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ON BISECTIONAL NONPOSITIVELY CURVED COMPACT
KÄHLER–EINSTEIN SURFACES

DANIEL GUAN

We prove a conjecture on the pinching of the bisectional curvature of non-
positively curved Kähler–Einstein surfaces. We also prove that any compact
Kähler–Einstein surface M is a quotient of the complex two-dimensional
unit ball or the complex two-dimensional plane if M has nonpositive Ein-
stein constant and, at each point, the average holomorphic sectional curva-
ture is closer to the minimum than to the maximum.

1. Introduction

In [Siu and Yang 1981] the authors conjectured that any compact Kähler surface
with negative bisectional curvature is a quotient of the complex two-dimensional
unit ball. They proved that there is a number a ∈

( 1
3 ,

2
3

)
such that if, at every

point P , Kav − Kmin ≤ a[Kmax − Kmin] then M is a quotient of the complex
ball. Here Kmin, Kmax and Kav is the minimal, maximal and average value of the
holomorphic sectional curvature, respectively. The number a they obtained was
a< 2/

(
3
[
1+

√
6
11

])
< 0.38 (see [Polombo 1992, p. 398]). In [Hong et al. 1988], Yi

Hong pointed out that this is also true if a≤ 2/
(
3
[
1+

√
1
6

])
< 0.476. We observed in

[Hong et al. 1988, Theorem 2] that if a ≤ 1
2 , then there is a ball-like point P . That

is Kmax = Kmin at P . We notice here that
√

1
6 >

1
3 . Therefore, we conjectured in

[Hong et al. 1988] that M is a quotient of the complex ball if a = 1
2 . In general,

we believe that we might not get a quotient of the complex ball if a > 1
2 . Around

1992 Hong Cang Yang almost proved this conjecture except for some technical
difficulties, see the argument of Theorem 1.2 in [Chen et al. 2011]. Polombo [1988;
1992] used a different method and proved that a can be (3+ (4

√
3)/3)/11< 0.48

(according to [Chen et al. 2011, p. 2628 right before Theorem 1.2]), see [Polombo
1988, p. 669] or [Polombo 1992, p. 398]. In [Chen et al. 2011], the authors improved
the constant to a < 1

2 which gave a proof of a weaker version of the conjecture.
We first notice that in the proof of Theorem 2 in [Hong et al. 1988] (for which

this author was responsible) we proved that if Kav− Kmin =
1
2 [Kmax− Kmin] at P ,
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then P must be a ball-like point (for this part, any negativity of the curvature is not
needed except to use the result from [Siu and Yang 1981] when A = B). See the
remark after the Theorem 1 in [Hong et al. 1988]. According to [Siu and Yang 1981,
p. 485, Proposition 4] the subset of ball-like points is either the whole manifold
or a real codimension two analytic subvariety. Since the function considered in
Theorem 1.2 of [Chen et al. 2011] is bounded, it can be extended to all of M , is a
constant and must be zero. Notice that we only need that the bisectional curvature
is nonpositive. With this in mind, we also have the possibility of the flat case. That
is, the manifold could also be a quotient of C2 if the Einstein constant is zero. This
case should also be included in the main theorem of [Siu and Yang 1981, p. 472]
and Theorems A and 1 of [Hong et al. 1988].

Since [Hong et al. 1988] was only written in Chinese, we provide a mostly self
contained account here. Also, Polombo [1988; 1992] had something more general
than stated above. Therefore, we generalized our result to the case of nonpositive
Einstein constant.

Theorem. Let M be a connected compact Kähler–Einstein surface with nonpositive
scalar curvature, if we have

Kav− Kmin ≤
1
2 [Kmax− Kmin]

at every point, then M is a compact quotient of either the complex two-dimensional
unit ball or the two-complex-dimensional plane.

This note is written in such a way that experts who are familiar with [Hong
et al. 1988; Chen et al. 2011] will be able to understand the proof of the conjecture
stated in those works from the present introduction. For those only familiar with the
second of those references, the present Section 2 should be enough to understand
the proof of the conjecture. Notice that we do not need the nonpositivity of the
bisectional curvature except to apply the result of [Siu and Yang 1981] or [Chen
et al. 2011] to the case A = B. We shall give a complete proof of the conjecture in
Section 3, with a simpler explanation than that of [Chen et al. 2011] for the last
step, that also explains away the mystery of the negativity. In Section 4, we apply
these methods to prove our theorem.

