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CONJUGATION-INVARIANT NORMS

MORIMICHI KAWASAKI

Bavard proved a duality theorem between commutator length and quasi-
morphisms. Burago, Ivanov and Polterovich introduced the notion of a
conjugation-invariant norm which is a generalization of commutator length.
Entov and Polterovich proved Oh–Schwarz spectral invariants are subset-
controlled quasimorphisms, which are generalizations of quasimorphisms.
We prove a Bavard-type duality theorem between subset-controlled quasi-
morphisms on stable groups and conjugation-invariant (pseudo)norms. We
also pose a generalization of our main theorem and prove “stably nondis-
placeable subsets of symplectic manifolds are heavy” in a rough sense if
that generalization holds.

1. Definitions and results

Definitions. Burago, Ivanov and Polterovich defined the notion of conjugation-
invariant (pseudo)norms on groups and they gave a number of its applications.

Definition 1.1 [Burago et al. 2008]. Let G be a group. A function ν : G→ R≥0 is
a conjugation-invariant norm on G if ν satisfies the following axioms:

(1) ν(1)= 0;

(2) ν( f )= ν( f −1) for every f ∈ G;

(3) ν( f g)≤ ν( f )+ ν(g) for every f, g ∈ G;

(4) ν( f )= ν(g f g−1) for every f, g ∈ G;

(5) ν( f ) > 0 for every f 6= 1 ∈ G.

A function ν : G→ R is a conjugation-invariant pseudonorm on G if ν satisfies
axioms (1), (2), (3) and (4) above.

For a conjugation-invariant pseudonorm ν, let sν denote the stabilization of ν,
i.e., sν(g)= limn→∞ ν(gn)/n (this limit exists by Fekete’s Lemma).
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For a perfect group G, the commutator length cl on G is a conjugation-invariant
norm. Bavard [1991] proved the following famous theorem (see also [Calegari
2009]):

Theorem 1.2 (Corollary of Bavard’s [1991] duality theorem). Let g be an element
of a perfect group G. Then scl(g) > 0 if and only if there exists a homogeneous
quasimorphism φ such that φ(g) > 0.

For interesting applications of Bavard’s duality theorem, see [Calegari et al. 2014],
[Endo and Kotschick 2001] and [Mimura 2010] for example. After Bavard’s work,
Calegari and Zhuang [2011] proved a Bavard-type duality theorem on W -length
which is also conjugation-invariant. In the present paper, we give a Bavard-type
duality theorem on general conjugation-invariant (pseudo)norms for some groups
which are stable in some sense.

To state our main theorem, we introduce the notion of subset-controlled quasi-
morphism (partial quasimorphism, prequasimorphism) which is a generalization of
quasimorphism:

Definition 1.3. Let G be a group and H a subgroup of G. We define the fragmen-
tation norm νH with respect to H for an element f of G, by

νH ( f )=min{k : there exist g1, . . . , gk ∈ G, and h1, . . . , hk ∈ H

such that f = g1h1g−1
1 · · · gkhk g−1

k }.

If there is no such decomposition of f as above, we put νH ( f )=∞.

Definition 1.4. Let H be a subgroup of a group G. A function φ : G→R is called
an H-quasimorphism if there exists a positive number C such that for any f, g ∈G,

|φ( f g)−φ( f )−φ(g)|< C min{νH ( f ), νH (g)}.

The infimum of such C is called the defect of φ and we denote it by D(φ). If
φ( f n)= nφ( f ) for any element f of G and any integer n, φ is called homogeneous.

Such generalizations of quasimorphisms appeared first in [Entov and Polterovich
2006]. They proved that Oh–Schwarz spectral invariants (for example, see [Schwarz
2000] and [Oh 2006]) are controlled quasimorphisms.

Remark 1.5. In [Kawasaki 2016], H -quasimorphism is called quasimorphism
relative to νH . Tomohiko Ishida and Tetsuya Ito pointed out that quasimorphism
relative to H usually means quasimorphism which vanishes on H . Thus we use a
different notation from that work.

Let K be a subset of a group G. For elements f, g of G, let f K g denote the
subset { f kg; k ∈ K } of G.
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Definition 1.6. Let H be a subgroup of a group G. If for any element g of G,
νH (g) <∞, G is said to be c-generated by H .

