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BACH-FLAT h-ALMOST GRADIENT RICCI SOLITONS

GABJIN YUN, JINSEOK CO AND SEUNGSU HWANG

On an n-dimensional complete manifold M, consider an h-almost gradient
Ricci soliton, which is a generalization of a gradient Ricci soliton. We prove
that if the manifold is Bach-flat and dh/du > 0, then the manifold M is
either Einstein or rigid. In particular, such a manifold has harmonic Weyl
curvature. Moreover, if the dimension of M is four, the metric g is locally
conformally flat.

1. Introduction

The notion of an h-almost Ricci soliton was introduced by Gomes, Wang, and Xia
[Gomes et al. 2015]. Such a soliton is a generalization of an almost Ricci soliton
presented in [Barros and Ribeiro 2012; Pigola et al. 2011]. An h-almost Ricci
soliton is a complete Riemannian manifold (Mn, g) with a vector field X on M ,
a soliton function λ : M → R and a signal function h : M → R+ satisfying the
equation

rg +
1
2 hLX g = λg,

where rg is the Ricci curvature of g. A function is called signal if it has only one
sign; in other words, it is either positive or negative on M . Let (M, g, X, h, λ)
denote an h-almost Ricci soliton. In particular, (M, g,∇u, h, λ) for some smooth
function u : M → R is called an h-almost gradient Ricci soliton with potential
function u. In this case, we have

(1-1) rg + h Dg du = λg.

Here, Dg du denotes the Hessian of u. Note that if we take u=e− f/m and h=−m/u,
then (1-1) becomes

Ricm
f = rg + Dg d f − 1

m
d f ⊗ d f = λg.
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In other words, the (λ, n+m)-Einstein equation is a special case of (1-1). Here,
Ricm

f is called the m-Bakry–Emery tensor. For further details about h-almost Ricci
solitons, see [Gomes et al. 2015].

In this paper we consider Bach-flat h-almost gradient Ricci solitons. The Bach
tensor was introduced by R. Bach, and this notion plays an important role in
conformal relativity. On any n-dimensional Riemannian manifold (M, g), n ≥ 4,
the Bach tensor is defined by

B =
1

n− 3
δD δW +

1
n− 2

W̊z,

where W is the Weyl tensor, z is the traceless Ricci tensor, and W̊z is defined by

W̊z(X, Y )=
n∑

i=1

z(W(X, Ei )Y, Ei )

for some orthonormal basis {Ei }
n
i=1. It is easy to see that if (M, g) is either locally

conformally flat or Einstein, then it is Bach-flat: B = 0. When n = 4, it is well
known that Bach-flat metrics on a compact manifold M are critical points of the
functional

g 7→
∫

M
|W|2 dvg.

It is clear that when h = 1 and λ is a positive constant, an h-almost gradient Ricci
soliton reduces to a gradient shrinking Ricci soliton. Cao and Chen [2013] proved
that a complete Bach-flat gradient shrinking Ricci soliton is either Einstein or rigid.
On the other hand, Qing and Yuan [2013] classified Bach-flat static spaces.

Our main result is as follows, which can be considered as a generalization of
[Cao and Chen 2013].

Theorem 1.1. Let (M, g,∇u, h, λ) be an n-dimensional Bach-flat h-almost gra-
dient Ricci soliton with potential function u. Assume that each level set of u is
compact and h is a function of u only. Then (M, g,∇u, h, λ) is either

(1) Einstein with constant functions u and h, or

(2) locally isometric to a warped product with (n−1)-dimensional Einstein fibers
if dh/du > 0 on M.

For example, when m > 0, h=−m/u< 0 satisfies the condition of Theorem 1.1,
since

dh
du
=

m
u2 > 0.

This recovers the result of [Chen and He 2013]. It will be interesting if one can
weaken the condition of Theorem 1.1.
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In the case of (2) in Theorem 1.1, a warped product metric has vanishing Cotton
tensor (see (2-4) below) since its fiber is Einstein. Thus, as a consequence of
Theorem 1.1, we have the following.

