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TOPOLOGICAL INVARIANCE OF
QUANTUM QUATERNION SPHERES

BIPUL SAURABH

The C∗-algebra of continuous functions on the quantum quaternion sphere
H2n

q can be identified with the quotient algebra C(SPq(2n)/SPq(2n−2)). In
the commutative case, i.e., for q=1, the topological space SP(2n)/SP(2n−2)

is homeomorphic to the odd-dimensional sphere S 4n−1. In this paper, we
prove the noncommutative analogue of this result. Using homogeneous C∗-
extension theory, we prove that the C∗-algebra C(H2n

q ) is isomorphic to the
C∗-algebra C(S4n−1

q ). This further implies that for different values of q
in [0, 1), the C∗-algebras underlying the noncommutative spaces H2n

q are
isomorphic.

1. Introduction

Quantization of Lie groups and their homogeneous spaces has played an impor-
tant role in linking the theory of compact quantum groups with noncommutative
geometry. Many authors (see [Vaksman and Soibelman 1990; Podkolzin and
Vainerman 1999; Chakraborty and Pal 2008; Pal and Sundar 2010]) have studied
different aspects of the theory of quantum homogeneous spaces. However, in these
papers, the main examples have been the quotient spaces of the compact quantum
group SUq(n). Neshveyev and Tuset [2012] studied quantum homogeneous spaces
in a more general setup and gave a complete classification of the irreducible repre-
sentations of the C∗-algebra C(Gq/Hq) where Gq is the q-deformation of a simply
connected semisimple compact Lie group and Hq is the q-deformation of a closed
Poisson–Lie subgroup H of G. Moreover, Neshveyev and Tuset [2012] proved
that C(Gq/Hq) is KK-equivalent to the classical counterpart C(G/H). In [Saurabh
2017], we studied the quantum symplectic group SPq(2n) and its homogeneous
space SPq(2n)/SPq(2n− 2), and obtained K -groups of C(SPq(2n)/SPq(2n− 2))
with explicit generators.

The C∗-algebra C(H 2n
q ) of continuous functions on the quantum quaternion

sphere is defined as the universal C∗-algebra given by a finite set of generators
and relations; see [Saurabh 2017]. In the same paper, the isomorphism between
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the quotient algebra C(SPq(2n)/SPq(2n− 2)) and C(H 2n
q ) was established. Now

several questions arise about this noncommutative space H 2n
q :

(1) Topologically, is H 2n
q the same as S4n−1

q , i.e., are the C∗-algebras C(H 2n
q ) and

C(S4n−1
q ) isomorphic?

(2) Are the C∗-algebras C(H 2n
q ) isomorphic for different values of q?

(3) Does the quantum quaternion sphere admit a good spectral triple equivariant
under the SPq(2n)-group action?

We attempt the first two questions in this paper. In the commutative case, that is,
for q = 1, the quotient space SP(2n)/SP(2n− 2) can be realized as the quaternion
sphere H 2n . It can be easily verified that the quaternion sphere H 2n is homeomor-
phic to the odd-dimensional sphere S 4n−1. One can now expect the quotient algebra
C(SPq(2n)/SPq(2n−2)), or equivalently, the C∗-algebra C(H 2n

q ), to be isomorphic
to the C∗-algebra underlying the odd-dimensional quantum sphere S4n−1

q . Using
homogeneous C∗-extension theory, we show that this is indeed the case.

The remarkable work done by L. G. Brown, R. G. Douglas and P. A. Fillmore
[Brown et al. 1977] on extensions of commutative C∗-algebras by compact operators
has led many authors to extend this theory further in order to provide a tool for
analyzing the structure of C∗-algebras. For a nuclear, separable C∗-algebra A and
a separable C∗-algebra B, G. G. Kasparov [1979] constructed the group Ext(A, B)
consisting of stable equivalence classes of C∗-algebra extensions of the form

0→ B⊗K→ E→ A→ 0.

Here E will be called the middle C∗-algebra. One of the important features of
this construction is that the group Ext(A, B) coincides with the group KK1(A, B).
Another important aspect is that it does not demand much. It does not require
the extensions to be unital or essential. But at the same time, it does not provide
much information about the middle C∗-algebras. Since elements of the group
Ext(A, B) are stable equivalence classes and not strongly unitary equivalence
classes of extensions, two elements in the same class may have nonisomorphic
middle C∗-algebras. For a nuclear C∗-algebra A and a finite-dimensional compact
metric space Y (i.e., a closed subset of Sn for some n ∈ N), M. Pimsner, S. Popa
and D. Voiculescu [Pimsner et al. 1979] constructed another group ExtPPV(Y, A)
consisting of strongly unitary equivalence classes of unital homogeneous extensions
of A by C(Y )⊗K. For y0 ∈ Y, the subgroup ExtPPV(Y, y0, A) consists of those
elements of ExtPPV(Y, A) that split at y0. For a commutative C∗-algebra A, the
group ExtPPV(Y, A) was computed by Schochet [1980]. Further, Rosenberg and
Schochet [1981] showed that

ExtPPV(Y, A+)= Ext(A,C(Y )) and ExtPPV(Y+,+, A+)= Ext(A,C(Y )),
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where Y is a finite-dimensional locally compact Hausdorff space, + is the point at
infinity and A+ is the C∗-algebra obtained by adjoining unity to A.