The author essentially proved the following proposition:

Proposition 1.7 [Kawasaki 2016]. Let G be a group c-generated by a perfect
subgroup H (in particular, G is also perfect). If there exists an H-quasimorphism φ
with limk→∞ φ(gk)/k > 0 for some g, then there is a conjugation-invariant norm ν

with sν(g) > 0 (such a norm is called stably unbounded [Burago et al. 2008]).

Our main theorem (Theorem 1.12) is a converse of the Proposition 1.7.

Remark 1.8. The author [Kawasaki 2016] proved that there exists such a Ham(B2n)-
quasimorphism µK on Ham(R2n). Here, Ham(B2n) and Ham(R2n) are the group of
Hamiltonian diffeomorphisms with compact support of the ball and the Euclidean
space with the standard symplectic form, respectively. He also proved that µK (g) >
0 for some commutator g. Thus, by Proposition 1.7, [Ham(R2n),Ham(R2n)] admits
a stably unbounded norm.

Kimura [2016] proved a similar result on the infinite braid group B∞ =
⋃
∞

k=1 Bk

(the existence of a stably unbounded norm on [B∞, B∞] is also proved by Bran-
denbursky and Kedra [2015]).

Definition 1.9. Let G be a group, H a subgroup of G and K a subset of G. We
define the set D f

H (K ) of maps displacing K far away by

D f
H (K )= {h0 ∈ G : for all g1, . . . , gk ∈ G, there exists h ∈ G such that

hh0h−1K (hh0h−1)−1 commutes with g1 Hg−1
1 ∪ · · · ∪ gk Hg−1

k }.

Let ν be a conjugation-invariant pseudonorm on a group G. For a subset K of G,
we define the far away displacement energy EH,ν(K ) of K by

EH,ν(K )= inf
g∈D f

H (K )
ν(g).

Definition 1.10. Let G be a group and H a subgroup of G. The pair (G, H)
satisfies the property FM if G and H satisfy the following conditions.

(1) G is c-generated by H ,

(2) For any elements h1, . . . , hk of G, D f
H (h1 Hh−1

1 ∪ · · · ∪ hk Hh−1
k ) 6=∅.

A group G satisfies the property FM if (G, H) satisfies the property FM for some
subgroup H .

For a group G, we define the set FM(G) by

FM(G)= {H ≤ G; (G, H) satisfies the property FM}.

We give some examples satisfying the property FM.
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Proposition 1.11. (1) For any integer i , the pair (B∞, Bi ) satisfies the property
FM, and so does the pair ([B∞, B∞], [Bi , Bi ]).

(2) We consider the Riemannian surface 6∞ =
⋃
∞

k=16
1
k where 61

k is the Rie-
mannian surface which has genus k and 1 puncture. The pair of mapping class
groups (MCG(6∞),MCG(61

i )) satisfies the property FM for any integer i .

(3) The pair (Ham(R2n),Ham(B2n)) satisfies the property FM, and so does the
pair ([Ham(R2n),Ham(R2n)], [Ham(B2n),Ham(B2n)]).

Our main theorem is the following one.

Theorem 1.12. Let G be a group satisfying the property FM and ν a conjugation-
invariant pseudonorm on G. Then,

(1) For any element g of G such that sν(g) > 0, there exists a function φ : G→ R

which is a homogeneous H-quasimorphism for any element H of FM(G) such
that φ(g) > 0.

(2) For any element g of the commutator subgroup [G,G] and any H ∈ FM(G),

sν(g)≤ 8 sup
φ

φ(g) · EH,ν(H)
D(φ)

,

where sup is taken over the set of homogeneous H-quasimorphisms φ :G→R.

In Section 2, we construct the normed vector space Aν and prove Theorem 1.12
by applying the Hahn–Banach theorem to Aν . In Section 3, we prove that Aν is a
normed vector space. In Section 4, we prove Proposition 1.11. In Section 5, we pose
a generalization of Theorem 1.12 (Problem 5.6) and give its application to symplectic
geometry. There, we prove that “stably nondisplaceable subsets of symplectic man-
ifolds are heavy” in a very rough sense if the positive answer of Problem 5.6 holds.

2. Proof of main theorem

To construct controlled quasimorphisms by using the Hahn–Banach theorem, we
consider the normed vector space Aν which we define here. The idea of our
construction comes from [Calegari and Zhuang 2011].

For a group G, we define the set AG =
∐
∞

k=0(G×R)k. We denote elements of
AG by gs1

1 · · · g
sk
k , where g1, . . . , gk ∈ G and s1, . . . , sk are real numbers.