Corollary 1.2. Let (M, g,∇u, h, λ) be an n-dimensional Bach-flat h-almost gra-
dient Ricci soliton with potential function u. Assume that each level set of u is
compact and h is a function of u only. If dh/du > 0 on M , then (M, g) has
harmonic Weyl curvature.

In particular, when n = 4, the Einstein fibers in Theorem 1.1 have constant
curvature. A computation shows that such a metric is locally conformally flat,
which proves the following theorem.

Theorem 1.3. Let (M, g,∇u, h, λ) be a 4-dimensional Bach-flat h-almost gradient
Ricci soliton with potential function u. Assume each level set of u is compact and h
is a function of u only with dh/du > 0. Then (M, g) is locally conformally flat.

As in [Chen and He 2013], Theorem 1.1, Corollary 1.2, and Theorem 1.3 can be
extended to the case in which M has a nonempty boundary.

2. Preliminaries

In this section, we derive several useful identities containing various curvatures and
the Cotton tensor.

We start with basic definitions of differential operators acting on tensors. Let us
denote by C∞(S2 M) the space of sections of symmetric 2-tensors on a Riemannian
manifold M . Let D be the Levi-Civita connection of (M, g). Then the differential
operator d D from C∞(S2 M) into C∞(32 M ⊗ T ∗M) is defined as

d Dω(X, Y, Z)= (DXω)(Y, Z)− (DYω)(X, Z)

for ω ∈C∞(S2 M) and vectors X , Y , and Z . Let us denote by δD the formal adjoint
operator of d D.

For a function f ∈ C∞(M) and ω ∈ C∞(S2 M), d f ∧ω is defined as

(d f ∧ω)(X, Y, Z)= d f (X)ω(Y, Z)− d f (Y )ω(X, Z).

Here, d f denotes the usual total differential of f . We also denote by δ the negative
divergence operator such that 1 f =−δ d f .

Taking the trace of (1-1) gives

sg + h1u = nλ.

Thus,
dsg +1u dh+ h d1u = n dλ.
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By taking the divergence of (1-1), we have

−
1
2 dsg − Dg du(∇h, · )− hrg(∇u, · )− h d1u =−dλ.

By adding the previous two equations, we have

(2-1) 1
2 dsg − Dg du(∇h, · )− hrg(∇u, · )+1u dh = (n− 1) dλ.

Note that

(2-2) δ(hrg(∇u, · ))=−rg(∇u,∇h)− 1
2 h〈∇sg,∇u〉+ |rg|

2
− λsg.

Therefore, we have the following equality.

Proposition 2.1. On M we have

(n− 1)1λ= 1
21sg + |rg|

2
− λsg −

1
2 h〈∇sg,∇u〉

+

(
1u−

λ

h

)
1h+

1
h
〈rg, Dg dh〉− 2rg(∇u,∇h).

On the other hand, by applying d D to (1-1), we have

(2-3) d Drg −
1
h

dh ∧ rg + h ı̃∇u R = dλ∧ g−
λ

h
dh ∧ g.

Here, an interior product ı̃ of the final factor is defined by

ı̃ξ R(X, Y, Z)= R(X, Y, Z , ξ),

and we used the identity
d DD du = ı̃∇u R.

Hereafter, we denote sg, rg, and Dg du by s, r , and D du, respectively. From
the curvature decomposition, we can compute that

ı̃∇u R = ı̃∇uW −
1

n− 2
i∇ur ∧ g+

s
(n− 1)(n− 2)

du ∧ g−
1

n− 2
du ∧ r,

where i∇ur denotes the interior product defined by

i∇ur(X)= r(∇u, X).

The Cotton tensor C is defined by

(2-4) C = d Dr −
1

2(n− 1)
ds ∧ g.

