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NONCOMPACT MANIFOLDS THAT ARE INWARD TAME

CRAIG R. GUILBAULT AND FREDERICK C. TINSLEY

We continue our study of ends of noncompact manifolds, with a focus on the
inward tameness condition. For manifolds with compact boundary, inward
tameness, by itself, has significant implications. For example, such mani-
folds have stable homology at infinity in all dimensions. Here we show that
these manifolds have “almost perfectly semistable” fundamental group at
each of their ends. That observation leads to further analysis of the group-
theoretic conditions at infinity, and to the notion of a “near pseudocollar”
structure. We obtain a complete characterization of n-manifolds (n � 6)
admitting such a structure, thereby generalizing our previous work (Geom.
Topol. 10 (2006), 541–556). We also construct examples illustrating the ne-
cessity and usefulness of the new conditions introduced here. Variations on
the notion of a perfect group, with corresponding versions of the Quillen
plus construction, form an underlying theme of this work.
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1. Introduction

In [Guilbault 2000; Guilbault and Tinsley 2003; 2006] we carried out a program to
generalize L. C. Siebenmann’s famous manifold collaring theorem [1965] in ways
applicable to manifolds with nonstable fundamental group at infinity. Motivated by
some important examples of finite-dimensional manifolds and a seminal paper by
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T. A. Chapman and Siebenmann [1976] on Hilbert cube manifolds, we chose the
following definitions.

A manifold N n with compact boundary is called a homotopy collar if @N n ,!N n

is a homotopy equivalence. If N n contains arbitrarily small homotopy collar
neighborhoods of infinity, we call N n a pseudocollar. Clearly, an actual open
collar N n, i.e., N n�@N n�Œ0;1/, is a special case of a pseudocollar. Fundamental
to [Siebenmann 1965; Chapman and Siebenmann 1976] and our earlier work is the
notion of inward tameness.

A manifold M n is inward tame if each of its clean neighborhoods of infinity is
finitely dominated; it is absolutely inward tame if those neighborhoods all have finite
homotopy type. An alternative formulation of this definition (see p. 95) justifies the
adjective “inward” — a term that helps distinguish this version of tameness from a
similar, but inequivalent, version found elsewhere in the literature.

In [Guilbault and Tinsley 2006] a classification of pseudocollarable n-manifolds
for 6� n<1 was obtained. In simplified form, it says:

Theorem 1.1 (pseudocollarability characterization — simple version). A 1-ended
n-manifold M n (n� 6) with compact boundary is pseudocollarable if and only if

(a) M n is absolutely inward tame, and

(b) the fundamental group at infinity is P-semistable.

A “P-semistable (or perfectly semistable) fundamental group at infinity” indicates
that an inverse sequence of fundamental groups of neighborhoods of infinity can be
arranged so that bonding homomorphisms are surjective with perfect kernels.

By way of comparison, the simple version of Siebenmann’s collaring theorem is
obtained by replacing (b) with the stronger condition of �1-stability, while Chapman
and Siebenmann’s pseudocollarability characterization for Hilbert cube manifolds
is obtained by omitting (b) entirely. Thus, the differences among these three results
lie entirely in the fundamental group at infinity.

In this paper we take a close look at n-manifolds satisfying only the inward
tameness hypothesis. By necessity, our attention turns to the group theory at the
ends of those spaces. Unlike the case of infinite-dimensional manifolds, CW com-
plexes, or even n-manifolds with noncompact boundary, inward tameness has major
implications for the fundamental group at the ends of n-manifolds with compact
boundary. Unfortunately, inward tameness (ordinary or absolute) does not imply
P-semistability — an example from [Guilbault and Tinsley 2003] attests to that —
but it comes remarkably close. One of the main results of this paper is the following.

Theorem 1.2. Let M n be an inward tame n-manifold with compact boundary. Then
M n has an AP-semistable (almost perfectly semistable) fundamental group at each
of its finitely many ends.
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The initial goals of this paper are developing the appropriate group theory
(including the definition of AP-semistable) and proving the above theorem. After
that is accomplished, we apply those investigations by proving a structure theorem
for manifolds that are inward tame, but not necessarily pseudocollarable.

Theorem 1.3 (near pseudocollarability characterization — simple version).
A 1-ended n-manifold M n (n� 6) with compact boundary is nearly pseudocollar-
able if and only if

(a) M n is absolutely inward tame, and

(b) the fundamental group at infinity is SAP-semistable.

The notion of near pseudocollarability will be defined and explored in Section 4.
For now, we note that nearly pseudocollarable manifolds admit arbitrarily small clean
neighborhoods of infinity N , containing compact codimension 0 submanifolds A

for which A ,! N is a homotopy equivalence. Obtaining a near pseudocollar
structure requires a slight strengthening of AP-semistability to SAP-semistability
(strong almost perfect semistability). The essential nature of this stronger condition
is verified by a final result, in which our group-theoretic explorations come together
in a concrete set of examples.

Theorem 1.4. For all n � 6, there exist 1-ended open n-manifolds that are abso-
lutely inward tame but do not have SAP-semistable fundamental group at infinity,
and thus, are not nearly pseudocollarable.

In Section 7, we close with a discussion of some open questions.

Remark 1.5. Throughout this paper attention is restricted to noncompact manifolds
with compact boundaries. When a boundary is noncompact, its end topology gets
entangled with that of the ambient manifold, leading to very different issues. In
the study of noncompact manifolds, a focus on those with compact boundaries is
analogous to a focus on closed manifolds in the study of compact manifolds. An
investigation of manifolds with noncompact boundaries is planned for [Guilbault
and Gu � 2017].

2. Definitions and background

Variations on the notion of a perfect group. In this subsection we review the
definition of perfect group and discuss some variations.

Given elements a and b of a group K, the commutator a�1b�1ab will be denoted
by Œa; b�. The commutator subgroup of K, denoted by ŒK;K�, is the subgroup gen-
erated by all commutators. It is a standard fact that ŒK;K� is normal in K and is the
smallest such subgroup with an abelian quotient. We call K perfect if K D ŒK;K�.
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Now suppose K and J are normal subgroups of G. Define ŒK;J � to be the
subgroup of G generated by the set of commutators

Œk; j �D fk�1j�1kj j k 2K and j 2 J g:

The following is standard and easy to verify.

Lemma 2.1. For normal subgroups K and J of a group G,

(1) ŒK;J �EG,

(2) ŒK;J �EK and ŒK;J �E J , and

(3) ŒK;J �D ŒJ;K�.

Given the above setup, we say that K is J-perfect if K � ŒJ;J �, and that K is
strongly J-perfect if K � ŒK;J �. By Lemma 2.1, both of these conditions imply
that K E J ; so we customarily begin with that as an assumption.

The following two lemmas are immediate. We state them explicitly for the
purpose of comparison.

Lemma 2.2. Let K E J be normal subgroups of G.

(1) K is perfect if and only if each element of K can be expressed as
Qk

iD1Œai; bi �,
where ai ; bi 2K for all i .

(2) K is J-perfect if and only if each element of K can be expressed as
Qk

iD1Œai; bi �,
where ai ; bi 2 J for all i .

(3) K is strongly J-perfect if and only if each element of K can be expressed asQk
iD1Œai ; bi �, where ai 2K and bi 2 J for all i .

Lemma 2.3. Let K E J EL be normal subgroups of G.

(1) If K is [strongly] J-perfect, then K is [strongly] L-perfect for every normal
subgroup L containing J.

(2) K is [strongly] K-perfect if and only if K is a perfect group.

Remark 2.4. Lemma 2.3 suggests a key theme: the smaller the group L for which
K is [strongly] L-perfect, the closer K is to being a genuine perfect group.

The various levels of perfectness can be nicely characterized using group homol-
ogy. The Z-homology of a group G may be defined as the Z-homology of a K.G; 1/

space KG . If � W G ! H is a homomorphism, there is a map f� W KG ! KH ,
unique up to basepoint-preserving homotopy, inducing � on fundamental groups.
Define �� WH�.GIZ/!H�.H IZ/ to be the homomorphism induced by f�.

Lemma 2.5. Let KE J , i WK ,! J be inclusion, and q W J ! J=K be projection.

(1) K is perfect if and only if H1.KIZ/D 0.
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(2) K is J-perfect if and only if i� W H1.KIZ/
0
�! H1.J IZ/ if and only if

q� WH1.J IZ/
Š
�!H1.J=KIZ/.

(3) K is strongly J-perfect if and only if K is J-perfect and q� W H2.J IZ/!

H2.J=KIZ/ is surjective.

Proof. Claim (1) is clear from the standard fact that H1.K/ŠK=ŒK;K�. Claim (2)
can be verified with elementary group theory. Claim (3) follows from a well-known
5-term exact sequence due to Stallings [1965] and Stammbach [1966]. Due to its
importance in this paper, we state it as a separate lemma. �
Lemma 2.6 (5-term exact sequence for group homology). Given a normal subgroup
K of a group J , there is a natural exact sequence:

H2.J IZ/!H2.J=KIZ/!K=ŒK;J �!H1.J IZ/!H1.J=KIZ/! 0:

The following elementary facts about group homology will be useful.

Lemma 2.7. Let f W X ! Y be a map between connected CW complexes and
� W �1.X /! �1.Y / the induced homomorphism. Then

(1) H1.X IZ/ŠH1.�1.X;�/IZ/;

(2) f� WH1.X IZ/!H1.Y IZ/ realizes �� WH1.�1.X /IZ/!H1.�1.Y /IZ/; and

(3) if f� W H2.X IZ/ ! H2.Y IZ/ is surjective, then �� W H2.�1.X /IZ/ !

H2.�1.Y /IZ/ is also surjective.

Proof. Build a K.�1.X /; 1/ complex X 0 by attaching cells of dimension � 3 to
X and a K.�1.Y /; 1/ complex Y 0 by attaching cells of dimension � 3 to Y . Both
X

i
,�!X 0 and Y

j
,�!Y 0 induce isomorphisms on �1 and H1, so (1) follows. Use

the asphericity of Y 0 to extend f to f 0 WX 0! Y 0, also inducing � on �1. Clearly
i� WH2.X IZ/!H2.X

0IZ/ and j� WH2.Y IZ/!H2.Y
0IZ/ are surjective.

This gives a commutative diagram

H2.X IZ/
f�
�� H2.Y IZ/

H2.�1.X /IZ/

i�
g

f 0�
� H2.�1.Y /IZ/

j�
g

Since the other maps are all surjective, so is f 0�. �
Lastly we offer a topological characterization of the various levels of perfectness.

For the purposes of this paper, these are possibly the most useful.
Let Sg denote a compact orientable surface of genus g with a single boundary

component. A collection of oriented simple closed curves f˛1;ˇ1;˛2;ˇ2; : : : ;˛g;ˇgg

on Sg with the property that each ˛i intersects ˇi transversely at a single point, and
each of ˛i \ j̨ , ˇi \ ǰ , and ˛i \ ǰ is empty when i ¤ j , is called a complete
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˛1

ˇ1

˛2

ˇ2

Figure 1. Complete set of handle curves (g D 2 case).

set of handle curves for Sg. A complete set of handle curves on Sg is not unique;
however, given any such set, there exists a homeomorphism of Sg to the “disk with
g handles” pictured in Figure 1 taking each ˛i and ˇi to the corresponding curves
in the diagram.

Given a (not necessarily embedded) loop 
 in a topological space X , we say
that 
 bounds a compact orientable surface in X if, for some g, there exists a
map f W Sg ! X such that f j@Sg

D 
 . Notice that we do not require that f be
an embedding. We often abuse terminology slightly by saying that 
 bounds the
surface Sg in X . Similarly, we often do not distinguish between a set of handle
curves on Sg and their images in X .

Lemma 2.8. Let X be a space with �1.X;x0/ Š G and let K E J be normal
subgroups of G. Then:

(1) K is perfect if and only if each loop 
 in X representing an element of
K bounds a surface Sg in X containing a complete set of handle curves
f˛1; ˇ1; ˛2; ˇ2; : : : ; ˛g; ˇgg with each ˛i and ˇi belonging to K.

(2) K is J-perfect if and only if each loop 
 in X representing an element of
K bounds a surface Sg in X containing a complete set of handle curves
f˛1; ˇ1; ˛2; ˇ2; : : : ; ˛g; ˇgg with each ˛i and ˇi belonging to J.

(3) K is strongly J-perfect if and only if each loop 
 in X representing an el-
ement of K bounds a surface Sg in X containing a complete set of handle
curves f˛1; ˇ1; ˛2; ˇ2; : : : ; ˛g; ˇgg with each ˛i belonging to K and each ˇi

belonging to J.

Remark 2.9. We are being informal in the statement of Lemma 2.8. Since the
handle curves are not based, we should also choose, for each pair .˛i ; ˇi/, an arc
�i in Sg from x0 to pi D ˛i \ˇi . The element of �1.X;x0/ represented by ˛i is
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then �i �˛i � �
�1
i , and similarly for ˇi . Notice that, by normality, the question of

whether one of these loops belongs to K or J is independent of the choice of �i .

Algebra of inverse sequences. Understanding the fundamental group at infinity re-
quires the language of inverse sequences. We briefly review the necessary definitions
and terminology.