To prove the claim, our idea is to exhibit two short exact sequences of C∗-algebras
in the same equivalence class in the group ExtPPV(T,C(S4n−3

0 )) with C(S4n−1
q ) and

C(H 2n
q ) as middle C∗-algebras and then to compare their middle C∗-algebras. First,

we prove an isomorphism between groups ExtPPV(Y, y0, A) and ExtPPV(Y, y0, 6
2 A)

under certain assumptions on the topological space Y where 62 A is the quantum
double suspension of A and y0 ∈Y. Using this, we describe all elements of the group
ExtPPV(T,C(S2`+1

0 )) explicitly. We compute K -groups of all middle C∗-algebras
that occur in all the extensions of the group ExtPPV(T,C(S2`+1

0 )). Then using the
ideal structure of C(H 2n

q ), we show that the extension

0→ C(T)⊗K→ C(H 2n
q )→ C(S4n−3

0 )→ 0

is unital and homogeneous. Now by comparing the K -groups of middle C∗-algebras,
we prove that the above extension is strongly unitarily equivalent to either the
extension

0→ C(T)⊗K→ C(S4n−1
0 )→ C(S4n−3

0 )→ 0,

or its inverse in the group ExtPPV(T,C(S2`+1
0 )), having C(S4n−1

0 ) as a middle
C∗-algebra. This proves that the C∗-algebras C(H 2n

q ) and C(S4n−1
0 ) are isomorphic;

see [Blackadar 1998, page 147]. For q = 0, it follows immediately as the defining
relations of C(H 2n

0 ) (see [Saurabh 2017]) are exactly the same as those of C(S4n−1
0 ).

In [Hong and Szymański 2002], it was proved that for different values of q in [0, 1),
the C∗-algebras C(S4n−1

q ) are isomorphic. As a consequence, the C∗-algebras
C(H 2n

q ) and C(S4n−1
q ) are isomorphic for all q in [0, 1). Also, this establishes the

q-invariance of the quantum quaternion spheres, as it shows that the C∗-algebras
C(H 2n

q ) are isomorphic for different values of q . Here we must point out that to the
best of our knowledge, the group ExtPPV(Y, A) has not been used before to show
that two C∗-algebras are isomorphic. In that sense, our idea can be considered as
the first of its kind.

We now set up some notation. The standard basis of the Hilbert space L2(N)

will be denoted by {en : n ∈ N}. We denote the left shift operator on L2(N) and
L2(Z) by the same notation S. For m < 0, (S∗)m denotes the operator S−m . Let
pi be the rank-1 projection sending ei to ei . The operator p0 will be denoted
by p. We write L(H) and K(H) for the sets of all bounded linear operators and
compact operators on H, respectively. We denote by K the C∗-algebra of compact
operators. For a C∗-algebra A, 62 A and M(A) are used to denote the quantum
double suspension (see [Hong and Szymański 2002; 2008]) of A and multiplier
algebra of A, respectively. The map π will denote the canonical homomorphism
from M(A) to Q(A) := M(A)/A and for a ∈ M(A), [a] stands for the image of a
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under the map π . For a locally compact Hausdorff space Y, we write Y+ to denote
one-point compactification of Y. For a C∗-algebra A, A+ is the C∗-algebra obtained
by adjoining unity to A. The symbol Sn will be reserved for the n-dimensional
sphere. However, sometimes we will use T in place of S1 to denote the circle.
Unless otherwise stated, q will denote a real number in the interval (0, 1).

2. C∗-algebra extensions

In this section, we briefly recall some notions related to C∗-extension theory. For
a detailed treatment, we refer the reader to [Blackadar 1998]. Let A be a unital
separable nuclear C∗-algebra. Let B be a stable C∗-algebra. An extension of A by
B is a short exact sequence

0→ B i
−→ E j

−→ A→ 0.

In such cases there exists a unique homomorphism σ : E → M(B) such that
σ(i(b)) = b for all b ∈ B. We can now define the Busby invariant for the exten-
sion 0→ B i

−→E j
−→A→ 0 by the homomorphism τ : A→ M(B)/B given by

τ(a)= π ◦σ(e), where e is a preimage of a and π is the quotient map from M(B)
to M(B)/B. It is easy to see that τ is well-defined. Up to strong isomorphism,
an extension can be identified with its Busby invariant. In this paper, we will not
distinguish between an extension and its Busby invariant, as all the equivalence
relations given here are weaker than the strong isomorphism relation.

An extension τ : A→M(B)/B is called essential if τ is injective or, equivalently,
the image of B is an essential ideal of E . We call an extension unital if it is a
unital homomorphism or, equivalently, E is a unital C∗-algebra. An extension τ is
called a trivial (or split) extension if there exists a homomorphism λ : A→ M(B)
such that τ = π ◦ λ. Extensions τ1 and τ2 are said to be unitarily equivalent if
there exists a unitary u in Q(B) such that uτ1(a)u∗ = τ2(a) for all a ∈ A. The two
extensions are said to be strongly unitarily equivalent if there exists a unitary U
in M(B) such that π(U )τ1(a)π(U∗)= τ2(a) for all a ∈ A. We denote a strongly
unitary equivalence relation by ∼su. Let Ext∼su(A, B) denote the set of strongly
unitary equivalence classes of extensions of A by B. One can put a binary operation
+ on Ext∼su(A, B) as follows. Since M(B) is a stable C∗-algebra, we can get
two isometries ν1 and ν2 in M(B) such that ν1ν

∗

1 + ν2ν
∗

2 = 1. Let [τ1]su and [τ2]su

be two elements in Ext∼su(A, B). Define the extension τ1 + τ2 : A→ Q(B) by
(τ1+ τ2)(a) := π(ν1)τ1(a)π(ν∗1 )+ π(ν2)τ2(a)π(ν∗2 ). The binary operation + on
Ext∼su(A, B) can now be defined as

(2-1) [τ1]su+ [τ2]su := [τ1+ τ2]su.