Let ν be a conjugation-invariant pseudonorm on G. We define the R≥0-valued
function ‖ · ‖ν : AG→ R≥0 by

‖gs1
1 · · · g

sk
k ‖ν = lim

n→∞

1
n
· ν(g[s1n]

1 . . . g[skn]
k ),

where [ · ] denotes the integer part. For the trivial element 1 ∈ (G×R)0 of AG , we
define ‖1‖ν = 0.
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Proposition 2.1. Let ν be a conjugation-invariant pseudonorm on a group G
satisfying the property FM. Then for any element gs1

1 · · · g
sk
k of AG , the above

limit ‖gs1
1 · · · g

sk
k ‖ν exists. Thus ‖ · ‖ν is well defined.

We prove Proposition 2.1 in Section 3. First, we define some operations on AG .
For elements g= gs1

1 · · · g
sk
k , h= ht1

1 · · · h
tl
l of AG and a real number λ, we define

g · h, g and g(λ) by

g · h= gs1
1 · · · g

sk
k ht1

1 · · · h
tl
l , g= g−sk

k · · · g−s1
1 and g(λ) = gλs1

1 · · · g
λsk
k .

By the definition of conjugation-invariant pseudonorms, we can confirm that the
function ‖·‖ν : AG→R satisfies the following properties easily. For any g, h∈ AG ,

‖g · h‖ν ≤ ‖g‖ν +‖h‖ν, ‖h · g · h‖ν = ‖g‖ν and ‖g‖ν = ‖g‖ν .

We define the equivalence relation ∼ by g∼ h if and only if ‖g ·h‖ν = 0. We denote
the set AG/∼ by Aν and the function ‖ · ‖ν : AG→ R on AG induces the function
‖ · ‖ν : Aν→ R on Aν .

In the present paper, we want to consider Aν as an R-vector space with the norm
‖ · ‖ν . We define a sum operation, an inverse operation and an R-action on Aν . For
elements g = [g], h= [h] of Aν and a real number λ, we define g+ h and λg by

g+ h= [g · h] and λg = [g(λ)].

Proposition 2.2. Assume that G satisfies the property FM. Then the above opera-
tions are well defined.

To use the Hahn–Banach theorem, we prove that Aν is a normed vector space.

Proposition 2.3. Assume that G satisfies the property FM. Then (Aν, ‖ · ‖ν) is a
normed vector space with respect to the above operations.

We prove Proposition 2.2 and 2.3 in Section 3.
Let G be a group and ν a conjugation-invariant pseudonorm on G. Let L(G, ν)

denote the set of Lipschitz continuous (linear) homomorphisms from Aν to R. By
the Hahn–Banach theorem, Proposition 2.3 implies the following proposition.

Proposition 2.4. Assume that G satisfies the property FM. Then for any g ∈ Aν ,

‖g‖ν = sup
φ̂∈L(G,ν)

φ̂(g)

l(φ̂)
,

where l(φ̂) is the optimal Lipschitz constant of φ̂.

For an element φ̂ of L(G, ν), we define the map φ : G→ R by φ(g)= φ̂([g1
]).

Proposition 2.5. Let H be an element of FM(G). For any element φ̂ of L(G, ν), φ
is a homogeneous H-quasimorphism. Moreover, D(φ)≤ 8l(φ̂) · EH,ν(H).
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To prove Proposition 2.5, we use the following lemmas:

Lemma 2.6. Let G be a group and H, K subgroups of G. Assume (G, H) satisfies
the property FM. Then for any g∈G and any element f ∈ K, ν([g, f ])≤ 4EH,ν(K ).

Proof. Let f, g and h0 be elements of K ,G and D f
H (K ), respectively. Since G is

c-generated by H and the set { f, g} is a finite set, there exist elements h1, . . . , hk

of G such that f, g ∈ 〈h1 Hh−1
1 , . . . , hk Hh−1

k 〉.
Then, by the definition of D f

H (K ), there exists an element h of G such that
(hh0h−1)K (hh0h−1)−1 commutes with 〈h1 Hh−1

1 , . . . , hk Hh−1
k 〉. Since f ∈ K

and f, g ∈ 〈h1 Hh−1
1 , . . . , hk Hh−1

k 〉, (hh0h−1) f (hh0h−1)−1 commutes with both
of f and g and thus [g, f ] = [g, [ f, hh0h−1

]] holds.
Since ν is a conjugation-invariant pseudonorm,

ν([g, f ])≤ ν(g[ f, hh0h−1
]g−1)+ ν([ f, hh0h−1

]
−1)= 2ν([ f, hh0h−1

])

≤ 2(ν( f (hh0h−1) f −1)+ ν((hh0h−1)−1))

= 4ν(hh0h−1)= 4ν(h0).

