. I am indebted to
Aaron Tikuisis for warm hospitality and stimulating discussions and to the London
Mathematical Society for funding my visit to Aberdeen. The original proof of a
weaker form of Theorem 1 was presented in a three-hour seminar at the Fields
Institute in February 2016. I would like to thank the audience, and George Elliott
and Alessandro Vignati in particular, for numerous sharp observations. After the
completion of the present paper Stuart White and Dan Voiculescu pointed out that
its results are related to Hadwin’s asymptotic double commutant theorem [1978],



84 ILIJAS FARAH

(see also [Hadwin 2011] and [Hadwin and Shen 2014]), and Martino Lupini pointed
out that Theorem 1 also holds in the nonunital case. I am indebted to the referee
for several useful remarks. Last, but not least, I would like to thank Leonel Robert
for pointing out an error in an early draft.

References

[Akemann and Weaver 2004] C. Akemann and N. Weaver, “Consistency of a counterexample to
Naimark’s problem”, Proc. Natl. Acad. Sci. USA 101:20 (2004), 7522–7525. MR Zbl

[Arveson 1977] W. Arveson, “Notes on extensions of C∗-algebras”, Duke Math. J. 44:2 (1977),
329–355. MR Zbl

[Ben Yaacov et al. 2008] I. Ben Yaacov, A. Berenstein, C. W. Henson, and A. Usvyatsov, “Model
theory for metric structures”, pp. 315–427 in Model theory with applications to algebra and analysis,
vol. 2, edited by Z. Chatzidakis et al., London Math. Soc. Lecture Note Ser. 350, Cambridge Univ.
Press, 2008. MR Zbl

[Blackadar 2006] B. Blackadar, Operator algebras: theory of C∗-algebras and von Neumann alge-
bras, Encyclopaedia of Mathematical Sciences 122, Springer, 2006. MR Zbl

[Bosa et al. 2016] J. Bosa, N. P. Brown, Y. Sato, A. P. Tikuisis, S. White, and W. Winter, “Covering
dimension of C∗-algebras and 2-coloured classification”, preprint, 2016. To appear in Mem. Amer.
Math. Soc. arXiv

[Davidson 1996] K. R. Davidson, C∗-algebras by example, Fields Institute Monographs 6, American
Mathematical Society, Providence, RI, 1996. MR Zbl

[Day 1957] M. M. Day, “Amenable semigroups”, Illinois J. Math. 1 (1957), 509–544. MR Zbl

[Effros and Haagerup 1985] E. G. Effros and U. Haagerup, “Lifting problems and local reflexivity
for C∗-algebras”, Duke Math. J. 52:1 (1985), 103–128. MR Zbl

[Elliott 1977] G. A. Elliott, “Some C∗-algebras with outer derivations, III”, Ann. of Math. (2) 106:1
(1977), 121–143. MR Zbl

[Elliott and Kucerovsky 2007] G. A. Elliott and D. Kucerovsky, “A relative double commutant
theorem for hereditary sub-C∗-algebras”, C. R. Math. Acad. Sci. Soc. R. Can. 29:1 (2007), 22–27.
MR Zbl

[Farah and Hart 2013] I. Farah and B. Hart, “Countable saturation of corona algebras”, C. R. Math.
Acad. Sci. Soc. R. Can. 35:2 (2013), 35–56. MR Zbl

[Farah et al. 2013] I. Farah, B. Hart, and D. Sherman, “Model theory of operator algebras, I: stability”,
Bull. Lond. Math. Soc. 45:4 (2013), 825–838. MR Zbl

[Farah et al. 2014] I. Farah, B. Hart, and D. Sherman, “Model theory of operator algebras, II: model
theory”, Israel J. Math. 201:1 (2014), 477–505. MR Zbl

[Farah et al. 2016a] I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, and W. Winter,
“Model theory of C∗-algebras”, preprint, 2016. arXiv

[Farah et al. 2016b] I. Farah, B. Hart, M. Rørdam, and A. Tikuisis, “Relative commutants of strongly
self-absorbing C∗-algebras”, Sel. Math. New Ser. (online publication April 2016).