This makes Ext∼su(A, B) a commutative semigroup. Moreover, the set of trivial
extensions forms a subsemigroup of Ext∼su(A, B). We denote the quotient of
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Ext∼su(A, B)with the set of trivial extensions by Ext(A, B). For a separable nuclear
C∗-algebra A, the set Ext(A, B) under the operation + is a group; see [Blackadar
1998]. Two extensions τ1 and τ2 represent the same element in Ext(A, B) if there
exist two trivial extensions φ1 and φ2 such that τ1 + φ1 ∼su τ2 + φ2. We denote
an equivalent class in the group Ext(A, B) of an extension τ by [τ ]s . One can
show that for a stable C∗-algebra B, Ext(A, B) = Ext(A, B ⊗ K). Now for an
arbitrary C∗-algebra B, define Ext(A, B) := Ext(A, B ⊗ K). For B = C, we
denote the group Ext(A,C) by Ext(A). Note that in this case, two unital essential
extensions τ1 and τ2 are in the same equivalence class (i.e., [τ1]s = [τ2]s) if and
only if they are strongly unitarily equivalent. Suppose that Y is a finite-dimensional
compact metric space, i.e., a closed subset of Sn for some n ∈ N. Let M(Y ),
Q(Y ) and Q be the C∗-algebras M(C(Y )⊗ K), M(C(Y )⊗ K)/C(Y )⊗ K and
L(H)/K(H) (Calkin algebra) respectively. One can easily see that M(Y ) is the set
of all ∗-strong continuous functions from Y to L(H). We call an extension τ of A
by C(Y )⊗K homogeneous if for all y ∈ Y, the map evy ◦ τ : A→ Q is injective
where evy : Q(Y )→ Q is the evaluation map at y. Let ExtPPV(Y, A) be the set
of strongly unitary equivalence classes of unital homogeneous extensions of A by
C(Y )⊗K. For a nuclear C∗-algebra A, Pimsner, Popa and Voiculescu [Pimsner et al.
1979] showed that ExtPPV(Y, A) is a group with the additive operation defined as
in (2-1). We denote the equivalence class in the group ExtPPV(Y, A) of an extension
τ by [τ ]su. For y0 ∈ Y, define the set

ExtPPV(Y, y0, A)=
{
[τ ]su ∈ ExtPPV(Y, A) : evy0 ◦ τ is split

}
.

The set ExtPPV(Y, y0, A) is a subgroup of ExtPPV(Y, A).

The groups ExtPPV(Y, A) and ExtPPV(Y, 62 A). Here we will show that for a
separable nuclear C∗-algebra A and a finite-dimensional compact metric space Y
such that K -groups of C(Y ) are finitely generated, the groups ExtPPV(Y, A) and
ExtPPV(Y, 62 A) are isomorphic. Let us recall some definitions. We say that two
elements a and b in Q(B) are strongly unitarily equivalent if there exists a unitary
U ∈ M(B) such that [U ]a[U∗] = b. Two elements a and b in Q(B) are said to
be unitarily equivalent if there exists unitary u ∈ Q(B) such that uau∗ = b. We
call an element a in a C∗-algebra B norm-full if it is not contained in any proper
closed ideal in B. Suppose that A and B are separable C∗-algebras. An extension
τ : A→ Q(B⊗K) is said to be norm-full if for every nonzero element a ∈ A, τ(a)
is norm-full element of Q(B⊗K).

Definition 2.1 [Lin 2009]. Let B be a separable σ -unital C∗-algebra. We say
Q(B⊗K) has property (P) if for any norm-full element b ∈ Q(B⊗K), there exist
x, y ∈ Q(B⊗K) such that xby = 1.
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Definition 2.2 [Kucerovsky and Ng 2006]. Let B be a separable C∗-algebra. Then
B⊗K is said to have the corona factorization property if every norm-full projection
in M(B⊗K) is Murray–von Neumann equivalent to the unit element of M(B⊗K).

One can show that in a C∗-algebra B⊗K with the corona factorization property,
any norm-full projection in Q(B⊗K) is Murray–von Neumann equivalent to the
unit element of Q(B⊗K); see [Kucerovsky and Ng 2006]. Also note that the fact
that Q(B⊗K) has property (P) implies that B⊗K has the corona factorization
property. It is proved in [Lin 2007] that for a finite-dimensional compact metric
space Y, Q(C(Y )⊗ K) has property (P) and hence C(Y )⊗ K has the corona
factorization property. We will see that these properties play important roles in
proving the isomorphism between the groups ExtPPV(Y, A) and ExtPPV(Y, 62 A).
But for that, we need the following proposition that says that for a C∗-algebra
with certain properties, the group ExtPPV(Y, A) can be viewed as a subgroup of the
group KK1(A,C(Y )).

Proposition 2.3. Let A be a unital separable nuclear C∗-algebra which satisfies
the universal coefficient theorem. Assume that K0(A)= G⊕Z with [1A] = (0, 1).
Suppose that Y is a finite-dimensional compact metric space. Then the map

i : ExtPPV(Y, A)→ KK1(A,C(Y )), [τ ]su 7→ [τ ]s

is an injective homomorphism.

Proof. Since strongly unitary equivalence implies stable equivalence, the map i is
well-defined. Any unital homogeneous extension is a purely large extension and
hence a norm-full extension; see [Elliott and Kucerovsky 2001, page 19]. Therefore,
from [Lin 2009, Theorem 2.4 and Corollary 3.9], it follows that i is injective. �

From now on, without loss of generality, we will assume that the Hilbert space H
is L2(N). Let τ be a unital homogeneous extension of A by C(Y )⊗K(H). Define
τ̃ : A→ Q

(
C(Y )⊗K(H)⊗K(H)

)
by τ̃ (a)= [τa ⊗ p] where [τa] = τ(a). By the

universal property of quantum double suspension (see [Hong and Szymański 2008,
Proposition 2.2]), there exists a unique homomorphism

(2-2) 62τ :62 A→ Q
(
C(Y )⊗K(H)⊗K(H)

)
such that 62τ(a⊗ p) = τ̃ (a) = [τa ⊗ p] and 62τ(1⊗ S) = [1⊗ 1⊗ S]. Clearly
62τ is a unital extension. Since τ is homogeneous, the map evy ◦ τ is injective
for all y ∈ Y. Therefore the map evy ◦6

2τ is injective on the C∗-algebra A⊗ p
as evy ◦6

2τ(a⊗ p) = [(evy ◦ τ)a ⊗ p] where [(evy ◦ τ)a] = evy ◦ τ(a). Making
use of the fact that (1⊗ p)A⊗K(1⊗ p) = A⊗ p, one can prove that the map
evy ◦ 6

2τ is injective on A ⊗ K. Since A ⊗ K is an essential ideal of 62 A,
we conclude that the map evy ◦ 6

2τ is injective on 62 A and hence 62τ is a
homogeneous extension. Moreover, if τ1 and τ2 are strongly unitarily equivalent
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by a unitary U ∈ M
(
C(Y )⊗ K(H)

)
then so are 62τ1 and 62τ2 by the unitary

U ⊗ 1 ∈ M(C(Y )⊗K(H)⊗K(H)). This gives a well-defined map:

(2-3) β : ExtPPV(Y, A)→ ExtPPV(Y, 62 A), [τ ]su 7→ [6
2τ ]su.