By taking the infimum, ν([g, f ])≤ 4EH,ν(K ). �

Lemma 2.7 [Entov and Polterovich 2006],[Kimura 2016]. Let G be a group, H
a subgroup of G and C a positive real number. Assume that a map φ : G → R

satisfies |φ( f )+ φ(g)− φ( f g)| ≤ C for any elements f, g of G with νH ( f )= 1.
Then φ is an H-quasimorphism. Moreover, D(φ)≤ 2C.

Proof of Proposition 2.5. Let φ̂ be an element of L(G, ν) and f, g elements of G
with νH ( f ) = 1. Since H is a subgroup, νH ( f i ) = 1 for any nonzero integer i .
Since ν is a conjugation-invariant pseudonorm, by Lemma 2.6,

|φ(g)+φ( f )−φ( f g)|

= |φ̂([g1
])+ φ̂([ f 1

])− φ̂([( f g)1])|

= |φ̂([g1
] + [ f 1

] + (−1)[( f g)1])|

≤ l(φ̂) · lim
m

m−1
· ν(gm f m(g−1 f −1)m)

= l(φ̂) · lim
m

m−1
· ν((gm−1

[g, f m
]g−m+1)(gm−2

[g, f m−1
]g−m+2)···(g0

[g, f ]g0))

≤ l(φ̂) · liminf
m

m−1
·

m−1∑
i=1

ν([g, f i
])

≤ l(φ̂) · liminf
m

m−1
· (m− 1) · 4EH,ν(H)

= 4l(φ̂) · EH,ν(H).
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Thus, by Lemma 2.7, φ is an H -quasimorphism and D(φ) ≤ 8l(φ̂) · EH,ν(H).
Since φ̂ is a homomorphism, φ : G→ R is a homogeneous H -quasimorphism. �

Proof of Theorem 1.12. Note that ‖[g1
]‖ν = sν(g) for any element g of G. Then (1)

follows from Proposition 2.4 and 2.5. To prove (2), it is sufficient to prove it for an
element g of [G,G] with sν(g) > 0. Then, by Proposition 2.4 and ‖[g1

]‖ν = sν(g),
there exists an element φ̂ of L(G, ν) satisfying φ(g)= φ̂([g1

]) 6=0. Since g∈[G,G],
D(φ) > 0. Thus Proposition 2.5 implies 8l(φ̂)−1

≤ D(φ)−1
· EH,ν(H). Therefore

Proposition 2.4 implies

sν(g)≤ 8 sup
φ

φ(g) · EH,ν(H)
D(φ)

. �

3. Proof of being a normed vector space

Definition 3.1. Let H be a subgroup of a group G and ν a conjugation-invariant
pseudonorm on G. For elements g1, . . . , gk of G, we define the far away displace-
ment energy EH,ν[g1, . . . , gk] of (g1, . . . , gk) by

EH,ν[g1, . . . , gk] = inf EH,ν(〈h1 Hh−1
1 , . . . , hl Hh−1

l 〉),

where inf is taken over h1, . . . , hl such that g1, . . . , gk ∈ 〈h1 Hh−1
1 , . . . , hl Hh−1

l 〉.
If (G, H) satisfies the property FM, EH,ν[g1, . . . , gk]<∞ for any g1, . . . , gk ∈ G.

To prove Proposition 2.1, 2.2 and 2.3, we use the following lemma:

Lemma 3.2 [Calegari and Zhuang 2011]. Let ν a conjugation-invariant pseudonorm
on a group G. For any elements g1, . . . , gk of G and integers s1, . . . , sk, t1, . . . , tk ,

ν((gs1
1 · · · g

sk
k )
−1(gt1

1 · · · g
tk
k ))≤

k∑
i=1

|ti − si | · ν(gi ).