Throughout this subsection all arrows denote homomorphisms, while those of
type� or� specify surjections. The symbol Š denotes isomorphisms.

Let
G0

�1
 �G1

�2
 �G2

�3
 � � � �

be an inverse sequence of groups and homomorphisms. A subsequence is an inverse
sequence of the form

Gi0

�i0C1ı���ı�i1
 ��������Gi1

�i1C1ı���ı�i2
 ��������Gi2

�i2C1ı���ı�i3
 �������� � � � :

In the future we denote a composition �i ı � � � ı�j (i � j ) by �i;j .
Sequences fGi ; �ig and fHi ; �ig are pro-isomorphic if, after passing to subse-

quences, there exists a commuting diagram:

Gi0
�

�i0C1;i1 Gi1
�

�i1C1;i2 Gi2
�

�i2C1;i3
� � �

Hj0
�

�j0C1;j1�

�

Hj1
�

�j1C1;j2�

�

Hj2

�

�

� � �

Clearly an inverse sequence is pro-isomorphic to each of its subsequences. To avoid
tedious notation, we often do not distinguish fGi ; �ig from its subsequences. Instead
we assume fGi ; �ig has the properties of a preferred subsequence — prefaced by
the words “after passing to a subsequence and relabeling”.

An inverse sequence fGi ; �ig is stable if it is pro-isomorphic to an fHi ; �ig for
which each �i is an isomorphism. A more usable formulation is that fGi ; �ig is
stable if, after passing to a subsequence and relabeling, there is a commutative
diagram of the form

(�)

G0�
�1

G1�
�2

G2�
�3

G3�
�4

� � �

im.�1/ �
Š�

�

im.�2/ �
Š�

�

im.�3/ �
Š�

�

� � �

where all unlabeled maps are obtained by restriction. If fHi ; �ig can be chosen so
that each �i is an epimorphism, we call our sequence semistable (or Mittag-Leffler,
or pro-epimorphic). In that case, it can be arranged that the maps in the bottom row
of (�) are epimorphisms. Similarly, if fHi ; �ig can be chosen so that each �i is a
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monomorphism, we call our sequence pro-monomorphic; it can then be arranged
that the restriction maps in the bottom row of (�) are monomorphisms. It is easy to
show that an inverse sequence that is semistable and pro-monomorphic is stable.

An inverse sequence is perfectly semistable if it is pro-isomorphic to an inverse
sequence

G0
�1���G1

�2���G2
�3��� � � �

of finitely presentable groups and surjections, where each ker.�i/ is perfect. A
straightforward argument [Guilbault 2000, Corollary 1] shows that sequences of
this type behave well under passage to subsequences.

Augmented inverse sequences and almost perfect semistability. An augmenta-
tion of an inverse sequence fGi ; �ig is a sequence fLig, where Li E Gi and
�i.Li/ � Li�1 for each i . The corresponding augmentation sequence is the
sequence fLi ; �jLi

g.
The minimal augmentation (or the unaugmented case) occurs when Li Df1g; the

maximal augmentation is the case where Li DGi ; and the standard augmentation
occurs when Li D ker�i for each i . Any augmentation where Li � ker�i for
each i is called a small augmentation. For each subsequence fGki

g of a sequence
fGi ; �ig augmented by fLig, there is a corresponding augmentation fLki

g.
We say that fGi ; �ig satisfies the fLig-perfectness property if, for each i , ker�i

is ��1
i .Li�1/-perfect; it satisfies the strong fLig-perfectness property if each ker�i

is strongly ��1
i .Li�1/-perfect. More concisely, if KiD ker�i and JiD�

�1
i .Li�1/,

these conditions require that each Ki be [strongly] Ji-perfect.
Employing the above terminology, we can restate the definition of perfect semista-

bility (abbreviated P-semistable) by requiring that the sequence be pro-isomorphic
to an inverse sequence of finitely presented groups and surjections satisfying the
fLig-perfectness property for the minimal augmentation fLigDf1g. More generally,
we call an inverse sequence of groups

� AP-semistable (for almost perfectly semistable) if it is pro-isomorphic to
an inverse sequence fGi ; �ig of finitely presentable groups and surjections,
satisfying the fLig-perfectness property for some small augmentation fLig, and

� SAP-semistable (for strongly almost perfectly semistable) if it is pro-isomorphic
to an inverse sequence fGi ; �ig of finitely presentable groups and surjections sat-
isfying the strong fLig-perfectness property for some small augmentation fLig.

Remark 2.10. Note that an inverse sequence satisfies the [strong] fLig-perfectness
property for some small augmentation fLig if and only if it satisfies that property
for the standard augmentation.
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When applying sequences of the above types to geometric constructions, it is
frequently desirable to pass to subsequences without losing the defining property
of the sequence. For that reason, the following observation is crucial.

Proposition 2.11. If an inverse sequence fGi ; �ig of surjections augmented by
fLig satisfies the [strong] fLig-perfectness property, then any subsequence fGki

g

satisfies the corresponding [strong] fLki
g-perfectness property.

Proof. Since the proofs for perfectness and strong perfectness are similar, we
prove only the latter. Assume fGi ; �ig augmented by fLig satisfies strong fLig-
perfectness. Simplifying notation, a portion of the given subsequence becomes

Ga
�aC1;b
 ����Gb

�bC1;c
 ����Gc ;

where �1� a< b < c. We must show that

ker.�bC1;c/� Œker.�bC1;c/; �
�1
bC1;c.Lb/�:

Suppose the proposition holds for j < c. If c D bC 1, then �bC1;c D �c , and
the result follows by hypothesis. Now, assume c � bC 2 and write

�bC1;c D �bC1;c�1 ı�c WGc!Gc�1!Gb:

Let ! 2 ker.�bC1;c/; then �c.!/ 2 ker.�bC1;c�1/. By induction, ker.�bC1;c�1/�

Œker.�bC1;c�1/; �
�1
bC1;c�1

.Lb/�; so, �c.!/ is a product of commutators Œ˛m; ˇm�,
where ˇm 2 �

�1
bC1;c�1

.Lb/ and ˛m 2 ker.�bC1;c�1/. Since �c is surjective over
Gc�1 we identify for each m a pair of elements ˛0m; ˇ

0
m 2 Gc that map to ˛m

and ˇm, respectively. Thus, ˇ0m 2 �
�1
bC1;c

.Lb/, ˛0m 2 ker.�bC1;c/, and Œ˛0m; ˇ
0
m� 2

Œker.�bC1;c/; �
�1
bC1;c

.Lb/�.
Now, let � be the product of the commutators with Œ˛0m; ˇ

0
m� replacing Œ˛m; ˇm�.

By construction, �c.!/D �c.�/ and � 2 Œker.�bC1;c/; �
�1
bC1;c

.Lb/�. Thus,

!v�1
2 ker.�c/� Œker.�c/; �

�1
c .Lc�1/�� Œker.�bC1;c/; �

�1
bC1;c.Lb/�:

Consequently, ! 2 Œker.�bC1;c/; �
�1
bC1;c

.Lb/� as well. �

Topology of ends of manifolds. Next we supply some topological definitions and
background. Throughout the paper, � represents homeomorphism and ' indicates
homotopic maps or homotopy equivalent spaces. The word manifold means manifold
with (possibly empty) boundary. A manifold is open if it is noncompact and has
no boundary. As noted earlier, we restrict our attention to manifolds with compact
boundaries.

For convenience, all manifolds are assumed to be PL; analogous results may
be obtained for smooth or topological manifolds in the usual ways. Our standard
resource for PL topology is [Rourke and Sanderson 1972]. Some of the results
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presented here are valid in all dimensions. Others are valid in dimensions� 4 or� 5,
but require the purely topological 4-dimensional techniques found in [Freedman
and Quinn 1990] for the 4- and/or 5-dimensional cases; there the conclusions are
only topological. The main focus of this paper is on dimensions � 6.

Let M n be a manifold with compact (possibly empty) boundary. A set N �M n

is a neighborhood of infinity if M n�N is compact. A neighborhood of infinity N

is clean if

� N is a closed subset of M n,

� N \ @M n D∅, and

� N is a codimension 0 submanifold of M n with bicollared boundary.

It is easy to see that each neighborhood of infinity contains a clean neighborhood
of infinity.

We say that M n has k ends if it contains a compactum C such that, for every
compactum D with C �D, M n�D has exactly k unbounded components, i.e., k

components with noncompact closures. When k exists, it is uniquely determined;
if k does not exist, we say M n has infinitely many ends. If M n is k-ended, then it
contains a clean neighborhood of infinity N consisting of k connected components,
each of which is a 1-ended manifold with compact boundary. Thus, when studying
manifolds with finitely many ends, it suffices to understand the 1-ended situation.
That is the case in this paper, where our standard hypotheses ensure finitely many
ends. (See Theorem 3.1.)

A connected clean neighborhood of infinity with connected boundary is called a
0-neighborhood of infinity. A 0-neighborhood of infinity N for which @N ,!N

induces a �1-isomorphism is called a generalized 1-neighborhood of infinity. If,
in addition, �j .N; @N /D 0 for j � k, then N is a generalized k-neighborhood of
infinity.

A nested sequence N0�N1�N2� � � � of neighborhoods of infinity is cofinal ifT1
iD0 Ni D∅. We will refer to any cofinal sequence fNig of closed neighborhoods

of infinity with NiC1� int Ni , for all i , as an end structure for M n. Descriptors will
be added to indicate end structures with additional properties. For example, if each
Ni is clean we call fNig a clean end structure; if each Ni is clean and connected
we call fNig a clean connected end structure; and if each Ni is a generalized k-
neighborhood of infinity, we call fNig a generalized k-neighborhood end structure.

Remark 2.12. The word “generalized” in the above definitions is in deference
to the terminology in [Siebenmann 1965], where the ambient manifold M n is
assumed to have stable fundamental group at infinity. There a (nongeneralized)
k-neighborhood of infinity N is also required to satisfy �1.".M

n// Š�!�1.N /.
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Building upon the above terminology, the primary goal of this paper is to identify,
construct, and detect the existence of various end structures for manifolds. A central
example: the pseudocollar can be described as an end structure fNig where each
Ni is a homotopy collar.

We say M n is inward tame if, for arbitrarily small neighborhoods of infinity N,
there exist homotopies H W N � Œ0; 1�! N such that H0 D idN and H1.N / is
compact. Thus inward tameness means each neighborhood of infinity can be pulled
into a compact subset of itself. In this case we refer to H as a taming homotopy.

In [Guilbault 2000], the existence of generalized .n�3/-neighborhood end struc-
tures is shown for all inward tame M n (n� 5).

Recall that a space X is finitely dominated if there exists a finite complex K and
maps u WX !K and d WK!X such that d ıu' idX . The following lemma uses
this notion to offer equivalent formulations of inward tameness.

Lemma 2.13 [Guilbault and Tinsley 2003, Lemma 2.4]. For a manifold M n, the
following are equivalent.

(1) M n is inward tame.

(2) Each clean neighborhood of infinity in M n is finitely dominated.

(3) For each clean end structure fNig, the inverse sequence

N0
j1
 �-N1

j2
 �-N2

j3
 �- � � �

is pro-homotopy equivalent to an inverse sequence of finite polyhedra.

Given a clean connected end structure fNig
1
iD0

, basepoints pi 2Ni , and paths
˛i �Ni connecting pi to piC1, we obtain an inverse sequence:

�1.N0;p0/
�1
 ��1.N1;p1/

�2
 ��1.N2;p2/

�3
 � � � � :

Here, each �iC1 W �1.NiC1;piC1/! �1.Ni ;pi/ is the homomorphism induced by
inclusion followed by the change-of-basepoint isomorphism determined by ˛i . The
singular ray obtained by piecing together the ˛i is called the base ray for the inverse
sequence. Provided the sequence is semistable, its pro-isomorphism class does not
depend on any of the choices made above (see [Guilbault 2016] or [Geoghegan
2008, §16.2]). In the absence of semistability, the pro-isomorphism class of the
inverse sequence depends on the base ray; hence, the ray becomes part of the data.
The same procedure may be used to define �k.".M

n// for all k � 1. Similarly, but
without need for a base ray or connectedness, we may define Hk.".M

n//.
Wall [1965] showed that each finitely dominated connected space X determines a

well-defined �.X /2 zK0.ZŒ�1X �/ (the reduced projective class group) that vanishes
if and only if X has the homotopy type of a finite complex. Given a clean connected
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end structure fNig
1
iD0

for an inward tame M n, we have a Wall finiteness obstruction
�.Ni/ for each i . These may be combined into a single obstruction

�1.M
n/D .�1/n.�.N0/; �.N1/; �.N2/; : : : /

2 zK0.�1.".M
n///� lim

 �
zK0.ZŒ�1Ni �/

that is well defined and which vanishes if and only if each clean neighborhood of
infinity in M n has finite homotopy type. See [Chapman and Siebenmann 1976] or
[Guilbault 2000] for details.

We now state the full version of the main theorem of [Guilbault and Tinsley 2006].

