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GAP THEOREMS FOR COMPLETE λ-HYPERSURFACES

HUIJUAN WANG, HONGWEI XU AND ENTAO ZHAO

An n-dimensional λ-hypersurface X : M → Rn+1 is the critical point of
the weighted area functional

∫
M e−

1
4 |X|

2
dµ for weighted volume-preserving

variations, which is also a generalization of the self-shrinking solution of
the mean curvature flow. We first prove that if the Ln-norm of the second
fundamental form of the λ-hypersurface X : M → Rn+1 with n ≥ 3 is less
than an explicit positive constant K (n, λ), then M is a hyperplane. Secondly,
we show that if the Ln-norm of the trace-free second fundamental form of
M with n≥ 3 is less than an explicit positive constant D(n, λ) and the mean
curvature is suitably bounded, then M is a hyperplane. We also obtain
similar results for λ-surfaces in R3 under L4-curvature pinching conditions.

1. Introduction

Let X :M→Rn+1 be an n-dimensional immersed smooth hypersurface in the (n+1)-
dimensional Euclidean space Rn+1. We call the hypersurface a λ-hypersurface if it
satisfies

H + 1
2〈X, N 〉 = λ,

where λ is a constant, H is the mean curvature and N is the unit inward normal
vector of X : M→ Rn+1.

McGonagle and Ross [2015] studied λ-hypersurfaces from the viewpoint of
variation. Let Aµ(M) be the functional defined by Aµ(M)=

∫
M e−

1
4 |X |

2
dµ. They

showed that the critical points of δAµ(u)= 0 for u ∈ C∞0 satisfying∫
M

e−
1
4 |X |

2
u dµ= 0

are λ-hypersurfaces. Cheng and Wei [2014a] also introduced λ-hypersurfaces in a
different way by investigating the weighted volume-preserving mean curvature flow.
Obviously, when λ= 0, a λ-hypersurface is a self-shrinker of the mean curvature
flow. It is well known that self-shrinkers play an important role in the study of mean
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curvature flow because they describe the singularity models of the mean curvature
flow and they arise as tangent flows of mean curvature flow at singularities; see, for
example, [Colding and Minicozzi 2012; Huisken 1990; Ilmanen 1995; White 1997].

The rigidity phenomena of self-shrinkers has been studied extensively [Cheng and
Peng 2015; Cheng and Wei 2015; Colding et al. 2015; Colding and Minicozzi 2012;
Ding and Xin 2013; 2014; Huisken 1990; Le and Sesum 2011]. For example, Le and
Sesum [2011] proved that a smooth self-shrinker with polynomial volume growth
and satisfying |A|2< 1

2 is a hyperplane. Here A denotes the second fundamental form
of the immersion. Cao and Li [2013] generalized this result to arbitrary codimension
and proved that any smooth complete self-shrinker with polynomial volume growth
and |A|2 ≤ 1

2 is a generalized cylinder. On the other hand, Ding and Xin [2014]
showed that a smooth complete self-shrinker satisfying

(∫
M |A|

n dµ
)
1/n < C for a

certain positive constant C is a linear space. For more curvature pinching theorems
for self-shrinkers, see [Cao et al. 2014; Li and Wei 2014; Lin 2016].

The geometric properties of λ-hypersurfaces were recently investigated by
Cheng, Wei, Ogata, Guang [Cheng and Wei 2014a; Cheng et al. 2016; Guang
2014]. As generalizations of self-shrinkers of the mean curvature flow, complete
λ-hypersurfaces with polynomial area growth and H − λ ≥ 0 were classified by
Cheng and Wei [2014a]. They also defined an F-functional and studied F-stability
of λ-hypersurfaces. Cheng, Ogata and Wei [Cheng et al. 2016] proved some gap
and rigidity theorems for complete λ-hypersurfaces. See [Cheng and Wei 2014b;
Guang 2014; Ogata 2015] for more results on the rigidity of λ-hypersurfaces.

We study the integral curvature pinching theorems for λ-hypersurfaces. We first
prove the following Ln-pinching theorem of the second fundamental form.

Theorem 1. Let X : Mn
→ Rn+1 (n ≥ 3) be an n-dimensional complete λ-

hypersurface in the Euclidean space Rn+1. If(∫
M
|A|n dµ

)1/n

< K (n, λ),

where K (n, λ) is an explicit positive constant depending only on n and λ, then
|A| ≡ 0 and M is a hyperplane.

Remark. It is easy to see from the expression of K (n, λ) that limλ→0 K (n, λ)= Kn

for a positive constant Kn depending only on n. Hence if λ= 0, Theorem 1 reduces
to the Ln-pinching theorem for self-shrinkers due to Ding and Xin [2014].

Let Å denote the trace-free second fundamental form, which is defined by
Å = A − (H/n)g with g denoting the induced metric on M . We prove an Ln-
pinching theorem of the trace-free second fundamental form for λ-hypersurfaces
provided that the mean curvature is suitably bounded.
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Theorem 2. Let X : Mn
→ Rn+1 (n ≥ 3) be an n-dimensional complete λ-

hypersurface in the Euclidean space Rn+1. Suppose the mean curvature satisfies

|H | ≤
√

1
3 n+ λ2− |λ|.

If (∫
M
| Å|n dµ

)1/n

< D(n, λ),

where D(n, λ) is an explicit positive constant depending on n and λ, then M is a
hyperplane.

For the case n = 2, we obtain the following results.

Theorem 3. Let X : M2
→ R3 be a 2-dimensional complete λ-hypersurface in the

Euclidean space R3. If (∫
M
|A|4 dµ

)1/2

< K (λ),

where K (λ) is an explicit positive constant depending only on λ, then |A| ≡ 0 and
M is a hyperplane.