Proposition 2.4. The map β : ExtPPV(Y, A)→ ExtPPV(Y, 62 A) given above is an
injective group homomorphism.

Proof. Let τ be a unital homogeneous extension of A by C(Y )⊗K such that 62τ

is a split extension. In this case, there exists a homomorphism λ :62 A→ M(Y )
such that π ◦λ=62τ . Define α : A→ M(Y ) by α(a) := λ(a⊗ p) for a ∈ A. It is
easy to check that π ◦α = τ which implies that τ is a split extension. This proves
that the map β is injective. �

To get surjectivity of the map β, we need to put certain assumptions on the
topological space Y.

Proposition 2.5. Let Y be a finite-dimensional compact metric space. Assume
that K0(C(Y )) and K1(C(Y )) are finitely generated abelian groups. Then, letting
V ∈ Q

(
C(Y )⊗K(H)⊗K(H)

)
be an isometry such that V V ∗ and 1− V V ∗ both

are norm-full projections, V is unitarily equivalent to [1⊗ 1⊗ S∗].

Proof. Let Gn := ExtPPV(Y, 62nC(T)). Since

KK1(62nC(T),C(Y ))≡ K0(C(Y ))⊕ K1(C(Y )),

one can consider the groups Gn as subgroups of K0(C(Y ))⊕ K1(C(Y )) thanks
to Proposition 2.3. This implies that the Gn are finitely generated abelian groups.
For n ∈ N, define the map

(2-4) βn :ExtPPV(Y, 62nC(T))→ExtPPV(Y, 62n+2C(T)), [τ ]su 7→ [6
2τ ]su,

where 62τ is as in (2-2). From Proposition 2.4, it follows that the maps βn are
injective homomorphisms. Assume that V is not unitarily equivalent to [1⊗1⊗ S∗].
For each n ∈N, the isometry V will induce an isometry Vn ∈ Q(C(Y )⊗K(H)⊗n+1)

(where ⊗k means the tensor product of k copies) such that VnV ∗n and 1− VnV ∗n
both are norm-full projections and Vn is not unitarily equivalent to [1⊗n+1

⊗ S∗].
Since C(Y )⊗K has the corona factorization property, it follows that VnV ∗n and
1− VnV ∗n both are Murray–von Neumann equivalent to [1]. Also, one can easily
verify that [1⊗n+1

⊗ p] and [1− 1⊗n+1
⊗ p] = [1⊗n+1

⊗ (1− p)] are Murray–
von Neumann equivalent to [1]. This implies that VnV ∗n is unitarily equivalent
to 1− [1⊗n+1

⊗ p]. So, without loss of generality, we can assume that Vn has
final projection 1− [1⊗n+1

⊗ p]. Take a split unital homogeneous extension τ of
C(T) by C(Y )⊗K(H). Clearly 62nτ is a split unital homogeneous extension of
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62nC(T) by C(Y )⊗K(H)⊗n+1. Let62
V (6

2nτ) be a unital homogeneous extension
of 62n+2C(T) by C(Y )⊗K(H)⊗n+2 given by

62
V (6

2nτ)(a⊗ p)= [62nτa ⊗ p] and 62
V (6

2nτ)(1⊗ S∗)= Vn+1,

where [62nτa] =6
2nτ(a). From [Lin 2009, Corollary 3.8] and the fact that Vn+1

is not unitarily equivalent to [1⊗n+2
⊗ S∗], it follows that [62

V (6
2nτ)]su is not in

the image of the map βn defined as in (2-4). Let m[62
V (6

2nτ)]su = βn([φ]su) for
some m ∈ Z−{0} and for some unital homogeneous extension φ of 62nC(T) by
C(Y )⊗K. It is easy to see that φ must be split and in that case m[62

V (6
2nτ)]

is the class of split extensions. This shows that for all n ∈ N, the group Gn+1

has either one more free generator or one more element of finite order than the
group Gn . Since K0(C(Y ))⊕ K1(C(Y )) is a finitely generated group for all n ∈N,
Gn ⊂ K0(C(Y ))⊕ K1(C(Y )), and we reach a contradiction. This proves that V is
unitarily equivalent to [1⊗ 1⊗ S∗]. �

Remark 2.6. Here we should point out that the above proposition may hold for a
more general finite-dimensional compact metric space Y. But since we could not
find any general result along this direction in literature, we prove the proposition
under certain assumptions on Y.

Corollary 2.7. Let Y and V be as in the above proposition. Then V is strongly
unitarily equivalent to [1⊗ 1⊗ S∗].

Proof. Consider the unital extension62
V τ constructed in Proposition 2.5 where τ is a

split unital homogeneous extension of C(T) by C(Y )⊗K(H). Using Proposition 2.5,
one can show that62

V τ is unitarily equivalent to62τ defined in (2-2) with A=C(T).
Therefore, by [Lin 2009, Corollary 3.10], it follows that 62

V τ is strongly unitarily
equivalent to 62τ . Hence V is strongly unitarily equivalent to [1⊗ 1⊗ S∗]. �

Lemma 2.8 establishes the isomorphism between the groups ExtPPV(Y, A) and
ExtPPV(Y, 62 A) under certain assumptions on the space Y.

Lemma 2.8. Let Y be a finite-dimensional compact metric space. Assume that the
groups K0(C(Y )) and K1(C(Y )) are finitely generated abelian groups. Then the
map β : ExtPPV(Y, A)→ ExtPPV(Y, 62 A) given above is an isomorphism.