To the author, the conjecture in [Siu and Yang 1981] is very important to complex
geometry. This work is heavily dependent on earlier works in this subject. Although
we are able to prove the conjecture from [Hong et al. 1988; Chen et al. 2011] and
our main theorem, there is more work which needs to be done in the direction
of compact complex surfaces with negative holomorphic bisectional, or even real,
sectional curvatures. Therefore, the author thinks that it is proper to write this paper
with an emphasis on the nonpositive holomorphic bisectional curvature case instead
of the case of our main theorem.



KÄHLER–EINSTEIN SURFACES OF NONPOSITIVE BISECTIONAL CURVATURE 345

2. Existence of ball-like points

Here, we repeat the argument in the proof of Theorem 2 in [Hong et al. 1988].

Proposition 1 [Hong et al. 1988, p. 597–599]. Suppose that

Kav− Kmin ≤
1
2 [Kmax− Kmin]

for every point on the compact Kähler–Einstein surface with nonpositive holomor-
phic bisectional curvatures. There is at least one ball-like point.

Proof. Throughout this paper, as in [Siu and Yang 1981; Chen et al. 2011], we
assume that {e1, e2} is a unitary basis at a given point P with

R1111 = R2222 = Kmin,

R1112 = R2221 = 0,

A = 2R1122− R1111 ≥ 0,

B = |R1212|.

As in [Siu and Yang 1981], we always have A≥ |B| and we assume that B = R1212
(i.e., the latter is nonnegative).

If P is not a ball-like point, according to [Siu and Yang 1981], we can do as
above for a neighborhood U (P) of P whenever A > B (Case 1 in [Siu and Yang
1981], page 475). We should handle the case in which A = B at the end of this
proof. We write

α = e1 =
∑

ai∂i ,

β = e2 =
∑

bi∂i ,

S1111 = R(e1, e1, e1, e1)=
∑

Ri jklai a j akal,

and so on. In particular, we have

S1111 = S2222 = Kmin, S1112 = S2221 = 0.

According to [Siu and Yang 1981], we have

Kmax = Kmin+
1
2(A+ B),

Kav = Kmin+
1
3 A,

1
3 [Kmax− Kmin] ≤ Kav− Kmin ≤

2
3 [Kmax− Kmin].

Our condition in Proposition 1 is therefore equivalent to A≤ 3B. As in [Hong et al.
1988], we let 81 = |B|2/A2

= τ 2.
If there is no ball-like point, since 1

3 ≤ τ ≤ 1, there is a minimal point.
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We shall calculate the Laplacian of 81 at a minimal point, which is not ball-like.
For example, when A = 3B, the minimum 81 =

1
9 , is achieved. The Laplacian at

that point should be nonnegative.
We let

xi =∇i81 = 2 τ
A
[Re∇i S1212+ 3τ∇i S1111].

As we pointed out earlier, we first assume that A does not equal B, then we can
apply the argument in case 1 of [Siu and Yang 1981, p. 475] at the minimal point
since A > B.

As in [Siu and Yang 1981; Hong et al. 1988; Chen et al. 2011], we have

1R1111 =−AR1122+ B2, 1R1212 = 3(R1122− A)B.

At P we have a1 = b2 = 1, a2 = b1 = 0, ∇a1 = ∇b2 = 0 and ∇a2 +∇b1 = 0.
Therefore, we write yi1 =∇i a2 and yi2 =∇i a2. We also have

1(a1+ a1)=−|∇a2|
2, 1(a2+ b2)= 0, ∇i R1112 =−Ayi1− Byi2,

since

0=∇S1112 =∇R1112+ 2R2112∇a2+ B∇a2+ R1111∇b1,

i.e.,

∇R1112 =−A∇a2− B∇a2.

