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Let v be a discrete valuation on the function field of a normal projective
variety X . Ein, Lazarsfeld, Mustat,ă, Nakamaye, and Popa showed
that v induces a nonnegative real-valued continuous function on the
big cone of X , which they called the asymptotic order of vanishing
along v. The case where v is given by the order of vanishing along
a prime divisor was studied earlier by Nakayama, who extended the
domain of the function to the pseudoeffective cone and investigated
the continuity of the extended function.

Here we generalize Nakayama’s results to any discrete valuation v,
using an approach inspired by Lazarsfeld and Mustat,ă’s construction
of the global Okounkov body, which has a quite different flavor from
the arguments employed by Nakayama.

A corollary is that the asymptotic order-of-vanishing function can
be extended continuously to the pseudoeffective cone PE(X) of X if
PE(X) is polyhedral (note that we do not require PE(X) to be rational
polyhedral).

Let X be a normal projective variety over an algebraically closed field k, and let
K (X) be the function field of X . Let v be a discrete valuation of K (X) over k, and
let Z be the center of v on X . Ein, Lazarsfeld, Mustat,ă, Nakamaye, and Popa gave
the following definitions:

Definition 1 [Ein et al. 2006]. Let D be an effective big Cartier divisor on X . We
establish the following notation:

(i) v(D)= v( f ), where f is a local equation of D at the generic point of Z .

(ii) v(|D|)=min{v(D′) : D′ ∈ |D|} = v(D′) for general D′ ∈ |D|.

(iii) v(‖D‖) = limm→∞ v(|m D|)/m. This is called the asymptotic order of
vanishing of D along v.

MSC2010: 14C20.
Keywords: asymptotic order of vanishing, pseudoeffective cone, global Okounkov body, Nakayama’s
σ -decomposition.
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By taking m to be sufficiently divisible, the definition of v(‖D‖) can also be
extended to big Q-divisors D. It is proved in [Ein et al. 2006, Theorem A] that
v(‖D‖) depends only on the numerical equivalence class of D, so it induces a
function on the set of numerical equivalence classes of big Q-divisors. Moreover,
this function extends uniquely to a continuous function on the cone Big(X) of
numerical equivalence classes of big R-divisors. In view of this result, it is natural
to ask whether this function can be extended continuously to the pseudoeffective
cone PE(X), the closure of the big cone Big(X) in the Néron–Severi space N 1(X)R.

The case where v is a divisorial valuation was investigated earlier by Nakayama
[2004] during his study of Zariski decomposition in higher dimensions. More
precisely, let 0 be a prime divisor on a smooth projective variety X , and let v be the
discrete valuation of K (X) given by the order of vanishing at the generic point of 0.
Nakayama used the notation σ0(D) to denote the asymptotic order of vanishing
v(‖D‖) of a big divisor class D ∈Big(X). If D ∈ PE(X) is a pseudoeffective class,
he defined σ0(D) by picking an arbitrary ample class A ∈ N 1(X)R and setting
σ0(D) to be the limit

σ0(D)= lim
ε→0+

σ0(D+ εA),

after establishing that this limit does not depend on the choice of A, in [Nakayama
2004, III.1.5]. In III.1.7 of the same work, Nakayama showed that the function
σ0 : PE(X)→ R≥0 is lower semicontinuous, and he gave an example where it
is not continuous in IV.2.8. It is interesting to note that in his example PE(X) is
not polyhedral. The goal of this short note is to generalize Nakayama’s results to
any discrete valuation v of K (X)/k, using an approach inspired by Lazarsfeld and
Mustat,ă’s construction [2009] of the global Okounkov body, which has a quite
different flavor from the arguments employed by Nakayama. In addition, we will
see that the function v(‖ · ‖) : Big(X)→ R≥0 can be extended continuously to
PE(X) if PE(X) is polyhedral.

Theorem 2. Let X be a normal projective variety over an algebraically closed
field k, and let v be a discrete valuation of K (X) over k. If D ∈ PE(X) is a
pseudoeffective class, then for any ample class A∈ N 1(X)R, limε→0+ v(‖D+εA‖)
does not depend on the choice of A. Moreover, if we denote this limit by σv(D),
then the function

σv : PE(X)→ R≥0 ∪ {+∞}

is lower semicontinuous, and is continuous at every point where PE(X) is locally
polyhedral.