[Fell 1960] J. M. G. Fell, “The dual spaces of C∗-algebras”, Trans. Amer. Math. Soc. 94 (1960),
365–403. MR Zbl

[Hadwin 1978] D. W. Hadwin, “An asymptotic double commutant theorem for C∗-algebras”, Trans.
Amer. Math. Soc. 244 (1978), 273–297. MR Zbl

http://dx.doi.org/10.1073/pnas.0401489101
http://dx.doi.org/10.1073/pnas.0401489101
http://msp.org/idx/mr/2057719
http://msp.org/idx/zbl/1064.46034
http://dx.doi.org/10.1215/S0012-7094-77-04414-3
http://msp.org/idx/mr/0438137
http://msp.org/idx/zbl/0368.46052
http://dx.doi.org/10.1017/CBO9780511735219.011
http://dx.doi.org/10.1017/CBO9780511735219.011
http://msp.org/idx/mr/2436146
http://msp.org/idx/zbl/1233.03045
http://dx.doi.org/10.1007/3-540-28517-2
http://dx.doi.org/10.1007/3-540-28517-2
http://msp.org/idx/mr/2188261
http://msp.org/idx/zbl/1092.46003
http://msp.org/idx/arx/1506.03974
http://dx.doi.org/10.1090/fim/006
http://msp.org/idx/mr/1402012
http://msp.org/idx/zbl/0956.46034
http://projecteuclid.org/euclid.ijm/1255380675
http://msp.org/idx/mr/0092128
http://msp.org/idx/zbl/0078.29402
http://dx.doi.org/10.1215/S0012-7094-85-05207-X
http://dx.doi.org/10.1215/S0012-7094-85-05207-X
http://msp.org/idx/mr/791294
http://msp.org/idx/zbl/0613.46047
http://dx.doi.org/10.2307/1971162
http://msp.org/idx/mr/0448093
http://msp.org/idx/zbl/0365.46051
https://mr.math.ca/article/a-relative-double-commutant-theorem-for-hereditary-sub-c-algebras/
https://mr.math.ca/article/a-relative-double-commutant-theorem-for-hereditary-sub-c-algebras/
http://msp.org/idx/mr/2354632
http://msp.org/idx/zbl/1168.46038
https://mr.math.ca/article/countable-saturation-of-corona-algebras-2/
http://msp.org/idx/mr/3114457
http://msp.org/idx/zbl/1300.46047
http://dx.doi.org/10.1112/blms/bdt014
http://msp.org/idx/mr/3081550
http://msp.org/idx/zbl/1295.03019
http://dx.doi.org/10.1007/s11856-014-1046-7
http://dx.doi.org/10.1007/s11856-014-1046-7
http://msp.org/idx/mr/3265292
http://msp.org/idx/zbl/1301.03037
http://msp.org/idx/arx/1602.08072
http://dx.doi.org/10.1007/s00029-016-0237-y
http://dx.doi.org/10.1007/s00029-016-0237-y
http://dx.doi.org/10.2307/1993431
http://msp.org/idx/mr/0146681
http://msp.org/idx/zbl/0090.32803
http://dx.doi.org/10.2307/1997899
http://msp.org/idx/mr/506620
http://msp.org/idx/zbl/0399.46043


A NEW BICOMMUTANT THEOREM 85

[Hadwin 2011] D. Hadwin, “Approximate double commutants in von Neumann algebras”, preprint,
2011. Zbl arXiv

[Hadwin and Shen 2014] D. Hadwin and J. Shen, “Approximate double commutants and distance
formulas”, Oper. Matrices 8:2 (2014), 529–553. MR Zbl

[Heinrich 1980] S. Heinrich, “Ultraproducts in Banach space theory”, J. Reine Angew. Math. 313
(1980), 72–104. MR Zbl

[Lin 2004] H. Lin, “Simple corona C∗-algebras”, Proc. Amer. Math. Soc. 132:11 (2004), 3215–3224.
MR Zbl

[Matui and Sato 2014] H. Matui and Y. Sato, “Decomposition rank of UHF-absorbing C∗-algebras”,
Duke Math. J. 163:14 (2014), 2687–2708. MR Zbl

[Pedersen 1979] G. K. Pedersen, C∗-algebras and their automorphism groups, London Mathematical
Society Monographs 14, Academic Press, London, 1979. MR Zbl

[Pedersen 1990] G. K. Pedersen, “The corona construction”, pp. 49–92 in Operator theory (Indi-
anapolis, IN, 1988), edited by J. B. Conway and B. B. Morrel, Pitman Res. Notes Math. Ser. 225,
Longman Sci. Tech., Harlow, 1990. MR Zbl

[Popa 2014] S. Popa, “Independence properties in subalgebras of ultraproduct II1 factors”, J. Funct.
Anal. 266:9 (2014), 5818–5846. MR Zbl