Theorem 4. Let X : M2
→ R3 be a 2-dimensional complete λ-hypersurface in the

Euclidean space R3. Suppose the mean curvature satisfies

|H | ≤
√

2
3 + λ

2− |λ|.

If (∫
M
| Å|4 dµ

)1/2

< D(λ),

where D(λ) is an explicit positive constant depending on λ, then M is a hyperplane.

The rest of our paper is organized as follows. Some notation and several lemmas
are prepared in Section 2. In Section 3, we prove Theorems 1 and 2. Theorems 3
and 4 will be proved in Section 4.

2. Preliminaries

Let X : Mn
→ Rn+1 be an n-dimensional connected hypersurface. Denote by g

and dµ the induced metric and the volume form on M , respectively. We shall make
use of the following convention on the range of indices:

1≤ A, B,C, . . .≤ n+ 1, 1≤ i, j, k, . . .≤ n.

Choose local orthonormal frame fields {eA} in Rn+1 such that, restricted to M ,
the ei are tangent to M . Let {ωA} and {ωAB} be the dual frame fields and the
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connection 1-forms of Rn+1, respectively. Then we have the following structure
equations:

d X =
∑

i

ωi ei , dei =
∑

j

ωi j e j +
∑

j

hi jω j en+1,

and
den+1 =−

∑
i, j

hi jω j ei .

Restricting these forms to M , we have

ωn+1i =
∑

j

hi jω j , hi j = h j i ,

where hi j denotes the components of the second fundamental form of M . H =∑
i hi i is the mean curvature and A =

∑
i, j hi jωi ⊗ω j is the second fundamental

form of X : Mn
→ Rn+1. The trace-free second fundamental form is defined by

Å = A− (H/n)g.
Let hi jk =∇khi j , hi jkl =∇l∇khi j , where ∇ is the Levi-Civita connection on M .

Gauss equations, Codazzi equations and Ricci formulas are given by

Ri jkl = hikh jl − hilh jk, hi jk = hik j ,

hi jkl − hi jlk =

n∑
m=1

him Rmjkl +

n∑
m=1

hmj Rmikl .

For λ-hypersurfaces, an elliptic operator L is given by

L=1− 1
2〈X,∇( · )〉 = e

1
4 |X |

2
div
(
e−

1
4 |X |

2
∇( · )

)
,

where 1 and div denote the Laplacian and divergence on the λ-hypersurface,
respectively. The L operator was introduced by Colding and Minicozzi [2012]
when they investigated self-shrinkers. They showed that L is self-adjoint with
respect to the measure e−

1
4 |X |

2
dµ. We set ρ = e−

1
4 |X |

2
and the volume form dµ

might be omitted in the integrations for notational simplicity.
The following lemma, which was proved in [Cheng and Wei 2014a], is needed

in order to prove our results. For convenience, we also include the proof here.

Lemma 5. Let X : M → Rn+1 be a λ-hypersurface satisfying H + 1
2〈X, N 〉 = λ.

Then

1
2LH 2

= |∇H |2+ 1
2 H 2
+ |A|2(λ− H)H,(1)

1
2L|A|

2
= |∇A|2+

( 1
2 − |A|

2)
|A|2+ λ f3,(2)

where f3 =
∑

i, j,k hi j h jkhki .
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Proof. Since H + 1
2〈X, N 〉 = λ, one has

∇i H = 1
2

∑
j

hi j 〈X, e j 〉,

and
∇k∇i H = 1

2

∑
j

hi jk〈X, e j 〉+
1
2 hik +

∑
j

hi j h jk(λ− H).

Hence,

1H =
∑

i

∇i∇i H = 1
2

∑
i

∇i H〈X, ei 〉+
1
2 H + |A|2(λ− H),

and
LH =1H − 1

2

∑
i

∇i H〈X, ei 〉 =
1
2 H + |A|2(λ− H).

Therefore, we obtain

1
2LH 2

=
1
21H 2

−
1
4

∑
i

∇i H 2
〈X, ei 〉 = |∇H |2+ 1

2 H 2
+ |A|2(λ− H)H.

By using the Ricci formulas, the Gauss equations and the Codazzi equations, we have

Lhi j =1hi j −
1
2

∑
k

〈X, ek〉hi jk

=

∑
k

hi jkk −
1
2

∑
k

〈X, ek〉hi jk

=
( 1

2 − |A|
2)hi j + λ

∑
k

hikhk j .

Then it follows that

1
2L|A|

2
=

1
21

(∑
i j

h2
i j

)
−

1
4

∑
k

〈X, ek〉∇k

(∑
i j

h2
i j

)
=

∑
i, j,k

h2
i jk +

( 1
2 − |A|

2)∑
i j

h2
i j + λ

∑
i, j,k

hikhk j h j i

= |∇A|2+
( 1

2 − |A|
2)
|A|2+ λ f3,

where f3 =
∑

i, j,k hi j h jkhki . �

We need the following Sobolev inequality for submanifolds in the Euclidean
space.

Lemma 6 [Xu and Gu 2007a; Hoffman and Spruck 1974]. Let Mn (n ≥ 3) be
an n-dimensional complete submanifold in the Euclidean space Rn+p. Let f be a
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nonnegative C1 function with compact support. Then we have

‖ f ‖22n/(n−2) ≤ D2(n)
[

4(n− 1)2(1+ s)
(n− 2)2

‖∇ f ‖22+
(

1+
1
s

)
1
n2

∥∥|H | f ∥∥2
2

]
,

where

D(n)= 2n(1+ n)(n+1)/n(n− 1)−1σ−1/n
n ,

and σn denotes the volume of the unit ball in Rn .