Proof. By using a graphical calculus argument (for example, see 2.2.4 of [Calegari
2009]), there exist elements h1, . . . , hk of 〈g1, · · · , gk〉 such that

(gs1
1 · · · g

sk
k )
−1(gt1

1 · · · g
tk
k )= h−1

k gtk−sk
k hk · · · h−1

1 gt1−s1
1 h1.

Since ν is a conjugation-invariant pseudonorm,

ν((gs1
1 · · · g

sk
k )
−1(gt1

1 · · · g
tk
k ))≤

k∑
i=1

ν(h−1
i gti−si

i hi )≤

k∑
i=1

|ti − si | · ν(gi ). �

Proof of Proposition 2.1. Fix an element g=[gs1
1 · · · g

sk
k ] of Aν . Define a function F :

Z>0→R by F(m)=ν(g[s1m]
1 · · · g[skm]

k ). By Fekete’s Lemma, it is sufficient to prove
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that there exists a positive real number C such that F(m+ n)≤ F(m)+ F(n)+C
for any positive integers m, n. By Lemma 3.2,

F(m+ n)= ν(g[s1(m+n)]
1 · · · g[sk(m+n)]

k )

≤ ν(g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k )

+ ν((g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k )−1(g[s1(m+n)]
1 · · · g[sk(m+n)]

k ))

≤ ν(g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k )+

k∑
i=1

ν(gi ).

By using a graphical calculus argument, there exists an integer l(k) which depends
only on k and elements f1, . . . , fl(k), f ′1, . . . , f ′l(k) of 〈g1, . . . , gk〉 such that

(g[s1m]
1 ···g[skm]

k )−1(g[s1n]
1 ···g

[skn]
k )−1(g[s1m]+[s1n]

1 ···g[skm]+[skn]
k )=[ f1, f ′1]···[ fl(k), f ′l(k)].

Fix an element H of FM(G). Then EH,ν[g1, . . . , gk]<∞. Thus, by Lemma 2.6,

F(m+ n)− F(m)− F(n)

≤ν(g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k )+

k∑
i=1

ν(gi )−ν(g
[s1m]
1 · · · g[skm]

k )−ν(g[s1n]
1 · · · g[skn]

k )

≤ ν((g[s1m]
1 · · · g[skm]

k )−1(g[s1n]
1 · · · g[skn]

k )−1(g[s1m]+[s1n]
1 · · · g[skm]+[skn]

k ))+

k∑
i=1

ν(gi )

≤ ν([ f1, f ′1] · · · [ fl(k), f ′l(k)])+
k∑

i=1

ν(gi )

≤

l(k)∑
j=1

ν([ f j , f ′j ])+
k∑

i=1

ν(gi )

≤ 4l(k)EH,ν[g1, . . . , gk] +

k∑
i=1

ν(gi ).

Thus we can apply Fekete’s Lemma. �

To prove Proposition 2.2 and 2.3, we use the following lemmas.

Lemma 3.3. Let G be a group satisfying the property FM and ν any conjugation-
invariant pseudonorm on G. Then for any g ∈ AG and any real numbers λ1, λ2,

‖g(λ1+λ2) · g(λ1) · g(λ2)‖ν = 0.

Proof. Assume that g is represented by gs1
1 gs2

2 · · · g
sk
k ∈ AG . For any integer n,

by using a graphical calculus argument, there exist elements fn,1, . . . , fn,l(k) and
f ′n,1, . . . , f ′n,l(k) of 〈g1, . . . , gk〉 such that

(g[nλ1s1]+[nλ2s1]
1 g[nλ1s2]+[nλ2s2]

2 ···g[nλ1sk ]+[nλ2sk ]
k )−1

(g[nλ1s1]
1 g[nλ1s2]

2 ···g[nλ1sk ]
k )(g[nλ2s1]

1 g[nλ2s2]
2 ···g[nλ2sk ]

k )=[ fn,1, f ′n,1]···[ fn,l(k), f ′n,l(k)].
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Fix H ∈FM(G). Then EH,ν[g1, . . . , gk]<∞. Thus, by Lemma 3.2 and Lemma 2.6,

‖g(λ1+λ2) · g(λ1) · g(λ2)‖ν

= lim
n→∞

1
n
· ν
(
(g[nλ1s1+nλ2s1]

1 · · · g[nλ1sk+nλ2sk ]
k )−1

(g[nλ1s1]
1 · · · g[nλ1sk ]

k )(g[nλ2s1]
1 · · · g[nλ2sk ]

k )
)