This also gives a similar formula for ∇i R1112. Similarly,

∇S1111 =∇R1111,

∇S1212 =∇R1212,

1S1111 =−2A
∑
|y|2− 4B Re

∑
yi1 yi2− AR1122+ B2,

Re1S1212 = 4A
∑

Re yi1 yi2+ 2B
∑
|y|2+ 3(R1122− A)B.,

∇1S1212 =−Ay22− B y21,

∇2S1212 = Ay11+ By12,

∇1S1212 =−A(6τ 2
− 1)y22− 5Aτ y21+ x1,

∇2S1212 = 5Aτ y12+ A(6τ 2
− 1)y11+ x2.
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As in [Hong et al. 1988, p. 598] at P we have

181 =
2τ1B

A
+

6τ 2

A
1S1111+

1
A2

∑(
|∇S1212|

2
+ |∇S1212|

2)
+

54τ 2

A2

∑
|∇S1111|

2
+

12τ
A2

∑
Re
(
∇i S1111(∇i (S1212+ S2121))

)
= 2τ

[
3Aτ(τ 2

− 1)− 4τ
∑
|y|2+ 4(1− 3τ 2)

∑
Re(yi1 yi2)

]
+ |y22+ τ y21|

2
+ |y11+ τ y12|

2

+
1
A2

[∣∣x1+ A[(1− 6τ 2)y22− 5τ y21]
∣∣2

+
∣∣x2+ A

[
(6τ 2
− 1)y11+ 5τ y12

]∣∣2]
− 18τ 2[

|y12+ τ y11|
2
+ |y21+ τ y22|

2]
+

12τ
A
[
Re[(y21+ τ y22)x1] −Re[(y21+ τ y11)x2]

]
Here we notice that 181 has two general terms. The first term is constant with

respect to x and y, and is always nonpositive since 1
3 ≤ τ ≤ 1.

The second term can be regarded as a hermitian form h in x and y. We can
separate x and y into two groups: x1, y2 j in one group and x2, y1 j in the other.
These two groups of variables are orthogonal to each other with respect to this
hermitian form. That is, h = h1+ h2 where h1 and h2 depend only on the first and
second group of variables, respectively.

We need to check the nonpositivity for each term.
For x2, y11, y12, the corresponding matrix of h2 is 1/A2

−1/A −τ/A
−1/A 2(9τ 2

− 1)(τ 2
− 1) 0

−τ/A 0 0

 ,
and the matrix for h1 of x1, y21, y22 is1/A2 τ/A 1/A

τ/A 0 0
1/A 0 2(9τ 2

− 1)(τ 2
− 1)

 .
When P is a critical point of 81, then x1 = x2 = 0. The matrix for y is clearly

seminegative. Therefore, if there is no ball-like point, then we have, at the minimal
point of 81, that τ 2

= 1 or A = 0 since τ ≥ 1
3 .

If A = 0, then we have a ball-like point, and we are done.
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On the other hand,1 if τ =1, we have A= B at P . Since P is a minimal point, this
implies that A= B on the whole manifold. According to [Siu and Yang 1981, p. 475,
case 2], we have smooth coordinates with Kmax = R1111. (Fortunately, this works
whenever A= B. In general, the original argument might not always work since one
might not have A = B in a neighborhood. However, as was pointed out in [Siu and
Yang 1981, case 1], under our condition the directions for Kmax are always isolated.
Therefore, it might be better to choose Kmax instead of Kmin from the very beginning.
But this is not in the scope of this paper.) Using this new coordinate, we can define
similar functions A1 and B1. In general, B1 =

1
2(A− B) and A1 = −

1
2(A+ 3B).

In our case, B1 = 0 and A1 = −2A. Using this new coordinate, one can do the
calculation for any of the functions in [Siu and Yang 1981; Polombo 1988; 1992;
Chen et al. 2011] that the set of ball-like points is the whole manifold. If one
does not like Polombo’s function 8α [1992, p. 418] with α =− 8

7 , then one might
simply use the function with α =−1 (in [Polombo 1988; Polombo 1992], not the
vector we mentioned in this paper earlier), i.e., the new function is proportional to
82= (3B− A)A. In our case, this is just 2A2. We can apply81/3

2 . This is relatively
easy and is left to the reader. We can also use the argument in [Siu and Yang 1981,
case 1], in which the minimal vectors are not isolated but they are points in a smooth
circle bundle over the manifold so we could choose a smooth section instead.