3. Gap theorems for λ-hypersurfaces

Proof of Theorem 1. It follows from (2) and the inequality |∇A|2 ≥
∣∣∇|A|∣∣2, which

is an easy consequence of the Schwartz inequality, that

L|A|2 = 2|∇A|2+ 2
( 1

2 − |A|
2)
|A|2+ 2λ f3

≥ 2
∣∣∇|A|∣∣2+ 2

( 1
2 − |A|

2)
|A|2− 2|λ||A|3.

Let η be a smooth function with compact support on M . Multiplying η2
|A|n−2

on both sides of the inequality above and integrating by parts with respect to the
measure ρ dµ on M yields that for any τ > 0

0≥ 2
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ+

∫
M
|A|nη2ρ− 2

∫
M
|A|n+2η2ρ

− 2|λ|
∫

M
|A|n+1η2ρ−

∫
M
η2
|A|n−2ρL|A|2

= 2
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ+

∫
M
|A|nη2ρ− 2

∫
M
|A|n+2η2ρ

− 2|λ|
∫

M
|A|n+1η2ρ+ 2

∫
M
ρ|A|∇|A| · ∇(|A|n−2η2)

= 2(n− 1)
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ+

∫
M
|A|nη2ρ− 2

∫
M
|A|n+2η2ρ

− 2|λ|
∫

M
|A|n+1η2ρ+ 4

∫
M
(∇|A| · ∇η)|A|n−1ηρ

≥ 2(n− 1)
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ+

∫
M
|A|nη2ρ− 2

∫
M
|A|n+2η2ρ

− 2|λ|
(
τ

2

∫
M
|A|nη2ρ+

1
2τ

∫
M
|A|n+2η2ρ

)
+ 4

∫
M
(∇|A| · ∇η)|A|n−1ηρ.
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By the Cauchy inequality, for any ε > 0, we have

(3)
(
|λ|

τ
+ 2

)∫
M
|A|n+2η2ρ+ (|λ|τ − 1)

∫
M
|A|nη2ρ+

2
ε

∫
M
|A|n|∇η|2ρ

≥ 2(n− 1− ε)
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ.

Set f = |A|n/2ρ1/2η. Integrating by parts, we obtain

(4)
∫

M
|∇ f |2 =

∫
M

∣∣∇(|A|n/2η)∣∣2ρ+ ∫
M
|A|n η2

|∇ρ1/2
|
2
+

1
2

∫
M
∇(|A|nη2)∇ρ

=

∫
M

∣∣∇(|A|n/2η)∣∣2ρ+ 1
16

∫
M
|A|n η2

|X T
|
2ρ−

1
2

∫
M
|A|nη21ρ.

Since

1|X |2 = 2|∇X |2+ 2〈X,1X〉 = 2n+ 2H〈X, N 〉 = 2n+ 2λ〈X, N 〉− |X N
|
2,

where X N is the normal part of X , we have

1ρ =− 1
4ρ1|X |

2
+

1
16ρ

∣∣∇|X |2∣∣2 =− 1
4ρ
(
2n+ 2λ〈X, N 〉− |X N

|
2)
+

1
4ρ|X

T
|
2

=−
1
2 nρ− 1

2λρ〈X, N 〉+ 1
4ρ|X |

2.

From (4), we get

(5)
∫

M
|∇ f |2 =

∫
M

∣∣∇(|A|n/2η)∣∣2ρ− 1
16

∫
M
|A|nη2

|X T
|
2ρ−

1
8

∫
M
|A|nη2

|X N
|
2ρ

+
n
4

∫
M
|A|nη2ρ+

1
4

∫
M
|A|nη2λ〈X, N 〉ρ.

Combining the Sobolev inequality in Lemma 6 and (5), we have(∫
M
| f |

2n
n−2

)n−2
n

≤ D2(n) ·
[

4(n− 1)2(1+ s)
(n− 2)2

∫
M
|∇ f |2+

(
1+

1
s

)
·

1
n2

∫
M

H 2 f 2
]

=
4D2(n)(n− 1)2(1+ s)

(n− 2)2

[∫
M

∣∣∇(|A|n/2η)∣∣2ρ− 1
16

∫
M
|A|nη2

|X T
|
2ρ

−
1
8

∫
M
|A|nη2

|X N
|
2ρ+

n
4

∫
M
|A|nη2ρ

+
1
4

∫
M
|A|nη2λ〈X, N 〉ρ

]
+ D2(n)

(
1+

1
s

)
·

1
n2

∫
M
|A|nη2(λ− 1

2〈X, N 〉
)2
ρ.
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We choose

s =
(n− 2)2

2n2(n− 1)2
∈ R+

such that

4(n− 1)2(1+ s)
(n− 2)2

·
1
8
=

1
4

(
1+

1
s

)
·

1
n2 .

Hence

(∫
M
| f |

2n
n−2

)n−2
n

≤
2D2(n)[(n−2)2+2n2(n−1)2]

n2(n−2)2

[∫
M

∣∣∇(|A|n/2η)∣∣2ρ
+

n
4

∫
M
|A|nη2ρ+

1
4

∫
M
|A|nη2λ〈X, N 〉ρ

]
+

D2(n)[(n−2)2+2n2(n−1)2]
n2(n−2)2

[∫
M
λ2
|A|nη2ρ−

∫
M
|A|nη2λ〈X, N 〉ρ

]
.

Now we put

κ =
2D2(n)[(n− 2)2+ 2n2(n− 1)2]

n2(n− 2)2
.