Proof. We only need to show that β is surjective thanks to Proposition 2.4. Let
φ be a unital homogeneous extension of 62 A by C(Y ) ⊗ K(H) ⊗ K(H). Let
φ(1⊗ S∗)= V . Since φ is a unital homogeneous extension and hence a norm-full
extension, it follows that V V ∗ and 1− V V ∗ are norm-full projections. Therefore,
by Corollary 2.7, there exists a unitary U ∈ M(C(Y )⊗K(H)⊗K(H)) such that
[U ]V [U∗] = [1⊗ 1⊗ S∗]. So without loss of generality, we can assume that φ
maps 1⊗ S∗ to [1⊗ 1⊗ S∗]. This implies that φ(1⊗ p)= [1⊗ 1⊗ p]. But then
φ(A⊗ p)⊂ (1⊗1⊗ p)φ(A⊗ p)(1⊗1⊗ p)⊂ Q(C(Y )⊗K(H))⊗ p which induces
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a map τ : A→ Q(C(Y )⊗K(H)) by omitting the projection p. Therefore, we get
a unital homogeneous extension τ of A such that β([τ ]u)= [φ]u . This proves that
the map β is surjective. �

Corollary 2.9. For y0 ∈ Y, the map

β|ExtPPV(Y,y0,A) : ExtPPV(Y, y0, A)→ ExtPPV(Y, y0, 6
2 A)

is an isomorphism.

Proof. It is easy to check that if evy0 ◦ τ is split then so is evy0 ◦6
2τ and vice versa.

Now the claim will follow from Lemma 2.8. �

3. Elements of ExtPPV
(
T, C

(
S2`+1

0
))

In this section, we will write down all elements of the groups Ext(C(S2`+1
0 )) and

ExtPPV(T,C(S2`+1
0 )) explicitly in terms of their Busby invariants. We start with the

definition of C(S2`+1
0 ). The C∗-algebra C(S2`+1

0 ) is defined as the C∗-subalgebra
of L

(
L2(N)

⊗`
)
⊗C(T) generated by the following operators:

S∗⊗ 1⊗ · · ·⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1,
...

p⊗ p⊗ · · ·⊗ p⊗ S∗⊗ 1,

p⊗ p⊗ · · ·⊗ p⊗ p⊗ t.

Hong and Szymański [2002] showed that for q ∈ (0, 1), the C∗-algebra C(S2`+1
q ) of

continuous functions on the odd-dimensional quantum sphere S2`+1
q is isomorphic

to the C∗-algebra C(S2`+1
0 ). Since for calculation purposes, the generators of

C(S2`+1
0 ) given above are easier to deal with in comparison to those of C(S2`+1

q ),
we will, without loss of generality, take the C∗-algebra C(S2`+1

0 ). Define the
∗-homomorphisms ϕm as follows:

ϕm : C(S2`+1
0 )→ Q

(
K
(
L2(N)

⊗`+1)),
S∗⊗ 1⊗ · · ·⊗ 1 7→ S∗⊗ 1⊗ · · ·⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1 7→ p⊗ S∗⊗ 1⊗ · · ·⊗ 1,
...

p⊗ p⊗ · · ·⊗ p⊗ S∗⊗ 1 7→ p⊗ p⊗ · · ·⊗ S∗⊗ 1,

p⊗ p⊗ · · ·⊗ t 7→ p⊗ p⊗ · · ·⊗ p⊗ (S∗)m .

The following proposition says that for each m ∈ Z, the homomorphism [ϕm]s is an
element of the group Ext(C(S2`+1

0 )).



444 BIPUL SAURABH

Proposition 3.1. For each m ∈ Z, the extension ϕm is an essential unital extension
of C(S2`+1

0 ) by compact operators.

Proof. Clearly the ϕm are unital extensions of C(S2`+1
0 ) by compact operators. We

need to show that the ϕm are injective homomorphisms. Let Ct(T) be the set of
all continuous functions on T vanishing at t . Using irreducible representations of
C(S2`+1

0 ), it is easy to see that

(1) {K(L2(N))
⊗`
⊗Ct(T)}t∈T are primitive ideals of C(S2`+1

0 ),

(2) all other primitive ideals contain p⊗p⊗· · ·⊗p⊗p⊗t and K(L2(N))
⊗`
⊗Ct(T)

for all t ∈ T.

Since kerϕm is the intersection of all primitive ideals that contain kerϕm and since
p ⊗ p ⊗ · · · ⊗ t /∈ kerϕm , we conclude that kerϕm = K(L2(N))

⊗`
⊗ CF (T) for

some closed subset F of T where CF (T) is the set of all continuous functions on
T vanishing on F. Consider the function χ : C(T)→ Q such that χ(t)= [(S∗)m].
Since [(S∗)m] is unitary in Q with spectrum equal to T, it follows that the map χ
is injective. This shows that for any nonzero continuous complex valued function
f on T, ϕm(p⊗ p⊗ · · ·⊗ f (t)) 6= 0. Hence F = T and kerϕm = {0}. �

We shall show that each element in the group Ext(C(S2`+1
0 )) is of the form [ϕm]s

for some m ∈ Z. Let H0 be the Hilbert space L2(N)
⊗`
⊗ L2(Z). For m ∈ Z, let ϑm

be the representation of C(S2`+1
0 ) given by

ϑm : C(S2`+1
0 )→ L(H0),

S∗⊗ 1⊗ · · ·⊗ 1 7→ S∗⊗ 1⊗ · · ·⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1 7→ p⊗ S∗⊗ 1⊗ · · ·⊗ 1,
...

p⊗ p⊗ · · ·⊗ p⊗ S∗⊗ 1 7→ p⊗ p⊗ · · ·⊗ S∗⊗ 1,

p⊗ p⊗ · · ·⊗ t 7→ p⊗ p⊗ · · ·⊗ p⊗ (S∗)m .