≤ lim
n→∞

1
n
·

(
ν((g[nλ1s1]+[nλ2s1]

1 · · · g[nλ1sk ]+[nλ2sk ]
k )−1

(g[nλ1s1]
1 · · · g[nλ1sk ]

k )(g[nλ2s1]
1 · · · g[nλ2sk ]

k ))+

k∑
i=1

ν(gi )

)

= lim
n→∞

1
n
·

(
ν([ fn,1, f ′n,1] · · · [ fn,l(k), f ′n,l(k)])+

k∑
i=1

ν(gi )

)

≤ lim
n→∞

1
n
·

( l(k)∑
j=1

ν([ fn, j , f ′n, j ])+

k∑
i=1

ν(gi )

)

≤ lim
n→∞

1
n
·

(
4l(k)EH,ν[g1, . . . , gk] +

k∑
i=1

ν(gi )

)
= 0. �

Lemma 3.4. Let G be a group satisfying the property FM and ν a conjugation-
invariant pseudonorm on G. For g1, . . . , gk ∈ G and real numbers λ, s1, . . . , sk ,

lim
n→∞

1
n
· ν(g[λs1n]

1 · · · g[λskn]
k )= |λ| lim

n→∞

1
n
· ν(g[s1n]

1 · · · g[skn]
k ).

Proof. We first prove for the case when λ is a positive rational number, i.e., λ= q/p
where p, q are positive integers. By the existence of the limits (Proposition 2.1),
since the limit of any subsequence equals that of the original sequence,

lim
n→∞

1
n
· ν(g[λs1n]

1 · · · g[λskn]
k )= lim

n→∞

1
pn
· ν(g[qs1n]

1 · · · g[qskn]
k )

= lim
n→∞

q
pn
· ν(g[s1n]

1 · · · g[skn]
k )

= λ lim
n→∞

1
n
· ν(g[s1n]

1 · · · g[skn]
k ).

We prove for the case λ=−1.
Let g denote the element gs1

1 gs2
2 · · · g

sk
k of AG . By Lemma 3.3, [g(−1)

· g] =
[g(0)] = [1]. Recall that 1 ∈ (G×R)0 is the trivial element of AG . Thus [g(−1)

] =

[g(−1)
· g · g] = [1 · g] = [g]. Therefore ‖(−1)g‖ν = ‖g‖ν = ‖g‖ν and we have

completed the proof for the case when λ is a rational number.
Since Lemma 3.2 implies that the function R → R, λ 7→ limn→∞(1/n) ·

ν(g[λs1n]
1 · · · g[λskn]

k ) is continuous, we have completed the proof. �
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Proof of Proposition 2.2. Assume that elements f1, f2, g1, g2 of AG satisfy [f1] =

[f2] and [g1] = [g2]. Then

‖(f1 · g1) · (f2 · g2)‖ν = ‖f1 · g1 · g2 · f2‖ν

≤ ‖f1 · g1 · g2 · f1‖ν +‖f1 · f2‖ν

= ‖g1 · g2‖ν +‖f1 · f2‖ν = 0.

Thus [f1 · g1] = [f2 · g2].
Assume g1, g2 ∈ AG satisfy [g1] = [g2]. For any λ ∈ R, Lemma 3.4 implies
‖g(λ)1 · g2

(λ)
‖ν = ‖(g1 · g2)

(λ)
‖ν = |λ| · ‖(g1 · g2)‖ν = 0. Thus [g(λ)1 ] = [g

(λ)
2 ]. �

Lemma 3.5. Let G be a group satisfying the property FM and ν a conjugation-
invariant pseudonorm on G. Then for any elements f, g of Aν ,

f+ g = g+ f.

Proof. Assume f, g are represented by [f] = [ f s1
1 f s2

2 · · · f sk
k ], [g] = [g

t1
1 gt2

2 · · · g
tl
l ],

respectively. Fix an element H of FM(G). Then EH,ν[g1, . . . , gl] <∞. Since
g[t1n]

1 g[t2n]
2 · · · g[tl n]l ∈ 〈g1, . . . , gl〉 for any n, Lemma 2.6 implies

‖f · g · (g · f)‖ν = ‖f · g · f · g‖ν

= lim
n→∞

1
n
· ν
(
( f [s1n]

1 f [s2n]
2 · · · f [skn]

k )(g[t1n]
1 g[t2n]

2 · · · g[tl n]l )

( f [s1n]
1 f [s2n]

2 · · · f [skn]
k )−1(g[t1n]

1 g[t2n]
2 · · · g[tl n]l )−1)

= lim
n→∞

1
n
· ν
(
[ f [s1n]

1 f [s2n]
2 · · · f [skn]

k , g[t1n]
1 g[t2n]

2 · · · g[tl n]l ]
)

= lim
n→∞

1
n
· 4EH,ν[g1, . . . , gl] = 0.