It follows from the inequality above that

(6) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤

∫
M

∣∣∇(|A|n/2η)∣∣2ρ+ n
4

∫
M
|A|nη2ρ+

1
4

∫
M
|A|nη2λ〈X, N 〉ρ

+
1
2

(∫
M
λ2
|A|nη2ρ−

∫
M
|A|nη2λ〈X, N 〉ρ

)
=

∫
M

∣∣∇(|A|n/2η)∣∣2ρ+(n+ 2λ2

4

)∫
M
|A|nη2ρ−

1
4

∫
M
|A|nη2λ〈X, N 〉ρ

=

∫
M

(
n2

4

∣∣∇|A|∣∣2|A|n−2η2
+ n|A|n−1η∇|A| · ∇η+ |A|n|∇η|2

)
ρ

+

(
n+ 2λ2

4

)∫
M
|A|nη2ρ−

1
4

∫
M
|A|nη2λ〈X, N 〉ρ.
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On the other hand, for any θ > 0, we have

(7) −
1
2

∫
M
|A|nη2λ〈X, N 〉ρ =−

∫
M
|A|nη2λ(λ− H)ρ

=−

∫
M
|A|nη2λ2ρ+

∫
M
|A|nη2λHρ

≤−λ2
∫

M
|A|nη2ρ+ |λ|

∫
M
|A|nη2

(
θ

2
H 2
+

1
2θ

)
ρ

≤

(
|λ|

2θ
− λ2

)∫
M
|A|nη2ρ+

|λ|θ

2

∫
M
|A|nη2 H 2ρ

≤

(
|λ|

2θ
− λ2

)∫
M
|A|nη2ρ+

n|λ|θ
2

∫
M
|A|n+2η2ρ.

Combining (6) and (7), we get

(8) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤

∫
M

(
n2

4

∣∣∇|A|∣∣2|A|n−2η2
+ n|A|n−1η∇|A| · ∇η+ |A|n |∇η|2

)
ρ

+

(
|λ|

4θ
+

n
4

)∫
M
|A|nη2ρ+

nθ |λ|
4

∫
M
|A|n+2η2ρ.

Combining the Cauchy inequality, (3) and (8), we have for any δ > 0

κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤ (1+δ)
n2

4

∫
M

∣∣∇|A|∣∣2|A|n−2η2ρ+

(
1+

1
δ

)∫
M
|A|n |∇η|2ρ

+

(
|λ|

4θ
+

n
4

)∫
M
|A|nη2ρ+

nθ |λ|
4

∫
M
|A|n+2η2ρ

≤
(1+δ)n2

8(n−1−ε)

[(
|λ|

τ
+2

)∫
M
|A|n+2η2ρ

+(|λ|τ−1)
∫

M
|A|nη2ρ+

2
ε

∫
M
|A|n |∇η|2ρ

]
+

(
1+

1
δ

)∫
M
|A|n |∇η|2ρ+

(
|λ|

4θ
+

n
4

)∫
M
|A|nη2ρ+

nθ |λ|
4

∫
M
|A|n+2η2ρ.

Put

δ =
2(|λ| + nθ)(n− 1+ ε)

(1− |λ|τ)θn2 − 1> 0,
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where ε, θ, τ are positive constants such that |λ|τ − 1< 0. Then

(9) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤

[
nθ + |λ|

4θ(1− |λ|τ)
·

(
|λ|

τ
+ 2

)
n− 1+ ε
n− 1− ε

+
nθ |λ|

4

] ∫
M
|A|n+2η2ρ

+

[
nθ + |λ|

2θε(1− |λ|τ)
n− 1+ ε
n− 1− ε

+ 1+
1
δ

] ∫
M
|A|n |∇η|2ρ

≤
(nθ + |λ|)(|λ| + 2τ)+ nτθ2(1− |λ|τ)|λ|

4τθ(1− |λ|τ)
·

n− 1+ ε
n− 1− ε

×

(∫
M
|A|2·

n
2

)2
n
·

(∫
M
(|A|nη2ρ)

n
n−2

)n−2
n

+

(
nθ + |λ|

2θε(1− |λ|τ)
·

n− 1+ ε
n− 1− ε

+ 1+
1
δ

)∫
M
|A|n |∇η|2ρ.

Set

K (n, λ, θ, τ )=

√
4τθ(1− |λ|τ)[

(nθ + |λ|)(|λ| + 2τ)+ nτθ2(1− |λ|τ)|λ|
]
κ
.

By a direct computation, K (n, λ, θ, τ ) achieves its maximum

K (n, λ)=

√√√√ 2(
√
λ2+ 2− |λ|)(

n|λ| + 2
√

n|λ| + n
√
λ2+ 2

)
κ

when

τ = 1
2

(√
λ2+ 2− |λ|

)
, θ =

√
|λ| + 2τ

nτ − n|λ|τ 2 =
2

√
n
(√
λ2+ 2− |λ|

) = 1
√

nτ
.

Since (∫
M
|A|n dµ

)1/n

< K (n, λ),

we have from (9) that there exists 0< ε0 < 1 such that

κ−1
(∫

M
| f |

2n
n−2

)n−2
n
≤

n−1+ ε
n−1− ε

·
1− ε0

κ

(∫
M
| f |

2n
n−2

)n−2
n
+C(ε, λ)

∫
M
|A|n |∇η|2ρ,

namely,

(10)
(n− 1+ ε)ε0− 2ε
(n− 1− ε)κ

(∫
M
| f |

2n
n−2

)n−2
n
≤ C(ε, λ)

∫
M
|A|n |∇η|2ρ.