Let P be the self-adjoint projection in L(H0) on the subspace spanned by the
basis elements {en1 ⊗ · · · ⊗ en`+1 : ni ∈ N for all i ∈ {1, 2, . . . , ` + 1}}. One
can check that Fm :=

(
C(S2`+1

0 ),H0, 2P − 1
)

with the underlying representation
ϑm is a Fredholm module. By [Blackadar 1998, Proposition 17.6.5, page 157],
the group Ext(C(S2`+1

0 )) is isomorphic to the group K 1(C(S2`+1
0 )). Under this

identification, one can easily show that the equivalence class of the Fredholm
module Fm corresponds to the equivalence class [ϕm]s .

Proposition 3.2. For ` ∈ N, one has

Ext
(
C(S2`+1

0 )
)
=
{
[ϕm]s : m ∈ Z

}
.
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Proof. To prove the claim, we will use the index pairing between the groups
K1(C(S2`+1

0 )) and K 1(C(S2`+1
0 )) which is given by the Kasparov product. The

group K1(C(S2`+1
0 )) is generated by the unitary u := p⊗` ⊗ t + 1 − p⊗` ⊗ 1.

For m ∈ Z, let Rm : PH0→ PH0 be the operator Pϑm(u)P. Hence we get

〈u,Fm〉 = Index(Rm)= m. �

To describe all elements of ExtPPV(T,C(S2`+1
0 )), define the ∗-homomorphisms φm :

φm : C(S2`+1
0 )→ Q

(
K
(
L2(N)

⊗`+1)
⊗C(T)

)
,

S∗⊗ 1⊗ · · ·⊗ 1 7→ S∗⊗ 1⊗ · · ·⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1 7→ p⊗ S∗⊗ 1⊗ · · ·⊗ 1,
...

p⊗ p⊗ · · ·⊗ p⊗ S∗⊗ 1 7→ p⊗ p⊗ · · ·⊗ S∗⊗ 1⊗ 1,

p⊗ p⊗ · · ·⊗ t 7→ p⊗ p⊗ · · ·⊗ p⊗ (S∗)m ⊗ 1.

It follows from Proposition 3.1 that the φm are essential unital extensions. Since
the last component is 1, these extensions are homogeneous. Let Am be the
C∗-subalgebra of C(S2`+3

0 ) generated by the operators

S∗⊗ 1⊗ · · ·⊗ 1⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1⊗ 1,
...

p⊗ p⊗ · · ·⊗ S∗⊗ 1⊗ 1,

p⊗ p⊗ · · ·⊗ p⊗ (S∗)m ⊗ 1

and K
(
L2(N)

⊗`+1
)
⊗C(T). Then for each m ∈ Z, we have the exact sequence

0→ K
(
L2(N)

⊗`+1)
⊗C(T)→ Am→ C(S2`+1

0 )→ 0

with the Busby invariant φm . By using the six-term exact sequence, one can show

(3-1) K0(Am)= Z⊕Z/mZ, K1(Am)= Z.

Lemma 3.3. For ` ∈ N and t0 ∈ T, one has

ExtPPV
(
T, t0,C(S2`+1

0 )
)
= {0}, ExtPPV

(
T,C(S2`+1

0 )
)
= Z.

Proof. It follows from Theorem 1.5 in [Rosenberg and Schochet 1981] that

ExtPPV
(
T, t0,C(T)

)
= ExtPPV

(
R+, t0,C0(R)

+
)
= Ext

(
C0(R),C0(R)

)
= {0}.

The C∗-algebra C(S2`+1
0 ) can be obtained by applying quantum double suspension

on C(T) repeatedly; see [Hong and Szymański 2002]. Therefore, from Corollary 2.9,



446 BIPUL SAURABH

we have
ExtPPV

(
T, t0,C(S2`+1

0 )
)
= ExtPPV

(
T, t0,C(T)

)
= {0}.

Further, from Theorem 1.4 in [Rosenberg and Schochet 1981], we get

ExtPPV
(
T,C(T)

)
= ExtPPV

(
T,C0(R)

+
)
= Ext

(
C0(R),C(T)

)
= Z.

Hence by applying Lemma 2.8, we get the claim. �

The following lemma says that each element of the group ExtPPV
(
T,C(S2`+1

0 )
)

is of the form [φm]su for some m ∈ Z.

Lemma 3.4. For ` ∈ N, one has

ExtPPV
(
T,C(S2`+1

0 )
)
=
{
[φm]su : m ∈ Z

}
.

Proof. Fix t0 ∈ T. Define a homomorphism 9 as follows:

9 : ExtPPV
(
T,C(S2`+1

0 )
)
→ Ext

(
C(S2`+1

0 )
)
, [τ ]su 7→ [evt0 ◦ τ ]s .

Clearly ker9 = ExtPPV
(
T, t0,C(S2`+1

0 )
)
= {0}. Therefore, 9 is an injective group

homomorphism. Since evt0 ◦φm = ϕm , for all m ∈ Z, it follows that the homomor-
phism 9 is surjective. This proves the claim. �

4. Quantum quaternion sphere

We first recall the definition and representation theory of the C∗-algebra C(H 2n
q ) of

continuous functions on the quantum quaternion sphere. Then we prove our main
result that the C∗-algebra C(H 2n

q ) is isomorphic to the C∗-algebra C(S4n−1
q ).