Theorem 2.14 (pseudocollarability characterization — complete version).
A 1-ended n-manifold M n (n� 6) with compact boundary is pseudocollarable if
and only if

(1) M n is inward tame,

(2) �1.".M
n// is P-semistable, and

(3) �1.M n/D 0 2 zK0.�1.".M
n///.

3. Some consequences of inward tameness

In this section we show that, for manifolds with compact boundary, the inward
tameness condition, by itself, has significant implications. The main goal is a proof
of Theorem 1.2 — that every inward tame manifold with compact boundary has
AP-semistable fundamental group at each of its finitely many ends. Results in this
section are valid in all (finite) dimensions and build upon an earlier theorem.

Theorem 3.1 [Guilbault and Tinsley 2003]. If an n-manifold with compact (possibly
empty) boundary is inward tame, then it has finitely many ends, each of which has
semistable fundamental group and stable homology in all dimensions.

Remark 3.2. Note that none of the above conclusions is valid for Hilbert cube
manifolds, polyhedra, or manifolds with noncompact boundary. See, for example,
[Guilbault 2016, §4.5].

As preparation for the proof of Theorem 1.2, we look at an easier result that
follows directly from Theorem 3.1.

Let M n be an inward tame n-manifold with compact boundary. Since M n is
finite-ended, there is no loss of generality in assuming that M n is 1-ended. By
taking a product with Sk (k � 2) if necessary, we may arrange that n� 6, without
changing the fundamental group at infinity. So, by the semistability conclusion of
Theorem 3.1 combined with the generalized 1-neighborhood theorem [Guilbault
2000, Theorem 4], we may choose a generalized 1-neighborhood end structure
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fNig for which each bonding map in the inverse sequence

(3-1) �1.N0;p0/
�1����1.N1;p1/

�2����1.N2;p2/
�3��� � � �

is surjective. Abelianization gives an inverse sequence

(3-2) H1.N0/
�1����H1.N1/

�2����H1.N2/
�3���� � � � ;

which, by Theorem 3.1, is stable. It follows that all but finitely many of the
epimorphisms in (3-2) are isomorphisms, so by omitting finitely many terms (then
relabeling), we may assume all bonds in (3-2) are isomorphisms. A term-by-term
application of Lemma 2.5 gives the following.

Proposition 3.3. Every 1-ended inward tame manifold M n with compact boundary
admits a generalized 1-neighborhood end structure fNig for which all bonding
maps in the sequence f�1.Ni ;pi/; �ig are surjective and each ker�i is �1.Ni ;pi/-
perfect; in other words, if fLi D �1.Ni ;pi/g is the maximal augmentation, then
f�1.Ni ;pi/; �ig satisfies the fLig-perfectness property.

Theorem 1.2 is a stronger version of Proposition 3.3. For clarity, we restate it in
a similar form.

Proposition 3.4. Every 1-ended inward tame manifold M n with compact boundary
admits a generalized 1-neighborhood end structure fNig for which all bonding
maps in the sequence f�1.Ni ;pi/; �ig are surjective and, if we let Ki D ker�i for
each i � 1 (the standard augmentation), then Ki is ��1

i .Ki�1/-perfect for all i � 2.
In other words, f�1.Ni ;pi/; �ig satisfies the fKig-perfectness property; so M n has
AP-semistable fundamental group at infinity.

Proof. Assume the sequence fNigwas chosen so that, for each i , NiC1 is sufficiently
small that a taming homotopy H i pulls Ni into Ai DNi� int NiC1, i.e., H i

1
.Ni/�

Ai , and NiC3 is sufficiently small that H i.@NiC2 � Œ0; 1�/ \ NiC3 D ¿. By
compactness of H i

1
.Ni/ and H i.@NiC2 � Œ0; 1�/ those choices can be made.

Now let i � 2 be fixed and qi�2 W
zNi�2 ! Ni�2 be the universal covering

projection. Let zAi�2 D q�1
i�2
.Ai�2/ and for j > i � 2, yNj D q�1

i�2
.Nj / and yAj D

p
q�1
i�2

.Aj /. Then
zNi�2 �

yNi�1 �
yNi �

yNiC1I

and H i�2 lifts to a proper homotopy zH i�2 that pulls zNi�2 into zAi�2 and for which
zH i.@ yNi � Œ0; 1�/ misses yNiC1.

We may associate ��1
i .Ki�1/with�1. yNi/ and Ki with ker.�1. yNi/!�1. yNi�1//.

Thus, an arbitrary element of Ki may be viewed as a loop ˛ in @ yNi that bounds
a disk D in yAi�1. To prove the proposition, it suffices to show that ˛ bounds an
orientable surface in yNi . By �1-surjectivity and the fact that the Nj are generalized
1-neighborhoods, ˛ may be homotoped within yAi to a loop ˛0 in @ yNiC1. Let E be
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the cylinder in yAi between ˛ and ˛0 traced out by that homotopy. Then the disk
D[E may be viewed as an element Œˇ� 2H2. yAi [

yAi�1; @ yNiC1/. Let

yf W @ yNi � Œ0; 1�[@ yNi�f0g
yAi!

zAi�2[
yAi�1[

yAi

be the identity on yAi and zH i�2j on @ yNi � Œ0; 1�. By PL transversality theory (see
[Rourke and Sanderson 1968] or [Buoncristiano et al. 1976, §II.4]), we may — after
a small proper adjustment that does not alter yf on .@ yNi�f0; 1g/[ yAi — assume that
yf �1. yAi�1[

yAi/ is a manifold with boundary that is a homeomorphism over a collar
neighborhood of @ yNiC1. Let yC be the component of yf �1. yAi�1[

yAi/ containing
that neighborhood. Then, by local characterization of degree, yf j W yC ! yAi�1[

yAi

is a proper degree 1 map, and yf j�1.@ yNiC1/D @ yNiC1. Thus we have a surjection

yf j� WH2. yC ; @ yNiC1/!H2. yAi [
yAi�1; @ yNiC1/:

Let Œˇ0� be a preimage of Œˇ�. We may assume that ˇ0 is an orientable surface with
boundary in yC . Since yf is the identity on @ yNiC1, @ˇ0 is homologous in @ yNiC1 to
@ˇD ˛0. Without loss of generality, we may assume that @ˇ0D ˛0. Since yC lies in
@ yNi � Œ0; 1�[@ yNi�f0g

yAi , we may push ˇ0, rel boundary, into yAi . This provides an
orientable surface in yAi with boundary ˛0. Gluing the cylinder E to that surface
along ˛0 produces the bounding surface for ˛ that we desire. �

Early attempts to prove P-semistability (hence pseudocollarability) with only an
assumption of absolute inward tameness were brought to a halt by the discovery of
a key example presented in [Guilbault and Tinsley 2003]. Ideas contained in that
example play an important role here, so we provide a quick review.

An easy way to denote normal subgroups will be helpful. Let G be a group
and S �G. The normal closure of S in G is the smallest normal subgroup of G

containing S . We denote it by ncl.S;G/.

Example 3.5 (main example from [Guilbault and Tinsley 2003]). For all n � 6,
there exist 1-ended absolutely inward tame open n-manifolds with fundamental
group system

G0
�1���G1

�2���G2
�3��� � � � ;

where

Gi D
˝
a0; a1; : : : ; ai

ˇ̌
a1 D Œa1; a0�; a2 D Œa2; a1�; : : : ; ai D Œai ; ai�1�

˛
and �i sends aj to aj for 0� j � i � 1 and ai to 1.

By a largely algebraic argument, it was shown that these examples do not
have P-semistable fundamental group at infinity, and thus are not pseudocollarable.
Notice, however, that each KiDker�i is the normal closure of ai and aiD Œai ; ai�1�

in Gi ; so Ki E ŒKi ; �
�1
i .Ki�1/�. In other words, fGi ; �ig satisfies the strong fKig-

perfectness property, and is therefore SAP-semistable.
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In addition to the above algebra, these examples have nice topological properties.
Although they do not contain small homotopy collar neighborhoods of infinity,
they do contain arbitrarily small generalized 1-neighborhoods of infinity N for
which @N ,!N is Z-homology equivalence. In fact, they contain a sequence fNig

of generalized 1-neighborhoods of infinity with �1.Ni/ Š Gi and @Ni ,! Ni a
ZŒGi�1�-homology equivalence.

The observation in Example 3.5 provides much of the motivation for the remain-
der of this paper.

4. Generalizing one-sided h-cobordisms, homotopy collars and pseudocollars

We begin developing ideas for placing Example 3.5 into a general context. We will
see that end structures like those found in that example are possible only when
kernels satisfy a strong relative perfectness condition. Conversely, we will show
that whenever such a group-theoretic condition is present, a corresponding “near
pseudocollar” structure is attainable.

We have already defined a pseudocollar structure on the end of a manifold M n

to be an end structure fNig for which each Ni is a homotopy collar, i.e., each
@Ni ,!Ni is a homotopy equivalence. The existence of such a structure allows us
to express each Ni as a union

Ni DWi [WiC1[WiC2[ � � � ;

where Wi D Ni � int NiC1, and each triple .Wi ; @Ni ; @NiC1/ is a compact one-
sided h-cobordism in the sense that @Ni ,! Wi is a homotopy equivalence (and
@NiC1 ,!Wi is probably not). One-sided cobordisms play an important role in
manifold topology in general, and the topology of ends in particular. See [Guilbault
2000, §4] for details. For later use, we review a few key properties of one-sided
h-cobordisms. See, for example, [Guilbault and Tinsley 2003, Theorem 2.5].

Theorem 4.1. Let .W;P;Q/ be a compact cobordism between closed manifolds
with P ,!W a homotopy equivalence. Then

(1) P ,!W and Q ,!W are ZŒ�1.W /�-homology equivalences, i.e.,

H�.W;P IZŒ�1.W /�/D 0DH�.W;QIZŒ�1.W /�/I

(2) �1.Q/! �1.W / is surjective; and

(3) K D ker.�1.Q/! �1.W // is perfect.

Moving forward, we require generalizations of the fundamental concepts of
homotopy equivalence, homotopy collar, one-sided h-cobordism and pseudocollar:

� Let .X;A/ be a CW pair for which i WA ,!X induces a �1-isomorphism and let
LE�1.A/. Call i a .mod L/-homotopy equivalence if H�.X;AIZŒ�1.A/=L�/
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is zero for all �. Extension to arbitrary maps is accomplished by use of mapping
cylinders.

� A manifold N with compact boundary is a .mod L/-homotopy collar if LE
�1.@N / and @N ,!N is a .mod L/-homotopy equivalence.

� Let .W;P;Q/ be a compact cobordism between closed manifolds and LE
�1.W /. We call .W;P;Q/ a .mod L/-one-sided h-cobordism if i W P ,!W

is a .mod L/-homotopy equivalence and j WQ ,!W induces a surjection on
fundamental groups.

� Let fNig be a generalized 1-neighborhood end structure on a manifold M n,
chosen so that the bonding maps in

�1.N0/
�1����1.N1/

�2����1.N2/
�3��� � � � :

are surjective, and let fLig be an augmentation of this sequence. Call fNig a
mod.fLig/ pseudocollar structure if each @Ni ,!Ni is a .mod Li/-homotopy
equivalence.

Remark 4.2. (i) Each of the above definitions reduces to its traditional counterpart
when the subgroup(s) involved are trivial.

(ii) In the generalization of one-sided h-cobordism, we require j# W�1.Q/!�1.W /

to be surjective — a condition that is automatic when LD f1g, but not in general.
Analogs of the other two assertions of Theorem 4.1 will be shown to follow.

(iii) For the maximal augmentation, the generalization of pseudocollar requires
only that each @Ni ,! Ni be a Z-homology equivalence, whereas, for the trivial
augmentation, we have a genuine pseudocollar. The key dividing line between those
extremes occurs when fLig is a small augmentation (Li � ker�i for all i ). In those
cases, we call fNig a near pseudocollar structure, and say that a 1-ended M n with
compact boundary is nearly pseudocollarable if it admits such a structure. The
geometric significance of the small augmentation requirement will become clear in
the proof of Theorem 5.1. Further discussion of that topic is contained in Section 7.

The following lemma adds topological meaning to the definition of .mod L/-
homotopy equivalence.

Lemma 4.3. Let .X;A/ be a CW pair for which i W A ,! X induces a �1-
isomorphism, L E �1.A/, and S � L for which ncl.S; �1.A// D L. Obtain
A0 from A by attaching a 2-disk Ds along each s 2 S ; let X 0 D X [

�S
s2S Ds

�
,

and i 0 WA0 ,!X 0. Then i is a .mod L/-homotopy equivalence if and only if i 0 is a
homotopy equivalence.

Proof. Let p W yX ! X be the covering projection corresponding to L. Then
yAD p�1.A/ is the cover of A corresponding to L. Viewing S as a collection of
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loops in A and yS the set of all lifts of those loops, then attaching 2-disks to yA (and
simultaneously yX ) along yS produces universal covers zA0 of A0 and zX 0 of X 0.

Assume now that i W A ,! X is a .mod L/-homotopy equivalence. Then
by Shapiro’s lemma [Davis and Kirk 2001, p. 100], H�. yX ; yAIZ/ D 0, so by
excision H�. zX

0; zA0IZ/D 0. Because both spaces are simply connected, the relative
Hurewicz theorem implies that ��. zX 0; zA0/ D 0; therefore ��.X 0;A0/ D 0. By
Whitehead’s theorem i 0 is a homotopy equivalence.