Thus f+ g = [f · g] = [g · f] = g+ f. �

Proof of Proposition 2.3. By Lemma 3.3, 3.4 and 3.5, for any elements f, g of Aν
and real numbers λ1, λ2,

(λ1+ λ2)g = λ1g+ λ2g, ‖λ1g‖ν = |λ1| · ‖g‖ν, and f+ g = g+ f.

We can confirm the other axioms of a normed vector space easily. Thus we complete
the proof of Proposition 2.3. �

4. Proof that examples satisfy the property FM

In the present section, we prove that (Ham(R2n),Ham(B2n)) satisfies the property
FM. We can prove other parts of Proposition 1.11 similarly.

We use the following notations. For a diffeomorphism g on a manifold M, let
Supp(g) denote the support of g. For a point p of R2n and a positive real number
R, let B2n(p, R) denote a subset {x ∈ R2n

; ‖x − p‖< R} of R2n.
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Proof. For simplicity, let B denote the subgroup Ham(B2n) and p0 denote the point
(3, 0, . . . , 0) of R2n.

Let f0 be a Hamiltonian diffeomorphism on R2nsuch that f0(B
2n)= B2n(p0, 1).

Fix Hamiltonian diffeomorphisms g1, . . . , gk on R2n. Then there exists a pos-
itive real number R such that Supp(g1) ∪ · · · ∪ Supp(gk) ⊂ B2n(0, R). Since
f0(B

2n) = B2n(p0, 1) and B2n(p0, 1)∩B2n
= ∅, we can take a Hamiltonian dif-

feomorphism f such that f (B2n) = B2n and f f0(B
2n) ∩ B2n(0, R) = ∅. Since

( f f0 f −1)B( f f0 f −1)−1
= Ham( f f0 f −1(B2n))= Ham( f f0(B

2n)) and

g1Bg−1
1 ∪ · · · ∪ gkBg−1

k = Ham(g1(B
2n)∪ · · · ∪ gk(B

2n))⊂ Ham(B2n(0, R)),

f f0(B
2n) ∩ B2n(0, R) = ∅ implies that ( f f0 f −1)B( f f0 f −1)−1 commutes with

g1Bg−1
1 ∪ · · · ∪ gkBg−1

k . Thus f0 ∈ D f
B(B).

Note that Banyaga’s [1978] fragmentation lemma states that for any Hamiltonian
diffeomorphism g, there exist Hamiltonian diffeomorphisms f1, . . . , fk such that
g ∈ 〈 f1B f −1

1 , . . . , fkB f −1
k 〉. Thus Ham(R2n) is c-generated by B and the proof is

complete. �

5. Are stably nondisplaceable subsets heavy?
Bavard’s duality in Hofer’s geometry

We have considered subgroups which are displaceable far away. We now pose a
problem on displaceable subgroups and give its application to symplectic geometry.

On notions related to symplectic geometry, we follow [Entov 2014].

Definition 5.1. Let G be a group, H a subgroup of G and µ : G → R an H -
quasimorphism on G. Ifµ(gn)=nµ(g) for any element g of G and any nonnegative
integer n, µ is called semihomogeneous.

Let (M, ω) be a 2m-dimensional closed symplectic manifold. A subset X of
(M, ω) is called displaceable if X ∩ φ1

F (X) = ∅ for some Hamiltonian function
F : S1

×M→R where φF is the Hamiltonian diffeomorphism generated by F and
X is the topological closure of X . Otherwise, X is nondisplaceable. Let DO(M)
denote the set of displaceable open subsets of (M, ω). A subset X of a symplectic
manifold M is stably displaceable if X×S1 is displaceable in M×T ∗S1. Otherwise,
X is stably nondisplaceable.