Definition 4.1. Let i ′= 2n+1−i . The C∗-algebra C(H 2n
q ) of continuous functions

on the quantum quaternion sphere is defined as the universal C∗-algebra generated
by elements z1, z2, . . . , z2n satisfying the following relations:

zi z j = qz j zi for i > j, i + j 6= 2n+ 1,(4-1)

zi zi ′ = q2zi ′zi − (1− q2)
∑
k>i

q i−kzkzk′ for i > n,(4-2)

z∗i zi ′ = q2zi ′z∗i(4-3)

z∗i z j = qz j z∗i for i + j > 2n+ 1, i 6= j,(4-4)

z∗i z j = qz j z∗i + (1− q2)εiε j qρi+ρ j zi ′z∗j ′ for i + j < 2n+ 1, i 6= j,(4-5)

z∗i zi = zi z∗i + (1− q2)
∑
k>i

zkz∗k for i > n,(4-6)

z∗i zi = zi z∗i + (1− q2)
(

q2ρi zi ′z∗i ′ +
∑
k>i

zkz∗k
)

for i ≤ n,(4-7)

2n∑
i=1

zi z∗i = 1.(4-8)
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In [Saurabh 2017], we showed that the C∗-algebra C(H 2n
q ) is isomorphic to

the quotient algebra C(SPq(2n)/SPq(2n − 2)) that can also be described as the
C∗-subalgebra of C(SPq(2n)) generated by {u1

m, u2n
m :m ∈ {1, 2, . . . , 2n}}, i.e., ele-

ments of the first and last row of the fundamental matrix of the quantum symplectic
group SPq(2n). Here we briefly describe all irreducible representations of C(H 2n

q ).
For a detailed treatment on this, we refer the reader to [Saurabh 2017]. Let N be
the number operator given by N : en 7→ nen and S be the shift operator given by
S : en 7→ en−1 on L2(N). We denote by T the Toeplitz algebra. Let Ei, j ∈ Mn(R)

be the n× n matrix with the only nonzero entry at the i j-th place and equal to 1.
Define

si = I − Ei,i − Ei+1,i+1+ Ei,i+1+ Ei+1,i , for i = 1, 2, . . . , n− 1,

sn = I − 2En,n, for i = n.

One can prove that the Weyl group Wn of sp2n is isomorphic to a subgroup of
GL(n,R) generated by s1, s2, . . . , sn . We refer the reader to [Fulton and Harris
1991] for a proof of this fact. For i = 1, 2, . . . , n− 1, let πsi denote the following
representation of C(SPq(2n)),

πsi (u
k
l )=



√
1− q2N+2S if (k, l)= (i, i) or (2n− i, 2n− i),

S∗
√

1− q2N+2 if (k, l)= (i + 1, i + 1) or (2n− i + 1, 2n− i + 1),

−q N+1 if (k, l)= (i, i + 1),

q N if (k, l)= (i + 1, i),

q N+1 if (k, l)= (2n− i, 2n− i + 1),

−q N if (k, l)= (2n− i + 1, 2n− i),

δkl otherwise.

For i = n,

πsn (u
k
l )=



√
1− q4N+4S if (k, l)= (n, n),

S∗
√

1− q4N+4 if (k, l)= (n+ 1, n+ 1),

−q2N+2 if (k, l)= (n, n+ 1),

q2N if (k, l)= (n+ 1, n),

δkl otherwise.

Each πsi is an irreducible representation and is called an elementary representation
of C(SPq(2n)). For any two representations ϕ and ψ of C(SPq(2n)), define ϕ ∗ψ
to be (ϕ ⊗ψ) ◦1, where 1 is the comultiplication map of C(SPq(2n)). Let ϑ
be an element of Wn such that si1si2 · · · sik is a reduced expression for ϑ . Then
πϑ = πsi1

∗ πsi2
∗ · · · ∗ πsik

is an irreducible representation which is independent
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of the reduced expression. Now for t = (t1, t2, . . . , tn) ∈ Tn , define the map
τt : C(SPq(2n)→ C by

τt(ui
j )=

{
tiδi j if i ≤ n,

t2n+1−iδi j if i > n.

Then τt is a ∗-algebra homomorphism. For t ∈Tn, ϑ ∈W, let πt,ϑ = τt ∗πϑ . Define
the representation ηt,ϑ of C(H 2n

q ) as the representation πt,ϑ restricted to C(H 2n
q ).

Denote by ωk the following reduced word of Weyl group of sp2n ,

ωk =


I if k = 1,
s1s2 · · · sk−1 if 2≤ k ≤ n,
s1s2 · · · sn−1snsn−1 · · · s2n−k+1 if n < k ≤ 2n.

For k=1, define ηt,I :C(H 2n
q )→C such that ηt,I (z j )= tδ1 j . The set {ηt,I : t ∈T }

gives all one-dimensional irreducible representations of C(H 2n
q ).

Theorem 4.2 [Saurabh 2017]. The set {ηt,ωk : 1≤ k ≤ 2n, t ∈ T} gives a complete
list of irreducible representations of C(H 2n

q ).

Define
ηωk : C(H

2n
q )→ C(T)⊗T ⊗k−1

such that ηωk (a)(t)=ηt,ωk (a) for all a∈C(H 2n
q ). Let C2n

1 =C(T) and for 2≤k≤2n,
C2n

k = ηωk (C(H
2n
q )).

Corollary 4.3. The set {ηt,ωl : 1≤ l ≤ k, t ∈ T} gives a complete list of irreducible
representations of C2n

k .

By Corollary 4.3, one can find all primitive ideals, i.e., kernels of irreducible
representations of C2n

k . Define yk
l := ηωk (zl) and I k

t, l := ker(ηt,ωl ) for 1 ≤ l ≤ k
and t ∈ T. Then

(4-9)
{

I k
t,k = Ct(T)⊗K(L2(N))

⊗(k−1)}
t∈T
,
{

I k
t,k−1

}
t∈T
, . . . ,

{
I k
t,1
}

t∈T

is a complete list of primitive ideals of C2n
k . Moreover for t, t ′ ∈T and 1≤ l ≤ k−1,

we have Ct(T)⊗K(L2(N))
⊗(k−1)

⊂ I k
t ′, l and yk

k ∈ I k
t ′, l . In Lemma 5.1 of [Saurabh

2017], we established the exact sequence

0→ C(T)⊗K(L2(N))
⊗(k)
→ C2n

k+1
σk+1
−−→C2n

k → 0,

where σk+1 is the restriction of 1⊗1⊗(k−1)
⊗σ to C2n

k+1 and the map σ : T → C is
the homomorphism such that σ(S)= 1. The following lemma says that this exact
sequence is a unital homogeneous extension of C2n

k by C(T)⊗K:

Lemma 4.4. For 1≤ k ≤ 2n, the exact sequence

0→ C(T)⊗K(L2(N))
⊗(k)
→ C2n

k+1
σk+1
−−→C2n

k → 0

is a unital homogeneous extension of C2n
k by C(T)⊗K.
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Proof. Since C2n
k+1 is unital, the given extension is unital. Let τ : C2n

k → Q(T) be
the Busby invariant corresponding to this extension. For t0 ∈ T, let τt0 : C

2n
k → Q

be the map evt0 ◦ τ where evt0 : Q(T)→ Q is the evaluation map at t0. Assume
that Jt0 = ker(τt0). To show that the given short exact sequence is a homogeneous
extension, we need to prove that Jt0 = {0} for all t0 ∈ T.