Conversely, if i 0 is a homotopy equivalence, then its lift zA0 ,! zX 0 is a homotopy
equivalence. Therefore H�. zX

0; zA0IZ/D 0, so by excision H�. yX ; yAIZ/D 0, and
by Shapiro’s lemma H�.X;AIZŒ�1.A/=L�/D 0. �

The following is a useful corollary.

Lemma 4.4. Let .X;A/ be a CW pair for which i W A ,! X induces a �1-
isomorphism and suppose L E �1.A/. If H�.X;AIZŒ�1.A/=L�/ D 0, then
H�.X;AIZŒ�1.A/=J �/ D 0 for any J with L < J E �1.A/. In particular,
H�.X;AIZ/D 0.

The next observation is a direct analog of Theorem 4.1.

Theorem 4.5. Let .W;P;Q/ be a compact .mod L/-one-sided h-cobordism be-
tween closed manifolds with LE �1.W /. Let j WQ ,!W and L0D j�1

# .L/. Then

(1) both P ,!W and Q ,!W are ZŒ�1.W /=L�-homology equivalences, i.e.,

H�.W;P IZŒ�1.W /=L�/D 0DH�.W;QIZŒ�1.W /=L�/I

and

(2) K D ker j# E �1.Q/ is strongly L0-perfect.

Proof. First note that by the surjectivity of j# W �1.Q/ ! �1.W /, there is a
canonical isomorphism �1.Q/=L

0 Š�!�1.W /=L that is assumed throughout. Let
p W yWL!W be the covering projection corresponding to L, yP D p�1.P / and
yQD p�1.Q/. Then both yP and yQ are connected, and their projections onto P and
Q are the coverings corresponding to L and L0.

The assertion that H�.W;P IZŒ�1.W /=L�/D 0 is part of the hypothesis, and (by
Shapiro’s lemma [Davis and Kirk 2001, p. 100]) equivalent to the assumption that
H�. yWL; yP IZ/D 0. To show that H�.W;QIZŒ�1.W /=L�/ vanishes in all dimen-
sions, it suffices to show that H�. yWL; yQIZ/D 0. This will follow from Poincaré
duality for noncompact manifolds if we can verify:

Claim. H�
f
. yWL; yP IZ/D 0, where the f indicates cellular cohomology based on

finite cochains. (See [Geoghegan 2008, Chapter 12].)

Applying Lemma 4.3, attach 2-cells to W along a collection S of loops in P

to kill L, obtaining spaces P 0 and W 0, and a homotopy equivalence P 0 ,! W 0.
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Since W is compact, any strong deformation retraction of W 0 onto P 0 is proper,
and hence, lifts to a proper strong deformation retraction of universal covers zW 0

onto zP 0 [Geoghegan 2008, §10.1]. It follows that H�
f
. yW 0; @ yN 0

i�1
IZ/D 0. Both

universal covers are obtained by attaching disks along the collection yS of lifts to yP
and yW of the loops in S . By excising the interiors of those disks, we conclude that
H�
f
. yW ; @ yN IZ/D 0.

To verify assertion (2), consider the short exact sequence

1!K!L0
q
�!L0=K! 1;

where L0=K may be identified with L. Lemma 2.6 provides the 5-term exact
sequence

H2.L
0
IZ/

q�2
��!H2.L

0=KIZ/!K=ŒK;L0�!H1.L
0
IZ/

q�1
��!H1.L

0=KIZ/!0;

from which the L0-perfectness of K can be deduced by showing that q�2 is an
epimorphism and q�1 an isomorphism.

Since yQ ,! yWL induces q W L0 ! L and since H2. yWL; yQIZ/ D 0, the long
exact sequence for that pair ensures that H1.L

0IZ/ Š�!H1.LIZ/. In addition, the
surjectivity of H2. yQIZ/! H2. yWLIZ/ combines with Lemma 2.7 to imply the
surjectivity of H2.L

0IZ/!H2.LIZ/. �

5. Structure of inward tame ends

With all necessary definitions in place, we are ready to prove the second main
theorem described in the introduction. We begin by stating a strong form of the
theorem, written in the style of earlier characterization theorems from [Siebenmann
1965; Guilbault and Tinsley 2006].

Theorem 5.1 (near pseudocollarability characterization). A 1-ended n-manifold
M n (n� 6) with compact boundary is nearly pseudocollarable if and only if

(1) M n is inward tame,

(2) the fundamental group at infinity is SAP-semistable, and

(3) �1.M n/D 0 2 zK0.�1.".M
n///.

Recall that condition (2) calls for the existence of a representation of �1.".M
n/

of the form

(5-1) G0
�1���G1

�2���G2
�3��� � � �

with a small augmentation fLig (Li E Ki D ker�i for all i) so that each Ki is
strongly Ji-perfect, where Ji D �

�1
i .Li�1/.
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Proof. First we verify that a nearly pseudocollarable 1-ended manifold with compact
boundary must satisfy conditions (1)–(3).

The hypothesis provides a generalized 1-neighborhood end structure fNig on
M n with group data

(5-2) G0
�1���G1

�2���G2
�3��� � � �

(Gi D �1.Ni/) and a small augmentation fLig (Li EKi D ker�i) such that each
Ni is a mod.Li/-homotopy collar.

To simultaneously verify (1) and (3), it suffices to exhibit a cofinal sequence
of clean neighborhoods of infinity, each having finite homotopy type. Lemma 4.4
ensures that each Ni is a mod.Ki/-homotopy collar, and since each �i is a surjection
between finitely presented groups, each Ki is finitely generated as a normal subgroup
of Gi . Let i be fixed and A D f j̨ g be a finite collection of loops in @Ni that
normally generates Ki in Gi . By Lemma 4.3, if we abstractly attach a 2-disk �2

j

along each j̨ , we obtain a homotopy equivalence

@Ni [
�S

�2
j

�
,!Ni [

�S
�2

j

�
:

In particular, Ni [
�S

�2
j

�
has the homotopy type of a finite complex. But, since

each j̨ represents an element of ker�i , we may assume that each �2
j is properly

embedded in Ni�1� int Ni . By thickening these 2-disks to 2-handles, we obtain a
clean neighborhood of infinity N �i with finite homotopy type, lying in Ni�1.

This leaves only SAP-semistability to be checked. We will show that (5-2)
satisfies the strong fLig-perfectness property; in other words, each Ki is strongly
Ji-perfect, where Ji D �

�1
i .Ki�1/.

For each i > 0, let Wi�1 DNi�1� int Ni .

Claim. .Wi�1; @Ni�1; @Ni/ is a .mod Li�1/-one-sided h-cobordism.

Fix i and let p W yNi�1!Ni�1 be the covering corresponding to Li�1EGi�1D

�1.Ni�1/Š �1.Wi�1/. Let yWi�1 denote p�1.Wi�1/ and let yNi denote p�1.Ni/.
Then yWi�1 is the cover of Wi�1 corresponding to Ji�1, and yNi is the cover of Ni

corresponding to Ji EGi D �1.Ni/. By Lemma 4.4 and Shapiro’s lemma

0DH�.Ni ; @Ni IZŒGi=Ji �/ŠH�. yNi ; @ yNi IZ/;

and from the long exact homology sequence for the triple . yNi�1; yWi�1; @ yNi�1/,
excision and Shapiro’s lemma

H�. yWi�1; @ yNi�1IZ/ŠH�.Wi�1; @Ni�1IZŒGi�1=Li�1�/D 0:

The claim follows.

Finally, since the bonding map Gi�1
�i���Gi is represented by the inclusion

Wi�1 - @Ni , Ki is strongly Ji-perfect by Theorem 4.5.
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For the converse, we must show that conditions (1)–(3) imply the existence of
a near pseudocollar structure on M n. Though the proof is rather complicated, it
follows the same outline as that in [Guilbault 2000], which followed the original
proof in [Siebenmann 1965]. For a full understanding, the reader should be familiar
with [Guilbault 2000]. The new argument presented here generalizes the final
portions of that proof. A concise review of [Guilbault 2000] can be found in
[Guilbault and Tinsley 2006, §4].

In [Guilbault 2000; Guilbault and Tinsley 2006] the goal was to improve arbi-
trarily small neighborhoods of infinity to homotopy collars. That is impossible with
our weaker hypotheses; instead, the goal is to improve neighborhoods of infinity to
homotopy collars modulo certain subgroups of their fundamental groups.

By condition (2) the pro-isomorphism class of �1.".M
n// may be represented

by a sequence

(5-3) G0
�1���G1

�2���G2
�3��� � � �

of finitely presented groups, along with a small augmentation fLig (Li EKi D

ker�i for all i ) so that each Ki is strongly Ji-perfect, where Ji D �
�1
i .Li�1/.

By [Guilbault 2000, Lemma 8] there is a sequence fNig of generalized 1-
neighborhoods of infinity whose inverse sequence of fundamental groups is isomor-
phic to a subsequence of fGig.

Gi0
��

�i0C1;i1 Gi1
��

�i1C1;i2 Gi2
��

�i2C1;i3 Gi3
��

�i3C1;i4
� � �

�1.N0;p0/

Š

g
f

��
inc#

�1.N1;p1/

Š

g
f

��
inc#

�1.N2;p2/

Š

g
f

��
inc#

�1.N3;p3/

Š

g
f

��
inc#
� � �

This diagram and Proposition 2.11 ensure that, for each j , ker.�ij�1C1;ij / is strongly
��1

ij�1C1;ij
.Lij�1

/-perfect. So by passing to this subsequence and relabeling, we
may assume that sequence (5-1) and the corresponding subgroup data match the
fundamental group data of fNig. Note here that the J-groups (which are not viewed
as part of the original data) are not the same as the previous J-groups; they are now
preimages of compositions of the original bonding maps.

Next we inductively improve the sequence fNj g to generalized k-neighborhoods
of infinity for increasing values of k, up to k D n� 3. We must frequently pass to
subsequences; however, each improvement of a given Nj leaves its fundamental
group and that of @Ni intact. So at each stage, the “new” fundamental group data will
be a subsequence of the original (5-1), along with the subsequence augmentation.
The J-groups will change as per their definition, but, by Proposition 2.11, we
always maintain the appropriate strong relative perfectness condition.

This neighborhood improvement process uses only the hypothesis that M n is
inward tame; it is identical to that used in [Guilbault 2000, Theorem 5] and outlined
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in [Guilbault and Tinsley 2006, Theorem 3.2]. To save on notation we relabel the
neighborhood sequences and their corresponding groups at each stage, designating
the resulting cofinal sequence of generalized .n�3/-neighborhoods of infinity by
fNig, with Gi D �1.Ni/, �i W Gi ! Gi�1 the corresponding homomorphism,
Li EKi D ker�i , and Ji D �

�1
i .Li�1/.

For each i , let Ri D Ni �
VNiC1 and consider the collection of cobordisms

f.Ri ; @Ni ; @NiC1/g. The following summary comprises the contents of Lemmas 11
and 12 of [Guilbault 2000], along with new hypotheses regarding kernels.

(i) Each Ni is a generalized .n�3/-neighborhood of infinity.

(ii) Each induced bonding map �1.Ni/� �1.NiC1/ is surjective.

(iii) Each inclusion @Ni ,!Ri ,!Ni induces a �1-isomorphism.

(iv) Each @NiC1 ,!Ri induces a �1-epimorphism with kernel strongly Ji-perfect.

(v) �k.Ri ; @Ni/D 0 for all k < n� 3 and all i.

(vi) Each .Ri ; @Ni ; @NiC1/ admits a handle decomposition based on @Ni contain-
ing handles only of index n� 3 and n� 2.

(vii) Each Ni admits an infinite handle decomposition with handles only of index
n� 3 and n� 2.

(viii) Each .Ni ; @Ni/ has the homotopy type of a relative CW pair .Ki ; @Ni/ with
dim.Ki � @Ni/� n� 2.

The obvious next goal is attempting to improve the Ni to generalized .n�2/-
neighborhoods of infinity, which by item (viii) would necessarily be homotopy
collars. In previous work [Siebenmann 1965; Guilbault 2000; Guilbault and Tinsley
2006], that is the final (and most difficult and interesting) step. The same is true
here, where the weakened hypotheses create greater difficulties and the strategy and
end goal must eventually be altered. For now, we continue with the earlier strategies
by turning our attention to �n�2.Ni ; @Ni/ŠHn�2. zNi ; @ zNi/, which may be viewed
as a ZŒ�1Ni �-module Hn�2.Ni ; @Ni IZŒ�1Ni �/. The content of [Guilbault 2000,
Lemma 13] is given by the next two items.

(ix) Hn�2. zNi ; @ zNi/ is a finitely generated projective ZŒ�1Ni �-module.

(x) As an element of zK0.ZŒ�1Ni �/, ŒHn�2. zNi ; @ zNi/� D .�1/n�.Ni/, where
�.Ni/ is the Wall finiteness obstruction for Ni .