GAP THEOREMS FOR COMPLETE λ-HYPERSURFACES 463

Let η(X)= ηr (X)= φ(|X |/r) for any r > 0, where φ is a nonnegative function on
[0,+∞) satisfying

φ(x)=
{

1 if x ∈ [0, 1),
0 if x ∈ [2,+∞),

and |φ′| ≤C for some absolute constant. Let ε= 1
2ε0. Since

∫
M |A|

n dµ is bounded,
the right-hand side of (10) approaches zero as r →+∞, which implies |A| ≡ 0.
Hence M is a hyperplane of Rn+1. This completes the proof of Theorem 1. �

Setting Å =
∑

i, j h̊i jωi ⊗ω j , we have h̊i j = hi j − (H/n)gi j . Choose {ei } such
that hi j = λiδi j at a point p. Then h̊i j = λ̊iδi j , where λ̊i = λi − H/n, and

f3 =
∑

i

λ3
i =

∑
i

(
λ̊i +

H
n

)3

= B3+
3
n

H | Å|2+
1
n2 H 3,

where | Å|2=
∑

i λ̊
2
i =|A|

2
−H 2/n and B3=

∑
i λ̊

3
i . Thus, from (1) and (2) we have

1
2L| Å|

2
=

1
2L|A|

2
−

1
2L
(H 2

n

)
= |∇A|2− 1

n
|∇H |2+

( 1
2 − |A|

2)
|A|2+ λ f3−

H 2

2n
− |A|2(λ− H)H

n

= |∇Å|2+
( 1

2 − | Å|
2)
| Å|2− 1

n
H 2
| Å|2+ λB3+

2
n
λH | Å|2.

By using an algebraic inequality in [Okumura 1974], we have

|B3| ≤
n− 2
√

n(n− 1)
| Å|3,

and the equality holds if and only if at least n− 1 of the λ̊i are equal. Then we get

(11)
1
2L| Å|

2
≥ |∇Å|2+

( 1
2 − | Å|

2)
| Å|2−

1
n

H 2
| Å|2− |λ|

n− 2
√

n(n− 1)
| Å|3+

2
n
λH | Å|2

≥
∣∣∇| Å|∣∣2+ ( 1

2 − | Å|
2)
| Å|2−

1
n

(
λ− 1

2〈X, N 〉
)2
| Å|2

− |λ|
n− 2
√

n(n− 1)
| Å|3+

2
n
λ
(
λ− 1

2〈X, N 〉
)
| Å|2

=
∣∣∇| Å|∣∣2+(1

2
+
λ2

n

)
| Å|2−

1
4n
| Å|2|X N

|
2
− |λ|

n− 2
√

n(n− 1)
| Å|3− | Å|4.

By using (11), we give the proof of Theorem 2 as follows.

Proof of Theorem 2. Let η be a smooth function with compact support on M .
Multiplying | Å|n−2η2 on both sides of the inequality (11) above and integrating by
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parts with respect to the measure ρ dµ on M yields

0≥ 2
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

(
1+

2λ2

n

)∫
M
| Å|nη2ρ−

1
2n

∫
M
| Å|n|X N

|
2η2ρ

− 2|λ|
n− 2
√

n(n− 1)

∫
M
| Å|n+1η2ρ− 2

∫
M
| Å|n+2η2ρ−

∫
M
| Å|n−2η2L| Å|2ρ

= 2
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

(
1+

2λ2

n

)∫
M
| Å|nη2ρ−

1
2n

∫
M
| Å|n|X N

|
2η2ρ

− 2|λ|
n− 2
√

n(n− 1)

∫
M
| Å|n+1η2ρ− 2

∫
M
| Å|n+2η2ρ

+ 2
∫

M
ρ| Å|∇| Å| · ∇(| Å|n−2η2)

≥ 2(n− 1)
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

[(
1+

2λ2

n

)
− |λ|ζ

n− 2
√

n(n− 1)

] ∫
M
| Å|nη2ρ

−

(
2+
|λ|

ζ

n− 2
√

n(n− 1)

)∫
M
| Å|n+2η2ρ−

1
2n

∫
M
| Å|n|X N

|
2η2ρ

+ 4
∫

M
(∇| Å| · ∇η)| Å|n−1ηρ

with constant ζ > 0.
From the assumption |H | ≤

√
1
3 n+ λ2− |λ|, C , we have∫

M
| Å|n|X N

|
2η2ρ = 4

∫
M
| Å|n(λ− H)2η2ρ ≤ 4(λ2

+C2
+ 2C |λ|)

∫
M
| Å|nη2ρ.

This implies

0≥ 2(n− 1)
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ

+

[(
1+

2λ2

n

)
− |λ|ζ

n− 2
√

n(n− 1)
−

2
n
(λ2
+C2

+ 2C |λ|)
] ∫

M
| Å|nη2ρ

−

(
2+
|λ|

ζ

n− 2
√

n(n− 1)

)∫
M
| Å|n+2η2ρ+ 4

∫
M
(∇| Å| · ∇η)| Å|n−1ηρ.

By using the Cauchy inequality, for any ε > 0 we obtain

(12)
(
|λ|

ζ

n− 2
√

n(n− 1)
+ 2

)∫
M
| Å|n+2η2ρ

+

[
|λ|ζ

n− 2
√

n(n− 1)
+

2
n
(C2
+2C |λ|)−1

] ∫
M
| Å|nη2ρ+

2
ε

∫
M
| Å|n |∇η|2ρ

≥ 2(n− 1− ε)
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ.
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Set f = | Å|n/2ρ1/2η. Using the same argument as in the proof of Theorem 1, for
any δ > 0 we get

(13) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤ (1+ δ)
n2

4

∫
M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

(
1+

1
δ

)∫
M
| Å|n |∇η|2ρ

+
n+ 2λ2

4

∫
M
| Å|nη2ρ−

1
4

∫
M
| Å|nη2λ〈X, N 〉ρ.

It is easy to see that

(14) −

∫
M
| Å|nη2λ〈X, N 〉ρ =−2

∫
M
| Å|nη2λ(λ− H)ρ

=−2
∫

M
| Å|nη2λ2ρ+ 2

∫
M
| Å|nη2λHρ

≤ 2(C |λ| − λ2)

∫
M
| Å|nη2ρ.