[Tikuisis et al. 2016] A. Tikuisis, S. White, and W. Winter, “Quasidiagonality of nuclear C∗-algebras”,
preprint, 2016. To appear in Ann. Math. arXiv

[Toms and Winter 2007] A. S. Toms and W. Winter, “Strongly self-absorbing C∗-algebras”, Trans.
Amer. Math. Soc. 359:8 (2007), 3999–4029. MR Zbl

[Voiculescu 1976] D. Voiculescu, “A non-commutative Weyl–von Neumann theorem”, Rev. Roumaine
Math. Pures Appl. 21:1 (1976), 97–113. MR Zbl

[Winter 2016] W. Winter, “QDQ vs. UCT”, pp. 321–342 in Operator algebras and applications: the
Abel symposium 2015, edited by T. M. Carlsen et al., Abel Symposia 12, Springer, 2016.

Received May 13, 2016. Revised September 20, 2016.

ILIJAS FARAH

DEPARTMENT OF MATHEMATICS AND STATISTICS

YORK UNIVERSITY

4700 KEELE STREET

TORONTO, ON M3J1P3
CANADA

ifarah@mathstat.yorku.ca

http://msp.org/idx/zbl/1315.46064
http://msp.org/idx/arx/1108.5021
http://dx.doi.org/10.7153/oam-08-27
http://dx.doi.org/10.7153/oam-08-27
http://msp.org/idx/mr/3224823
http://msp.org/idx/zbl/1302.46047
http://dx.doi.org/10.1515/crll.1980.313.72
http://msp.org/idx/mr/552464
http://msp.org/idx/zbl/0412.46017
http://dx.doi.org/10.1090/S0002-9939-04-07607-5
http://msp.org/idx/mr/2073295
http://msp.org/idx/zbl/1049.46040
http://dx.doi.org/10.1215/00127094-2826908
http://msp.org/idx/mr/3273581
http://msp.org/idx/zbl/1317.46041
http://msp.org/idx/mr/548006
http://msp.org/idx/zbl/0416.46043
http://msp.org/idx/mr/1075635
http://msp.org/idx/zbl/0716.46044
http://dx.doi.org/10.1016/j.jfa.2014.02.004
http://msp.org/idx/mr/3182961
http://msp.org/idx/zbl/1305.46052
http://msp.org/idx/arx/1509.08318
http://dx.doi.org/10.1090/S0002-9947-07-04173-6
http://msp.org/idx/mr/2302521
http://msp.org/idx/zbl/1120.46046
http://msp.org/idx/mr/0415338
http://msp.org/idx/zbl/0335.46039
http://dx.doi.org/10.1007/978-3-319-39286-8_15
mailto:ifarah@mathstat.yorku.ca


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Igor Pak
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pak.pjm@gmail.com

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2017 is US $450/year for the electronic version, and $625/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:pak.pjm@gmail.com
mailto:yang@math.princeton.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 288 No. 1 May 2017

1C1-umbilics with arbitrarily high indices
NAOYA ANDO, TOSHIFUMI FUJIYAMA and MASAAKI UMEHARA

27Well-posedness of second-order degenerate differential equations with finite
delay in vector-valued function spaces

SHANGQUAN BU and GANG CAI

47On cusp solutions to a prescribed mean curvature equation
ALEXANDRA K. ECHART and KIRK E. LANCASTER

55Radial limits of capillary surfaces at corners
MOZHGAN (NORA) ENTEKHABI and KIRK E. LANCASTER

69A new bicommutant theorem
ILIJAS FARAH

87Noncompact manifolds that are inward tame
CRAIG R. GUILBAULT and FREDERICK C. TINSLEY

129p-adic variation of unit root L-functions
C. DOUGLAS HAESSIG and STEVEN SPERBER

157Bavard’s duality theorem on conjugation-invariant norms
MORIMICHI KAWASAKI

171Parabolic minimal surfaces in M2
× R

VANDERSON LIMA

189Regularity conditions for suitable weak solutions of the Navier–Stokes system
from its rotation form

CHANGXING MIAO and YANQING WANG

217Geometric properties of level curves of harmonic functions and minimal
graphs in 2-dimensional space forms

JINJU XU and WEI ZHANG

241Eigenvalue resolution of self-adjoint matrices
XUWEN ZHU

Pacific
JournalofM

athem
atics

2017
Vol.288,N

o.1


	
	1. Model theory of representations
	2. Saturation and representations
	3. Second dual and Day's trick
	4. Proof of 0=theorem.31=Theorem 1
	5. Concluding remarks
	Acknowledgments
	References
	
	