Together, these elements of zK0.ZŒ�1Ni �/ determine the obstruction �1.".M n//

found in condition (3). From now on we assume that �1.M n/ vanishes. This is
equivalent to assuming that each �.Ni/ is the trivial element of zK0.ZŒ�1Ni �/, in
other words, each Hn�2. zNi ; @ zNi/ is a stably free ZŒ�1Ni �-module. Therefore:

(xi) By carving out finitely many trivial .n�3/-handles from each Ni , we can
arrange that Hn�2. zNi ; @ zNi/ is a finitely generated free ZŒ�1Ni �-module.
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Item (xi) can be done so that these sets remain a generalized .n�3/-neighborhood
of infinity, and so that their fundamental groups and those of their boundaries are
unchanged. Again, to save on notation, we denote the improved collection by fNig.
See [Guilbault 2000, Lemma 14] for details.

The finite generation of Hn�2. zNi ; @ zNi/ allows us to, after again passing to a
subsequence and relabeling, assume that

(xii) Hn�2. zRi ; @ zNi/�Hn�2. zNi ; @ zNi/ is surjective for each i .

The long exact sequence for the triple . zNi ; zRi ; @ zNi/ from there shows that

(xiii) Hn�2. zRi ; @ zNi/
Š
�!Hn�2. zNi ; @ zNi/ is an isomorphism for each i (and hence,

Hn�2. zRi ; @ zNi/ is a finitely generated free ZŒ�1Ri �-module).

As above, we may choose handle decompositions for the Ri based on @Ni having
handles only of index n� 3 and n� 2.

From now on, let i be fixed. After introducing some trivial .n�3; n�2/-handle
pairs, an algebraic lemma and some handle slides allow us to obtain a handle
decomposition of Ri based on @Ni with .n�2/-handles hn�2

1
; hn�2

2
; : : : ; hn�2

r and
an integer s � r , such that the subcollection fhn�2

1
; hn�2

2
; : : : ; hn�2

s g is a free
ZŒ�1Ri �-basis for Hn�2. zRi ; @ zNi/. So we have:

(xiv) The ZŒ�1Ri �-cellular chain complex for .Ri ; @Ni/ may be expressed as

(5-4) 0! hhn�2
1 ; : : : ; hn�2

s i˚ hhn�2
sC1; : : : ; h

n�2
r i

@
�!hhn�3

1 ; : : : ; hn�3
t i ! 0;

where
� hhn�2

1
; : : : ;hn�2

s i and hhn�2
sC1

; : : : ;hn�2
r i represent free ZŒ�1Ri �-submodules

of zCn�2 generated by the corresponding handles;
� hhn�3

1
; : : : ; hn�3

t i D zCn�3 is the free ZŒ�1Ri �-module generated by the
.n�3/-handles in Ri ;

� Hn�2. zRi ; @ zNi/D ker @D hhn�2
1
; : : : ; hn�2

s i˚ f0g; and
� @ takes f0g˚ hhn�2

sC1
; : : : ; hn�2

r i injectively into hhn�3
1

; : : : ; hn�3
t i.

Item (xiv) and the preceding paragraph are the content of Lemma 15 in [Guilbault
2000].

To this point, we have only used the hypotheses of inward tameness and triviality
of the Wall obstruction to build the structure described by items (i)–(xiv). All
arguments used thus far appear in [Guilbault 2000; Guilbault and Tinsley 2006],
with simpler analogs in [Siebenmann 1965].

Under the �1-stability hypothesis of [Siebenmann 1965], Hn�2. zRi ; @ zNi/ can
now be killed by sliding the offending .n�2/-handles fhn�2

1
; : : : ; hn�2

s g off the
.n�3/-handles and carving out their interiors. Under the weaker P-semistability
hypothesis of [Guilbault and Tinsley 2006], a similar strategy works, but only after
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Ri

Ti

@Ni

@�Ti

Ui3-handles 2-handles Si

@NiC1

Figure 2. Schematic of Ri .

a significant preparatory step, made possible by perfect kernels. In [Guilbault 2000]
an alternate strategy was employed. Instead of killing Hn�2. zRi ; @ zNi/D ker @ by
removing its generating handles fhn�2

1
; : : : ; hn�2

s g, the task was accomplished by
introducing new .n�3/-handles, which became images of the fhn�2

1
; : : : ; hn�2

s g

under the resulting boundary map, thereby trivializing the kernel. Complete dis-
cussions of these approaches can be found in [Guilbault and Tinsley 2006, §3] and
[Guilbault 2000, §8]; the strategy employed here is based on the latter.

It is helpful to change our perspective by switching to the dual handle decompo-
sition of Ri . Let Si be a closed collar neighborhood of @NiC1 in Ri , and for each
.n�2/-handle hn�2

k
identified earlier, let Nh2

k
be its dual, attached to Si . Similarly,

for each .n�3/-handle hn�3
k

, let Nh3
k

be its dual. As is standard, the attaching and
belt spheres of a given handle switch roles in its dual.

Let Ti DSi[ . Nh
2
1
[� � �[ Nh2

s [
Nh2
sC1
[� � �[ Nh2

r /, @�Ti D @Ti�@NiC1, and Ui be
a closed collar on @�Ti in Ti . Observe that Ri D Ti[ . Nh

3
1
[� � �[ Nh3

t /. See Figure 2.
A simplified view of the next step is that we will find a collection of 3-handles

f Nk3
1
; : : : ; Nk3

s g attached to the left-hand boundary of Ri and lying in Ri�1 so that
the collection f�2

j g
s
jD1

of attaching spheres of those 3-handles is algebraically dual
to the belt spheres of f Nh2

1
; : : : ; Nh2

s g and has trivial algebraic intersection with the
belt spheres of f Nh2

sC1
; : : : ; Nh2

r g. Adding those 3-handles to the mix, then inverting
the handle decomposition again, results in a cobordism with chain complex

(5-5) 0! hhn�2
1 ; : : : ; hn�2

s i˚ hhn�2
sC1; : : : ; h

n�2
r i

@
�!hkn�3

1 ; : : : ; hn�3
s i˚ hhn�3

1 ; : : : ; hn�3
t i ! 0

in which ker @ D 0 as desired — but with a caveat. Although addition of the
3-handles does not change the fundamental group of the cobordism, the arranged
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algebraic intersections between the attaching spheres of f Nk3
1
; : : : ; Nk3

s g and the belt
spheres of the existing 2-handles are ZŒ�1.Ri/=Li �-intersection numbers; this is the
best the hypotheses will allow. Then, to arrive at the desired conclusion — that we
have effectively killed the relative second homology — it is necessary to switch the
coefficient ring to ZŒ�1.Ri/=Li � (in other words, mod out by Li), and reinterpret
(5-5) as a ZŒ�1.Ri/=Li �-complex. Then, letting ViDNi[. Nk

3
1
[� � �[ Nk3

s /, it follows
that

�1.Vi/Š �1.Ri/Š �1.Ni/;

@Vi ,! Vi induces a �1-isomorphism, and H�.Vi ; @Vi IZŒ�1.Ri/=Li �/ D 0. In
other words, Vi is a mod.Li/-homotopy collar.

In order to carry out the above program, we first identify a collection f�2
j g

s
jD1

of
pairwise disjoint 2-spheres in @�Ti algebraically dual over ZŒ�1.Ri/=Li � to the col-
lection fˇn�3

j gs
jD1

of belt spheres of the 2-handles f Nh2
1
; : : : ; Nh2

s g and having trivial
ZŒ�1.Ri/=Li �-intersections with the belt spheres fˇn�3

j gr
jDsC1

of the remaining
2-handles f Nh2

sC1
; : : : ; Nh2

r g. Keeping in mind that �1.Ri/=Li is canonically iso-
morphic to �1.RiC1/=JiC1, and using the hypothesis that KiC1 is strongly JiC1-
perfect, such a collection f�2

j g
s
jD1

exists, as is shown in [Guilbault and Tinsley 2013,
§5]. By general position, the collection can be made disjoint from the attaching
tubes of the 3-handles f Nh3

1
; : : : ; Nh3

t g, so they may be viewed as lying in @Ni . If the
collection f�2

j g
s
jD1

bounds a pairwise disjoint collection of embedded 3-disks in
Ri�1, regular neighborhoods of those disks would provide the desired 3-handles, and
the proof is complete. (The argument from [Guilbault 2000, §8] provides details.)

For n� 7, the issue is just whether the 2-spheres f�2
j g

s
jD1

contract in Ri�1. (In
dimension 6, a special argument is needed to get pairwise disjoint embeddings.)
Contractibility is not guaranteed; but with additional work it can be arranged.
The additional work involves the spherical alteration of 2-handles developed in
[Guilbault and Tinsley 2013]. The idea is to alter the 2-handles f Nh2

1
; : : : ; Nh2

s g in a
planned manner so that the correspondingly altered f�2

j g
s
jD1

contract in the new
Ri�1. Along the way it will be necessary to reconstruct the 3-handles f Nh3

1
; : : : ; Nh3

t g

as well; for later use, let f‚2
j g

t
jD1

denote the attaching spheres of those handles.
All of the details were carefully laid out in [Guilbault and Tinsley 2013], with

this application in mind. The tailor-made lemma, stated in the final section of that
paper, is repeated here.

Lemma 5.2 [Guilbault and Tinsley 2013, Lemma 6.1]. Let R0 � R be a pair of
n-manifolds .n � 6/ with a common boundary component B, and suppose there
is a subgroup L0 of ker.�1.B/! �1.R// for which K D ker.�1.B/! �1.R

0//

is strongly L0-perfect. Suppose further that there is a clean submanifold T �R0

consisting of a finite collection H2 of 2-handles in R0 attached to a collar neighbor-
hood S of B with T ,!R0 inducing a �1-isomorphism (the 2-handles precisely kill
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the group K) and a finite collection f‚2
t g of pairwise disjoint embedded 2-spheres

in @T �B, each of which contracts in R0.
Then on any subcollection fh2

j g
k
jD1
�H2, one may perform spherical alterations

to obtain 2-handles f Ph2
j g

k
jD1

in R0 so that in @ PT�B (where PT is the correspondingly
altered version of T ) there is a collection of 2-spheres f P�2

j g
k
jD1

algebraically
dual over ZŒ�1.B/=L

0� to the belt spheres fˇn�3
j gk

jD1
common to fh2

j g
k
jD1

and
f Ph2

j g
k
jD1

with the property that each P�2
j contracts in R.

Furthermore, each correspondingly altered 2-sphere P‚2
t (now lying in @ PT �B)

has the same ZŒ�1.B/=L
0�-intersection number with those belt spheres and with

any other oriented .n�3/-manifold lying in both @T �B and @ PT �B as did ‚2
t .

Whereas the 2-spheres f‚2
t g each contracted in R0, the P‚2

t each contract in R.

We apply Lemma 5.2 to the current setup, with the following substitutions:

Lemma 5.2 Current situation

R0 Ri

R Ri [Ri�1

B @NiC1

H2 f Nh2
1
; : : : ; Nh2

s ;
Nh2
sC1

; : : : ; Nh2
r g

L0 JiC1 D �
�1
iC1

.Li/

T Ti D Si [ . Nh
2
1
[ � � � [ Nh2

s [
Nh2
sC1
[ � � � [ Nh2

r /

k 2 Z s 2 Z

fh2
j g

k
jD1

f Nh2
j g

s
jD1

f�2
j g

k
jD1

f�2
j g

s
jD1

f‚2
t g f‚2

j g
t
jD1

After applying this lemma, the collection f Nh2
j g

s
jD1

is replaced by altered versions
f
PNh2
j g

s
jD1

and the original collection f Nh2
j g

r
jDsC1

is retained. Let

PTi D Si [
� PNh2

1[ � � � [
PNh2

s [
Nh2
sC1[ � � � [

Nh2
r

�
and @� PTi D @ PTi � @NiC1. The collections f�2

j g
s
jD1

and f‚2
j g

t
jD1

are replaced by
altered versions f P�2

j g
s
jD1

and f P‚2
j g

t
jD1

which lie in @� PTi and contract in

Ri [Ri�1�
PT :

The original 3-handles f Nh3
j g

t
jD1

must be discarded since their attaching tubes have
been disrupted; replacements will be constructed shortly. When n� 7, use general
position to choose a pairwise disjoint collection of properly embedded 3-disks in

Ri [Ri�1�
PT
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with boundaries corresponding to the 2-spheres f P�2
j g

k
jD1
[f P‚2

t g. Those 3-disks may
be thickened to 3-handles by taking regular neighborhoods. With all of these handles
finally in place, the argument described earlier completes the proof. When nD6, the
same is true, but the �-� argument used in [Guilbault and Tinsley 2013, Theorems
4.2 and 5.3] is needed in order to find pairwise disjoint embedded 3-disks. �

Remark 5.3. In reality, we have shown a stronger result than what is stated in
Theorem 5.1. Specifically, the near pseudocollar structures obtained are as close to
actual pseudocollars as the augmentation is to the trivial augmentation. For example,
if fLig is the trivial augmentation, the above argument contains an alternative proof
of the main result of [Guilbault and Tinsley 2006] (stated here as Theorem 2.14).
More generally, if fLig lies somewhere between the trivial augmentation and the
standard augmentation, then a near pseudocollar structure on M n can be chosen to
reflect that augmentation.