A subset S of Rn is said to be locally polyhedral at a point x ∈ S if there exist a
polytope P ⊂Rn and an open subset U of Rn containing x such that U ∩S=U ∩P .
It follows from Theorem 2 that the function v(‖·‖) : Big(X)→R≥0 can be extended
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continuously to PE(X) if PE(X) is polyhedral, which is the case, for example, when
the Picard number of X is 2. Note that we do not require PE(X) to be rational
polyhedral (cf. [Ein et al. 2006, Theorem D]).

Remark 3. If v is divisorial, the limit limε→0+ v(‖D+εA‖) in Theorem 2 is finite
[Nakayama 2004, III.1.5]. We do not know if this is true for all discrete valuations v,
which is why we include +∞ in the target of σv . In case the value of σv is +∞ at
a point of PE(X), the (semi)continuity of σv should be interpreted with respect to
the usual order topology on R≥0 ∪ {+∞}.

Let us introduce some notions from convex analysis which will be useful in the
proof of Theorem 2. Let f : S→ R∪ {+∞} be a function on a convex subset S
of Rn . We say that f is convex if

f
(
λx1+ (1− λ)x2

)
≤ λ f (x1)+ (1− λ) f (x2)

for all x1, x2 ∈ S and all 0≤ λ≤ 1. The epigraph of f is the set

{(x, y) ∈ S×R : y ≥ f (x)}.

A convex function f is said to be closed if its epigraph is a closed subset of Rn+1.
It is not difficult to show that if f is a closed convex function, then f is lower
semicontinuous.

Proof of Theorem 2. As mentioned earlier, our approach is inspired by the con-
struction of the global Okounkov body due to [Lazarsfeld and Mustat,ă 2009]. The
strategy is to construct the epigraph of the asymptotic order-of-vanishing function
as the closed convex cone spanned by a certain lattice semigroup. To see how this
works for one big divisor D, let N denote the set of nonnegative integers, and let

S(D)= {(m, y) ∈ N2
: y ≥ v(|m D|)},

which is a subsemigroup of N2. Let C(D)= cone(S(D)) be the closed convex cone
spanned by S(D) in R2. Then C(D) is the epigraph of the function x 7→ v(‖x D‖).
In order to get the epigraph of the function v(‖ ·‖) : Big(X)→R≥0, pick a Z-basis
D1, . . . , Dn for N 1(X) such that, after identifying N 1(X)R with Rn by this basis,
we have PE(X)⊆ Rn

≥0. Let

S(X)= {(m1, . . . ,mn, y) ∈ Nn
×N : y ≥ v(|m1 D1+ · · ·+mn Dn|)},

and let
C(X)= cone(S(X))⊆ Rn

≥0×R≥0

be the closed convex cone spanned by S(X). Let

f : PE(X)→ R≥0 ∪ {+∞}
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be the function whose epigraph is C(X). Then f is a closed convex function since
C(X) is a closed convex cone. Moreover, on the big cone Big(X), f coincides
with the function v(‖ · ‖) by [Lazarsfeld and Mustat,ă 2009, Proposition 4.9].

To see what f (D) is if D is on the boundary of PE(X), we invoke a theorem of
Gale, Klee, and Rockafellar, which states that a closed convex function is continuous
at every point where its domain is locally polyhedral ([Gale et al. 1968, Theorem 2];
see also the introduction of [Ernst 2013]). It follows that for any ample A∈ N 1(X)R,
the restriction of f to the half-line D+R≥0 A is continuous. Hence

f (D)= lim
ε→0+

f (D+ εA)= lim
ε→0+

v(‖D+ εA‖).

This shows that the limit on the right does not depend on the choice of A, and that
in fact f = σv. Since σv is a closed convex function, it is lower semicontinuous,
and is continuous at every point where PE(X) is locally polyhedral by the theorem
of Gale, Klee and Rockafellar. �
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