Then, by (2-1) and (2-3) as well as the fact that

s+ h1u = nλ,
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we have

(2-5) C + h ı̃∇uW = h D+
h

n− 1
i∇ur ∧ g+ dλ∧ g−

1
2(n− 1)

ds ∧ g

+
1
h

dh ∧ r −
λ

h
dh ∧ g

= h D+ H,

where D is defined (as usual) by

(2-6) (n− 2)D = du ∧ r +
1

n− 1
i∇ur ∧ g−

s
n− 1

du ∧ g,

and H is defined by

H =−
1

n− 1
i∇h D du ∧ g+ dh ∧

(
1
h

r +
1u

n− 1
g−

λ

h
g
)

= db∧ r +
1

n− 1
i∇br ∧ g−

s
n− 1

db∧ g.

Here, b = log |h| with ∇b =∇h/h. In particular, gik Hi jk =−gik H j ik = 0.

Proposition 2.2. Let (M, g,∇u, h, λ) be an h-almost gradient Ricci soliton with
potential function u. Then

C + h ı̃∇uW = h D+ H.

In particular, if h is constant or dh/du = 0, then H ≡ 0.

3. Bach-flat metrics

In this section, we assume that g is Bach-flat. Note that

δW =−
n− 3
n− 2

C.

Recall that the Bach tensor is given by

B =
1

n− 3
δDδW +

1
n− 2

W̊z =
1

n− 2
(−δC + W̊z).

Since

δ(h ı̃∇uW)(X, Y )

=−W(∇h, X, Y,∇u)+ h δW(X, Y,∇u)+ hW(X, Ei , Y, DEi du)

= lW(X,∇h, Y,∇u)−
n− 3
n− 2

h C(Y,∇u, X)− W̊z,
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by taking the divergence of (2-5) we have

−(n− 2)B(X, Y )=−W(X,∇h, Y,∇u)+
n− 3
n− 2

h C(Y,∇u, X)− i∇h D(X, Y )

+ h δD(X, Y )+ δH(X, Y ).

Hence,

−(n− 2)B(∇u,∇u)=−D(∇h,∇u,∇u)+ h δD(∇u,∇u)+ δH(∇u,∇u).

As a result, from the assumption that B = 0 and h is a function of u only,

0=
1
h

D(∇h,∇u,∇u)= δD(∇u,∇u)+
1
h
δH(∇u,∇u).

Let {Ei }
n
i=1 be a normal geodesic frame. Note that, since

h D(Ei , DEi du,∇u)=−D(Ei , Ek,∇u)rik = 0,

we have

div(D( · ,∇u,∇u))=−δD(∇u,∇u)+ D(Ei ,∇u, DEi du).

Furthermore,

|D|2 =
1

n− 2

(
du(Ei )r(E j , Ek)− du(E j )r(Ei , Ek)

)
Di jk

=−
2

n− 2
D(Ei ,∇u, Ek)rik

=
2h

n− 2
D(Ei ,∇u, DEi du).

Similarly, since

h H(Ei , DEi du,∇u)=−H(Ei , Ek,∇u)rik = 0

and h is a function of u only, we have

div
(

1
h

H( · ,∇u,∇u)
)
=−

1
h
δH(∇u,∇u)+

1
h

H(Ei ,∇u, DEi du).

Moreover,

|H |2 =−
2
h

H(Ei ,∇h, Ek)rik

=−
2
h

dh
du

H(Ei ,∇u, Ek)rik

= 2
dh
du

H(Ei ,∇u, DEi du).
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Thus,

0=
∫

t1≤u≤t2
δD(∇u,∇u)+

1
h
δH(∇u,∇u)

=
n− 2

2

∫
t1≤u≤t2

|D|2

h
+

1
2

∫
t1≤u≤t2

|H |2

h dh
du

.