6. The examples: proof of Theorem 1.4

Introduction to the examples. The main examples of [Guilbault and Tinsley 2003],
described here in Example 3.5, proved the existence of (absolutely) inward tame
open manifolds that are not pseudocollarable. In this section we construct open
manifolds that are absolutely inward tame but not nearly pseudocollarable. Since
the examples from that paper are nearly pseudocollarable, the new examples fill a
gap in the spectrum of known end structures.

The examples of [Guilbault and Tinsley 2003] began with algebra. The main
theorems of that paper showed that all inward tame open manifolds have pro-finitely
generated, semistable fundamental group, and stable Z-homology, at infinity. The
missing ingredient for detecting a pseudocollar structure was P-semistability. With
that knowledge, an inverse sequence of groups satisfying the necessary properties,
but failing P-semistability, became the blueprint for an example. A nontrivial
handle-theoretic strategy was needed to realize the examples, but the heart of the
matter was the group theory.

A similar story plays out here. We will begin with an inverse sequence of finitely
presented groups with surjective bonding maps that become isomorphisms upon
abelianization; but this time, in light of Theorems 1.2 and 1.3, we want an AP-
semistable sequence that is not SAP-semistable. The first step is to identify such a
sequence.

Let F3 D ha1; a2; a3 j i, the free group on the three generators; r1;1 D Œa2; a3�,
r1;2D Œa1; a3�, and r1;3D Œa1; a2�; A1Dncl.fr1;1; r1;2; r1;3g; F3/; and G1DF3=A1.
Notice that A1 is precisely the commutator subgroup ŒF3; F3�, so G1 Š Z˚Z˚Z.

Suppose r2;1 D Œr1;2;; r1;3�, r2;2 D Œr1;1; r1;3�, and r1;3 D Œr1;1; r1;2�; A2 D

ncl.fr2;1; r2;2; r2;3g; F3/; and G2 D F3=A2. Since A2 � A1, there is an induced
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epimorphism
G1

�2
 �G2

which abelianizes to the identity map on Z˚Z˚Z.
Continue inductively, letting riC1;1D Œri;2; ri;3�, riC1;2D Œri;1; ri;3�, and riC1;3D

Œri;1; ri;2�; AiC1 D ncl.friC1;1; riC1;2; riC1;3g; F3/; and GiC1 D F3=AiC1. The
result is a nested sequence of normal subgroups of F3, A1 � A2 � A3 � � � � , and a
corresponding inverse sequence of quotient groups

(6-1) G1
�2���G2

�3���G3
�4��� � � �

which abelianizes to the constant inverse sequence

Z3 id
 �Z3 id

 �Z3 id
 � � � � :

A more delicate motivation for our choices is the following: For each i > 1,
ker�i D ncl.fri�1;1; ri�1;2; ri�1;3g;Gi/; similarly, for each i > 2,

ker.�i�1�i/D ncl.fri�2;1; ri�2;2; ri�2;3g;Gi/:

Moreover, since the elements of fri�1;1; ri�1;2; ri�1;3g are precisely the commuta-
tors of the elements of fri�2;1; ri�2;2; ri�2;3g,

ker.�i/� Œker.�i�1�i/; ker.�i�1�i/�:

So, for the standard augmentation, Li D ker�i , (6-1) is fLig-perfect, hence, AP-
semistable.

Two tasks remain:

� prove that (6-1) is not SAP-semistable, and

� construct 1-ended absolutely inward tame open manifolds with fundamental
groups at infinity representable by (6-1).

Since these tasks are independent, the ordering of the following two subsections is
arbitrary.

The sequence (6-1) is not SAP-semistable. Let Fn D ha1; : : : ; an j i, the free
group on n generators. We will exploit two standard constructions from group
theory. The derived series of Fn is defined by

F.0/n D Fn and F.kC1/
n D ŒF.k/n ; F.k/n � for k � 0:

The lower central series of Fn is given by .Fn/1DFn and then .Fn/kC1D Œ.Fn/k ; Fn�

for k � 0. By inspection

F.kC1/
n � F.k/n ; .Fn/kC1 � .Fn/k ; F.k/n � .Fn/kC1 for all k.
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A well-known fact, similar in spirit to our goal in this subsection, is thatT1
kD0 F

.k/
n D f1g D

T1
kD1.Fn/k :

The following representation of Fn was discovered by Magnus; our general
reference is [Lyndon and Schupp 1977].

Proposition 6.1 [Lyndon and Schupp 1977, Proposition 10.1]. Let Pn be the non-
commuting power series ring in indeterminates fx1;x2; : : : ;xng with x2

j D 0 for
j D 1; 2; : : : ; n. Then the function ˇ.aj / D 1C xj .j D 1; 2; : : : ; n/ induces a
faithful representation of Fn into P�n , the multiplicative group of units of Pn.

In Pn, the fundamental ideal � is the kernel of the homomorphism � W Pn! Z

that takes each xj to 0. The elements of� are all sums of the form
P1
�D1 �� where

each �� is a homogeneous polynomial of degree at least one. Consequently, for any
positive integer k the ideal �k is made of all sums of the form

P1
�D1 �� where

each �� is a homogeneous polynomial of degree at least k.
The next proposition and lemma are useful for monitoring the location of com-

mutators in a group.

Proposition 6.2 [Lyndon and Schupp 1977, Proposition 10.2]. Let ˇ W Fn! P�

be the representation given above. If w1; w2 2 Fn such that ˇ.w1/� 1 2�r and
ˇ.w2/� 1 2�s , then ˇ.Œw1; w2�/� 1 2�rCs.

By applying Proposition 6.2 inductively, we obtain the following useful facts.

Lemma 6.3. For all integers n; i � 1,

(1) fˇ.w/� 1 j w 2 F
.i/
n g ��

2i

,

(2) fˇ.w/� 1 j w 2 .Fn/ig ��
i,

(3)
T1

kD1�
k D 0, and

(4)
T1

kD1 F
.k/
n D f1g D

T1
kD1.Fn/k .

We now focus our attention on F3 and its subgroups AiD ncl.fri;1; ri;2; ri;3g; F3/,
as defined earlier.

Lemma 6.4. For each k � 1 and j 2 f1; 2; 3g,

(1) rk;j is a member of at least one free basis for F
.k/
3

, and

(2) rk;j 2 F
.k/
3
� F

.kC1/
3

.

Proof. Assertion (1) can be obtained from an inductive argument using Schreier
systems. A model argument can be found in [Massey 1967, Example 8.1].

Assertion (2) follows from (1), since the quotient map Fk
3
! Fk

3
=FkC1

3
is the

abelianization of Fk
3

. �

Since Ai � F
.i/
3

, the following is an easy consequence of Lemmas 6.3 and 6.4.
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Lemma 6.5. For each i � 1 and j 2 f1; 2; 3g,

(1) ˇ.ri;j /� 1¤ 0, and

(2) fˇ.h/� 1 j h 2 Aig ��
2i

.

The definitions of derived and lower central series are clearly applicable to
arbitrary groups. To expand those notions further, the following definition is useful.
For H EG, let �1.H;G/DH and �k.H;G/D Œ�k�1.H;G/;G� for k > 1. By
normality, H D�1.H;G/��2.H;G/��3.H;G/� � � � . When H is strongly
G-perfect, �k.H;G/DH for all k.

Proposition 6.6. For each i � 1, there exists pi > 0 and qi � pi such that

(1) for each j 2 f1; 2; 3g, ˇ.ri;j /� 1 =2�2iCpi , and

(2) fˇ.w/� 1 j w 2�qi
.Ai ; F3/g ��

2iCpi .

Proof. Let i be fixed. Existence of pi follows from item (3) of Lemma 6.3. Existence
of qi may be obtained from an inductive application of Proposition 6.2. �

We shift focus one more time, from F3 and its subgroups to the quotient groups
GiDF3=Ai and their subgroups. In doing so, we will allow a word in the generators
of F3 to represent both an element of F3 and the corresponding element of a Gi . For
example, recalling that �iC1;j D �iC1 ı � � � ı�j WGj !Gi , we say ker.�iC1;j /D

ncl.fri;1; ri;2; ri;3g;Gj /.
The following result is simple but useful.

Lemma 6.7. Suppose � W G ! G0 is a surjective homomorphism, H E G, and
q � 0. Then �.�q.H;G//D�q.�.H /;G0/.

Lemma 6.7 ensures that, for each i <k and all q� 0, the quotient maps F3�Gk

restrict to epimorphisms

(6-2) �q.Ai ; F3/��q.ncl.fri;1; ri;2; ri;3g;Gk/;Gk/:

Proposition 6.8. For pi and qi as chosen in Proposition 6.6, and each j 2 f1; 2; 3g,
ri;j =2�qi

.ker.�iC1;k/;Gk/ whenever 2k � 2i Cpi .

Proof. Suppose ri;j 2�qi
.ker.�iC1;k/;Gk/D�qi

.ncl.fri;1; ri;2; ri;3g;Gk/;Gk/.
Surjection (6-2) provides a w 2�qi

.Ai ; F3/ with cosets Ak � ri;j D Ak �w. Conse-
quently, there is an h 2 Ak with ri;j D hw in F3. Then

ˇ.ri;j /� 1D ˇ.h/ˇ.w/� 1

D ˇ.h/ˇ.w/�ˇ.h/Cˇ.h/� 1

D ˇ.h/.ˇ.w/� 1/C .ˇ.h/� 1/:

Since ˇ.w/�12�2iCpi and ˇ.h/�12�2k

��2iCpi, then ˇ.ri;j /�12�2iCpi,
violating the choice of pi . �



116 CRAIG R. GUILBAULT AND FREDERICK C. TINSLEY

We are now ready for the main result of this subsection.

Theorem 6.9. The inverse sequence fGi ; �ig
1
iD0

is not SAP-semistable. In fact,
fGi ; �ig

1
iD0

is not pro-isomorphic to any inverse sequence fHi ; �ig of surjections
that satisfies the strong fHig-perfectness property.

Proof. We proceed directly to the stronger assertion. Suppose fGi ; �ig is pro-
isomorphic to an inverse sequence fHi ; �ig of surjections that is strongly fHig-
perfect; in other words, ker�i D Œker�i ;Hi � for all i .

By Proposition 2.11, each subsequence of fHi ; �ig satisfies the same essential
property, so by our assumption, fGi ; �ig contains a subsequence that fits into a
commutative diagram of the following form:

Gi0
�

�i0C1;i1 Gi1
�

�i1C1;i2 Gi2
�

�i2C1;i3 Gi3
� � �

H0 ��
�1�

d 1

�
u
0

H1��
�2�

d 2

�
u
1

H2 ��
�3�

d 3

�
u
2

� � �

Passing to a further subsequence if necessary, we may assume 2in � 2in�1Cpin�1

for all n.
By Lemma 6.4, 1¤ ri1;j 2 ker.�i1C1;i2

/�Gi2
. Choose ˛0 2H2 with u2.˛

0/D

ri1;j . Then, ˛0 2 ker.�1;2/, and consequently ˛0 2 Œker.�1;2/;H2�, since ker.�1;2/

is strongly H2-perfect (again using Proposition 2.11). Thus ˛0 2�q.ker.�1;2/;H2/

for all q. Moreover, since u2.ker.�1;2//� ker.�i0C1;i2
/,

ri1;j D u2.˛
0/ 2�q.u2.ker.�1;2//;Gi2

/��q.ker.�i0C1;i2
/;Gi2

/

for all q, thereby contradicting Proposition 6.8. �

Construction of the examples. The goal of this subsection is to construct, for
each n � 6, a 1-ended open manifold M n that is absolutely inward tame and
has fundamental group at infinity represented by the inverse sequence (6-1). By
Theorem 1.3 or Theorem 5.1, such an example fails to be nearly pseudocollarable,
thus completing the proof of Theorem 1.4.

Overview. We will construct M n as a countable union of codimension 0 submani-
folds

M n
D C1[A1[A2[A3[ � � � ;

where C1 is a compact “core” and f.Ai ; �i ; �iC1/g is a sequence of compact
cobordisms between closed connected .n�1/-manifolds with Ai \AiC1 D �iC1

for each i � 1, and @C1 D �1. Letting

Ni DAi [AiC1[AiC2[ � � �
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N1

N2

N3

C1 A1 A2 A3

�1 �2 �3 �4

Figure 3. M n D C1[A1[A2[A3[ � � � .

gives a preferred end structure fNig with @Ni D �i for each i . See Figure 3.
So that pro-�1.".M

n// is represented by (6-1), the Ai will be constructed to
satisfy:

(a) For all i � 1, �1.�i ;pi/ŠGi and �i ,!Ai induces a �1-isomorphism.

(b) The isomorphism between �1.�i ;pi/ and Gi may be chosen so that

Gi�
�iC1

GiC1

�1.�i ;pi/

Š

g
�
Š

�1.Ai ;pi/ �
 iC1

�1.�iC1;piC1/

Š

g

commutes. Here  iC1 is the composition

�1.Ai ;pi/
y�i
 ��1.Ai ;piC1/

�iC1
 ���1.�iC1;piC1/;

where �iC1 is induced by inclusion and y�i is a change-of-basepoint isomor-
phism with respect to a path �i in Ai between pi and piC1.