Case 1: n < k < 2n. We have

(4-10) τt0(y
k
k )= τt0

(
t ⊗ q N⊗(n−1)

⊗ q2N
⊗ q N⊗(k−n−1))

= t0
[
q N⊗(n−1)

⊗ q2N
⊗ q N⊗(k−n−1)

⊗
√

1− q2N S∗
]
6= 0.

This shows yk
k /∈ Jt0 . Since Jt0 is the intersection of all primitive ideals that contain Jt0 ,

and yk
k ∈ I k

t ′,l and Ct(T)⊗K(L2(N))
⊗(k−1)

⊂ I k
t ′,l for t, t ′ ∈T and 1≤ l ≤ k−1, we

conclude that Jt0 is equal to CF (T)⊗K for some closed subset F of T where CF (T)

is the set of all continuous functions on T vanishing on F. From (4-10), we get

τt0((y
k
k )(y

k
k )
∗)=

[
q2N⊗(n−1)

⊗ q4N
⊗ q2N⊗(k−n−1)

⊗ (1− q2N )
]

=
[
q2N⊗(n−1)

⊗ q4N
⊗ q2N⊗(k−n−1)

⊗ 1
]
.

Therefore,

τt0
(
1⊗ p⊗(k−1))

=
[

p⊗(k−1)
⊗ 1

]
.

Hence,
τt0(t ⊗ p⊗(k−1))= t0

[
p⊗(k−1)

⊗
√

1− q2N S∗
]

= t0
[

p⊗(k−1)
⊗ S∗

]
.

Since the function χ :C(T)→Q such that χ(t)=[S∗] is an injective homomorphism
as shown in Proposition 3.1, it follows that for any nonzero continuous function
f on T,

τt0
(

f (t)⊗ p⊗(k−1))
6= 0.

This proves that F = T and Jt0 = {0}.

Case 2: 1≤ k ≤ n. For k = n,

τt0(y
n
n )= t0

[
q N⊗(n−1)

⊗
√

1− q4N S∗
]
.

For 1≤ k < n,

τt0(y
k
k )= t0

[
q N⊗(k−1)

⊗
√

1− q2N S∗
]
.

Similar calculations to those in Case 1 show that Jt0 ={0}. This proves the claim. �

We now state the main result of this paper.
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Theorem 4.5. For all n≥2 and 1≤ k≤2n, the C∗-algebra C2n
k is isomorphic to the

C∗-algebra C(S2k−1
0 ) of continuous functions on odd-dimensional quantum spheres.

In particular, C(H 2n
q ) is isomorphic to C(S4n−1

0 ) or, equivalently, to C(S4n−1
q ).

Proof. Fix n. To prove the theorem, we use induction on k. For k = 1, C2n
1 =C(T).

So the claim is true for k = 1. Assume that the claim is true for k, i.e., C2n
k is

isomorphic to C(S2k−1
0 ). From Lemma 4.4, it follows that the short exact sequence

(4-11) 0→ C(T)⊗K→ C2n
k+1→ C2n

k → 0

is a unital homogeneous extension. Therefore, it can be viewed as an element of the
group ExtPPV(T,C(S2k−1

0 )). It follows from Lemma 3.4 that it is strongly unitarily
equivalent to φm or, equivalently, to the following exact sequence

0→ C(T)⊗K→ Am→ C(S2k−1
0 )→ 0,

for some m ∈ Z. From Theorem 5.3 in [Saurabh 2017] and equation (3-1), we have

K0(C2n
k+1)= Z, K0(Am)= Z⊕Z/mZ.

Since strongly unitary equivalence gives an isomorphism of the middle C∗ algebras
and hence an isomorphism of the K -groups of middle C∗-algebras, it follows that
the exact sequence (4-11) is strongly unitarily equivalent to φ1 or φ−1. This implies
that C2n

k+1 is isomorphic to A1 or A−1. Since A1 = A−1 = C(S2k+1
0 ), it follows that

C2n
k+1 is isomorphic to C(S2k+1

0 ). Hence by induction, it follows that C(H 2n
q ) is

isomorphic to C(S4n−1
0 ). From Theorem 4.4 in [Hong and Szymański 2002], it

follows that the C∗-algebra C(S4n−1
q ) is isomorphic to C(S4n−1

0 ), for q ∈ (0, 1).
This proves that C(H 2n

q ) is isomorphic to C(S4n−1
q ). �

Remark 4.6. In the case where q = 0, we need to be slightly careful to get the
defining relations of C(H 2n

0 ). In the relation (4-2), we first start with i = 2n. This
gives the relation z2nz1 = 0. Then we take i = 2n − 1 and so on and get the
relation zi zi ′ = 0 for i < n. Further, in the relation (4-5), it is easy to check that for
i + j < 2n+ 1, ρi + ρ j > 0. Now by putting q = 0 into the relations (4-3), (4-4)
and (4-4), we get z∗i z j = 0 for i 6= j. The other relations are obtained by putting
q = 0 in the remaining relations. By looking at the relations, one can see that the
defining relations of C(H 2n

0 ) are exactly the same as those of C(S4n−1
0 ). These

facts together with Theorem 4.5 prove that for different values of q ∈ [0, 1), the
C∗-algebras C(H 2n

q ) are isomorphic.
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