Since h is signal, h is either positive or negative. For each case, we derive D=H =0
when dh/du > 0. Therefore we have the following result.

Lemma 3.1. Let (M, g,∇u, h, λ) be a Bach-flat h-almost gradient Ricci soliton
with potential function u. Assume that each level set of u is compact and h is a
function of u only. If dh/du > 0 on M , then on M we have

D = H = 0.

Now, since D = H = 0, by (2-4) and (2-5)

(3-1) C =−h ı̃∇uW.

By taking the divergence of (3-1), we have

W(X,∇h, Y,∇u)=
n− 3
n− 2

h C(Y,∇u, X).

By combining these equations,

n− 3
n− 2

h2 C(Y,∇u, X)=−C(X,∇h, Y ),

and

W(X,∇h, Y,∇u)=−
n− 3
n− 2

h2W(X,∇u, Y,∇u).

Therefore, we have the following.

Corollary 3.2. When D = H = 0, we have

(3-2) W( · ,∇u, · ,∇u)= C(· ,∇u, · )= 0,

unless
dh
du
=−

(
n− 3
n− 2

)
h2.

For example, when h =−m/u, (3-2) holds if m 6= 0 or −(n− 2)/(n− 3). Note
that (3-2) also holds if h is constant.

Moreover, we have the following result.

Lemma 3.3. Suppose that dh/du > 0. Then, for X orthogonal to ∇u,

(3-3) r(X,∇u)= 0.
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In particular,
i∇ur = α du,

where α = r(N , N ) with N =∇u/|∇u|.

Proof. By Lemma 3.1, D = H = 0. From (2-3), if X is orthogonal to ∇u,

d Dr(X, Y,∇u)=−
1
h

dh(Y )r(X,∇u)+ dλ(X) du(Y ).

Since C(X, Y,∇u)=−hW(X, Y,∇u,∇u)= 0 by (3-1), by (2-4) we have

d Dr(X, Y,∇u)=
1

2(n− 1)
ds(X) du(Y ).

Thus, by (2-1)

1
h

dh
du

r(X,∇u)= dλ(X)−
1

2(n− 1)
ds(X)

=
1

(n− 1)h

(
dh
du
− h2

)
r(X,∇u),

which implies that (
(n− 2)

dh
du
+ h2

)
r(X,∇u)= 0. �

Note that Lemma 3.3 holds with the assumptions that D = H = 0 and

(3-4)
dh
du
6= −

1
n− 2

h2

without dh/du > 0. For example, in the case of the m-Bakry–Emery tensor,
h =−m/u satisfies (3-4) if m 6= 2− n.

4. Level sets of u

In this section, we investigate the structure of regular level sets of the potential
function u. For a regular value c, we denote the level set u−1(u) by Lc. On Lc,
let {Ei }, 1≤ i ≤ n, be an orthonormal frame with En = N =∇u/|∇u|.

Furthermore, throughout the section we assume that D = H = 0 with

dh
du
6= −

(
n− 3
n− 2

)
h2 and

dh
du
6= −

1
n− 2

h2.

Then, by Corollary 3.2, (3-2) and (3-3) hold. Furthermore, for X orthogonal to ∇u,
by the proof of Lemma 3.3,

dλ(X)=
1

2(n− 1)
ds(X).



BACH-FLAT h-ALMOST GRADIENT RICCI SOLITONS 483

Thus, s+ 2(1− n)λ is constant on each level set of u. Furthermore,

1
2 X (|∇u|2)= 〈DX du,∇u〉 =

1
h

(
λ du(X)− r(X,∇u)

)
= 0,

which implies that |∇u|2 is constant on each level set of u. Therefore, we have the
following.

Lemma 4.1. |∇u|2 and s+ 2(1− n)λ are constant on each regular level set of u.

For further investigation, we need the following key lemma.

Lemma 4.2.