Combining (12), (13) and (14), we have

κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤ (1+ δ)
n2

4

∫
M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

(
1+

1
δ

)∫
M
| Å|n |∇η|2ρ

+
n+ 2C |λ|

4

∫
M
| Å|nη2ρ

≤
(1+ δ)n2

8(n− 1− ε)

{(
|λ|

ζ

n− 2
√

n(n− 1)
+ 2

)∫
M
| Å|n+2η2ρ

+

[
|λ|ζ

n− 2
√

n(n− 1)
+

2
n
(C2
+ 2C |λ|)− 1

] ∫
M
| Å|nη2ρ

+
2
ε

∫
M
| Å|n |∇η|2ρ

}
+

(
1+

1
δ

)∫
M
| Å|n |∇η|2ρ+

n+ 2C |λ|
4

∫
M
| Å|nη2ρ.

Let

|λ|ζ
n− 2
√

n(n− 1)
+

2
n
(C2
+ 2C |λ|)− 1< 0,

i.e.,

0< ζ <

[
n− 2(C2

+ 2C |λ|)
]√

n(n− 1)
n(n− 2)|λ|

.
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Putting

δ =
2(n+ 2C |λ|)

√
n− 1 · (n− 1+ ε)

n
[
n
√

n− 1− (n− 2)
√

n |λ|ζ − 2
√

n− 1(C2+ 2C |λ|)
] − 1> 0

for some ε > 0 to be defined later, we have

(15) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤

{ √
n(n+2C |λ|)[(n−2)|λ|+2ζ

√
n(n−1)]

4ζ [n
√

n−1−(n−2)
√

n|λ|ζ −2
√

n−1(C2+2C |λ|)]

}
×

n−1+ε
n−1−ε

∫
M
| Å|n+2η2ρ

+

{
n(n+2C |λ|)

√
n−1 ·(n−1+ε)

2ε[n
√

n−1−(n−2)
√

n|λ|ζ −2
√

n−1(C2+2C |λ|)]
+1+

1
δ

}
×

∫
M
| Å|n |∇η|2ρ

≤

{ √
n(n+2C |λ|)[(n−2)|λ|+2ζ

√
n(n−1)]

4ζ [n
√

n−1−(n−2)
√

n|λ|ζ −2
√

n−1(C2+2C |λ|)]

}
×

n−1+ε
n−1−ε

·

(∫
M
| Å|2·

n
2

)2
n
(∫

M
(| Å|nη2ρ)

n
n−2

)n−2
n

+ C̃(ε, λ, n, ζ,C)
∫

M
| Å|n |∇η|2ρ.

Set

D(n, λ, ζ,C)=

√
4ζ
[
n
√

n− 1− (n− 2)
√

n|λ|ζ − 2
√

n− 1(C2+ 2C |λ|)
]

√
n(n+ 2C |λ|)

[
(n− 2)|λ| + 2ζ

√
n(n− 1)

]
κ

.

We choose

ζ =

√
(n− 2)2λ2+ 2(n− 1)

[
n− 2(C2+ 2C |λ|)

]
− (n− 2)|λ|

2
√

n(n− 1)

such that D(n, λ, ζ,C) achieves its maximum D(n, λ) with

D(n, λ)=

√
(n− 2)2λ2+ 2(n− 1)

[
n− 2(C2+ 2C |λ|)

]
− (n− 2)|λ|

√
n(n− 1)(n+ 2C |λ|)κ

=

√
(n− 2)2λ2+ 2

3 n(n− 1)− (n− 2)|λ|√
n(n− 1)

(
n+ 2|λ|

√
1
3 n+ λ2− 2λ2

)
κ

.
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Combining the assumption(∫
M
| Å|n dµ

)1/n

< D(n, λ)

and (15) implies that there exists 0< ε0 < 1 such that

κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤
n− 1+ ε
n− 1− ε

·
1− ε0

κ

(∫
M
| f |

2n
n−2

)n−2
n
+ C̃(ε, λ, n)

∫
M
| Å|n |∇η|2ρ,

namely,

(n− 1+ ε)ε0− 2ε
(n− 1− ε)κ

(∫
M
| f |

2n
n−2

)n−2
n
≤ C̃(ε, λ, n)

∫
M
| Å|n |∇η|2ρ.

Let ε = 1
2ε0 and choose η as in the proof of Theorem 1. Since

∫
M | Å|

n dµ is
bounded, by using a similar argument we obtain Å ≡ 0. Therefore, M is totally
umbilical, i.e., M is Sn(

√
λ2+ 2n− λ) or Rn . Since we have assumed that

|H | ≤
√

1
3 n+ λ2− |λ|,

the first case is excluded. This completes the proof of Theorem 2. �

Remark. In fact, we can prove that if supM |H |<
√

1
2 n+ λ2− |λ| and if(∫

M
| Å|n dµ

)1/n

< D(n, λ, supM |H |),

then M is a hyperplane. Here D(n, λ, supM |H |) is a positive constant depending
on n, λ and supM |H |.

Remark. In particular, if λ= 0, Theorem 2 reduces to the rigidity result for self-
shrinkers in [Lin 2016]. For the higher codimension case, Cao, Xu and Zhao [Cao
et al. 2014] proved some Ln-pinching theorems of Å for self-shrinkers.