Also, the preceding paragraph is not needed in Corollary 2 and Lemma 3 since,
in those two propositions, we already have A= 3B. With A= B, one could readily
get that A = B = 0.

If A = 0, Kmax = Kmin and P is a ball-like point, then we have a contradiction.
Therefore, the set of ball-like points is not empty. �

Observe that if A= 3B at P , then81 achieves the minimal value at P and A 6= B
unless P is a ball-like point. That is the first part of the proof of Proposition 1 goes
through. That is, P must be a ball-like point.

Corollary 2. Assume the above, if Kav− Kmin =
1
2 [Kmax− Kmin] at P , then P is a

ball-like point.

Therefore, we have:

Lemma 3. If Kav−Kmin≤
1
2 [Kmax−Kmin] on M , then Kav−Kmin<

1
2 [Kmax−Kmin]

on M − N , where N is the subset of all the ball-like points.

Therefore, we can apply the argument of [Chen et al. 2011]. To do that one
needs the following proposition:

Proposition 4 (see [Siu and Yang 1981] and [Hong et al. 1988, Theorem 3]).
If N 6= M , then N is a real analytic subvariety and codim N ≥ 2.

1This paragraph is not needed for the proofs of Corollary 2 and Lemma 3. Also, in this special
case, the original frame in [Siu and Yang 1981] works. So, one could apply [Siu and Yang 1981].
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As in [Siu and Yang 1981], Proposition 4 gives us a way to the conjecture
by finding a superharmonic function on M which was obtained by Hong Cang
Yang around 1992. In [Siu and Yang 1981; Hong et al. 1988], the authors used
8= 6B2

− A2. Polombo [1992, p. 417, Lemma] used (11A−3B)(B− A)+16AB.
One might ask why do we need another function, why do we not use 81? The
answer is that by a power of 81 we can only correct the Laplacian by |∇81|

2. But
that could only change the upper left coefficients of our matrices as it only provides
|x |2 terms. In the case of 81, it does not work since τ/A 6= 0 but the coefficients
of |y12|

2 and |y21|
2 are zeros. Therefore, we need another function, which was

provided by Hong Cang Yang.

Remark 5. Whenever there is a bounded continuous nonnegative function f on
M such that f (N )= 0, f is real analytic on M − N and 1 f ≤ 0 on M − N , then
f = 0. Here N could be just a codimension two subset. This is in general true
for extending continuous superharmonic functions over a codimension two subset,
see [Siu and Yang 1981; Hong et al. 1988; Chen et al. 2011]. Here, we would
like to give our own reasons why this is true in these special cases. If we define
Ms = {x ∈ M |dist(x,N )≥s} and hs = ∂Ms , then the measure of hs is smaller than
O(s) when s tends to zero. Therefore,

0≥ ln 2
∫

M2δ

1 f ωn
≥

∫ 2δ

δ

[∫
Ms

1 f ωn
]

s−1 ds =
∫ 2δ

δ

[∫
hs

∂ f
∂n

dτ
]

s−1 ds.

But, by applying an integration by parts to the single variable integral, the last term
is about (δ)−1

∫
h2δ
( f −g) dτ→ 0, since f is bounded and f −g tends to 0 near N ,

where g is the f value of the corresponding point on hδ. For example, if f = ra

with a > 0, then

∂ f
∂n
= ara−1

= asa−1 and
∫

hs

∂ f
∂n

dτ = O(sa)→ 0.

Therefore, 1 f = 0 on M − N . Hence f extends over N as a harmonic function.
This implies that f = 0 on M .