From there it follows from Van Kampen’s theorem that each �i D @Ni ,! Ni

induces a �1-isomorphism, so by repeated application of (a) and (b), the inverse
sequence

�1.N1;p1/
�2
 ���1.N2;p2/

�3
 ���1.N3;p3/

�4
 ��

is isomorphic to (6-1).
It will also be shown that each Ni has finite homotopy type; so M n is absolutely

inward tame. That argument requires specific details of the construction; it will be
presented later.

Details of the construction. Recall that a p-handle hp attached to an n-manifold
Pn and a .pC1/-handle hpC1 attached to Pn [ hp form a complementary pair
if the attaching sphere of hpC1 intersects the belt sphere of hp transversely in a
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single point. In that case Pn[ hp [ hpC1 � Pn; moreover, we may arrange (by
an isotopy of the attaching sphere of hpC1) that Pn \ .hp [ hpC1/ is an .n�1/-
ball in @Pn. Conversely, for any ball Bn�1 � @Pn, one may introduce a pair of
complementary handles Pn[hp[hpC1 so that Pn\.hp[hpC1/DBn�1. We call
.hp; hpC1/ a trivial handle pair. Note that the difference between a complementary
pair and trivial pair is just a matter of perspective. In general, we say that hp is
attached trivially to Pn if it is possible to attach an hpC1 so that .hp; hpC1/ is a
complementary pair.

After a preliminary step where we construct the core manifold C1, our proof
proceeds inductively. At the i -th stage we construct the cobordism .Ai ; �i ; �iC1/,
along with a compact manifold CiC1 with @CiC1D�iC1, to be used in the following
stage. Throughout the construction, we abuse notation slightly by letting @Ci� Œ0; "�

denote a small regular neighborhood of @Ci in Ci and �i � Œ0; "� to denote a small
regular neighborhood of �i in Ai .

Step 0 (preliminaries). Let C0 be the n-manifold obtained by attaching three
orientable 1-handles fh1

0;j
g3
jD1

to the n-ball Bn. Choose a basepoint p0 2 @C0

and let a1; a2, and a3 be embedded loops in @C0, one through each 1-handle,
intersecting only at p0. Abuse notation slightly by writing

�1.@C0/D �1.C0/D ha1; a2; a3 j i:

A convenient way to arrange that the 1-handles are orientable is by attaching three
trivial .1; 2/-handle pairs fh1

0;j
; h2

0;j
g3
jD1

, then discarding the 2-handles.
Recall that

G1 D ha1; a2; a3 jr1;1; r1;2; r1;3i;

where r1;1D Œa2; a3�, r1;2D Œa1; a3�, and r1;3D Œa1; a2�. Attach a trio of 2-handles
fh2

1;j
g3
jD1

to C0, where h2
1;j

has attaching circle r1;j . Choose the framings of these
handles so that, if the 2-handles fh2

0;j
g3
jD1

were added back in, then fh2
1;j
g3
jD1

would be trivially attached (to an n-ball). Let

C1 D C0[ h2
1;1[ h2

1;2[ h2
1;3

and note that �1.C1/Š �1.@C1/ŠG1.

Step 1 (constructing A1 and C2). Attach three trivial .2; 3/-handle pairs to C1,
disjoint from the existing handles, then perform handle slides on each of the trivial
2-handles (over the handles fh2

1;j
g3
jD1

) so the resulting 2-handles h2
2;1

, h2
2;2

and
h2

2;3
have attaching circles spelling out the words r2;1, r2;2 and r2;3, respectively.

This is possible since each r2;k can be viewed as a product of the loops fr1;j g
3
jD1

and their inverses, which are the attaching circles of fh2
1;j
g3
jD1

. Sliding a 2-handle
over h2

1;j
inserts the loop r˙1

1;j
into the new attaching circle of that 2-handle (with

˙1 depending on the orientation chosen).
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p_ pC

q_

qC

�0 �

Figure 4. Attaching a .2; 3/-handle pair.

By keeping track of the attaching 2-spheres of the trivial 3-handles after the handle
slides, it is possible to attach 3-handles h3

2;1
, h3

2;2
, and h3

2;3
to C1[h2

2;1
[h2

2;2
[h2

2;3

that are complementary to h2
2;1

, h2
2;2

, and h2
2;3

, respectively. Then

C1[
�S3

jD1 h2
2;j

�
[
�S3

jD1 h3
2;j

�
� C1:

For later purposes, it is useful to have a schematic image of the attaching circles
of fh2

1;j
g3
jD1

and the attaching 2-spheres of the complementary handles fh2
1;j
g3
jD1

.
Figure 4 provides such an image for one complementary pair. The outer loop
represents the attaching circle for an h2

2;j
and the shaded region represents the

“lower hemisphere” of the attaching 2-sphere of h3
2;j

; the “upper hemisphere”,
which is not shown, is a parallel copy of the core of h2

2;j
. Within the lower

hemisphere, the small central disk represents the lower hemisphere of the 2-sphere
before handle slides. The arms are narrow strips whose centerlines are the paths
along which the handle slides were performed; diametrically opposite paths lead to
the same 2-handle, and are chosen to be parallel to a fixed path. We have indicated
this by labeling one pair of centerlines � and the other �0. The four outer disks
are parallel to the cores of the 2-handles over which the slides were made. A
twist in the strip leading to an outer disk is used to reverse the orientation of the
boundary of that disk. Thus, diametrically opposite outer disks are parallel to each
other, but with opposite orientations. Center points of the outer disks represent
transverse intersections with belt spheres of those handles; thus, pC and p� are
nearby intersections with the same belt sphere, and similarly for qC and q�.

By rewriting
C1[

�S3
jD1 h2

2;j

�
[
�S3

jD1 h3
2;j

�
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as
C0[

�S3
jD1 h2

1;j

�
[
�S3

jD1 h2
2;j

�
[
�S3

jD1 h3
2;j

�
;

we may reorder the handles so that h2
2;1

, h2
2;2

, and h2
2;3

are attached first. Define

C2 D C0[
�S3

jD1 h2
2;j

�
and note that �1.C2/� �1.@C2/�G2. Furthermore,

C2[
�S3

jD1 h2
1;j

�
[
�S3

jD1 h3
2;j

�
� C1:

So, if we let

A1 D .@C2 � Œ0; "�/[
�S3

jD1 h2
1;j

�
[
�S3

jD1 h3
2;j

�
;

(the result of excising the interior of a slightly shrunken copy of C2), then @A1 �

@C2 t @C1. By letting �1 D @C1 and �2 D @C2 we obtain the first cobordism of
the construction .A1; �1; �2/. By avoiding the basepoint p0 2 @C0 in all of the
above handle additions, we may let the arc �1 �A1 be the product line p0 � Œ0; "�,
with p1 and p2 its endpoints. Conditions (a) and (b) are then clear.

Inductive step (constructing Ai and CiC1). Assume the existence of a cobor-
dism .Ai�1; �i�1; �i/ satisfying (a) and (b) along with a compact manifold Ci D

C0 [
�S3

jD1 h2
i;j

�
, with the attaching circle of each h2

i;j representing the relator
ri;j in the presentation of Gi , and @Ci D �i . Attach three trivial .2; 3/-handle
pairs to Ci , then perform handle slides on each of the trivial 2-handles (over the
handles fh2

i;j g
3
jD1

) so that the resulting 2-handles h2
iC1;1

, h2
iC1;2

and h2
iC1;3

have
attaching circles spelling out the words riC1;1, riC1;2 and ri1;3, respectively. This
is possible since each riC1;k can be viewed as a product of the loops fri;j g

3
jD1

and
their inverses, which are the attaching circles of fh2

i;j g
3
jD1

.
By keeping track of the attaching 2-spheres of the trivial 3-handles under the

above handle slides, it is possible to attach 3-handles h3
iC1;1

, h3
iC1;2

, and h3
iC1;3

to

Ci [ h2
iC1;1[ h2

iC1;2[ h2
iC1;3

that are complementary to h2
iC1;1

, h2
iC1;2

, and h2
iC1;3

, respectively. Then

Ci [
�S3

jD1 h2
iC1;j

�
[
�S3

jD1 h3
iC1;j

�
� Ci :

A picture like Figure 4, but with different indices, describes the current situation.
Rewrite

Ci [
�S3

jD1 h2
iC1;j

�
[
�S3

jD1 h3
iC1;j

�
as

C0[
�S3

jD1 h2
i;j

�
[
�S3

jD1 h2
iC1;j

�
[
�S3

jD1 h3
iC1;j

�
;



NONCOMPACT MANIFOLDS THAT ARE INWARD TAME 121

then reorder the handles so that h2
iC1;1

, h2
iC1;2

, and h2
iC1;3

are attached first. Define

CiC1 D C0[
�S3

jD1 h2
iC1;j

�
and note that �1.CiC1/� �1.@CiC1/�GiC1.

Furthermore,

CiC1[
�S3

jD1 h2
i;j

�
[
�S3

jD1 h3
iC1;j

�
� Ci :

Excising the interior of a slightly shrunken copy of CiC1 gives

AiC1 D .@CiC1 � Œ0; "�/[
�S3

jD1 h2
i;j

�
[
�S3

jD1 h3
iC1;j

�
I

then @AiC1 � @CiC1 t @Ci . Noting that �i D @Ci and letting �iC1 D @CiC1, we
obtain .Ai ; �i ; �iC1/. By avoiding pi 2 @Ci in all of the handle additions, letting
�i �Ai be the product line pi � Œ0; "�, and piC1 the new endpoint, conditions (a)
and (b) are clear.

Assembling the pieces in the manner described in Figure 3 completes the con-
struction. In particular, we obtain a 1-ended open manifold

M n
D C1[A1[A2[A3[ � � �

whose fundamental group at infinity is represented by the inverse sequence (6-1).

Remark 6.10. In the construction of .Ai ; �i ; �iC1/, we have written �i on the left
and �iC1 on the right to match the blueprint laid out in Figure 3. In that case, the
handle decomposition of Ai implicit in the construction goes from right to left,
with handles being attached to a collar neighborhood �iC1 � Œ0; "� of �iC1. Later,
when our perspective becomes reversed, we will pass to the dual decomposition

Ai D .�i � Œ0; "�/[
�S3

jD1
Nhn�3
1;j

�
[
�S3

jD1
Nhn�2
2;j

�
;

where each Nhn�p is the dual of an original hp and �i � Œ0; "� is a thin collar
neighborhood of �i .

Absolute inward tameness of M n. The following proposition will complete the
proof of Theorem 1.4.

Proposition 6.11. For the manifolds M n constructed above, each clean neighbor-
hood of infinity

Ni DAi [AiC1[AiC2[ � � �

has finite homotopy type. Thus, M n is absolutely inward tame.

We will prove this by examining H�.Ni ; �i IZGi/ (equivalently, H�. zNi ; z�i IZ/

viewed as a ZGi-module), where Gi D �1.Ni/ D �1.�i/. In particular, we will
prove:
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Claim 6.12. For each i , H�.Ni ; �i IZGi/ is trivial in all dimensions except for
� D n� 2, where it is isomorphic to the free module .ZGi/

3 D ZGi ˚ZGi ˚ZGi .

Once this claim is established, Proposition 6.11 follows from [Siebenmann 1965,
Lemma 6.2]. In Remark 6.13 at the conclusion of this section, we explain why this
final observation is elementary, requiring no discussion of finite dominations or
finiteness obstructions.

Proof. It is useful to consider compact subsets of the form

Ai;k DAi [AiC1[ � � � [Ak :

By repeated application of Remark 6.10, there is a handle decomposition of Ai;k

based on �i � Œ0; "� with handles only of indices n� 3 and n� 2. By reordering
the handles, .Ai;k ; �i/ is seen to be homotopy equivalent to a finite relative CW
complex .Ki;k ; �i/, where Ki;k consists of �i with an .n�3/-cell attached for
each .n�3/-handle of Ai;k followed by an .n�2/-cell for each .n�2/-handle. In
the usual way, the ZGi-incidence number of an .n�2/-cell with an .n�3/-cell is
equal to the ZGi-intersection number between the belt sphere of the corresponding
.n�3/-handle and the attaching sphere of the corresponding .n�2/-handle. This
process produces a sequence

Ki;i �Ki;iC1 �Ki;iC2 � � � �

of relative CW complexes with direct limit a relative CW pair .Ki;1; �i/ homo-
topy equivalent to .Ni ; �i/. So we can determine H�.Ni ; �i IZGi/ by calculating
H�.Ai;k ; �i IZGi/ and taking the direct limit as k!1.

The ZGi-handle chain complex for .Ai;k ; �i/ (equivalently, the ZGi-cellular
chain complex for .Ki;k ; �i/) looks like

0 �! Cn�2
@
�! Cn�3 �! 0;

where Cn�2 and Cn�3 are finitely generated free ZGi-modules generated by the
handles of Ai;k , and the boundary map is determined by ZGi-intersection numbers
between the belt spheres of .n�3/-handles and attaching spheres of the .n�2/-
handles. These intersection numbers will be determined by returning to the con-
struction.