Entov and Polterovich [2006] defined for an idempotent a of the quantum ho-
mology Q H∗(M, ω), the asymptotic spectral invariant µa : H̃am(M)→ R on the
universal covering H̃am(M) of the group Ham(M) of Hamiltonian diffeomorphisms
in terms of Oh–Schwarz spectral invariants and proved that µa is a semihomoge-
neous H̃amU (M)-quasimorphism for any element U of DO(M). Here H̃amU (M)
is the set of elements of H̃am(M) which are generated by Hamiltonian functions
with support in S1

×U.
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A Hamiltonian function F : S1
×M→ R is normalized if

∫
M Ftω

m
= 0 for any

t ∈ S1.

Definition 5.2 [Entov and Polterovich 2009]. Let (M, ω) be a closed symplectic
manifold and a an idempotent of Q H∗(M, ω). A compact subset X of (M, ω) is
a-heavy if for any normalized Hamiltonian function F : S1

×M→ R,

−µa(φF )≥ vol(M) · inf
S1×X

F,

where vol(M)=
∫

M ω
m.

In particular, if X is a-heavy, µa(φF ) < 0 for any normalized Hamiltonian
function F with F |S1×X > 0.

Remark 5.3. The above definition of heaviness is different from the one of [Entov
and Polterovich 2009] and [Entov 2014] (in their definition, they consider only
autonomous Hamiltonian functions). However, as remarked in [Seyfaddini 2014],
the above definition is known to be equivalent.

Entov and Polterovich [2009] also proved that heavy subsets are stably nondis-
placeable. In the present section, we consider the converse problem, “are stably
nondisplaceable subsets heavy?”

Definition 5.4. Let G be a group, H a subgroup of G and K a subset of G. We
define the set DH (K ) of maps displacing K by

DH (K )= {h0 ∈ G; h0K (h0)
−1 commutes with H}.

Definition 5.5. Let G be a group and H a subgroup of G. The pair (G, H) satisfies
the property FD if G and H satisfy the following conditions:

(1) G is c-generated by H ,

(2) DH (H) 6=∅.

A group G satisfies the property FD if (G, H) satisfies the property FD for some
subgroup H .

For a group G which satisfies the property FD, we define the set FD(G) by

FD(G)= {H ≤ G; (G, H) satisfies the property FD}.

We pose the following problem.

Problem 5.6. Let G be a group satisfying the property FD, H an element of FD(G)
and ν a conjugation-invariant pseudonorm on G. Prove that for any element g of G
such that sν(g) > 0, there exists a function µ :G→R which is a semihomogeneous
H -quasimorphism for any element H of FD(G) such that µ(g) > 0.

Here, we give an application of Problem 5.6 to symplectic geometry.
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Proposition 5.7. Assume that the positive answer of Problem 5.6 holds.
Let X be a stably nondisplaceable compact subset of a closed symplectic manifold

(M, ω). For any normalized Hamiltonian function F : S1
×M→R with F |S1×X >0,

there exists a function µF : H̃am(M)→R which is a semihomogeneous H̃amU (M)-
quasimorphism for any element U of DO(M) such that µF (φF ) < 0.

Proposition 5.7 states that “stably nondisplaceable subsets are heavy” in a very
rough sense if the positive answer of Problem 5.6 holds.

To prove Proposition 5.7, we use the following theorem, due to Polterovich:

Theorem 5.8 [Polterovich 1998, 2001]. Let X be a stably nondisplaceable subset
of a closed symplectic manifold (M, ω). For any normalized Hamiltonian function
F : S1

×M→ R with F |S1×X ≥ p for some positive number p, ‖φF‖H ≥ p. Here
‖·‖H : H̃am(M)→R is the Hofer norm which is known to be a conjugation-invariant
pseudonorm.

Proof of Proposition 5.7. Since X is compact, there exists some positive number p
with F |S1×X ≥ p. For any positive integer n, we define a Hamiltonian function
F (n) : S1

× M → R by F (n)(t, x) = n · F(nt, x). Note that φF (n) = (φF )
n. Then,

by F (n)|S1×X ≥ np and Theorem 5.8, ‖(φF )
n
‖H ≥ np for any positive integer n.

Since H̃amU (M) ∈ FD(H̃am(M)) for any element U of DO(M), by the positive
answer of Problem 5.6, there exists a function µ′F : H̃am(M)→ R which is a
semihomogeneous H̃amU (M)-quasimorphism for any element U of DO(M) such
that µ′F (φF ) > 0. Then setting µF =−µ

′

F completes the proof. �
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