0=
ns− (n− 1)2λ−α

(n− 1)h
r − D∇ur −

r ◦ r
h
+

n− 3
2(n− 1)

du⊗ ds

+
1

n− 1

(
ds(u)−〈∇u,∇α〉

)
g+

s+ (1− n)λ
(n− 1)h

(α− s)g+
1

n− 1
du⊗ dα.

Proof. To find δD, by (2-6), we first compute

δ(du ∧ r)=
s− (n− 1)λ

h
r − D∇ur −

r ◦ r
h
+

1
2 du⊗ ds.

By Lemma 3.3, i∇ur = α du. Thus,

δ(i∇ur ∧ g)=−〈∇u,∇α〉g+
s+ (1− n)λ

h
αg+ du⊗ dα−

α

h
r.

Similarly,

−δ(s du ∧ g)= ds(u)g−
s2
+ (1− n)sλ

h
g− du⊗ ds+

s
h

r.

Hence, by (2-6) together with (3-3), we have

(n− 2)δD =
ns− (n− 1)2λ−α

(n− 1)h
r − D∇ur −

r ◦ r
h

+
n− 3

2(n− 1)
du⊗ ds+

1
n− 1

du⊗ dα

+
1

n− 1

(
ds(u)−〈∇u,∇α〉+

s+ (1− n)λ
h

(α− s)
)

g.

Since D = δD = 0, the proof follows. �

Thus, we have the following.

Corollary 4.3. (n− 3)s+ 2α is constant on each regular level set of u.

Proof. Let X be a vector orthogonal to ∇u. By putting (X,∇u) in the equation in
Lemma 4.2,

(4-1) D∇ur(X,∇u)= 0.
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Now, by putting (∇u, X) in the equation in Lemma 4.2 again, we have

0=
n− 3

2(n− 1)
|∇u|2 ds(X)+

1
n− 1

|∇u|2 dα(X),

since r(X,∇u)= 0 and

D∇ur(∇u, X)= D∇ur(X,∇u). �

Lemma 4.4. sg + 2(1− n)α is constant on each regular level set of u.

Proof. For X orthogonal to ∇u, by (3-2) and (4-1)

0= C(X,∇u,∇u)

= DXr(∇u,∇u)−
1

2(n− 1)
ds(X)|∇u|2.

Thus,

X (α)=
1
|∇u|2

X (r(∇u,∇u))

=
1
|∇u|2

(
DXr(∇u,∇u)+ 2r(DX du,∇u)

)
=

1
2(n− 1)

ds(X),

since

r(DX du,∇u)=
1
h
(λr(X,∇u)− r ◦ r(X,∇u))= 0. �

By combining Lemma 4.1, Corollary 4.3, and Lemma 4.4, we have the following.

Theorem 4.5. Let (M, g,∇u, h, λ) be a Bach-flat h-almost gradient Ricci soliton
with potential function u. Assume that each level set of u is compact and h is
a function of u only with dh/du > 0. Then sg, α, and λ are constant on each
regular level set of u. In particular, if h is constant, the condition on dh/du is not
necessary.

When D = 0, the Ricci tensor has the following characterization.

Lemma 4.6. Suppose that D = 0. Then the Ricci curvature tensor has at most two
eigenvalues.

Proof. Let {Ei }, 1 ≤ i ≤ n, be an orthonormal frame with En = N = ∇u/|∇u|.
Then

(4-2) I Ii j =
1

h |∇u|
(λgi j − ri j ),

and

m = tr I I =
n− 1
h |∇u|

(
λ+

α− s
n− 1

)
.
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Thus, m is constant on each level set of u, and∣∣∣∣ I I −
m

n− 1
g
∣∣∣∣2 = |I I |2−

m2

n− 1

=
1

h2|∇u|2

(
|r |2−α2

−
(s−α)2

n− 1

)
=

1
h2|∇u|2

(
|r |2−

n
n− 1

α2
+

2sα
n− 1

−
s2

n− 1

)
.