4. Gap theorems in dimension 2

We need another Sobolev-type inequality in dimension 2, which was proved by Xu
and Gu [2007b]:

(16) c̃−1
(∫

f 4 dµ
)1/2

≤
1
t

∫
|∇ f |2 dµ+ t

∫
f 2 dµ+ 1

2

∫
|H | f 2 dµ

for all f ∈ C∞c (M) and for all t ∈ R+, where c̃ = 12
√

3π/π .
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Proof of Theorem 3. As in the proof of Theorem 1, for any 0< ε < 1, we have

(17)
(
|λ|

τ
+ 2

)∫
M
|A|4η2ρ+ (|λ|τ − 1)

∫
M
|A|2η2ρ+

2
ε

∫
M
|A|2 |∇η|2ρ

≥ 2(1− ε)
∫

M

∣∣∇|A|∣∣2η2ρ.

Setting f = |A|ηρ1/2, we get

(18)
∫

M
|∇ f |2 =

∫
M

∣∣∇(|A|η)∣∣2ρ− 1
16

∫
M
|A|2η2

|X T
|
2ρ−

1
8

∫
M
|A|2η2

|X N
|
2ρ

+
1
2

∫
M
|A|2η2ρ+

1
4

∫
M
|A|2η2λ〈X, N 〉ρ.

Combining the Sobolev-type inequality (16) and (18), we have

c̃−1
(∫

M
| f |4

)1/2

≤
1
t

[∫
M

∣∣∇(|A|η)∣∣2ρ− 1
16

∫
M
|A|2η2

|X T
|
2ρ

−
1
8

∫
M
|A|2η2

|X N
|
2ρ+

1
2

∫
M
|A|2η2ρ+

1
4

∫
M
|A|2η2λ〈X, N 〉ρ

]
+ t

∫
M
|A|2η2ρ+

1
2

∫
|H ||A|2η2ρ

≤
1
t

[∫
M

∣∣∇(|A|η)∣∣2ρ+ 1
2

∫
M
|A|2η2ρ+

λ2

8

∫
M
|A|2η2ρ

]
+ t

∫
M
|A|2η2ρ+

1
2

∫
|H ||A|2η2ρ.

By the Cauchy inequality, for any θ > 0, we get

(19) c̃−1
(∫

M
| f |4

)1/2

≤
1
t

[∫
M

∣∣∇(|A|η)∣∣2ρ+ 1
2

∫
M
|A|2η2ρ+

λ2

8

∫
M
|A|2η2ρ

]
+ t

∫
M
|A|2η2ρ+

1
2

∫ (
θ

2
H 2
+

1
2θ

)
|A|2η2ρ

≤
1
t

[∫
M

∣∣∇(|A|η)∣∣2ρ+ 1
2

∫
M
|A|2η2ρ+

λ2

8

∫
M
|A|2η2ρ

]
+ t

∫
M
|A|2η2ρ+

1
2

∫ (
θ |A|2+

1
2θ

)
|A|2η2ρ
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=
1
t

∫
M

(∣∣∇|A|∣∣2η2
+ 2|A|η∇|A| · ∇η+ |A|2 |∇η|2

)
ρ

+

(
t +

1
4θ
+

1
2t
+
λ2

8t

)∫
|A|2η2ρ+

θ

2

∫
|A|4η2ρ

≤
1
t

[
(1+ δ)

∫
M

∣∣∇|A|∣∣2η2ρ+

(
1+

1
δ

)∫
M
|A|2 |∇η|2ρ

]
+

(
t +

1
4θ
+

1
2t
+
λ2

8t

)∫
|A|2η2ρ+

θ

2

∫
|A|4η2ρ.

Combining (17) and (19), we have

c̃−1
(∫

M
|A|4η4ρ2

)1/2

≤
1
t
(1+δ) ·

1
2(1−ε)

[(
|λ|

τ
+2

)∫
M
|A|4η2ρ+(|λ|τ−1)

∫
M
|A|2η2ρ

+
2
ε

∫
M
|A|2 |∇η|2ρ

]
+

1
t

(
1+

1
δ

)∫
M
|A|2 |∇η|2ρ+

(
t+

1
4θ
+

1
2t
+
λ2

8t

)∫
|A|2η2ρ+

θ

2

∫
|A|4η2ρ.

Put

δ =
(4θ + 2t + 8θ t2

+ θλ2)(1+ ε)
4θ(1− |λ|τ)

− 1> 0,

where ε, θ, τ, t are positive constants such that |λ|τ − 1< 0. Then

(20) c̃−1
(∫

M
|A|4η4ρ2

)1/2

≤

[
1
t
·
(1+ ε)
2(1− ε)

·
(4θ + 2t + 8θ t2

+ θλ2)

4θ(1− |λ|τ)
·

(
|λ|

τ
+ 2

)
+
θ

2

] ∫
M
|A|4η2ρ

+
1
t

[
(1+ δ)
ε(1− ε)

+

(
1+

1
δ

)]∫
M
|A|2 |∇η|2ρ

≤
(4θ + 2t + 8θ t2

+ θλ2)(|λ| + 2τ)+ 4θ2tτ(1− |λ|τ)
8θ tτ(1− |λ|τ)

·
1+ ε
1− ε

×

(∫
M
|A|4η4ρ2

)1/2

·

(∫
M
|A|4

)1/2

+
1
t

[
(1+ δ)
ε(1− ε)

+

(
1+

1
δ

)]∫
M
|A|2 |∇η|2ρ.
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Set

K (t, λ, θ, τ )=
8θ tτ(1− |λ|τ)[

(4θ + 2t + 8θ t2+ θλ2)(|λ| + 2τ)+ 4θ2tτ(1− |λ|τ)
]
c̃
,

where c̃= 12
√

3π/π . By a direct computation, K (t, λ, θ, τ ) achieves its maximum

K (λ)=

√
2
(
λ2
+ 1−

√
λ2+ 2|λ|

)(
2
√

4+ λ2+
√
λ2+ 2− |λ|

)
c̃

when

t =
√

1
8(4+ λ

2), τ = 1
2

(√
λ2+ 2− |λ|

)
, θ =

√
|λ| + 2τ

2τ(1− |λ|τ)
=

1
√

2τ
.