Now, let f = (3B − A)a , this is natural after the proof of Proposition 1, we
will show in the next section that 1 f ≤ 0 for a ≤ 1

3 (see the proof in [Chen et al.
2011]). Therefore, A = 3B always. By Corollary 2, we have A = B = 0. This
function is also related to the functions in [Polombo 1992, p. 417] with a1 = a3 = 0.
Polombo had to pick up functions with a1 = a2 to avoid a complication of the
singularities. See page 406 and the first paragraph in page 418 in [Polombo 1992]
and the last paragraph of page 668 in [Polombo 1988]. We shall completely resolve
the difficulty in the next section.
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3. Hong Cang Yang’s function

Let 9 = 3B− A. Around 1992 Hong Cang Yang considered f =91/3.

Lemma 6 [Chen et al. 2011, p. 2630 (13)]. We have

1(3B−A)=3
[
9R1122+B(B−3A)

]
+

3
B |∇(Im R1212)|

2
+6(B−A)

∑
|yi1−yi2|

2.

Let zi =∇i9, then

z1 =∇1(3B− A)= 3
2∇1(R1212+ R2121+ 2R1111),

√
−1∇1(Im R1212)=

1
2∇1(R1212− R2121)

=
1
3 z1−∇1 R2121−∇1 R1111

=
1
3 z1−∇2 R1112+∇2 R1112

=
1
3 z1+ (A− B)y22+ (B− A)y21,

z2 =∇2(3B− A)= 3
2∇2(R2121+ R1212+ 2R1111),

√
−1∇2(Im R1212)=

1
2∇2(R1212− R2121)

=−
1
3 z2+∇2 R1111+∇2 R1212

=−
1
3 z2+∇1 R2111−∇1 R1112

=−
1
3 z2+ (B− A)y12+ (A− B)y11.

We can write the formula in the Lemma 6 as

19 = 3
[
9R1122+ B(B− 3A)

]
− 3 A−B

B
9
∑
|yi1− yi2|

2

+ 2 A−B
B

Re
[
(y12− y11)z2+ (y22− y21)z1

]
+

∑ 1
3B
|z|2.

As in the last section, we have two general terms, the first is negative as is the
constant term of z with respect to y. The second is a hermitian form in z and y. We
can actually let wi = yi∗1− yi∗2 with i∗ 6= i . Then the second term is a sum of two
hermitian forms. One of them is on w1, z1 and the other is on w2, z2. We notice
that the second term is also nonpositive on y (or nonpositive on w, if we assume
that z = 0). We can modify the coefficient of |z|2 (only) by taking the power of 9.
More precisely, if we let g=9a , to make sure that 1g< 0, after taking out a factor
3(A− B)/B we need ∣∣∣∣∣ −9

1
3

1
3

1−39−1(1−a)B
9(A−B)

∣∣∣∣∣≥ 0.

That is,
A− 3B+ 3(1− a)B− A+ B = (3(1− a)− 2)B ≥ 0.
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We have 1− 3a ≥ 0. So, a ≤ 1
3 .

Therefore, we have:

Lemma 7. 1g < 0 for a ≤ 1
3 on M − N.

This is exactly the same as in [Chen et al. 2011]. Actually, the number 1
6 was

already in [Siu and Yang 1981; Hong et al. 1988; Polombo 1988; 1992] for those
quadratic functions.

So, finally we have:

Theorem 8. If Kav− Kmin ≤
1
2 [Kmax− Kmin], then M has a constant holomorphic

sectional curvature.

Remark 9. The reason we did not get this earlier was that there was a difficulty
when A = B. In that case, the argument in [Siu and Yang 1981, p. 475, case 2]
seems not to work. Polombo resolved the problem by using a function which is
symmetric about λ1 = −A/3 and λ2 = A− 3B/6 (see [Polombo 1992] the first
paragraph of page 418 and the end of page 397). However, Hong Cang Yang’s
function 9 is only −6λ2 and therefore is not symmetric after all. To overcome this
difficulty, we let �= {x ∈ M |A=B}. Then according to [Siu and Yang 1981], all our
calculation are good on M −� since N ⊂�. In [Chen et al. 2011, p. 2632] there
was a suggestion on how to prove that codim�≤ 2, although it was not very well
explained. By doing this, everything went through. The relation was that if we use
the argument in [Siu and Yang 1981, p. 475, case 2] using the maximum instead of
the minimum, and we let B1= |R1212| then 2B1= A−B. That is�={x ∈M |B1=0}.
The argument goes as follows:

Case 1: If � is a closed region, we have

0≥
∫

M−�
1g = a

∫
−∂�

9a−1 ∂(−A1−3B1)

∂n

≥ a
∫
−∂�

(2A)a−1 ∂(−A1)

∂n
=−

∫
�

1F1 ≥ 0,

where F1 can be chosen from one of the functions in [Polombo 1992] which satisfy
the symmetric condition on M , e.g., a power of 82 from the proof of Proposition 1,
or one of our functions with a calculation using the new smooth coordinate in [Siu
and Yang 1981, p. 475] with R1111 = Kmax. Actually, A1 itself is proportional to
the λ2 in [Polombo 1992] and is symmetric in the sense of Polombo. On �, F1 is
just our g since B1 = 0. We notice that there is a sign difference for the Laplacian
operator in [Polombo 1992]. Again, on �, since A = B on a neighborhood, the set
of minimum directions is an S1 bundle over �, therefore one can choose a smooth
section of it locally such that the calculation of [Siu and Yang 1981] still works in
our case. That is, one could simply choose F1 to be g.
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Case 2: If � is a hypersurface then the same argument goes through except that∫
∂(M−�)

(A)a−1 ∂A
∂n
= 0,

since A 6= 0 outside a codimension one subset and on�1={x ∈�|A 6=0}, the integral
is integrated from both sides.

Therefore, � is a subset of codimension two and we can apply Remark 5. By the
calculation in Remark 5, we see that g is harmonic on M −�. Now, by Lemma 6,
that implies that B(B− 3A)= 0 and hence A = B = 0 by our assumptions.

4. The generalization

Actually, in the first section of [Siu and Yang 1981], the authors did not require
any negativity. We also see that in Section 2, we do not really need any negativity
except when we apply the formula from Lemma 6 in the Section 3.

In the first section of [Siu and Yang 1981], they also consider the coordinate in
which R1111 achieves the maximum instead of the minimum. We let C = R1122 from
the earlier sections and C1 be the bisectional curvature for the maximal case. Then

Kmin+C = Kmax+C1

is the Einstein constant Q,

C1−C = Kmin− Kmax =−
1
2(A+ B)

and

C1 = C − 1
2(A+ B)= 1

2(R1111− B)= 1
2

(
Q−C1−

1
2(A+ B)− B

)
.

Therefore
3C1 = Q− 1

2(A+ B)− B ≤ 0,

always. Also, C1 = 0 implies that A = B = Q = 0.
The constant term in Lemma 6 is

3
[
(3B− A)C − B(3A− B)

]
= 3

[
(3B− A)

(
C1+

1
2(A+ B)

)
− B(3A− B)

]
=

3
2 [29C1− (A− B)(A+ 5B)]

≤ 0,

always. Therefore, we have the same result only if Q ≤ 0, unless C1 = 0. As
above if C1 = 0 we have A= B = 0, then C = 0 and therefore Kmin = Q = 0. The
manifold is flat.

Thus we conclude the general case. One might conjecture that our theorem is
also true in the higher dimensional cases.
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Remark 10. Notice that this generalization basically covers the results in [Polombo
1988; Polombo 1992] for the Kähler–Einstein case (see Corollary on page 398 of
[Polombo 1992]). See also [Derdziński 1983, p. 415, Proposition 2] for the W+

for a Kähler surface. One might ask whether our result could be generalized to the
Riemannian manifolds with closed half Weyl curvature tensors. This is out of the
scope of this paper although a similar result is true, i.e., λ2 ≤ 1 at every point. To
make the relation between this paper and [Polombo 1988; Polombo 1992] clearer
to the reader, we mention that any one of the half Weyl tensors is harmonic if and
only if it is closed since the tensor is dual to either itself or the negative of itself.
Remark (i) in [Polombo 1992, p. 397] notes that if M is Riemannian–Einstein, then
the second Bianchi identity says that the half Weyl tensors are closed (see also
[Derdziński 1983] page 408 formula (9) and page 411 Remark 1).
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