Since r ◦ r(∇u,∇u)= α2
|∇u|2, from the identity

n− 2
2
|D|2 = |r |2 |∇u|2−

n
n− 1

r ◦ r(∇u,∇u)+
2s

n− 1
r(∇u,∇u)−

s2

n− 1
|∇u|2,

we have

|D|2 =
2

n− 2
h2
|∇u|4

∣∣∣∣ I I −
m

n− 1
g
∣∣∣∣2.

Since D = 0, we have

(4-3) I Ii j =
m

n− 1
gi j ,

which implies that

(4-4) ri j =
s−α
n− 1

gi j

for i = 1, . . . , n− 1 by (4-2). �

As an immediate consequence, on an open set {x ∈ M | ∇u(x) 6= 0}, the Ricci
tensor may be written as

rg = β du⊗ du+
(

s−α
n− 1

)
g,

where
β =

nα− s
(n− 1)|∇u|2

.

Thus, by (1-1) we have

Dg du =
1
h

(
λ+

α− s
n− 1

)
g−

β

h
du⊗ du.

Now, we are ready to prove Corollary 1.2, which shows the relationship between
Bach-flat metrics and harmonic Weyl metrics.

Proof of Corollary 1.2. Note that, by (3-1) and (3-2)

C( · , · ,∇u)= C( · ,∇u, · )= 0.
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On the other hand, by the Codazzi equation,

〈R(X, Y )Z , N 〉 = DY I I (X, Z)− DX I I (Y, Z).

Thus, for 1≤ i, j, k ≤ n− 1, by (4-3)

〈R(Ei , E j )Ek, N 〉 = E j (I I (Ei , Ek))− I I (DE j Ei , Ek)− I I (Ei , DE j Ek)

− Ei (I I (E j , Ek))+ I I (DEi E j , Ek)+ I I (E j , DEi Ek)

= 0.

Therefore, by (2-3)
d Dr(Ei , E j , Ek)= 0,

which implies that

C(Ei , E j , Ek)= d Dr(Ei , E j , Ek)−
1

2(n− 1)
ds ∧ g(Ei , E j , Ek)= 0.

Hence, C is identically zero, and so is δW . �

The following is a restatement of Theorem 1.1.

Theorem 4.7. Let (M, g,∇u, h, λ) be a Bach-flat h-almost gradient Ricci soliton
with potential function u. Assume that each level set of u is compact with dh/du>0
on M. Then, either g is Einstein with constant function u or the metric can be
written as

g = dt2
+ψ2(t) ĝE ,

where ĝE is the Einstein metric on the level set E = Lc0 for some c0.

Proof. Assume that u is not constant. By Lemma 3.1, D = H = 0. Since |∇u|2

depends only on u by Lemma 4.6, as shown in the proof of Theorem 7.9 of [He
et al. 2012] with Remark 3.2 of [Cao and Chen 2013], the metric can be locally
written as

g = dt2
+ ĝc.

Here, ĝc denotes the induced metric on the level set Lc = u−1(c) for each regular
value c. Furthermore, (Lc, ĝc) is necessarily Einstein; by the Gauss equation

R̂i j i j = Ri j i j + I Ii i I I j j − I I 2
i j = Ri j i j +

m2

(n− 1)2
.

Thus,

r̂i i = ri i − R(N , Ei , N , Ei )+
m2

n− 1
.

By (3-2) and (4-4), we have

R(Ei , N , Ei , N )=
1

n− 2
(ri i +α)−

s
(n− 1)(n− 2)

=
α

n− 1
.
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Hence, it follows that

r̂i i = ri i +
m2
−α

n− 1
=

1
n− 1

(s− 2α+m2)= λ̂0.

Since s, α, and m are constant along Lc, this proves that (Lc, ĝc) has constant Ricci
curvature. As a result, by a suitable change of variable, the metric g can be written
as in the statement of Theorem 4.7. �
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