Since (∫
M
|A|4

)1/2

< K (λ),

we have from (20) that there exists 0< ε0 < 1 such that

c̃−1
(∫

M
|A|4η4ρ2

)1/2

≤
1+ ε
1− ε

·
1− ε0

c̃

(∫
M
|A|4η4ρ2

)1/2

+C(ε, λ)
∫

M
|A|2 |∇η|2ρ.

Let ε= 1
2ε0. Since

∫
M |A|

4 dµ is bounded, we choose η as in the proof of Theorem 1
and a similar argument implies |A| ≡ 0. �

Using a similar argument, we give the proof of Theorem 4.

Proof of Theorem 4. For n = 2, we have

1
2L| Å|

2
≥
∣∣∇| Å|∣∣2+ 1+ λ2

2
| Å|2− 1

8 | Å|
2
|X N
|
2
− | Å|4,

and

(21) 2
∫

M
| Å|4η2ρ+ (C2

+ 2C |λ| − 1)
∫

M
| Å|2η2ρ+

2
ε

∫
M
| Å|2 |∇η|2ρ

≥ 2(1− ε)
∫

M

∣∣∇| Å|∣∣2η2ρ

with 0< ε < 1.



GAP THEOREMS FOR COMPLETE λ-HYPERSURFACES 471

Set f = | Å|ρ1/2η. By (16) and the hypothesis |H | ≤
√

2
3 + λ

2−|λ|,C , we have

(22) c̃−1
(∫

M
| f |4

)1/2

≤
1
t

[∫
M

∣∣∇(| Å|η)∣∣2ρ+ 1
2

∫
M
| Å|2η2ρ+

λ2

8

∫
M
| Å|2η2ρ

]
+ t

∫
M
| Å|2η2ρ+

1
2

∫
|H || Å|2η2ρ

≤
1
t

∫
M

(∣∣∇| Å|∣∣2η2
+ 2| Å|η∇| Å| · ∇η+ | Å|2 |∇η|2

)
ρ

+

(
t +

C
2
+

1
2t
+
λ2

8t

)∫
M
| Å|2η2ρ.

Combining the Cauchy inequality, (21) and (22), we have for any δ > 0

c̃−1
(∫

M
| f |4

)1/2

≤
1
t

[
(1+δ)

∫
M

∣∣∇| Å|∣∣2η2ρ+

(
1+

1
δ

)∫
M
| Å|2 |∇η|2ρ

]
+

(
t+

C
2
+

1
2t
+
λ2

8t

)∫
M
| Å|2η2ρ

≤
1+δ

t
1

2(1−ε)

[
2
∫

M
| Å|4η2ρ+(C2

+2C |λ|−1)
∫

M
| Å|2η2ρ

+
2
ε

∫
M
| Å|2 |∇η|2ρ

]
+

1
t

(
1+

1
δ

)∫
M
| Å|2 |∇η|2ρ+

(
t+

C
2
+

1
2t
+
λ2

8t

)∫
M
| Å|2η2ρ.

Put

δ =
(4+ λ2

+ 8t2
+ 4tC)(1+ ε)

4[1− (C2+ 2C |λ|)]
− 1> 0.

Then we get

(23) c̃−1
(∫

M
| f |4

)1/2

≤
1
t
·

4+ λ2
+ 8t2

+ 4tC
4[1− (C2+ 2C |λ|)]

·
1+ ε
1− ε

·

∫
M
| Å|4η2ρ

+
1
t

[
1+ δ
ε(1− ε)

+ 1+
1
δ

] ∫
M
| Å|2 |∇η|2ρ

≤
1
t
·

4+ λ2
+ 8t2

+ 4tC
4[1− (C2+ 2C |λ|)]

·
1+ ε
1− ε

·

(∫
M
| f |4

)1/2

·

(∫
M
| Å|4

)1/2

+
1
t

[
1+ δ
ε(1− ε)

+ 1+
1
δ

] ∫
M
| Å|2 |∇η|2ρ.
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Set

D(λ,C, t)=
4t[1− (C2

+ 2C |λ|)]
(4+ λ2+ 8t2+ 4tC)c̃

.

We choose t =
√

1
8(4+ λ

2) such that D(λ,C, t) achieves its maximum

D(λ)=
1

3
(√

8+ 2λ2+

√
2
3 + λ

2− |λ|
)

c̃
.

Since (∫
M
| Å|4

)1/2

< D(λ),

we have from (23) that there exists 0< ε0 < 1 such that

c̃−1
(∫

M
| f |4

)1/2

≤
1+ ε
1− ε

·
1− ε0

c̃
·

(∫
M
| f |4

)1/2

+C(ε, λ)
∫

M
| Å|2 |∇η|2ρ.

Let ε= 1
2ε0. Since

∫
M | Å|

4 dµ is bounded, we choose η as above and a similar argu-
ment implies Å ≡ 0. Therefore, M is totally umbilical, i.e., M is S2(

√
λ2+ 4− λ)

or R2. Since we have assumed that

|H | ≤
√

2
3 + λ

2− |λ|,

the first case is excluded. This completes the proof of Theorem 4. �

Remark. Similarly, it is seen from the proof of Theorem 4 that we can prove that
if supM |H | <

√
1+ λ2 − |λ| and if

(∫
M | Å|

4 dµ
)
1/2 < D(λ, supM |H |), then M

is a hyperplane. Here D(λ, supM |H |) is a positive constant depending on λ and
supM |H |.
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