Beginning with the compact manifold

Ci D C0[
�S3

jD1 h2
i;j

�
;

attach three trivial .2; 3/-handle pairs, then perform handle slides on the 2-handles
(over the handles fh2

i;j g
3
jD1

) to obtain h2
iC1;1

, h2
iC1;2

and h2
iC1;3

with attaching
circles riC1;1, riC1;2 and riC1;3, respectively. Having kept track of the attaching
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2-spheres of the trivial 3-handles under the handle slides, attach 3-handles h3
iC1;1

,
h3

iC1;2
, and h3

iC1;3
to

Ci [ h2
iC1;1[ h2

iC1;2[ h2
iC1;3

that are complementary to h2
iC1;1

, h2
iC1;2

, and h2
iC1;3

, respectively (all as described
in inductive step above). This can all be done so that h3

iC1;1
, h3

iC1;2
, and h3

iC1;3

do not touch the earlier 2-handles h2
i;1

, h2
i;2

and h2
i;3

. Next attach a second trio
of trivial .2; 3/-handle pairs, taking care that they are disjoint from the existing
handles, and slide the trivial 2-handles over the 2-handles fh2

iC1;j
g3
jD1

so that the
resulting 2-handles fh2

iC2;j
g3
jD1

have attaching circles riC2;1, riC2;2 and riC2;3.
Again, having kept track of the attaching 2-spheres of the trivial 3-handles under
the handle slides, attach 3-handles h3

iC2;1
, h3

iC2;2
, and h3

iC2;3
to

Ci [
�S3

jD1 h2
iC1;j

�
[
�S3

jD1 h3
iC1;j

�
[
�S3

jD1 h2
iC2;j

�
that are complementary to h2

iC2;1
, h2

iC2;2
, and h2

iC2;3
, respectively, while taking

care that these new 3-handles are completely disjoint from all 2- and 3-handles of
lower index. Continue this process k � i times, at each stage attaching three trivial
.2; 3/-handle pairs disjoint from the existing handles; sliding the trivial 2-handles
over the 2-handles created in the previous step, in the manner prescribed above;
and then attaching 3-handles complementary to these new 2-handles (and disjoint
from earlier 2- and 3-handles) along the images of the attaching 2-spheres of the
trivial 3-handles after the handle slides.

Since all of the 2- and 3-handles mentioned above, except for the original
2-handles h2

i;1
, h2

i;2
and h2

i;3
, occur in complementary pairs, the manifold we just

created is just a thickened copy of Ci ; let us call it C 0i . By the standard reordering
lemma, we may arrange that the 2-handles are pairwise disjoint, and all are attached
before any of the 3-handles — which are also are attached in a pairwise disjoint
manner. Then

C 0i D Ci [
�Sk

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
D C0[

�S3
jD1 h2

i;j

�
[
�Sk

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
D C0[

�S3
jD1 h2

iCk;j

�
[
�S3

jD1 h2
i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
D Ck [

�S3
jD1 h2

i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
;

where, going from the first to the second line, we apply the definition of Ci ; going
from the second to the third, we bring the last triple of 2-handles forward to the
beginning; and in going from the third to the fourth, we apply the definition of Ck .
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Excising a slightly shrunken copy of the interior of Ck from C 0i results in a
cobordism between @Ck D �k and @C 0i � �i , which has a handle decomposition

.�k � Œ0; "�/[
�S3

jD1 h2
i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
[
�Sk

sD1

�S3
jD1 h3

iCs;j

��
:

Comparing this handle decomposition to our earlier construction reveals that this
cobordism is precisely Ai[AiC1[� � �[AkDAi;k . In order to match the orientation
of Figure 3, view �k as the right-hand boundary and �i as the left-hand boundary,
with 2- and 3-handles being attached from right to left. Before switching to the
dual handle decomposition, we analyze the ZGi-intersection numbers between the
attaching spheres of the 3-handles and the belt spheres of the 2-handles. All should
be viewed as submanifolds of the left-hand boundary of

.�k � Œ0; "�/[
�S3

jD1 h2
i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
;

which has fundamental group Gi .
For each 1 � s � k and j 2 f1; 2; 3g let ˛2

iCs;j denote the attaching 2-sphere
of h3

iCs;j ; and for each 0� s0 � k�1 and j 0 2 f1; 2; 3g let ˇn�3
iCs0;j 0 denote the belt

.n�3/-sphere of h2
iCs0;j 0 There are three cases to consider.

Case 1: s D s0. Then for each j , the pair .h2
iCs;j ; h

3
iCs;j / is complementary; in

other words ˛2
iCs;j intersects ˇn�3

iCs;j transversely in a single point. Adjusting base
paths, if necessary, and being indifferent to orientation (since it will not affect
our computations), we have

"ZGi
.˛2

iCs;j ; ˇ
n�3
iCs;j /D˙1:

If j ¤ j 0, then h3
iCs;j does not intersect h2

iCs;j 0 , so

"ZGi
.˛2

iCs;j ; ˇ
n�3
iCs;j 0/D 0:

Case 2: sD s0C1. For each j , ˛2
iCs;j can be split into a pair of disks. The “upper

hemisphere” lies in the 2-handle h2
iCs;j and it intersects ˇn�3

iCs;j transversely in a
single point; that point of intersection was accounted for in Case 1. The “lower
hemisphere” is analogous to the one pictured in Figure 4. If fu; vg D f1; 2; 3g �
fj g, then one pair of the diametrically opposite disks has boundaries labelled
riCs�1;u and r�1

iCs�1;u
and the disks are parallel to the core of h2

iCs�1;u
, so each

intersects ˇn�3
iCs�1;u

transversely in points pCu and p�u . Due to the flipped orientation
of one of the disks, these points of intersection, between ˛2

iCs;j and ˇn�3
iCs�1;u

,
have opposite sign. Connecting pCu and p�u by a path homotopic to ��1 �� in
˛2

iCs;j and a short path � connecting pCu and p�u in ˇn�3
iCs�1;u

yields a loop that is
contractible in the left-hand boundary of

.�k � Œ0; "�/[
�S3

jD1 h2
i;j

�
[
�Sk�1

sD1

�S3
jD1 h2

iCs;j

��
:
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So together pCu and p�u contribute 0 to the ZGi-intersection number of ˛2
iCs;j and

ˇn�3
iCs�1;u

; hence,
"ZGi

.˛2
iCs;j ; ˇ

n�3
iCs�1;u/D 0:

Similarly
"ZGi

.˛2
iCs;j ; ˇ

n�3
iCs�1;v/D 0:

Finally, ˛2
iCs;j and ˇn�3

iCs�1;j
do not intersect, so

"ZGi
.˛2

iCs;j ; ˇ
n�3
iCs�1;j /D 0

as well.

Case 3: s =2 fs0; s0C 1g. In this case, the handles h3
iCs;j and h2

iCs0;u are disjoint,
so "ZGi

.˛2
iCs;j ; ˇ

n�3
iCs;j 0/D 0.

Now invert the above handle decomposition to obtain a handle decomposition
of the cobordism .Ai;k ; �i ; �k/, based on �i , containing only .n�3/- and .n�2/-
handles. Specifically, we have

.�i � Œ0; "�/[
�Sk

sD1

�S3
jD1
Nhn�3
iCs;j

��
[
�S3

jD1
Nhn�2
i;j

�
[
�Sk�1

sD1

�S3
jD1
Nhn�2
iCs;j

��
:

Since the belt sphere of each Nhn�3 is the attaching sphere of its dual h3 and the
attaching sphere of each Nhn�2 is the belt sphere of its dual h2, the incidence numbers
between these handles of this handle decomposition are determined (up to sign)
by the earlier calculations. So the cellular ZGi-chain complex for the .Ai;k ; �i/ is
isomorphic to

0!

k�1M
sD0

.ZGi/
3 @
�!

kM
sD1

.ZGi/
3
! 0;

where the .ZGi/
3 summands on the left are generated by the handles f Nhn�2

iCs;j g
3
jD1

and those on the right by f Nhn�3
iCs;j g

3
jD1

. Since "ZGi
.˛2

iCs;j ; ˇ
n�3
iCs;j / D ˙1 for all

1� s�k�1 and all other intersection numbers are 0, the boundary map is trivial on
the 0-th copy of .ZGi/

3; misses the k-th copy of .ZGi/
3 in the range; and restricts

to an isomorphism
Lk�1

sD1.ZGi/
3 Š�!

Lk�1
sD1.ZGi/

3 elsewhere. Thus

Hn�2.Ai;k ; �i IZGi/D ker @Š .ZGi/
3, and

Hn�3.Ai;k ; �i IZGi/D coker @Š .ZGi/
3;

where Hn�2.Ki;k ; �i/ is generated by the s D 0 summand and Hn�3.Ki;k ; �i/ is
generated by the s D k summand.

Now consider the inclusion Ai;k ,!Ai;kC1 and the corresponding inclusion of
ZGi-chain complexes. The chain complex of Ai;kC1 will contain an extra .ZGi/

3

summand in each dimension, generated by f Nhn�2
iCk;j

g3
jD1

and f Nhn�3
iCkC1;j

g3
jD1

, re-
spectively. The boundary map takes the new summand in the domain onto the
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previous cokernel, thereby killing Hn�3.Ai;k ; �i IZGi/, and replacing it with a
cokernel generated by f Nhn�3

iCkC1;j
g3
jD1

. Said differently, the inclusion induced map

i� WHn�3.Ki;k ; �i IZGi/
0
�!Hn�3.Ki;kC1; �i IZGi/

is trivial. On the other hand, the expansion from Ki;k to Ki;kC1 does not change
ker @, which is still generated by the handles f Nhn�2

i;j g
3
jD1

. In other words, the
inclusion induced map

i� WHn�2.Ki;k ; �i IZGi/
Š
�!Hn�2.Ki;kC1; �i IZGi/

is an isomorphism.
Taking direct limits, we have

H�.Ni ; �i IZGi/Š

�
.ZGi/

3 if � D n� 2;

0 otherwise. �

Remark 6.13. The appeal to [Siebenmann 1965, Lemma 6.2] may give the im-
pression that obtaining Proposition 6.11 from Claim 6.12 is complicated — that
is not the case. The conclusion can be obtained directly as follows: If fen�2

i;j g
3
jD1

represents the cores of the .n�2/-handles f Nhn�2
i;j g, which generate H�.Ni ; �i IZGi/,

abstractly attach .n�2/-disks ff n�2
i;j g

3
jD1

to �i along their boundaries. This does
not affect fundamental groups, so by excision, the pair�

Ni [ff
n�2

i;j g
3
jD1; �i [ff

n�2
i;j g

3
jD1

�
has the same ZGi -homology as .Ni ; �i/, with the same generating set. Now attach
an .n�1/-cell gn�1

j along each sphere en�2
i;j [f

n�2
i;j to obtain a pair�

Ni [ff
n�2

i;j g
3
jD1[fg

n�2
i;j g

3
jD1; �i [ff

n�2
i;j g

3
jD1

�
with trivial ZGi-homology in all dimensions. It follows that

�i [ff
n�2

i;j g
3
jD1 ,!Ni [ff

n�2
i;j g

3
jD1[fg

n�1
i;j g

3
jD1

is a homotopy equivalence. But notice that each gn�1
i;j has a free face f n�2

i;j , so

Ni [ff
n�2

i;j g
3
jD1[fg

n�1
i;j g

3
jD1

collapses onto Ni . Therefore, Ni is homotopy equivalent to �i [ff
n�2

i;j g
3
jD1

.

7. Remaining questions

In the introduction we commented that nearly pseudocollarable manifolds admit
arbitrarily small clean neighborhoods of infinity N containing compact codimen-
sion 0 submanifolds A for which A ,!N is a homotopy equivalence. Call such
a pair .N;A/ a wide homotopy collar. The difference, of course, between a wide



NONCOMPACT MANIFOLDS THAT ARE INWARD TAME 127

homotopy collar and a homotopy collar is that, in the latter, the subspace is required
to be the (codimension 1) boundary of N. The fact that nearly pseudocollarable
manifolds contain arbitrarily small wide homotopy collars is immediate from the
following easy lemma.

Lemma 7.1. Suppose N 0 is a (mod J )-homotopy collar neighborhood of infinity
in a manifold M n (n � 5/, where J is a normally finitely generated subgroup of
ker.�1.N

0/!�1.M
n//. Then M n contains a wide homotopy collar neighborhood

of infinity .N;A/, where N 0 �N �M n.

Proof. Choose a finite collection of pairwise disjoint properly embedded 2-disks
fD2

i g
k
iD1

in M n�N 0, with boundaries comprising a normal generating set for
ker.�1.N

0/! �1.M
n//. Then let .N;A/ be a regular neighborhood pair for�
N 0[

�Sk
iD1 D2

i

�
; @N 0[

�Sk
iD1 D2

i

��
and apply Lemma 4.3. �

The following seem likely but, thus far, we have been unable to find proofs.

Questions. Must a manifold with compact boundary that contains arbitrarily small
wide homotopy collar neighborhoods of infinity be nearly pseudocollarable? More
specifically, can it be shown that the nonpseudocollarable examples in Section 6 do
not contain arbitrarily small wide homotopy collar neighborhoods of infinity?
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